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UNIVERSITY OF SOUTHAMPTON

Abstract

Faculty of Engineering and the Environment

Institute of Sound and Vibration Research

Doctor of Philosophy

Cones of Silence, Complex Rays, & Catastrophes: Novel Sources of

High-Frequency Noise in Jets

by Jonathan T. Stone

As industrial design continues to look at less conventional jet engine nozzles that produce

typically asymmetric mean flows, there is now a need for completely 3D noise prediction

schemes. To date, most prediction schemes have been based on extensions of the acoustic

analogy given by Lighthill. The most popular, due to Lilley for a parallel shear flow,

proves too restrictive when considering the flows from complicated nozzle geometries.

However, a generalised acoustic analogy based on an arbitrary mean flow with prescribed

nonlinear source terms remains a viable method for industrial computations.

Since any source can be decomposed into a sum of point sources, a critical step in

acoustic analogies is the construction of the mean field Green’s function. In general the

numerical determination of the Green’s function still remains a major undertaking, and

so much attention has been focused on the simplifications afforded to high-frequency ray

approximations. Typically ray theory suffers from three main deficiencies: multiplicity of

solutions, singularities at caustics, and the determining of complex solutions. The latter

lying beyond-all-orders of the divergent ray expansion in the wavenumber parameter,

but proving critical when computing the acoustic field in shadow zones such as the cone

of silence.

The purpose of this thesis is to generalise, combine and apply existing methods of tack-

ling these deficiencies to moving media scenarios for the first time. Multiplicities are dealt

with using an equivalent two-point boundary-value problem, whilst non-uniformities at

caustics are corrected using diffraction catastrophes. Complex rays are found using a

combination of imaginary perturbations, an assumption of caustic stability, and analytic

continuation of the receiver curve.

As a demonstration of the solver two problems are studied with increasing utility to jet

noise. The most important is the application to Lilley’s equation for an off-axis point

source. This solution is representative of high-frequency source positions in real jets

and is rich in caustic structures. Full utilisation of the ray solver is shown to provide

excellent results.
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Chapter 1

Introduction

1.1 Jet Noise

In the past 50-60 years there have been rapid developments in the understanding and

prediction of jet noise. Jet noise is a significant contributor to an aircraft’s noise signa-

ture, and consequently there has a been a considerable desire to control and mitigate this

contribution. Despite a flurry of activity and over four-fold reductions in jet noise alone

since the 1960s, aviation noise is still a serious and growing problem. In small developed

countries such as those in the UK it is also one of controversy, particularly aggravated

by the drive to cater - via large transport hubs - for expanding markets in the global

economy. In an addition to this, there is also an urgency to design and validate new

engines that provide noise benefits as increasingly stringent noise requirements, such as

those found in ICAO’s annex 16 [1, 2], come into force.

In the modern day, jet flows are predominantly produced by coaxial turbofan power-

plants, whereby a large cold flow that bypasses the engine core mixes with a hot core

flow in the jet exhaust. A typical example of the jet flows that result from this con-

figuration is shown in Fig. 1.1(a). As the flow exits the nozzle(s) the turbulent mixing

of the flow with the ambient medium creates, as a byproduct, a component of pressure

that propagates acoustically to an observer, resulting in jet noise. It is the wide range

of energy bearing scales within the subsonic flow that provides the characteristic broad-

band structure to the pressure spectrum. Figure 1.1(b) is a good illustration of both

the fine-scale turbulence and the large coherent structures present in a single stream

jet. While coaxial flows are more complicated than those of single stream jets, these

fine-scale and large structures are present in both. It is the identification of this lat-

ter noise mechanism that led to the use of enhanced mixing devices, such as tabs and

1
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(a) Coaxial jet

Large coherent structures

Fine-scale mixing

Shear-layer

instability growth

(b) Single stream jet

Figure 1.1: Flow regimes of a coaxial and single stream jet. (a) Coaxial jet with
primary and secondary flows; jet is broken up into initial, interaction and mixed-flow
regions; ρ,A, u are the operating density, area and velocity of each flow. (b) Schlieren of
a single stream jet in transition to turbulence showing fine-scale and large scale mixing.

Reproduced from Van Dyke [3].

chevrons, which aim to break up the large-scale structures at the expense of creating

more fine-scale turbulence.

Perhaps the most important parameter from the coaxial turbofan jet in the context of

jet noise is the bypass-ratio (bpr). The bypass-ratio is the ratio of the secondary and

primary mass flows and is proportional to the velocity, density, and area ratios of the two

nozzles. As will be shown in subsequent sections, it is the increase of the bypass-ratio

that has overseen the decrease in jet noise since their first development. For constant

thrust engines, increasing bpr increases the area ratio leading to trade-offs with other

aircraft/engine design parameters such as drag, fuel consumption, weight, and ground

clearance. Additionally, the engine’s large size also sees it move into closer proximity of

the wing thus leading to interaction between the wings trailing edge and the jet exhaust

generating and enhancing existing noise mechanisms.

While current bprs, typically in excess of 10, can be increased, there is a need to look

at less conventional nozzle geometries that typically produce asymmetric mean fields for

noise benefits. However, many of the current methods are limited to assumptions of

symmetry or through computational demand. Therefore, an accurate and robust solver

is required that can be used in the design of more efficient noise-suppression devices.

The first steps can be made by noting that the wavelengths at which most noise is

produced are shorter than the characteristic length scale of the mean flow. In this

situation the noise is considered high-frequency and asymptotic approximations can
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be used to provide gross simplifications in the governing equations. The use of high-

frequency solutions is also consistent with the use of enhanced mixing devices that

increase the high-frequency producing fine-scale content of the turbulence as opposed to

the low frequency large coherent structures. For general flows, high-frequency solutions

are best described by ray theory, and while the use of these solutions is not new, a

consistent framework for the application of rays - perhaps surprisingly - is yet to exist

in aeroacoustics.

It is the aim of this thesis to construct a ray solver that deals with arbitrary flows in

the free-field and accounts for well known ray deficiencies such as: multiplicities due to

the arrival of rays taking alternative, but distinct paths, to an observer; singularities at

caustics where regions of high intensity are erroneously predicted as unphysical diver-

gences; and the determination of complex rays - evanescent waves - in shadow zones.

Accounting for these deficiencies allows for high accuracy to be achieved as not only are

nearly all ray contributions tracked down, but the field is also bounded in a neighbour-

hood containing the caustic, meaning overestimates due to singularities are not made.

The use of complex rays is critical for calculations when the observer is located in the

cone of silence - a shadow zone based on the downstream axis. Hitherto, there is no

general method for their calculation.

Though ray theory is an extremely powerful tool and can be applied to both linear and

nonlinear equations, it is not necessarily obvious as to whether this should be applied

to the full Navier-Stokes equations or an appropriate linearisation for best effect. One

resolution is to look at the source of noise being dealt with: the fine scale structures.

These sound sources may be modelled as compact acoustic sources and are best served

by an acoustic analogy; therefore it is expedient to start with a review of the acoustic

analogy and its derivatives as a starting point for the ray solver in this thesis.

The following review has been split up into three sections in order to help the reader

navigate through the large amount of material covered. The first review, §1.2, as men-

tioned above concerns the acoustic analogy, and we use this to support our use of the

vector Green’s function/source decomposition in Chapter 3. The second, §1.3, and third,

§1.4, reviews cover ray theory in aeroacoustics and ray deficiencies respectively. The for-

mer supports the development of the ray framework used in Chapter 3, while the latter

covers the background material for the work overcoming ray deficiencies in Chapters: 4,

continuation; 3, 4, complex rays; 5, caustics/uniform asymptotics.
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1.2 Acoustic Analogies

Even though the field of aeroacoustics is relatively new, a large number of jet noise predic-

tion techniques already exist, each with a differing degree of computational complexity.

These methods are not necessarily in direct competition, but may be constructed ad hoc

for investigative work. For instance, one might be interested in the Kelvin-Helmholtz

instability at high-Reynolds numbers, or a fast database-driven prediction method valid

in the far-field. In the case of the former, a case may take days, whereas the latter may

only take seconds. Many of these methods are based on, or have taken inspiration from,

the acoustic analogy (AA). In particular, some of the fundamental results that will be

discussed below can be applied to a family of jets using the similarity properties of jets,

i.e., the congruence of the characteristic jet regions (i.e., mixing, transition, developed

regions) under simple scalings that lead to universal spectra. Despite advances in other

branches of aeroacoustic prediction, the AA still remains eligible as complete simula-

tions of jet turbulence and noise generation are too computationally expensive for high

Reynolds number flows.

The first acoustic analogy was given by Lighthill [4, 5] in the 1950s and for several

decades remained the dominant jet noise theory. Lighthill theory provides a systematic

basis for predicting jet noise which starts by rearranging the Navier-Stokes equations

into the form of a linear wave equation (hence the analogy with acoustic propagation)

in density for a quiescent medium with a non-linear source term,(
1

c2
∞

∂2

∂t2
− ∂2

∂xi∂xi

)
(ρ− ρ∞) =

∂2Tij
∂xi∂xj

, (1.1)

where Tij is the so-called Lighthill tensor,

Tij = ρuiuj︸ ︷︷ ︸
Turbulent stresses

+
(
(p− p∞)− c2

∞(ρ− ρ∞)
)
δij︸ ︷︷ ︸

Non-linearity coefficient

− σij .︸︷︷︸
Viscous stresses

(1.2)

The crucial step in the acoustic analogy is that the source term is either known a priori ,

say through experiment, or by statistical modelling. Thus the problem appears to be

just a matter of determining the Green’s function, which in the absence of boundaries

is trivially equal to δ(t− τ − |x− xs|/c∞)/4π|x− xs|. The acoustic field is then given

in principle by,

p(x, t) =
1

4π

∂2

∂xi∂xj

∫
V

Tij(t− |x− xs|/c∞)

|x− xs|
d3xs. (1.3)

This rearrangement results in an equivalent set of sources that remain non-negligible in a

limited region of space. At this point the arrangement is exact but some deduction must
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be made to the form of the source distribution. This is often based on the expression

(1.2), but other heuristic expositions also exist (see for e.g., Morris & Farassat [6], Tam

& Auriault [7]).

Lighthill argued that for unheated, high-Reynolds number jets, the dominant sources

of jet noise are the turbulent stresses and their double divergence leads to an acoustic

field with quadrupole characteristics. As a precursor to the wealth of experimental

data currently available, Lighthill used (1.3) to deduce his celebrated 8th power scaling

law. Assuming the turbulent eddies to be compact so that λ = c∞/f = 2πc∞/ω � l,

where l is a characteristic lengthscale (e.g., the jet nozzle diameter, D), λ is the acoustic

wavelength and M = u/c∞ is a Mach number based on a characteristic velocity (e.g.,

the jet mean exit velocity, UJ), Lighthill scaled the far-field acoustic power as,

W ∼ ρ∞
u8

c5
∞
l2. (1.4)

In what is one of the few genuine scientific predictions, the significance of this scaling

is ubiquitous and is the main motivation for increasing the nozzle diameter and bypass

ratio, while maintaining constant thrust. This result has been generalised more than

once for example, for convecting sources, and in 1/3 octave bands by Lush [8] for large

observer radii R→∞,

I(f,R, θ) ∼ ρ2
su

8D2

ρ∞c5
∞R

2︸ ︷︷ ︸
u8law

(1−Mc cos θ)−5︸ ︷︷ ︸
Source Convection

F

[
ωD

UJ
(1−Mc cos θ)

]
︸ ︷︷ ︸

Universal spectrum

. (1.5)

Returning to the integral result in (1.3), it should be noted that what is really of interest

is the normalised pressure autocorrelation function1 of this integral in the far-field. There

are two reasons for this: first, when jet noise is measured, it is measured using averaging

techniques and that autocorrelation is an averaging procedure; secondly, for modelling

purposes it is easier to model the statistics and correlations of the source field than it is

the sources directly. The normalised pressure correlation is given by (see Goldstein [9]),

Γ(x, τ) ≡ [p(x, t+ τ)− p∞] [p(x, t)− p∞]

ρ∞c∞
, (1.6)

which can be written, in the far-field,

Γ(x, τ) =
ρ∞xixjxkxl
16π2c5

∞x
6

∂4

∂τ4

∫ ∫
Rijkl

(
x′s,η, τ +

η

c∞
· x
x

)
dx′sdη, (1.7)

1In acoustics this has the form of acoustic intensity.
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Figure 1.2: Axial source distributions per effective Strouhal number for coaxial jets,
reproduced from Ilário [11]. bpr=1.25, solid blue line; bpr = 2, red dashed line. End
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where,

Rijkl(x
′
s,η, τ) =

Tij(x′s, t)Tkl(x
′
s + η, t+ τ)− ϕijkl(x′s,η)

ρ2
∞

, (1.8)

is the source correlation tensor. Here ϕijkl is an arbitrary tensor that is chosen to

simplify the source modelling.

For stationary random functions of time then the Wiener-Khinchin (see for e.g.,

Engelberg [10]) theorem can be used to relate the autocorrelation with power spec-

tral density function via Fourier transforms; this allows one to analyse jet noise at a

particular frequency.

I(x, ω) =
ω4ρ∞

32π3c5
∞

xixjxkxl
x6

∫ ∞
−∞

∫ ∫
eiω(τ−(x/x)·η/c∞)Rijkl(x

′
s,η, τ)dx′sdη dτ. (1.9)

It is the source correlation Rijkl that has to be modelled and there are various ways of

doing this. Typically this is done by assuming the source correlations have a Gaussian

form which can then be fixed by matching with experimential data at 90◦ (where con-

vection effects are negligible) in the far-field. As an example of the source distributions

that can result from using Lighthill’s acoustic analogy, Fig. 1.2 shows the axial distri-

bution of sources at various effective Strouhal numbers for two coaxial jets of different

bypass ratio. It can be seen that the Gaussian assumption of the correlations is physi-

cally consistent: the centroid of each Strouhal distribution moves closer to the jet nozzle

with increasing Strouhal number, i.e., high-frequency noise is generated near the nozzle

where there is predominantly fine-scale mixing.

Lighthill’s theory, however, does contain ambiguity and its application is limited since

the analogy with a quiescent medium sees it restricted in its description of flow-acoustic

interaction. Part of the problem is that this analogy does not completely separate
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the sources from the propagation as is apparent if one examines the correlation tensor

Rijkl. This, from (1.2), is clearly a function of velocity correlations uiujukul. A flow

decomposition into mean and fluctuating parts would show that the mean field is an

integral part of these correlations. It can be shown that ϕijkl is useful in reducing the

complexity of Rijkl, but its arbitrariness does not detail how it should be applied to

general cases, and it does not completely eliminate the mean field from the source.

Since Lighthill there have been several efforts to improve the acoustic analogy, notably,

Phillips [12], Lilley [13, 14], Ffowcs-Williams [15], Ribner [16], Goldstein & Rosenbaum

[17]. These formulations differ only in the model decomposition into acoustic sources and

propagation. Both Phillips [12] and Lilley [13, 14] sought to generalise the analogy by

rearranging the Navier-Stokes equations into the form of an inhomogeneous convective

equation where the mean flow profiles are a function of the transverse coordinates only.

In the case of Phillips the propagation was governed by a second order convective wave

equation, with nonlinear source terms. Lilley argued that Phillips’ equation did not

completely separate the propagation from the source term, he then proceeded to further

manipulate Phillips’ equation until the propagation obeyed a third order convective wave

equation. Although the mean flow gradients are explicitly represented in the propagation

and not lumped with the source term, as is required for consistent use of the acoustic

analogy, the non-linear source terms do not have an explicit quadrupole & dipole nature

as in Lighthill theory.

The difference in source nature between the Lighthill and Lilley analogies wasn’t rectified

until 2001 when Goldstein [18] reworked Lilley’s equation using non-linear “generalised”

dependent variables. Goldstein was able to show that Lilley’s analogy did have the

quadrupole-dipole nature, while the reduction of the generalised variables to standard

acoustic variables in the far-field meant the formulation remained useful for compu-

tations. With this success Goldstein developed the generalised acoustic analogy again

using nonlinear dependent variables. This formulation linearises the Navier-Stokes about

a general mean flow with a source term that includes Reynolds stresses. While the prop-

agation is governed by the linearised Euler equations, and for a particular flow regime

may be reduced to more familiar propagators, the generalised dependent variables mean

that more propagation effects have been sifted out of the source term. This has led the

generalised analogy to compare favourably with other analogies, Samanta et al. [19].

The generalised acoustic analogy, however, only provides the most unambiguous analogy

to-date; the problem of source and propagation modelling still persists. Progress can

be made by noting that any source distribution can be decomposed into a sum of point

sources, and, since the propagation is linear, it is expedient to separate the source and

propagation effects by employing a Green’s function. Once a source model is specified
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a convolution integral can be specified just as in (1.3). Due to separation of source and

propagation, the Green’s function can be reused for various source models.

Green’s functions allow the solution to written down in theory, but their determination

still remains non-trivial for all but a few soluble cases. The analogies of Phillips and

Lilley remain the most complicated base-flows that allow for a scalar wave equation to be

formed without recourse to perturbation methods. Even then, perturbation techniques

typically yield a result that is difficult to extend beyond leading order, and thus remain

limited.

It appears that an accurate noise prediction scheme that is valid for fully 3D flows - i.e.,

an acoustic analogy about a generic mean flow - requires a fast, accurate and reliable

method for computing generic mean flow Green’s functions. If the problem is considered

high-frequency as discussed before then one can apply a ray ansatz to the equations for

the Green’s function. Given the success of Goldstein’s generalised analogy, a suitable

framework for the ray theory are the full linearised Euler equations (Goldstein [9]) with

a vector of point sources, instead of a full source distribution. This will be used as the

basis for the ray solutions in this thesis.

1.3 Ray theory

The argument for ray theory is that the acoustic wavelengths are much smaller than

the typical scales of the propagating medium. For an acoustic analogy this medium is

time-independent, not turbulent, and most likely supplied by RANS, so this assumption

is satisfactory. Ray theory has been applied with success to time-variant media (see for

e.g., Freund et al. [20]), but ray propagation is expensive computationally in this case

and thus lies outside the scope of the AA considered here.

Assuming that the acoustic field behaves locally like a plane wave, the wavefront moves

according to a simple vector sum of the wavefront normal and local fluid velocity. This

motivates an asymptotic ray ansatz that has a controlling factor equal to a generalised

plane wave multiplied by an infinite series in decreasing powers of k0, the characteristic

wavenumber of the field, i.e.,

p′ ∼ eik0S
∞∑
n=0

αn

kn+γbl
0

, (1.10)

so that explicit representation of k0 allows it to play the role of a book-keeping parameter,

and γbl allows the ansatz to tackle problems more involved than those found in this thesis.

Formal introduction of the ray ansatz (1.10) into any aeroacoustic field equations, linear
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or nonlinear, results in a system of nonlinear equations ordered by the wavenumber k0.

At leading order is the eikonal equation that governs the phase S, while the remaining

infinite number of equations couple together the phase and the amplitude terms αn.

Notably, the eikonal is not soluble in closed form and must be tackled using ray tracing

techniques.

Aside from computing the terms in a ray expansion, there is a more pertinent question

and that pertains to the inherent divergent nature of the series (1.10). If each ray series

diverges then is (1.10) meaningful? The answer to this - as pointed out by Dingle [21]

- is that asymptotic series initially converge before diverging as the number of terms

included in the sum (1.10) are increased. Consequently, by truncating the ray series at

a finite number of terms and ignoring the remainder, an approximation to the acoustic

field can be made. In this thesis, the leading order approximation made by taking the

first term, p′ ∼ α0eik0S/kγbl0 , will be used.

The use of the ray ansatz (1.10) and its various guises within aeroacoustics is not new

- in fact far from it. There have been notable contributions from several authors, for

example in free space problems: Goldstein [22], Candel [23], Durbin [24], and Colonius

et al. [25]; and in boundary problems: Abrahams et al. [26–28]. The use of ray theory

here is not academic: it really does present a viable computational method. Of course

this begs the question as to how low-frequency noise generation is propagated, at what

frequency does ray theory “work”, and how is this accounted for in the aforementioned

references?

The main issue with a high-frequency ansatz is that the source distributions pertaining

to jet noise provide energy across a broad range of frequencies. It seems likely that some

frequencies will be poorly provided for when ray theory is employed. The argument

in this case is provided by Figs. 1.2 and 1.3. The latter of these, showing typical jet

broadband structures, shows a peak Strouhal number StPC which contains frequencies

that dominate the sound field and St1/2 = 1/2 which is a nominal lower bound taken

from the above references (more detail on the lower bound in chapter 2).2

Firstly, it is important for the peak Strouhal number to be propagated accurately, as this

is the most important Strouhal for prediction purposes; this is captured by the nominal

lower bound St1/2 in Fig. 1.3(b). Secondly, low frequencies for which St < StPC (StPC

scales with the potential core Tester & Morfey [29]), occur at axial positions greater

than the potential core length where the shear layer is weaker. In this scenario the

ray solution tends to that of the convected Helmholtz equation, which it solves exactly.

Thus, there is a crossover between the source frequency lowering and the Green’s function

tending to the exact convected Helmholtz result. The resulting accuracy, then, is not

2Strouhal number being defined in terms of characteristic quantities: St = fDch/Uch.
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Figure 1.3: Coaxial jet source distributions reproduced from Ilário [11]. Mixed-
flow region, pink diamond; interaction region, red square; initial region, green circle;
total, black line; experiment, black filled circle. Purple region St > StPC ; blue region

St > St1/2.

expected to diminish dramatically. The success ray theory has already encountered

within aeroacoustics is testament to this remarkable theory, especially as the expansion

of the ray ansatz is about the “wavenumber at infinity”.

1.4 Ray theory deficiencies

Despite the success that ray theory has had and the gross simplifications it provides, it

is not a free lunch. There are several fundamental deficiencies suffered by the ansatz

(1.10). Though aeroacoustics provides the most testing cases for ray theory, it has been

used extensively across many disciplines, for example in subjects as diverse as, quantum

mechanics (Berry [30]), water/ship wave theory (Kelvin [31, 32], Ursell [33, 34]), seismic

prospecting (Červenỳ [35, 36], Thomson [37]), and optics (Berry [38], Egorchenkov &

Kravtsov [39]), but to name a few. In some of these cases ray theory not only offers

a computational advantage but also physical insight into the workings of complicated

systems. Fortunately, this wide use of ray theory means there is a wealth of material

that can be extended to tackle problems in the complex flow problems of aeroacoustics.

The deficiencies discussed here do not form an exhaustive list. Other deficiencies, such as

those at boundaries can be treated by Keller’s Geometrical Theory of Diffraction (GTD)

[40]. This treatment is not necessary in the free space problems of the AA. In fact we

will only deal with three here and these directly related to the form and functions found

in (1.10). In order of appearance below, these are: the multiplicity problem, involving

the determination of as many ray solutions or branches of the eikonal equation governing
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S; the continuation of rays into the complex plane to allow for S ∈ C; and finally the

correction to the divergence of αn experienced in the neighbourhood of a caustic using

diffraction catastrophes.

In this thesis a key step is to identify from a theoretical and computational point of

view, that each of the three deficiencies is inherently linked to the other. In some cases

it is necessary to highlight these links, as treatment and computation of one deficiency

need not be handled completely separately from the others.

1.4.1 Multiplicities

The multiplicity problem is simply the matter of determining all solutions to the eikonal

equation that propagate to the desired receiver. In generic moving media problems

the eikonal equation has no closed-form solutions and must be solved numerically using

the method of characteristics (see for e.g., Sneddon [41]). This method, known as ray

tracing, is naturally in the form of an initial value problem (IVP). It computes the

normal to the high-frequency wavefront given a set of ray parameters equal to the union

of firing parameters - to launch the ray, and an integration time. The relation between

the ray parameters and the receiver position in general is non-trivial.

The first attempt to overcome this in a stationary heterogeneous medium was made

by Sambridge & Kennett [42]. This was a generalisation of work by Wesson [43, 44],

Julian and Gubbins [45], Pereyra et al. [46]. They recast the IVP as a boundary value

problem (BVP), or two-point problem (in analogy with numerical ode methods), by

explicitly representing the receiver position in a cost function as the difference with ray

trajectory endpoint. This almost trivial step is the natural generalisation of the root

finding required when using saddle-points or stationary phase techniques to evaluate

integrals asymptotically. The roots of the cost function equal the desired rays, and so

a whole host of optimisation techniques can be applied. The simplest and fastest is

the multi-dimensional Newton method used by several authors, notably Sambridge &

Kennett [42], Hanyga and Helle [47], Keller and Perozzi [48], and Farra [49]. This work

was then extended by Haynga [50] who went to great extent to incorporate bifurcation

theory within ray tracing. This was based on the continuation of receiver points into

receiver curves thus generating bifurcation curves in all ray parameters. Hanyga sped

up the calculation by employing a predictor-corrector method based on the pseudo-

arclength continuation of Keller [51], homotopy or continuation methods were then used

to track rays across caustics.

Continuation methods draw heavily upon numerical methods to determine solutions.

Not all the apparatus introduced by Haynga is necessary. The more layers one uses the
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higher the computational burden. The majority of methods used by Hanyga can be

found in works by Keller [52, 53], Doedel et al. [54], Allgower and Georg [55]. In the

context of seismic propagation a good text is the compendium edited by Doornbos [56].

1.4.2 Complex rays

Complex rays are simply extensions of the familiar real rays to the scenario S ∈ C.

In engineering parlance, complex rays are evanescent waves, though their unphysical

counterparts necessarily exist too. The determination of complex rays is not really a

flaw in the ray method, rather it is the difficulty of calculating solutions when no closed-

form field integral exists. When the latter does exist, it is a simple matter of analytic

continuation of the integral’s saddle points to provide a complex ray expansion: formally

there is no difference in the method of expansion.

In terms of the ray ansatz (1.10) the exponentially small solution can be explicitly added

as,

p′ ∼ eik0S1

∞∑
n=0

αn

kn+γbl
0

+ e−k0Im(S2)eik0Re(S2)
∞∑
n=0

βn

kn+γbl
0

. (1.11)

The most peculiar aspect of (1.11) is that the exponentially small term lies beyond

all orders of kn+γbl
0 , but the leading order approximation is p′ ∼ α0eik0S1/kγbl0 + . . .

+β0e−k0Im(S2)eik0Re(S2)/kγbl0 . This is easily resolved by distinguishing between an asymp-

totic expansion as in (1.11) and the summation of its component asymptotic series (see

Dingle [21] for an extended discussion). By summing the component series in this way

the solution permits the appearance of the exponential term even though there may be

exponential error in the first asymptotic series. The argument now is then, Why would

be the exponentially small term be retained?

A physical complex ray, one that decays, is exponentially small in the limit k0 →∞ and

so that there is a good argument for the neglect of such contributions, especially if their

only contribution serves to embellish the field in the presence of real, purely oscillatory

rays. Of course an engineering approximation might well do this: however, the dangers

of doing this lie in the existence of regions, called shadow zones, in jets where the field

is exclusively complex, i.e., αn = 0, ∀n.

Despite the possibility of shadow zones there is no framework for generic complex ray

computation, where the best provision for complex rays has been through Lilley’s equa-

tion and perturbed variants - these cases now being too specific. This contrasts sig-

nificantly with other disciplines where the appreciation, significance and computation
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of complex rays is far greater. Though this is not an exhaustive list, some notable us-

es/contributions are as follows. In quantum mechanics complex rays are significant in

bridging the gap between the classical (particle) and quantum (wave) descriptions of

matter, for example in quantum tunnelling problems (Morse & Feshbach [57], Bender

& Orszag [58], Heading [59]). In water wave theory complex rays are necessary for

the smoothing of Kelvin ship waves (Keller [60], Kelvin [31, 32], Ursell [33, 34]) and

the engendering of ripples as flows pass over discontinuous surfaces, Lustri [61]. From

a computational perspective complex rays are important for the calculation of seismo-

grams in seismic prospecting (Thomson [37], Hanyga & Seredyńska [62], Hanyga & Helle

[47]). This use of complex rays differs slightly from the first two examples which are

more theoretical devices whereas seismology requires a more computationally intensive

programme that involves the tracing of complex ray trajectories. In all seismology cases

cited, complex rays are solutions to a complexified two-point problem as discussed in

the previous section. Similar numerical computations of ray trajectories have also been

made by Kravtsov [63] and Egorchenkov & Kravtsov [39] who focus on problems in

quantum mechanics and optics. The former also discusses the existence of complex rays

as a generalization of Fermat’s principle (Pierce [64]). Other useful works on complex

ray theory (CRT) are by Chapman et al. [65] which serves as a useful compendium

on constant coefficient Helmholtz problems - though the ray trajectories are solved an-

alytically, Deschamps [66], Felsen [67], Arnaud [68] and Norris [69] who consider the

Gaussian beam (a useful tool in itself, e.g., in photonics) as being composed of complex

rays from complex sources thus showing the equivalence of complex sources with a real

one, and from an historical perspective the papers by Seckler & Keller [70, 71] which

utilise complex rays in inhomogeneous media.

In all of the above there is some underlying need for complex rays either from a com-

putational or theoretical perspective. This is why we should return to the question of

whether or not CRT is really useful in aeroacoustics. The answer is yes and the reason

pertains to the aforementioned shadow zones. It is well known that point sources in jets

suffer from a reduced intensity in a region about the jet axis as high-frequency waves are

refracted away from the jet axis (Durbin [72], Goldstein [22]). High-frequency analysis

shows that this engenders a shadow zone about the axis that is typically asymmetric in

angular observer coordinates and its existence a function of radial distance (Hubbard

[73]). This region is known as the Cone of Silence (CoS), or sometimes cone of relative

silence, though this is somewhat a misnomer as the region is generally not conic. Indeed,

if it were a matter of considering just the field of a Green’s function then it would be

tempting to neglect the CoS. However, as previous sections show, the Green’s function is

convolved with a source term, and if the source term is large in the downstream direction

the multiplication of these two quantities often results in a non-negligle amount.
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(a) Aircraft certification route showing positions of approach, lateral
and flyover microphones.
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(c) EPNL at the flyover mic as a function of angular region
θa/θb and bypass-ratio, bpr.

Figure 1.4: Bypass-ratio study for a certification problem. Angular regions such that
θ = 0 lies along jet axis.

In order to provide some heuristic argument for the CoS’s importance, the following

figures show the angular breakdown Fig. 1.4(b) of a database (empirical data) coaxial

jet flown along a certification flight path Fig. 1.4(a) and the resulting Effective Perceived

Noise Levels (EPNL) recorded at the flyover mic (the reference where jet noise is the

dominant noise source on an aircraft), Fig. 1.4(c).3 The angular breakdown supplies a

directivity function H(θ − θa)H(θb − θ) to the SPL spectra, where H(·) is a Heaviside

function.

It can be seen that low angles are just as important if not more so than high angles in

terms of EPNL. This is true for all bpr shown. This observation is mainly down to the

high exposure times of mics. in the line of sight of the jet axis at take-off. As the CoS

previously explained is for a point source, it is important to understand the difference

between that and the one used by experimentalists to define an aggregate or bulk CoS.

This is roughly defined as the conic angle θCoS = cos−1(1/1 + 0.71Mp), which evaluates

3The EPNL is an aircraft specific metric that is penalizes high-frequencies, see [1, 2] for details



Introduction 15

to θCoS = 48.7◦ for Mp = 0.72 considered. This information shows that the CoS is very

much important to evaluating jet noise annoyance.

This argument serves as motivation for the use of complex rays especially from an aircraft

annoyance point of view. There is, however, more to be said about using CRT that is

often emitted from the majority of the literature already cited. This pertains to the

more subtler aspects of CRT to do with ray contributions rather than ray existence.

This is because the latter is necessary but not sufficient for a ray to be employed in a

field calculation. The object that determines the contribution of a complex ray is known

as a Stokes multiplier after Stokes (Berry [74–76], Heading [59, 77, 78]). This quantity

can turn exponentially small rays “on” or “off” according to its value: this value can

change discontinuously (in a topological sense) as a receiver crosses Stokes lines (lines

of evanescence) that may exist in the field. Stokes multipliers are readily available for

odes and saddle point expansions, the work done by (Berry [79], Berry & Howls [80, 81])

confirms this.

As far as ray tracing is concerned the Stokes phenomenon has been discussed in papers

by Chapman et al. [65], [82] for Helmholtz problems with an aim to extend Keller’s

GTD, and by Lustri et al. [61] & Lustri [83], for the calculation of so-called second

generation Stokes lines in surface flow problems. In more complex ray tracing problems

where the trajectories are not soluble in closed form, for instance in the seismological and

aeroacoustic communities where these cases arise, the Stokes phenomenon is explicitly

absent - though the properties of complex continuation are occasionally discussed, for

e.g., Thomson [37]. A review of this phenomenon is not gratuitous as these constants will

impact engineering calculations. Additionally, Stokes structures exist due to singularities

in the field, so the presence of singularities discussed in the next section necessarily

involve this phenomenon.
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1.4.3 Caustics

The last ray deficiency is the correction of unphysical divergences of the ray field from

the true field in the vicinity of caustics. These singularities, if not corrected, will result in

a poor approximations to the field, and erroneous conclusions about a flow’s interaction

effects would be reached. The singularities pertain to the amplitude terms αn of the ray

ansatz (1.10), with each term (in n) progressively better at blowing up. The ray solution

is thus degenerate, implying that a caustic doesn’t have a locally plane wave structure.

The logical step is to look for another local form that remains bounded at the caustic,

whilst still exploiting the k0 → ∞ limit of the field. Such forms are necessarily more

complicated than the ray expansion and in the words of some authors (e.g., Berry [84],

Felsen [85], Mazar & Felsen [86]) this is akin to attaching diffraction flesh to the bare

bones (the rays) of the field.

The caustic problem is well documented and there are several different methods of

providing uniformity. These range from Gaussian beams (see for e.g., Babich et al. [87],

Cerveny et al. [88]) as they can be constructed as bundles of complex rays that do not

suffer from singularities when considered as a bundle, coherent states (Klauder [89],

Thomson [90]) based on windowed Fourier transforms, to Maslov’s canonical operators

(for theory: Maslov [91, 92], Maslov & Fedoriuk [93]; for applications: Thomson &

Chapman [94], Kendall & Thomson [95], Ziolkowski & Deschamps [96]). It is the latter

method that is of interest here as the extension of Maslov’s method by Arnol’d [97]

leads to his version of elementary catastrophe theory and the use of oscillatory local

forms/integrals valid in the neighbourhood containing the caustic.

Catastrophe theory is the tool that will be used in this thesis to provide uniformity

along with elements of the closely related Maslov/Arnol’d theory. The full catastrophe

theory classification was introduced by René Thom [98, 99] in the 1970s, and then

developed further by Arnol’d [100], Zeeman [101]. It is a far-reaching theoretical tool

that deals with the unexpectedness of discontinuous effects when they are produced by

continuous causes, such as the caustic discontinuity in a ray field under smooth changes

in observer position. The use of catastrophe theory to provide uniform asymptotics in

high-frequency regimes is but an application of the theory. The catastrophe functions

are multivariate polynomials whose behaviour is used to mimic the local behaviour

of the phase function in Arnol’d’s oscillatory integral. As k0 → ∞ this leads to the

diffraction catastrophes that are integrals of exponentials raised to the power of k0

times a catastrophe function. The diffraction catastrophes being the desired local forms

at the caustic mentioned above.
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There are seven elementary catastrophes introduced by Thom, and therefore seven

diffraction catastrophes to deal with discontinuous phenomena in this thesis. These

catastrophes are split into two groups: the cuspoids and the umbillics. There are more

than seven catastrophes in general, however, seven turns out to be the smallest num-

ber required to model problems in physics that contain at most 3-space + 1-temporal

dimensions. In fact these limits draw from the first applications of the theory in optics.

Consequently, this is also where most of the development in catastrophe theory arose

with appreciable work in this context by Arnol’d [102, 103], Duistermaat [104], and

in terms of diffraction catastrophes Berry [38, 105], Berry et al. [106], Nye [107, 108],

Wright [109, 110].

The application of catastrophe theory is wide, but its use here is not founded on (relative)

popularity. The most favourable aspect of catastrophe theory is its inherent and logical

taxonomic structure making it ideal for computation, Gilmore [111]. Furthermore, its

connection to ray theory is straightforward: one expands the diffraction catastrophes

with k0 →∞ using the saddle point method to give the ray field. Perhaps the downside

of catastrophe theory is that the diffraction catastrophes are not well known in compar-

ison with the special functions of analysis. So much so that even though catastrophes

were known about by mathematicians in the 1960s they were not by physicists, hence

their omission from classic texts such as Abramowitz & Stegun [112] (first published

1964). However, in the last 16 years there has been an attempt to incorporate the

diffraction catastrophes (as well as others) into the common and recognizable patterns

that the special functions (e.g., Bessel, Laguerre funcs.) enjoy (see for e.g., DLMF [113]).

There are two cases of diffraction catastrophe that are more common than others, partic-

ularly in acoustics and aeroacoustics, and are pertinent to the applications in this thesis.

The first governs the so-called fold or simple caustic and is therefore called the fold catas-

trophe. This problem was tackled by Ludwig [114] (the American school) and Kravtsov

[115] (the Russian school) for point source Helmholtz problems in which fold caustics

appear. Both of these authors express their solutions in terms of the Airy function as

the fold can be expressed globally in terms of this special function. In aeroacoustics

the fold catastrophe has appeared in shear flow problems with a boundary (Abrahams

et al. [26–28]) and in free flows (Wundrow & Khavaran [116]), where the latter models

part of the CoS boundary (CoSB). This serves as a starting point in this thesis. The

second diffraction catastrophe is the Pearcey function (Pearcey [117]) which governs

the cusp caustic. In acoustics the Pearcey function is most prevalent in the modelling

of weak shock wave focusing (Coulouvrat [118], Hayes [119], Hunter & Keller [120]),

though it does occur in linear flow problems as a result of reflections from boundaries

(see Abrahams et al. above).
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The incorporation of cuspoid diffraction catastrophes into the two-point ray tracing

method was made by Hanyga [50, 121] which was used most recently by Amodei et al.

[122]. Only in the cases of the fold and cusp caustics can one determine the coefficients

of a catastrophe polynomial in closed form, so the generic calculation is determined nu-

merically, with the most efficient implementation an iterative procedure introduced by

Connor & Curtis [123]. This highlights what is perhaps another issue applying catas-

trophes: determining the catastrophe arguments may be as problematic as calculating

the catastrophe itself. As far as this latter point is concerned diffraction catastrophes

tend not to be included in standard software packages and computing the elementary

catastrophes is undertaken ab initio. Computing the increasingly complex diffraction

catastrophes is no trivial matter although uniform methods tend to only require these

functions in a limited range. The main difficulty is dealing with the oscillatory integrand

which requires high precision integration techniques if the integration domain is left unal-

tered as the real line. There are two alternative techniques that are popular in literature:

the first is a simple contour deformation; the second is the solution of an equivalent set

of pdes introduced by Connor & Curtis [123]. The former is much preferred due to ease

of use and has been used by several authors to compute catastrophes in their work: the

Pearcey function, Stamnes & Spjelkavik [124]; the swallowtail catastrophe, Connor et

al. [125]; generic cuspoids, Kirk et al. [126], Stamnes [127]; the elliptic umbilic, Berry

et al. [106]; the hyperbolic umbilic, Nye [128]. Other methods of diffraction catastro-

phe calculation involve Taylor expansion (based on expansions found in [113]), which

are slow and offer poor accuracy away from the expansion point, and programmes that

involve exotic transformation and polynomial methods (Borghi [129, 130]).

To cap off this section, we recall the connection between singularity and Stokes struc-

tures. Each diffraction catastrophe has a Stokes structure that increases in complexity

as the diffraction catastrophe hierarchy is traversed. In any generic flow system we must

allow for the possibility of any of the catastrophes and their Stokes structures to be

present. If Stokes structures lie in real space then they definitely cannot be ignored as

the neglect of Stokes switching will disrupt the accuracy of the field. Currently, there is

no framework for computing Stokes multipliers & structures using two-point ray tracing

in the same manner as integral methods. The most likely solution to this is by reference

to the known Stokes structures of the diffraction catastrophes and an argument based

on the Stokes multipliers embedded in the catastrophes. In the former we have both

Wright [131] (cuspoids) and Berry & Howls [132] (umbilics) to thank. In the latter the

switching mechanism that controls the Stokes multipliers is found to be embedded in

the coefficients of a uniform expansion involving diffraction catastrophes. This is partic-

ularly enlightening as the contribution of complex rays locally can then be determined

by the diffraction catastrophe (Berry & Howls [76, 81]).
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1.5 Conclusion

It is clear from the review in this chapter that the desired ray solver draws from a broad

range of elements. The three ray deficiencies must be tackled almost simultaneously

if there is to be any chance of a realisable ray solver for AA calculations. This thesis

seeks to develop the relevant mathematical framework to undertake this problem before

unifying each element to provide a proof of principle of the CRT framework. Where

necessary, and occasionally where possible, we will delve further into theory than the

bare bones reviewed here.
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1.6 Novel contributions and supporting work

The main novel contributions of this thesis are listed below:

1. A general framework for computing vector Green’s functions to the linearised Euler

equations in the high-frequency limit using ray theory. This work generalises the

solutions of Durbin [24] to vector cases. Application of ray theory to correlation

integrals using far-field simplifications applied to the multiple ray solutions. See

Chapter 3.

2. The development of a unified complex ray tracing tool accouting for multiplicities,

uniformity and complex rays. This uses continuation methods (Chap. 4), catas-

trophe theory (Chap. 5) and complex integration (Chap. 4) to create a programme

capable of computing high-frequency effects in complicated flows. A simple con-

tinuation method is also proposed that bypasses the need for bifurcation analysis.

3. Winding number theory applied to the ray BVP. Both single variable and multiple

variable theories are considered. See Chapter 4.

4. Application of the ray tool to a parallel shear flow and a demonstration of accuracy

against a high-frequency modal solutions including the discovery of the Pearcey

function in a parallel shear flow. See Chapter 6.

5. Near to far-field computations of parallel shear flow Green’s functions, thus demon-

strating the smooth nature of the near field and eliciting properties of the cone of

silence. See Chapter 6.

6. Novel use of singulants in ray-tracing to appraise the accuracy of the ray solver.

Singulants are also used for the calculation of crossover between uniform solutions

and the ray field. See Chapter 5.

7. Analysis of perturbed ring source models in a parallel shear flow in light of the

caustics found in Chap. 8. See Chapter 7.

8. First description and analysis of the anti-caustic and use of eucatastrophes for the

analysis of such degenerate cases. See Chapter 6.

Some of the work in this thesis has been presented by the author and the supervisory

team at international conferences. By the author: American Institute of Aeronautics and

Astronautics (AIAA), Atlanta 2014. By C. J. Howls: Modern Applications of Complex

Variables, Banff International Research Station (BIRS) 2015; joint British Mathematical

Colloquium (BMC) & British Applied Mathematics Colloquium (BAMC), Cambridge

2015.
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1.7 Thesis structure

Chapter 2 presents a review of acoustic analogies based on Lilley’s equation. Starting

with the analogy due to Tester & Morfey [29], a flow factor is calculated using a statisti-

cally isotropic point quadrupole (SIPQ). The aim is to determine approximately a lower

frequency bound for ray solutions in order to appraise the applicability of ray solutions

whilst also introducing the concept of a ring source. The second part of the chapter is

devoted to a 3D Green’s function calculation of Lilley’s equation in the high-frequency

limit using the WKB method to calculate the modes (Wundrow & Khavaran [116]).

Chapter 3 derives the 3D vector Green’s function to the LEE that forms the basis

of this thesis. Complex ray theory is introduce as a means of providing high-frequency

asymptotic solutions to the LEE. In addition to obvious simplifications by the ray ansatz,

other advantages of the ray solution are highlighted in the context of two-point pressure

correlations.

Chapter 4 presents the solution to the multiplicity problem inherent in the nonlinear

eikonal equation via an equivalent BVP. Three techniques are demonstrated whereby

a derivative-based (Newtonian) and a derivative-free (GA) distinguish the two most

efficient. Methods of continuation across caustics are also provided using either a LS-

reduction method or a complex continuation. The latter proves a suitable replacement

of the former, which often results in unwieldy analysis. The third technique, though not

suitable for large scale engineering calculations, provides an elegant connection between

winding number theory and ray theory.

Chapter 5 applies catastrophe theory to the caustic problem. Diffraction catastrophes

are discussed and a computational method for mapping the ray field to the uniform field

is proposed. These maps, based on work by Berry [38] and Hanyga [121], use codim. and

corank detection supplied by the continuation methods of Chapter 4. Use of Dingle’s

[21] singulants to appraise the application of the uniform solutions is also shown.

Chapter 6 sees the ray solver applied to a parallel shear flow whose benchmark is provided

by the modal solution developed in Chapter 2. The off-axis asymmetric solution provides

a suitable demonstration of all the methods found in this thesis, with a variety of caustic

and non-caustic structures present. To conclude we examine the novel feature of an anti-

caustic using eucatastrophes. The simplest example is controlled by the Pearcey function

on its line of symmetry: critically this is a Maxwell set of non-local bifurcations unlike

local-bifurcations at caustics.

Chapter 7 determines the effect of caustics in the scenario of multiple points sources in

parallel shear flow. Discrete sums and perturbed ring source models are considered.
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Lilley’s acoustic analogy

This chapter focuses on derivatives of Lilley’s acoustic analogy, namely those due to

Tester & Morfey [29] and Wundrow & Khavaran [116]. The former is used to back-

up the proposed high-frequency solutions providing an estimation of the high-frequency

lower bound. It also serves to introduce the ring source model that has proved extremely

popular in aeroacoustics due to both the analytic simplifications it engenders and the

turbulence physics it reflects. The latter analogy provides the benchmark for the ray

method derived in the remainder of this thesis. This analogy gives a first taste of high-

frequency approximations and can be used to initiate considerations of the more subtle

features of these approximations: the Stokes phenomenon.

2.1 Tester & Morfey Acoustic Analogy

The Tester & Morfey [29] acoustic analogy is used here as additional motivation for the

use of high-frequency solutions. Their work is based on Lilley’s shear flow analogy [13, 14]

and was developed to explain two features that appeared in detailed noise measurements.

These were an additional source term for hot jets at high speeds, and the effect of mean

flow interaction on sound radiation from turbulence. Clearly, the latter is of most interest

here and although there is some source coupling involved - which is not completely in

accordance with the desired Green’s function approach outlined in the previous chapter

- this provides some background to the use of ring source models in jet noise as well as

the first encounter with a flow factor in aeroacoustics.

The governing equation for pressure fluctuations, p′, in a shear flow is Lilley’s equation,

L p′ = c̄2ρ̄ Q (2.1)

23
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sition xR based on the source position xs. The x-coordinate measures along the jet
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where L is the time domain Lilley operator defined as,

L ≡ D

Dt

(
D2

Dt2
− ∂

∂xj
c̄2 ∂

∂xj

)
+ 2c̄2 ∂

∂xj
ū1

∂

∂xj

∂

∂x
, j = 1, 2. (2.2)

Here we have used a cylindrical polar coordinate system, defined by the triple {x, r,∆ϕ}
(with shorthand x2 = y, x3 = z) as shown in Fig. 2.1, to express the mean axial

velocity and sound speed profiles as functions of r =
√
y2 + z2, i.e., ū1(r) and c̄(r). The

normalised coordinate ∆ϕ = ϕ−ϕs allows the coordinate system to measure in the plane

of the point source. In this section we can set ϕs = 0. The mean convective derivative

is defined as D/Dt ≡ ∂/∂t+ ū1∂/∂x, while it is assumed that the medium behaves as a

perfect gas, so that the mean pressure p̄ (assumed as constant in this model) is related to

the mean sound speed, density and static temperature profiles through c̄2 = γap̄/ρ̄ and

p̄ = ρ̄RHT , where γa and RH are the adiabatic and individual gas constants, respectively.

The ambient values of these variable will always be denoted by subscript∞, while source

values are denoted by subscript s.

Before moving onto the source term Q, it is worthwhile making the coordinate system

and its asymptotic properties concrete. Essentially there are two coordinate systems

used in this thesis, both of which are spherical polar and represent the receiver xR:

however, they differ in that one is based on the origin, while the other is based on the

source point. In the far-field where the computations in this section will be made it can

be shown that the two systems are asymptotically equivalent. Denoting the coordinate
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system based at the origin by O, and letting R→∞,

ϕ ∼ ϕO +
rs
RO

cos θO sin ∆ϕO + . . . ,

θ ∼ θO +
rs
RO

cos θO(1− cos ∆ϕO) + . . . ,

R ∼ RO + rs sin θO(1− cos ∆ϕO) + . . .

(2.3)

The theoretical difference between the coordinate systems is also reflected in the numer-

ical computations, i.e., that it is really immaterial to which is used at this stage. The

main reason for highlighting these coordinate systems is for future work on ray theory,

where it is expedient to base the coordinate system on the source for the purposes of

near-to-farfield studies.

Returning to the Tester & Morfey model we use displacement source defined in [29] to

model Q as,

Q =
D3

Dt3

(
1

2

∂2ξ′iξ
′
j

∂xi∂xj

)
, i, j = 1, 2, 3. (2.4)

where the quantities ξ′i are the fluctuating displacements of a fluid particle relative to

the basic flow. They are defined by,

D

Dt
ξ′i −

∂ū1

∂xk
ξ′k = u′i, (2.5)

where u′i is the fluctuating particle velocity.

In the above it is convenient to use the following notation for the quadrupole operator

Mij = ∂2/∂xi∂xj , so that we may use the general result in Appendix A to write Mij in

cylindrical polar coordinates as,

Mij =


∂2

∂x2
1
r

∂2

∂x∂rr
1
r

∂2

∂x∂ϕ

1
r

∂2

∂x∂rr
1
r
∂2

∂r2 r
1
r2

∂2

∂r∂ϕr

1
r

∂2

∂x∂ϕ
1
r2

∂2

∂r∂ϕr
1
r2

∂2

∂ϕ2 − 1
r
∂
∂r

 , (2.6)

giving,

Q = D3STM/Dt
3, STM =

1

2
Mαβξ

′
αξ
′
β. (2.7)

2.1.1 Method of solution

The first step of the solution is to consider a time-harmonic field so the time dependence

is proportional to e−iωt, where ω is the frequency, and k0 = ω/c̄∞ the characteristic

wavenumber of the field. Here we shall drop the dash to denote a time-harmonic com-

ponent. Furthermore, as is well known with the Lilley operator, a Fourier-transform
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pair (denoted by ˜) can be introduced in the axial coordinate x with wavenumber k1,

p̃ = Fk1{p} =

∫ ∞
−∞

p eik1x dx, p = F−1
x {p̃} =

1

2π

∫ ∞
−∞

p̃ e−ik1x dk1. (2.8)

This is then coupled with an azimuthal modal decomposition,

p̃ =
1

2π

+∞∑
n=−∞

p̃neinϕ, (2.9)

which exploits the periodicity of the ϕ coordinate.

