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Abstract  21 

We assess erosion and flooding risk in the northern Gulf of Mexico by identifying 22 

interdependencies among oceanographic drivers and probabilistically modeling the resulting 23 

potential for coastal change. Wave and water level observations are used to determine 24 

relationships between six hydrodynamic parameters that influence total water level and 25 

therefore erosion and flooding, through consideration of a wide range of univariate 26 

distribution functions and multivariate elliptical copulas. Using these relationships, we 27 

explore how different our interpretation of the present-day erosion/flooding risk could be if 28 

we had seen more or fewer extreme realizations of individual and combinations of parameters 29 

in the past by simulating 10,000 physically and statistically consistent sea-storm time series. 30 

We find that seasonal total water levels associated with the 100-year return period could be up 31 

to 3 m higher in summer and 0.6 m higher in winter relative to our best estimate based on the 32 

observational records. Impact hours of collision and overwash – where total water levels 33 

exceed the dune toe or dune crest elevations – could be on average 70% (collision) and 100% 34 

(overwash) larger than inferred from the observations. Our model accounts for non-35 

stationarity in a straightforward, non-parametric way that can be applied (with little 36 

adjustments) to many other coastlines. The probabilistic model presented here, which 37 

accounts for observational uncertainty, can be applied to other coastlines where short record 38 

lengths limit the ability to identify the full range of possible wave and water level conditions 39 

that coastal mangers and planners must consider to develop sustainable management 40 

strategies.     41 
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1. Introduction 45 

Erosion and flooding occur on sandy coastlines when the total water level (TWL) exceeds 46 

critical thresholds of backshore features. Ruggiero [2013] defined TWL as the superposition 47 

of astronomical tide (ηA), storm surge (or non-tidal residual; ηNTR), and the extreme wave 48 

runup statistic (R2%; e.g., Stockdon et al. [2014]), all of which can be derived with various 49 

numerical or empirical models. The impacts of extreme oceanographic events, in terms of 50 

erosion of barrier islands and sandy beaches and flood damages in low-lying coastal areas, 51 

also strongly depend on how long critical TWL thresholds are exceeded (i.e. the event 52 

duration is important). For long-term simulations of erosion, the duration of calm periods 53 

between successive sea-storm events are also relevant since they determine how much the 54 

beach or dune can recover before the next extreme event occurs.  55 

All of the above-mentioned variables are modulated by climate variability, including climate 56 

change (e.g., trends), introducing non-stationarity into the system. For our case study site, 57 

Dauphin Island in the northern Gulf of Mexico, Wahl and Plant [2015] (hereafter referred to 58 

as WP15) found, for example, significant trends in mean sea level (MSL), significant wave 59 

height (Hs), and peak wave period (Tp) between 1980 and 2013; this led to an increase in the 60 

erosion and flooding risk (from hereon we refer to erosion risk for both) by ~30% over this 61 

three-decade period. WP15 also reported significant changes in the amplitudes of the seasonal 62 

cycles of MSL and Hs, resulting in an additional increase in erosion risk in summer of ~30% 63 

and similar decrease in winter. For the next 30 years they projected that erosion risk may 64 

increase by up to 300% under a high sea-level rise scenario and assuming that observed trends 65 

in wave parameters continue. In the present study we shift our focus from “climate” to the 66 

role of “weather” (and the associated sea-state conditions), acting on much shorter time-scales 67 

than the seasonal to decadal changes considered in WP15.  We do this by analyzing individual 68 

extreme oceanographic events observed within the 1980 and 2013 time period. 69 
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Observational records are often used to quantify erosion risk; for example by determining 70 

impact hours [Rugiero, 2001] when TWLs resulted in collision (where waves reach dunes), 71 

overwash (where waves overtop dunes), or inundation (where the wave-averaged water level 72 

exceeds the dune crest elevation), according to the storm impact scales defined by Sallenger 73 

[2000]), or by performing extreme value analysis on TWL time series. However, observations 74 

comprising simultaneous water levels and waves sample a limited number of locations and 75 

limited periods of time, ranging from several days or weeks for the most detailed studies to a 76 

few decades for long-term stations. Hence, we should not assume that we have already seen 77 

the highest possible realizations of the individual variables contributing to TWL and erosion, 78 

nor should we assume that we have seen all possible extreme event combinations, and we 79 

expect that there will be uncertainty in any estimate of future extreme values of erosion 80 