Under this transformation the Lilley equation reduces to an ordinary differential equation

in r that has the general form for function p̃n,

Q(r;k0,n,κ,Φ)p̃n = Z , (2.10)

where the operator,

Q(r;k0,n,κ,Φ) ≡
Φ2

r

d

dr

(
r

Φ2

d

dr

)
+

[
k2

0(Φ2 − κ2)− n2

r2

]
, (2.11)

with,

κ ≡ k1/k0, Φ ≡ (1 + κM(r))/a(r), M(r) = ū1(r)/c̄∞, a(r) = c̄(r)/c̄∞. (2.12)

The Fourier-transformed source term S̃TM is given by,

S̃TM = M̃αβB̃αβ, α, β = 1, 2, 3. (2.13)

where,

M̃ij =


−k2

1 − ik1
r

d
drr k1

n
r

− ik1
r

d
drr

1
r

d2

dr2 r
in
r2

d
drr

k1
n
r

in
r2

d
drr −n2

r2 − 1
r

d
dr

 , k−2
0 M̃ †ij =


−κ2 iκ d

dr̄ κnr̄

iκ d
dr̄

d2

dr̄2 −in d
dr̄

1
r̄

κnr̄ −in d
dr̄

1
r̄ −n2

r̄2 + 1
r̄

d
dr̄


(2.14)

so that p̃ can be solved as,

p̃n(r̄) = k−2
0

∫ ∞
0

B̃αβ(r̄s)M̃
†
αβ(r̄s)G̃n(r̄|r̄s) r̄s dr̄s, (2.15)

where M̃ †ij is the adjoint of M̃ij , and a radial Green’s function G̃n which satisfies,

k−2
0 Q(r̄;k0,n,κ,Φ)G̃n = −ρ̄sa2

sω
2Φ2

s

δ(r̄ − r̄s)
r̄s

. (2.16)
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The radial Green’s function can be written down in theory (see for e.g., Duffy [133]) as

G̃n(r̄|r̄s) =


ρ̄sa

2
sω

2Φ2
s
w1(r̄)w2(r̄s)

r̄sW (r̄s|κ)
, r̄ > r̄s,

ρ̄sa
2
sω

2Φ2
s
w1(r̄s)w2(r̄)

r̄sW (r̄s|κ)
, r̄ < r̄s,

(2.17)

where wi are homogeneous solutions satisfying,

k−2
0 Q(r̄;k0,n,κ,Φ)wi = 0, i = 1, 2., (2.18)

and W (r̄s|κ) is the Wronskian of these two solutions (which is independent of both r̄

and r̄s, see [29]). Given that solutions will be obtained in the far-field, we need only

consider the r̄ > r̄s solution of (2.18).

In general there is no closed form solution to (2.18) so a numerical scheme is typically

employed which is valid for all wavenumbers. This can be posed as a boundary value

problem if one takes the limits r̄ → 0 and ∞ as the boundaries of the differential

equation. The determination of the values of the ode at the boundary are determined

by applying the bounded condition at the origin, and outward propagation condition at

infinity.

The most convenient form for numerical integration is a system of first order equations,

d

dr̄
wi,1 = − r̄

ρ̄a2ω2Φ2
wi,0, (2.19)

d

dr̄
wi,0 =

ρ̄a2ω2Φ2

r̄
wi,1, (2.20)

with initial conditions (subs. J denotes jet centerline values),

w1,0 = H(1)
n (
√

1− κ2r̄), w1,1 = −(r̄/ρ̄a2ω2Φ2)dH(1)
n (
√

1− κ2r̄)/dr̄, r̄ � 1, (2.21)

w2,0 = Jn(
√

Φ2
J − κ2r̄), w2,1 = (r̄/ρ̄a2ω2Φ2)dJn(

√
Φ2
J − κ2r̄)/dr̄, r̄ � 1, (2.22)

The desired solutions can then be found from w1 = w1,0 and w2 = w2,0. In the far-field

it is acceptable for w1 to be replaced by H
(1)
n , however for the purposes of the Wronksian

w1 must still be evaluated at r̄s using the numerical scheme.

The solution to (2.18) can be written in principle as,

G̃n(r̄|r̄s) = −1

2
iπω2ρ̄∞Cn(r̄s)H

(1)
n (
√

1− κ2r̄), (2.23)

where,

Cn(r̄) = iw2(r̄)
(
2ρ̄a2Φ2/ρ̄∞

)
/πr̄W . (2.24)
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The far-field nature of the solution allows the Fourier transform in k1 to be inverted

asymptotically using the method of stationary-phase (see for e.g., Bleistein [134] and

Erdélyi [135]) as R→∞. This is facilitate by large argument asymptotics of the Hankel

function,

H(1)
n (
√

1− κ2r̄) ∼ (2/π
√

1− κ2r̄)1/2ei(
√

1−κ2r̄−0.5nπ−0.25π), (2.25)

giving,

p = F−1
x {p̃} =

1

2π

√
2πk0 sin3 θ

R
eik0R cos2 θp̃(κ?), (2.26)

where κ? = − cos θ (see for e.g., Kewin [136]) is the stationary point found once spherical

polar coordinates (see Fig. 2.1) are introduced. The time-harmonic pressure is now given

by,

p(R, θ, ϕ)

ρ̄∞c̄2
∞
∼ −k2

0

eik0R

4πR

∞∑
n=−∞

ein(ϕ−π
2

)

∫ ∞
0

B̃αβ(r̄s)M̃
†
αβ(r̄s)Cnαβ(r̄s)r̄s dr̄s, (2.27)

using the stationary point κ? = − cos θ and leaving the Hankel function in its large

argument form. The coefficients Cnαβ are in terms of Cn,

Cnxx = − cos2 θ Cn, (2.28)

Cnxr = −i cos θ dCn/dr̄, (2.29)

Cnrr = d2Cn/dr̄
2, (2.30)

Cnxϕ = − cos θ(n/r̄)Cn, (2.31)

Cnrϕ = −in
[
(1/r̄)dCn/dr̄ − Cn/r̄2

]
, (2.32)

Cnϕϕ =
[
(1/r̄)dCn/dr̄ − (n2/r̄2)Cn

]
, (2.33)

where it can be shown that the radial derivatives can be evaluated using,

dCn/dr̄ = (1/w̄2)(dw̄2/dr̄)Cn, (2.34)

d2Cn/dr̄
2 = −

(
κ2 − n2/r̄2

)
Cn + (r̄/ρ̄a2Φ2)

[
d(ρ̄a2Φ2/r̄)/dr̄

]
(dCn/dr̄) . (2.35)

The stationary phase evaluation introduces two subtleties that have physical implica-

tions. Firstly, (2.27) is independent of x, and secondly κ? = − cos θ is the dispersion

relation of monopole source in a quiescent medium. The first is to be expected since

the medium is invariant along the x-axis. The second means that the source and prop-

agation have become highly localised at the origin when viewed by the observer in the

far-field. Asymptotically, this sifts out the dominant wavenumbers as those propagating

with a wavefront normal parallel to the line between source and observer.
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2.1.2 Source model

For the purposes of investigating flow effects it is expedient to use a simplified model

to simulate the jet turbulence. In order to do this a statistically isotropic quadrupole

(SIPQ) model is introduced that has an omnidirectional directivity in the absence of

flow. The first aspect of the model is that the source distribution is concentrated at a

radial point (a ring source), i.e.,

B̃αβ(k1, n, ω; r)→ B̃αβ(k1, n, ω)δ(r − rs)/rs, (2.36)

It can be seen from (2.36) that the term point quadrupole refers to the source being

concentrated at a radial point, i.e., a ring and not a 3D point. At this point developing

a flow-factor is difficult because of the necessity of modelling B̃αβ(k1, n, ω). Motivated

by the fact that one can make modelling assumptions about the statistics of 4th-order

correlation tensors (see Chap. 1 & Goldstein [9] for details), the mean square pressure

in the frequency domain is formed:

16π2R2

k8
0

p(R,ϕ;ω)p∗(R,ϕ;ω)

ρ̄2
∞c̄

4
∞

=

∞∑
n=−∞

∞∑
m=−∞

pnp
∗
m exp(i(n−m)ϕ) =

∞∑
n=−∞

∞∑
m=−∞

B̃αβ(rs; k1, n, ω)B̃∗αβ(rs; k1,m, ω)Cnαβ(rs)C
∗
mδγ(rs) exp(i(n−m)ϕ),

(2.37)

The double sum decouples if the coherence between the azimuthal modes is negligible,

i.e.,

B̃αβ(. . . , n)B̃∗αβ(. . . ,m) = B̃αβ(. . . , n)B̃∗αβ(. . . , n)δnm. (2.38)

The spectral density can then be found by using the expected value operator E and

allowing the sample time Ts to tend to infinity,

16π2R2

k8
0ρ̄

2
∞c̄

4
∞

limTs→∞E [p(R,ϕ;ω)p∗(R,ϕ;ω)] =
∞∑

n=−∞
limTs→∞E

[
B̃αβB̃δγ/2Ts

]
Cnαβ(r̄s)C

∗
nδγ(r̄s).

(2.39)

Now if the source excitation is assumed to be statistically isotropic so that it can pre-

sented as an isotropic tensor then,

limT→∞E
[
B̃αβB̃δγ/2T

]
= (b1δαβδδγ + b2δαδδβγ + b3δαγδβδ) . (2.40)

The coefficients bi can be evaluated using the assumption that limT→∞E
[
B̃αβB̃δγ/2T

]
is the same for all pairings of αβ and δγ that contain the same numbers and that
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coherence between different quadrupole sources is zero, i.e.,

limT→∞E
[
B̃abB̃ab/2T

]
= limT→∞E

[
B̃abB̃ba/2T

]
= H(k1, n;ω), (2.41)

and

limT→∞E
[
B̃aaB̃bb/2T

]
= 0, (2.42)

where H(k1, n;ω) is the squared magnitude of the cross-power spectral density of each

and every quadrupole strength integrated over the source volume. Using (2.41) and

(2.42) the coefficients bi are determined to be,

b2 + b3 = H(k1, n;ω), (2.43)

b1 = 0. (2.44)

which arbitrarily choosing b2 = b3 = H(k1, n;ω)/2 leads to the following,

16π2R2

k8
0ρ̄

2
∞c̄

4
∞
|p(R,ϕ;ω)|2 =

∞∑
n=−∞

H(k1, n;ω)Cnαβ(r̄s)C
∗
nαβ(r̄s). (2.45)

Any computation of (2.45) still requires some modelling of H(k1, n;ω). However, if one

assumes that H(k1, n;ω) → H(k1;ω) is the same for all modes the following source

independent fraction can be formed,

16π2R2

k8
0ρ̄

2
∞c̄

4
∞

|p(R,ϕ;ω)|2

H(k1;ω)
=

∞∑
n=−∞

Cnαβ(r̄s)C
∗
nαβ(r̄s) = Fff (ω). (2.46)

Equation (2.46) thus defines a flow-factor measuring the changes in the radiated pressure

spectrum due to the presence of a flow. It can be shown that in a homogeneous medium

the flow-factor is trivially Fff (ω) = 1.

2.1.3 High and low-frequency asymptotes

The high-frequency solution developed by [29] is based on the Blokhintsev conservation

principle (see for e.g., Pierce [64]). In terms of high-frequency propagation the Blokhint-

sev invariant is a well-known device for calculating the amplitude of ray solutions. The

high-frequency solution derived here is notable for the simple reason that it approxi-

mates the shear flow by a plug flow, i.e., a constant flow with velocity Ms joined in a

piecewise manner with the ambient quescient medium. This leads to the aggregate CoS

definition mentioned in Chap. (1).
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Figure 2.2: Snell’s law for a plug flow with velocity M(rs) = ū1,s/c̄∞. Continu-
ity conditions between the ingoing wave eik1(x cos θs+r sin θs). and the outgoing wave

eik0(x cos θ∞+r sin θ∞), lead to the relations in the main text.

The derivation begins from a zero-flow result relating the power spectrum |p̃(R,ϕ;ω)|2

to the quadrupole cross-spectrum in the far-field for a stationary medium,

R2|p̃(R,ϕ;ω)|2 ∝ ρ̄2
sH(k1;ω), (2.47)

which can be generalised to cover a uniform flow in the axial direction by using a Doppler

shift Φs,

R2|p̃(R,ϕ;ω)|2 ∝ ρ̄2
sa

6
sΦ

6
sH(k1;ω), (2.48)

where the R2 factor normalises the spherical spreading and Doppler factors are arrived

at from a change of coordinate system in the definition of H(k1;ω). In order to form the

flow-factor some modelling assumptions must be made about the form of the quadrupole

spectrum. We use the same approximation made in [29] that the cross-power spectrum

scales according to the following,

H(k1;ω) ∝ |k|4. (2.49)

Then near the source the following scaling holds,

R2|p̃(R,ϕ;ω)|2 ∝ ρ̄2
s c̄
−4
s a10

s Φ10
s . (2.50)

The azimuthal averages, denoted by <>ϕ, of the power spectrum at the source and in the

far-field are related by Blokhintsev’s energy conservation law. The energy propagating

into the conic sector (θs, θs + dθs) near the source is conserved and propagates into the

conic sector (θ, θ + dθ) where the angles are related via,

cos θ = Φs cos θs, (2.51)
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which is Snell’s law for propagation between a stationary medium and one in uniform

motion (Morse & Ingard [137]), and is a simple transposition of the phase speed match

shown in Fig. 2.2. The reader should note that it is both the plug flow nature and

high-frequency regime that allows us to utilise Snell’s law - which then admits plane

wave solutions.

The Snell’s law solution can then be used in tandem with the power radiated through

the differential element of the conic sector,

< R2|p̃(R,ϕ;ω)|2 >ϕ (1/ρ̄∞c̄∞)d(cos θ) =< R2|p̃(R,ϕ;ω)|2 >ϕ,s (1/ρ̄sc̄∞)ā−3
s Φ−2

s d(cos θs).

(2.52)

to give a relation between the sound power inside and outside of the flow,

< R2|p̃(R,ϕ;ω)|2 >ϕ / < R2|p̃(R,ϕ;ω)|2 >ϕ,s= ρ̄∞/(ρ̄sa
4
sΦ

4
s). (2.53)

Finally it can be deduced that the flow-factor is given by,

Fff = (ρ̄s/ρ̄∞)(c̄s/c̄∞)a6
sΦ

6
s, (2.54)

which is independent of k0 in the k0 →∞ limit. Equation (2.54) is strictly only true for

angles outside the cone of silence. This way the average power spectrum only needs to

normalised by the spherical spreading term R2. Inside the cone of silence an exponential

decay would need to computed. The cone of silence here is defined as a conic angle for

which,

κ2 = Φ2 − cos2 θ, (2.55)

which can be solved for cos θ as the root of a polynomial to give,

− 1/(as −Ms) < cos θCoS < 1/(as +Ms). (2.56)

The larger of these two roots then gives the CoS angle as cos θCoS = 1/(as +Ms). This

is similar to the definition of θCoS in Chap. 1, though that particular condition takes

into account an eddy convection speed equal to 0.71 of the primary jet velocity.

The reason the cone of silence here is delimited by a constant θ, i.e., not a function of

ϕ, is because of the ring-source’s symmetrical properties. Additionally, it may not be

apparent why (2.55) determines the cone of silence for a ring-source, but it turns out

this is a simple turning-point criterion for an azimuthal mode. At this stage we have

only solved the modes using quadrature and therefore not encountered turning-points.
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Figure 2.3: Isothermal Flow Factors TR = 1.0, for MJ = 0.5, 0.75 and 0.9. Solid
lines, exact SIPQ; diagonal dashed, low frequency asymptote; horizontal dashed, high
frequency asymptote. Blue, θ = 65◦; red, θ = 80◦; green θ = 100◦. Values of k0rs

specified in main text.

2.1.3.1 Low frequency asymptote

The low frequency asymptote is given as,

Fff (ω) = 2

(
sin 2θ(1−Ms cos θ)

1 + (1−MJ cos θ)2

1

k0δ

dM

dχ

∣∣∣∣
s

)2

. (2.57)

The notable difference between this asymptote and that given by (2.54) is that (2.57)

is an explicit function of frequency. The high-frequency solution makes an explicit

statement about the form in which the frequency appears: this will be evident in the

next chapter.
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Figure 2.4: Heated flow factors TR = 3, for MJ = 0.5, 0.75 and 0.9. Key the same
as Fig. 2.3.

2.1.4 Numerical results

Numerical calculations of the flow-factor using (2.46) are compared with the low and

high-frequency asymptotes using (2.57) and (2.54), respectively. The flow and temper-

ature profiles are given by,

u1(r)/u1,J =
1

2

(
1− erf(

√
πχ)

)
,

T (r)/Ts = 1 + (T J/T s − 1)u1(r)/u1,J ,

χ = (r − rs)/δsh − 0.168,

(2.58)
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where for parallel shear flows the temperature profile can always be deduced from the

velocity profile according to the Crocco-Busemann relation (Schlichting & Gersten [138]),

T tot(r)− T∞
T tot,J − T∞

=
u1(r)

u1,J
(2.59)

where T tot is the mean field total temperature defined by T tot = T
(

1 + γa−1
2 M2

)
.

The isothermal case TR = 1.0 where TR = T/T∞ is shown in Fig. 2.3 for centerline

Mach numbers of MJ = 0.5, 0.75 and 0.9, with θ = 65◦, 80◦ and 100◦ for each Mach

number. The heated case TR = 3.0 is shown in Fig. 2.4 with the same MJ and θ. It

should be noted that the values of θ mean that θ > θC for all flow configurations used.

The flow-factor is calculated as a function of k0δsh and k0rs, i.e., the Helmholtz numbers

for the shear layer and source position, respectively. For each shear layer width the

algorithm will calculate the following k0rs values: k0rs ∈ {0.125, 0.25, 0.5, 1, 2, 4, 8, 16}.

It is clear from Figs. 2.3 and 2.4 that together the low and high-frequency asymptotes

capture the shape of the analytic flow-factor well. It is also clear that the high-frequency

limit is approached rapidly and this is best for angles furthest away from the cone of

silence. The main reason for this disparity is the divergence of the ray solution away

from the true field near the cone of silence caustic. The values of k0δ for which the

high-frequency asymptote matches well depends on the Mach number and temperature,

meaning a constant value of Strouhal number Stsh, based on the shear layer thickness,

cannot be reached. However, the agreement of the high-frequency asymptote at low k0δ is

encouraging and an estimate of Stδ are Stδ = π−1 for the heated case and Sδ = 0.25π−1

for the isothermal case, indicate the possible success of future ray calculations. This

success should be carried over to more general flows since the shear layer scales with jet

diameter, Ds, implying that a Strouhal number based on this lengthscale is StDs = O(Sδ)

if Ds/δsh = O(1), and that flow-factors as a function of StDs would be similarly matched

well with a high-frequency asymptotic solution.

To conclude these results it is worth pointing out a subtle feature, shown by the majority

of the figures, that is easy to miss. This pertains to the variation of the exact result

with k0rs. It can be seen that in general there is little variation, but when there is, it is

mostly concentrated toward larger k0rs. One plausible explanation to this is that as the

source Helmholtz number increases, the scale on a wavelength is slower and there is more

time in propagation terms for waves to be diffracted; in other words, lower frequencies

see the flow as less of a diffracting object than high-frequency rays.
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2.1.5 Critique of the Tester & Morfey analogy

The inclusion of Tester & Morfey’s work, though not the current state of the art, has

been for several reasons. The first is for reasons of continuity: it is a natural place to

start for investigating solutions of Lilley’s equation taking into account the theory briefly

touched upon in Chap. 1. Secondly, this work reinforces some of the conclusions reached

in Chap. 1 concerning the requirements of a 3D ray solver. The most notable being that

the utility of a ray solver is greatly enhanced if any source modelling is absent or readily

generalisable. The use of a ring source is evidence of this: great simplifications were

necessary to reach a solution whose calculation was bearable.

The final note on this work again concerns the ring source. It is readily seen that this

model engenders great simplifications: however, these are not without justification. The

ring source reflects a simplified understanding of turbulence physics in round jets. This

makes it ideal for generalisations and a platform for work in the final technical chapter

of this thesis.

2.2 Wundrow & Khavaran’s Modal Solution

The Tester and Morfey acoustic analogy as a basis for further work in this thesis remains

unsatisfactory for two reasons: the Green’s function is coupled with a source term; and

the Green’s function is not fully three-dimensional. In this section a 3D Green’s function

is calculated using the same Lilley propagator. This is in-keeping with the aims of this

thesis set out in chapter 1 and serves as a benchmark for the 3D ray solver developed

in subsequent chapters.

The equation to be solved is simpler in principle than (2.1) as it requires no source

modelling, it does however require more apparatus to solve given its 3D nature. Two

Green’s functions are defined for reasons that will become apparent in later chapters.

The first is defined as,

LωGω = Dωc
2
∞δ(x− xs), (2.60)

and the second defined by,

LωGω = c2
∞δ(x− xs), (2.61)

where Lω is the frequency domain Lilley operator with D/Dt→ Dω ≡ (−iω+ ū1∂/∂x).
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The difference in definition between (2.60) and (2.61) does not present any additional

difficulties as the two are related via,

Gω(x|xs) = −
(

iω + us
∂

∂xs

)
Gω. (2.62)

The method of solution to this equation is very similar to that used in the previous

section, whilst it is virtually the same as that shown in Goldstein [9] differing in the

solution of the Fourier coefficients. In light of previous results the Green’s function is

expressed in terms of a Fourier series and Fourier transform:

Gω(x|xs) =
1

4π2

∞∑
n=−∞

ein∆ϕ

∫ ∞
−∞

Gn(r|rs;ω, k1)e−ik1(x−xs) dk1. (2.63)

where ∆ϕ = ϕ−ϕs is measure of the asymmetry of the field w.r.t. the source azimuthal

source position. In terms of (2.10) the Fourier coefficients satisfy,

Q(r;k0,n,κ,Φ)Gn = −δ(r − rs)
rsa2

s

, (2.64)

and are related to the Green’s function G̃n of (2.16) via G̃n(r̄|r̄s) = ρ̄sa
4
sω

2Φ2
sk

2
0G(r|rs).

Again the solution can be written down as,

Gn(r|rs;ω, k1) =


w1(r|κ)w2(rs|κ)
rsa2

sW (rs|κ)
, r > rs,

w1(rs|κ)w2(r|κ)
rsa2

sW (rs|κ)
, r < rs,

(2.65)

where Q(r;k0,n,κ,Φ)wj = 0, with boundary conditions,

w1 ∼ r−1/2eik0

√
1−κ2r, r →∞, (2.66)

w2 ∼ r|n| r → 0. (2.67)

In the last section the propagation conditions given were the same, but required little

thought process once they had been applied. In this section, although the same condi-

tions apply, it should be noted that propagation and extinction conditions are applied at

infinity thus allowing for multiple reflections to occur before propagation to the far-field

and changes from exponentially growing to exponentially decaying behaviour as waves

propagate. We highlight this fact now since this is pertinent to any solutions that have

a ray-type ansatz.

The inverse Fourier transform (2.63) can be evaluated following the stationary phase

method as in (2.25) and (2.26). The stationary point is exactly the same up to O(R−1),
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i.e., κ? = − cos θ. Thus we have the following expression for Gω:

Gω(x|xs) =
1

4π2

+∞∑
−∞

ein∆ϕ

∫ ∞
−∞

Gn(r|rs;ω, k1)e−ik1(x−xs) dk1

∼
(

2πk0 sin2 θ

iR

)1/2
w1(r| − cos θ)w2(rs| − cos θ)

rsa2
sW (rs| − cos θ)

eik0R cos2 θ.

(2.68)

2.2.1 WKB solution

In general (2.64) must be solved numerically as was the case with Eq. (2.18). However,

the high-frequency regime can be exploited by seeking WKB solutions to (2.64) (see

for e.g., Olver [139], Bender & Orszag [58], Heading [59]). This is best facilitated by

recasting the homogeneous version of (2.64) into a standard form containing no first

derivative. This is achieved using the transformation,

wj(r| − cos θ) =
Φ(r)√
r
vj(r), for j = 1, 2, (2.69)

so that in “Q-form” vj each satisfy,

d2vj
dr2

+
(
k2

0Q
2
n + I

)
vj = 0, (2.70)

where I ≡ Φ(rΦ′/Φ2)′/r+ (1/2r)2 which is neglected as k0 →∞, (see for e.g., Heading

[59]), and

rQn(r) ≡
√
r2q2 − (n/k0)2, q(r) ≡

√
Φ2 − cos2 θ, n = O(k0). (2.71)

The standard WKB solutions of (2.70) are of the form,

vj(r) ∼
2∑
i=1

γij Qn(r)−1/2 exp

(
(−)iik0

∫ r

rδ

Qn(r′) dr′
)
, r =

r if j = 1

rs if j = 2

(2.72)

where rδ are turning-points (also called phase references) such that Qn(rδ) = 0, and

γij are constants to be determined. The final solution is composed so that v1(r)v2(rs)

contains a phase that is integrated from rs to r. However proceedings are not straightfor-

ward even in the simplest cases. The occurrence of turning-points leads to failure of the

WKB solutions when either r or rs lies in a k0 dependent domain containing rδ. When-

ever r and rs are separated by at least one turning-point then connection formulae must

be used to link solutions either side of (and away from) the rδ’s. This potentially leads
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to multiple reflections/scatterings between turning-points before the integration reaches

the observer, hence the relaxation of propagation/extinction conditions to infinity and

not in the near-field (r to rs).

In the vicinity of any rδ’s the WKB solutions fail and must be replaced by uniform

solutions dependent upon the order of the zero in Qn(rδ) = 0. Therefore it is not sim-

ply a matter of integrating across the turning point to find the solution on the other

side. One must either rescale the equations and find an appropriate local form or by-

pass the turning-point by detouring into complex space. This latter method is more

elegant but one must take account of Stokes phenomenon to obtain the correct solution.

Stokes phenomenon (see for e.g., Olver [139], Bender & Orszag [58]) is a topologically

discontinuous but numerically smooth (Berry [74, 75]) switching that turns on expo-

nentially small or subdominant solutions when crossing Stokes lines emanating from

turning-points/singularities. These subdominant solutions resurge from the divergent

tail of the dominant solutions. It was shown by Berry that this switching - at leading

order - is controlled by the error function. For a second order equation such as (2.70)

with two solutions (setting γ1 = 1 for simplicity),

v(r) ∼ Q−1/2
n (r)exp

(
+ik0

∫ r

rδ

Qn(r′) dr′
)

+ iS(r; k0)Q−1/2
n (r)exp

(
−ik0

∫ r

rδ

Qn(r′) dr′
)
.

(2.73)

The positive branch has been chosen to be the dominant one in this example given

appropriate cuts. The Stokes multiplier γ2 is expressed in terms of the error function

γ2 = iS(r; k0) where,

S(σStokes) =
1√
π

∫ σStokes

−∞
exp

(
−t2
)

dt, (2.74)

and σStokes is the Stokes variable,

σStokes ≡ k
1/2
0 =(F )/(2<(F ))1/2, (2.75)

where F ≡ 2ik0

∫ r
rδ
Qn(r′) dr′ is Dingle’s singulant [21]: the difference between the dom-

inant and subdominant phases. So that the singulant controls the switching through

the Stokes variable. The appearance of the singulant means that the region about the

Stokes line in which the switching occurs (numerically) has a width that increases with

distance from the turning-point. This property along with the singulant as a measure of

resurgence will be used in later chapters (though the definition is equal to −iF of that

above) in order to resolve what would an arbitrary choice.

Applying connection formulae to the Green’s function solutions (2.72) must take into

account all possible reflections/scatterings from turning points that eventually travel to
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the far-field. This does not violate the outward propagation condition as the radiation

condition applies to sources at infinity. A point source emits energy in all directions, so

this must be taken into account when deriving the modal solutions.

For large distance observers r � max(rδ) or r → ∞, then the “r” WKB solution is

straight forward. The difficulty of the problem pertains to the rs solutions and various

connection and uniform formulae must be derived. For each turning-point problem (one

exists for each mode) then not only should the number of turning-points be considered

but also the positions of the source with respect to them. Here we shall only consider

two cases of a single real turning-point. For generic parallel shear flows, particularly

at high θ angles, multiple turning-points do exist on the real line. One also has to be

careful of the influence of complex turning points near the real axis when root finding

numerically; derivative based solvers may return a local minimum between such points.

Though we will only consider two specific cases, it is expedient to introduce the general

notation for a hypothetical list of Nδ real and positive turning-points: rδN > rδN−1
>

. . . > rδ1 ≥ 0. In the Nδ + 1 regions delimited by turning-points a solution of the form

(2.72) may exist, so that in order to differentiate between these solutions we now use

γ
(n)
ij where (n) denotes the solution to the left of the rδn-th turning-point.

The Stokes structure sprouting from each turning-point depends on the order of the zero

of Q2
n, mrδn

. Then there are mrδn
+ 1 Stokes lines (lines of pure decay), with each pair

separated by one of mrδn
+ 1 anti-Stokes lines (lines of pure oscillation). In the locality

of the turning-point the Stokes and anti-Stokes lines are straight and separated by an

angle of 2π/(mrδ + 2), respectively.

Returning to the case of one turning-point we can immediately write down v1(r) as

r →∞; it is simply

v1(r) ∼ γ(2)
21 Q

−1/2
n (r)exp

(
+ik0

∫ r

rδ1=rδ

Qn(r′) dr′

)
. (2.76)

The v2(rs) solutions are more complicated. In the following the case of a single isolated

turning-point and a coalesced singles turning-point are studied. Both appear in the

parallel shear flow case and are classic problems of WKB theory. The branch cuts

from ±rδ are chosen to be locally at an angle −π/2 (the same as [116]). Due to the

complicated form of Q other turning-points will influence the numerical determination

of these branch cuts.
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2.2.1.1 Single first-order turning-point

This problem treats the case when Q2
n disappears linearly at rδ > 0, i.e.,

Q2
n(rs) = (rs − rδ)Q2

n,1(rs) +O(rs − rδ)2, (2.77)

so that Qn ≷ 0 for (rs − rδ) ≷ 0. According to theory this engenders 3 Stokes lines

as mrδ = 1. The primary1 turning-point structure is shown in Fig. 2.5(a) along with

the negative image of rδ. The problem appears to depict the well-known quantum-

well problem, [58], except integration in the negative half-plane is not considered. The

presence of the pole at the origin doesn’t affect the Stokes structure for this configuration.

The solution either side of the turning-point is well known and given by,

v2(rs) ∼


γ

(2)
12

(
Q−1/2
n (rs)exp

(
−ik0

∫ rs

rδ

Qn(r′) dr′
)
− iQ−1/2

n (rs)exp

(
+ik0

∫ rs

rδ

Qn(r′) dr′
))

,

rs > rδ

γ
(1)
12 Q

−1/2
n (rs)exp

(
−k0

∫ rδ
rs
|Qn(r′)| dr′

)
, rs < rδ,

(2.78)

with the connection between the two constants either side of rδ is well known to be

γ
(1)
12 = e−iπ/4γ

(2)
12 . In this problem the Stokes constant is given by −i. The solution this

term premultiplies (in rs > rδ) can be thought of as the reflected branch.

Whenever, |rs − rδ| = O(k
−2/3
0 ) the solution (2.78) fails and must be replaced by a

uniform solution. This is well known to be in the form of an Airy function (see for e.g.,

[116] and [58]):

v2(rs) ∼ γ(1)
12

(
4π
√
−ηn(rs)

Qn(rs)

)1/2

Ai (ηn(rs)) , (2.79)

where,

ηn(r) ≡ −
(

3

2
k0ζn(r)

)2/3

, ζn(r) ≡
∫ r

rδ

Qn(r′) dr′, (2.80)

which matches up with the WKB solutions when expanded for large argument.

2.2.1.2 Single second-order turning-point

The single second-order turning-point occurs when the turning-point and its negative

image coalesce. At this point we don’t consider the implications of −rδ except that it

exists. However, when rδ → 0, ±rδ coalesce. If rs � k
−1/2
0 then one can still apply the

rs > rδ solution from (2.78): we just let rδ → 0 in those solutions and discard the rs < rδ

1We have neglected the infinite number of Stokes structures due to complex turning-points.
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(a) Single first order turning-point structure
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r
∆O

Coalescing r
∆
= 0

(b) Single second order turning-point structure

Figure 2.5: Two single turning-point structures found in the WKB solution.
(anti-)Stokes lines are in (green)red, while cuts are shown as wavy lines.

solution. When rs = O(k
−1/2
0 ) we must look for another uniform solution. However, the

turning-points ±rδ are not separated and,

Q2
n(rs) = (rs − rδ)2Q2

n,2(rs) +O(rs − rδ)3, (2.81)

so a new local form must be introduced. The appropriate local form is well known to be

in terms of parabolic cylinder functions or Bessel functions (see [58] and [59]). Here the

outgoing wave must contain two branches of the WKB solution rather than just one as

in the cited works, though we will revisit this solution again in Chap. 6 where the case

is just one branch. It can be shown that the uniform solution is,

v2(rs) ∼

√
η

(2)
n (rs)

k0Qn(rs)

(
γJ1 J1/4

(
η(2)
n (rs)/2

)
+ γJ2 J−1/4

(
η(2)
n (rs)/2

))
, (2.82)

or

v2(rs) ∼


√
η

(2)
n (rs)

k0Qn(rs)

1/2(
γP1 D−1/2

(√
2eπi/4

√
η

(2)
n (rs)

)
+ γP2 D−1/2

(√
2e3πi/4

√
η

(2)
n (rs)

))
,

(2.83)

where,

η(2)
n (r) ≡ 2k0

∫ r

rδ

Qn(r′) dr′. (2.84)

At this stage it is preferable to use the parabolic cylinder form. This is due to the

difficulty in matching up the Bessel solutions with (2.78) and the requirement that

the uniform function must be bounded for zero argument (thus necessitating γJ2 = 0).
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Using large argument asymptotics the constants are determined via,

γP2 e7πi/8/k
1/2
0 23/4 = −eπi/2γ

(2)
12 ,

γP2 eπi/8/k
1/2
0 23/4 + γP2 e3πi/8/k

1/2
0 21/4 = γ

(2)
12 .

(2.85)

Having provided two local forms to cover the expected cases of degenerate WKB so-

lutions, we return to the computation of the Green’s function. The next step is the

Wronskian.

The Wronskian can be computed by observing that it is constant (in Q-form Eq. (2.70))

via Abel’s identity,
dV

dr
= 0 =⇒ V = const., (2.86)

where W (rs) = Φ2(rs)V (rs)/rs. For each modal problem in n, V can be evaluated at

large r using (2.76), and a solution in rs for any turning-point scenario. For the single

turning-point problems the Wronskian is given by [116] as,

V ∼ −i2k0γ
(2)
21 γ

(1)
12 eiπ/4. (2.87)

It can be seen that connection formulae relate the constant of each solution from one side

of the turning-point to that of the solution on the other-side. Thus the Wronskian will

contain these constants in a multiplicative form (e.g., (2.87)) leading to their elimination

from the final Green’s function.

The most convenient final final form the Green’s function Gω - given the predominance

of one turning-point problems - is given by,

Gω ∼
iG

(3)
ω Rω

c∞k0as(1−Ms cos θ)2
, (2.88)

where Rω is,

Rω ∼
∞∑

n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2

Ai (ηn(rs)) ein∆ϕ+ik0(ζn(r)−R sin2 θ), (2.89)

and G
(3)
ω ≡ eik0R/4πR.
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Figure 2.6: |Gω/G (3)
ω | for rs = 0.75, MJ = 0.9, St = 5 or k0 = 28.7.

2.2.2 Computation of the Green’s function.

The following computations of Gω/G
(3)
ω analysis will be restricted to isothermal flows

such that a = 1. The parallel shear flow used will be the same as [116] and is equal to

u1(r) = MJsech2(2r) with MJ = 0.9. The results are best calculated as a function of

Strouhal number,

St ≡ k0

π

rJ
a(0)MJ

, (2.90)

which is inverted to find the wavenumber once St is fixed (rJ the effective jet radius is

determined by equal to 1/2 by [116]).

An example of |Gω/G
(3)
ω | is shown for source position 0.75 (source positions in the jet

are shown in Fig. 2.7(a)) in Fig. 2.6. Off-axis sources such as this are realistic of noise

source positions in real jets where the dominant sources are located in the shear layer

where the turbulent intensities are the highest [9]. We will only consider off-axis point

sources in this thesis, though on-axis source solutions do exist having been derived in

[116] and computed in Stone et al. [140].

The solution shown in Fig. 2.6 has a diffraction pattern characteristic of all off-axis

sources with a field of significantly reduced magnitude in an asymmetric region of low-θ

(forward arc) values predominantly delimited by an interference pattern. This is the

cone of silence (CoS) for a point source and in later chapters a study is conducted to

calculate its exact shape and properties. Clearly, though, this region is asymmetric

which differs from the ring source and experimentalist definitions.
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(a) Source positions: yz-plane (b) rs = 0.75 (c) rs = 1.0

(d) rs = 1.5 (e) rs = 2.0 (f) rs = 2.5

Figure 2.7: Source position parametric study for the same flow regime as Fig. 2.6.

Towards high angles (rear arc) of θ there is a cusp shaped interference pattern with a peak

in magnitude on the symmetry line ∆ϕ = π. The peak values due to the cusp pattern

and region surrounding the cone of silence can be explained in terms of ray singularities

(see Chap. 6), but for the mean time it is sufficient to recognise their importance due to

the increased magnitude in their vicinity.

2.2.2.1 Source position studies.

An interesting parametric study that can be achieved using (2.89) is the effect of source

position on the point source field. Figure 2.7 shows the magnitude of the Green’s function

|G/G (3)
ω | for various radial source positions. For each source position the cone of silence

changes smoothly. As the source radius increases the cone of silence reduces in size being

engulfed by the interference pattern until only a small region remains in the vicinity of

the line ∆ϕ = π. The interference patterns in both the forward and rear arcs increase in

size and contain a finer scale of oscillation. In all cases the field is considerable amplified

around the boundary of the cone of silence (for the most part) and the boundary of the

cusp diffraction pattern. In reality sound fields are made up of more than one source
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and many source models use a continuum of sources. This begs the question of whether

in the presence of other sources these intense regions still persist? We will look into this

question in more depth in Chapter 6.

A key property mentioned above is the smoothness and persistence of the interference

patterns as the source position changes. This may seem obvious but it is an important

property that is exhibited by the agents engendering these patterns. However, all is not

smooth if one considers the on-axis source: this does not contain the diffraction varieties

present in the off-axis solution (sol. shown in [140]). This is the reason off-axis source

positions are studied: they contain are larger number of ray deficiencies that can be

used to test our ray solver.

2.2.3 Notes on the continuity and analytic continuation of rδ

During the derivation of the modal solution to the Green’s function, (2.89), there are

several conventions that need to be adhered to. They are adhered to because the modal

solution has been shown by [116] to provide an excellent match to a numerical solution

of Lilley’s equation.

The first convention is that all the turning-points must be real. This means that scat-

tering from complex turning-points are neglected. When a real turning-point doesn’t

exist on the real line, then a WKB integration can be applied as usual. When a real

turning-point leaves the real line, this turning-point is not continued into the complex

plane. The convention that there is no turning-point is adhered to.

The final convention is that we don’t consider Langer’s 1/4r2 correction term (see Langer

[141]), due to a pole term in I that is singular at the origin. This is an important

correction for quantum-mechanical solutions in radial coordinates: however, all turning-

point structures disappear with Q having no roots under this correction. It is for this

reason we neglect this correction.

2.3 Conclusion

In this chapter two acoustic analogies based on Lilley’s equation have been reviewed. The

first is Tester & Morfey’s adaptation of the Lilley analogy that uses a statistical isotropic

point quadrupole to develop a ring source model. This was reviewed to demonstrate the

applicability of ray theory for a range of observer polar angles. It was shown for both

isothermal and heated jets that outside the CoS, a ray theory solution makes a good

approximation down to low Strouhal numbers. This agrees with conclusions by other
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authors (notably [116]) that good approximations can be made below St = O(1). This

is the beauty of asymptotic solutions: they work well outside their region of validity,

i.e., k0 →∞ in this case. The main disagreement of the ray theory near the CoS angle

is likely due to a caustic deficiency. We expect a complex ray theory solution inside the

CoS to show good agreement as well, as there is no reason to suspect that real rays work

better than their complex counterparts.

The second model is the Lilley equation’s Green’s function for a 3D point source, this

will provide a benchmark for the ray calculations in Chapter 6. These solutions have

two interesting diffraction patterns which persist for off-axis source locations. The exact

causes of these diffractions are also discussed in Chapter 6.

This chapter has also set the template - from a physical point-of-view - for the ring

source solution. In later chapters we will extend the ring source solution to study the

effects of certain singular structures. Though the main aim of this thesis is to compute

point source ray solutions, it is useful to be able to assess the impact of multiple point

source on the total field.





Chapter 3

Flow Factor and Vector Green’s

Functions

3.1 Introduction

In the previous chapter work focused on Green’s function solutions to Lilley’s equation

in either two or three dimensions. The latter proved in keeping with the aims of this

thesis: a Green’s function completely decoupled from the source model valid in the

high-frequency limit. In light of this, the first part of this chapter pursues a vector

Green’s function solution to the linearised Euler equations. This is more general than

Lilley’s Green’s function as it applies to arbitrary mean flows and can be used within a

generalised acoustic analogy framework. Motivated by prior success of high-frequency

solutions a ray ansatz is applied to the vector Green’s function and a flow-factor formed.

Solutions to the leading order term are kept general bearing in mind the necessity of

complex trajectories to compute complex rays. In the second part of this chapter the

ray solutions are used to provide large simplifications to the algebra of correlation and

spectral integrals thus showing their further utility in acoustic calculations.

3.2 Linearised acoustic equations and flow-factor definition

In the spirit of the acoustic analogy the derivation of the flow factor starts from the invis-

cid linearised acoustic equations of continuity, momentum, energy, and state. These are

commonly known as the linearised Euler equations and form the basis of linear aeroa-

coustic theory. The Euler equations are derived from the full nonlinear fluid-dynamic

equations by decomposing the dependent variables into mean O(1), and fluctuating

49



Chapter 3. Flow Factor and Vector Green’s Functions 50

O(ε), ε � 1, parts. Retaining the terms linear in these perturbations and leaving the

nonlinear sources unaffected gives (Goldstein [9]),

ρ̄

(
Du′i
Dt

+ u′j
∂ūi
∂xj

)
+ ρ′ūj

∂ūi
∂xj

+
∂p′

∂xi
= fi, (3.1)

Dρ′

Dt
+ ρ′

∂ūj
∂xj

+
∂

∂xj
ρ̄u′j = ρ̄q , (3.2)

Ds′

Dt
+ u′j

∂s̄

∂xj
= 0, (3.3)

p′ − c2ρ′ −

(
∂k
∂s

)
s′ = 0, (3.4)

where p′,ρ′, u′i, and s′ are the fluctuating pressure, density, particle velocity and entropy,

respectively. The nonlinear volume sources fi and q are assumed to be of the same order

as the fluctuating variables. The barred variables denote an average so that ρ̄, ūi, and s̄

are the mean or “base” flow for density, velocity and entropy, respectively. The barred

operator D/Dt ≡ ∂t + ūj∂xj is the mean convective derivative. Equation (3.4) makes

use of the equation of state relating the pressure, density and entropy together, i.e.,

p = k (ρ, s). The mean sound speed is then defined c̄2 = ∂k /∂ρ.

The mean variables satisfy the following,

ρ̄ūj
∂ūi
∂xj

= − ∂ρ̄

∂xi
, (3.5)

∂

∂xj
ρ̄ūj = 0, (3.6)

ūj
∂s̄

∂xj
= 0, (3.7)

ūj
∂p̄

∂xj
= c̄2ūj

∂ρ̄

∂xj
. (3.8)

No assumption has been made on the mean pressure gradient. It makes no appearance

in the linearised equations (3.1) to (3.4) because linearisation eliminates it to leading

order.

The equation of state p = k (ρ, s) can be used to define relations:

{
∂/∂xi

D/Dt

}
p̄ = c̄2

{
∂/∂xi

D/Dt

}
ρ̄+

(
∂k
∂s

){
∂/∂xi

D/Dt

}
s̄, (3.9)

{
∂/∂xi

D/Dt

}
p′ = c̄2

{
∂/∂xi

D/Dt

}
ρ′ +

(
∂k
∂s

){
∂/∂xi

D/Dt

}
s′, (3.10)
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since thermodynamic formulae allow differential operators other than just total deriva-

tives to be applied.

The linear properties of the propagating LHS of Eqs. (??)-(??) mean that the sources

can be separated from the propagation using the Green’s function technique. However,

the Green’s function for dependent variable must be a vector since this is a vector system.

This becomes clear if we restate the linear acoustic equations in the compact notation,

Lκvṽv = s̃κ, (3.11)

where

{ṽv} = {u′i, ρ′, p′, s′}, and {s̃κ} = {fi, q , 0, 0}. (3.12)

The vector Green’s function gvη(x, t|xs, ts) for (3.11) can be written in dyadic form

(Morse & Feshbach [57]) as,

Lκvgvη = δκηδ(x− xs)δ(t− ts). (3.13)

or explicitly as,

ρ̄

(
Dgiη
Dt

+ gjη
∂ūi
∂xj

)
+ g4ηūj

∂ūi
∂xj

+
∂g5η

∂xi
= δiηδ(x− xs)δ(t− ts), (3.14)

Dg4η

Dt
+ g4η

∂ūj
∂xj

+
∂

∂xj
ρ̄gjη = δ4ηδ(x− xs)δ(t− ts), (3.15)

Dg6η

Dt
+ gjη

∂s̄

∂xj
= 0, (3.16)

g5η − c̄2g4η −

(
∂k
∂s

)
g6η = 0. (3.17)

Each column of the Green’s function gvη is ordered according to (3.12), so for example

the pressure components are g5η. Additionally each component obeys the causality

condition in the time domain:

gvη(x, t|xs, ts) = 0 for t < ts. (3.18)

In this thesis we are only concerned with the frequency domain behaviour so a Fourier

transform pair (denoted by ˆ) is introduced,

ĝvη = Fω{gvη} =

∫ ∞
−∞

gvηe
iω(t−ts) dt, gvη = F−1

t−ts{ĝvη} =
1

2π

∫ ∞
−∞

ĝvηe
−iω(t−ts) dω,

(3.19)
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and applied to the linear equations (3.13). This results in the time-harmonic Green’s

function which solves,

L̂κv ĝvη = δκηδ(x− xs), (3.20)

where L̂κv is the Fourier transform of the operator Lκv and can be found by replacing

D/Dt by Dω ≡ −iω + ūj∂xj in (3.14)-(3.17).

The physical frequency domain variables such as pressure p̂′ are then computed using,

v̂v =

∫
V
ĝvκ(x|xs)ŝκ dxs, (3.21)

where V is the source volume.

So far, the introduction of a vector Green’s function is consistent with the flow-factors

considered in previous chapters. However, whereas before the flow-factor was a point

force response to a scalar equation we now require 24 components to calculate all v̂v with

just 4 for the pressure. Thus any one of these could be a flow-factor. The maximum num-

ber of components required also appears to suggest that the Green’s function method is

expensive computationally. In the next section we make some considerable simplification

if we assume that the problem is explicitly one of high-frequency propagation.

3.3 High-frequency approximation

In this section a matched ray solution is derived for the time-harmonic vector Green’s

function. One of the most important tenets of ray theory is that the transmitting

medium varies slowly on the order of a wavelength, in other words the acoustic field

is locally plane. In the vicinity of a point source the acoustic field oscillates rapidly

so that ray theory is not applicable. Fortunately the method of matched asymptotic

expansions can exploit the highly localised nature of the delta function allowing the

construction of an “inner” solution valid in the vicinity of the source that can be matched

asymptotically with an “outer” solution which solves the homogeneous linear equations.

The technique employed here is due to Durbin [24], and a discussion of determining ray

data for Helmholtz equations can be found in Bleistein [142]. This matching procedure

is consistent with Keller’s Geometrical Theory of Diffraction (see e.g., [40], [71]) where

an inner canonical problem is matched with an outer ray solution.

3.3.1 Inner equation

In the vicinity of the source the mean field takes on “at source” constant values and

the gradients of these quantities disappear allowing a wave equation in pressure to be
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formed. The time harmonic versions of equations (3.14)-(3.17) reduce to,

ρ̄sDω ĝiη +
∂ĝ5η

∂xi
= δiηδ(x− xs), (3.22)

Dω ĝ4η + ρ̄s
∂ĝjη
∂xj

= δ4ηδ(x− xs), (3.23)

Dω ĝ6η = 0, (3.24)

so using (3.24) and (3.10) for the Green’s functions’ components gives,

Dω ĝ4η =
1

c̄2
Dω ĝ5η, (3.25)

thus by standard techniques,

1

c̄2
s

D2
ω ĝ5η −

∂2ĝ5η

∂x2
i

= Dωδ4ηδ(x− xs)−
∂

∂xi
δiηδ(x− xs). (3.26)

The source term on the right of this equation suggest we look for an inner equation of

the form,
1

c̄2
s

D2
ωgin −

∂2gin

∂x2
i

= δ(x− xs), (3.27)

which, upon expanding the convective derivative, can be written as (as in Durbin [24]),

1

c̄2
s

(
−ω2 − 2iωuj(xs)

∂

∂xj
+ uj(xs)uk(xs)

∂2

∂xj∂xk

)
gin −

∂2gin

∂x2
i

= δ(x− xs) (3.28)

where the following dimensionless quantities have been introduced: Mach number Mi =

ui/cr, sound speed ratio a = c/cr, matrix Tij = δij −MiMj/a
2 (with inverse T−1

ij =

δij +MiMj/β
2a2; β2 = 1−MkMk/a

2), and reference sound speed cr. Furthermore with

inner variable y = k0(x− xs), this can be written as,

1

a2
s

(
1 + 2iMsj

∂

∂yj

)
gin +

∂

∂yi
Tsij

∂

∂yj
gin = −kn−2

0 δ(y). (3.29)

It is convenient to introduce a solution of the form,

gin = e−iy·Ms/β2
sa

2
sΨin(y), (3.30)

so that Ψin(y) satisfies,

∂

∂yi
Tsij

∂

∂yj
Ψin + Ψin/a

2
sβ

2
s = −δ(y)knD−2

0 . (3.31)
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Because Tij is symmetric, the operator ∂yiTij∂yj can be diagonalized. In fact if the

variable ζ defined by,

ζ2 = yiT
−1
sij yj = yiyi + (yiMsi)

2/a2
sβ

2
s , (3.32)

the equation in Ψin can be expressed as an ode,

1

ζnD−1

d

dζ
ζnD−1 dΨin

dζ
+ Ψin/a

2
sβ

2
s = − δ(ζ)knD−2

0

det(Tsij )
1/2

= −δ(ζ)knD−2
0

βs
, (3.33)

where nD is the dimension of the problem: here nD = 2, 3. Equation (3.33) has solution

in terms of Hankel functions,

Ψin = iH
(1)
(nD−2)/2 (ζ/βsas) k

nD−2
0 /4βs(2πζasβs)

(nD−2)/2, (3.34)

which as |y| → ∞ gives outer solution for gin,

gin ∼
[
ei(3−nD)π/4ask

(nD−3)/2
0 /2(2πξasβs)

(nD−1)/2
]

eik0Ss , (3.35)

where, ξ2 = (xi − xsi)T−1
sij (xj − xjs) and Ss = ξ/asβs − (xi − xsi)Msi/a

2
sβ

2
s .

3.3.2 Outer equation

The solution in the outer region is to be obtained through a ray acoustics approximation.

It is important to note that in the outer region the solution is far enough away from the

(highly localised) delta functions so that only the homogeneous acoustic equations are

dealt with. Away from the delta functions we drop any reference to η in ĝiη for clarity

(these are brought back in the matching process). It is also convenient to eliminate

the pressure variable in these equations using the state equation (3.17) so only ĝi(i =

1, 2, 3), ĝ5, and ĝ6 are used. It will then be shown that ĝ4 can be determined in terms of

ĝ5 to leading order algebraically.

As a generalisation of the one-dimensional case, ĝ4, ĝi and ĝ6 are expanded in inverse

powers of ik0,

ĝ4 ∼ eik0S
∞∑
n=0

rn
(ik0)n

, ĝi ∼ creik0S
∞∑
n=0

min

(ik0)n
, ĝ6 ∼ eik0S

∞∑
n=0

sn
(ik0)n

, (3.36)
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and substituted into the frequency domain linearised equations,

−iωρĝi + ρuj
∂ĝi
∂xj

+ ρ̄ĝj
∂ūi
∂xj

+ ĝ4ūj
∂ūi
∂xj

+ c2∂ĝ4

∂xi
+ h

∂ĝ6

∂xi
=

−ĝ4

(
∂2k
∂ρ2

∂ρ

∂xi
+

∂2k
∂ρ∂s

∂s

∂xi

)
− ĝ6

(
∂2k
∂ρ∂s

∂ρ

∂xi
+
∂2k
∂s2

∂s

∂xi

)
,

(3.37)

− iωĝ4 + uj
∂ĝ4

∂xj
+ ĝ4

∂ūj
∂xj

+ ĝj
∂ρ̄

∂xj
+ ρ

∂ĝj
∂xj

= 0, (3.38)

− iωĝ6 + uj
∂ĝ6

∂xj
+ ĝj

∂s̄

∂xj
= 0, (3.39)

Equating terms at O(k0) leads to,

O(k0)



(
1−Mj

∂S
∂xj

)
r0 − ρ ∂S∂xjmj0 = 0,(

1−Mj
∂S
∂xj

)
ρmi0 −

(
a2r0 +

∂k
∂s

s0

c2

)
∂S
∂xi

= 0,(
1−Mj

∂S
∂xj

)
s0 = 0,

(3.40)

These equations are in the form Ax = 0, so in order for a non-trivial solution to exist

(i.e., not all r0 = mi0 = s0 = 0), the determinant of these equations must be non-trivial

(i.e. det(A) = 0). It is straightforward to show that this condition leads to,

ρ̄3 (1−Mjpj)
3
[
(1−Mjpj)

2 − a2pjpj

]
= 0, (3.41)

where the wavefront normal pi = ∂S/∂xi has been introduced.

Therefore there are two possibilities for (3.41) to be satisfied: first, (1−Mjpj) = 0

which then implies that r0 = mi0 = s0 = 0 in (3.40). It is well known that this solution

represents a convective incompressible disturbance. In other words, an observer moving

with at local mean flow velocity would not observe a sound wave fluctuating in time.

As noted in Durbin [24] the high-frequency convective disturbance has been studied in

relation to the rapid distortion theory of turbulence.

The second solution from (3.41) is,

(1−Mjpj)
2 − a2pjpj = 0, (3.42)

and corresponds to the propagation of acoustic waves. Equation (3.42) is commonly

known as the eikonal equation. Given that (1−Mjpj) 6= 0, then the following are true

for the acoustic disturbance,

ρ̄mi0 =
a2r0pi

1−Mjpj
, (3.43)
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ρ̄2mj0mj0 = a2r2
0, (3.44)

s0 = 0, (3.45)

The first of these implies that r0 and mi0 can be written algebraically in terms of one

(currently unknown) scalar function Φpot,

r0 =
ρ̄

a2
(1−Mjpj) Φpot(x), mi0 = −piΦpot. (3.46)

To leading order r0 and mi0 are the only quantities required to compute the field as (3.47)

shows that to leading order the ray solution is isentropic. From the state equation (3.17)

and the ray ansatz (3.36),

An = c̄2rn +

(
∂k
∂s

)
sn =⇒ A0 = c̄2r0, (3.47)

where An are the coefficients of the pressure ray ansatz: ĝ5 ∼ eik0S
∑
An/(ik0)n.

3.3.2.1 Solving the eikonal equation using rays

The eikonal equation can be solved using the method of characteristics (see for e.g.,

Sneddon [41]). The phase of the field may be determined by propagating rays x(τ) from

the source according to the initial value problem (IVP),

dxi
dτ

= Tij(x)pj +
Mi(x)

a(x)2
, (3.48)

dpi
dτ

= −1

2
pj
∂Tj`
∂xi

p` − pj
∂

∂xi

(
Mj(x)

a(x)2

)
+

1

2

∂a−2

∂xi
(x), (3.49)

dS

dτ
= pj

dxj
dτ

. (3.50)

Only in the simplest cases (e.g., homogeneous media) can equations (3.48)-(3.50) be

solved analytically, so the standard procedure is to integrate, or “fire off”, x(τ) nu-

merically. Firing off a ray from a point source in 3D requires two angular parame-

ters µ̃ = {µ, λ} along with final integration time τR. The initial firing normal ν̃s =

{cosµ, sinµ cosλ, sinµ sinλ} is chosen to be proportional to the ray group velocity

ẋi = σsν̃s, where the constant of proportionality is the ray speed defined as σ =
√
ẋj ẋj .

Thus the IVP has initial conditions,

xi(0) = xsi , pi(0) = T−1
sij

(
σsν̃sj −Msj/a

2
s

)
, σ−2

s =
(
ν̃siT

−1
sij ν̃sj

)
a2
sβ

2
s , S(0) = 0.

(3.51)
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3.3.2.2 Amplitude equations

O(k−n0 )

n ≥ 0



−
(

1−Mj
∂S
∂xj

)
rn+1 + ρ̄mjn+1

∂S
∂xj

+Mj
∂rn
∂xj

+mjn
∂ρ̄
∂xj

+ ρ̄
∂mjn
∂xj

+ rn
∂Mj

∂xj
= 0,

−
(

1−Mj
∂S
∂xj

)
ρmin+1 + a2rn+1

∂S
∂xi

+ h
c2r
sn+1

∂S
∂xi

+ ρMj
∂min
∂xj

+ . . .

. . .+ rnMj
∂Mi
∂xi

+ a2 ∂rn
∂xi

+ rn
c2r

(
∂2k
∂ρ2

∂ρ̄
∂xi

+ ∂2k
∂ρ∂s

∂s̄
∂xi

)
= 0,

−
(

1−Mj
∂S
∂xj

)
sn+1 + ∂s̄

∂xj
mjn = 0,

(3.52)

It can be shown (see for e.g., Jones [143]) that for n = 0 these equations can be ma-

nipulated into the following equation in terms of the first order amplitude terms r0 and

m0i ;

(1−Mjpj)

[
∂

∂xi
r0Mi + ρ̄

∂mj0

∂xj

]
+ pj

[
ρ̄Mk

∂mj0

∂xk
+ ρ̄mk0

∂Mj

∂xk
+

∂

∂xj
r0a

2

]
= 0, (3.53)

to which further manipulation leads to the familiar divergence,

∂

∂xj

[
a4r2

0ẋj
ρ̄(1−Mkpk)2

]
= 0, (3.54)

and conservation along a ray tube (using Eq. (3.46)),

ρ̄σΦ2
potJ = constant, (3.55)

where J is the Jacobian of the rays, and equals the determinant of the Jacobian matrix,

Jmat =


∂x1/∂µ ∂x2/∂µ ∂x3/∂µ

∂x1/∂λ ∂x2/∂λ ∂x3/∂λ

∂x1/∂τ ∂x2/∂τ ∂x3/∂τ

 . (3.56)

So the expression for ĝ5 using (3.47) is,

ĝ5 ∼
c̄2ρ̄

a2
(1−Mkpk)

(
constant

σρ̄J

)1/2

eik0S . (3.57)

The constant can be found by taking the limit as x → xs and then matching with the

outer expansion |y| → ∞ of the inner solution (3.35). Using the initial condition for

ray speed (see Eqs. (3.51)) to express ξ in terms of ray arclength sray and ray speed

so ξ = sray/σsasβs, and that near the source J ∼ snD−1
ray sinnD−2 µ, the constant is
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determined to be,

constant =
a6
se

i(nD−3)π/2k
(nD−3)
0 σnDs sinnD−2 µ

4(2π)(nD−1)c̄4
sρ̄s(1−Msjpsj )

2
. (3.58)

so the expression for the field along a generic ray is,

ĝ5 ∼ as
(1−Mkpk)

(1−Mskpsk)

(
ρ̄σnDs sinnD−2 µ

ρ̄sσJ

)1/2
ei(3−nD)π/4k

(nD−3)/2
0 eik0S

2(2π)(nD−1)/2
. (3.59)

3.3.2.3 Solving the amplitude transport using rays

The amplitude transport equation can be solved along rays in the same way as the

phase. Noting that the only quantity that varies along the ray in (3.59) is the Jacobian

J , and that this in turn can be calculated using the elements of Jmat. The equations

governing these elements are known as the derived ray equations (DRE) and were first

postulated by Hayes [144]. They form an extended system of coupled equations that are

integrated in addition to the standard ray IVP. The odes for the elements are found by

differentiating the ray equations for position and slowness w.r.t. the ray firing parameters

µ̃, using,
∂

∂µ̃k

dxi
dτ

=
d

dτ

∂xi
∂µ̃k

,
∂

∂µ̃k

dpi
dτ

=
d

dτ

∂pi
∂µ̃k

, (3.60)

where µ̃k, k = 1, 2 refers to the elements of µ̃. There is no need to calculate the elements

∂xi/∂τ as these become ordinary derivatives along the ray and are given by (3.48). The

derived ray equations are as follows:

dyik
dτ

=
[
(∂nTijpj) + ∂n(Mi(x)/a(x)2)

]
ynk + Tijzjk, (3.61)

dzik
dτ

=

[
−1

2
pj (∂n∂iTj`) p` − pj∂n∂i(Mj(x)/a(x)2) +

1

2
∂n∂i(a(x)−2)

]
ynk + . . .

. . .+
[
−(∂iTj`)p` − ∂i(M(x)j/a(x)2)

]
zjk,

(3.62)

In order to distinguish between the derived elements, yik = ∂xi/∂µ̃k are known as the

geodesic elements and zik = ∂pi/∂µ̃k are the conjugate elements. The initial conditions

are found in the same way as the DRE: derivatives are taken w.r.t. the initial conditions

(3.51),

yik(0) = 0 ∀i, k. (3.63)

zik(0) =
∂σs
∂µ̃k

T−1
sij ν̃sj + σsT

−1
sij

∂ν̃sj
∂µ̃k

= σ3
s

(
Msj

∂ν̃sj
∂µ̃k

)
[Msi − (ν̃skMsk)ν̃si ] + σs

∂ν̃si
∂µ̃k

,

(3.64)
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where,
∂σs
∂µ̃k

= −σ3
s (ν̃siMsi)

(
Msj

∂ν̃sj
∂µ̃k

)
, (3.65)

has been used.

3.4 Complex ray tracing

When dealing with complex rays every quantity in the ray tracing routine must be al-

lowed to go complex. Complex ray tracing may proceed by directly integrating equations

(3.48)-(3.50) and (3.60)-(3.61) using a complex step as in Egorchenkov & Kravtsov [39],

however it is not so straightforward to generalise this method to arbitrary complex paths

in practice. Additionally, many in-built ode solvers will not be able to cope with the

extension to complex numbers, particularly as many step-size and error conditions will

be violated. Instead it is preferable to split the equations into their real and imaginary

parts using a real parameterisation of the complex path. This results in a system double

the size of the original.

According to equations (3.48), (3.61) et seq., a generic ray quantity χi is propagated

along a ray via the first order ode,

dχi
dτ

= h(χi,χ, τ), with initial condition, χi(0) = χis , (3.66)

where χ represents all other dependent ray quantities that may appear in the LHS

of (3.48)-(3.50) and (3.60)-(3.61). The parameterisation is effected by recognising that

whenever τ ∈ C a real monotonically increasing variable sτ = [0, 1] may used to represent

the path as,

τ = f1(sτ ) + if2(sτ ), (3.67)

where f1, f2 ∈ R. Thus, Re(τR) = f1(1) and Im(τR) = f2(1). Then we can think of

τR as the vector [Re(τR), Im(τR)]. The variable χi is then split into real and imaginary

parts, i.e., χi = χiRe + iχiIm so that coupled with (3.67), (3.66) may be expressed as the

real o.d.e system,

dχiRe

dsτ
= f ′1(sτ )Re(h(χi,χ, sτ ))− f ′2(sτ )Im(h(χi,χ, sτ )), χiRe(0) = Re(χis),

dχiIm
dsτ

= f ′2(sτ )Re(h(χi,χ, sτ )) + f ′1(sτ )Im(h(χi,χ, sτ )), χiIm(0) = Im(χis), (3.68)

where a prime denotes differentiation w.r.t sτ . The only equation that does not have

this form is the complex phase S, since the dτ/dsτ term cancels out in (3.50). The
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Τ0

Τ1

Τi

Τn-1

ΤR

ReHΤL

Im
HΤL

(a) Piecewise τ -integration path. (b) Example of standard (purple) and piece-
wise (piecewise) ray paths. Images of addi-
tional nodes shown on the latter.

Figure 3.1: Piecewise τ integration path and its image Im(x(τ)). (a) The τ -
integration path composed of n contiguous sections and joined at nodes τi and τi−1.
(b) Im(x(τ)) for a standard (purple) and piecewise (orange) path, showing the images

of the τ nodes delimiting segments of the paths.

complex phase equation can be expressed as,

dSRe

dsτ
= Re(h(S,χ, sτ )), SRe(0) = 0,

dSIm

dsτ
= Im(h(S,χ, sτ )), SIm(0) = 0. (3.69)

Here the simplest parameterisation possible is used, i.e., a straight line between τ = 0

and τ = τR, and is known henceforth as the standard path. Explicitly the standard

path is parameterised so τ = [Re(τ0), Im(τ0)] + s[Re(τR) − Re(τ0), Im(τR) − Im(τ0)],

and f ′1,2 are constant. It is, however, possible to integrate along any piecewise smooth

path joining the integration endpoints given that there no singularities obstructing path

deformation. For example a piecewise path with straight lines (i.e., a 1-chain, Hatcher

[145]) is constructed by partitioning the ray path into n contiguous segments delimited

by nodes τi = [Re(τi), Im(τi)] and τi+1 = [Re(τi+1), Im(τi+1)] as shown in Fig. 3.1(a), so

the ray path can be expressed as τ = [τ0, τ1] + . . . + [τi, τi+1] + . . . + [τn−1, τR]. Then

the parameterised path between each node is (in vector form) τ = τi + s∂[τi, τi+1] =

τi + s(τi+1 − τi).1 The initial conditions for each segment are trivially those at the end

of the last segment.

An example of partitioning the integration path into segments for a real observer is shown

in Fig. 3.1(b) depicting only the imaginary part of the trajectory. For a real observer the

1∂ here finds the boundary of the chain.
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Figure 3.2: Complex wavefront as a codimension object.

imaginary parts of the ray will form loops starting and ending at the origin. These loops

may appear to be discontinuous (even in the standard path case), but this is a matter

of resolution as the ray undergoes rapid changes in its imaginary part.2 The piecewise

path shows the position of two nodes |τ1| = O(1) and |τ2| = O(10) along the integration

path to |τR| = O(100). An interesting observation is that the majority of the imaginary

loop has been completed by τ2. Another observation is that nodes lying just off of the

standard path can produce distinctly different results to that of the standard path, and

these paths are in no way predictable from the standard path.

While the above deals with an algorithm for calculate a complex ray between two points

in τ it doesn’t explain why only τ is necessary to explore the field. To do this we need to

introduce the concept of codimension. Codimension is a relative concept defined for one

object inside another, and one central to this thesis. Simply, the codimension is defined

as the difference between the dimension of the object and the dimension of the space it

lies in. This means that the codimension is equal to the number of equations required

to describe the object within the space it is embedded in, e.g., a codim = 1 object in

R3 is a 2-surface with one equation f(x) = c. This applies to rays in the following

manner in CnD as shown in Fig. 3.2. Given that a wavefront is a surface of constant

phase S(x) = c, then this defines two equations for the real and imaginary parts of S,

and thus gives codim = 2. A codim = 2 surface is a (2nD−2)-dimensional hypersurface

which leaves two free dimensions. It is these extra two dimensions that are spanned by

the complex τ allowing the wavefront to move.

2Rapid changes are not limited to just the imaginary part of x(τ).
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3.5 Efficiency of ray mathematics and normalisation

3.5.1 Relating ĝ5 to ĝ5η and other components

The generic ray contribution given by (3.59) solves the inner equation with source given

by (3.27) and not (3.26). Using the delta function properties and their application to

the ray theory solution found in Appendix C this is straightforward. The components

ĝ5η, η = 1, . . . , 4, are related to ĝin using the vector,

ĝ5η = Aη ĝ5 = {∂/∂xs1 , ∂/∂xs2 , ∂/∂xs3 ,−iω − ūj(xs)∂/∂xsj}ĝ5, (3.70)

which using ray theory leads to,

ĝ5η = Aη ĝ5 = {−ik0ps1 ,−ik0ps2 ,−ik0ps3 ,−iω + ik0ūj(xs)psj}ĝ5. (3.71)

The velocity components giη can be found using (3.43) and (3.47), i.e.,

ĝiη =
pia

2

ρ̄c̄2(1−Mjpj)
ĝ5η. (3.72)

3.5.2 Normalising the Flow Factor

So far in this chapter we have shown that using ray theory we need only consider one

component of the vector Green’s function, and that all other components can be cal-

culate according to formulae shown in previous sections. Considering only the pressure

components, then depending on the problem at hand the simplest component will be

chosen. The Flow Factor is calculated by normalising the Green’s function (from now

on we refer to the chosen component as the Green’s function) w.r.t. a solution of the

Helmholtz equation in the appropriate dimension (e.g., nD = 2, 3),

(
∇2 + k2

0

)
G (nD)
ω = δ(x− xs), (3.73)

with solutions and large k0|x− xs| � 1 asymptotics,

G (2)
ω =


1
4iH

(1)
0 (k0|x− xs|),

∼ eik0|x−xs|

4ik
1/2
0 |x−xs|1/2

G (3)
ω =

 − eik0|x−xs|

4π|x−xs| ,

∼ − eik0|x−xs|

4π|x−xs|

(3.74)

Where an analytical solution exists in the far-field use will be made of the large argument

Green’s functions. For numerical computations using ray theory the same large argument

solution will be used. This is allowed because the ray solution is valid at distances
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greater than O(k−1
0 ), the same region of validity as the asymptotics in (3.74). Choosing

the normalisation is arbitrary up to a constant and meant purely to eliminate spherical

spreading.

3.5.3 Two-point correlations

The simplifications that may be gained using the ray method are best demonstrated

using the two-point correlations. It is these correlations that are of physical interest and

are used for comparison with experiment.

The pressure p′(x, t) at any point may be found using (3.21),

p′(x, t) =
1

2π

∫ ∞
−∞

∫
V ′
ĝ5i(x|x′s, ω′)ŝi(x′s, ω′)e−iω′t d3x′sdω

′, (3.75)

where i ranges from 1 to 4. However, in order to shift the correlation of p′ onto the

source only, it is expedient to proceed from,

p′(x, t) =

∫ ∞
t′′=−∞

∫
V ′′
g5i(x, t|x′′s , t′′s)si(x′′s , t′′s) d3x′′sdt

′′
s . (3.76)

Forming a pressure correlation (Goldstein [9]) noting as in Goldstein & Leib [146] that

temporal variables occur as differences (e.g., t − t′′s) in the argument of the Green’s

function,

Γ(x, τ) = p′(x, t)p′(x, t+ τ) =

1

2T

∫ T

−T

∫ ∞
t′=−∞

∫ ∞
t′′=−∞

∫
V ′

∫
V ′′
g5i(x, t− t′′s |x′′s)g5j(x, t+ τ − t′s|x′s)

× si(x′′s , t′′s)sj(x′s, t′s) d3x′′sd
3x′sdt

′′dt′dt.

(3.77)

Then making the change of variables ta = t− t′′s and tb = t′′s − t′s leads to,

Γ(x, τ) =∫ ∞
tb=−∞

∫ ∞
ta=−∞

∫
V ′

∫
V ′′
g5i(x, ta|x′′s)g5j(x, ta + tb + τ |x′s)si(x′′s , t′s + tb)sj(x′s, t

′
s) d3x′′sd

3x′sdtadtb,

(3.78)

where,

si(x′′s , t
′
s + tb)sj(x′s, t

′
s) =

1

2T

∫ T

−T
si(x

′′
s , t
′
s + tb)sj(x

′
s, t
′
s) dt′s, (3.79)
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The Fourier transform (giving a Fourier pair of Fω and F−1
τ ) of (3.78) is proportional

to the spectral density function Iω(x),

Iω(x) = Fω {Γ(x, τ)} =

1

ρ̄∞c̄∞

∫ ∞
tb=−∞

∫
V ′

∫
V ′′

Fω

{∫ ∞
ta=−∞

g5i(x, ta|x′′s)g5j(x, ta + tb + τ |x′s) dta

}
× e−iωtbsi(x′′s , t

′
s + tb)sj(x′s, t

′
s) d3x′′sd

3x′sdtb,

(3.80)

where the Fourier pair inside the integral above corresponds to Fω and F−1
tb+τ

. Given

that the Fourier transform of a correlation integral, say
∫∞
−∞ f(t + τ)g(t) dt, is just

Fω(f(t))F ∗ω(g(t)), ω ∈ R; we have,

Iω(x) =

1

ρ̄∞c̄∞

∫
V ′

∫
V ′′
ĝ∗5i(x|x′′s , ω)ĝ5j(x|x′s, ω)∫ ∞

tb=−∞
e−iωtbsi(x′′s , t

′
s + tb)sj(x′s, t

′
s) dtb d3x′′sd

3x′s

(3.81)

which could be written as,

Iω(x) =

1

ρ̄∞c̄∞

∫
V ′

∫
V ′′
ĝ∗5i(x|x′′s , ω)ĝ5j(x|x′s, ω)ŝ∗i (x

′′
s , ω)ŝj(x

′
s, ω) d3x′′sd

3x′s,
(3.82)

if we proceeded to Fourier transform the source correlation since,3∫ ∞
tb=−∞

e−iωtbsi(x′′s , t
′
s + tb)sj(x′s, t

′
s) dtb = (ŝi(x

′′
s , ω)ŝ∗j (x

′
s, ω))∗ = ŝ∗i (x

′′
s , ω)ŝj(x

′
s, ω).

(3.83)

As an aside, we can use (3.82) to derive a directivity factor D
(c)
ω that will be used in

later chapters to enforce the relevance of the ring source model as used in Chap. 2. First

the separation vector η is introduced via η = x′′s − x′s so that the first spatial integral

of (3.82) looks like,

D (c)
ω (η) =∫

V ′
A ∗i ĝ

∗
5(x|x′s, ω′′)Aj ĝ5(x|x′s + η, ω′′)ŝ∗i (x

′
s, ω
′′)ŝj(x

′
s + η, , ω′′) d3x′s.

(3.84)

Physically, the new variable η measures the distance between two points of the corre-

lation. A key point to note for the future use of (3.84) is that it is the combination

3Note the use of a standard Fourier transform for si where
∫∞
−∞ |si(t)|

2 dt <∞. Previously we used
a truncated integral with T →∞ to allow the statistics of the correlation to converge.
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of Green’s functions, i.e., Green’s function with complex conjugate, that is important.

Asymmetries and diffraction patterns that appear in this combination have implications

for Iω as well as D
(c)
ω . Furthermore, the evaluation of (3.84) at η = 0 is even more signif-

icant as the integrand can be treated as the product of a slow function (the propagator)

and fast function (the source), as will be shown below.

Returning to the acoustic spectra we can show via (3.71) the large simplifications that

can be made to the computation of Iω when rays are employed.

Iω(x) =

1

ρ̄∞c̄∞

∫
V ′

∫
V ′′

A ∗i ĝ
∗
5(x|x′s, ω′′)Aj ĝ5(x|x′′s , ω′′)︸ ︷︷ ︸

Only ĝ5 required∫ ∞
tb=−∞

e−iωtbsi(x′′s , t
′
s + tb)sj(x′s, t

′
s) dtb d3x′′sd

3x′s.

(3.85)

Clearly, once ray ĝ5 is computed then ĝ∗5 is readily computed. Thus the 8 components

required just to compute the pressure correlation have been replaced by one. In the

next section we make further simplifications to (3.85), consider two source models, and

justify our interest in complex rays.

3.5.3.1 Source models for correlation integrals and propagator simplifica-

tions

The first simplifications can be motivated by introducing a source correlation model into

(3.81) once it is rewritten using the separation vector η, i.e.,4

Iω(x) =

1

ρ̄∞c̄∞

∫
V ′

∫
V ′′

∫ ∞
tb=−∞

ĝ∗5i(x|x′s + η, ω)ĝ5j(x|x′s, ω)e−iωtbsi(x′s + η, t′s + tb)sj(x′s, t
′
s) dtb d3ηd3x′s.

(3.86)

Before introducing explicit forms for the source correlations, we know qualitatively that a

good approximation is given by a Gaussian (Batchelor [147], Lilley [13]) in the separation

coordinates η and correlation time tb, even though the true behaviour is not Gaussian.

Regardless, this model means that the integral (3.86) w.r.t. η contains both a slow

factor given by the propagators, and a fast factor given by the source correlation. The

integrand can therefore be approximated to some extent by appropriate manipulation

of ĝ∗5i(x|x′s + η, ω)ĝ5j(x|x′s, ω). To do this we consider the source position x′s to be

perturbed by a small vector parameter ε for generality.

4V ′′ now denotes the domain for η.
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For two sources near each other separated by a small distance ε, |ε| � 1 say, we are

interested in the change of phase for an observer x in the far-field due to the separation.

The reason we focus purely on phase is that it pertains to the controlling factor (the

exponential) of the ray solution; whereas amplitude does not. Expressing the source

position x
(2)
s in terms of the nearby source position and separation vector as x

(1)
s + ε,

the phase is Taylor expanded as,

S(x|x(2)
s ) = S(x|x(1)

s + ε) = S(x|x(1)
s ) + εi∂xsiS(x|x(1)

s ) +O(|ε|2),

= S(x|x(1)
s )− εi∂xiS(x|x(1)

s ) +O(|ε|2),
(3.87)

which for a small source separation vector ε leads to,

S(x|x(2)
s ) ≈ S(x|x(1)

s )− ε · p, (3.88)

where p is the wavefront normal evaluated at the observer position. Of course, if the ray

is complex then p may also be complex, even if the observer is real. This may lead to

the Taylor expansion changing the dominancy of a ray if ε is too large. If an anti-Stokes

line is crossed then this is unacceptable: however, we make the assumption that the

small parameter is small enough to make no changes in a rays dominancy and neglect

the imaginary part of p. Even so, p pertains to a particular ray and we will deal with

sums of rays (see next chapter) when constructing a Green’s function; hence this factor

cannot be pulled out of a ray sum. If the observer is in the far-field then one might

assume that p ∼ xR/R. This factor can be pulled out. Considering this approximation

to p then the Green’s function can be approximated by,

ĝ(x|x(2)
s ) = ĝ(x|x(1)

s +ε) =

N∑
n=1

An(x|x(1)+ε)eik0Sn(x|x(1)+ε) ≈ e−ik0ε·Re(p)
N∑
n=1

An(x|x(1))eik0Sn(x|x(1)),

(3.89)

where reference to Re(p) is dropped for just p in future correlation integrals.

In the following we consider two correlation models to illustrate the possible use of the

above approximation. The first (Case A) is similar to the acoustic analogies proposed

by Lighthill [4, 5] and Goldstein [9] and employs a moving observer that travels with

alongside a convected disturbance with velocity Uc; the second (Case B) is similar to that

of Tam & Auriault [7] and Morris & Farassat [6], employing a fixed frame correlation.
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Case A

For Case A, we switch to a reference frame travelling at the convection velocity Uc, i.e.,

ξ ≡ η − îUctb gives,

Iω(x) =

1

ρ̄∞c̄∞

∫
V ′

∫
V ′′

∫ ∞
tb=−∞

ĝ∗5i(x|x′s + ξ + îUctb, ω)ĝ5j(x|x′s, ω)

e−iωtbsi(x′s + ξ + îUctb, t′s + tb)sj(x′s, t
′
s) dtb d3ξd3x′s,

(3.90)

which we can start approximating for small correlation times tb � 1 by applying the

Taylor expansion above with ε = îUctb. Then (3.90) becomes,

Iω(x) =

1

ρ̄∞c̄∞

∫
V ′

∫
V ′′

∫ ∞
tb=−∞

ĝ∗5i(x|x′s + ξ, ω)ĝ5j(x|x′s, ω)

e−iω(1−Mc cos θ)tbsi(x′s + ξ + îUctb, t′s + tb)sj(x′s, t
′
s) dtb d3ξd3x′s.

(3.91)

where Mc = Uc/c̄∞, and θ remains the observer coordinate. As is well known, the

eiωMc cos θtb factor leads to Doppler in the Fourier transform, as can be seen below.

Iω(x) =

1

ρ̄∞c̄∞

∫
V ′

∫
V ′′
ĝ∗5i(x|x′s + ξ, ω)ĝ5j(x|x′s, ω)H∗ij(x

′
s|ξ, ω(1−Mc cos θ)) d3ξd3x′s.

(3.92)

where Hij is defined by,

Hij(x
′
s|ξ, ω) =

∫ ∞
−∞

si(x′s + ξ + îUctb, t′s + tb)sj(x′s, t
′
s)e

iωtb dtb. (3.93)

If Hij varies much faster with ξ than the propagator ĝ5i then it is safe to make the

approximation ĝ5i(x|x′s + ξ, ω) ≈ ĝ5i(x|x′sω), so that,

Iω(x) ≈
1

ρ̄∞c̄∞

∫
V ′
ĝ∗5i(x|x′s, ω)ĝ5j(x|x′s, ω)Ψ∗ij(x

′
s|ω(1−Mc cos θ)) d3x′s,

(3.94)

where,

Ψij(x
′
s|ω) =

∫
V ′′
Hij(x

′
s|ξ, ω) d3ξ. (3.95)

Then defining the intensity Iω(x|x′s) at x due to a point source x′s gives,

Iω(x|x′s) = ĝ∗5i(x|x′s, ω)ĝ5j(x|x′s, ω)Ψ∗ij(x
′
s|ω(1−Mc cos θ)). (3.96)
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The total intensity is then given by,

Iω(x) =

∫
V ′
Iω(x|x′s) d3x′s. (3.97)

If the source term si is such that it has the form of a gradient or divergence then these

operators (A s
i , say) can be switched to the Green’s function by integrating (3.76) by

parts:

Iω(x|x′s) =


A s∗
i ĝ∗5i(x|x′s, ω)A s

j ĝ5j(x|x′s, ω)Ψ∗(x′s|ω(1−Mc cos θ)), si = ∂
∂x′si

s, A s
i = ∂

∂x′si

A s∗
k ĝ∗5i(x|x′s, ω)A s

l ĝ5j(x|x′s, ω)Ψ∗ijkl(x
′
s|ω(1−Mc cos θ)), si = ∂

∂x′sk
sik, A s

k = ∂
∂x′sk

,

(3.98)

In the case of a divergence operator (first case above) the (cross)-spectral density func-

tion, Hij → H can be given as (Self [148]),

H(x′s|ξ, ω) =
√
πτsu

4
s exp

(
−1

4
τ2
s ω

2

)
exp

(
−η

2
1

l21
− η2

2

l22
− η2

3

l23

)
, (3.99)

so that,

Ψ(x′s|ω) = π2u4
sτsl1l2l3 exp

(
−1

4
τ2
s ω

2

)
, (3.100)

where τs measures the eddy’s lifetime (not to be confused with the ray tracing param-

eter), l1, l2, l3 are three lengthscales characterising the size of the eddies, and us is a

velocity characteristic of the turbulence. In the use of us it should be noted that we

make an assumption about the source we are modelling. It should be clear that by

including a velocity scaling, it is implied that the source is a function of fluctuating

velocity. Each of these scales is a function of source position x′s.

Case B

There are two subcases to Case B: the first neglects η inside the Green’s function as

above; the second Taylor expands the Green’s function for small separation distances

|η| � 1. In both cases the source correlation is of the form:

si(x′s + η, t′s + tb)sj(x′s, t
′
s) =

q2
s

c2 exp

(
− |η1|
u1τs

− 1

l2s

[
(η1 − u1tb)

2 + η2
2 + η2

3

])
, (3.101)

which subtlety different from that in Case A, which is Gaussian in all correlation vari-

ables. Here, τs is as before, ls is an eddy lengthscale, q2
s is a measure of rms fluctuating

kinetic energy, and c the mean sound speed. Note that the above correlation is given

by Morris & Farassat [6] and is similar to that of Tam & Auriault [7]. In both subcases
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Figure 3.3: Gaussian source spectra directivity, exp
(
− 1

4τ
2
sω

2(1−Mc cos θ)2
)
, as

function of ω and θ; nominally set τs = 1, Mc = 0.9. As the source frequency ω
increases (darker lines) the source begins to beam strongly in the downstream θ-small

direction.

the relevant version of (3.86) is,

√
π

∫
V ′

∫
V ′′

ls
u1

q2
s

c2 A s∗
i ĝ∗5i(x|x′s+η, ω)A s

j ĝ5j(x|x′s, ω)e−iωη1/u1e−l
2
sω

2/4π2
e−|η1|/uτse−η

2
2/l

2
s−η2

3/l
2
sd3ηd3x′s,

(3.102)

then when η is neglected in ĝ∗5i(x|x′s + η, ω), the integral (3.102) can be reduced to,

∫
V ′

2π3/2l3sτs
1 + ω2τ2

s

q2
s

c2 A s∗
i ĝ∗5i(x|x′s, ω)A s

j ĝ5j(x|x′s, ω)e−l
2
sω

2/4π2
d3x′s, (3.103)

when we don’t neglect η, but use a Taylor expansion (as above) then we have,

∫
V ′

2π3/2l3sτs
1 + ω2τ2

s (1− u1p1/c∞)2

q2
s

c2 A s∗
i ĝ5i(x|x′s, ω)A s

j ĝ5j(x|x′s, ω)e−l
2
sω

2/4π2
e−(ω2/c2∞)l2s(p2

2+p2
3) d3x′s,

(3.104)

where the inclusion of the perturbed term eik0η·p acts to Fourier transform the separation

coordinates η, notably engendering Gaussian terms (functions of observer variable) that

are not present in (3.102). It is worthwhile pointing out that the Taylor expansion w.r.t.

η could also be applied to the moving frame correlation integral.

The appearance of the observer coordinates in the source model leads to some interesting

consequences. The most important is that the polar angle θ (amongst other parameters)

controls the strength of the source spectra, while ϕ does not enter the source spectra for

the models we have considered. However, there is a sharp distinction between the two

models we have considered. In the Lighthill-esque model (Case A), the moving frame

resulted in a Doppler shift leading to a Gaussian term exp
(
−1

4τ
2
s ω

2(1−Mc cos θ)2
)

that

beams in the downstream direction (see Fig. 3.3). In the first subcase of Case B, the

source correlation is a weak function of polar angle, appearing only in 1/(1 + ω2τ2
s (1−

u1p1c∞)2), as η is neglected in the propagator. However, making the Taylor expansion

in η sees θ return to the Gaussian through p2
2 + p2

3 = sin2 θ, again leading to a beaming

effect.
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3.6 Conclusions

In this chapter a matched ray solution to a vector Green’s function has been developed.

This vector Green’s function governs the acoustic propagation of the linearised Euler

equations. Whilst in-keeping with the concept of a generalised acoustic analogy, the

large number of components (24 in all) meant that computing it on a wavenumber basis

was not tangible for large scale applications. The introduction of the ray ansatz allowed

all 24 components to be expressed in terms of just one component, thus bypassing this

problem. The perfect demonstration of this reduction in complexity was through the de-

velopment of correlation and spectral integrals upon which engineering calculations are

based. The introduction of the directivity factor, which is nested inside the aforemen-

tioned integrals, will prove a useful tool for demonstrating the impact of ray singularities

upon the aggregate acoustic field.



Chapter 4

Complex Rays and Continuation

Methods

4.1 Introduction

This chapter looks at the ray multiplicity problem generated by the nonlinearity of the

eikonal equation and presents the solution in the context of Chapter 3. Generic flow

problems typically allow for the arrival of multiple solutions at a receiver point and

consequently decent estimates of the field require that almost the complete solution set

are found. The first part of this chapter addresses this issue by recasting the IVP as

a nonlinear or two-point boundary value problem (BVP) whose roots are the desired

rays. Three methods of calculation are discussed: a derivative-free Genetic Algorithm,

an equivalent functional iteration effected by Newton’s method, and a winding number

method. The second part of this chapter focuses on the continuation techniques em-

ployed to carry ray solutions from point-to-point. Two of the most popular techniques

are applied: natural parameter continuation, and predictor-corrector continuation, and

these are judged upon there computational efficiency and their ability to tackle natural

boundaries such as those that arise at caustics. The resolution of this latter scenario

stems from bifurcation theory and complex continuation.

4.2 Conversion to a boundary value problem (BVP)

As it remains the initial value ray problem of Chap. 3 is a function of the ray parameters

ς = {µ̃, τR} and not of the receiver coordinates xR. This is somewhat contrary to what

we expect from Green’s functions whose argument consists of both xs and xR. In

71



Chapter 4. Complex Rays and Continuation Methods 72

general the relationship between these two is nontrivial and only in a few cases (e.g.,

constant flow and linear gradients) can the problem be inverted analytically. In order

to represent the receiver explicitly the following, rather innocuous, function is defined

as in Sambridge & Kennett [42] (see also Pereyra et al. [46] and Wesson [43]),

F(ς;xR) ≡ x(ς)− xR, (4.1)

so that rays arriving at the receiver point satisfy F = 0. It can be readily seen that this

is the natural extension of saddle-point methods or moreover, the saddle-point condition.

Equation (4.1) mirrors the saddle-point method1 in that it provides a necessary but not

sufficient condition for a ray contribution. We must also factor in growth conditions,

for physical reasons, and Stokes (multiplier) conditions due to resurgence. For the time

being (4.1) is in the form of an optimisation problem and so there are various methods

of attack that can be used. Here, we start by examining two methods distinct in that

one is derivative based, i.e., a Newton method; while the other, a genetic algorithm

approach, isn’t.

4.2.1 Genetic Algorithms

The genetic algorithm is a stochastic search heuristic that mimics the process of natural

selection. Genetic algorithms have been applied to a wide range of problems (see for

e.g., Davis et al. [149]), but the application to ray two-point problems is novel. In

brief, a genetic algorithm requires: a genetic representation of the solution domain

(typically an array of bits, i.e., its chromosomes); and a fitness function to evaluate the

solution domain. Clearly, (4.1) is consistent with these requirements in that the ray

firing parameters once split into real and imaginary parts (the problem is then in 2nD

dimensions) can be encoded in bits since they are just numbers, and the equation itself

can provide a scalar fitness function. In fact any norm formed from the vector F is

sufficient. For instance when considering complex rays,

Ffitness ≡
N∑
i=1

(Re(Fi)
2 + Im(Fi)

2), (4.2)

is zero whenever F = 0. Once a solution domain has been defined2 in terms of the ray

parameters, for example 0 ≤ Re(µ) < 2π, the genetic algorithm generates a population

of randomly generated individuals, known as the first generation, measuring the fitness

of each individual via (4.2). The fitter individuals (unfit candidates are discarded) are

then modified by a process of recombination (splicing together the bit string with other

1The property known as equivalence is discussed in later sections.
2This is not always necessary but it speeds up computation.
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fit members of the population) or mutation (random changes to the bit string) to form a

new generation. The new generation is then used in the next iteration of the algorithm.

Depending on the algorithm elitism is also used. This preserves the fittest individual

from each iteration into the next in an attempt to speed up convergence. The algorithm

stops when either a fixed number of generations is reached or some tolerance has been

reached on the fitness function. Here the former is preferred as decent tolerances are

unlikely to be reached in acceptable times for generic flow problems.

From a ray perspective all that is required to compute (4.2) are the ray trajectories x(τ).

Since we do not require derivatives, no more ray equations need be added, and therefore

the size of ray system in Eqs. (3.48)-(3.50), which has already doubled, stays the same.

Thus it becomes a matter of choice as to whether the amplitude A0 is computed exactly

(using Eqs. (3.60) and (3.61)) using the DRE or approximately by equating it with the

Helmholtz spherical spreading term 1/4πR and therefore eliminate the dependence on

the DRE completely. Such an approximation may be appropriate for complex rays as

the overall amplitude is dominated by the exponential decay of the phase.

From a computational point of view, the pros and cons are well balanced. In the pos-

itive, the number of ray equations stays the same and the method is straight forward

to implement. It is not derivative based and so divergence is not experienced if trial

solutions are poor. However, the method is remarkably slow in generic 6D problems

(nD = 3 being of most interest) especially if one chooses a large search domain. Addi-

tionally, there is also some variability in the answer as the method does not converge in

the same way as a deterministic method. When seeking a fast ray solver, it is perhaps

this criterion that renders any benefits obsolete. For this reason we prefer the iterative

approach, though a hybrid method where a GA seeds the Newton method is plausible.

4.2.2 Iterative approach

The iterative approach described in this section is markedly different from the genetic

algorithm. The main difference is that it is deterministic and not stochastic. It relies

on stability to converge to a solution, and the repeatability of the solution makes it

preferable for finding ray solutions. Furthermore, iterative methods such as Newton’s

method exhibit superlinear convergence, making the algorithm very fast.

To solve (4.1) in terms of ray parameters ς, an iterative system of equations is formed

that is equivalent to it (see for e.g., Keller[53]). The most effective procedure is a

multidimensional Newton method applied to Eq. (4.1),

ς(k+1) = ς(k) −DF−1(ς(k);xR)F(ς(k);xR), (4.3)
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where DF is the transpose of the Jacobian matrix Eq. (3.56), and k is an iteration

counter.

The Newton method is at best a local search method that should not really be employed

globally. Fortunately, it does work well when global searches are undertaken for real rays

where the initial estimates, or seeds, are τ (0) = O(R), 0 ≤ µ(0) ≤ π, and 0 ≤ λ(0) ≤ 2π.

In the far-field, good initial estimates of the firing parameters are the observer angles

themselves. In shadow zones real solutions will not converge to anything meaningful,

they will likely oscillate wildly before tending to a final, spurious, solution. In this

circumstance if tolerances are placed on F ≈ 0, then the iteration could go on indefinitely.

It is recommended that the overall algorithm starts real ray finding in a region likely to

be populated by real rays. One suggestion is θ = 90◦ with ∆ϕ = 0.

The determination of complex rays is slightly more involved, particularly as they may

exist in real ray illuminated regions. This is further complicated by highly localised

domains of convergence that lead to overflow if divergence is promoted by a poor initial

guess. Complex rays are determined in a local manner according to the next section.

Considering real rays, the basic procedure for their determination at one point using

(4.3) is:

1. A distribution of real test rays ς(0) are fired for a particular receiver point.

2. The Newton system is iterated until either the maximum iterations are reached or

convergence is detected.

3. All non-unique ς’s are discarded (to within a fine tolerance).

This last step is the criterion for unique rays, i.e., through the ray parameters and not

through the phase or amplitude/Jacobian as in Amodei et al. [122]. Unique rays can

(see Chap. 6 for example) arrive at the same point with the same amplitude and phase

even though their firing parameters are distinct.

When applying (4.3) from a numerical point of view it should be noted that the inverse

matrix DF−1 is calculated using a Moore-Penrose pseudoinverse denoted by superscript

+ (see Allgower & George [55], Kincaid & Cheney [150]). The pseudoinverse is defined

for all matrices whose entries are real or complex numbers, and is calculated using a

singular-value-decomposition (SVD) of DF−1, i.e.,

DF−1 = PDQ, (4.4)

where DF−1 is of size m×n, P and Q are square unitary matrices of size m×m and n×n
respectively, and D is an m × n containing the eigenvalues of the matrix (DF−1)∗DF,
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where ∗ denotes the conjugate transpose. The pseudoinverse is then given by,

DF+ = Q∗D+P ∗, (4.5)

where D+ is defined as a diagonal matrix with elements reciprocal of those in D. The

pseudoinverse defined by (4.5) exists and is unique when the matrix is of full rank. When

the rank is not maximum the pseudoinverse does exist3 but it is not unique. This is a

major benefit as DF+ exists for non-square matrices, and at caustics where the rank of

DF and its inverse are not maximum.

The actual elements of DF are computed using the ray group velocity (3.48) and the

geodesic elements (updated every iteration) given by (3.61). This can be seen explicitly

by taking derivatives of (4.1) with respect to the ray parameters ς,

DF = ∂ς(x(ς)− xR) = ∂ςx(ς). (4.6)

This procedure is worth highlighting because iterative mechanisms are not limited by

expansions based on ς. Equation (4.6) also serves to illustrate the dual purpose of the

geodesic elements: calculating amplitude and roots of (4.1). Additionally, there is no loss

of generality with the consideration of only real rays in this section; the pseudoinverse

iteration is readily extendable to the complex rays determined in the next section.

4.3 Continuation techniques and caustics

For most calculations interest is not focused at just a point, but a long a curve generated

by some monotonic scalar parameter within F, α say. Typically, α will be located in xR

so that solutions at xR(α) can be used to find solutions at a nearby point xR(α+ δα) =

xR + δxR. In this case α generates a receiver curve. As α is varied, bifurcation curves

ΓBς (α) in all the ray parameters are generated as guaranteed by the implicit function

theorem [111]. In fact all parameters - including α- can be written as functions of

arclength sarc along each curve, though α is still the controlling variable. In the following

sections two methods are discussed for the continuation of rays along receiver curves: one

is a simple natural parameter continuation, the other a more involved predictor-corrector

method.

3The solution minimizes the quantity ||DF(ς(k) − ς(k+1))− F|| in the least squares sense.
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4.3.1 Natural parameter continuation

Natural parameter continuation is the simplest continuation possible as solutions from

one point (completed after k iterations say) are used as inputs for the first iteration of a

nearby point, i.e., ς(k)(α)→ ς(0)(α+δα). Convergence is likely so long as the bifurcation

path itself is not experiencing rapid deviations: such behaviour may be expected at a

bifurcation. If δα is too large then there is also the possibility of the algorithm switching

to other branches, which can be a considerable nuisance.

4.3.2 Predictor-corrector (PC) method

The predictor-corrector (PC) method uses the tangent of the bifurcation branch corre-

sponding to α, to predict the point at the nearby point α + δα. The predicted point

is then corrected using the system (4.3) to iterate until convergence. This procedure

is analogous to that used in numerical methods for computing odes: however, the con-

vergence of the corrector is of course superlinear and thus much faster than the odes’

analogy. The predictor-corrector method forms the basis of Hanyga’s [50] Point-to-Curve

(P2C) for homogenous no-flow problems. The BVP has already been expressed in (4.1)

but for future use it is stated again as,

F(ς,q(α)) = 0, (4.7)

where the vector q = {xs,xR, . . .} contains the fixed input data (into one particular iter-

ation), which can later be used to generalise the receiver curve, i.e., α can parameterise

any element(s) of q. We also introduce the vector Z = {ς, α} for tangent calculation.

To calculate the tangent vector one needs to find the vector t ∈ CnD+1 that satisfies,

DZF · Ż = DZF · t = 0, orthogonality, (4.8)

||t|| = 1, unit norm, (4.9)

det (DZF∗, t) > 0, orientation, (4.10)

which is simply the definition of the tangent space with normed tangent along the

bifurcation curves at the point α. The Frechet derivative denoted by DZ now denotes

taking derivatives with respect to the variables in Z and · denotes differentiation w.r.t.

sarc. In this instance sarc is used purely to illicit the tangent vector. The only addition

work required here is the calculation of ∂αxR(α) in DZF. When α corresponds to an

observer variable (as in this thesis), this differentiation can be achieved analytically.
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At regular points, e.g., away from caustics the next point on the curve is predicted by

taking an Euler step,

Zi+1 = Zi + hstept, (4.11)

where hstep is the step size. Because Z contains α this means that (4.11) will predict

a new α. If the user wants to control αi+1 then the step size can be chosen using

hstep = (αi+1 − αi)/tN+1.

Non-trivial solutions to Eqs. (4.8)-(4.10) can be found using a QR decomposition that

is outlined in Appendix C. Other methods of calculating the tangent based on a matrix

decomposition are available, see for e.g., Keller [52]. Tangent based prediction is clearly

more computationally intensive than the natural parameter continuation discussed in

the previous section, but it has two benefits. First, a larger step size can be taken along

the bifurcation branch, second rapid changes in the branch that are not due to caustics

can be predicted.

4.3.3 Continuation at caustics: bifurcation formulae

At caustics two or more bifurcation paths coalesce and the implicit function theorem

cannot be called upon to continue solutions through the caustics: the caustic is a natural

boundary for our algorithm. Numerically the Newton method can be continued but the

jumps in ray parameters often leads to failure. In this section standard bifurcation

methods are examined and the algorithm for the simplest cases of continuation are

presented.

It so happens that many problems in applied mathematics involving multiple solutions

can be reduced to a simpler systems of equations of the form,

Ji(%,Λ) = 0, i = 1, . . . , n, (4.12)

where % = {%1, . . . , %n}, % ∈ Cn are unknowns and Λ = {Λ1, . . . ,Λk}, Λ ∈ Rk the

bifurcation parameters. Study of these equation’s multiple solutions in % as Λ varies and

the bifurcation of these branches at certain critical Λ’s are well known (Golubitsky &

Schaeffer [151]). The concept behind the reduction above is the concept of equivalence4,

where two local forms j1, j2 have the same structure and are therefore expressible via

diffeomorphism by the same canonical form at the singularity Λ = 0. The equivalence

relation required here is contact equivalence,

j1(%,0) = h(%,0)j2(T (%,0),0), (4.13)

4Equivalence and its particular relations are key to the local procedures used in this thesis.
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where the two mappings j1, j2 : Rm → Rm, and T is a diffeormorphic function, and h a

smooth nonsingular matrix. Then the reduced function can be expressed as,

Ji(%,Λ) = H (%,Λ)U (T (%,Λ),S (Λ)), (4.14)

where U is normal form, H is a smooth matrix, and T and S are diffeomorphic

mappings.

Finding the appropriate normal and its unfolding is known as a recognition problem,

first, though, we need to be able to reduce the two-point problem (4.1) to the simpler

system (4.12). This can be acheived using the Liapunov-Schmidt reduction [151]. To do

this we need to introduce the four fundamental subspaces of a matrix L.

If L is an m×n matrix, with column vectors v1,v2, . . . ,vn and row vectors r1, r2, . . . , rm,

then the four fundamental subspaces of L are the following:

Subspaces of Cn

1. The nullspace/kernel of L is N (L) = {v ∈ Cn : Lv = 0}.
2. The rowspace of L is R(L∗) = span{r1, r2, . . . , rm}.

Subspaces of Cm

1. The left nullspace/cokernel of L is N (L∗) = {w ∈ Cm : L∗w = 0},
or {w ∈ Cm : w∗L = 0}.

2. The column space/range of L is R = span{v1,v2, . . . ,vn}.

In the above we can always make n = m by appending the tangent vector t of the

bifurcation branch being traversed up to the caustic so that DZFA = (DZF, t∗), which

has dimensions nD+1×nD+1. This can be achieved by appending scalar normalisation

(or pseudo-arclength constraint) to F to give FA (see for e.g., Keller [51]). Alternatively,

we can consider L as DF which has dimensions nD × nD.

In order for the nullspace to be non-trivial or dimension greater than one for square and

non-square matrices (m × n) respectively, L cannot have maximum rank. The extent

to which r 6= m, is characterised by the dimension of each of the spaces. For a square

matrix the determinant must be zero, otherwise the inverse of L exists and N (L) = 0.

The most important relationship between the subspaces is the rank-nullity theorem and

the equivalent for left-nullspace (m× n matrix);

r + dimN (L) = n, (4.15)

r + dimN (LT ) = m. (4.16)
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The basis found for the subspaces are linearly independent but not necessarily orthogo-

nal. An orthonormal basis can be created using a process such as Gram-Schmidt [150].

At a caustic the matrix DZF is degenerate and so has a null space of dimension greater

than one (the tangent at a regular point is the only element otherwise). The dimension

of these spaces depends on the corank ` of the singularity. The corank is related to the

rank, r, of the matrix via `+ r = nD where the size of the matrix DZF is nD × nD + 1.

If the rank of the matrix is Rank(DZF) = nD − ` then the rank-nullity theorem gives

(with L = DZF(ZC),

nD − `+ dimN (DZF(ZC)) = nD + 1⇒ dimN (DZF(ZC)) = 1 + `, (4.17)

nD − `+ dimN (DZFT (ZC)) = nD ⇒ dimN (DZFT (ZC)) = `, (4.18)

where C denotes the value for which the caustic occurs. If either DZFA or DF is used,

then both (4.17) and (4.18) yield dimN (L) = dimN (L∗) = `.