[Serafin and Ruggiero, 2014]. We explicitly account for this by assessing the erosion risk in 81 

the northern Gulf of Mexico in a probabilistic way by developing and applying a multivariate 82 

sea-storm model (MSSM). Such a model should account for the non-stationarity in the 83 

different variables and the dependencies, represented through joint correlations, between 84 

variables. 85 

Several authors used statistical approaches to determine joint probabilities of multivariate sea-86 

storms or to investigate past and/or future erosion risk at different coastline stretches around 87 

the globe: e.g., DeMichele et al. [2007] for Italy, Callaghan et al. [2008] for south-east 88 

Australia, Wahl et al. [2012] for the German Bight, Corbella & Stretch [2012a, 2012b, 2013] 89 

for South Africa, Li et al. [2014a, 2014b] for the Dutch coast, and Serafin and Ruggiero 90 

[2014] for Oregon on the north-west coast of the United States. The models considered in 91 

those studies all differ in the way they account for non-stationarity and/or interdependencies 92 

between variables and also in their definition of “sea-storm events”. Here we make use of 93 

these earlier applications and develop a generic model that is functionally similar to several of 94 
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the earlier models. Our approach is unique in the sense that it is developed for, and applied to, 95 

a region that experienced significant long-term changes in seasonal cycles of sea level and 96 

wave heights [Wahl et al., 2014; WP15]. Including this form of non-stationarity, in addition to 97 

other variations and trends, is important because it affects vulnerability estimates of sandy 98 

beaches, dunes, and built infrastructure that are threatened when specific morphological 99 

elevation thresholds are exceeded. While driven by different meteorological forcing, these 100 

elevation thresholds can be exceeded by both tropical and extra-tropical events depending on 101 

the superposition of waves and water levels; hence models must be capable of considering 102 

both types of storms.    Specifically, because extreme-value distributions are fit to historical 103 

data sets, estimates of vulnerability depend on the actual extreme events that were observed.  104 

We assume that these events were drawn from some random distribution and that, in an 105 

alternate realization of our universe, a different set of events would have been observed.  And, 106 

in the future, different events will be observed.   107 

The different steps that are involved in the data pre-processing, the model development, and 108 

(selected) model applications are summarized in Figure 1 and described in more detail in the 109 

following sections. In section 2 we describe the available observational data for a case study 110 

site (Dauphin Island, Alabama) and summarize the different steps of the MSSM development 111 

in Section 3. In Section 4 we apply the model with the main objective of exploring how 112 

different our interpretation of the present-day erosion risk in the northern Gulf of Mexico 113 

(defined through TWL return periods and impact hours of collision and overwash under 114 

stationary morphological conditions) could be if more or less extreme realizations of 115 

individual variables and/or their combinations had occurred in the observational period or if 116 

we had much longer data sets available. The results are briefly discussed in Section 5 and 117 

conclusions drawn in Section 6. 118 

 119 
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2. Data 120 

Our case study site is Dauphin Island, a barrier island off the coast of Alabama in the northern 121 

Gulf of Mexico. The oceanographic data we use for the model development were the same 122 

that were used in WP15 and we refer to this earlier paper for details on how the time series of 123 

the different variables were derived. The final data set comprises hourly records of water 124 

levels (at a tide gauge on Dauphin Island) and the wave parameters Hs, Tp, and direction θ (at 125 

a wave buoy offshore in 28m water depth) for the period 1980 to 2013 (Figures 2a to 2d). 126 

Those variables (except for θ) exhibit significant decadal trends, inter-annual variability, and 127 

seasonal cycles whose amplitudes also changed through time in case of MSL and Hs (see 128 

WP15). We account for this non-stationarity by removing 30-day running medians (shifted by 129 

one hour each time step) from the hourly time series of water levels, Hs, and Tp (blue lines in 130 

Figures 2a to 2c).  We then apply parallel offsets so that the medians of the last three years in 131 

the observed and “corrected” (de-trended and de-seasonalized) time series are the same and 132 

the corrected time series is representative of the recent climate. This non-parametric approach 133 

to account for non-stationarity is straightforward and effectively removes all linear and non-134 

linear, long-term, and cyclic trends, whose role in altering the erosion risk was already 135 

assessed in WP15. The corrected time series fulfill the stationarity criteria for the subsequent 136 

statistical analysis and trends and variability can easily be re-included at a later step in the 137 

model application. Alternatively, one can model the non-stationarity through parametric 138 

functions within the statistical analysis [e.g., Méndez et al., 2006; Serafin and Ruggiero, 139 