Using L = DF and its associated spaces,5 the Liapunov-Schmidt reduction theorem

then allows us to write the reduced functions Ji in terms of F as,

Ji(%,Λ) = 〈w∗i , φLS(ςC + %1v1 + . . .+ %`v`,Λ)〉, i = 1, . . . , `, (4.19)

φLS(v,Λ) = (I − E)F(v +W (v,Λ),Λ), (4.20)

where I is the identity matrix, and E = (I − w1w
∗
1) is the projection operator onto the

range space, and 〈· , ·〉 denotes an inner product.6 W is a vector that must be solved for

in order to determine all branches; derivatives of W must also be solved for.7

Now that a method for computing Ji has been found, we claim that in order to study

the bifurcation we can Taylor expand (which leads to an approximation rather than

exactness) Ji in % into an equivalent polynomial that mimics the normal form, given

that Ji obeys constraints of a recognition problem. This polynomial is intricately linked

to catastrophe theory (the subject of Chap. 5) and the stable canonical polynomials

found therein. Here we shall concentrate on the bifurcations at a fold caustic, and cusp

caustic on its line of symmetry, i.e., the pitchfork bifurcation, as these are the most

common real to complex bifurcations (i = 1, % = %1). The normal forms U (%,Λ) for

these bifurcations are %2 + Λ and %3 + %Λ, respectively. For these cases J1 is expanded

5Our work is then easily adaptable to Golubitsky & Schaeffer [151].
6This allows for a substantial simplification in notation as opposed to Einstein notation.
7The operator E annihilates all vectors orthogonal to w1.
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as,

J1(%,Λ) ≈


1
2J1,%%(0, 0)%2 + JΛΛ, Fold

1
6J1,%%%%

3 + 1
2J1,%Λ%Λ, Pitchfork.

(4.21)

with recognition problems given by (see [151]),

J1,Λ(0, 0) 6= 0,J1,%%(0, 0) 6= 0, Fold (4.22)

J1,Λ(0, 0) = 0,J1,%%(0, 0) = 0,J1,Λ%(0, 0) 6= 0,J1,%%%(0, 0) 6= 0. Pitchfork (4.23)

Clearly, in both cases derivatives of J1 are required, and their calculation in this scenario

is the most tedius aspect of the Liapunov-Schmidt method. In general for ` = 1, the

highest power of % in the Taylor expansion, and hence the germ, is %K+1 (for K+ 1 rays

coalescing) necessitating a maximum of K + 1 highest derivative in J1. Derivatives

of Ji are automatically passed on to φLS and its arguments; consequently implicit

differentiation typically leads to unwieldy formulae.

The full mechanics of the implicit differentiation are detailed in [151]. A few steps

are highlighted (with no loss of generality) here starting with the use of the Gâteaux

derivative,

(DkF)ς,Λ(v1, . . . , vk) =
∂

∂%1
· · · ∂

∂%k
F

(
ς +

k∑
i=1

%ivi,Λ

)∣∣∣∣∣
%1=···=%k=0

. (4.24)

For example for k = 2, (4.24) can be written,

(DkF)ς,Λ(v1, v2) =
n∑

i,j=1

∂2F

∂ςi∂ςj
(ς,Λ)v1iv2j . (4.25)

For the case ` = 1 it can then be shown that the first three derivatives of φLS evaluated

at the caustic (% = Λ = 0) are,

φLS% (0, 0) = 0,

φLS%% (0, 0) = (I − E)(D2F(v1, v1))

φLS%%%(0, 0) = (I − E)(3D2F(v1,W%%(0, 0)) +D3F(v1, v1, v1)),

φLSΛ (0, 0) = (I − E)FΛ(0, 0)),

φLSΛ% (0, 0) = (I − E)(DFΛ(v1) +D2F(v1,WΛ(0, 0))),

(4.26)
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since it can be shown that W%(0, 0) = 0. This gives the first three derivatives of J1(0, 0),

J1,%(0, 0) = 0,

J1,%%(0, 0) = 〈w∗1, D2F(v1, v1)〉,

J1,%%%(0, 0) = 〈w∗1, D3F(v1, v1, v1)− 3D2F(v1, (EL)−1ED2F(v1, v1))〉,

J1,Λ(0, 0) = 〈w∗1,FΛ〉,

J1,Λ%(0, 0) = 〈w∗1, DFΛ(v1)−D2F(v1, (EL)−1EFΛ)〉,

(4.27)

where W%%(0, 0) = −(EL)−1ED2F(v1, v1) has been determined.

Thus for the fold and pitckfork cases J1(%,Λ) = 0 can be solved in terms of Λ:

ς ≈ ςC +




√
−2JΛ(0,0)
J%%(0,0) Λ1/2v1,

−
√
−2JΛ(0,0)
J%%(0,0) Λ1/2v1,

Fold



√
3J%Λ(0,0)
J%%%(0,0) Λ1/2v1,

0,

−
√

3J%Λ(0,0)
J%%%(0,0) Λ1/2v1,

Cusp

. (4.28)

Equation (4.28) shows 2 and 3 distinct paths exist, sprouting from the fold and cusp caus-

tics respectively as Λ is increased.8 In each of these cases the complex paths (v1 ∈ RN for

these cases) depend on the sign of −2JΛ(0, 0)/J%%(0, 0)Λ and 3J%Λ(0, 0)/J%%%(0, 0)Λ.

When these quantities are negative this results in a complex path with tangent in imag-

inary space having the direction iv1 of the “rotated” real tangent.

Of course realistic computations mean that the algorithm will never be exactly at the

caustic. Therefore standard routines for computing nullspaces will not return the cor-

rect number as the rank of these near-caustic matrices are likely to be maximal. The

numerical method for approximating these spaces are shown in Appendix C for both

corank cases. Additionally, numerical approximations must be provided for the Fréchet

derivatives of F other than DF: these are also shown in Appendix C.

The down side to the Liapunov-Schmidt method is significantly increased number of

computations required to determine bifurcating branches. In order to determine the

directions of the bifurcating branches it is necessary to know the number of coalescing

rays a priori and this is not guaranteeable. However, in a large number of cases simpler

8Note that this expansion differs from that in Henderson [152] which is in terms of a small parameter,
though expansions are the same if one sets that small parameter to one.
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fold and cusp caustics prevail and it is not necessary to examine large numbers of coales-

cences. Nevertheless, there should be algorithms capable of tracking arbitrary numbers

of coalescences, particularly as this number is used to solve the determinancy problem

involved in the diagnosis of uniform functions.

4.3.4 Continuation at caustics: complex continuation

In the previous section the Liapunov-Schmidt method was used to find jump conditions

at a caustic. The main problem with this method is the increasingly complicated bifur-

cation formulae required to make computations. In attempt to bypass this and create

a simpler alternative algorithm that can be used with both the natural parameter and

predictor-corrector continuation methods, this section examines a novel complex contin-

uation method. Complex continuation itself is not novel in ray theory as it is widely used

with WKB solutions (see Bender & Orszag [58]). In the context of ray-tracing complex

continuation has been considered by both Chapman et al. [65] and Lustri [61], though

both of these cases yield soluble ray trajectories that are often no more complicated

than straight lines. In more complicated ray-tracing problems complex continuation

was hinted at by Thomson [37] though this was mainly as argument for the importance

of complex rays and to raise awareness of the consequent branch cuts coupling solutions

together at caustics. However, Thomson does not see this continuation as a means for

complex ray computation in general, and thus we consider a simple algorithm that is

novel for generic numerically computed ray trajectories on the proviso that the caustic is

stable. In the same way as the Liapunov-Schmidt expansions where based on canonical

polynomials, the complex continuation also demands that the roots ς each behave as

the root of a canonical polynomial: however, this dependence is implicit.

The method proceeds by identifying all rays satisfying (4.1) that coalesce at the caustic

point αC in α-space. It is assumed that the caustic appears as a point in α-space, i.e

xR(α) doesn’t cut a caustic surface tangentially, and that other caustics aren’t densely

packed so that coalescences of bifurcation curves have some finite separation in α.

Starting at a point α1 near the caustic, each coalescing ray solution can be analytically

continued to the other side of the caustic α2 by taking a path in complex α-space around

αC , so that xR ∈ C in (4.1). An example of two such paths is shown in Figure 4.1. The

most straightforward paths are half-loops such as Path 1 and Path 2, although the exact

path is arbitrary given sufficient distance from αC .

The continuation method has the further advantage in that returning to the starting

point α1 (e.g, Path 1 followed by the reverse of Path 2 in Figure 4.1) xR may have

passed smoothly onto another branch of the ray solution that wasn’t picked up in the
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ΑCΑ2 Α1

Path 1

Path 2

Α Î C

Figure 4.1: Continuation of rays from α1 around the caustic αC to α2 demonstrating
two equivalent paths. Where α2 < αC < α1.

S(α1)
S(α1)

S(α2)

S(α2)

Re(S)

0

Im
(S
)

(a) S(α) ∈ C, α = θ ∈ C

λ(α1), λ(α2)
λ(α1)

λ(α2)

λ(α1)

λ(α2)

Re(λ)

0
Im

(λ
)

(b) λ(α) ∈ C, α = f(θ,∆ϕ) ∈ C

Figure 4.2: Images of S and λ under the complex continuation of α about a caustic.
Colouring and markers α1,2 correspond to that of Fig. 4.1. (a) Phase about the fold
as the path wraps about αC 11⁄2 times, (b) λ about a pitchfork bif. with symmetry

breaking perturbation in ∆ϕ ∈ R.

initial searches. In fact if a new solution is recorded then this branch should be continued

around the caustic multiple times to generate the maximum number of new ray solutions

at both α1 and α2. Doing so increases the chances of providing the appropriate local

form to correct divergence at a caustic, since this relies upon identifying all coalescing

ray contributions at αC . This is a particular advantage compared to the Liapunov-

Schmidt method. Furthermore, the natural parameter continuation for rays looping

around the caustic is much smoother than a bifurcation analysis across the caustic

and thus proves suitable for connecting to complex branches where only a small sign-

independent imaginary perturbation is required when leaving α1.

Examples of complex continuation are shown in Fig. 4.2 for two common cases. The

first, Figure 4.2(a), shows the complex phase about the fold caustic as it wraps around

θC 11⁄2 times, smoothly transitioning to each complex branch. In this case we need only

use α = θ ∈ C to transition between the two branches. In the pitchfork case it is not
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possible to traverse all branches with loops in θ only. This is easy to see from (4.21) as

one root, ρ = 0, is isolated from the others. The other two roots can be calculated from

each other by rotating onto the other branch of Λ1/2. Thus it is necessary to have a cut

in the solution to pass smoothly from one branch to the other. In Figure 4.2(b) we have

used a symmetry breaking perturbation in ∆ϕ in order to pass onto each branch.

We end this section discussing the property of structural stability known as the conser-

vation rays. Put simply this means that whenever a caustic is crossed the number of

bifurcation paths, or roots of the polynomial, leading into the caustic must equal those

coming out, even if they are complex. Complex bifurcation curves, if they exist, must

then have a conjugate path so that the disappearance of real ray solutions across the

caustic will always be in multiples of 2.

4.4 Ray sums

While the continuation methods of the previous sections have allowed for the determi-

nation of as many ray contributions as possible, there is still the matter of summing the

rays. In the following we shall use the computation of the Green’s function component ĝ5

of Chapter 3 (pertinent as it relates to acoustic pressure) as a specific example, though

the method applies to other components in a similar manner.

The ray combination itself is trivial so long as the receiver is some distance away from

any caustics. The ray solution is simply the superposition of all N physical rays (ignoring

the role of Stokes multipliers for the mean time). For ĝ5 this reads,

ĝ5 =

N∑
n=1

A
(n)
0 eik0S(n)

, (4.29)

where any phase discontinuities that arise due to propagation through caustics are im-

plicit in the amplitudes A
(n)
0 . For real rays these discontinuities must equal −π/2, Berry

[38], so that numerical codes calculating (4.29) must have the correct square-root chosen

in (3.57).

The calculation of other Green’s function components, for example ĝ5i which is used

in (3.86) and related to ĝ5 via the operator Ai. Applying Ai to the ray sum in a

component-wise manner,

ĝ5i = Aiĝ5 =
N∑
n=1

A
(n)
i A

(n)
0 eik0S(n)

, (4.30)
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which can be used to calculate the conjugate,

ĝ∗5i = A ∗i ĝ
∗
5 =

N∑
n=1

A
(n)∗
i A

(n)∗
0 e−ik0S(n)∗

. (4.31)

The multiplication of the components ĝ∗5iĝ5j is also required in (3.86) and related inte-

grals,

ĝ∗5iĝ5j =

(
N∑
n=1

A
(n)∗
i A

(n)∗
0 e−ik0S(n)∗

)(
N∑
n=1

A
(n)
j A

(n)
0 eik0S(n)

)
, (4.32)

A simple component-wise multiplication of both brackets shows that the complex phase

of each contributing ray is not redundant, neither does conjugacy lead to exponentially

growing rays.

In this section we have assumed that a coherent sum is the correct way to combine

rays. A coherent sum allows for the rays to interfere in a way that may not be possible

in a turbulent medium, i.e., they may sum incoherently (absolute values), or perhaps

multiplicities do not exist. However, we have reduced the jet noise problem into a mean-

field Green’s function and a source function where multiplicities do exist, consequently

we must follow through with the mathematical programme devised so far and superpose

the acoustic solutions as per (4.29).

4.5 Linear-layer example

As an example of the work developed so far in this chapter, a simple 2D linear-layer

problem is considered. The linear-layer problem has been studied by several authors,

e.g., Thomson [37], Kravstov [63], Amodei et al. [122] due to the solubility of its ray

tracing equations, hence its inclusion here serves to demonstrate the algorithm so far

and illicit ray properties in a simple setting.

The linear-layer is a no-flow problem in which the normalised sound speed varies ac-

cording to a−2(x) = l1 − l2z, l2 > 0, where x1 → x and x2 → z. This leads to eikonal

and ray equations,

|p|2 − (l1 − l2z)2 = 0, (4.33)

dx

dτ
= px,

dz

dτ
= pz,

dpx
dτ

= 0,
dpz
dτ

= −1

2
l2,

dS

dτ
= l1 − l2z, (4.34)
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with solutions for the path and slowness given by,

x(τ) = xs + a−1
s τ cosµ, z(τ) = zs + a−1

s τ sinµ− 1

4
l2τ

2, (4.35)

px(τ) = a−1
s cosµ, pz(τ) = a−1

s sinµ− 1

2
l2τ, (4.36)

so that the geodesic and conjugate elements w.r.t µ are,

∂x

∂µ
= −a−1

s τ sinµ,
∂z

∂µ
= a−1

s τ cosµ, (4.37)

∂px
∂µ

= −a−1
s sinµ,

∂pz
∂µ

= a−1
s cosµ. (4.38)

In this simple case it is possible to invert these equations so that for a given receiver

position xR = {xR, zR} the desired ray parameters can be found analytically, thus

making it an ideal benchmark for the two-point boundary value problem. In this problem

there are only two rays (both real or complex) that propagate to a point. In the case of

real rays, these are labelled as direct (1) and indirect (2) - so called since a direct ray

arrives at a receiver point without touching the caustic, while the indirect propagates

through the caustic prior to arrival. In general this gives two propagation times τ1,2 and

firing parameters µ1,2 per receiver point,

τ1,2 =
2

l2

(
f 1/2
1 ∓ f 1/2

2

)
, sinµ1,2 =

x− xs
a−1
s τ1,2

, (4.39)

where f1,2 are defined as,

f1,2 =
1

2
(2l1 − l2(z + zs)± l2R) , R =

√
(x− xs)2 + (z − zs)2. (4.40)

Using Eqs. (4.37) to (4.40), it can be shown that the phase and amplitude for each ray

obey,

S(1,2) =
2

3l2

(
f 3/2
1 ∓ f 3/2

2

)
, A

(1)
0 =

a
−1/2
s

τ
1/2
1 (f1f2)1/4

, A
(2)
0 =

−ia
−1/2
s

τ
1/2
2 (f1f2)1/4

. (4.41)

Now defining the difference between the two phases as,

χsim = S(2) − S(1) =
4

3l2
f 3/2
2 , (4.42)

which is proportional to a quantity known as the singulant and will be investigated

further in the next chapter. At a caustic, the coalescence of two rays means that χsim = 0,
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Fold locallyDirect

Indirect exp. small

exp. large

-0.4 -0.83 Χsim
2�3 0.4

-0.5

R
eHΜ

L+
Im

HΜ
L

1
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Figure 4.3: Linear-layer computations for a point source at xs = {1, 1} (l1 = 1,
l2 = 0.5), (a) real part of ray field, caustic in black, (b) rays trajectories. Cyan,
real; red, exp. small; green, exp. large; black-dashed, similarity curve, (c) µ-bifurcation
diagram as a func. of χsim. Solid line, real solutions (correspond to cyan in (b)), dashed

line complex (correspond as in (b)).

and unsurprisingly the amplitudes which diverge there, are also a function of χsim, e.g.,

A
(1)
0 =

a
−1/2
s

τ
1/2
1 (f1f2)1/4

=
a
−1/2
s

τ
1/2
1 f 1/4

1 (3l2/4)1/6χ
1/6
sim

. (4.43)

Setting the singulant equal to zero then gives the implicit caustic equation,

χsim = 0 =⇒ 4a2
s(l1 − l2z)− l22(x− xs)2 = 0, (4.44)

which is the equation of a parabola. In fact, in this problem, setting χsim = constant

defines a parabola in general, making it an ideal similarity parameter.
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graphic projection.

Figure 4.4: Variations of phase and amplitude along various τ -paths (arrows indicate
increasing |τ |) for an observer in the shadow zone. Black, standard path; blue, devia-
tions. (a) invariance of complex phase at end points of τ -paths; (b) complex amplitudes
converge to A0(xR) but do not make loops in C; (c) amplitudes form closed loops in

C ∪ {∞}.

Given an implicit surface definition, e.g., χsim = constant then the equation of the

normal (scaled) to this surface is,

dx

dn
= ∂xχsim, n ∈ R, with x(0) : χsim(x) = 0, (4.45)

which has closed form solution,

z − z(0) =
2a−2

s

l2
ln

∣∣∣∣ x− xs
x(0)− xs

∣∣∣∣ . (4.46)

The results for a point source located at xs = {1, 1} are shown in Fig. 4.3. In the first

of these, Fig. 4.3(a), the real part of the ray field shows the divergence in the field in

the vicinity of the source, and the impact of the linear layer as waves are refracted away

from the upper half plane forming a shadow zone. This zone is of course separated from

the real ray zone by the caustic given by (4.44). In Fig. 4.3(b) the ray trajectories are
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shown making contributions to the field, in which real rays bend away from the upper

half-plane in a manner which is consistent with the increasing sound speed in that region.

It can be seen with the complex rays - calculated on a similarity curve (4.46) - that we

loose the intuitive feel that underlies the ability to explain the real ray refractive effects.

Along the standard integration path the ray trajectories leave the real plane completely,

and only return at the receiver points. The shape of the trajectory, albeit smooth, is

not predictable to the same extent as real rays.

Using the same colour-coding as Fig. 4.3(b), the ray parameter µ is shown along the

similarity curve. Importantly, the bifurcation of the ray parameter at χsim = 0 - the

caustic - behaves locally as the roots of quadratic, which is as expected. Away from

the caustic the behaviour deviates from the quadratic, but complex solutions are always

conjugate. This is the most the satisfactory aspect of the complex ray propagation: that

all quantities involved in the propagation form a conjugate pair when complex.

The last part of this study is devoted to the invariance of the ray solution (keeping ray

parameters fixed) at its end points τ = {0, τR} though the connecting τ -path may vary.

This property is important because it allows us to choose an arbitrary path, the straight

line (the standard path) being the simplest, between the end points without changing

the end result. A simple demonstration of this property considers the evaluation of any

ray quantity on τ -paths that first loop from τ = 0 to τR and then back again via another

path. The result should be that the image of the ray quantity under these paths forms a

closed loop in the complex plane. In Figure 4.4 we have plotted the complex phase and

amplitude as functions of various τ -paths formed as perturbations from the standard

path. It is clear from Fig. 4.4(a) that the complex phase behaves as expected; the

amplitude, however, does not (see Fig. 4.4(b)). This is because the source point of the

Green’s function is singular, so different paths start off at different “complex infinities”.

Fortunately, as the ray integration reaches τR each amplitude converges to A0(xR). If

one takes into account the singularity at source, then in the extended complex plane

C ∪ {∞}, Figure 4.4(c) shows that the amplitude paths are connected at ∞.

There is one last important feature that this invariance study shows, and this pertains

to the complex phase. Depending on the path, the phase may leave the source either

exponentially small or exponentially large, though the end result (as shown in Fig.

4.4(a)) is still exponentially small. This means that the ray evaluated along this path

will have a confined region of growth that does not affect the physical contribution at the

end point τR. Thus we must reinforce the notion that rays are selected at the receiver

rather than at the source. Otherwise, this could lead to the neglect of potentially useful

contributions.
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4.6 Winding numbers

The winding number method (WNM) presented here is an extension of the two-point ray-

tracing formulation. As a root finding algorithm it is much slower than a Newton method

applied to the two-point formulation of (4.1), and so serves as a back-up tool for finding,

or checking the existence of, solutions where two-point calculations are indecisive. One

example where this method may have utility is the calculation of roots for which large

jumps in the bifurcation paths occasionally coupled with the presence of easier-to-find

real roots makes their determination difficult.

4.6.1 Single variable case

In a single complex variable the winding number computation is based on the logarithmic

integral, Gamelin [153],

Resf=0

(
df

f

)
=

1

2πi

∮
γC

df

f
=

1

2πi

∮
γC

f ′(z)

f(z)
dz = Nz, (4.47)

where f(z) is a holomorphic function with a finite number of isolated zeros {z?} within

the complex contour γC . If these zeros are of multiplicity 1, then Nz is equal to the

number of zeros within the contour; otherwise it is the sum of the multiplicities of each

zero, i.e., Nz =
∑
µf (z?).

The winding number can be seen pictorially by considering the image of γC under f(z).

The number of zeros within γC is equal to the number of loops nW the image makes

around the origin,

nW (f(γC ), 0) :=
1

2π
[argf(z)]z∈γC

. (4.48)

An example of the image f(γC ) is shown in Fig. 4.5(b) for the function

f(z) = e3z + 20z cos z − 1 with contour γC = {z ∈ C : |z| = 2}, shown in Fig. 4.5(a).

The test radius shows number of times contour passes around origin.

The main assumption using (4.47) is that f(z) is indeed holomorphic and therefore

contains no singularities. When this result is extended to rays, it is conceivable that

one can find scenarios where the contour does encircle a singularity, for instance due to

those found in the analytic continuation of the mean flow profiles.9 The proof of (4.47)

consists of expressing the function f(z) = (z − z?)µfh(z) in local coordinates z, where

µf ∈ N+ is the multiplicity, h(z) is analytic and non-zero at z = z?. It is trivial to

show that the principal part of f ′(z)/f(z) = µf/(z−z?) is a meromorphic function with

9The formulae here can be extended to meromorphic functions in this case. E.g., Resf=0(df/f) =
Nz − Pz, Pz = # of poles enclosed.
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Figure 4.5: Example of (a) γC encircling a finite of zeros of f(z) = e3z + 20z cos z− 1
and (b) image f(γC ). In (b) the test radius drawn from the origin shows nW (f(γC ), 0).

µf the residue. This procedure can be applied to each zero of f(z), generating a local

residue, so that Nz may capture the number of zeros and their multiplicities.

In the following work the algorithm presented for calculating each z? assumes that the

multiplicity is equal to 1. As a consequence it is assumed that observers are not directly

at the caustic whereby two solutions bifurcate and µf (z?) > 1. The reason for doing so

is to present the WNM in its simplest form and in a form where it is most useful (here

at least). It should also be reinforced that the multiplicity of a zero µf is not the same

as the multiplicity of rays, N , discussed in the first half of this chapter.

The following method of computing the zeros can be found in Kravanja & Barel [154]:

however, this method has not been applied to two-point ray boundary value problems

before and is worthwhile repeating. The contour integral applies to the two-point bound-

ary problem in more than one way. First, there is the application to the components of

(4.1), i.e., to each component Fi of the BVP F = 0,

W
(1)
ij =

1

2πi

∮
γC

∂Fi(ς)/∂ςj
Fi(ς)

dςj

=
1

2πi

∮
γC

∂xi(ς)/∂ςj
Fi(ς)

dςj , i, j = 1, . . . , n.

(4.49)

and then F · F the scalar equivalent of F,

W
(2)
j =

1

2πi

∮
γC

∂(F · F)/∂ςj
F · F

dςj

=
1

πi

∮
γC

F · ∂x/∂ςj
F · F

dςj . j = 1, . . . , n.

(4.50)
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Note that an addition factor of 1/2 can be introduced into (4.50) due to dealing with a

squared function (e.g., has the form f2(z) = (z − z?)2µfh2(z) in (4.47)), i.e., one can

allow for the appearance of simple root by now having a multiplicity equal to 2. For

numerical reasons - and one of continuity - the integrals are kept as defined in (4.50).

Leaving the numerical computation of these integrals aside, it’s possible to calculate the

actual solutions in ς? (desired ray firing parameters are now denoted by ? ) for a specific

observer (xR has been suppressed above) by calculating the integrals,

W
(1,p)
ij ≡ 1

2πi

∮
γC

ςpj
∂xi(ς)/∂ςj

Fi(ς)
dςj ,

≡ (ς?ij,1)p + . . .+ (ς?
ij,W

(1)
ij

)p,

(4.51)

and likewise,

W
(2,p)
j =

1

πi

∮
γC

ςpj
F · ∂x/∂ςj

F · F
dςj ,

= (ς?ij,1)p + . . .+ (ς?
ij,W

(2)
ij

)p.

(4.52)

Where (ς?ij,k)
p represents the kth root ς?j of Fi to the power p ∈ {1, · · · ,W (O)

ij }, where

W
(O)
ij is shorthand for either W

(1)
ij or W

(2)
j . Consequently a W

(O)
ij ×W (O)

ij -size closed

system of sums of powers in the roots can be formed. As it stands this is clearly more

difficult to solve for each root with increasing number of roots within the contour. Of

course in this case the contour γC can be subdivided into contours about smaller domains

so that W
(O)
ij is reduced in each case. The preferred method of calculating the roots is

by using an associated polynomial [154] defined as,

P
W

(O)
ij

(ς) ≡
W

(O)
ij∏
n=1

(ς − ς?ij,n) = ςW
(O)
ij + σij,1ς

W
(O)
ij −1 + · · ·+ σ

ij,W
(O)
ij

, (4.53)

The connection between the coefficients σij,k of P
W

(O)
ij

and the sums of powers of roots

is described by the Newton identities,

W
(O,1)
ij + σij,1 = 0,

W
(O,2)
ij +W

(O,1)
ij σij,1 + 2σij,2 = 0,

...

W
(O,W

(O)
ij )

ij +W
(O,W

(O)
ij −1)

ij σij,1 + · · ·+W
(O,1)
ij σ

ij,W
(O)
ij −1

+W
(O)
ij σ

ij,W
(O)
ij

= 0.

(4.54)

In theory, the Newton identities are advantageous because the associated polynomial is

much easier to solve for than the original system. The disadvantage is that the Newton
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identities are potentially ill-conditioned for a large number of roots within the contour.

Ill-conditioning also occurs when zeros are close together and exist in multiplicity (see

for e.g., Wilkinson [155] & [156]). Usually the only solution to ill-conditioning is by

using very high-precision arithmetic.

The main difficulty with the component-wise integration W
(1)
ij is that each W

(1)
ij , for

the same parameter i, but different component j, may have a different value. This is

obvious if one does not use the same contour in each case, but there will exist solutions

that are roots of one particular component and not another. Consequently, some effort

must be made to syphon off spurious solutions. This is the most straightforward way

of determining the correct solutions; however, it is possible to determine whether two

components have a common root by using a resultant.

The resultant RN,M (Pn,N , Pm,M ) of two polynomials Pn,N and Pm,M ,

Pn,N (ς) = σn,0ς
N + · · ·+ σn,N−1ς + σn,N , Pm,M (ς) = σm,0ς

M + · · ·+ σm,M−1ς + σm,M ,

(4.55)

in a single variable ς (where in reference to (4.53): j is suppressed, n and m represent

different components of the vector, σn,0 = σm,0 = 1 is left unchanged for a general result;

N and M are W
(1)
nj and W

(1)
mj , respectively) is defined as,

RN,M (Pn,N , Pm,M ) = σMn,0σ
N
m,0

∏
`1,`2

(ς?in,`1 − ς
?
im,`2), `1 = 1, . . . , N ; `2 = 1, . . . ,M.

(4.56)

The resultant can be computed using Sylvester’s formula (Sturmfels [157]):

RN,M (Pn,N , Pm,M ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σn,N σn,N−1 · · · σn,0 0 · · · 0

0 σn,N σn,N−1 · · · · · · σn,0 0 · · · 0
...

0 0 · · · 0 σn,N σn,N−1 · · · σn,0

σm,M σm,M−1 · · · σm,1 σm,0 0 · · · 0

0 σm,M σm,M−1 · · · σm,0 · · · 0
...

0 · · · 0 σm,M σm,M−1 · · · σm,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(4.57)

It can be seen from (4.56) that RN,M = 0 whenever any roots from either polynomial are

equal. So a calculation of the resultant that is approximately zero means that a particular

region enclosed by γC contains a root of at least two components. The resultant is

most useful for determining whether to pursue a particular region for the location of
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Figure 4.6: Continuity of roots as τ(ε) deviates from τ?. In (a) τ1 branch of the
LLP problem generates a curve under epsilon with test points at δε = 0.1 intervals; (b)

shows the intersection of those curves at µ(τ?).

a root. The downside to the resultant is that, though it is generalisable to systems of

polynomials in multiple variables, there is no trivial extension to systems of polynomials

in one variable: such a case leads to resolvents (see for e.g., Gelfand et al. [158]) and a

system of criteria.

4.6.1.1 Application to the linear-layer problem: Part I

As a demonstration of the winding number theory, the preceding theory can be applied to

the linear-layer problem. The winding number integrals for the single ray firing variable

cases are easily written down in closed form (using the expressions for geodesic elements

from Eq. (3.61)). For example W
(1)
i1 where j = 1 signifies a search w.r.t. µ:

W
(1)
11 = − 1

2πi

∮
γC

τ sinµ

as(xs − xR) + τ cosµ
dµ

W
(1)
21 =

1

2πi

∮
γC

τ cosµ

as(zs − zR) + τ sinµ− 0.25asbτ2
dµ,

(4.58)

and W
(2)
1 ,

W
(2)
1 =

1

2πi

∮
γC

−τ sinµ+ (as(zs−zR)+τ sinµ−0.25asbτ2)τ cosµ
(as(xs−xR)+τ cosµ)

(as(xs − xR) + τ cosµ) + (as(zs−zR)+τ sinµ−0.25asbτ2)2

(as(xs−xR)+τ cosµ)

dµ, (4.59)

In the first case it can be seen that for an observer in the real ray region (such that

|µ| < π/2) that a contour γC = {µ ∈ C : |µ| = π/2}10 for a particular τ? (or an estimate

of) yields two roots in µ for W
(1)
11 and just one in W

(1)
21 . Taking a Taylor expansion

10In order to keep γC at the origin, −π < µ ≤ π.
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of sinµ and cosµ and solving for µ gives two approximations for the roots of W
(1)
11 as

µ ≈ ±21/2
√

1 + as(xs − xR)(τ?)−1 and one of W
(1)
21 as µ ≈ 0.25bτ?/(zs − zR).

So far, not much has been said about the accuracy of τ? above or any of the estimates

of ς?\{ς?j } implicit in the general single variable WNM. One might expect that τ? has

to be exact in order to have Nz 6= 0. This would be a stringent requirement and one

that wouldn’t be met due to the numerical nature of this problem. However, the zeros

of the components Fi are not isolated - a generic property of multiple variable problems

- so that even a poor estimate of ς?\{ς?j } will yield some root ς?j .

The second application of the WNM to the scalar equivalent function F · F makes one

improvement to the component case. That improvement is the elimination of roots that

zero one component but not others. However, the non-isolated nature of these roots

cannot be eliminated so estimates of ς?\{ς?j } can still lead to multiplicities in ς?j .

It was mentioned in the definition of W
(2)
j that no special procedure would be introduced

due to the squared nature of F · F. Numerical analysis shown in Fig. 4.6 shows that if

τ is perturbed from the exact value τ? root, then instead of a double root, two simple

roots exist that are conjugate pairs. As the exact value is reached these pairs coalesce

and coincide with the zero of F · ∂F/∂ςj (the real part of these conj. roots) yielding a

simple pole in the integral. If the squared definition is used (1/2 is factored in) then

the solution is the real part of these roots: however, this is not satisfactory since this

ignores the reality of two distinct simple poles in W
(2)
j .

It is natural to question whether these continued roots are indeed rays or pertain to

some physical phenomenon that should be investigated. The answer is that they aren’t,

because the desired rays have the property,

F1︸︷︷︸
0

+ . . .+ Fn︸︷︷︸
0

= 0, (4.60)

where as the extended roots only have the property,

F2
1 + . . .+ F2

n = 0, (4.61)

that is, all squared components of F conspire to yield a zero.

4.6.2 Multidimensional residue theorem

The main problem suffered by the single variable winding number algorithm is that

it requires guesses for all other ray parameters ς\{ςj}. Furthermore, the zeros of the

components Fi are not isolated and one must determine the intersection of the zero sets
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of each component to determine the overall root. One way of doing so was using the

resultant and its generalisations. The utility of this method is really to track down one

particular ray firing parameter whose bifurcation path may change rapidly while other

paths ΓBς\{ςj} behave smoothly.

What is preferable, and in some sense what we have been building up to, is a multi-

dimensional residue theorem, or more precisely, a multidimensional logarithmic residue

theorem. These exist but are more complicated, involving the integration of complex

differential forms (see for e.g., Tsikh [159]). Typically the study of residue theory and

its generalisations to higher dimensions should involve the theory of residue currents

(Tsikh & Yger [160]). However, here the starting point is the Grothendieck residue

integral (D’Angelo [161], Ajzenberg & Yuzhukov [162]),

Resf=0(df/f) =
1

(2πi)nD

∫
Γ

df1

f1
∧ df2

f2
∧ . . . ∧ dfnD

fnD
=

1

(2πi)nD

∫
Γ

df

f
, (4.62)

where f is a tuple of holomorphic functions f = (f1, . . . , fnD) such that f : (CnD , 0)→
(CnD , 0) and defines a complete intersection (i.e., a mapping of CnD to CnD). Here

Γ = Γf is a real nD-dimensional cycle defined by the equations |fj | = ε for sufficiently

small positive ε, and is oriented so that,11

d(arg(f1)) ∧ . . . ∧ d(arg(fnD)) > 0. (4.63)

The Grothendieck residue is a natural generalisation of the one-variable residue integral

(4.47) and can be generalised further by introducing local coordinates ς = (ς1, . . . , ςnD)

with isolated common root ς?, and holomorphic function h(ς) and Jacobian det(∂fi/∂ςj).

Resς?

(
h(f) det(∂fi/∂ςj)dς

f

)
=

1

(2πi)nD

∫
Γf

h(f)det(∂fi/∂ςj)dς1 ∧ . . . ∧ dςnD
f1 . . . fnD

=
∑
i

µf (ς?i )h(ς?i ),

(4.64)

where the sum represents the possible case of multiple isolated zeros ς?i of f present

within the cycles Γf , and µf (ς?i ) represents the multiplicity of the intersection of the

zero sets of f at ς?i .

The simplicity of the Cauchy kernel (df/f) in (4.62) makes it the natural candidate for

studying residues in several variables. A further useful feature of this kernel is that it is

universal: it does not depend on the domain. However this kernel involves the integration

over a set of real dimension nD and not over the whole (2nD− 1)-dimensional boundary

of a domain. Rather than using the Cauchy kernel another integral representation can

be used. This representation is known as the Bochner-Martinelli integral [162] and is

11Note that Eq. (4.62) is independent of ε.
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a universal representation formula for holomorphic functions via integration over the

whole boundary of a domain.

The Bochner-Martinelli kernel is defined in CnD as a differential form of bidegree (nD, nD − 1)

(compare with the Cauchy kernel which is an (nD, 0)-form),

Kf ≡
(−1)nD(nD−1)/2(nD − 1)!

(2πi)nD |f |2nD

nD∑
i=1

(−)i−1f̄i df [i]∧df =
(−1)nD(nD−1)/2(nD − 1)!

(2πi)nD |f |2nD
η(f̄)∧df ,

(4.65)

where,

η(f) ≡
nD∑
i=1

(−)i−1fi df [i], (4.66)

is known as the Leray form and df [i] = df1 ∧ . . .∧ dfi−1 ∧ dfi+1 ∧ . . .∧ dfnD . Where an

over bar denotes a complex conjugate and not a mean time derivative as in the remainder

of the thesis.12

A trivial example of the Bochner-Martinelli (BM) kernel is the reduction to the Cauchy

kernel df/2πif in one dimension when nD = 1. Another important property of the BM

kernel is that it is closed w.r.t. ∂̄ ≡
∑

(∂/∂ς̄i)dς̄i (but not exact in the complement of

the origin), so dKf = ∂̄Kf = 0.

Now, integrating the BM kernel multiplied by a holomorphic function h(ς) (in local

coordinates ς) over a (2nD − 1) boundary ∂D of a polydisk D ∈ CnD defined by,

D = D1 × · · · ×DnD , (4.67)

containing the isolated common zeros of f (not lying on ∂D)

Dk = {ς ∈ C : |ς − Ck| < Rk}, k = 1, . . . , nD, (4.68)

with C1, . . . , CnD ∈ C and R1, . . . , RnD > 0, gives,∫
∂D

h(ς) det(f(ς))Kf =
∑
i

µf (ς?i )h(ς?i ). (4.69)

Converting (4.69) to a problem relevant to the two-point problem is purely symbolic:

it is sufficient to rewrite fi as Fi (f by F), µf as µF (distinguishing between the firing

parameter µ and multiplicity of a root µF). The local coordinates are again chosen to be

the ray firing parameters s so that the Jacobian of the transformation, JT (we could use

det(DF)), is the determinant of the transpose of the ray Jacobian matrix, Jmat. Then

12This allows us to conform to a standard notation.
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it can be shown [154] that KF and η(F) can be written,

KF(ς) =
(−1)nD(nD−1)/2(nD − 1)!

(2πi)nD |F|2nD
η(F) ∧ dς, (4.70)

η(F) =

nD∑
i=1

ηi =

nD∑
i=1

(−)i−1JT[i]
(ς1, . . . , ςnD)dς [i], (4.71)

where JT[i]
(ς1, . . . , ςnD) is the Jacobian JT with ith column replaced with (F1, . . . ,FnD)T ,

JT[i]
≡

∣∣∣∣∣∣∣∣∣∣
∂F1
∂ς1

. . . ∂F1
∂ςi−1

F1
∂F1
∂ςi+1

. . . ∂F1
∂ςnD

...
...

...
...

...

∂FnD
∂ς1

. . .
∂FnD
∂ςi−1

FnD
∂FnD
∂ςi+1

. . .
∂FnD
∂ςnD

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∂x1
∂ς1

. . . ∂x1
∂ςi−1

F1
∂x1
∂ςi+1

. . . ∂x1
∂ςnD

...
...

...
...

...

∂xnD
∂ς1

. . .
∂xnD
∂ςi−1

FnD
∂xnD
∂ςi+1

. . .
∂xnD
∂ςnD

∣∣∣∣∣∣∣∣∣∣
.

(4.72)

It can then be shown that,

∫
∂D

h(ς)JT (ς)KF(ς)∧dς =
(−1)nD(nD−1)/2(nD − 1)!

(2πi)nD

nD∑
i=1

∫
∂D[i]

1

|F|2nD
h(ς)JT (ς)ηi(F)∧dς,

(4.73)

where the boundary ∂D is given by,

∂D = ∂D[1] ∪ · · · ∪ ∂D[nD], (4.74)

where,

∂D[k] ≡ D1 × . . .×Dk−1 × ∂Dk ×Dk+1 × · · · ×DnD , k = 1, . . . , nD. (4.75)

The decomposition of the boundary ∂D into a sum of integrals over the boundaries ∂D[k]

in (4.73) is permitted by Stokes theorem because an integral is closed when it does not

contain a root, i.e., for i 6= j then
∫
∂D[j]

JT (ς)KF(ς) ∧ dς is closed. Equation (4.73) can

be then treated as a sum of Riemann integrals by introducing polar coordinates as in

[154]. A generic coordinate is represented as,

ςk = ςk(θk) = Ck +Rke
2πiθk , for the boundary of ∂Dk (4.76)

ςl = ςl(rl, θl) = Ck + rlRle
2πiθl , for the domain of Dk (4.77)
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where rk, θk ∈ [0, 1]. Thus the differential form dς̄k ∧ dςk = 2(2πi)rkR
2
kdrk ∧ dθk. Then

it can be shown that,

(−1)nD(nD−1)/2(nD − 1)!

(2πi)nD

∫
∂D[k]

1

|F|2nD
h(ς)JT (ς)ηk(F) ∧ dς

= ρk

∫
[0,1]2nD−1

1

|F|2nD
h(ς)JT (ς)JT[i]

(ς)

×e2πiθkr1 · · · rk−1rk+1 · · · rnDdr1 . . . drk−1drk+1 . . . drnDdθ1 · · · dθnD ,
(4.78)

where ρk = 2nD−1(nD − 1)!R2
1 · · ·R2

k−1RkR
2
k+1 · · ·R2

nD
, should not be confused with

the density ρ and θk, Rk are distinct from the receiver polar angle θ and radius R,

respectively.

4.6.2.1 Application to the linear-layer problem: Part II

We can write the multidimensional winding number for the linear-layer problem in closed

form, where we set nD = 2 in the preceding theory.

We need JT[i]
for i = 1, 2,

JT[1]
=

∣∣∣∣∣∣F1 ∂τx

F2 ∂τz

∣∣∣∣∣∣ =

∆xa
−1
s cosµ−∆za

−1
s sinµ− 1

2
l2∆xτ −

1

4
l2τ

2a−1
s sinµ,

(4.79)

and,

JT[2]
=

∣∣∣∣∣∣∂µx F1

∂µz F2

∣∣∣∣∣∣ =

−a−1
s τ sinµ∆z − 2a−2

s τ2 sinµ cosµ+
1

4
l2τ

3a−1
s sinµ− a−1

s τ∆x cosµ,

(4.80)

where ∆x = xs − xR and ∆z = zs − zR.

F2
1 + F2

2 = R2 + 2a−1
s τ (∆x + ∆z) cosµ+ a−2

s τ2 − 1

2
∆zl2τ

2 − 1

2
l2τ

3a−1
s cosµ+

1

16
l22τ

4.

(4.81)

Substitution of these expressions into (4.78) allows the first numerical simulation to be

carried out.

Before we proceed with a numerical calculation it should be mentioned that the mul-

tidimensional integrals are extremely tricky to evaluate and their efficient computation
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Figure 4.7: Sparse grid and Monte-Carlo points in r1 and θ1 for the numerical in-
tegration of the LLP problem. These plots show O(104) points contained within a

wedge.

is still an open problem. There are several numerical approaches available for the com-

putation of (4.78), which broadly speaking, can be placed in two categories based upon

the sample points used: structured and unstructured/random grids. The purpose of

this section is not to compare integration methods ad nauseam but to effect the first

realisations of the WNM in the context of ray theory; for this reason we shall employ a

Monte-Carlo method which fits into the latter of the aforementioned categories. Such a

method has been shown to be a viable alternative to structured grid methods by Kalos

& Whitlock [163] and Fishman [164].

The Monte-Carlo method is stochastic and estimates a given integral by averaging inte-

grand values at uniformly distributed random points in the domain of integration. The

density of these points is increased until precision or accuracy goals are satisfied. Monte-

Carlo integration methods have advantages over other numerical integration methods

in a space of many dimensions. Their efficiencies relative to other methods increase

when the dimension of the problem increases. Monte Carlo integration remains almost

unchanged for higher dimensions, whilst quadrature formula become increasingly com-

plex. It is also suited for large structures and highly complex problems for which definite

integral formulation is not obvious and standard analytical techniques are ineffective.

A demonstration of typical points used in the computation is shown in Fig. 4.7 for a

wedge of the polar domain. Both of these point sets are for the r1, θ1 coordinates and

are projected into that plane for various r2 for the boundary integral with differential

form dr1dθ1dθ2. The first of these, Fig. 4.7(a), shows a structured grid created using the
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Figure 4.8: Calculation of ray parameters using multi-dim WNM. (a) µF, (b) µ?, (c)
τ?. Solid (real) and dashed (complex) lines, exact. ∗, WNM calculations. All curves
are Re(µF, ς

?) + Im(µF, ς
?) except grey curves which are functions of Arg(µF, ς

?) when
µF, ς

? ∈ C.

sparse grid method. The grouping of points shown reveals that there is little deviation

with changes in r2. This contrasts significantly with the Monte-Carlo points that when

projected into r1θ1-space cover the wedge, albeit non-uniformly. Though the sparse

grid is of course purposely sparse in its domain, other structured grids do not cover the

domain to the extent of the Monte-Carlo method.

The point sets in Figure 4.7 do not tell the full story of the structured vs. random grid

computation. Both subfigures show O(104) sets of points, though in the case of the

sparse grid this is only a fraction of O(106) points used in a typical computation of the

LLP. Consequently, the sparse grid method is more time consuming: another reason

why it is not the main tool for winding number computation here.
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The first computations of the multidimensional WNM for the LLP along the curve

−0.83χ
2/3
sim (as in Fig. 4.3(c)) are shown in Fig. 4.8. This figure shows both the approx-

imations to µF and ς? on both sides of the caustic. From Fig. 4.8(a) we see that the

approximation to the multiplicity of µF = 1 for real branches is relatively poor with

the complex multiplicities offering some improvement. Fortunately, this error appears

not to propagate through into the ς? calculation stage, where both real and complex

solutions of ς? match the exact solutions well.

Despite the success of these results, there are a several issues with the WNM. The first is

identifiable from Fig. 4.8 and is specific to this computation. This concerns the caustic

point at χsim = 0 and the absence of a computation there. This is due to a large error

that creeps into the result as the caustic is neared, rendering the method unintelligible.

The second issue relates to the implementation of the algorithm in Appendix C.4 when

µF is not an integer. In this scenario the multiplicity is rounded to the closest integer

[Re(µF)], where [·] is the nearest integer function. This means WM,0
nD is interpreted as

[Re(N)] when considering the number of moments h(ςnD) = ςpnD , otherwise WM,0
nD is

left as calculated by the winding number integrals, for instance when it is used in the

matrix (C.29).

The final issue relates to the generality of the current algorithm. Unfortunately, the

algorithm presented here is not readily available for the numerical problems that are

found in jet noise, where the ray paths cannot be found in closed form. A big difference

between the LLP and jet noise problems is that the LLP has no singularities in its

analytic continuation whereas parallel shear flow problems typically contain singularities

in complex space due to the exponential behaviour of the shear layer. The theory in this

chapter doesn’t allow for such singularities, though it is plausible that the differential

forms used could be extended to allow for such cases.

4.7 Conclusion

In this chapter the problem of ray multiplicities has been addressed. This was achieved

by introducing a two-point boundary value problem delimited by the ray ends at the

source and receiver. Proceeding by firing a distribution of real test rays, an equivalent

iterative system was used to locate all real rays that propagate to a desired receiver

in a real ray illuminated region. The effectiveness of this algorithm can be enhanced

by using a continuation method to generate bifurcation curves as the receiver curve

varies. At caustics the continuation methods fail and so additional apparatus must

be introduced: two distinct methods were considered. The first, based on a Liapunov-

Schmidt reduction, provides jump conditions to continue through the caustic; the second,
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a complex continuation method that draws from WKB theory, bypasses the caustic.

The latter is favoured more in this thesis due to its ease of use and generality. The

critical point of this chapter, and indeed this thesis, is that the caustics encountered are

stable. Thus the ray parameters behave as roots of polynomials around, and through,

the caustic. It will be shown that these polynomials - not explictly stated in full so far

- are the derivatives of the catastrophe functions used in the next chapter.

In the final part of this chapter the two-point BVP was used to provide an extension of

the root finding theory by tying together the ray and winding number theories. Though

this method does not serve as a viable engineering method, i.e., it would not form the

centrepiece of an AA solver, its presence here is not gratuitous. It is foreseeable that

with more work, for example, extension to meromorphic functions, the method could

be used as an investigative tool to provide the first approximations to, and proof of

existence of, hard-to-find complex solutions.





Chapter 5

Uniform Functions and

Catastrophe Theory

5.1 Introduction

In previous chapters ray solutions where developed according to a generic moving media

framework providing a quick and efficient method of calculating both acoustic pressure,

and correlation integrals and their Fourier transforms. However, ray solutions aren’t a

free lunch: several ray deficiencies exist that can sufficiently undermine the ray calcula-

tion. Fortunately, the number of deficiencies are reduced significantly when the solution

is in free space, and aside from blow-ups near the source, the coalescence of multiple

rays at a stable caustic remains the only cause for singularity. The appearance of stable

caustics engenders a “live now, pay later” nature into the ray solver: in Chapter 4 the

code was the beneficiary as the caustic was used as a stable springboard into the complex

plane; now the singularity in amplitude cannot be ignored and must be corrected for

realistic jet noise predictions.

The contents of this chapter are concerned with providing uniform solutions whilst still

exploiting the k0 →∞ limit of the field. The first section introduces catastrophe theory

as a means of classifying the caustic using the corank and codimension of the singu-

larity to determine the appropriate catastrophe germ. This is effected using elements

of Chapter 4 where the connection between catastrophe and bifurcation theory is high-

lighted to elucidate the ray solvers recognition ability. The second section introduces

the diffraction catastrophes which are the building blocks of the uniform method. In the

third section the high-frequency field is expanded in terms of the diffraction catastrophes

leading to a uniform asymptotic sequence valid across the relevant caustic. Methods of

computing the mappings to diffraction catastrophes are discussed. In the final section we

105
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use Dingle’s singulant to identify and discuss the cross-over from ray to uniform fields.

The singulant is also used to evaluate the catastrophe identification via bifurcation path

method as the latter is restricted to the study of single parameter families.

5.2 Catastrophe theory

Catastrophe theory is a mathematical program that deals with the local behaviour of

functions and how they change discontinuously under smooth changes in control vari-

ables. Catastrophe theory is far reaching and its use here is just one application of

many. The aim of using catastrophe theory as opposed to other methods e.g., Maslov

[88], Gaussian beams [94], coherent states [95], is that very simple computational algo-

rithms can be effected once catastrophe theory is linked to the bifurcation analysis of

Chapter 4.

5.2.1 Morse points and the Thom Splitting Lemma

Integral to the study of catastrophe is the study of critical points of function f =

f(x1, x2, . . . , xn), i.e., points at which ∂xif = 0. The stability of a critical point depends

on the Hessian matrix ∂2
xixjf ; if det(∂2

xixjf) 6= 0 then Morse theory (Gilmore [111])

guarantees that the under a smooth change in variables (to yi say) f can be written

locally as a quadratic form (neglecting higher order terms),

f ≈
n∑
i=1

λiy
2
i , (5.1)

or, absorbing the eigenvalues, as,

f ≈ −y2
1 − · · · − y2

i + y2
i+1 + · · ·+−y2

n. (5.2)

In this thesis interest is at points that are non-Morse critical points and cannot be written

locally as (5.2). Non-morse points or degenerate points are those for which det(∂2
xixjf) =

0. Cases such as this may arise when the function f ’s eigenvalues, functions of control

parameters ξ = {ξ1, . . . , ξk}, disappear at critical points. Catastrophe theory allows the

study of these cases by using the Thom Splitting Lemma to split f into a non-Morse

and Morse part:

f ≈ fNM (y1(ξ), . . . , y`(ξ); ξ) +

n∑
j=`+1

λj(ξ)y
2
j (x), (5.3)
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where ` is the number of degenerate eigenvalues and fNM is the non-Morse part. The

number of degenerate eignevalues ` is equal to the corank of the Hessian matrix ∂2
xixjf so

that corank (number of degenerate rows) in addition to rank (number of non-degenerate

rows) equals n. The structural instability in f is thus confined to the “essential” variables

y1, y2, . . . , y`, and the remaining “inessential” variables y`+1, . . . , yn may be ignored.

5.2.2 Stable forms and codimension

The Splitting Lemma in (5.3) makes no mention of the form fNM takes. In order to

provide a local form the Thom Theorem (Thom [98, 99]) can be used. This theorem

guarantees the existence of a smooth change of variables so f can be written,

f ≈ CG(`) +

n∑
j=`+1

λj(ξ)y
2
j (x), (5.4)

where CG(`) is the catastrophe germ and is a multivariate polynomial. The germ de-

pends on the number of essential variables, `, as that decides the number of state vari-

ables in the germ. Thom proposed seven qualitatively different types of elementary

catastrophe germ shown in Table 5.1,

The catastrophe germs are valid only at the non-Morse points and so are unstable in

the presence of perturbations. Consequently, changes in the control variables promote

discontinuities in the behaviour of f . For example, the number of non-zero eigenvalues

may change with ξ leading to an unwrapping or unfolding of degeneracy into degenerate

points of a simpler nature Therefore a perturbation term that describes the unfolding

of the degeneracy, which may include other “lesser” degenerate points in ξ must be

included. The addition of the perturbation Pert(`,K) (Table 5.1) to the catastrophe

germ leads to the catastrophe function, Cat(`,K). The perturbation terms are also

polynomials, though of a lesser degree than the germ. The control variables ξ are

also expressed explicitly and simply as the coefficients of the polynomial. The number

of these coefficients K is known as the codimension and are the minimum number of

control variables that describe the unfolding of the singularity. In this thesis, the control

variables are assumed to be smooth functions of the receiver coordinates when tracking

the rays. We also assume that all cases K ≤ 4 are sufficient to describe the phenomena

found in this thesis.

The local behaviour of f is finally described by the stable approximation,

f ≈ Cat(`,K) +

n∑
j=`+1

λj(ξ)y
2
j (x). (5.5)
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Corank Codim.
Catastrophe function, Cat(`,K) Name of catastrophe

` K CG(`) Pert(`,K) Symbol Thom

1 1 t3 ξ1t Φ1 fold

1 2 t4 ξ2t
2 + ξ1t Φ2 cusp

1 3 t5 ξ3t
3 + ξ2t

2 + ξ1t Φ3 swallowtail

1 4 t6 ξ4t
4 + ξ3t

3 + ξ2t
2 + ξ1t Φ4 butterfly

2 3 s3 − 3st2 ξ1,2(s2 + t2) + ξ1,1t+ ξ2,1s Φ(E) elliptic

2 3 s3 + t3 ξ1,2st+ ξ1,1t+ ξ2,1s Φ(H) hyperbolic

2 4 t2s+ s4 ξ1,2t
2 + ξ2,2s

2 + ξ1,1t+ ξ2,1s Φ(P ) parabolic

Table 5.1: Table of catastrophe functions with classifications in terms of corank and
codimension.

The seven catastrophe functions along with moniker are shown in Table 5.1. A key point

about (5.5) is that two functions f1, f2 both with the same expansion are right-equivalent

as they can be related by,

f1(s, t) = f2(CG(`)(s, t)) + const., (5.6)

which is critical for the existence integrals treated in §5.5. This compares to the contact

equivalence shown in Equation (4.13) of Chapter 4 which has no constant.

5.3 Canonical functions and diffraction catastrophes

The canonical functions along with the closely related diffraction catastrophes are the

building blocks of the uniform method. The canonical functions, Ψ, defined as in Berry

[38] and Berry & Howls [113], are split into two families depending on the corank or

number of state variables in the catastrophe function (from now on denoted by Φ as in

Table 5.1). The first family is the cupsoids having one state variable, t;

ΨK(ξ) =

∫ ∞
−∞

eiΦK(t; ξ) dt, 1 ≤ K ≤ 4. (5.7)

The second family is the umbilics with two state variables t, s;

Ψ(E,H,P )(ξ) =

∫ ∞
−∞

∫ ∞
−∞

eiΦ(E,H,P )(s, t; ξ) ds dt. (5.8)

The diffraction catastrophes are then defined similarly. For the cuspoid diffraction catas-

trophes,

Ψ̃K(ξ) = k
1/2
0

∫ ∞
−∞

eik0Φ̃K(ξ) dt, 1 ≤ K ≤ 4, (5.9)
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where Φ̃K denotes a catastrophe function with germ (K+2)−1tK+2 replacing that given

in Table 5.1.1 The umbilics follow suit being defined as,

Ψ̃(E,H,P ) = k0

∫ ∞
−∞

∫ ∞
−∞

eik0Φ(E,H,P )(s, t; ξ) ds dt, (5.10)

where Φ(E,H,P ) are unchanged from Table 5.1.

Fortunately, the diffraction catastrophes can be then expressed in terms of the canonical

functions relatively painlessly. For example, the cuspoids all have the relationship,

Ψ̃K(ξ) = k
1/2
0

(
k0

K + 2

)− 1
K+2

ΨK(ξ̃), (5.11)

where ξ̃n = ξnk
1− n

K+2

0 (K+2)
1

K+2 , n = 1, . . . ,K. The umbilics on the other hand must

be separated into two cases:

The elliptic and hyperbolic umbilics via,

Ψ̃(E,H)(ξ) = k
1/3
0

∫ ∞
−∞

∫ ∞
−∞

eiΦ(E,H)(s, t; ξ̃) dsdt, (5.12)

where,

ξ̃1,2 = ξ1,2k
1/3
0 , ξ̃i,1 = ξi,1k

2/3
0 , (5.13)

and the parabolic umbillic via,

Ψ̃(P )(ξ) = k
3/8
0

∫ ∞
−∞

∫ ∞
−∞

eiΦ(P )(s, t; ξ̃) ds dt, (5.14)

where,

ξ̃1,1 = ξ1,1k
5/8
0 , ξ̃1,2 = ξ1,2k

1/4
0 , ξ̃2,1 = ξ2,1k

3/4
0 , ξ̃2,2 = ξ2,2k

1/2
0 . (5.15)

These relations are important because the mappings are best described in diffraction

catastrophes, but the frequency independent basis, i.e., the canonical functions are those

actually computed. As can be seen for both corank cases, the general form of the

diffraction catastrophes in terms of canonical functions is through wavenumber scaling.

The scalings of both the integrals and control variables have particular importance for

understanding the physics of the catastrophes. The general form is,

Ψ̃(ξ) = kβ
∗

0 Ψ(k
σ∗j
0 ξj). (5.16)

1This latter transformation is a convenience whose benefits will be apparent in the mapping process.
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Here β∗ is the singularity index and measures the increased intensity at a caustic. The

scalings σ∗j measure the fringe spacings of the diffraction catastrophe in each jth control

direction.

5.3.1 Computation, visualisation and singularity structures

The computation of the canonical functions is integral to the uniform method. There

are two popular approaches to catastrophe computation: first, computation may be

proceed directly from the integral, or, in the case of the cuspoids, from a system of

partial differential equations. The pde method is due to Connor et al. [123] and is not

pursued further here due to the large numerical error that often results when numerical

errors excite exponentially large solutions thus polluting the results. The second method

is from the integral itself: one can either choose a direct method e.g., a deformed contour

or finite difference scheme, say, or otherwise a hybrid method can be used with a Taylor

expansion of the function near its caustic structures matched with a steepest descents

evaluation away from the caustic. This last approach may seem appealing, but Taylor

expansions converge slowly and matching with a saddle expansion is cumbersome. The

deformation of contour approach is preferred here. It is perhaps the most common

method of computation and has already been used by several authors, for example

Connor et al. [125], Kirk et al. [126]. For the cuspoids contour deformation is simple

as integration is one dimensional and the regions of decay just off the real axis are

determined by the catastrophe germ and are independent of control variables. The

umbilics are best calculated by an alternate one dimensional integral representation, for

example the following for the elliptic and hyperbolic umbilics is given by Berry & Howls

[113],

Ψ(E)(ξ) = 2

√
π

3
ei( 4

27
ξ3
1,2+ 1

3
ξ2,1ξ1,2−π4 )

∫ ∞eπi/12

∞e−7πi/12

e(u6+2ξ1,2u4+(ξ2
1,2+ξ2,1)u2+

ξ21,1

12u2 ) du,

Ψ(H)(ξ) = 4

√
π

6
ei( 1

27
ξ3
1,2+ 1

6
ξ1,2(ξ1,1+ξ2,1)+ 1

4
π)

∫ ∞eπi/12

∞e5πi/12

ei(2u6+2ξ1,2u4+( 1
2
ξ2
1,2+ξ2,1+ξ1,1)u2−

(ξ1,1−ξ2,1)2

24u2 ) du,

(5.17)

where the contours link up the valleys at infinity avoiding the essential singularity at

the origin.

Here we consider the computation of these integrals for real control variables. The

integrals are meaningful for complex control variables, but for the problems consider

here, real observer variables map only to real control variables. In terms of applying the

results of the previous section, it is sufficient to compute each Ψ as a function of ξ, and

then apply the mapping ξj → k
σ∗j
0 ξj to compute (5.16).
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0

Ξ1

Ξ2

(a) Airy function (b) Cusp singularities

(c) Pearcey amplitude

Phase
Colours

(d) Pearcey phase

Figure 5.1: Examples of corank 1 canonical functions and bifurcation sets: (a) Ψ1

via the Airy function; (b)-(d) Ψ2 = Pe.

In addition to the computations, it important to understand the role played by the

singularity structure of each function. We know that the singularity structure is the locus

of points for which the Hessian ∂2
ttΦ∂

2
ssΦ− (∂2

stΦ)2 is zero, and that this set increases in

complexity with ` and K. These singularity sets are characterised by the coalescence of

two or more roots of the catastrophe function’s derivative(s). Each catastrophe function

Φ contains the point ξ = 0 where all K + 1 roots coalesce, formed by the union of

lower order coalescences/singularities also belonging to Φ. The number of parameters

needed to unfold the singularity completely is equal to the codimension K, and is thus

the dimension of the singularity surface described by K equations. For the canonical

functions considered in Table 5.1 unfolding decomposes the singularity into fold and

cusp singularities only. Singularity sets are important to understand and visualise as

they are coincident with the caustics present in high-frequency fields.

In order to demonstrate what can be expected from corank 1 canonical functions,

Figure 5.1 shows the fold and cusp canonical functions with the singularity structure

for the latter. Visualisations of these functions is arguably more important than others

due to their prevalence in the unfolding of K ≥ 3 singularities. The fold function which
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is the simplest of all the canonical functions considered is shown in Fig. 5.1(a). It is

has a singularity set consisting of just one point, ξ1 = 0. It is expressible in terms of

the Airy function and is therefore the easiest to compute as most computer language

standards have routines for their computation.2

The cusp or Pearcey function, Pe,3 is plotted in Figs. 5.1(c) (amplitude) and Figs. 5.1(d)

(phase). It is more typical of canonical functions than the fold function as it is complex

valued and not real. Its singularity structure is illustrated in Fig. 5.1(b) with cusp point

at ξ = 0 which unfolds either side in the fold caustic. This singularity set is revisited in

the next section.

To illustrate typical behaviour of corank 2 canonical functions, the hyperbolic umbilic

Ψ(H) is shown in Fig. 5.2. Canonical functions of codimension greater than 2 must be

visualised in terms of cross sections with one or more control variables are held constant.

Figures 5.2(c), 5.2(e), 5.2(g) and 5.2(d), 5.2(f), 5.2(h) and show the amplitude and phase

respectively, for constant values of ξ1,2 = 0, 1, 3. The corresponding singularity structure

is shown in Fig. 5.2(a) formed by the union of a fold and cusp sheet. It should be pointed

out that the cusp sheet decomposes into a fold away from rib ξ2,1 = ξ1,1, so most of

what can be seen will contain a fold. Cross-sections (constant ξ1,2) of this structure are

shown in Fig. 5.2(b), depicting the coalescence of the fold and cusp sheets. On ξ1,2 = 0

the bifurcation set consists of cusp line with 3 coalescences, while the point ξ = 0 has

K + 1 = 4 coalescing roots.

A general feature that has become apparent is that the majority of the bifurcation set

is controlled locally by a fold or a cusp. These diffraction patterns can be seen in Ψ(H)

away from the surface ξ1,2, for example compare Figs. 5.1(c) and 5.2(g). Even though

only the hyperbolic umbilic has been visualised out of three possible corank 2 functions,

it is possible to conclude that away from the highest order bifurcations that organise

the complete structure, the bifurcation set is controlled by a lower order fold or cusp

function.

2The relationship is in fact Ψ1(ξ1) = (2π/31/3)Ai(ξ1/3
1/3).

3Equation (5.7) with K = 2 defines the Pearcey function, Pe.
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(a) Bifurcation sets (c) |Ψ(H)(ξ1,1, ξ2,1, 0)| (e) |Ψ(H)(ξ1,1, ξ2,1, 1)| (g) |Ψ(H)(ξ1,1, ξ2,1, 3)|

(b) Bif. sets for ξ1,2 = 0, 1, 3. Fold
sheet blue shades, cusp sheet red
shades, black line maximum coales-
cence

Phase
Colours

(d) arg
(
Ψ(H)(ξ1,1, ξ2,1, 0)

)
(f) arg

(
Ψ(H)(ξ1,1, ξ2,1, 1)

)
(h) arg

(
Ψ(H)(ξ1,1, ξ2,1, 3)

)

Figure 5.2: Magnitude, phase and bifurcation sets of Ψ(H)(ξ). Figure (a) shows the bifurcation sets as union of fold and cusp sheets; (b) shows
constant z cross sections of bifurcation sets as, coalescing at z = 0. Figures (c)-(h) ξ1,2 = 0, 1, 3 cross-sections: (c), (e), (f), magnitude; (d), (f), (h)

phase. Use of the variables ξ2,1 + ξ1,1 and ξ2,1 − ξ1,1 is for symmetry purposes.
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5.4 Catastrophe and bifurcation theory

The caustic classification problem is aided greatly by the relationship between bifurcation

theory and catastrophe theory. Strictly speaking, one must distinguish between three

theories: catastrophe theory, singularity theory, and bifurcation theory. While catastro-

phe theory considers the local structure of critical points of f , singularity theory studies

the zeros of mappings J : Rn → Rn, whilst bifurcation theory studies the unfolding

of these germs (and their roots) via distinguished parameters, i.e., J : Rn × Rm → Rn.

As discussed in the previous section, the critical points of f are zeros of ∂xif , hence the

pictures generated by catastrophe theory are in the same singularity theory category.

This is an important connection as initially the equivalence relations found in the two

theories are different (see Eqs. (5.6) and (4.13)).

The connection between the two for the case of corank 1 bifurcations/catastrophes is

highlighted via the path formulation [151]. This formulation aids us in the following

way: it demonstrates the occurrence of bifurcations as one cuts the singularity sur-

face of a cuspoid; justifies the focus on fold and pitchfork bifurcations as higher-order

catastrophes decompose into such cases under path perturbations; raises awareness of

classifying caustics using one parameter in the presence of a higher codimension caustic.

We consider the expansion of the Liapunov-Schmidt (see Eq. (4.14), Chap. 4) reduced

function with k + 1-parameters Λ = {Λctl,Λ1, . . . ,Λk} expanded up to the power tK+1

(we will use %→ t to switch notation from that of Chap. 4 to that of the §5.3),

J (t,Λctl,Λ
c) =

H (t,Λctl,Λ
c)(T K+1(t,Λctl,Λ

c) +AK−1(Λctl,Λ
c)T K−1(t,Λctl,Λ

c) + . . .+A0(Λctl,Λ
c)),

(5.18)

where Λctl is variable and controls the bifurcation, and Λc = Λ\{Λctl} are kept constant.

The canonical form of the bifurcation is,

tK+1 +AK−1(Λctl,Λ
c)tK−1 + . . .+A0(Λctl,Λ

c), (5.19)

thus identifying a bifurcation problem with highest power K + 1 and a path in K-

dimensional parameter space of the universal unfolding of tK+1 given by,

Λctl → {A0(Λctl,Λ
c), A1(Λctl,Λ

c), . . . , AK−1(Λctl,Λ
c)}. (5.20)

In other words, the unfolding of any bifurcation problem with corank 1 may be identified

with a parameterised family of paths through the universal unfolding of the cuspoid.
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Figure 5.3: Path formulation showing bifurcations as paths on cusp surface: red,
pitchfork; purple, perturbed pitchfork showing fold; blue, hysteresis, Λ1 = 0; black,

example of winged cusp, Λ1 = Λ2 = 0,Λ3 = 0.7.

The difference between the path formulation and the canonical function coefficients ξ is

that (5.20) may exhibit an explicit nonlinear relationship between the sets A and Λ; in

the latter the coefficients are kept linear. Here the set A plays the role of ξ and though

the codimension of (5.19) is K, this is not necessarily the codimension of the bifurcation

as will be shown below.

The study of (5.20) is particularly apt as we are typically interested in collecting solutions

along a receiver curve parameterized by one parameter, i.e., Λctl which is a function of α

(see Chap. 4). As an example of the path formulation bifurcations and their unfolding

the cusp function is examined as in [151]. All the bifurcations found in this thesis can be

explained from this example. Figure (5.3) shows four bifurcations found by traversing

the cusp caustic. This example includes two bifurcations not discussed in Chap. 4 these

are the hysteresis and winged cusp bifurcations that play a role in Chap. 6. These have

unfolded normal forms,

%3 + Λctl − %Λ1,

%3 + Λ2
ctl + (Λ2 + Λ3Λctl)%+ Λ1,

(5.21)

so that the path formulation gives,

A0 = Λctl, A1 = −Λ1; Hysteresis

A0 = Λ2
ctl + Λ1, A1 = Λ2 + Λ3Λctl; Winged cusp.

(5.22)

A key point to note is that from a topological view, bifurcations only occur when the

path cuts the singularity surface of the cuspoid. We shall see in the next chapter that

bifurcations occur in ΓBς as a result of traversing a cuspoid surface: however, there will

be no caustic in the solution. Furthermore Re(ΓBς ) and Im(ΓBς ) may behave according

to two different bifurcations.
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5.4.1 Classification

The classification of caustics is fairly simple given the equivalence discussed above. From

the ray bifurcation problems in Chapter 3 the ray parameters each behaved as the roots

of a polynomial under a a smooth change in the receiver variables. Though bifurcations

arise from a path cutting a singularity surface, this does not necessarily indicate a

caustic in the ray field. A necessary condition is that the ray Jacobian J → 0 at these

bifurcation points. The number of rays and their Jacobian matrices can be interrogated

to determine the correct catastrophe.

The codimension is the easiest to calculate as the number of rays coalescing at the caustic

is equal to K + 1. Given the continuation methods of Chapter 4 rely on determining

K, this parameter is calculated without any additional difficulty. The corank is the

most difficult of the pair since it relies on numerical approximations to compute the

eigenvalues of the ray Jacobian. In theory the corank is the number of zeros eigenvalues

of the Jacobian. These are likely never to be exactly zero at the caustic due to the

difficulties of exact caustic location, so the corank is best determined by placing some

tolerance on the magnitude of the eigenvalues, say |λ| < a, a� 1.

5.4.1.1 The case K = 3 and ` = 2

The only case that does not determine a particular canonical function is K = 3 and

` = 2. Table 5.1 shows that there are two possible catastrophes under this pairing:

the hyperbolic and elliptic umbilics. In order to distinguish between the two, an extra

criterion is required. The starting point for this is the classification of pdes. The monikers

“hyperbolic”, “elliptic”, and “parabolic” in 2nd order p.d.e. classification all come from

analogy with conic sections. It is for the same reason that these have been assigned to

the catastrophes. The corank 2 catastrophe germs stem from a linear factor, (a1x+ b1y)

multiplying a quadratic of the form ax2 +2hxy+by2. It is the value of the discriminant,

∆, of this quadratic that leads to the hyperbolic, elliptic and parabolic cases. This means

that at ξ = 0 the canonical functions satisfy either a hyperbolic, elliptic or parabolic

pde For the cases of interest - the hyperbolic and elliptic umbilics - they satisfy [113],

i
∂Ψ(E)

∂ξ1,2
=
∂2Ψ(E)

∂ξ2
2,1

+
∂2Ψ(E)

∂ξ2
1,1

, the paraxial wave equation, (5.23)

i
∂Ψ(H)

∂ξ1,2
=

∂2Ψ(H)

∂ξ2,1∂ξ1,1
, (5.24)
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However as will be shown in the following sections, the high-frequency field is propor-

tional to c0,0eik0AΨ(H,E) at leading order and not purely Ψ(H,E). So, one cannot simply

replace Ψ(H,E) by the Green’s function in (5.23) and (5.24). We can solve this problem

by studying the Liapunov-Schmidt reduction of Chap. 4. To classify we need only study

the germ of the catastrophe, i.e.,

J1({s, t}, 0) ≈J1,tt(0, 0)t2 + J1,st(0, 0)st+ J1,ss(0, 0)s2,

J2({s, t}, 0) ≈J2,tt(0, 0)t2 + J2,st(0, 0)st+ J2,ss(0, 0)s2,
(5.25)

where we have used %1 → s, %2 → t and ` = 2 in (4.17)and (4.18) to update the notation

of Chap. 4. Rather than dealing with two polynomials, it can be shown that (see [151]

for proof) classification depends on the root structure of the polynomial,∣∣∣∣∂(J1,J2)

∂(s, t)

∣∣∣∣ =

2(J1,ttJ2,st −J1,stJ2,tt)t
2 + 4(J1,ttg2,ss −J1,ssJ2,tt)st+ 2(J1,stJ2,ss −J1,ssJ2,st)s

2,

(5.26)

which in turn depends on the discriminant,

∆ = 16[(J1,ttJ2,ss−J1,ssJ2,tt)
2−(J1,ttJ2,st−J1,stJ2,tt)(J1,stJ2,ss−J1,ssJ2,st)],

(5.27)

where the evaluation at (0, 0) has been suppressed.

The sign of the discriminant determines whether the canonical form is elliptic or hyper-

bolic. If ∆ < 0 then the appropriate form is elliptic as the roots are complex. If ∆ > 0

the appropriate form is then hyperbolic as the roots are real. If ∆ = 0 the this equation

is degenerate, having repeated roots. In that case the canonical form is the parabolic

umbilic, though we did not need to distinguish this case.

A subtlety that is not consider here is that the unfolding of the bifurcation does not take

into account the asymptotic validity of unfolding the diffraction catastrophe into simpler

catastrophe species. The validity of such unfolding from the diffraction catastrophe point

of view is appraised in §5.6.

5.5 Mapping to the uniform field

In this chapter only the generic mapping process for corank 1 and 2 singularities are

considered. In some instance there are closed form solutions to the mappings. These

exist for the fold, cusp and swallowtail singularities as it is possible to find the roots of
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2nd, 3rd and 4th using Cardano’s method (see for e.g., McNamee [165]). Later in this

chapter the numerical methods of inverting the mappings are considered as this is the

best way of tackling mappings in general. In later chapters an analytic solution of the

fold singularity will be used to benchmark the mapping algorithm developed herein.

The uniform mapping starts by invoking the principle of superpostion. An integral of

the Kirchhoff type is formed by integrating over waves that have a locally plane wave

form. Thus it is conjectured that the coalescing ray contributions in the neighbourhood

of the caustic can be written in terms of a uniformly valid integral expression (Hanyga

[121], Berry [38]),

I ∼
(
k0

2πi

)` ∫
D
a(ζ;x, k0)eik0ψ(ζ;x) d`ζ, D ∈ R`, (5.28)

where again ` is the corank of the singularity and ψ is a generating function. The integral

of (5.28) is not unique due to its asymptotic nature, though this doesn’t undermine the

method since this is a means to an end. The integral is usually simplified by expanding

the slow function a(ζ;x, k0) =
∑∞

m=0 am(ζ;x)k−m0 so that along with the frequency filter

(k0/2πi)` the mapping is independent of frequency.

The Kirchhoff integral allows the ray expansion Eq. (4.29) Chapter 4 as (for one caustic),

Gω(x; k0) ∼
(
k0

2πi

)` ∫
D
a(ζ;x, k0)eik0ψ(ζ;x) d`ζ︸ ︷︷ ︸

∼to rays that coalesce at caustic

+

N∑
n=nK+1

A(n)eik0S(n)

︸ ︷︷ ︸
rays not involved at caustics

. (5.29)

This partitions the rays contributions into two parts: contributions asymptotic to I and

rays that do not coalesce; the latter do not need to be considered as part of the mapping.

The mapping procedure is effectively the same for both coranks up to the expansion of

the slow function a(·). The first step is to map ψ to the appropriate catastrophe function

Φ; at this point Φ is assumed known. Mapping the old integration and observer variables

to those of the diffraction integral, using s = {s, t} = {T (ζ,x), S(ζ,x)} and ξ = Ξ(x),

the phase is mapped to ψ(ζ;x) = Φ(s; ξ) + A(ξ). Here A is just a constant that closes

the mapping.

I ∼
(
k0

2πi

)`
eik0A

∫
D ′
b(ζ; ξ)eik0Φ(s;ξ) d`s, b = aJ(s, ξ) ∈ C∞, (5.30)
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with J the Jacobian of the map from ζ to state variables s. The amplitude is then

expanded using the Weierstrass-Malgrange preparatory lemma,

b =


∑K

k=0 ck,0(ξ)tk + dΦK
dt H0(t; ξ), if ` = 1,

c0,0(ξ) + ∂Φ(E,H,P )

∂ξ · c0(ξ) +H1,0(s; ξ)∂Φ(E,H,P )

∂s +H2,0(s; ξ)∂Φ(E,H,P )

∂t , if ` = 2,

(5.31)

where c0 = {c1,0, . . . , cK,0}. For all cases the preparatory lemma is in the form of a

(multivariate) polynomial plus a functions that disappears at the saddle points of Φ.

The functions H are smooth functions and regular at the saddles, i.e., H ∈ C∞.

Considering the ` = 1 case first. The expansion for b is substituted into the integral

I, then using derivatives of the catastrophe function w.r.t. the control variables ξ to

generate the polynomial terms in the integrand, the integral can be expressed as a

canonical function and a finite number of its derivatives with O(1) remainder term R0.

I ∼ (k0/2πi)1/2 eik0A

k− 1
K+2

0

(
c0,0 +

K∑
n=1

ck,0
ik0

∂

∂ξk

)
ΨK(ξ̃)− 1

ik0

∫
D

dH0

dt
eik0ψKdt︸ ︷︷ ︸
R0

 .
(5.32)

This represents the beginnings of an ordered asymptotic sequence. To generate the full

asymptotic sequence we define the following C∞ smooth functions,

dHm(t;x)/dt =
K∑
k=0

ck,m+1(x)tk + (dψK/dt)Hm+1(t;x), m ≥ 0, (5.33)

which, applied to the remainder integral R0 and subsequent remainder integrals Rm,

Rm =

∫
D

dHm

dt
eik0ψK dt, (5.34)

leads to the full ordered asymptotic expansion for the Kirchhoff integral,

I ∼ (k0/2πi)1/2eik0A

[ ∞∑
m=0

eimπ/2k
−(m+ 1

K+2
)

0

(
c0,m +

K∑
k=1

ck,me−iπ/2k
−k/(K+2)
0

∂

∂ξ̃k

)
ΨK(ξ̃)

]
.

(5.35)
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The case ` = 2 proceeds similarly, with a first expansion that leads to,

I ∼ (kβ
∗

0 /2πi)eik0A

[
c0,0Ψ(E,H,P )(ξ̃) +

1

ik0
c0 ·

∂

∂ξ
Ψ(E,H,P )(ξ̃) + . . .

. . . − 1

ik0

∫ ∞
−∞

∫ ∞
−∞

(
∂H1,0

∂s
+
∂H2,0

∂t

)
eik0Φ(E,H,P )(s,t; ξ) dsdt︸ ︷︷ ︸

R0

 .
(5.36)

As with the ` = 1 case, a complete asymptotic sequence can be generated by defining,

∂H1,m

∂s
+
∂H2,m

∂t
= c0,m+1+

∂Φ(E,H,P )

∂ξ
·cm+1+H1,m+1

∂Φ(E,H,P )

∂s
+H2,m+1

∂Φ(E,H,P )

∂t
, m ≥ 0.

(5.37)

and repeatedly expanding the remainder integrals as before. The full asymptotic se-

quence is then given by,

I ∼

(
kβ
∗

0

2πi

)
eik0A

 ∞∑
m=0

eimπ/2k−m0

c0,mΨ(E,H,P )(ξ̃) +
K∑
j=1

e−iπ/2k
−1+σ∗j
0 cj,m

∂

∂ξ̃j
Ψ(E,H,P )(ξ̃)

 .
(5.38)

The asymptotic nature of (5.35) and (5.38) means that at most only the m = 0 layer

is required to compute the acoustic field. In most cases the leading order term, that

premultiplied by c0,0, is sufficient to correct the non-uniformity at the caustic. The

inclusion more terms in the series swells the range of validity of the uniform expansion;

precisely why this is true will be shown in a later section.

5.5.1 Mapping

The expansions of Eqs. (5.35) and (5.38) describe how the acoustic field can be expressed

in terms of uniform functions. This requires, in general, a hypothetical Kirchhoff integral

to allow for instances in which the field is too complicated for a closed-form solution.

However, although we can write this integral down, we do not have the means to compute

it, so we must bypass the slow function b and generating function ψ in order to determine

the coefficients c’s and control variables {ξ, A}.

In order to make tangible evaluations of these variables the Kirchhoff integral can be

compared with the coalescing ray contributions off-caustic. Expanding I in (5.30) about

all K + 1 coalescing stationary points, t? or s?, using the method of stationary phase,

these asymptotic contributions are then identified and equated with the nK physical

coalescing contributions in addition to those excluded unphysical contributions that

also coalesce (i.e., coalescing conjugate pairs). Though the correspondence between the
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saddles and the rays is not yet fixed, symbolically the relation is,

b(t?n; ξ)
(
Φ′′K(t?n; ξ)

)−1/2
eik0(ΦK(t?n;ξ)+A(ξ)) = A

(n)
0 eik0S(n)

, corank 1,

b(s?n; ξ)
(

det Φ
(E,H,P )
ij (s?; ξ)

)−1/2
eik0(Φ(E,H,P )(s?;ξ)+A(ξ)) = A

(n)
0 eik0S(n)

, corank 2,

(5.39)

from which it is deduced that,

b(t?n; ξ)
(
Φ′′K(t?n; ξ)

)−1/2
= A

(n)
0 , and, ΦK(t?n; ξ) +A(ξ) = S(n) corank 1,

b(s?n; ξ)
(

det Φ
(E,H,P )
ij (s?; ξ)

)−1/2
= A

(n)
0 , and, Φ(E,H,P )(s?; ξ) +A(ξ) = S(n), corank 2.

(5.40)

As we already know, the ray/stationary phase expansions are only valid as an approx-

imation to the field off-caustic. Therefore it may seem paradoxical but in order to

calculate the uniform expansions where they are required the most, the ray comparison

(5.40) must be continued and relied upon in a region containing the caustic - exactly

where rays fail! However, since both sides of the comparison are equivalent, then the

ray failure (must) leads to an integrable singularity that occurs in the ratios,

lim
Φ′′K ,J→0

Φ′′K(t?n; ξ)

J
, lim

det Φ
(E,H,P )
ij ,J→0

det Φ
(E,H,P )
ij (s?; ξ)

J
, (5.41)

as the caustic is approached (using the expression for A0 in Eq. (3.59)) so that (5.40)

remains meaningful. By this it is meant that b = aJ contains no singularities and that

the Jacobian of the map J between the generating function Ψ and canonical function Φ

is conformal. It is worth mentioning - for future reference - that if a closed form integral

expression for the field does exist, the integral singularity would be tackled using a

limiting device such as l’Hospital’s rule (see for e.g., Bleistein & Handelsman [134]).

Clearly, at this point the correspondence between the saddles and rays must be made

concrete thus allowing for the solution of all control variables. Unfortunately, as K

increases so does the degree of difficulty in inverting these nonlinear equations. In fact

only for K = 1, 2, ` = 1 are there well-known solutions to this mapping. In the generic

cases we want to be able to look at we must recourse to a numerical iterative solution.

5.5.2 Numerical methods of inverting the mappings

Once the caustics have been classified according to §5.4.1, the appropriate uniform solu-

tion can be identified and a numerical scheme implemented as a means of inverting the

maps in (5.40). Fortunately, there is little difference between the solution of the corank
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1 and 2 maps. There are, however, additional tools that can be used to aid the former,

so we still continue to distinguish between the two.

Before proceeding with the details of the inversion we should highlight two key points:

first, that the numerical scheme is just one of several numerical techniques at inverting

these maps. Other methods, such as that based on a Grobner basis (Connor & Curtis

[123]), rely on symbolic algebraic manipulations that are believed to be too cumbersome

for the purposes of this thesis. Second, the amplitude map aims only to provide the

m = 0 layer of (5.35) and (5.38). The asymptoticness of these series means that this is

more than sufficient for numerical accuracy. It will be shown that the full m = 0 layer

results in an asymptotic solution of the same order as the ray solution when the uniform

expansions re-order upon large parameter expansion.

The first part of the mapping relates to the phase and control set {ξ, A}. This is the

most difficult aspect of the mapping, and once this has been achieved the calculation

of the amplitude coefficients (ck,0’s) is straightforward. The method is based on that

of Amodei et al. [122], which is a derivative of the method due to Connor & Curtis

[123]. The main workings are effectively the same as the former, though with additional

tracking measures to ensure fast convergence and a generalisation to corank 2 cases.

The corank 1 algorithm starts by writing the ray phase comparison (5.40) explicitly with

Φ̃K , as,

(t?i )
K+2

K + 2
+

K∑
n=1

ξn(t?i )
n +A = S(i), (5.42)

where the saddle t?i satisfies the saddle condition,

Φ̃′K(t?i ) = (t?i )
K+1 +

K∑
n=1

ξnn(t?i )
n−1 = 0. (5.43)

The iterative algorithm then rewrites (5.42) as,

K∑
n=1

δξn,(r)(t
?
i,(r))

n + δA(r) = S(i) −
(t?i,(r))

K+2

K + 2
−

K∑
n=1

ξn,(r)(t
?
i,(r))

n −A(r) = vi (5.44)

where subscript “(r)” denotes the rth iteration (r = 0 ⇒ initial guess) and δ denotes

perturbation terms δξn,(r) = ξn − ξn,(r) and δA(r) = A − A(r). This can be written in

matrix form,

V

δA(r)

δξ(r)

 = v, (5.45)
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(c) Complex Airy/fold contours.

Figure 5.4: (a) and (b) examples of convergence to each of the three possible tF and ξ1

for the fold caustic, K = 1. Solid lines, Re
(
tFi,(r), ξ1,(r)

)
; dashed lines, Im

(
tFi,(r), ξ1,(r)

)
.

Red lines, ξ1,(0) = 0.1 − 0.15 i, green lines, ξ1,(0) = 0.1 + 0.1 i, blue lines,
ξ1,(0) = −0.1 + 0.1 i. (c) shows the corresponding contours for the Airy/fold catas-

trophe in the complex plane. Each contour starts and ends in a valley at infinity.

where V is the Van der Monde matrix defined by Vα,β = (t?α)β−1. Once this matrix is

inverted - using a pseudo-inverse - the perturbation term allows for a straightforward

update upon the initial guess.

The algorithm steps are as follows:

1. Make an initial guess as to the coefficients {ξn,(0), A(0)}.

2. Solve for the roots of the polynomial Φ̃′K(t?i,(0); ξn,(0)) = 0.

3. Associate a saddle with a phase so t?i,(0),→ S(i).

4. Invert the matrix (5.45) in order to calculate perturbations.

5. Update the {ξn,(0), A(0)} terms using the perturbations.

6. Repeat steps 1-5 until convergence is detected, i.e., δξ(r) → 0, δA(r) → 0.
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In the above algorithm the iteration can be seen to be highly inefficient if the saddle

associated with the ray phase changes significantly. For example, an update in the

control variables may lead to a different set of saddles t? that are picked out of the root

solver in a different order (this is the easiest way of performing step 3 above). Ideally, one

would like to make the association for the 0th iteration determining changes to each root

under the updated control variables, without calculating the roots from scratch. The

following algorithm taken from Starer & Nehorai [166] allows exactly this. Expressing

the coefficients of the saddle condition polynomial (5.43) as,

a = {a1, a2, . . . , aK} = {0,KξK , . . . , ξ1} ∈ CK , a0 = 1, (5.46)

then the roots/saddles t = {t?1, . . . , t?K+1} ∈ CK of (5.43) are related via,

K+1∑
k=0

akt
−k =

K+1∏
k=1

(1− t?kt−1). (5.47)

Clearly, perturbations to the coefficient vector lead to perturbations in the root vec-

tor. Given the coefficients from one iteration (old) a[r] and the coefficients of the next

iteration (new) a[r + 1] the kth root can be expressed as,4

t?k[r + 1] = t?k[r] + εk. where ε = {ε1, . . . , εk}, (5.48)

Then a first order correction to find ε is given by,

a[r + 1]− a[r] = K[r]δ, (5.49)

where the kth column of K[r], κk[r] is a solution of,

Λk[r]κk[r] = a[r], Λk[r] =


1 0

−t?k 1
. . .

. . .

0 −t?k 1

 . (5.50)

It can be seen that this root-update algorithm is very simple to effect, and the first

order nature of the approximation can be improved upon by iterating the update al-

gorithm multiple times. This may seem to undermine the efficiency of the polynomial

inversion algorithm but the increased ordering benefits are significant as oscillation due

to switching in the association t?i,(r) → S(i) is virtually eliminated.

4The argument r is a counter variable.
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Returning to the main inversion algorithm, it should be remembered that the mapping

inversion is nonlinear and therefore admits multiple solutions. This means in addition

to the multiple rays that coalesce, there is more than one possible set of coefficients

for each caustic. These other solutions are not necessarily wrong, but only one set is

consistent with a bounded uniform function for real control variables. As an example

of the multiple inversion solutions for the fold mapping, Figure 5.4 shows three distinct

convergences given three distinct starting values for the iterative method. Each of these

three solutions corresponds to a different integral for the diffraction catastrophe, though

the form of the canonical polynomial is the same. If one deforms the real line contours

of the corank 1 singularities into valleys5 in complex plane (either by pure deformation

or combined with a change of variables) then the resulting contour will be one of K + 1

possible valley-at-infinity deformations. Of course the correct contour is the only one

that can be deformed back into the real line. For the fold case shown in Fig. 5.4(c)

there are three contours possible, where C1 corresponds to the fold defined in (5.9).

When using the analytic solutions of mappings, there is typically a large amount of

work involved to calculate the correct branch of the mapping (see Appendix D).

The amplitude coefficients are then calculated by inverting the system given by the

first of (5.40). From the Weierstrass-Malgrange preparatory lemma given in (5.31) then

evaluating b at the saddles leads to a polynomial in the saddle, i.e.,

K∑
k=0

ck,0(ξ)(t?n)k = A
(n)
0 (Φ′′K(t?n; ξ))1/2. (5.51)

which is a K ×K size system since again all coalescing saddles are used. This is easily

inverted numerically using a pseudo-inverse. Assuming the saddles have been matched

with the correct amplitudes, then the right-hand-side of (5.51) should be real as the

(possibly) complex phase provided by Φ′′K(t?n; ξ) should be conjugate to that provided

by the ray calculation of J .

As mentioned in the beginning of this section, the main inversion algorithm holds true

for both corank 1 and 2 polynomials. The differences are only down to the apparatus

available, which in the former case is appreciably larger. The iterative algorithm for the

corank 2 cases can be written down concisely using modified notation from before for

Cat(`,K) and Pert(`,K).

Pert`,K(δξ(r), s
?
i,(r)) + δA(r) = S(i) − Cat(ξ(r), s

?
i,(r))−A(r) = vi, (5.52)

where the saddle condition yields two equations ∂sΦ and ∂tΦ satisfied by s?. The main

difficulty with the corank 2 inversion is the availability of root solvers for polynomial

5Valleys are regions at infinity where the integrand decays exponentially; they are determined in the
large by the catastrophe germ.
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systems in multiple variables. Reliable solvers - giving the complete set of solutions for

given coefficients do exist, for e.g., Mathematica’s NSolve.

5.6 Engineering control variables: Singulants

The method described in this chapter so far uses the bifurcation paths (or more precisely

the number of coalescing paths) of Chapter 3 to help categorise the caustic. Identification

in this manner causes one problem that is not readily apparent. For example, if K + 1

(K > 1) rays are observed coalescing along an observer arc, then perturbations in the

observer arc may see the paths break up so that the perturbed path sees a number less

than K + 1 coalescing. Thus in the vicinity of a higher order caustic a lower order

diffraction catastrophe is applied according to the methods above. In fact this is not

technically valid from a uniform asymptotics point of view as the accuracy of splitting

the higher-order diffraction catastrophe into a lower order one doesn’t depend upon the

splitting of the bifurcation paths. The appropriate measure of “distance” is determined

by a quantity known as the singulant. The singulant is defined as the quantity,

Snm ≡ k0(S(n) − S(m)), (5.53)

and plays an important role in the resurgence of exponentially small rays across Stokes

lines (see for e.g., Dingle [21]). The definition is extremely simple and straightforward

to compute in practice as it is simple the difference of two phases multiplied by the

wavenumber. Furthermore, Snm = −Smn. To see the importance of the singulant in

terms of the ray solution consider the full (all terms in each ray series) ray field,

ĝ5 ∼
N∑
n=1

eik0S(n)
∞∑
r=0

A
(n)
r

(ik0)r+γ
. (5.54)

Then for a large class of systems the terms A
(n)
r for large r, i.e., r � 1, known as late

terms, have the factorial over power form (Berry [76, 81], Dingle [21], Howls [167]),

A(n)
r ∼

∑
k

B(n,k)(x)Γ(r + γ(n,k)(x))

S
r+γ(n,k)(x)

nk

, (5.55)

where B and γ are non-trivial functions of position, and Γ(·) is the gamma function.

This assumption of late term behaviour has been found to be true for a number of

complicated systems and this ubiquitous property is known as universality.

Now since an asymptotic series is one that initially converges and then diverges, the

asymptotic form given by (5.55) can be used to find the smallest, or least, term in each

ray expansion before the series begins to diverge. To calculate the rth term at which
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this occurs, the fact the rate of change of size of the coefficients slows down and two

adjacent terms will become proportional in size, i.e.,

A(n,r)/k
r+γ
0 = O(A(n,r+1)/k

r+γ+1
0 ), (5.56)

which upon using (5.55) and replacing the order O by equality of magnitudes, can be

used to calculate an explicit value for r. To proceed with the calculation the following

result for quotients of Gamma functions with large argument (Paris [168]),

Γ(r + γ(n,k)(x) + 1)

Γ(r + γ(n,k)(x))
∼ r, r →∞. (5.57)

Substitution into (5.56) gives a simple estimate for the least term,

r = Int|Snk|, (5.58)

where “Int” denotes the integer part. This result implies that the least term is controlled

by the singulant and that numerical evalulations of the singulant in a ray tracing problem

can be used to judge the divergence away from the true field. The least terms itself

is exponentially small as shown by an application of the Stirling formula for Gamma

functions and (5.58). It has magnitude,

√
2π
|B(n,k)(x)|e−|Snk|e−arg(Snk)=(γnk(x))

|Snk|1/2
. (5.59)

For multiple rays (greater than 2) coalescing at a caustic there are multiple singulants

tending to zero. In general these singulants will tend to zero at different rates. However,

there is no dilemma as to which singulant to choose as the late term behaviour is governed

by the singulant with the smallest value. This means (5.58) represents the smallest

singulant available in (5.55).

The most important aspect of (5.58) is that it describes the approximate location of

the least term. When the least term is r = 1 then the leading order behaviour itself

is poor. So that (since it is the integer part) a singulant value of r = 2 describes the

approximate location (in x) that the ray solution begins to diverge away from the exact

field. Additionally, this divergence is controlled simply by the wavenumber, meaning

that the divergence becomes more localised with increasing k0.

This has ramifications for the identification of diffraction catastrophes via bifurcation

paths, as mentioned at the start of this section. Even if a bifurcation path splits away

to form a set of simpler structures, it depends on the now non-coalescing singulants

as to whether there is sufficient distance from the higher-order caustic for the lower-

order diffraction catastrophes to be valid. Thus the ray solver, which currently has no
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unfolding detection, may introduce an error - though not infinite - due to invalidity of a

low order diffraction catastrophe in the presence of a higher order one.

As a precursor to the following example, it should be pointed out that a singulant is a

necessary but not sufficient condition for two ray contributions tending to zero. This is

why the ray solver uses the ray Jacobian and not the singulants as caustic identifiers.

The simplest example, shown in Fig. 5.5, deals with the unfolding of the cusp caustic into

the fold caustic. The level sets of the two singulants corresponding to rays coalescing

on the cusp are shown in red and blue. The position where the singulants are equal to 2

are emboldened. The red markers show the intersection of these particular level sets so

that beyond this point in constant ξ1, denoted by ξ
(S=2)
1 , agreement of the fold function

agrees well with the exact solution in the region of maximum divergence shown by the

highlighted region in Fig. 5.5. This can be seen using the cross-section evaluations in

Figs. 5.5(b)-5.5(e).

5.7 Conclusion

In this chapter catastrophe theory was used to supply uniformity to the high-frequency

field. The starting point for the method is the classification of the caustic. This is a

recognition problem and is, in all but one case, solved by determining the corank and

codimension of the singularity. Due to the equivalence with the bifurcation theory of

Chapter 4 the two-point ray tracing routine yields these parameters in a straightforward

manner. The codimension is found by identifying the number of rays coalescing at the

caustic and the corank by the number of zero eigenvalues at the caustic. This brought

into question the classification-by-bifurcation question (still in progress), which uses

Dingle’s singulants to examine how far away from a caustic of higher order must an

observer be in order to employ a canonical function of lower order.

Once classification is made the mechanics of re-expanding the field in the appropriate

canonical function was detailed. Both the corank 1 and 2 cases are similar, but both

require the existence of a hypothetical Kirchhoff integral in the locality of the caustic.

The most computationally part of the expansion is the calculation of the control vari-

ables. As discussed, there are several possible solutions for each canonical function, and

the incorrect one may lead to the erroneous substitution of unphysical waveforms into

the field. Once the control variables are calculated it is simply a matter of inverting a

matrix to calculate the amplitude coefficients. In the next chapter these mappings will

be computationally realised allowing the numerical implications of the integrable singu-

larity in the amplitude coefficients and impact of the higher terms in uniform expansion

to be observed.
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(a) Level sets of the singulant. Highlighted
region showing field indicates maximum diver-
gence

(b) (c)

(d) (e)

Figure 5.5: Singulant and unfolding cusp example: (a) Level sets of the Pearcey func-
tion’s singulants, black, cusp caustic; black dashed, Stokes set; coloured lines, singulant
level sets; red marker, intersection of singulants equal to 2. (b)-(e) cross sections of
Pearcey at ξ1 = const.; black, exact; blue, ray sol.; red, Airy uniform approx.: (b)

ξ
(S=2)
1 /3 , (c) 2ξ

(S=2)
1 /3, (d) 4ξ

(S=2)
1 /3, (e) ξ

(S=2)
1 .





Chapter 6

Application of the Ray Solver to

a Parallel Shear Flow

6.1 Introduction

In this chapter the ray solver developed in Chapters 3-5 is applied to the isothermal

parallel shear flow problem developed in §2 of Chapter 2. The first section of this chap-

ter sees the ray equations reduce significantly for this particular case, where they are

matched up with the far-field asymptotics of a modal rearrangement of the Wundrow

and Khavaran solution [116] via Poisson summation. This work provides the benchmark

for nearly all aspects of ray propagation and guides the generalisation to complex num-

bers. The remainder of this chapter is then split up into three sections: the first section

examines the far-field ray solution, the caustic structures apparent in the point source

field and their physical mechanisms; the second considers numerical evaluations of the

ray tracing solution against the benchmark, comparing both the field and ray firing

parameters, where in the case of the latter, near-to-farfield behaviour is examined; the

third and final section undertakes a local analysis to decipher the mechanisms behind

the anti-caustic: a novel singularity structure that delimits a section of the CoS.

6.2 Far-field ray solution

The isothermal parallel shear flow configuration input into the ray equations is exactly

the same the same as Chap. 2, i.e., a = 1, ui = δi1u1 = δi1c̄∞M .1 Clearly, such a

configuration reduces the severity of the ray equations (3.48)-(3.50). While we use the

cartesian system to effect numerical computations of the parallel shear flow problem,

the following cylindrical polar system (see for e.g., [22], [116]) is more convenient for

1Keeping a 6= 1 in the following work for generality until the results section.
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analytical considerations and can be examined in the far-field:

ẋ = p(x) +MΦ, ˙p(x) = 0,

(ṙ)2 = Φ2 − cos2 θ − p(φ), rϕ̇ = p(ϕ),

(r ˙p(ϕ)) =
1

2
∂(Φ2)/∂ϕ = 0, Ṡ⊥ = rp(ϕ)ϕ̇+ (ṙ)2 − sin2 θ,

(6.1)

where ⊥ denotes elements in the yz-plane and (̇) ≡ d/dτ . This system has initial

conditions,

x = xs, r = rs, ϕ = ϕs, p(x) = cos θ, p(ϕ) = σs sinµ sin(λ−ϕs), S⊥ = 0, (6.2)

where the ray firing parameters µ and λ are as before, and σ−2
s = a2

s −M2
s sin2 µ from

(3.51). It can be shown that in the far-field (R→∞),

ṙ ∼ ±Q(r|νF), r2ϕ̇ = νF,

Ṡ⊥ ∼ νFϕ̇+Q2(r|νF)− sin2 θ,
(6.3)

subject to,

r = rs, ϕ = ϕs, S⊥ = 0, (6.4)

where,

rQ(r|νF) =
√
r2q2 − ν2

F, νF ≡ rsqs sin(λ− ϕs). (6.5)

An interesting consequence of the initial conditions (6.2) is that,

ṙs = qs cos(λ− ϕs). (6.6)

The sign of this equation indicates whether a ray is travelling towards the origin r = 0

initially. This leads to the monikers “direct” and “indirect” to distinguish between the

two signs of (6.6) for real rays. Typically one could look at ray trajectories and class

them according to these monikers based upon whether the ray bends back up toward

the observer (indirect) or not (direct). This is not true as rays may be indirect and

not have a bent path. However, this classification loses significance when dealing with

complex rays as the aforementioned heuristic explanation is redundant.

Equations (6.3) can be solved (see for e.g., [22], [116]) to yield,

∆ϕ = ϕ− ϕs =

(∫ r

rδ

∓
∫ rs

rδ

)
νF dr′

r′2Q(r′|νF)
, (6.7)

S⊥ = νF∆ϕ+ ζ(r|νF)∓ ζ(rs|νF)−R sin2 θ, (6.8)
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where,

ζ(r|νF) =

∫ r

rδ

Q(r′|νF) dr′, Q2(rδ|νF) = 0. (6.9)

As per usual, the top sign of ± or ∓ indicates direct rays, while the bottom indicates

the indirect branch.

In order to benchmark the ray solver it is necessary to match up at least one component

with Gω. This is done by rearranging (3.14)-(3.17), for a time harmonic source, into

Lilley’s equation for a parallel shear flow. It can be shown - using techniques in [9] -

that the pressure component of the Green’s function satisfies,

Dω

(
D

2
ω −

∂

∂xj
c2 ∂

∂xj

)
ĝ5η + 2c2∂u1

∂xj

∂2

∂xj∂x1
ĝ5η =(

2
∂u1

∂xi

∂

∂x1
−Dω

∂

∂xi
c2

)
δiηδ(x− xs) + c2D

2
ωδ4ηδ(x− xs).

(6.10)

Now, given that ĝ5η satisfies (3.27), and Gω satisfies (6.10) with right-hand-side of c2
∞Dω,

then replacing ĝ54 by Dω ĝ5 in (6.10) with η = 4, it can be seen that ĝ5/a
2
s matches up

with Gω. As a final check, the results of a generic ray contribution (3.57) with nD = 3

can be calculated in the far-field and shown to match the steepest descents evaluation.

Using the far-field result for the Jacobian given by [24] and [116], then,

J ∼ R2 sin θ
∂(θ, ϕ)

∂(µ, λ)
= R2 sin θ

∂θ

∂µ

∂ϕ

∂λ
= a2

sσ
3
sR

2 sinµ
∂ϕ

∂λ
, R→∞, (6.11)

since,
∂θ

∂µ
=

dθ

dµ
=
a2
sσ

3
s sinµ

sin θ
. (6.12)

Then using the relation ρ = p∞γa/c
2,

ĝ5/a
2
s ∼

(1−Mkpk)

asa(1−Mskpsk)

(
∂ϕ

∂λ

)−1/2 eik0S

4πR
=

1

as(1−Mskpsk)

(
∂ϕ

∂λ

)−1/2 eik0S

4πR
, R→∞,

(6.13)

with,

S ∼ S⊥ +R, R→∞. (6.14)

Further relations can be derived once the connection of the modal sum is made with ray

solution in the far-field.

6.2.1 Poisson summation asymptotics

The connection between the modal summation and ray theory can be exploited using

a Poisson summation. Techniques such as the Poisson sum and Watson transform are

well known to yield ray theory solutions when evaluated asymptotically (see for e.g.,

Chapman et al. [65], Jones [169]). Both of these techniques have been used in acoustic
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applications, for example Jones [169] in acoustic scattering problems and Abrahams et

al. in aeroacoustic applications [26–28] (linear shear flows.) The solution here using a

Poisson sum is due to Wundrow & Khavaran [116]. The Poisson recasts the modal sum

via the identity,
∞∑

n=−∞
f(n) ≡

∞∑
m=−∞

F (m), (6.15)

where f(n) is the modal term and F (m), in this instance, is the Fourier transform of

f(n) evaluated at integers m. In the limit k0 →∞ the series of integrals F (m) can be

evaluated using the method of steepest descent. These asymptotic contributions that

are equivalent to ray contributions are used to guide the solution into the complex plane.

This recasts (2.89) as,

Rω ∼
∞∑

m=−∞

∫ ∞
−∞

(
2k0

√
−η(rs|ν)

rsQ(rs|ν)

)1/2

Ai (η(rs|ν)) eik0(αmν+ζ(r|ν)−R sin2 θ) dν, (6.16)

where αm = 2πm + ∆ϕ and ν = n/k0. In order to express all fast components of the

integrand in exponential form, the Airy function is expanded. The second order nature

of the radial ode means that a two Riemann sheeted structure is expected, where ±
denotes the indirect and direct ray branches as before. The branch cuts at ±rsqs are

chosen to have orientation as in [116] and Chap. 2,

rQ(r|ν) =
√
|r2q2 − ν2|ei[arg(rq−ν)+arg(rq+ν)]/2, with − 1

2
π ≤ arg(rq ± ν) <

3

2
π

(6.17)

so that mapping into the ν-plane reverses the rq − ν cut, since,

−1

2
π ≤ arg(rq − ν) = ±π + arg(ν − rq) < 3π/2,

−3

2
π ≤ arg(ν − rq) < 1

2
π e.g., using −π.

(6.18)

The occurrence of only two cuts is due to assumption of a single turning-point problem

in the r ∈ C plane. Cuts can arise due to both Q(rs|ν) and ζ(rs|ν). However, the

original contour passes through the cuts/turning points of Q(rs|ν) so that a boundary-

layer contribution occurs where the contour in (6.16) cannot be split up into the WKB

branches, but must remain in the Airy function form. In fact the Airy function behaves

analytically (i.e. no cut) and the prefactor,

lim
ν2→r2

sq
2
s

√
−η(rs|ν)

rsQ(rs|ν)
= (k0P(rs))

1/3 , (6.19)

remains bounded and blind to the branch cuts.

A further complication is that qs is imaginary for some observer angles θ. This means we
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expect the new contour definitions under this asymptotic expansion to change discontin-

uously as the branch cuts jump from the imaginary axis to the real line discontinuously.

The integrals are then split up as follows,

Rω ∼

R
(−)
ω − iR

(+)
ω + R

(×)
ω , for q2

s > 0,

R
(−)
ω , for q2

s < 0,

(6.20)

where the components of Rω in (6.20) are given by,

R(±)
ω ≡

∞∑
m=−∞

∫
C(±)

(
ik0

2πrsQ(rs|ν)

)1/2

eik0(αmν+ζ(r|ν)±ζ(rs|ν)) dν, (6.21)

and,

R(×)
ω ≡

∞∑
m=−∞

∫
C(×)

(
2k0

√
−η(rs|ν)

rsQ(rs|ν)

)1/2

Ai (η(rs|ν)) eik0(αmν+ζ(r|ν)−R sin2 θ) dν, (6.22)

with the contours C(±), C(×) yet to be defined.

In order to proceed with the steepest descent method, both contours and saddle points

must be computed. While the saddles are interpreted as rays, their contribution is deter-

mined by the topology of the steepest contours in the complex plane. Here, computation

of the saddles follows [116]. The integrand phase,

ΨWK(ν) ≡ αmν + ζ(r|ν)± ζ(rs|ν)−R sin2 θ, (6.23)

is differentiated leading to the saddle point condition,

∂ΨWK

∂νF
= 0, =⇒ αmF = ∆ϕ+ 2πmF = ψWK(νF) ≡

(∫ ∞
rδ

±
∫ rs

rδ

)
νF

r2Q(r|νF)
dr,

(6.24)

where νF is the saddle and F denotes the saddle condition. Here rδ satisfies r2
δq

2(rδ)−ν2
F

(see defs. in (2.71)). To find the function ψWK , which is the derivative of ζ(r|ν)±ζ(rs|ν)

w.r.t. ν the following were used,

∂

∂ν
Q(r|ν) = − ν

r2Q(r|ν)
,

∂

∂r
rQ(r|ν) =

1

2r2Q(r|ν)P(r)
,

∂rδ
∂νF

= 2νFrδP(rδ),

(6.25)

P(r) =
1

r(r2q2)′
. (6.26)

Computation of (6.24) is achieved numerically due to the lack of closed form solutions.

One chooses an observer location {R, θ, ϕ} and index mF, then starts a root finding

process using an initial estimate of νF, iterating until convergence. Due to the far-field
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C
(-)

-rsqs

rsqs

O(k 0
-2/3)

O(k 0
-2/3)

(a)

C
(-)

C
(+)

C
(×)

-rsqs

rsqsO(k 0
-2/3)

O(k 0
-2/3)

(b)

Figure 6.1: Definition of complex contours, C(±), C(×). Solid black line, branch cuts;
red, C(−); blue, C(+); purple, C(×). (a) C(−) for q2s < 0, (b) C(±), C(×) for q2s > 0.

Green shaded region about points ±rsqs indicate boundary layer O(k
−2/3
0 ).

nature of this approximation, it is possible to evaluate the saddle condition (6.24) at

r = ∞, since the derivatives of ζ w.r.t. ν do converge: this is distinct from the phase

itself as integration of the phase (i.e., a regular wave field) to infinity will yield infinite

results.

Once the saddles have been calculated the steepest descents evaluation of the integrals

(6.21) are then given by,

R(±)
ω ∼

∑
νF

(
rsQ(rs|νF)

∣∣∣∣∂ψWK

∂νF

∣∣∣∣)−1/2

ei(Ph+π/4)e
ik0

(
αmFνF+ζ(r|νF)±ζ(rs|νF)−R sin2 θ

)
,

(6.27)

where as in [116],

− 1

2
π < Ph ≡ −arg

(
(i∂ψWK/∂νF)1/2

)
≤ 1

2
π, (6.28)

is used to provide analytic continuation to complex rays, and,

∂ψWK

∂νF
=

(∫ ∞
rδ

∓
∫ rs

rδ

)
1 + 2ν2

FrP
′(r)

r2Q(r|νF)
dr ±

2ν2
FP(rs)

rsQ(rs|νF)
. (6.29)

It should be noted that (6.27) makes no reference to Stokes multipliers and the orienta-

tion of the steepest descents path through the saddle (the orientation anomaly). These

latter criteria can be provided using the steepest path topology. In the following we will

determine the contours C(±) and plot them showing the relevant ray contributions.
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The determination of the contours C(±), C(×) is made trickier due to the fact the two-

sheeted structure of the WKB solutions is not apparent for all values of ν. In a region of

O(k
−2/3
0 ) the larger argument expansion of (6.16) must return to the uniform expansion.

This generates two problems concerning the application of steepest descents to (6.16)

that are not addressed in [116]: first, how to define the steepest descent contours for

each sheet in terms of the original contour along the real ν axis; second how to account

for the regions near the branch points. These problems can both be resolved using inner

and outer expansions of the contour integral. To aid the following, the integration of

the contour is visualised in Fig. 6.1 for angles in which q2
s < 0 - branch points rsqs are

imaginary; and q2
s > 0 - branch points rsqs are real. The following method is essentially

motivated by a similar (but simpler) problem due to Bleistein & Handelsman [170].

In Figure 6.1(a) we have imaginary branch points and only one contour C(−) equivalent

to C of the original integral. The reason being is that the integrals must converge at

infinity and an integral along the real line for R
(+)
ω does not: furthermore another option

- a truncated integral from ±rsqs with q2
s < 0 - yields exponentially large behaviour.

In Figure 6.1(b), ±rsqs with q2
s > 0 and the branch points are real, and whilst they

can be avoided via Cauchy’s theorem in general, in order to split the integration path

up we use these points to delimit the contours of R(+). Thus we have inner integrals

C(×) rescaled when ν = O(k
−2/3
0 ) starting and ending at infinity,2 whose contribution

via R(×) we will neglect as in [116]; outer integrals C(±) where C(−) is delimited by ±∞
as before, and C(+) a pseudo-endpoint problem which formally starts and ends at the

points ±rsqs. These contributions are distinct, so long as the saddles from the outer

expansions don’t move into the O(k
−2/3
0 ) neighbourhoods of the branch points. Due to

the boundary layer nature of endpoints of C(+) there are no endpoint contributions to

R
(+)
ω as these are contained in R

(×)
ω .

An example of saddle point computations is shown in Fig. 6.2 for ∆ϕ = π/3 and

5◦ ≤ θ ≤ 150◦ with Poisson index mF = 0.3 We use the same isothermal shear flow

as in Chap. 2, i.e., a = 1, M(r) = MJsech2(2r), MJ = 0.9.

At low angles there are two complex saddles forming a conjugate pair. The saddle in

the upper half plane, which yields an exponentially small contribution, belongs to the

(−) sheet, while the saddle in the lower half plane, which yields an exponentially large

contribution, belongs to the (+) sheet. Due to the conservation of rays the conjugate of a

complex ray always exists (see Chap. 4), where we have explicitly added this contribution

to Fig. 6.2 in order to emphasise this fact unlike [116] who neglect to add it to their

diagram.

2In terms of an inner variable.
3It is convenient to keep ∆ϕ in its relative terms until ray computations are made and the source

azimuth made explicit.
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Figure 6.2: Saddles computations νF, mF = 0, for ∆ϕ = π/3, 5◦ ≤ θ ≤ 150◦. Key
inset. θf , θd denote the fold caustic and disappearance point resp. Solid line, Re(rsqs).
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Figure 6.3: Close up of saddle coalescence and branch cut crossings for ∆ϕ = π/3.
Key is the same as Fig. 6.2.

As θ is increased the direct saddle crosses over the cut (as shown by the real part crossing

the Re(rsqs)) so that both complex rays are on the same sheet. Further increases see the

saddles coalesce - implying a fold caustic - before they scatter off along the real axis. As

both the saddles coalesce on the same sheet it can be seen from the −iR
(+)
ω definition

that the real ray that reflects off of the caustic before reaching the observer point has no

phase discontinuity in the amplitude given by (6.27); conversely the amplitude in (6.27)

must provide “i” in order to cancel the factor premultiplying R
(+)
ω . One important

feature of this saddle diagram is that the lower branch of real rays terminates at the

origin and disappears from the calculation. This appears to contravene the conservation

of rays. It will be shown that there is in fact a coalescence - of sorts - without a caustic

that gives rise to another branch of rays that have not been found previously. In physical

terms this related to the ability of the flow to refract rays upwards, see §6.3.
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The steepest descent contours for the saddle computations in Fig. 6.2 are shown in

Fig. 6.4. Steepest descent paths are isocontours defined by,

Re(ΨWK(ν)) = Re(ΨWK(νF)), Im(ΨWK(ν)) > 0, for saddles,

Re(ΨWK(ν)) = Re(ΨWK(±rsqs)), Im(ΨWK(ν)) > 0, for endpoints.
(6.30)

To continue the saddles across the cuts, the phase function of the adjacent sheet is evalu-

ated at the saddle/endpoint whose contours are to be continued. For example, continuing

the direct/indirect saddle contours means using isocontours of the indirect/direct phase

function Ψ
(±)
WK(ν

(∓)
F ), where ±, as usual, distinguishes between the direct and indirect

phase functions.

The behaviour of the steepest paths are as follows. Starting with θ = 30◦ so that the

branch points are complex and the only contour that exists is C(−), then it can be seen

from Fig. 6.4(a) that the only way to pass through and collect the direct saddle is by

incorporating the branch cut and engendering a lateral wave contribution (see for e.g.,

Brekhovskikh [171]). These contributions are new for the parallel shear flow problem

and will be estimated in magnitude in the next section.

Increasing the angle to θ = 35◦ sees the branch points move to the real axis. Again in

order to complete contours a branch cut contribution must be taken. As θ moves to 39◦

the direct saddle moves to the indirect sheet (which is now part of the def. of Rω since

θ > 30.5◦). Figure 6.4(f) shows two features: first, the two saddles are connected via a

steepest descent contour although only the exponentially small (upper half-plane) saddle

is required; second, the branch contribution is turned off by the crossing of the cut. This

second point shows that the lateral wave is turned off by the exponentially small ray.

This contribution also is not required, as before there has been no way of returning to

the direct sheet (see θ < 39◦ plots) and so a branch cut was necessitated; now, one can

return to the sheet the saddle is on (now the indirect sheet) due to continuation of the

integral endpoint contours. As the angle of 40◦ is reached the saddles have coalesced

on the indirect sheet and moved away from each other on the real axis. It can be seen

from Fig. 6.4(h) that in order to complete the contour both real saddles are needed. The

steepest descent path behaviour is only considered up to 58◦ due to the non-canonical

disappearance of one of these rays.

6.2.2 Branch cut contributions

Here we estimate the size of the branch cut contributions shown in Fig 6.4, so as to

conclude whether we can proceed with saddles only. This is preferred as these can be

equated with rays and no other considerations need to be made. Lateral rays with which

branch cuts are typically associated are non-trivial to reproduce, for e.g., Doornbos [56].
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The contribution of the branch cut here uses the method found in Miller [172]. The

integral is written as,

R(H)
ω ≡

∫
C(H)

(
ik0

2πrsQ(rs|ν)

)1/2

eik0ΨWK dν

=

(
k0

2π

)1/2 ∫
C(H)

1

(ν + rsqs)1/4(ν − rsqs)1/4
eik0ΨWK dν,

(6.31)

where superscript H allows us to distinguish the cut contribution, C(H) is a loop or

Hankel contour around the branch point ν = rsqs in a locally clockwise manner, and the

phase is integrated on the direct sheet. Since the integrand’s singularity has a power

−1/4 which is locally integrable it possible to write,

R(H)
ω = (1− eiπ/2)

(
k0

2π

)1/2 ∫
CH′

1

(ν + rsqs)1/4(ν − rsqs)1/4
eik0ΨWK dν, (6.32)

where CH
′

is a contour from the branch point to infinity along the branch cut on the

ν > rsqs side of the cut. As k0 → ∞, a local expansion can be used, which since

the branch cut contour travels through a valley of iΨWK , is approximated by the local

steepest descent path direction.4 This gives,

R(H)
ω ∼ e−iπ/8π−1/2

(2rsqs)1/4
eik0ΨWK(rsqs) Γ(3/4)(

∂ΨWK/∂ν|rsqs
)3/4

k
1/4
0

, (6.33)

which shows that this contribution is O(k
−1/4
0 ). This lies outside the scope of the analysis

undertaken in Chap. 3, and we do not have the means for calculating this ray. We will

neglect this contribution on the grounds of its size and that other ray calculations [116]

are successful without this contribution. This is also in-keeping with the idea of an

asymptotic series and their components outlined in Chap. 1.

4The integrand’s exponential decays along CH
′

so the steepest path approximation is not poor; there
is no change in the k0 magnitude estimation.
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(a) 30◦, Direct (c) 35◦, Direct (e) 39◦, Direct (g) 40◦, Direct

(b) 30◦, Indirect (d) 35◦, Indirect (f) 39◦, Indirect (h) 40◦, Indirect

Im(ΨWK )

Figure 6.4: Steepest descents paths for ∆ϕ = π/3. Black marker, saddles. Solid black line, steepest descent paths; white lines, branch cuts; green
line, anti-Stokes mapping; red line, Stokes mapping.
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Figure 6.6: Near-to-farfield behaviour of a complex ray

6.2.3 Structure of a complex ray

In Chapter 2 two Stokes structures where shown for real modal indices. Both cases

had single turning-points though of two different orders. The complex ray theory in the

previous section has generalised and decoupled the modal index. The question is now,

“What is the Stokes structure of
∫
rδ
Q(r′|νF) dr′ given νF ∈ C?”

The answer is simple if one considers a perturbation to the real mode case. As the

turning-point is lifted into the complex plane the Stokes structure is pulled with it. This

is shown in Fig. 6.5 where the primary turning-point is shown engendering a complex

Stokes structure.5 Notably, the anti-Stokes line emanating from rδ merges back with the

real line. This way only a finite amount of complex decay is obtained when integrating

from rs to r in the far-field. Such a phenomenon is known as “above-the-barrier” scat-

tering in quantum mechanics (see for e.g., Boyd [173], Pokrovskii & Khalatnikov [174]),

and the effect can be seen on a ray solution continued from the near-field to the far-field

can be seen in Fig. 6.6. As the far-field is reached the behaviour asymptotes its far-field

solution rapidly. Technically the far-field is the limit R → ∞, however it is clear that

close to the source we have already a good approximation of that behaviour.

5The Stokes diagram has been dressed-up somewhat with Stokes structures from other turning-points
other than primary.
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6.3 Ray tracing and benchmarking

It is clear from the results shown in Figs. 6.2 and 6.3 that the Poisson sum asymptotics

are a suitable guide for the generalisation of the far-field system to complex numbers,

namely through the variable νF, where νF is equal to and generalises the ray initial

condition (6.5). It is also clear that the azimuthal directivity factor (6.7) and the saddle

condition (6.24) are equivalent, where in the latter mF is an additional device facilitating

multivalued branches of the analytic solution. So, not only can Rω be calculated using

analytic complex ray theory, but through νF other variables of the ray field can also

be benchmarked. In fact the analytic solution provides a benchmark for quantities bar

the integration times τ and geodesic/conjugate elements. In the case of the latter the

Jacobian (6.11) can be used as an indirect check via,

J ∼ ±rsa2
sσ

3
sR

2 sinµQ(rs|νF)
∂ϕ

∂νF
, (6.34)

where,
∂ϕ

∂λ
=

∂ϕ

∂νF

dνF
dλ

, with
dνF
dλ

= ±rsQ(rs|νF), (6.35)

from (6.5) and (6.7). However, the most interesting parameters to study are the ray

firing parameters µ and λ. We can provide a benchmark by inverting the nonlinear -

and hence multi-valued equations (3.51) and (6.5). For µ there are in fact two possible

equations, the second results from an equation for dθ/dµ in (6.12) and is more useful

than (3.51) because the receiver variable θ appears explicitly, i.e.,

σ−2
s = a2

s −M2
s sin2 µ, and σ2

s sin2 µ = Φ2
s − cos2 θ. (6.36)

In both cases of (6.36) sinµ = ±√. . ., so two branches of the solution exist. If we limit

µ ∈ [0, π] for real solutions then we choose the positive branch. A consequence of the

second equation of (6.36) is that for one observer θ there is only one solution branch

of θ when µ ∈ R. This opposes the conclusions of Chap. 4, that when a caustic with

multiple distinct branches is encountered, the ray firing parameters will also have the

same number of distinct branches. We will resolve this problem in §6.3.1.

The firing parameter lambda λ (λ ∈ [0, 2π], λ ∈ R) can be obtained through νF (once

ϕs is made explicit) by inverting,

sin(λ− ϕs) = νF/rsqs. (6.37)

This may appear simple enough, however, qs is known to jump - N.B. rsqs are the branch

points of the cuts in (6.18) - so at some point there will be ambiguity in the benchmark

as νF/rsqs jumps branches. The result is a discontinuity in λ for some ray solutions.
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Figure 6.7: Green’s function field |Gω/Gω| with caustic and Stokes structures overlaid
(St = 5 or k0 = 28.7). Caustics structures: fold θf (∆ϕ), blue; cusp θc(∆ϕ), red. Stokes
structures: Stokes, black dashed; anti-Stokes, green. Non-canonical/anti-caustic locus
θd, grey dashed. CDPs, black marker . Ray species aid, white. Box for local analysis.

Now that we have a method for benchmarking both the accuracy of the ray method

(both analytically (6.27) and numerically (2.89)), we can set up a ray tracing problem

to benchmark. Using the theory of Chapter 2 the ray computations are made for an

isothermal parallel shear flow using the same shear flow as for the saddles computations.

Again, we place a source at rs = 0.75, but now make ϕs = π/2 explicit. As the problem

is translationally invariant in x, xs is arbitrary so long as xs/R� 1.

The first result of the ray tracing computations is perhaps the most important. These

are the structural delineations of the field, such as caustics, Stokes structures and the

CoS boundary; these are shown in Fig. 6.7 overlaying the modal solution of Chap. 2.

Firstly, there are a wide variety of structures, some of which are familiar and others

peculiar to this field. The more familiar features are the cusp and the fold caustic, with

the Stokes structure emanating from the latter. The peculiar features are the caustic

disappearance points (CDP), the non-canonical/anti-caustic line - a feature we discuss

in more detail in §6.4, and the anti-Stokes structure. In the case of the latter, it is the

presence of the anti-Stokes line emanating from the CDPs that is unfamiliar and not its

action upon the dominancy of the ray solutions. Additionally, we note that only two of

these structures have been encountered in the saddle-point analysis, and that these same

structures are the only ones of those shown in Fig. 6.7 encountered in the high-frequency

propagation from point sources in jets previously.
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Figure 6.8: Near-field ray couple giving rise to a fold caustic θf . Real rays shown in
blue; physical complex rays shown in red. Ray paths correspond to Re(x(ς)).

The familiar canonical structures in Fig. 6.7 can be easily understood by examining

the ray paths as the observer cuts these structures. Starting with the fold caustic, it

is understood that this should coincide with that found by [116] in the saddle-point

study with mF = 0. Figure 6.8 shows the interfering couple that conspire to give the

fold caustic. Though this figure is in the near-field6 the caustic structures still persist

and the physical mechanisms for the structures are invariant. It is clear from this

figure that the fold caustic is created by two trajectories whose monikers where decided

upon in the saddle-point analysis. There are those rays that propagate straight to the

observer (direct), and those that propagate away initially (indirect) before being guided

or “turned” back by the flow. Hence it is these indirect rays that have an explicit and

observable turning-point (rδ which otherwise can eliminated from the direct branch of

the phase (6.23)). However, the ability of the flow to bend rays is not infinite; if one

were to fire real rays downward recursively, only a small portion would be bent upwards,

as shown by the relatively small interference pattern in Fig. 6.7 and multiplicity region.

In other words, continuity of the ray firing parameters would see a discontinuity in the

ray position, e.g., µ ≥ µcritical hits the upper half-plane, µ < µcritical hits the lower

half-plane. It is precisely this mechanism that leads to the disappearance of the saddle

in Fig. 6.2 and the existence of θd in Fig. 6.7.

The Green’s function field in Fig. 6.7 shows a second, previously undiscovered caustic (in

this solution): the cusp caustic. Immediately, this singularity has implications for the

noise content propagated against the flow as the location is clearly not in the forward

arc. Though this is new, it is only really significant if the magnitude of the cusp is

comparable to that of the fold. The rays culpable for this caustic are shown in Fig. 6.9

in the nearfield, off of the cusp’s line of symmetry. The real triplet solutions are again

6All ray trajectories in this thesis are shown in the nearfield for illustrative purposes.
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Figure 6.9: Interfering ray triplet forming cusp caustic (nearfield comp.) off symmetry
line, ϕ = 225◦. Real rays: red (sing.), green, blue (sing.). Complex ray, cyan. Ray

paths correspond to Re(x(ς)).

shown in Fig. 6.10 in the yz-plane with corresponding Poisson indices. From Fig. 6.9

we see that those solutions that blow up on the cusp favour the same path around the

jet w.r.t. the origin, and that all these singular paths head to the rear arc. This former

observation is corroborated by the bifurcation diagrams in Fig. 6.10, which also show that

singular rays have the same Poisson index. On the symmetry line the interpretation of

the Poisson indices is slightly more subtle. Here, one solution corresponds to νF = 0,∀θ,
so the Poisson index is in fact arbitrary and may have solution mF ∈ Z. This has

implications for the sheet structure, as νF = 0 hangs around on the union of all the

Poisson sheets.

Of the three rays that coalesce on the cusp, only one of these rays experiences the

fold caustic in the forward arc. This same ray also experiences the anti-caustic located

between the CDPs. This ray on the “dark” side of the cusp does not correspond to the

same branches on the “light” side of the cusp as can be seen in Figs. 6.10, where the

continuous branches off the line of symmetry, i.e., Figs. 6.10(d) and 6.10(f) do have the

same Poisson index.

To conclude this study of the cusp it is worthwhile returning to the concept of upstream

energy propagation. In particular we can consider the near-to-farfield behaviour of the

cusp surface. This is shown in Fig. 6.11 where the cusp surface is detached from the

source point xR and is directed upstream in a conic/heartshape. The former observation

is important for two reasons. First, the absence of the cusp caustic in the vicinity of the

source allows the source to be locally Helmholtz so that §3.3.1, Chap. 3 remains valid.

Secondly, it is possible that the caustic surface is a continuation of a caustic due to the

tangency of trapped rays as they propagate upstream, as in this region the flow behaves
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Figure 6.10: Cusp real ray paths in the yz-plane with corresponding λ bifurcation
diagram and Poisson indices. Figures (a)-(c) ray paths for ϕ = 225◦, 270◦, 315◦, resp.
Jet flow cross-section in background. Figures (d)-(f) λ-bifurcation diagram in θ for

ϕ = 225◦, 270◦, 315◦, resp. Real branches solid line, complex branches dashed.
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Figure 6.11: Near-to-farfield cusp surface. Figure shows unfolding of the cusp line
(red) on ∆ϕ = 180◦ into a fold surface (blue). Flow profile u1(r) in background.

as a waveguide. These rays we have payed little attention to due to the likelihood that

such rays do not contribute in the far-field, not to mention that they are much difficult

to determine using the BVP as there are numerous solutions.

Though this surface is novel in the context of point source solutions in a free jet, such

upstream beaming has been found before by Abrahams et al. [28] in shear flows bounded

by elastic surfaces. Therein, a moving point source by a wall engenders both fold and

cusp caustics, the latter of which beams upstream. The difference here is that reflections

from the wall in 2D allow the field to have multiplicities, i.e., direct rays from the source

and reflected rays from the wall, whereas the jet shear layer allows multiplicities by

offering other routes to an observer in 3D. This work, more so than [28] shows the

importance of upstream beaming when the refracting medium has a waveguide.

To conclude, we expect two distinct sets of singularities in the point source acoustic field,

and these can be handled separately using the canonical functions machinery of Chap. 5.

However, we have not yet described the effect on the magnitude of the field of the anti-

caustic. It is readily seen that this structure limits the oscillation of the fold caustic and

that it partially delimits the CoS. As the name may suggest the following computations

show that it engenders unusual behaviour in the qualitative and quantitative behaviour

of the ray firing parameters and acoustic field.
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Figure 6.12: µ-firing parameter as a function of θ & R with ∆ϕ fixed. Black line, an-
alytic sol. Blue lines, ray tracing sol. Solid, real; dashed, complex. θh, hysteresis/jump.

θf , fold caustic. θd, disappearance point.

6.3.1 Ray parameters

The first check of the ray solver’s accuracy is a comparison with the analytic ray firing

parameters given by (6.36) and (6.37). To do this the behaviour of the ray parameters

µ̃ = {µ, λ} is studied against θ for several different radii R about the source. As discussed

before, the analytical WK solution is based at the origin in the far-field. This µ̃-study

based on the source should tend towards the WK result as R→∞ (which we effect with

R = 200), i.e., ΓBµ̃

∣∣∣
R→∞

∼ ΓB,WK
µ̃ , as shown by (2.3). The first set of bifurcation curves

to examine are those pertaining to µ, and are shown in Fig. 6.12. As usual rather than

looking at ΓBµ we can look at Re(ΓBµ ) + Im(ΓBµ ). From now on we will refer to these

bifurcation paths by their ray parameter name.

Figure 6.12 shows several interesting features: however, the most important is that these

ray bifurcation paths do indeed tend to the far-field solutions given by WK. We can see

that of the two real branches one of the real branches disappears in the same way a

branch of the saddles disappears, and that this is coincident with the anti-caustic θd.

Though only the far-field θd is marked, Fig. 6.12 shows that the anti-caustic propagates

into, and therefore exists, in the near-field. The real branches also show that they

become less distinguished as R → ∞, effectively collapsing onto one another. This

resolves the issue of the analytic solution (6.36), as this only gives one real solution in

the far-field. Additionally, the complex branches emanating out of the fold bifurcation
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are also squashed together when R is large. Their imaginary part is vanishing as R→∞.

Upon reaching a certain θ dependent on R, they spread out from each other rapidly as

if they had experienced the fold bifurcation itself. As the WK solution is approached,

this particular points tends to θh: the angle in θ invariant with ϕ that qs goes complex.

For the source and flow configuration shown Fig. 6.7 this line is θ ≈ 31◦. This is also

coincident with the branch points going complex in (6.20) and Figs. 6.1, 6.2, and 6.3.

Hence the analytic solution as shown in Fig. 6.12 has an apparent real solution that

stretches into the CoS in the far-field.

The final feature of note in Fig. 6.12 is the disappearance of the fold caustic as R→ 0.

This phenomenon, appearing in all ς, is intimately related to θd. The general behaviour

of this disappearance is that θf and θd eventually join up so that there is no bifurcation

as R → 0. Thus, for small R the real branches are continuous and there is no silent

region. This is in fact an extremely important result, and one which is necessary in

order for the near source matching of (3.34), Chap. 3. The assumption in this matching

procedure is that under the variable ζ, the acoustic field is locally Helmholtz. It is clear

that the anti-caustic θd is then a necessary requirement for locally Helmholtz fields in

this solution as it kills off the fold.

The effects of θh and the anti-caustic are not limited to the µ-bifurcation set. This fact

should be apparent for θd, but not necessarily θh. In fact the moniker θh for this phe-

nomenon is derived from peculiar behaviour in λ not µ. Interestingly, the phenomenon

associated with θh is restricted to just µ̃ and not τ . For the jet under consideration τ

behaves like O(R) even for complex rays. This behaviour can be deduced from (6.1)

and can be found in [116]. A physical explanation is that rays whether complex or

real spend little time in the jet, so integration time is dominated by their propagation

in a homogeneous field outside of the jet. Other than this, there is little noteworthy

behaviour in τ except for the fold and cusp bifurcations expected.

The λ-bifurcation set is shown in Figs. 6.13 and 6.14, where in order to demonstrate

the effect of θh the complex components of λ in the CoS have been split up into real

and imaginary parts. In the first of these figures many of the features of the µ-diagram

can be seen: namely, the fold caustic and disappearance of the real branch; the gradual

engulfing of the fold and disappearance of complex rays by θd as R → 0. Additional

information about the exact point of the λ disappearance in the far-field is given by the

saddle analysis which loses its second real branch when νF = 0. Inverting this using

(6.37) yields λ − ϕs = π. However, approaching the near-field the second branch does

not disappear at this point. This suggests that a near-field analysis does not provide

the simple conditions afforded to the far-field.

The real ray behaviour is as expected, but it is the complex solutions that contain the

contain the interesting and exotic features. The complex part of the analytical solution
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shows the discontinuity that we expected from qs jumping into the complex plane as θ

is decreased. Although the saddle νF is continuous from (6.37), this can only be so if

there is a discontinuity in λ to counter that in qs. As R is decreased this discontinuity

is softened though the change in ray parameters is still rapid for moderate values of

R. The continuation of the solution across the discontinuity is not obvious from (6.37);

thus only the tracing solution can provide the answer to this conundrum. In Fig. 6.13

we have also plotted the complex solution (grey dashed) obtained if one continues the

solution using the same branch. This is clearly the wrong solution.

Though we have resolved the issue of calculating across the discontinuity, dressing up

the complex solutions using Re(λ) + Im(λ) covers up the true behaviour of the complex

solutions. Examination of Re(λ) and Im(λ) can be undertaken by utilising the path

formulation of Chap. 5. Figures 6.14(a) and 6.14(b) show these respective components

for various R ≥ 5. It is clear that both components do not share the same bifurcation and

that a jump discontinuity is present in the real part; the imaginary part is continuous

but appears non-differentiable in the far-field limit. The jump in the real part leads

to the skewness of the complex solutions in Fig. 6.13 and is an artifact of the choice

of branches when crossing the discontinuity. Other (incorrect) branches can lead to

continuity in the real part and discontinuity in the imaginary part.

The path formulation allows us to consider the the bifurcations as resulting from curves

on multi-valued surfaces. In particular in Chap. 5 it was claimed that paths on the

cusp surface were all that were needed to describe the bifurcations that occurred in the

parallel shear flow model. Already, it is clear that the fold and pitchfork bifurcations

result from this (compare Fig. 6.10, with paths on Fig. 5.3). But it is not immediately

clear what bifurcations Re(λ) and Im(λ) undergo. In the aforementioned cases the firing

variable λ was treated as a variable on the cusp surface; allowing complex continuation

led to complex rays. Now, though, the components Re(λ) and Im(λ) must be treated

as variables on the cusp surface taking separate paths. This is where the hysteresis and

winged cusp bifurcations of (5.21) and (5.22) come in. In general these bifurcations can

cut the singularity structure of the cusp (at least in the case of the winged cusp) but in

this instance the far-field solution only scrapes the cusp point ξ = 0.

If we take the path mapping in both of these cases, it is straightforward to observe

that Re(λ) behaves according to a hysteresis bifurcation where the real part jumps to

other real solutions discontinuously, namely because we do not allow it to have complex

solutions. The problem with the hysteresis moniker here is that if one passes over the

jump then and retraces ones steps, the same values across the jump should be found. The

jump should also always be at θh, independent of which direction in θ one approaches.

To examine this behaviour we have plotted a hysteresis loop using the hysteresis bifur-

cation (5.21) in Fig. 6.15 and depicted the two jump conventions: the delay convention,
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Figure 6.15: Hysteresis loop with delay and Maxwell conventions, A1 < 0. Blue
curve, hysteresis loop. Black line, delay convention. Red line, Maxwell convention.

and the Maxwell convention (see for e.g., Gilmore [111]). In the case of the first, the

jumps are clearly at different points and the path is irreversible (this leads to the hys-

teresis phenomenon) by the fact that the path to the top solution is not the same as the

inverse. In fact the bifurcation set/jumps are coincident with the cusp singularity sets.

In the Maxwell convention the jump is on the symmetry line: it is also reversible. This

latter convention will be adopted although further mathematics should be explored to

justify this [111].

Examining Fig. 6.14(a) in the near-field we see that the jump in the solution is immedi-

ately smoothed for finite values of R, and that the smoothing is continual as R decreases.

In terms of the universal form of the hysteresis this means the auxiliary parameters that

are kept constant for a particular path are a function of R. The far-field limit R → ∞
has A1 < 0 in (5.21), but as soon as R takes on finite values the path jumps to A1 > 0

where the hysteresis loop is smoothed out. Taking R → 0 leads to A1 → ∞ giving the

required smoothing.

The imaginary curve shown in Fig. 6.14(b) behaves according to a cross-section of values

of the winged cusp. There maybe other bifurcations for which the behaviour in Fig.

6.14(b) can be mapped to. The winged cusp, however, illustrates an interesting aspect

of the path formulation. It can be seen that this bifurcation is actually of codimension

3 (see [151]) whereas the cusp surface is only codim = 2. A suitable choice of auxiliary

parameters for the far-field bifurcation is the control set Λc = 0, so that the farfield

solution behaves as the germ of the bifurcation itself, i.e., t3 + Λ2
ctl, giving t = −Λ

2/3
ctl .

As the near-field is approached the germ is perturbed. Here, we will not identify the

exact mapping required, but will demonstrate that smoothing of the germ similar to

Fig. 6.14(b) can be achieved using a positive linear perturbation in Λc. In Fig. 6.16

we have done this using Λc = {Λ1,Λ1,Λ1}. Though this is a particular instance of
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Figure 6.16: Smoothing a continuous but non-differentiable bifurcation using the
winged cusp. Black line, Λc = 0. Blue lines, Λc = {Λ1,Λ1,Λ1}.

the unfolding of the winged cusp, it is plausible that a more precise fix on the values

of Λc could be achieved following through the LS methodology (i.e., solving another

recognition problem).

6.3.2 Amplitude verification

In the previous section it was shown that we could match the analytic far-field ray firing

parameter behaviour accurately and in the near-field limit some of the discontinuous

behaviour found was smoothed. It was shown that for this flow & source configuration

R = 200 is sufficiently large enough to match the analytic solution almost exactly. We

only carried out this benchmark for the mF = 0 Poisson indices. The more interesting

and telling demonstration of the solver is the amplitude verification in which all mF

are used that obey the selection conditions of Chap. 4. Unlike the previous section the

solver will be based on the origin to provide the best match with the modal solution.

Otherwise the solution is similar but slightly displaced due to phase discrepancies.

In Figure 6.17 constant ϕ cross-sections of the Green’s function shown in Fig. 6.7 are

judiciously chosen to illustrate all of the phenomena found therein. The calculations

shown use the same parameters as before, i.e., St = 5, MJ = 0.9, rs = 0.75. Considering

the amplitude first, it is clear to see that a cross-section cutting a caustic leads to a

singularity at that point with a marked divergence in a vicinity about that point. In all

cross-sctions, encounters with a caustic are at a point only, though it is conceivable that

a more general receiver curve could cut along a caustic. Notably, these same points do

not engender a singularity, or divergence for that matter, in the phase of the solution.

The worst case scenario for the phase is a small jump that occurs because the phase has

an integrable singularity at a caustic (see Hayes [144]).
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Aside from the divergences at the caustics - which is typical of these singularities - the

field offers an excellent match. This is particularly notable in the CoS which is exclusive

to complex solutions. In fact we will see that these solutions are even better once the

field is amended for divergence. This is encouraging since the use of complex rays in

this problem is novel and elsewhere in the problem complex rays add smoothing but do

not dominate the field: thus checking the accuracy where quadrature of the ray tracing

equations is more difficult, is important.

Additionally, the presence of Stokes lines emanating from the cusp leads to regions (see

Fig. 6.7) where the cusp complex rays do not contribute. If these are included without

knowledge of the Stokes structure, then this of course leads to a poor match. This also

leads us to question the inclusion mechanisms behind the anti-Stokes crossing. As is

well known the anti-Stokes changes the dominancy of two rays. It is unusual to have

an anti-Stokes line cut into real observer space, however given that this is the case we

must work out how to deal with it. Firstly, this phenomenon occurs to the two complex

rays that coalesce at the fold caustic and they can be continued around the fold caustic

outside of the cone of silence. The anti-Stokes line is a continuation of that experienced

by the same rays if taken about the fold caustic in complex θ-space. The problem is

resolved via backwards induction. The field contribution is best described by using the

subdominant solution either side of the anti-Stokes line: thus we infer that a branch cut

ordinarily used to continue solutions around folds analytically must be coincident with

the anti-Stokes line. Knowing that these complex rays can be continued outside of the

CoS in this manner is beneficial to resolving the disappearing branches.

There is one last structure to examine in the context of ray amplitudes: the anti-caustic

or ray disappearance line. Across this line we lose one real solution, and at this point

there is no continuation so the disappearance is discontinuous and appears to break

ray conservation. When the observer curve cuts the fold caustic as in Figs. 6.17(a),

6.17(b), 6.17(c) and 6.17(d) the disappearance is minimal, with an abrupt change in

the amplitude the significant defect. In the case of amplitude this is partly due to the

high-frequency chosen: lower frequencies would show a larger disparity. In the two cases

discussed, the disappearance is supported by a real ray contribution. In the two cases

shown in Figs. 6.17(e), 6.17(f), 6.17(g) and 6.17(h) the disappearance line delimits the

CoS and the background contribution is from complex rays that would otherwise have

coalesced at the fold caustic. Thus, in these figures there is significant phase disparity

due to the disappearance. The amplitude of the field across the disappearance line is

small, this is part of why the future moniker anti-caustic is used.
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(a) ∆ϕ = 0◦

(b) ∆ϕ = 0◦

(c) ∆ϕ = 60◦

(d) ∆ϕ = 60◦

(e) ∆ϕ = 150◦

(f) ∆ϕ = 150◦

(g) ∆ϕ = 180◦

(h) ∆ϕ = 180◦

Figure 6.17: Ray calculations for Gω/Gω for ∆ϕ = 0◦, 60◦, 150◦, and 180◦ with rs = 0.75, MJ = 0.9, k0 = 28.7. Figures (a, c, e, g) show
104×|Gω/Gω|. Figures (b, d, f, h) show arg(Gω/Gω). Blue lines and symbols, ray calculation. Black line, high-frequency modal sol. θc and θf denote

cusp and fold caustics.
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(a) ∆ϕ = 0◦

(b) ∆ϕ = 0◦

(c) ∆ϕ = 60◦

(d) ∆ϕ = 60◦

(e) ∆ϕ = 150◦

(f) ∆ϕ = 150◦

(g) ∆ϕ = 180◦

(h) ∆ϕ = 180◦

Figure 6.18: Uniform calculations for Gω/Gω for ∆ϕ = 0◦, 60◦, 150◦, and 180◦ with rs = 0.75, MJ = 0.9, k0 = 28.7. Figures (a, c, e, g) show
104 × |Gω/Gω|. Figures (b, d, f, h) show arg(Gω/Gω). Blue lines and symbols, 1-term calculation. Red lines and symbols, 2-term calculation. Black

line, high-frequency modal sol. θc and θf denote cusp and fold caustics.
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Before we study the anti-caustic phenomenon in more detail, we consider the uniform

amplitudes solutions under the same flow/source configuration. These are shown in

Fig. 6.18 using the same cross-sections as before. Here two uniform solutions are plotted

using either a leading order (one-term) expansion or a two-term uniform expansion in the

catastrophes Ψ1 and Ψ2. This corresponds to the m = 0 layer in (5.35) and (5.38).7 The

cusp uniform asymptotics should strictly contain 3 terms: however, the second coefficient

is zero on the cusp’s line of symmetry and other intersections can be modelled using a

fold expansion given that they are sufficiently distance from the cusp point; hence the

one/terms monikers are appropriate.

The uniform results show that the singularity at the caustic along with the divergence in

the immediate vicinity is corrected by both uniform expansions. The largest discrepancy

occurs as the single term expansion is evaluated with increasing distance from the fold

caustic. This term begins to oscillate predicting erroneous zeros in the field as it is

proportional to the Airy function with negative argument. The zeros also lead to poor

phase predictions, engendering a rapid change in phase not experienced by the Green’s

function field. The two-term expansions incorporate a derivative term in Ψ1 and Ψ2

and thus the explanation for their increased validity can be derived by expanding ΨK(ξ̃)

and its derivatives to leading order about all of the nK contributing saddles using the

saddle-point technique. In the following this is done for the cuspoids, though the same

principal applies to the umbilics. The expansion gives,

ΨK(ξ̃) ∼
nK∑
n=1

(
2πi

k0Φ′′K(t?n)

)1/2

eik0ΦK(t?n), −ik
k+1
K+2

0

∂ΨK(ξ̃)

∂ξ̃k
∼

nK∑
n=1

(
2πi

k0Φ′′K(t?n)

)1/2

(t?n)keik0ΦK(t?n),

(6.38)

where ′′ ≡ d2/dt2. Substitution into (5.35), taking only the m = 0 layer, and collecting

all t?n terms together gives,

I ∼
nK∑
n=1

K∑
k=0

ck,0
(
Φ′′K(t?n))

)−1/2
(t?n)keik0(ΦK(t?n)+A)

︸ ︷︷ ︸
A

(n)
0 eik0S

(n)

, (6.39)

which is in fact just another statement of the matrix system given in (5.51). Equation

(6.39) demonstrates that far off-caustic we need to incorporate more than just the k = 0

term (proportional to ΨK) to match up with the ray field. Only in the region close to

the caustic will the k = 0 term make a good approximation on its own. As θ moves

closer to the caustic the coalescing saddle points t?n tend to zero, since if the correct

ΨK is chosen, then at a caustic they are roots of Φ′K(t?n; 0). This allows k > 0 terms in

(6.39) to be neglected without diminishing accuracy.

7This index should not be confused with the Poisson index.
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One can also conclude from (6.39) that expanding the uniform expansions for layers

m > 0 would lead to an amplitude matching with higher order terms in the ray expansion

given by (4.29).

In the vicinity of the caustics we have improved the match of the high-frequency solution:

however, we would ideally like to write the whole solution in terms of one catastrophe

function, rather than in terms of dealing with the fold and cusp separately. In fact this is

more realisable than is at first apparent. For example, the hyperbolic umbilic shown in

Fig. 5.2 has a fold and cusp structure when unfolded, whereas the Green’s function (6.7)

contains both these species in a similar manner.8 The fundamental difference between

the two is the action of the disappearance line or anti-caustic. Not only does this change

the types of rays contributing to the field but it limits the range in which we can apply

the catastrophes. These rely on ray conservation fundamentally. Though we will show

that ray conservation can be met in the next section, the non-canonical nature and the

changing of types cannot be observed in the canonical catastrophes, therefore there is

not one that can be relied upon to provide global uniformity. The impact upon Fig. 6.18

is that disparities due to the disappearance θd still persist.

As a final note on the efficiency of the uniform mappings it is useful to compare an

analytical solution to the fold mapping with the numerical iterative method. Given the

discussion of the iterative method in Chap. 5 and its rapid convergence, we can compare

with the analytical solution of the fold mapping shown in Appendix D. The latter is

cumbersome, longwinded, and hindered by the nature of phase integrals (i.e., no closed-

form sols.). Such a method cannot be implemented into a ray solver in general, and

even this is for the simplest case. The analytical solution can be used as a benchmark,

and it has been observed that the accuracy is the same as the numerical solution in all

aspects of the computation.

6.4 The anti-caustic

In the previous section a new feature, the non-canonical disappearance line, was discov-

ered in the off-axis parallel shear flow Green’s function. This had the impact of washing

out the fold caustic diffraction pattern and delimiting the Cone of Silence without sin-

gularity thus leading to the new moniker of anti-caustic. The absence of singularity was

peculiar as the real ray disappearing branch at the anti-caustic appears to form half of

a standard fold caustic, i.e., two real rays bifurcating into two complex rays.

8Other corank 2 catastrophes contain the same two species as well. This example is a matter of
choice.
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Figure 6.19: νF-bifurcation diagram at ∆ϕ = 8π/15 with new complex branch. Green
branches contribute. Hypothetical branch is mirror of calculated disappearing branch.

The current section investigates the disappearance further, first postulating the existence

of the absent real ray and then locating the conjugate pair on the other side of the anti-

caustic. The anti-caustic is then examined locally using the eucatastrophes derived in

Appendix E.

6.4.1 Anti-caustics and non-canonical disappearances

When analysing the ray solutions of the parallel shear flow problem in §6.3.2 we saw a

single non-canonical structure which we labelled as both a disappearance line and an

anti-caustic. In the case of the former this was related to the discontinuities it engendered

in the amplitude. In this section we shall resolve the issues of ray conservation across

this line and describe why exactly this is an anti-caustic.

There are two critical steps in resolving the anti-caustic question. The first is a matter

of ray conservation and its resolution is made possible by the continuation of complex

rays outside of the CoS as discussed in §6.3.2. If these rays are continued out of the

CoS across θd then they remain complex: no caustic is encountered. If these rays are

continued back to θd for ϕ such that constant ϕ intersects the fold caustic then these

rays appear to bifurcate from θd. We conclude that these form the complex branches of

the missing rays. The reader may enquire as to why if this exponentially small solution

is already known is the discontinuity in the ray results still apparent? The answer to this

is that these solutions are notoriously difficult to continue far outside the CoS, though

their existence is known.

To demonstrate the existence and contribution of these solutions, Figures 6.19 and 6.20

show the νF-bifurcation diagram and magnitude of the field for the ∆ϕ = 8π/15 slice.

This particular ϕ means the receiver curve is dangerously close to the CDP: however,
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Figure 6.20: Comparison of new exponentially smooth field against discontinuous ray
field. Black lines, modal solution. Red lines, discontinuous ray field. Blue lines, rays

with exponential smoothing.

as mentioned above, this is perhaps one of the only regions we can currently calculate

the rays. The bifurcation diagram shows the complex shedding that occurs at θd and

illustrates the change in dominancy that results from the complex branch crossing the

anti-Stokes line in Fig. 6.7. Figure 6.20 shows the effect of including the subdominant

branch for two Strouhal numbers against the ray field without this branch. In the first

of these, Fig. 6.20(a), the same wavenumber is used as in Fig. 6.17. Unfortunately, it

is difficult to deduce whether this exponentially small wave is contributing because it

is still experiencing divergence due to the close proximity of the fold caustic. Thus for

large θ the exponential decay means both ray fields asymptote the modal field. However,

from theory (see Chaps. 2 and 5) it is known that the singulant controls how localized

the divergence is about the caustic: therefore we only need ramp up the frequency to

witness a match as in Fig. 6.20(b). This shows that the “new” complex branch is indeed

a contributor to the field.

Though it is satisfying to see the new branch contributes to the field and smooths the

discontinuities seen in Fig. 6.17, there is still a missing ray contribution. Whereas before

we where short of a ray for θ > θd, now we are short of a ray for θ < θd. Unfortunately,

at this stage of the work with the Lilley equation we have not found this ray, though

we believe it to exist possibly as an acausal branch (negative phase) or at least with

νF < 0 as shown in Fig. 6.19, where it behaves locally as the negative reflection of the

disappearing branch. We will include two of these rays to complete a local analysis of

the CDP shown in Fig. 6.21. In other words, the coalescence of a real disappearing ray

and a hypothetical ray is the putative mechanism to engender a complex conjugate pair.

The reason we require two hypothetical rays about the CDP is due to the complex
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shedding by different rays across θd either side of the CDP, i.e., at control points a4 &

a8. Additionally, these rays are allowed to be complex and have their own caustic at the

same control points as θf , though at this point the hypothetical rays are forced to cross

back (on the crossover line) to the hypothetical sheet by the action of dot-dashed line

(see control point a10). This is supposedly before control point a1 where both solutions

begin to diverge as the caustic is approached on the rays’ respective sheets.

Both occurrences of the complex shedding are without singularity, leading us to con-

clude that the mechanism for all θd sufficiently far from the CDP is the same. Though

we have shown the existence and necessity of the branch crossing θd for ∆ϕ < ∆ϕCDP

we currently cannot do so for for ∆ϕ > ∆ϕCDP as continuation of complex rays is not

sufficient to create a bifurcation diagram. Thus the crossover line and the hypothetical

caustic remain hypothetical until further progress is made with this solution. One expla-

nation for the difficulty continuing rays is that there is also a singularity there meaning

that θd is governed locally by a new form that differs from Thom’s catastrophes.

A final note on the CDP diagram is that the Stokes line shown passing through the CDP

is not integral to the local analysis as far as we know. However, its presence through

the CDP may not be coincidence and may suggest that there is a global form that we

can map the whole field to, though this form will not be in the catastrophe set.

6.4.2 Anti-caustics

The contribution of the new ray branches has been shown to improve the field by smooth-

ing of the discontinuity at θd. However, the bifurcation is not typical of canonical func-

tions. The ray behaviour across θd in Fig. 6.17(f) approaching from θ < θd depicts a

ray contribution whose amplitude dive-bombs into a vanishing value. This can be un-

derstood by studying the analytic ray solution, particularly the derivative of the saddle

condition (6.29) when re-written as,

∂ψWK

∂νF
=
ψWK(νF)

νF
+ 2ν2

F

(∫ ∞
rδ

∓
∫ rs

rδ

)
P ′(r)

rQ(r|νF)
dr ±

2ν2
FP(rs)

rsQ(rs|νF)
. (6.40)

In the far-field the anti-caustic is characterised by νF = 0 for any rays that disappear

there. Clearly, the limit νF → 0 in (6.40) is singular as ∂ψWK/∂νF ∼ αmF/νF, which is

infinite as ψWK(νF) = αmF , the saddle condition, is still satisfied.

Whatever the mechanism, it is a relief to find there is no singularity in the amplitude.

As we have not identified a bounded canonical form at this stage there would be no way

to correct a singularity if it were present. Additionally, the agreement previously seen

of the vanishing amplitude, suggests that whatever form governs θd, it is correct for it

to vanish close to θd thus mirroring its ray expansion. This is contrary to the behaviour

of catastrophes seen before.
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a10

a9

a8

a6

a5

a4

a1

a3

a2

a7CDP

ν★ a1
ν★ a2

ν★ a3

ν★ a4

ν★ a5

ν★ a6
ν★ a7

ν★ a8

ν★ a9
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Figure 6.21: Local analysis about the CDP using rays that coalesce on θf and disappear on θd. an, local test points. Blue points, calculate rays.
Red points, hypothetical rays. Encircled point, contributing ray. Solid thick line, fold caustic. Solid thin line, anti-Stokes line. Black dashed, θd.

Grey dashed, Stokes line from cusp. Dot-dashed, putative crossover line.
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Equation (6.40) shows that the ray amplitude vanishes as νF → 0, and in fact all further

derivatives of ψWK also vanish on this line, as higher derivatives of ψWK can be expressed

as a mixture of lower derivatives and ψWK itself, for e.g., (D.28). Consequently, the

entire ray expansion vanishes to all orders in k0.

6.4.2.1 Local analysis of WKB solutions

In this section a local analysis is performed on the radial Green’s function v1(r) and v2(rs)

of (2.70), Chap. 2 used to build the modal solution. The aim here is by doing this we can

express the ray expansions in terms of the eucatastrophes EK . These functions are similar

to the cuspoid diffraction catastrophes of Chap. 5 but differ by the addition of a logarithm

to the potential, i.e., ΦE
K(ξ) = ΦK(ξ\{ξ0}) + ξ0 log ν. These functions are analysed in

more detail in Appendix E, but the key points are that for the same K classification, the

eucatastrophe has one more saddle than the corresponding catastrophe, given sufficient

distance from the surface ξ0 = 0; and that as this surface is approached at least one

saddle behaves as νF → 0. The special property of these νF → 0 saddles is that they

are accompanied by a vanishing ray amplitude.

To start the local analysis we shall only analyse v2(rs) with rs small, and then study

the full Green’s function v1(r)v2(rs) by partitioning the phase. The local analysis is also

initially restricted by approaching the anti-caustic via θ < θd, i.e., θ ↗ θd. We will show

that the local analysis fits in closely with the behaviour shown by the eucatastrophes

and then consider the ray expansion on the anti-caustic and see if this agrees with the

putative mechanism given at the beginning of this chapter.

Starting with the equation (see (2.70) with νF = n/k0),

v′′ + k2
0

(
q2 −

ν2
F

r2

)
v = 0, (6.41)

which has a WKB solution of the form (integrating up to rs),

v2(rs) ∼
(
q2 −

ν2
F

r2
s

)−1/4

exp

(
±ik0

∫ rs

rδ

(
q2 −

ν2
F

r′2

)1/2

dr′

)
, (6.42)

then for rs, rδ small, consider a Taylor expansion of q2 = Ta(2)
(θ)r2 so v satisfies,9

v′′ + k2
0

(
Ta(2)

r2 −
ν2
F

r2

)
v = 0, (6.43)

which is the same local structure governed by the turning-point case shown in Chap. 2

§2.2.1.2. From that section we know that the solution can be found in terms of Bessel

9Note that q2 has vanishing first term of its Taylor expansion at θd, i.e., q2(r, θ) = ���
�:≈0

Ta(1)(θ) +

Ta(2)(θ)r
2 +O(r4), since Ta(1)(θd) = 0.
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functions,10

v2(rs) = C1(νF, k0)r1/2
s J 1

4

√
1+4k2

0ν
2
F

(
1

2
k0r

2
s

√
Ta(2)

)
+C2(νF, k0)r1/2

s J
− 1

4

√
1+4k2

0ν
2
F

(
1

2
k0r

2
s

√
Ta(2)

)
,

(6.44)

where the constants C1 and C2 are chosen to match with the WKB expansion. The

constants chosen will depend on how we expand (6.44), i.e., with k0νF either small or

large, as this affects the linear independence of the solutions in those limits. Dealing

with the case that νF is small but not zero and k0νF � 1, then the WKB expansions of

(6.43) are found to be,

v2(rs) ∼
r

1/2
s(

Ta(2)
r4
s − ν2

F

)1/4
exp

±ik0

1

2

√
Ta(2)

r4
s − ν2

F +
1

2
νF tan−1

 νF√
Ta(2)

r4
s − ν2

F

− νFπ
4

 ,

(6.45)

where,

∫ rs

rδ

(
Ta(2)

r′2 −
ν2
F

r′2

)1/2

dr′ =
1

2

√Ta(2)
r4
s − ν2

F + νF tan−1

 νF√
Ta(2)

r4
s − ν2

F

−νFπ
4
,

(6.46)

has been used. Then using the relation,

arccos

(
νF

r2
s

√
A2

)
= arctan


√
A2r4

s − ν2
F

νF


=
π

2
− arctan

 νF√
A2r4

s − ν2
F

 ,

(6.47)

the phase (6.46) can be re-written with,

1

2

√Ta(2)
r4
s − ν2

F − νF arctan


√
Ta(2)

r4
s − ν2

F

νF

 =

1

2

√Ta(2)
r4
s − ν2

F − νF arccos

 νF

r2
s

√
Ta(2)

 .

(6.48)

10The solution in that case could not be solved in terms of Bessel functions due to a bounded condition
for zero argument.
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Now if one uses the large k0 expansion of the Bessel function from (6.44) where νF < r2
s

√
Ta(2)

,

then,

J 1
2
k0νF

(
1

2
k0r

2
s

√
Ta(2)

)
∼
√

2

πk0

cos

(
k0

√
1
4r

4
sTa(2)

− 1
4ν

2
F − k0

νF
2 arccos

(
νF

r2
s

√
Ta(2)

)
− π

4

)
(1

4r
4
sTa(2)

− 1
4ν

2
F)1/4

,

(6.49)

since
√

1 + 4k2
0ν

2
F ∼ 2k0νF for k0νF � 1. The expansion for J− 1

2
k0νF

(
1
2k0r

2
s

√
Ta(2)

)
is exactly the same. Hence these two functions are not linearly independent under this

approximation: immediately we set C2 = 0. Then it is straightforward to show that

C1 =
√
πk0e−iπ/4.

This solution gives us two branches as the Airy function before (see (2.79), Chap. 2): if

one uses a uniform solution to J 1
2
k0νF

in terms of Airy functions, then this is the same

as the Airy uniform solution to the WKB problem under the Taylor approximation in

(6.43).

If r2
s

√
Ta(2)

becomes small such that νF > r2
s

√
Ta(2)

, the expansion shown in Eq. (6.49)

is not valid. The Bessel function begins to decay algebraically. If νF � r2
s

√
Ta(2)

the

decaying behaviour is easy to witness,

J 1
2
k0νF

(
1

2
k0r

2
s

√
Ta(2)

)
∼ 1√

πk0νF

(
1

2
r2
s

√
Ta(2)

) 1
2
k0νF

e
1
2
k0(νF−νF log(νF)). (6.50)

This explains the anti-caustic behaviour as the Bessel function has a zero that swells

with increasing k0νF, leading to a strong decay. Thus the small amplitude of the anti-

caustic rays are due to strong algebraic decay as the order of the Bessel function is large

but its argument is large but smaller. The exponential term of (6.50) is reminiscent of

a eucatastrophe potential if one only considers the linear and logarithmic terms: the

particular calculation would be {ξ1, ξ0} → {−ξ1, ξ0}, then ξ1 = 1/2 with ξ0 = ξ1νF.

This also has amplitude proportional to
√
νF if a Taylor expansion of

(
1
2r

2
s

√
Ta(2)

) 1
2
k0νF

is used, agreeing with the 2nd derivative of the exponent. Considering the peculiar

case of K = −1 in the eucatastrophe set then this contains a single ray with vanishing

amplitude.

When k0νF = O(1) or smaller then the approximation
√

1 + 4k2
0ν

2
F ∼ 2k0νF cannot be

made. At the anti-caustic νF = 0, so substituting this value into (6.44) gives,

v2(rs) = C1(νF, k0)r1/2
s J 1

4

(
1

2
k0r

2
s

√
Ta(2)

)
+C2(νF, k0)r1/2

s J− 1
4

(
1

2
k0r

2
s

√
Ta(2)

)
, (6.51)

which gives two linearly independent solutions. For large argument the constants C1

and C2 can be determined again using the asymptotic expansions of the Bessel function
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for large argument,

J± 1
4

(
1

2
k0r

2
s

√
Ta(2)

)
∼ 2
√
πrsT

1/4
a(2)

cos

(
1

2
k0r

2
s

√
Ta(2)

− π/4
)
, (6.52)

and expressing the constants as C1 = −e−iπ/8C̃1 and C2 = eiπ/8C̃2, we can match with

the single WKB branch given as,

v2(rs) ∼ −ir−1/2
s T−1/4

a(2)
exp

(
+ik0

√
Ta(2)

r2
s/2
)
, (6.53)

where we have remembered to include the −i factor due to this branch having been the

reflected branch from the fold caustic.

Choosing the constants such that C̃1 = C̃2, it can then be shown that C̃1 = e−3πi/4
√
π/2.

Thus

v2(rs) ∼
√
π

2
e−3πi/4

(
eiπ/8r1/2

s J− 1
4

(
1

2
k0r

2
s

√
Ta(2)

)
− e−iπ/8r1/2

s J 1
4

(
1

2
k0r

2
s

√
Ta(2)

))
.

(6.54)

We can take this evaluation one step closer by identifying (6.54) as a special case of

the catastrophe Ψ2(ξ1, ξ2), the Pearcey function. On its line of symmetry, ξ1 = 0, the

Pearcey function is soluble in terms of Bessel functions of the first kind, or a parabolic

cylinder function. Both offer an interesting interpretation of the underlying mechanisms

that occur at θd. Expressing (6.54) in terms of the Pearcey function leads to,

v2(rs) ∼
√

2rs
π
k
−1/4
0 T−1/8

a(2)
e

ik0r2
s

√
Ta(2)

/2
e−3πi/4Ψ2

(
0,

1

2
k0r

2
s

√
Ta(2)

)
. (6.55)

Expressing (6.54) in terms of parabolic cylinder functions leads to,

v2(rs) ∼ 21/4k
1/4
0 T−1/8

a(2)
e−5πi/8D−1/2

(
21/2e−πi/4k

1/2
0 rsT

1/4
a(2)

)
. (6.56)

Both of these solutions - which are equivalent - offer two different explanations to the

behaviour on the anti-caustic. These are considered in the penultimate section of this

chapter.
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6.4.2.2 Partitioning of the phase

The analysis shown in this section can easily be generalised to incorporate the other

element of the Green’s function, v1(r). The local analysis above can be adapted to

include v1(r) simply by considering the farfield WKB solution,

v2(rs)v1(r) ∼ −iQ−1/2(rs|νF) exp

(
ik0

(
2

∫ rs

rδ

Q(r′|νF) dr′ +

∫ r

rs

Q(r′|νF) dr′
))

= ṽ2(rs)ṽ1(r),

(6.57)

where,

ṽ2(rs) ∼ −iQ−1/2(rs|νF) exp

(
2ik0

∫ rs

rδ

Q(r′|νF) dr′
)
, ṽ1(r) ∼ exp

(
ik0

∫ r

rs

Q(r′|νF) dr′
)
.

(6.58)

This possible as the so-called phase-reference, rδ in this case, is arbitrary and we can

partition the phases anyway we like so long as we still integrate from rs to r. The local

solutions can be rewritten in both cases.

Approaching the anti-caustic, θ ↗ θd,

ṽ2(rs) ∼


− ir

1/2
s

(Ta(2)
r4
s−ν2

F)1/4 e

ik0

√Ta(2)
r4
s−ν2

F+νF tan−1

 νF√
Ta(2)

r4s−ν2
F

−νF π2

, νF > r2

s

√
Ta(2)

,

e−iπ/4r
1/2
s√

2νF

(
r2
s

√
Ta(2)

2

)k0νF

ek0(νF−νF log(νF)), νF < r2
s

√
Ta(2)

,

(6.59)

At the anti-caustic, θ = θd,

ṽ2(rs) ∼
√

23/2rs
π

k
−1/4
0 T−1/8

a(2)
e

ik0r2
s

√
Ta(2) e−3πi/4Ψ2

(
0, k0r

2
s

√
Ta(2)

)
, (6.60)

or

ṽ2(rs) ∼ 21/2k
1/4
0 T−1/8

a(2)
e−5πi/8D−1/2

(
2e−πi/4k

1/2
0 rsT

1/4
a(2)

)
, (6.61)

which are simple re-scalings of (6.55) and (6.56) respectively.
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6.4.2.3 Flow-factor

Once the radial Green’s functions have been found it is a simple matter of determining

the local ray field. Using the indirect flow-factor the ṽ2 Green’s functions is treated as

a slow function in the integrand. The indirect flow-factor is given as,

R(+)
ω =

∫
C(+)

(
ik0

2πrs

)1/2

ṽ2(rs)ṽ1(r)eik0(∆ϕ−R sin2 θ) dν, (6.62)

where the constants γ
(2)
21 and γ

(2)
12 = eiπ/4γ

(1)
12 from Eq. (2.72), Chap. 2 have been absorbed

for the sake of simplicity.

Approaching the anti-caustic, θ ↗ θd, using (6.59),

R(+)
ω ∼ i

(
rs

∣∣∣∣∣∂ψ̃WK

∂νF

∣∣∣∣∣
)−1/2

e−iarg(∂ψ̃WK/∂νF)/2eik0(νF∆ϕ+
∫ r
rs
Q(r′|νF) dr′−R sin2 θ)×
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1/2
s

(Ta(2)
r4
s−ν2

F)1/4 e

ik0

√Ta(2)
r4
s−ν2

F+νF tan−1

 νF√
Ta(2)

r4s−ν2
F

−νF π2

, νF > r2

s

√
Ta(2)

,

e−iπ/4r
1/2
s√

2νF

(
r2
s

√
Ta(2)

2

)k0νF

ek0(νF−νF log(νF)), νF < r2
s

√
Ta(2)

.

(6.63)

At the anti-caustic, θ = θd, using (6.60) and (6.61),

R(+)
ω ∼ i

√
23/2rs
π

k
−1/4
0 T−1/8

a(2)
e

ik0r2
s

√
Ta(2) e−3πi/4Ψ2

(
0, k0r

2
s

√
Ta(2)

)
×(

rs

∣∣∣∣∣∂ψ̃WK

∂νF

∣∣∣∣∣
)−1/2

e−iarg(∂ψ̃WK/∂νF)/2eik0(νF∆ϕ+
∫ r
rs
Q(r′|νF) dr′−R sin2 θ),

(6.64)

or,

R(+)
ω ∼ i21/2k

1/4
0 T−1/8

a(2)
e−5πi/8D−1/2

(
2e−πi/4k

1/2
0 rsT

1/4
a(2)

)
×(

rs

∣∣∣∣∣∂ψ̃WK

∂νF

∣∣∣∣∣
)−1/2

e−iarg(∂ψ̃WK/∂νF)/2eik0(νF∆ϕ+
∫ r
rs
Q(r′|νF) dr′−R sin2 θ),

(6.65)

where ψ̃WK ≡ ν
∫ r
rs

(r2q2(r) − ν2
F)−1/2/r2 dr, because we cannot use the same Taylor

approximations in the evaluation of the ṽ1 phase. It is worth noting that we must

remember to multiply ṽ2 by i in the above, as −i is already accounted for in the definition

of R
(+)
ω .
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From both cases shown above it is clear that the controlling behaviour of the odes persists

into the ray evaluation, and this is obviously due to the treatment of ṽ2 as a slow function.

As the anti-caustic is approached in (6.64) both flow-factor cases show that there is one

ray contribution with the small amplitude case for the scenario νF < r2
s

√
Ta(2)

. At the

anti-caustic we see that the two equivalent expressions appear. The first of these - the

Pearcey function - is evaluated on its line of symmetry and implies a three ray system on

θd. In other words this means the local potential is quartic and ΨWK can be expanded

this way if a local analysis is performed. The key point though is that the Pearcey

function is evaluated on its line of symmetry away from its caustics, because we assume

that r2
s

√
Ta(2)

> 0. This line of symmetry is special in the sense that it is a Maxwell set

which we have used before in Chap. 6 to describe the ray bifurcation in Im(λ). Maxwell

sets do not describe caustics, i.e., saddle points do not coalesce: however, the saddle

values - the phases evaluated at the saddle points do coalesce. This means the singulant

goes to zero without a caustic. This is another good example of why we always demand

the Jacobian accompanies the singulant as it goes to zero.

The Pearcey function throws up an interesting conundrum: the three ray system does

not agree with putative mechanism seen at the beginning of this section, and if this

corresponds to at least ξ0 = 0, then it implies that the governing behaviour is (at least)

controlled by E2. This makes matters worse in some sense as E2 is a four ray system -

two more than the putative mechanism. One explanation is that we may indeed have a

three ray system engendered by E1 perhaps, which of course could be mapped into the

Pearcey function away from anti-caustic, then on the anti-caustic the loss of one ray is

reflected by the Maxwell set.

The second expression of (6.65) in terms of parabolic cylinder functions is also enlight-

ening. This is the outgoing solution found in quantum mechanics for the scattering of

waves off the peak of a potential barrier [58]. This differs from the solution given in

Chap. 2 as we required two branches of the WKB solution. This was due to the modal

solution having a modal index n that was the same for both branches; now the variable

νF in the ray solution has uncoupled the branches so that only one is required. This

description is more in-keeping with the putative mechanism discussed before, as it is a

two-ray system: the difficulty is the Parabolic cylinder does not fit in so easily with the

eucatastrophe framework.

In this section we have considered the local analysis of the anti-caustic for small rs.

The analysis shown in here is not complete and should be read as a stimulus for future

investigation. There are several obvious immediate steps to continue this work. First,

there is the allowance of Ta(1)
6= 0 in the Taylor expansion that would see the solution

in terms of confluent hypergeometric functions, and secondly rs, should be allowed to

take on O(1) values. The next steps after this would then be an assault on the CDP
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itself. Of course this is difficult without more detailed information on the exact number

of rays and their contributions.

6.5 Conclusion

In this chapter the ray solver developed in Chapters 3-5 was applied to an isother-

mal parallel shear flow problem. Using the high-frequency asymptotics of a Poisson

summation to generalise the theoretical ray solution to complex numbers, the ray trac-

ing solution was benchmarked in both its field evaluation - using the modal solution -

and its ray parameters. The evaluations of the ray solver against the modal solution

yielded excellent results in all regions except the divergence of the amplitude at caustics.

These divergences were corrected using the appropriate diffraction catastrophes, where

multiple-term corrections provided a near perfect match.

In the context of noise control we have seen two cuspoids: a fold and - for the first

time in free jet flows - a cusp caustic. Significantly, they are both of the same order of

magnitude, though both in distinct regions of the jet, i.e., the fold in the forward arc,

the cusp in the rear arc. We may expect then that the aggregate effects of sources may

influenced greatly by these singularities. This will be investigated further in the next

chapter.

Perhaps the most interesting feature of this chapter has been the non-canonical disap-

pearance of rays at what we have deemed to be an anti-caustic. This anti-caustic clashes

with and is the likely cause of the fold caustic’s disappearance at the CDP whilst in-

hibiting the application of the diffraction catastrophes. Though the underlying physical

principle is simple, the mathematical explanation is non-trivial. We attempted to pro-

vide the latter undertaking a local analysis near θd and explaining our results in terms

of eucatastrophes: local forms that generalise the diffraction catastrophes.





Chapter 7

Caustics in ring source models

7.1 Caustics in the ring source models

In this chapter we consider the effect of multiple off-axis sources in the jet, and how

they interact with each other. Interest lies in estimating the impact of the fold and cusp

caustics of Chapter 6 on the resulting acoustic field. A conclusion can then be reached

concerning the significance of these caustics for noise control purposes.

The first part of this chapter considers the effect of a finite number of point sources

placed in the shear layer of a parallel shear flow. This is representative of current AA

methods (see for e.g., Ilário [11]) whereby an interpolation scheme is applied to a large

number of points sources distributed about a mean jet flow to create a global flow factor.

The second part of this chapter considers a continuum of sources, namely derivatives of

the ring-source model from Chap. 2. These are in the form of a weighted and perturbed

ring source mode. In both the discrete and continuum cases, the easiest route is to

construct the solution using the modal solution. This is particularly useful for the latter

as the ray solution would have to reworked for a ring source.

7.1.1 Multiple point sources

The effect of multiple point sources on the field can be examined easily if they lie on the

same source radius due to the separable nature of the Green’s function (2.89). A sum

of Green’s functions with the same source weighting is given by,

1

G
(3)
ω

Ns∑
m=1

Gω(ϕ|ϕsm) =

i

c∞k0(1−M(rs) cos θ)2

∞∑
n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2

Ai (ηn(rs)) eik0(ζn−R sin2 θ)×

ein∆ϕ
[
1 + eik0∆ϕ12 + . . .+ eik0∆ϕ1Ns

]
,

(7.1)
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(a) ∆ϕ12 = π (b) ∆ϕ12 = π/3

(c) ∆ϕ12 = 2π/3, ∆ϕ13 = −2π/3 (d) ∆ϕ12 = π/3, ∆ϕ13 = −2π/3

Figure 7.1: Examples of the magnitude of Eq. (7.1). (a, b) Two sources, (c, d) three
sources. (a, c) Symmetric fields, (b, d) asymmetric fields.

where in this instance ∆ϕ = ϕ−ϕ1 and ∆ϕ1Ns = ϕ1−ϕNs (see Fig. 7.2(b) for Ns = 2).

The fields of two and three point sources at a source radius of 0.75 are shown in Fig. 7.1.

In the cases where these sources are symmetrically placed, i.e., Figs. 7.3(a) and 7.3(c)

the cone of silence begins to become symmetric in ∆ϕ having a periodic boundary,

whereas asymmetric source positioning (Figs. 7.3(b) and 7.1(d)) leads to an asymmetric

boundary though not to the degree of the single point source cases. In each case the

field is complicated by the overlapping interference patterns, distributing the interference

across the whole range in ∆ϕ. The distribution appears to reduce the intensity of the

cusp diffraction patterns particularly in the two source cases. If one were to add sources

with the same weight and radius at different azimuthal angles indefinitely then this

would approach a ring source. This limiting case would conclude the impact of repeated

overlapping of each interference pattern.
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7.1.2 Ring sources

Ring sources are frequently used in aeroacoustics as a model simplification. We argued

in Chapter 2 that round single stream and coaxial jets are assumed to have little az-

imuthal variation and therefore a coherent averaging process can be used to eliminate

this coordinate both from the source model and the Green’s function in an acoustic

analogy. In Chapter 3 we then developed a directivity factor that can extend the ring

source of Chap. 2 to the vector Green’s function case. In this section two instances of

high-frequency ring source are examined. The first instance appears in a convolution

integral for the acoustic pressure, while the latter appears in a two-point correlation

integral for the power-spectral-density.

7.1.2.1 Effects of a simple ring source

The simple ring source model is a convolution of the 3D Green’s function given by (2.89),

with a delta function in the radial coordinate only. A delta function in the streamwise

coordinate, x, is not necessary because there is no dependency on this coordinate in the

far-field. The first ring source directivity factor is given by,

D (r,0)
ω ∼ 1

Gω

∫ π

−π

∫ ∞
0

Gω(x|x′)δ(r
′ − rs)
r′

r′dr′dϕ′

=
i

c∞k0(1−M(rs) cos θ)2

∫ π

−π
Rω(x|x′) dϕ′

=
2πi

c∞k0(1−M(rs) cos θ)2

(
2

k0

√
−η0(rs)

rsQ0(rs)

)1/2

Ai (η0(rs)) eik0(ζ0−R sin2 θ),

(7.2)

since
∫ π
−π e−inϕ′ dϕ′ = 2πδn0 sifts out the zeroth mode only.

An expansion of the Airy mode for large argument would show that this result is propor-

tional to the Flow-Factor used in the MGB method [175]. Thus if the flow is azimuthally

symmetric then a Flow-Factor of this form is appropriate. If, however, the flow is not

symmetric then one cannot use the zeroth mode only.

7.1.2.2 Ring-source directivity factor

The ring-source directivity is the extension of (7.2) to two-point correlations. In the

introduction to this thesis, it was stressed that correlation integrals are those used in
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(a) |Y | : αT ∈ {0.01, 0.1, 1}

Perturbation

Δφ12

(b)

Figure 7.2: (a) Examples of |Y | as a function of n. (b) Example of ∆ϕ12, ring source,
and exponential perturbation to ring source.

making tangible calculations.

D (c,0)
ω ∼ 1

|Gω|2

∫ π

−π

∫ ∞
0

G∗ω(x|x′)Gω(x|x′)δ(r
′ − rs)
r′

r′dr′dϕ′

=
1

c̄2
∞k

2
0(1−M(rs) cos θ)4

∫ π

−π
R∗ω(x|x′)Rω(x|x′) dϕ′

=
4π

c̄2
∞k

2
0(1−M(rs) cos θ)4

∞∑
n=−∞

(
1

k0

√
−ηn(rs)

rsQn(rs)

)
Ai2 (ηn(rs)) ,

(7.3)

since
∫ π
−π ei(m−n)ϕ′ dϕ′ = 2πδnm.

This same function is defined in Wundrow & Khavaran [116] and Khavaran et al. [176].

If one uses the zeroth mode as an approximation to the sum as in the previous section,

then the result is the same as the Flow-Factor given by Self [148].

7.1.2.3 Weighted ring source

It is possible to examine cases where one might apply a parallel shear flow Green’s

function with an azimuthally varying source. In the case of azimuthally weighted ring

of sources the convolutions of (7.2) and (7.3) are more complicated. For D
(r,0)
ω , this
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becomes,

D (r,0)
ω ∼ 1

Gω

∫ π

−π

∫ ∞
0

Gω(x|x′)h(ϕ′;αT )
δ(r′ − rs)

r′
r′dr′dϕ′

=
i

c∞k0(1−M(rs) cos θ)2

∫ π

−π
Rω(x|x′)h(ϕ′;ϕP , αT ) dϕ′

=
i

c∞k0(1−M(rs) cos θ)2

∞∑
n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2

Ai (ηn(rs)) eik0(ζn−R sin2 θ)Y (ϕ;n, ϕP , αT ),

(7.4)

where,

Y (ϕ;n, ϕP , αT ) =

∫ π

−π
ein(ϕ−ϕ′)h(ϕ′;ϕP , αT ) dϕ′, (7.5)

which can be “solved” in terms of error functions if a Gaussian is used for h(ϕ′;ϕP , αT ),

Y (ϕ;n, ϕP , αT ) =

∫ π

−π
ein(ϕ−ϕ′)−αT (ϕ′−ϕP )2

dϕ′ =

√
π

2
√
αT

e
−n(n−4iαT (π−ϕP ))

4αT

[
erf

(
2αT (π − ϕP ) + in

2
√
αT

)
− erf

(
−2αT (ϕ− ϕP ) + in

2
√
αT

)]
.

(7.6)

Here αT measures the decay of the source distribution strength, and ϕP the azimuthal

point at which the distribution is highest. An example of |Y | as a function of n is shown

in Fig. 7.2(a). While the magnitude remains similar for the angular variables ϕ,ϕP , it is

the phase that provides the azimuthal asymmetry. As αT decreases (symmetry increases)

Y behaves more and more like a scaled delta function that sifts out only the zeroth mode

as in (7.3).

Likewise an expression for D
(c,0)
ω can be derived using the Gaussian weighting.

D (c,0)
ω =

1

|Gω|2

∫ π

−π

∫ ∞
0

G∗ω(x|x′)Gω(x|x′)h∗(ϕ′;ϕP , αT )h(ϕ′;ϕP , αT )
δ(r′ − rs)

r′
r′dr′dϕ′

=
1

|Gω|2

∫ π

−π
G∗ω(x|ϕ′)Gω(x|ϕ′)h∗(ϕ′;ϕP , αT )h(ϕ′;ϕP , αT ) dϕ′.

(7.7)
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(a) ϕP = π/2, αT = 1 (b) ϕP = π/2, αT = 5

(c) Unweighted ring source

Figure 7.3: Magnitude of ring source and weighted ring source solutions, D
(c,0)
ω . (a,b)

weighted ring source solutions. (c) unweighted ring source solution given by Eq. (7.3).

It is straightforward to show that,

D (c,0)
ω ∼

2

c2
∞k

3
0(1−M(rs) cos θ)4

×

∞∑
n=−∞

∞∑
m=−∞

(√
−ηn(rs)

rsQn(rs)

)1/2∗(√
−ηm(rs)

rsQm(rs)

)1/2

Ai (ηn(rs)) Ai (ηm(rs))×

eik0(ζm−ζn)Y (ϕ;m− n, ϕP , αT ),

(7.8)

where the square due to h∗(ϕ′;ϕP , αT )h(ϕ′;ϕP , αT ) is absorbed into αT for simplicity.

Equation (7.8) is computed for ϕP = π/2 and αT = 1, 2 in Figs. 7.3(a) and 7.3(b). The

values of αT = 1, 2 are in fact large deviations from the symmetric field and this can be



Chapter 7. Caustics ring source models 179

seen in comparison with symmetric field of (7.3). The noticeable feature of increasing αT

is that a smoothed cusp diffraction pattern begins to appear in the large θ ranges. This

is a feature purely of asymmetry as the cusp diffraction pattern is completely absent

from the unweighted ring source.

Of course the work in this section can easily be generalised to contain multiple peaks.

In this case,

h∗h(ϕ′;ϕP , αT ) = 1 + exp
(
−αT1(ϕ′ − ϕP1)2

)
+ exp

(
−αT2(ϕ′ − ϕP2)2

)
+ . . .

· · ·+ exp
(
−αTN (ϕ′ − ϕPN )2

)
.

(7.9)

The introduction of a constant is aimed at providing approximate continuity in the

source (as ϕ varies) when a symmetry in ϕP is present. Integration of h ∗ h(ϕ′;ϕP , αT )

with exp(i(m− n)(ϕ− ϕ′)) gives,

2πδnm + Y (ϕ;m− n, ϕP1 , αT1) + Y (ϕ;m− n, ϕP2 , αT2) + . . .+ Y (ϕ;m− n, ϕPN , αTN ),

(7.10)

so that D
(c,0)
ω is a combination of (7.3) and (7.8),

D (c,0)
ω ∼

4π

c2
∞k

3
0(1−M(rs) cos θ)4

∞∑
n=−∞

(√
−ηn(rs)

rsQn(rs)

)
Ai2 (ηn(rs)) + . . .

. . .+
2

c2
∞k

3
0(1−M(rs) cos θ)4

×

∞∑
n=−∞

∞∑
m=−∞

(√
−ηn(rs)

rsQn(rs)

)1/2∗(√
−ηm(rs)

rsQm(rs)

)1/2

Ai (ηn(rs)) Ai (ηm(rs))×

eik0(ζm−ζn) [Y (ϕ;m− n, ϕP1 , αT1) + Y (ϕ;m− n, ϕP2 , αT2) + . . .+ Y (ϕ;m− n, ϕPN , αTN )] .

(7.11)

7.1.2.4 Perturbed ring source

In the case of an asymmetric source position the argument of the delta function can

be adapted. The resulting integrals, though, are even more cumbersome than before.

The purpose of these sections is to illustrate the effects of asymmetry and so some

progress can be made if a perturbed ring source is considered. This allows a perturbation

expansion to be constructed in the small parameter ε � 1 say. An illustration of

perturbation in position to the ring source is shown in Fig. 7.2(b).

Formally the expansion is based on the Taylor expansion of a function ε, for example,

f(x; ε) = f(x; 0) + ε
∂

∂ε
f(x; ε)

∣∣∣∣
ε=0

+O(ε2), ε� 1, (7.12)
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which can either be applied to the delta function in the convolution integral,

δ(r − g(ϕ; rs, ϕP , ε)) = δ(r − g(ϕ; rs, ϕP , 0)) + ε
∂δ

∂g

∂g

∂ε

∣∣∣∣
ε=0

+O(ε2), (7.13)

using the chain rule, or to the Green’s function post sifting with the delta function: the

latter is pursued here.

Green’s function convolved with perturbed ring source δ(r′ − g(ϕ, rs, ϕs, ε))/r
′, where

g(ϕ, rs, ϕs, 0) = rs, is,∫ π

−π

∫ ∞
0

Gω(x|x′)δ(r
′ − g(ϕ′; rs, ϕP , ε))

r′
r′dr′dϕ′ =

∫ π

−π
Gω(x|g(ϕ′; rs, ϕP , ε), ϕ

′) dϕ′,

(7.14)

which expanded to O(ε),

Dω =

∫ π

−π
Gω(x| g(ϕ′; rs, ϕP , ε), ϕ

′) dϕ′ =∫ π

−π
Gω(x| g(ϕ′; rs, ϕP , 0), ϕ′) dϕ′ + ε

∫ π

−π

∂g

∂ε

∂

∂g
Gω(x| g(ϕ′; rs, ϕP , ε), ϕ

′)

∣∣∣∣
ε=0

dϕ′ +O(ε2).

(7.15)

The perturbed ring source solution can be written in terms of D
(r,0)
ω ,

D (r)
ω ∼ D0

ω + εDε
ω. (7.16)

Using the expression for Gω, Dε
ω can be written as,

Dε
ω =

i

c∞k0

[
2M ′(rs) cos θ

(1−M(rs) cos θ)3

∫ π

−π

∂g

∂ε
Rω

∣∣∣∣
ε=0

dϕ′ +
1

(1−M(rs) cos θ)2

∫ π

−π

∂g

∂ε

∂Rω

∂g

∣∣∣∣
ε=0

dϕ′
]
.

(7.17)

The expression for Rω is given by (2.89). It has derivative with respect to the source,

∂

∂rs
Rω ∼ −

∞∑
n=−∞

(
2k0Qn(rs)

rs
√
−ηn(rs)

)1/2

Ai′ (ηn(rs)) ein∆ϕ+ik0(ζn−R sin2 θ). (7.18)

so Dε
ω is formed from,

∫ π

−π

∂g

∂ε
Rω

∣∣∣∣
ε=0

dϕ′ =
∞∑

n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2

Ai (ηn(rs)) eik0(ζn−R sin2 θ)Y (ϕ;ϕP , αT ),

(7.19)
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and,

∫ π

−π

∂g

∂ε

∂Rω

∂g

∣∣∣∣
ε=0

dϕ′ = −
∞∑

n=−∞

(
2k0Qn(rs)

rs
√
−ηn(rs)

)1/2

Ai′ (ηn(rs)) eik0(ζn−R sin2 θ)Y (ϕ;n, ϕP , αT ).

(7.20)

where,

Y (ϕ;n, ϕP , αT ) =

∫ π

−π

∂g

∂ε

∣∣∣∣
ε=0

ein(ϕ−ϕ′) dϕ′, (7.21)

The smooth perturbation applied here is in the form of a Gaussian function, i.e.,

g(ϕ′; rs, ϕP , ε) = rs + ε exp(−αT (ϕ′ − ϕP )2), (7.22)

with,
∂

∂ε
g(ϕ′; rs, ϕP , ε) = exp(−αT (ϕ′ − ϕP )2). (7.23)

so that the integrals can be “solved” in terms of error functions as before.

The perturbation method can be applied to the correlation integral in a similar manner.

It is straightforward to show that this results in,

D (c)
ω ∼ D (c,0)

ω + εD (c,ε)
ω , (7.24)

where D
(c,0)
ω is given by (7.3). The perturbed term is the sum of the following two

functions,

1

|Gω|2

∫ π

−π
G∗ω(x|rs, ϕ′)

∂g

∂ε

∂

∂g
Gω(x|g(ϕ′; rs, ϕP , ε), ϕ

′)

∣∣∣∣
ε=0

dϕ′ =

−i

c∞k0(1−M(rs) cos θ)2

∞∑
n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2∗

Ai (ηn(rs)) e−ik0ζn

∞∑
m=−∞

MmY (ϕ;m− n, ϕP , αT ),

(7.25)

and,

1

|Gω|2

∫ π

−π
Gω(x|rs, ϕ′)

∂g

∂ε

∂

∂g
G∗ω(x|g(ϕ′; rs, ϕP , ε), ϕ

′)

∣∣∣∣
ε=0

dϕ′ =

i

c∞k0(1−M(rs) cos θ)2

∞∑
n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2

Ai (ηn(rs)) eik0ζn

∞∑
m=−∞

M ∗
mY (ϕ;n−m,ϕP , αT ),

(7.26)
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(a) ϕP = π/2, αT = 2.5, ε = 0.01 (b) ϕP = π/2, αT = 5, ε = 0.25

Figure 7.4: Magnitude of perturbed ring source solutions, D
(c,0)
ω .

where,

Mm =
i

c∞k0(1−M(rs) cos θ)2
× ∞∑

m=−∞

 2M ′(rs) cos θ

(1−M(rs) cos θ)

(
2

k0

√
−ηm(rs)

rsQm(rs)

)1/2

Ai (ηm(rs)) +


. . .−( 2k0Qm(rs)

rs
√
−ηm(rs)

)1/2

Ai′ (ηm(rs))

 eik0ζm

 .
(7.27)

The addition of these two functions is simply,

2 Re

 −i

c∞k0(1−M(rs) cos θ)2

∞∑
n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2∗

Ai (ηn(rs)) e−ik0ζn×

{ ∞∑
m=−∞

MmY (ϕ;m− n, ϕP , αT )

]
,

(7.28)

since,

Y (ϕ;−m,ϕP , αT ) = Y ∗(ϕ;m,ϕP , αT ), (7.29)

meaning the two functions are conjugates.

The effect of the perturbations on the ring source (shown in Fig. 7.3(c)) are shown in

Fig. 7.4. These figures show even for small changes in the symmetry of the source there

are significant changes in the symmetry of the field. The cusp pattern is immediately

recognisable as soon as the field is perturbed, which is contrast with the weighted fields

where the cusp pattern is not too distinguishable. Furthermore, the cusp pattern is of

a similar magnitude to the diffraction patterns delimiting the cone of silence.
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As with the weighted ring source, the perturbation method can be generalised to include

multiple perturbations to the source position. The source distribution is altered to,

g(ϕ′; rs, ϕP, αT, ε) = rs + exp
(
−αT1(ϕ′ − ϕP1)2

)
+ exp

(
−αT2(ϕ′ − ϕP2)2

)
+ . . .

. . .+ exp
(
−αTN (ϕ′ − ϕPN )2

)
,

(7.30)

so that D
(c,ε)
ω in (7.24),

2<

 −i

c∞k0(1−M(rs) cos θ)2

∞∑
n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2∗

Ai (ηn(rs)) e−ik0ζn×

{ ∞∑
m=−∞

Mm [Y (ϕ;m− n, ϕP1 , αT1) + Y (ϕ;m− n, ϕP2 , αT2) + . . .+ Y (ϕ;m− n, ϕPN , αTN )]

]
.

(7.31)
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It is clear from this work that caustics found in the off-axis single point source field

do contribute to the field when the source model is asymmetric. This is particularly

important to the cusp caustic discovered earlier on in this chapter. This seems to

contradict the Gaussian source model shown in Fig. 3.3 which suggests otherwise, as for

large angles the source model is exponentially small. Further work is thus required to

determine the subtleties of the ring source in this case.

7.2 Conclusion

In this chapter we have investigated the presence of caustics in both discrete and con-

tinuous source models. In particular, we were interested in the effect of the cusp caustic

discovered in the asymmetric solution of Chapter 6. In the discrete cases, which com-

posed of multiple point sources on the same radius with varying azimuthal positions,

the solutions showed the interference between the fold and cusp caustics as the CoS

boundary flattened with increasing source numbers. The extreme case of this - the ring

source - was the first continuous model examined. The perfect symmetry of this model

saw the cusp solutions completely washed out of the field. However, as asymmetry was

introduced through perturbations, the cusp becomes more and more important. This is

critical for two reasons: first, that the cusp is important because it has the same order

of magnitude as the fold; and second, the cusp is a rear-arc or forward beaming phe-

nomenon that has previously not been discovered and may have implications for nozzle

interaction.



Chapter 8

Conclusions and future work

In this thesis a CRT solver has been developed to tackle three ray deficiencies: mul-

tiplicities, complex rays, and caustics, in an arbitrary inhomogeneous moving medium

using a vector Green’s function. The aim was to present a viable method for the com-

putation of Green’s functions for use with an AA. The utility of this ray solver is greatly

enhanced due to the inherent connection between ray bifurcation paths and stable caus-

tics. Caustic stability is an important feature of this thesis as it allows the determination

of complex rays through local analysis, thus solving the complex ray deficiency.

The final part of this thesis serves as a proof of principle with the CRT method applied

to Lilley’s equation in the high-frequency limit. There were several aspects of the solver

to benchmark, for instance, the ray parameters, the amplitude and the phase. In the

case of the former, the ray solver was used to resolve several ambiguities in the ray

parameter bifurcation paths, many of which were explained using the path formulation in

bifurcation theory. In the case of the ray amplitude and phase, the ray solver was shown

to work well, providing high accuracy. In addition to the exotic behaviour shown by the

ray parameters, the amplitude divergences tested the uniform theory by presenting two

cuspoid caustics of the same order of magnitude: a fold, and a cusp. While the former

is fairly well known, the latter is a new discovery in parallel flows and one that implies

that a significant proportion of energy is propagated against the flow.

While the caustics represent the stand out features of the off-axis solution, the use

of complex ray tracing for the first time in aeroacoustics would be easy to overlook.

These solutions were used mainly to propagate into the cone of silence, a shadow region

whose modelling we spent a significant amount of time arguing for. These solutions were

straightforward to propagate once the equivalent two-point BVP was posed.

The equivalent BVP also illustrates features in this thesis that we couldn’t have predicted

at the outset. The identification of the BVP as an optimisation problem allowed us to try

other optimisation or root finding methods that were not gratuitous, but shed light on

the minimum requirements and limitations of each method. Both the GA and winding

185
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number method were presented in a new setting in the context of ray theory. The former

gave a derivative-free route to ray determination, while the WNM was developed to try

and provide a method to track down hard-to-find complex solutions. Even though this

latter method is still in its infancy, further work could make it a useful addition to the

ray menagerie. Another unexpected feature found is the anti-caustic which delimits a

section of the CoS. This structure has all the hallmarks of a stable caustic, i.e., the

coalescence of ray solutions: however, the singularity was absent and the converse - a

vanishing amplitude - is predicted by the rays. We used a new branch of local forms

to investigate this, and though the analysis is somewhat limited, it appears that these

forms are the correct ones to pursue for further work.

When we consider the larger picture of how the ray solver can be incorporated into a

jet-engine noise calculator, we note that noise sources modelled by the Green’s func-

tion developed in this thesis need not be jet noise sources. The work here could be

used to propagate any high-frequency disturbance, for e.g., any of the monopole, dipole

or quadrupole sources involved in the modelling of noise generated by solid or perme-

able boundaries thus potentially extending the Ffowsc Williams-Hawkings [15] acoustic

analogies (see also Curle [177]). It is also foreseeable that the solver could propagate

modes emitted from the lip of a duct. Modal solutions in ducts with parallel shear but

no swirl use the Lilley propagator (known as the Pridmore-Brown [178] operator in this

context), see for e.g., Lloyd & Peake [179], and can be described in terms of ray theory.

Of course in both cases this would mean the inclusion of solid or permeable boundaries,

the possibility of which we discuss in the next section.

A whole-engine prediction tool would also permit further investigation of the effect of the

cusp structure discovered in this thesis. The cusp structure has two major implications.

The first, that the singularity structure is directed upstream towards the nozzle, could

be investigated if the field is allowed to scatter from the nozzle. Even though real flows

do spread, the flow near the exit of a round nozzle is essentially parallel shear which

lends credibility to such a study. The second implication of the cusp - and the fold for

that matter - was noted by (Abrahams et al [28]). Caustics are regions of high intensity

and one might expect that these may affect the compressibility of the flow in a non-linear

interaction. Of course the acoustic analogy neglects interaction as the regime is purely

linear. The present tool being an extension of an analogy is currently incapable of this.

If one were to incorporate the above then the potential is enormous. A generalised

framework for doing this would be utilised for the same reasons as the jet: to interrogate

novel nozzle geometries. Returning to the work completed in this thesis, it is believed

that the ability of the ray solver to provide accurate results particularly in the CoS

should prove critical in future jet calculations and that further applications to more

complicated and fully asymmetric flow regimes should show similar accuracy.
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8.1 Future work

There are several strands of work that can be improved upon or followed up in this

thesis. The most important are listed below. They are motivated from all parts of this

thesis, and range from general improvements to the ray method to the derivation of new

asymptotic methods.

8.1.1 Improvements to the code

This first section outlines some obvious improvements to the ray code, though these are

non-trivial.

8.1.1.1 Unfolding singularities in 2D

The first extension is to improve the determination and unfolding of singularities in 2D

coordinates. The current method parameterises the receiver curve in one scalar parame-

ter, so the Green’s function is calculated in cross-sections. This is not the most efficient

method of determining singularities and uniform asymptotics. Each cross-section is cur-

rently isolated from its neighbour as the algorithm currently goes. The distance of a

caustic point experienced along the receiver curve from a caustic point of higher degen-

eracy is measured by the singulant Chap. 5. This can be avoided if the most degenerate

point on a caustic surface is identified and thus a nearby cross-section of the same caustic

can be identified as part of this larger structure.

8.1.1.2 Inclusion of boundaries

An obvious improvement to this code is the effect of boundaries. Boundaries are well

known to exhibit peculiarities not found in free space problems (see for e.g., Keller’s

GTD [40]). Some work that may be of use is Hanyga’s use of two-point ray tracing for

plane layers, Hanyga [50]. This introduces Snell’s law constraints as well as that of the

receiver position. This could be used to apply constraints at the surface of a boundary

with the final ray segment passing through the observer. Of course boundaries in CRT

are analytically continued which introduces interesting problems concering the analytic

continuation of non-closed form boundaries that must be expressed by fitting curves.

8.1.1.3 Complex rays without CRT

A question that may arise is, “How do we approximate the field in the CoS without using

complex ray tracing?” This motivation for this may be to reduce the computational

burden introduced when the ray tracing system doubles in size, or perhaps to stick

with an IVP for real rays outside of the CoS. One possible way of doing this is to use
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the two-point ray tracing within the fold region near the CoSB delimited by the fold

caustic. The field near the caustic is larger than that near the CoSB delimited by the

anti-caustic. The two-point bifurcation paths of the fold-coalescing rays are collected

and then reflected into the CoS about the fold caustic. The uniform solution to the fold

has an analytic solution to its coefficients, these are then calculated using the reflected

phase and amplitude. The main issue here would be that this method only works in a

region limited to the CoS delimited by the fold (in the ϕ sense) and there may be phase

discrepancies.

8.1.1.4 CRT in an industrial setting

Using the suggestions in this first section on improvements to the CRT code, we can

outline a plan for the implementation of CRT in an industrial setting. Despite CRT tick-

ing the requisite boxes of speed, efficiency and accuracy; it is possible that the added

complexity of CRT/complex-space setting may be off-putting for industrial software en-

gineers. In large scale computations, there may be the temptation to bypass some of the

security mechanisms that increase the likelihood of convergence to ray solutions in aid

of computation time (e.g., predictor-corrector). This is understandable, but complex so-

lutions that fail (i.e., diverge) will typically cause the failure of code as whole. Whereas

it is advised to use a BVP as the primary calculation stage for the ray solution, the pre-

vious section offers a means of bypassing complex ray computation (as opposed to real

solutions). One can use symmetry arguments for all catastrophe functions to compute

their shadow zones; the most important being the fold delimiting the CoS discussed

above. Failure from divergence is then cut out of the algorithm and, though spuri-

ous convergence of real rays may occur, even the minimum BVP requirements should

guarantee physical branches are found.

The CoS problem is one that appears in a variety of jet flows: however, the majority of

the apparatus for dealing with complex rays in this thesis is limited by requirements of

analytic continuation (i.e., complexification of jet profiles). Industrial solvers typically

use RANS whereby mean flow quantities are specified at grid points with an inter-

polation scheme to fill in the gaps. Although, interpolation schemes can be used to

provide analytic continuation, finding a complex global function is expensive. This is

where symmetry methods come into the fore. Symmetry methods eliminate any analytic

continuation requirements.

A suggested industrial algorithm would be as follows:

1. Fire off a real ray distribution (according to IVP) and calculate intersections with

observer sphere.

2. Determine and classify caustics using caustic condition (Jacobian of rays at inter-

section points to zero) and catastrophe theory, resp.
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3. Apply BVP to calculate real multiplicities using caustic classification. Calculate

uniform theory coefficients and then apply symmetry methods to calculate complex

rays.

For CoS particularly:

1. Proceed with real ray distribution as above.

2. CoS is region for small angles void of real rays. Determine boundary of CoS.

3. Calculate caustic rays along boundary. Assume caustic is fold.

4. Apply BVP in multiplicity region near fold. Calculate real uniform theory coeffi-

cients.

5. Use symmetry to propagate into the CoS.

6. Method calculates the dominant near-fold CoS field.

8.1.2 Complex ray methods and expansions

There are several mathematical methods that could be developed to help tricky problems

similar to this in the future.

8.1.2.1 Generalised method of Steepest Descents

The first deals with the method of steepest descents used in Chapter 6 to determine

the saddle contributions. In specifying the C (+) contour end-points we have not been

rigorous but introduced a heuristic argument for these points. It seems that there is

some arbitrariness in specifying the contour, though it is believed the endpoints used in

this thesis are correct (this is supported by the contributions matching the field).

The motivation for the paths was the work by Bleistein [170] on a generalisation of

the method of steepest descents. The problem therein is much simpler than that in this

thesis, as here we deal with nested asymptotic solutions due to the approximations in the

integrand. However, the use of the Stokes structure of the integrand is used as in [170] to

guide the selection of the paths. Future work would involve the further generalisation of

Bleistein’s method thus developing a recipe for tackling complicated scattering problems

that appear in integral form.

8.1.2.2 Incomplete Erdélyi-Kober expansions

As a subset of the work above a useful technique to have at our disposal is the asymp-

totic expansion of incomplete Erdélyi-Kober (EK) integrals (Samko et al. [180]). These

expansions would allow for a more in-depth study of the phase of the WKB solutions

in the ν-plane, particularly in the limit ν → 0 which is of interest at the anti-caustic.

The connection between the phase integral and the EK integrals can be seen as follows.
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Taking the phase,

I =

∫ γ

rδ

(r2q2(r)− ν2)1/2

r
dr, (8.1)

where γ is a makeshift parameter to illustrate both the incomplete (γ <∞) and complete

(γ =∞) cases. Now make the substitution u = rq(r), so that the phase becomes,

I =

∫ uγ

ν
(u2 − ν2)1/2F (u) du, (8.2)

where F (rq(r)) = 1/r(rq(r))′. This can be compared to the incomplete left-hand sided

EK integral,[
Kτ,α
β,uγ

f
]

(ν) =
β

Γ(α)
νβτ

∫ uγ

ν
(uβ − νβ)α−1u−β(τ+α−1)−1f(u) du, α, β > 0 (8.3)

so that,

I =
Γ(α)

β
ν−βτ

[
Kτ,α
β,uγ

uβ(τ+α−1)+1F
]

(ν) =

∫ uγ

ν
(uβ − νβ)α−1F (u) du, (8.4)

with α = 3/2, β = 1/2.

The reason for requiring incompleteness is simple: the integration of regular phases to

the far-field uγ = ∞ will lead to a divergent result. The integrals must be truncated

and expansions may contain information pertinent to both limits of the integral. If the

integrals did converge with uγ = ∞ then one possible starting point for asymptotic

analysis would be the Mellin-Barnes technique (Bleistein & Handelsman [134]) which

can handle ν → 0 and ν →∞.

8.1.2.3 CDP and Eucatastrophes

The work in this thesis concerning the CDP and eucatastrophes is incomplete. The

eucatastrophes were introduced to analyse the anti-caustic away from the CDP. Further

work is required to finish this analysis which would involve: an indepth study of the

eucatastrophes’ singularity structures, particularly their degenerate points for which

the logarithmic term is zero, and a determination of appropriate contours to fix the

definition; complete the analysis of the anti-caustic away from the CDP (as suggest in

the main text) to fix the correct EK ; finally, undertake a local analysis near CDP to

determine if this can be explained in terms of a higher-order EK .

This should allow the clock diagram of Chapter 6 to be completed with certainty whereas

at the moment the hypothetical ray explanation is speculative. Furthermore, this may

lead to a global expression of the field once all rays of the field are included.
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8.1.2.4 Adapt winding number calculation to forms with poles and cases of

non-soluble two-point ray tracing

The winding number method developed in Chapter 4 has some serious shortcomings.

The obvious issue is the limitation to analytic profiles without poles. The first amend-

ment would to develop theory for the case where the analytic continuation of the ray

trajectories contains poles: such cases occur in the jet where the exponential decay of

the shear layer engenders poles in the complex plane.

The second amendment would be to extend the method to cases where the two-point

function is not soluble in closed form as in the LLP case. This means a numerical

procedure for sampling the two-point function to compute the winding number integrals.

8.1.2.5 Trapezoidal rule for amplitude coefficients

One reason we might pursue the catastrophe theory based uniform approximations is

due to recent developments in the computation of the uniform amplitude coefficients.

From (5.31) and (5.33), Chapter 5, for corank 1 potentials then,

Gr(t) =

K∑
k=0

ck,r(ξ)tk +
dΦK

dt
Hr(t; ξ) =

dHr−1

dt
, (8.5)

then G0(t) can be trivially expressed as,

G0(t) =
1

2πi

∮
γ
G0(t′)R0(t, t′) dt′, R0(t, t′) =

1

t′ − t
, (8.6)

where γ is a circular contour that encompasses the origin and any saddles t?. This can

be shown to extend to any level r (Berry & Howls [81]) as,

Gr(t) =
1

2πi

∮
γ
G0(t′)Rr(t, t

′) dt′, Rr(t, t
′) =

(
− 1

dΦK/dt

∂

∂t′

)r 1

t′ − t
. (8.7)

This allows any level of coefficients ck,r to be calculated (further details in [81]). Sur-

prisingly, this is not the further development alluded to: this is in how we calculate

the contour integrals to find Gr(t). The development of a exponentially convergent

trapezoidal rule due to Trefethen & Weideman [181] allows the contour integrals to be

evaluated to a high-degree of accuracy by evaluating the integrand on the unit circle at

a discrete number of points (e.g., 2N), for example,

Gr(t) =
1

2πi

∮
γ
G0(t′)Rr(t, t

′) dt′ ≈

1

2N

2N∑
k=1

ργωkG0(ργωk)Rr(t, ργωk),

(8.8)
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where here ωk = eπi/N is the 2N th root of unity and ργ is the radius of the circular

contour γ. This approximation converges exponentially fast if the integrand is analytic

in an annulus supporting the contour γ.

This provides an alternative method to calculating the coefficients that otherwise are

tackled by an iterative method. An interesting study would be to compare these methods

both in the accuracy of the uniform field and speed of computation as integral approx-

imations such as this have not be carried out using ray tracing methods before. It is

also plausible that this method could be applied to the single variable winding number

theory mentioned in the previous section.



Appendix A

Second Order Quadrupole Tensor

In this appendix a second order quadrupole tensor is derived that is valid in arbitrary

orthogonal coordinates. Commonly this tensor is only required in Cartesian coordinates,

but for the purposes of the main text a general expression is derived, which is then spe-

cialised to cylindrical polar coordinates. The notation in this appendix is self-contained.

The operator required is the double divergence applied to the source distribution Fij .

Using the economy of index notation this is typically written,

∂2Fij
∂ξi∂ξj

. (A.1)

It is well known that the derivative of a tensor is not a tensor, so the derivatives must

be corrected for the spurious effects in coordinate curvature. What is really meant by

(A.1) is Fij,ij , where Fij are the ordinary components of a second order tensor and , ij

denotes a double derivative.

First, the ordinary components of a tensor are converted to contravariant components

(denoted by lowercase and upstairs indices) using the following,

First order (vector), F = anFn = anhn

(
Fn
hn

)
= anhnf

n,

Second order, F = anamFnm = ananhnhm

(
Fnm
hnhm

)
= anamhnhmf

nm,

(A.2)

where the ai’s are basis vectors and hi’s are the stretch factors of vector calculus.

From Morse & Feshbach [57], the derivatives and divergence (respectively) of contravari-

ant tensors are:

First order,

f i,j =
∂f i

∂ξj
+ fm

{
i

m j

}
, (A.3)
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and

fn,n =
1

h1h2h3

∂

∂ξn
(fnh1h2h3) . (A.4)

Second order,

f ij,k =

(
∂f ij

∂ξk

)
+ f im

{
j

mk

}
+ fnj

{
i

n k

}
. (A.5)

Where the terms in braces are Christoffel symbols and are defined as,{
i

i i

}
=

1

hi

∂hi
∂ξi

,

{
i

i j

}
=

{
i

j i

}
=

1

hi

∂hi
∂ξj

,

{
j

i i

}
= −hi

h2
j

∂hi
∂ξj

,

{
i

j k

}
= 0, (A.6)

with the last term true if all indices are different.

For the quadrupole tensor, equations (A.4) and (A.5) are applied in series. Firstly, to

calculate Fij,ij , one of the indices of f ij,k is contracted, j say,1

f ij,j =

(
∂f ij

∂ξj

)
+ f im

{
j

m j

}
+ fnj

{
i

n j

}
. (A.7)

The divergence is then taken on the last remaining free index, i, using the following

notation f ij,ji =
(
f ij,j

)
,i

= f̃ i,i. The divergence f̃ i,i can be used to write the expression

out in full,

f̃ i,i =
1

h1h2h3

∂

∂ξi

(
f̃ ih1h2h3

)
,

=
1

h1h2h3

∂

∂ξi

([(
∂f ij

∂ξj

)
+ f im

{
j

m j

}
+ fnj

{
i

n j

}]
h1h2h3

)
.

(A.8)

Finally, converting back to ordinary components Fij ,

Fij,ij =
1

h1h2h3

∂

∂ξi

([
∂

∂ξj

(
Fij
hihj

)
+

Fim
hihm

{
j

m j

}
+

Fnj
hnhj

{
i

n j

}]
h1h2h3

)
. (A.9)

A.0.1 Cylindrical polar example

In cylindrical polar coordinates {ξ1, ξ2, ξ3} = {x, r, ϕ} the stretch factors are as follows

{h1, h2, h3} = {1, 1, r}. The Christoffel matrices are,

{
1

i j

}
=


0 0 0

0 0 0

0 0 0

 ,

{
2

i j

}
=


0 0 0

0 0 0

0 0 −r

 ,

{
3

i j

}
=


0 0 0

0 0 r−1

0 r−1 0

 . (A.10)

1The end result is independent of contraction order.
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The full tensor sum in (i, j) is then,2

∂2f11

∂x2︸ ︷︷ ︸
(1,1)

+
∂2f12

∂x∂r︸ ︷︷ ︸
(1,2)

+
∂2f13

∂x∂ϕ
+

1

r

∂f12

∂x︸ ︷︷ ︸
(1,3)

+
1

r

∂2

∂x∂r
rf21︸ ︷︷ ︸

(2,1)

+
1

r

∂

∂r
r
∂f22

∂r︸ ︷︷ ︸
(2,2)

+ . . .

. . .+
1

r

∂2

∂ϕ∂r
rf23 +

1

r

∂f22

∂r
− 1

r

∂

∂r
r2f33︸ ︷︷ ︸

(2,3)

+
∂2f31

∂x∂ϕ︸ ︷︷ ︸
(3,1)

+
∂2f32

∂ϕ∂r
+

1

r

∂f32

∂ϕ︸ ︷︷ ︸
(3,2)

+ . . .

. . .+
∂2f33

∂ϕ2
+

1

r

∂f23

∂ϕ
+

1

r

∂f32

∂ϕ︸ ︷︷ ︸
(3,3)

.

(A.11)

Converting back to ordinary tensor components,

∂2F11

∂x2︸ ︷︷ ︸
(1,1)

+
∂2F12

∂x∂r︸ ︷︷ ︸
(1,2)

+
1

r

∂2F13

∂x∂ϕ
+

1

r

∂F12

∂x︸ ︷︷ ︸
(1,3)

+
1

r

∂2

∂x∂r
rF21︸ ︷︷ ︸

(2,1)

+
1

r

∂

∂r
r
∂F22

∂r︸ ︷︷ ︸
(2,2)

+ . . .

. . .+
1

r

∂2

∂ϕ∂r
F23 +

1

r

∂F22

∂r
− 1

r

∂

∂r
F33︸ ︷︷ ︸

(2,3)

+
1

r

∂2F31

∂x∂ϕ︸ ︷︷ ︸
(3,1)

+
∂2

∂ϕ∂r

F32

r
+

1

r2

∂F32

∂ϕ︸ ︷︷ ︸
(3,2)

+ . . .

. . .+
1

r2

∂2F33

∂ϕ2
+

1

r2

∂F23

∂ϕ
+

1

r2

∂F32

∂ϕ︸ ︷︷ ︸
(3,3)

,

(A.12)

If the operators are rearranged according to which component Fij they operate on (sim-

plifying some of the operators) then it is clear the divergence can be written as the

contraction of a symmetric quadrupole operator, Mij , with the component tensor Fij .

Mij is given as,

Mij =


∂2

∂x2
1
r

∂2

∂x∂rr
1
r

∂2

∂x∂ϕ

1
r

∂2

∂x∂rr
1
r
∂2

∂r2 r
1
r2

∂2

∂r∂ϕr

1
r

∂2

∂x∂ϕ
1
r2

∂2

∂r∂ϕr
1
r2

∂2

∂ϕ2 − 1
r
∂
∂r

 . (A.13)

This final expression can be found in Tester & Morfey [29], however the general expres-

sion (A.9) is not readily available in books on tensor analysis. A final check can be made

on this operator by taking the trace of Mij and comparing with the Laplacian operator

in cylindrical polars: the two must be equal.

2Contributions from the term (i, j) are not equal to those of (j, i) in general.





Appendix B

Delta Function Properties

Rather than having to compute a new solution for each component of the Green’s func-

tion, it is convenient to express each component in terms of one solution to which a

variety of derivatives and scalar multiplications can be applied (in the source variable)

to generate other components. In the main text this technique is also used when convo-

lution algebra is used to transfer source derivatives to the Green’s function.

A good example is the general expression for the solutions to Lilley’s equation. These

are in the form,

Lωgi = Ai(δ(x− xs)δ(t− ts)), (B.1)

where Axi
is shorthand for linear derivative operations and multiplications by scalar

functions. The properties of the delta function allows Axi
to be replaced by its adjoint

A ∗xsi operating on the source coordinates. So if g is a solution to (B.1) with Ai = 1 then

gi = A ∗xsig.

The following sections look at the adjoint for the most common components of A and

how these can be applied to the ray theory solution.

B.1 Scalars and derivatives

B.1.1 Multiplication by scalars

Multiplication by a scalar function is simple using the properties of delta functions,

f(x)δ(x− xs) = f(xs)δ(x− xs), (B.2)
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B.1.2 Action of derivatives on the delta function

The action of the observer and time derivatives can be transferred to source function as

follows,∫ ∞
−∞

(
∂

∂x
δ(x− xs)

)
ϕ(x) dx = −

∫ ∞
−∞

(
∂

∂xs
δ(x− xs)

)
ϕ(x) dx, ϕ ∈ C∞, (B.3)

so,
∂

∂x
δ(x− xs) = − ∂

∂xs
δ(x− xs). (B.4)

Using this result the following operator relation holds,

D

Dt
δ(x− xs)δ(t− ts) = − D

Dts
δ(x− xs)δ(t− ts), (B.5)

where,
D

Dts
=

∂

∂ts
+ ū1(xs)

∂

∂xs
. (B.6)

For multidimensional delta functions,

∂n1+···+nk

∂xn1
1 · · · ∂x

nk
k

δ(x− xs) = (−)n1+···+nk ∂n1+···+nk

∂xn1
s1 · · · ∂x

nk
sk

δ(x− xs), (B.7)

and,
∂n

∂x1 · · · ∂xn
f(x)δ(x− xs) =

∑
S

(−)Ls
∂|S|δ(x− xs)

Πi∈S∂xsi

∂n−|S|f(xs)

Πi/∈S∂xi
, (B.8)

where S ranges from 0 to n and indexes the 2n subsets of {1, ..., n} (i.e. the power set of

S), and Ls is the cardinality of the subset of i ∈ S. This can be used to generalise (B.7)

either by applying (B.8) and then collapsing some of the indices (i.e. n = n1 + · · ·+nk),

or by applying the following,

∂n1+···+nk

∂xn1
1 · · · ∂x

nk
k

f(x)δ(x− xs) =

n1∑
`1=0

· · ·
nk∑
`k=0

(
n1

`1

)
· · ·
(
nk
`k

)
(−)`1+···+`k ∂

`1+···+`kδ(x− xs)
∂x`1s1 · · · ∂x

`k
sk

∂n1−`1+···+nk−`kf(xs)

∂xn1−`1
1 · · · ∂xnk−`kk

,

(B.9)

B.2 Application to ray solution

When applying the adjoint operator to the ray solution it is only the derivatives w.r.t.

the source that are of concern. Using (B.10) the source derivatives are applied to the
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pressure ray ansatz (for e.g., see Chap. 3, §3.3.2),

∂n1+···+nk

∂xn1
s1 · · · ∂x

nk
sk

eik0S
∞∑
m=0

Am
(ik0)m

=

∞∑
m=0

1

(ik0)m

n1∑
`1=0

· · ·
nk∑
`k=0

(
n1

`1

)
· · ·
(
nk
`k

)
∂`1+···+`keik0S

∂x`1s1 · · · ∂x
`k
sk

∂n1−`1+···+nk−`kAm

∂xn1−`1
s1 · · · ∂xnk−`ksk

.

(B.10)

It is the differentiation of the eik0S term that generates new powers of k0 so that asymp-

totically only the term multiplied by the largest power is required. The exponential part

of the sum has leading order,

∂`1+···+`keik0S

∂x`1s1 · · · ∂x
`k
sk

∼ (ik0)`1+···+`kΠk
i=1

(
∂S

∂xsi

)`i
eik0S k0 →∞. (B.11)

Given this, it is clear that the dominant term in (B.10) occurs when `1 + · · · + `k = n,

so under this evaluation (B.10) is asymptotic to (B.11) multiplied by the leading order

ray amplitude term A0.

As an example with n = 2, a quadrupole operator ∂2/∂xi∂xj will give leading order

solution,
∂2eik0S

∂xi∂xj
∼ −k2

0psipsje
ik0S , (B.12)

since,
∂S

∂xsi
= −psi . (B.13)





Appendix C

Numerical methods for

continuation

This appendix contains the machinery for realising the continuation theory of Chapter 4

numerically. The first part of this appendix is devoted to computing the tangent vector

to DZF at regular points using the QR decomposition. The second part concentrates

on calculating the null spaces of DZF using Langrangian multipliers, where DZF is

preferred to DzF as the former is the more general case. The third part of this ap-

pendix is devoted to the numerical calculation of the Fréchet derivatives required in the

Liapunov-Schmidt reduction.

C.1 QR decomposition to calculate tangent vectors

The QR decomposition is the most straightforward way of calculating the tangent t

induced by the matrix DZF. The QR decomposition factors a matrix A ∈ Rn×k with

rank r, into the product of a square orthogonal Q ∈ Rn×n, and upper triangular

R ∈ Rn×k with its bottom (n− r)×k block zero. If the matrix is singular, that is r < n,

then the QR decomposition exists, but it is not unique.

Since the tangent satisfies DZF · t = 0, which implies t∗DZF∗ = 0 (the RHS is a vector

when matrix isn’t square), then,

DZF∗ = Q

 R̃

0T

 . (C.1)

Here the standard notation of QR is changed slightly and the zero bottom row elicited

due to a result on skinny matrices (n > k). Now taking the last column of Q, QN+1,
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and calculating Q∗N+1DZF∗ then due to the orthogonality of Q,

Q∗N+1


Q1, Q2, . . . , QN+1





R̃1

R̃2

...

R̃N

0T


= 0, (C.2)

where R̃i denotes a row of R̃. Clearly QN+1 is the desired vector that can then be

normalised to find t.

C.2 Calculating null spaces using Lagrangian multipliers

The method of Lagrangian multipliers is a strategy for finding the local maxima and

minima of a function subject to constraints. The method yields necessary, but not

sufficient, conditions for optimality in constrained problems. Consider the optimisation

problem,

maximize f(x),

subject to g(x) = c, c ∈ R.

Then one looks to form the Lagrangian K , with Lagrangian multipler k,

K (x) = f(x) + k (g(x)− c) , (C.3)

finding all the stationary points {x?, k?} for which ∂xiK = 0. The gradient condition

means that the level sets of f and g are parallel at optimum or stationary points.

However, not all the stationary points will satisfy the constraints so another simultaneous

equation g(x?) = c is added.

C.2.1 Application to the nonlinear map F(Z) = 0

As a first application, it is possible to show that calculating the tangent to bifurcation

paths using (C.1) minimizes the error in the estimate Z̃ of Z. As an optimisation

problem this is stated as finding the minimal ||Z − Z̃|| with the constraint F(Z) = 0,

i.e., min
Z
{||Z−Z̃|| : F(Z) = 0}. As there are a vector of constraints, a multiple constraint

generalisation of the Lagrangian (C.3) can be formed,

||Z− Z̃||2 − F∗k = 0, k ∈ CnD , nD = dim(F), (C.4)
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leading to the simultaneous equations,

F = 0, nD equations, (C.5)

Z− Z̃ = DZF∗k, nD equations. (C.6)

Equation (C.6) can be improved upon by eliminating the multipliers at the expense of

computing the tangent. Since the tangent is orthogonal to DZF, dot both sides with t,

t∗
(
Z− Z̃

)
= t∗DZF∗k = 0. (C.7)

This is just a statement that the predicted point (from an Euler step) subtracted (vec-

torially) from the true point creates a vector perpendicular to the curve at the true

point.

C.2.2 Application to tangent computation at a caustic

At bifurcation points the Liapunov-Schmidt decomposition requires all left-null and null

vectors. Dealing with approximations means a minimisation problem needs to be formed

in order to get a close approximation to these vectors. One of the null vectors is already

found using the QR decomposition (still a valid at the caustic) from the previous section,

so it is a matter of computing the other members. For a corank 1 problem, the matrix

DZF has one left-null vector and two null space vectors; for corank 2, the matrix DZF

has two left-null vectors and three null vectors.

Consider the vector v1 as the null vector that has already been computed from the QR

decomposition. Then the other members of the null space vi can be computed using the

minimisation problem [55]:

min
vi
{||DZF vi||2 + (v∗1vi)

2 : ||vi|| = 1}. (C.8)

Define the matrix A as,

A ≡

DZF

v∗1

 , (C.9)

then the minimisation problem is

min
vi
{v∗iA∗Avi : ||vi|| = 1}. (C.10)

Now forming the Lagrangian,

K =
1

2

(
v∗iA

∗Avi − k
(
||vi||2 − 1

))
, (C.11)
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and then differentiating (the matrix A is known at the bifurcation point and is constant),

∂K

∂vi
= v∗iAA

∗ − kv∗i , (C.12)

equating to zero to find the stationary points and taking the conjugate transpose leads

to the eigenvalue equation,

A∗Avi = kvi, (C.13)

where k is the eigenvalue and vi is the eigenvector. Substituting v∗iA
∗Avi = kv∗i vi back

into the minimisation problem then,

min
vi
{kv∗i vi : ||vi|| = 1}. (C.14)

which, with clearly non-trivial vi, must mean that the smallest eigenvalue(s) k is required

along with corresponding eigenvector(s) vi to be the solutions.

For the left-null vector w a similar approach is taken by forming the minimisation

problem,

min
w
{||DZF∗wi|| : ||wi|| = 1}. (C.15)

which again has an eigenvalue - eigenvector solution if the Lagrangian approach is

utilised.

The QR decomposition for DZF∗ (see Eq. (C.1)) allows the problem to be reduced to

calculating the smallest eigenvalues and corresponding eigenvectors of the matrices R̃R̃∗

and R̃∗R̃ for the null vector and left-null vectors respectively.

C.2.3 Numerical examples of null spaces

To illustrate how well the above algorithm works for computing each null space, it is

applied to a perturbation of the following matrix which suffers from a corank 1 degen-

eracy,

A =


1 2 1 2

1 2 1 3

3 6 3 7

 . (C.16)

It is straightforward to show that A has nullspace spanned by v1 = (−2, 1, 0, 0)T and

v2 = (0, 0, 0, 1)T and left-nullspace spanned by w1 = (−2,−1, 1)T . However at the

approximate bifurcation point the matrix A will contain some numerical error so the

algorithm is applied to,

Ap =


1 2 1 2

1 2 1 3

3 6.001 3 7.001

 . (C.17)
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The small perturbation to A means it has full rank, empty left-null set, and one null

vector (0.7071, 0,−0.7071, 0)T . As an approximation to the spaces of A this is not

complete.

The calculation of the null spaces is greatly facilitated by the following transformation,

v2 = Q

e
0

 , (C.18)

where e is the eigenvector of R̃R̃∗. Then the QR decomposition of A∗p is,

Q =


0.3162 −0.2582 −0.5774 0.7071

0.6325 −0.5164 0.5774 0

0.3162 −0.2582 −0.5774 −0.7071

0.6325 0.7746 0 0

 , R =


3.1623 3.7947 10.1206

0 0.7746 0.7749

0 0 0.0006

0 0 0

 ,

(C.19)

so we can form R̃∗R̃ and R̃R̃∗,

R̃∗R̃ =


10.0001 12.0000 32.0044

12.0000 14.9998 39.0049

32.0044 39.0049 103.0270

 , R̃R̃∗ =


126.8264 10.7818 0.0061

10.7818 1.2005 0.0005

0.0061 0.0005 0.0000

 .

(C.20)

and then calculate the eigenvalues and eigenvectors for each matrix:

For R̃∗R̃,

k = {0, 0.2818, 127.75}, e =


0.8164

0.4084

−0.4082

 ,


0.5057

−0.8470

0.1640

 ,


0.2788

0.3403

0.8980

 (C.21)

For R̃R̃∗,

k = {0, 0.2818, 127.7451}, e =


−0.0001

0.0002

1.0000

 ,


0.0849

−0.9964

0.0002

 ,


0.9964

0.0849

0

 . (C.22)
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The left-null and null vectors can be calculated thus,

w1 =


0.8164

0.4084

−0.4082

 , v2 = Q


−0.0001

0.0002

1.0000

0.0000

 =


−0.5774

0.5772

−0.5774

0

 . (C.23)

Finally, we can check that the candidate vectors do indeed belong in their respective

subspaces:

A∗pw1 = 10−3


0.2000

−0.0082

0.2000

0.1918

 , Apv2 = −10−3


0.4000

0.4000

0.6228

 . (C.24)

One can check that these results, which are subject to normalisation, can be expressed

in terms of the exact results at the beginning of the section.

C.3 Numerical approximation of LS derivatives

There are two ways of approximating the derivatives used in Chapter 4, §4.3.3: first,

the function Ji may have its derivatives approximated directly; second, the Fréchet

derivatives in s and Λ may be computed by finite differences if progress cannot be made

analytically, e.g. DF can be computed via the ray Jacobian. Here the former is preferred.

Standard finite difference schemes applied to Ji (see for e.g. Kincaid & Cheney [150])

give the following approximations to its derivatives,

Ji,%1%1(0, 0) ≈ ε−2 (Ji({ε, 0}, 0)− 2Ji(0, 0) + Ji({−ε, 0}, 0)) +O(ε2),

Ji,,%1%2(0, 0) ≈ 1

4
ε−2 (Ji({ε, ε}, 0) + Ji({−ε,−ε}, 0)−Ji({ε,−ε}, 0)−Ji({−ε, ε}, 0)) +O(ε2),

Ji,%1Λ(0, 0) ≈ 1

4
ε−2 (Ji({ε, 0}, ε) + Ji({−ε, 0},−ε)−Ji({ε, 0},−ε)−Ji({−ε, 0}, ε)) +O(ε2),

Ji,%1%1%1(0, 0) ≈ ε−3

(
−1

2
Ji({−2ε, 0}, 0) + Ji({−ε, 0}, 0)−Ji({ε, 0}, 0) +

1

2
Ji({2ε, 0}, 0)

)
+O(ε2),

(C.25)

where ε � 1, and we have listed selected derivatives (only in two variables) that are

required for the demonstrations of fold and pitchfork in Chap. 4 and for the classification

problem in Chap. 5, §5.4.1.1.

To spell out the mechanics of these finite differences in the context of the ray problem, the

perturbations to gi are shown explicitly in terms of x(ς) and xR(α), where Λ = α−αC .
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So we have,

Ji({ε, ε}, ε) = 〈w∗i ,x(ςC + εv1 + εv2)− xR(αC + ε)〉, (C.26)

where we neglect W in the approximation because its Taylor expansion near the caustic

yields powers O(εn), n > 1. The value of ε used in (C.26) is real, so F is non-trivial and

real in the cases of fold and pitchfork caustic.

C.4 Multidimensional winding number calculation

The algorithm for computing the solutions to the multidimensional WNM of Chap. 4,

§4.6.2 is consider here for completeness. It is similar to the algorithm for the single WNM

found in §4.6 of the same chapter, albeit slightly more involved due to the allowance of

multiplicity of roots other than one. The algorithm with proof can be found in Kravanja

& Barel [154] p. 97 et seq. In the following the dimension of the problem is kept general

and equal to nD.

In brief, the strategy is to first solve for the last component of every root vector i.e. the

set {ς?nD,i}, where again nD is the last component of a root vector, and i book-keeps the

root number. The reason for a component-wise calculation is due to the fact that h(ς)

is a scalar and not a vector (see Eq. (4.64)).

We set h(ς) = h(ςnD) = ςpnD to generate a system of polynomials similar to the single

variable WNM. Using this form of h, (4.69) is used to define,

WM,p
nD
≡
∑
i

µF (ς?i )(ς
?
nD,i

)p, (C.27)

whereas usual WM,0
nD = WM,0 = WM = N is the sum of the multiplicities (equal to the

number of roots if µF = 1,∀ς?). The algorithm proceeds by working with the arithmetic

mean (denoted by ´ ) of the desired roots, for e.g.,

ς́?nD ≡
∑

i µF (ς?i )ς
?
nD,i∑

i µF (ς?i )
=
WM,1
nD

WM
, (C.28)

in order to reduce the ill-conditioning of the matrices in the following. Thus, rather than

computing h(ςnD) we will use a shifted version, i.e., h(ςnD − ς́nD). Corresponding values

are denoted with an accent, e.g., ẂM,p
nD .

ALGORITHM:

1. N ←WM,0

2. ς́?nD ←WM,1
nD /WM

3. ẂM,0
nD ← N ; ẂM,0

nD ← 0; ẂM,p
nD ← h(ςnD−ς́?nD) = (ςnD−ς́?nD)p, for p = 2, . . . , 2N − 1
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4. Calculate the eigenvalues, £1, . . . ,£N , of the pencil,[
ẂM,r+q+1
nD

]N−1

r,q=0
−£

[
ẂM,r+q
nD

]N−1

r,q=0
(C.29)

where,

[
ẂM,r+q
nD

]α,β
r,q=0

=


ẂM,0
nD ẂM,1

nD . . . ẂM,β
nD

ẂM,1
nD ẂM,2

nD . . . ẂM,β+1
nD

...
...

...

ẂM,α
nD ẂM,α+1

nD . . . ẂM,α+β
nD

 (C.30)

5. ς?nD,i ← £i + ς́?nD,i, for i = 1, . . . , N

6. Solve the Vandermode system
1 1 . . . 1

£1 £2 . . . £N

...
...

...

£N−1
1 £N−1

2 . . . £N−1
N




µF (ς?1)

µF (ς?2)
...

µF (ς?N )

 =


ẂM,0
nD

ẂM,1
nD
...

ẂM,N−1
nD

 , (C.31)

7. t́k,p ← h = ςk(ςnD − ς́?nD)p, for k = 1, . . . , nD − 1 and p = 0, . . . , N − 1

8. Solve the Vandermonde system
1 1 . . . 1

£1 £2 . . . £N

...
...

...

£N−1
1 £N−1

2 . . . £N−1
N




ς̊1,1 . . . ς̊nD−1,1

ς̊1,2 . . . ς̊nD−1,2

...
...

ς̊1,N . . . ς̊nD−1,N

 =


t́1,0 . . . t́nD−1,0

t́1,1 . . . t́nD−1,1

...
...

t́1,N−1 . . . t́nD−1,N−1


(C.32)

ς?k,i ← ς̊k,i/µF (ς?i ) for k = 1, . . . , nD − 1 and i = 1, . . . , N

9. ς?nD,i, µF (ς?i )← {ς?nD,i}\{ς
?
nD,i
|µF (ς?i ) = 0}, {µF (ς?i )}\{µF (ς?i |µF (ς?i ) = 0}

In the above, the last step is used to discard all spurious solutions with multiplicity equal

to 0. Due to the numerical nature of the problem, the discard criterion µF (ς?i ) = 0, can

be replaced by µF (ς?i ) ≈ 0.



Appendix D

Uniform solution to the fold

caustic using Bleistein’s method

D.1 Mapping

When there is an integral representation of the field it is possible to calculate the mapping

discussed in Chapter 5 without resorting to numerical inversions of the canonical function

mappings. However, only in the simplest cases, e.g., K = 0, 1, 2, does a closed form

solution of the mapping exist, and even then the difficulty of rigorously defining the

mapping is a function of the original integrand. In this section the closed form solution

given in Chapter 6 is used to calculate the uniform solution at the CoS boundary (CoSB)

θC ≈ 39.5◦ for ∆ϕ = π/3. This can be used across the CoSB that is delimited by a fold

caustic only.

It has already been seen that the complex solutions of the integral are already quite

challenging due to the Riemann sheet structures introduced to allow for multiplicities.

At the caustic special measures must be taken in order to ensure that the map remains

conformal and this requires higher-derivatives of the phase function ΨWK . At a fold,

the limiting process requires its third derivative. From a novelty point of view, this is

the first proper use of an analytic mapping applied to the Lilley problem. The uniform

method used by Wundrow & Khavaran [116] was based on an “at-caustic” expansion

mixed with a polynomial interpolation scheme.

Since the behaviour of the saddles has been studied, it is known that they coalesce on

the indirect sheet, so it is R
(+)
ω that is of interest. A reminder of the closed form integral,

R(+)
ω =

∫
C(+)

[
ik0

2πrsQ(rs|ν)

]1/2

eik0[∆ϕν+ζ(r|ν)+ζ(rs|ν)−R sin2 θ]dν =

∫
C(+)

â(ν)eik0ΨWK(ν) dν.

(D.1)

209
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The flow factor is expressed in terms of R
(+)
ω solely,

Gω

Gω
∼ R

(+)
ω

ω(1−Ms cos θ)2
. (D.2)

This has interesting ramifications when the saddles move across to the R
(−)
ω sheet.

The following mapping for the fold caustic is slightly different from that in the main

text, with the full details given in Bleistein and Handelsman [134]. Here the canonical

function,

Ψ̂2(γ) =

∫
C

eψ̂2(t;γ)dt =

∫
C

e
−
(
t3

3
−γ2t

)
dt, (D.3)

where the complex contour starts and ends in the valleys∞e−2πi/3,∞e2πi/3 respectively.

There are two reasons why this form is preferred over the fold used in Chapter 5. The

first is that the unfolding of the saddle point structure away from the caustic requires

complex rays and therefore a contour deformation anyway; secondly, the mapping of

the canonical polynomial is multi-valued and choosing the correct branch is greatly

facilitated by a complex contour.

The following changes are made for convenience in comparsion to Chap. 5: (k0/2πi)1/2b = b̂;

iΦ2 = ψ̂2; iA = Â; dν/dt = J (see Eq. (5.30)). For clarity b̂ is rewritten in terms of

coefficients ĉ because, even though Ψ̂2 is easily expressible in terms an Airy function,

the change in canonical polynomial does affect the value of the uniform amplitude coef-

ficients.

b̂(ti) =
2∑

k=0

ĉk(x)tki ,
∂

∂t
ψ̂2(ti; γ) = 0, i = 1, 2. (D.4)

The uniform form is given by [134],

R(+)
ω ∼ 2πi expk0Â

[
Ai(k

2/3
0 γ2)

k
1/3
0

ĉ0 +
Ai′(k

2/3
0 γ2)

k
2/3
0

ĉ1

]
. (D.5)

In the following a plus or minus attached to the saddle ν±F does not denote the Riemann

sheet it is on: this is still denoted by superscript (±) on Rω. Also, the Schwartz reflection

principle is used in the locality of the caustic for functions that have real values on the

real line. Put simply the following conjugate property holds F (ν̄) = F (ν). This aids the

calculation of the mapping since the phase has this property and can be used to make

sure the following mappings are consistent.

The fold caustic has closed form solutions to the mapping iΦ2 = ψ̂2 +A and the system

in (D.4). These are detailed in [134] and are given by,

4γ3

3
= i
{

∆ϕν+
F + ζ(r|ν+

F ) + ζ(rs|ν+
F )−∆ϕν−F − ζ(r|ν−F )− ζ(rs|ν−F )

}
, (D.6)
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Â =
i

2

{
∆ϕν+

F + ζ(r|ν+
F ) + ζ(rs|ν+

F ) + ∆ϕν−F + ζ(r|ν−F ) + ζ(rs|ν−F )
}
− iR sin2 θ (D.7)

ĉ0 =
1

2

[(
ik0

2πrsQ(rs|ν+
F )

)1/2 dν

dt

∣∣∣∣
ν+
F

+

(
ik0

2πrsQ(rs|ν−F )

)1/2 dν

dt

∣∣∣∣
ν−F

]
(D.8)

ĉ1 =
1

2γ

[(
ik0

2πrsQ(rs|ν+
F )

)1/2 dν

dt

∣∣∣∣
ν+
F

−
(

ik0

2πrsQ(rs|ν−F )

)1/2 dν

dt

∣∣∣∣
ν−F

]
(D.9)

The Jacobians dν/dt must be defined uniquely by fixing the cube root of γ in (D.6).

The cube root can be calculated using the local method found in [134],

1

2
arg ∆ν+

1

2
arg(i(∆ϕ−ψWK(ν̄)))−2π

3
< arg(γ) <

1

2
arg ∆ν+

1

2
arg(i(∆ϕ−ψWK(ν̄)))−π

3
, modπ

(D.10)

where ν̄ is the point of coalesence and the increment ∆ν is in the direction of the original

complex contour from the point of coalescence. Here eiπ/2 is used as the exponential

part as prior to coalescence (θ < θf ) the complex contour given in Fig. 6.4(f) is at an

angle of π/2 w.r.t. the coalescence point. This fixes γ as follows,

θ < θf : arg(i(∆ϕ− ψWK(ν̄))) =
π

2
, −π

6
< arg γ <

π

6
. (D.11)

θ > θf : arg(i(∆ϕ− ψWK(ν̄))) = −π
2
, −2π

3
< arg γ < −π

3
. (D.12)

where a separate determination of γ is used either side of the caustic.

This allows the root on dν/dt to be fixed when evaluating at the saddles. Using another

local method from [134],

ν̇|t=±γ ≈
ν+
F − ν−F

2γ
, arg(ν̇)|t=±γ ≈ arg(ν+

F − ν−F )− arg(γ), (D.13)

which requires that all functions are evaluated near θ = θc.

θ < θf : arg(ν̇)|t=±γ ≈ −
π

2
(D.14)

θ > θf : arg(ν̇)|t=±γ ≈ −
π

2
(D.15)

The derivatives of the mapping are determined to be

θ < θf : ν̇|t=±γ = −e∓iπ/4(2|γ|)1/2ei arg(γ)/2e−i arg(∂ψWK/∂ν
±
F)/2/|∂ψWK/∂ν

±
F |1/2, Im(ν+

F ) > Im(ν−F ).

θ > θf : ν̇|t=±γ = e∓iπ/4(2|γ|)1/2ei arg(γ)/2e−i arg(∂ψWK/∂ν
±
F)/2/|∂ψWK/∂ν

±
F |1/2, ν−F > ν+

F .

(D.16)
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D.1.1 Coalesced saddle

When the two saddles coalesce a cube root needs to be determined. The best way of

determining the root is by comparing directly with a saddle point expansion about the

coalescence.

Considering an integral of the form,

I(k0) =

∫
C(+)

â(ν) exp (ik0ΨWK(ν)) dν, k0 → +∞, (D.17)

then the contribution from a saddle ν0 of order m is given to leading order as,

I(k0) ∼ â(ν0)

m

 m!

k0

∣∣∣Ψ(m)
WK(ν0)

∣∣∣
β/m

Γ
(
β
m

)
exp

[
ik0ΨWK(ν0)− iβ

α

m

]m−1∑
p=0

γp exp [iβ(2p+ 1)π/m] .

(D.18)

Where β = 1 for â regular, α = arg(iΨWK), and γp is an orientation anomaly that

depends on the direction of the path through the saddle(s). For a contour that passes

through a critical point once, only two terms of the sum are non-zero: one for entering

the critical point, the other leaving.

At the fold caustic m = 3 and applying Eqs. (D.18)-(D.1), denoting the coalesced values

by , we have,

R(+)
ω ∼ 1

3
â(ν̄)

(
3!

k0 |−i∂2ψWK/∂ν̄2|

)1/3

e−
i
3

arg(−i ∂2ψWK/∂ν̄
2)×

Γ
(

1
3

)
eik0[∆ϕν̄+ζ(r|ν̄)+ζ(rs|ν̄)−R sin2 θ]2e

iπ
6 cos(π6 ),

(D.19)

with,

â(ν̄) ∼
[

ik0

2πrsQ(rs|ν̄)

]1/2

, (D.20)

and the orientation anomalies have been set to γ1 = 1, γ2 = −1, and γ3 = 0.

A direct comparison is made by evaluating the leading order term of (D.5) with (D.19),

using the following: Ai(0) = 3−2/3/Γ ( 2
3
) and Γ(z)Γ(1− z) = π/ sin(πz).

R(+)
ω ∼ −24/3πiωrootâ(ν̄)

(
k0

∣∣∣∣−i
∂2ψWK

∂ν̄2

∣∣∣∣)−1/3

×

e−
i
3

arg(−i ∂2ψWK/∂ν̄
2)Ai(0)eik0[∆ϕν̄+ζ(r|ν̄)+ζ(rs|ν̄)−R sin2 θ],

(D.21)

where ωroot is the cube root of one, to be determined. Upon applying the reflection

formula to the Airy zero ( Γ(1/3)Γ(2/3) = 2π/
√

3 ), we can see that the solutions match

iff ωroot ≡ e2πi/3.
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D.1.2 Calculation of derivatives

In addition to the first derivative of ψWK a second derivative w.r.t ν is required. As in

Chap. 6 this is achieved by differentiating under the integral sign and then syphoning

off any singularities introduced by the turning-point.

Reintroducing,

∂Q(r|ν)

∂ν
= − ν

r2Q(r|ν)
,

∂

∂r
rQ(r|ν) =

1

2r2Q(r|ν)P(r)
,

∂rδ
∂νF

= 2νFrδP(rδ),

(D.22)

where,

P(r) =
1

r(r2q2)′
. (D.23)

The general form of ∂ψWK/∂νF (where ± references the (±) Riemann sheets)

∂ψWK

∂νF
=

(∫ ∞
rδ

∓
∫ rs

rδ

)
1 + 2ν2

FrP
′(r)

r2Q(r|νF)
dr ±

2ν2
FP(rs)

rsQ(rs|νF)
, (D.24)

and the second derivative is found by expressing the singularity producing part of this

integrand as,

∂

∂ν

[
2ν2P ′(r)

rQ(r|ν)

]
=

4ν

rQ(r|ν)

[
P ′(r) + ν2P(r)P ′(r) + rν2

(
P ′2(r) + P(r)P ′′(r)

)]
+· · ·

· · · − ∂

∂r

[
4ν3P(r)P ′(r)

Q(r|ν)

]
. (D.25)

and integrating the result to give,

∂2ψWK

∂ν2
=

1

ν

∂ψWK

∂ν
− ψWK

ν2
+ · · ·

· · ·+
(∫ ∞

rδ

∓
∫ rs

rδ

)
4ν

rQ(r|ν)

[
P ′(r) + ν2P(r)P ′(r) + rν2

(
P ′2(r) + P(r)P ′′(r)

)]
dr+. . .

· · · ± 4ν3P(rs)P ′(rs)

Q(rs|ν)
± ∂

∂ν

[
2ν2P(rs)

rsQ(rs|ν)

]
, (D.26)

whereupon the use of,

∂

∂ν

[
2ν2P(rs)

rsQ(rs|ν)

]
=

4νP(rs)

rsQ(rs|ν)
+

2ν3P(rs)

r3
sQ

3(rs|ν)
, (D.27)
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and simplification due to ∂2ψWK/∂ν
2 containing ∂ψWK/∂ν and ψWK gives the final

form,

∂2ψWK

∂ν2
=

3

ν

∂ψWK

∂ν
− 3ψWK

ν2
+ . . .

. . .+

(∫ ∞
rδ

∓
∫ rs

rδ

)
4ν3

rQ(r|ν)

[
P(r)P ′(r) + r

(
P ′2(r) + P(r)P ′′(r)

)]
dr + . . .

· · · ±
[

4ν3P(rs)P ′(rs)

Q(rs|ν)
+

2ν3P(rs)

r3
sQ

3(rs|ν)

]
.

(D.28)

D.1.3 Continuation when the integrand is not regular

An analytical mapping may prove limited when the integrand contains multivalued func-

tions. The above mapping actually applies to a fairly small range of control variable

in its current form. One of the rays changes sheets (on both sides of the caustic), and

so it is interesting to see how the uniform mapping can account for this even though

the assumption the integrand is regular and one-to-one in the domain of interest has

been made. However, as long as the ray doesn’t go too near the branch point then some

amendments should be possible particularly as the ray numbers are still conserved and

branch cut orientations are arbitrary.

The necessary amendments are found by tracking the multivalued factor,

[
ik0

rsQ(rs|ν)

]1/2

. (D.29)

The −i factor that comes out of this when crossing Riemann sheets is the Stokes multi-

plier from before. This is the correction factor that needs to be applied to components

of the ĉ0 and ĉ1 already given. For example ĉ0 is corrected to,

ĉ0 =


1
2

[
−i
(

ik0
2πrsQ(rs|ν+)

)1/2
dν
dt

∣∣
ν+ +

(
ik0

2πrsQ(rs|ν−)

)1/2
dν
dt

∣∣
ν−

]
, θ < θf

1
2

[(
ik0

2πrsQ(rs|ν+)

)1/2
dν
dt

∣∣
ν+ − i

(
ik0

2πrsQ(rs|ν−)

)1/2
dν
dt

∣∣
ν−

]
, θ > θf .

(D.30)

Even though the mapping derivatives are multi-valued, they aren’t of a sufficiently sim-

ple form that a ± factor can be drawn out. The continuation allows the asymptotic

calculation of the field over a large range of angles since the saddles are mostly on the

direct sheet, R
(−)
ω . Although the steepest descent paths of the integrals R

(±)
ω were

complicated, the local mappings in Eqs. (D.6)-(D.16) mean that all the steepest path

information is contained within the uniform solution.



Appendix E

Eucatastrophes

In this appendix we introduce the eucatastrophes utilised in the main text in order to aid

the discussion of the behaviour in the region containing the anti-caustic. These functions

are scaled versions of the functions used by Bleistein [182] to model the coalesence of

stationary points with algebraic singularities. The eucatastrophe moniker is simply

meant to reflect that these forms have similarities with catastrophes but without the

singularity at the control variables origin ξ = 0, hence eu-catastrophe.1 Bleistein’s paper

considers functions of the form (see (3.1), p. 541 of [182]),

I(k0,α,β, r) =

∫
C

q∏
µ=1

(t− βµ)rµg(t)e−k0f(t;α) dt;

β = {β1, . . . , β1}, r = {r1, . . . , rq}.

(E.1)

Here the quantities of interest are the set of algebraic singularity points β, their powers

r - possibly fractional - and the control variables α. It is the addition of these algebraic

singularities that perturbs these forms from the usual catastrophes. We will take this

one step further by allowing the power (we will only consider one algebraic singularity,

i.e., q = 1 in (E.1)) to be a function of a control variable, whilst also scaling by the

wavenumber k0 so as to include it in exponent of the exponential. Indeed, we could also

allow the algebraic singularity position to be a function of another control variable, but

we don’t consider that case here. The eucatastrophes are defined as,

EK(ξ) ≡
∫

C
e−k0ΦE

K(ν; ξ) dν =

∫
C

exp

[
−k0

(
νK+2 +

K∑
n=1

ξnν
n + ξ0 log ν

)]
dν, 0 ≤ K ≤ 4,

(E.2)

where ΦE
K is the eucatastrophe potential.

1In fact eucatastrophe is in fact a Tolkeinism for happy accident in the spirit of ”deus ex machina”.
In our scenario the accident pertains to coalescence, the happiness due to absence of singularity.
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Modulo the wavenumber scaling and imaginary factor in the exponent, the eucatas-

trophes are symbolically the same as the diffraction catastrophes (see (5.9)) when the

logarithmic term is turned off via ξ0 = 0, as the potentials of both theories are related

via ΦE
K(ν; ξ) = ΦK(ν; ξ\{ξ0}) + ξ0 log ν. We have also allowed for K = 0, though this

case is not forbidden in the study of uniform asymptotics (see for e.g., [81]). In this

work no contour C is made explicit which limits the study of these functions: however,

we require that EK(0) 6= 0 and that the function remains physical for ξn ∈ R. The

reason for introducing these functions is purely to study the behaviour of the saddles

and further derivatives of the exponent, and the effect of the logarithmic term.

Though the similarities between diffraction catastrophes and eucatastrophes are clear,

there is one significant difference pertaining to the number of saddle points. The presence

of the logarithm in the exponent allows the eucatastrophe EK to have K + 2 saddles in

general, which compares to the K + 1 of the diffraction catastrophe ΨK . In the former,

this is true for all regions bar ξ0 = 0 (the anti-caustic structure), where the number of

saddles reduces to K + 1, as the logarithm is turned off. Consequently, we expect a

change of form in EK not found in ΨK . As we shall see, this has implications for the

caustic structure of EK .

Additionally the eucatastrophe potential has an infinite number of derivatives with pole

at ν = 0. An interesting case then arises when ξ = {0, . . . , 0,−ξ0}, this has K + 2

saddles at a position proportional to ξ
1/K+2
0 . As ξ0 → 0 the derivatives of ΦE

K will

become infinite as the saddles coalesce, thus giving a ray field which vanishes. This can

be seen from the general expression,

∂mΦE
K

∂νm
=

Γ(K + 3)

Γ(K + 3−m)
νK+2−m +

K∑
n=1

ξn
Γ(n+ 1)

Γ(n+ 1−m)
νn−m +

(−)m+1ξ0

νm
∼ (−)m+1ξ0

νm
,

ν → 0,

(E.3)

which is independent of K. However, just like the diffraction catastrophes are bounded

at a caustic despite their ray expansions diverging, the eucatastrophes are also bounded

despite their ray expansions vanishing. This can be seen by setting ξ0 = 0 in EK ,

which yields a finite value for the integral by definition. We can guarantee this is

true by analogy with the diffraction catastrophes for both ξ0 = 0 and ξ = 0 without

specifying C . Therefore the eucatastrophe exhibits a clash of limits and sheds light on

the eucatastrophic moniker as the coalescence does not diverge but the converse occurs

where the rays predict a diminishing field as the anti-caustic is approached.
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E.1 Other eucatastrophes

In the previous section we described the corank 1 eucatastrophes. These were essentially

chosen due to their vanishing ray contributions near the anti-caustic structures. It is

worth bearing in mind that the eucatastrophes EK motivate further forms which have

similar properties. These are based upon the derivative of ΦE
K shown in (E.3), so that,

Em
K (ξ) ≡

∫
C

e−k0ΦE ,m
K (ν; ξ) dν =

∫
C

exp

[
−k0

(
νK+2−m +

K∑
n=1

ξnν
n−m +

ξ0

νm

)]
dν,

0 ≤ K ≤ 4, m ≤ K + 1,

(E.4)

where the restriction upon m means that Em
K always has saddles.

While Em
K (ξ) contains eucatastrophic structures there is a notable difference compared

with EK(ξ). While the latter contains a logarithmic singularity the former contains

an algebraic singularity in its potential: the integrand thus has an essential singularity.

Though the focus of this chapter is concerned with EK , Em
K (ξ) are interesting themselves

and are indeed reminiscent of the corank 2 catastrophes shown in (5.17) and Berry &

Howls [132].

E.2 Caustics of the eucatastrophes

The eucatastrophes may stand out from other local forms used in this thesis by contain-

ing anti-caustics: however, as the potentials of these functions are a linear combination

of catastrophe polynomials and a logarithm, the eucatastrophes also contain caustics.

Clearly on the surface ξ0 = 0 these caustics coincide with those of ΦK . In this section

we consider the effect of the logarithm upon the caustic structures of EK .

Caustics are found the same way as in previous chapters, i.e., the solution in ξ to the

equations,

∂ΦE
K

∂ν
=

(K + 2)νK+2 +
∑K

n=1 ξnnν
n + ξ0

ν
= 0,

∂2ΦE
K

∂ν2
=

(K + 2)(K + 1)νK+2 +
∑K

n=1 ξnn(n− 1)νn − ξ0

ν2
= 0,

(E.5)

where the polynomials in the numerator of each are of the same power.

A straightforward example of a caustic in a eucatastrophe can be shown by ΦE
1 . The

relevant equations are,

3ν3 + ξ1ν + ξ0 = 0,

6ν3 − ξ0 = 0.
(E.6)



Appendix E. Eucatastrophes 218

The solution to this is in the form ξ3
1 = const.ξ2

0 . Notably this is the same as the Pearcey

function with ξ0 = 0 its line of symmetry. This means E1 has two folds meeting at a

cusp-like point. Also ξ = 0 is the caustic point of Pearcey but the full anti-caustic of E1

controlled by the Airy function. Clearly this is because E1(0) 6= Ψ2(0).

E.2.1 Derivatives of catastrophes

The eucatastrophes have an interesting relationship with the diffraction catastrophes

of Chap. 5. This can be seen by taking derivatives w.r.t. the control variable ξ1 of a

diffraction catastrophe, for example,(
∂

∂ξ1

)ξ0
ΨK = (ik0)ξ0

∫
C ′
νξ0eik0ΦK(ν; ξ\{ξ0}) dν =

∫
C ′

eik0ΦK(ν; ξ\{ξ0})+ik0ξ0 log(ν) dν.

(E.7)

What (E.7) says about the eucatastrophes is that - bar a scaling by ik0 - the eucatas-

trophes result from the diffraction catastrophes by a generalisation of the derivative

formula to real values rather than just real integers. More surprising is that while EK

has K + 2 rays away from ξ0 = 0 it is expressible in terms of diffraction catastrophes

and derivatives that have K + 1 rays. This can lead to peculiar alternative descriptions

of local behaviour in terms of both K + 1 and K + 2 ray systems at the same time (see

§6.4.2.3, Chap. 6).
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