2014]; this may, however, introduce additional uncertainties (especially when the selected 140 

functions represent a poor fit) because it requires the estimation of more parameters, 141 

particularly in our case where changing seasonal cycles have been observed.  142 
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From the corrected observational records we obtain ηNTR and ηA by performing a year-by-year 143 

tidal analysis with the Matlab t_Tide package [Pawlowitz et al., 2002] (Figures 2e and 2f). 144 

We also determine R2% with the empirical formulation of Stockdon et al. [2006]: 145 

 146 

ܴଶ% = 1.1 ൜0.35	tanߚሺܪ଴ܮ଴ሻଵ/ଶ + ൣுబ௅బ൫଴.ହ଺ଷ	tanఉమା଴.଴଴ସ൯൧భ/మଶ ൠ	   (1) 147 

 148 

where tanβ represents the foreshore beach slope, H0 is the offshore significant wave height 149 

Hs, and L0 is the offshore wave length given by Airy’s linear wave theory as (g/2π)Tp2. We 150 

use the average present-day beach slope on Dauphin Island of 0.07 (the spatial variability 151 

ranges from 0.04 to 0.18) to derive an hourly R2% time series which is superimposed onto the 152 

observed water levels to obtain TWL (Figure 2h).  We want the individual sea-storm events 153 

used in the development of the MSSM to be representative for the entire barrier island and 154 

therefore use the average beach slope at this stage of the analysis. Later, in the model 155 

application when we calculate impact hours for Dauphin Island (Section 4) we use detailed 156 

spatially variable morphological data, including foreshore beach slopes and elevation of the 157 

dune toe and dune crest. The data were extracted using a standard methodology [Stockdon et 158 

al., 2009] applied to a lidar survey data set conducted by the U.S. Geological Survey in July 159 

2013 [Guy and Plant, 2014] and were smoothed and interpolated in the alongshore direction 160 

every 10 meters as described in WP15. Dune toe and crest heights are used here as proxies for 161 

backshore elevations that are relevant to assess coastal erosion risk. Water levels that exceed 162 

the dune-toe elevation are required to initiate dune erosion whereas water levels that exceed 163 

the dune crest elevation lead to potential changes in the dune position, dune height, and, due 164 

to overwash, changes in the island morphology landward of the dune. In this study we want to 165 
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explore only the effects of altering the oceanographic forcing variables; therefore we assume 166 

stationary present-day morphological conditions throughout the analysis.  167 

 168 

3. Model development and validation 169 

3.1 Threshold selection and event definition   170 

The first step of developing the MSSM consists of extracting sea-storm events from the 171 

observational records. Here, we want to identify events where TWL exceeded a critical 172 

threshold making it likely for morphological change to occur; and we also want to know how 173 

much the different variables contributed to those events and if there is a dominant driver that 174 

can be used for the event selection. Therefore, for each individual year, we find the hourly 175 

values when TWL exceeded 1.2 m above the North American Vertical Datum of 1988 176 

(NAVD88; in Dauphin Island NAVD88 lies 18 cm below MSL and 20.7 cm below mean high 177 

water for the 1983 to 2001 epoch). This represents approximately the 5th percentile of dune 178 

toe heights (ranging from 1.1 m to 2.6 m across the island with an average of 1.75 m) and it is 179 

likely that dune erosion occurs somewhere on Dauphin Island when TWL (assuming the 180 

average beach slope of 0.07) exceeds this threshold.  181 

The annually averaged TWL from all threshold exceedances from a given year are then 182 

computed. We also want to assess the relative importance of the contributions of MSL (here 183 

the 30 day running median of hourly water levels), ηA, ηNTR, and R2%. Thus, we also 184 

calculate annual averages for each individual variable  during the TWL threshold exceedances 185 

(Figures 3a and 3b). This is done separately for summer and winter seasons in order to isolate 186 

tropical and extra-tropical weather events. We define the summer from June through 187 

November (i.e. the Atlantic Hurricane season) and the winter from December through May. In 188 

both seasons the wave contribution dominates the TWL threshold exceedances, explaining 189 
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73% and 79% of the average TWL exceedance events for summer and winter, respectively 190 

(Figures 3a and 3b). The other variables played a less important role in pushing TWL beyond 191 

critical thresholds.  192 

With the wave contribution being so dominant we also calculated average Hs values for all 193 

times when TWL exceeded the 1.2 m threshold. Based on the results shown in Figures 3c and 194 

3d we select Hs thresholds of 1.4 m and 1.6 m for summer and winter, respectively, to 195 

identify “extreme events” directly from the wave heights, which are independent of the beach 196 

slope. In some instances waves higher than the thresholds were observed offshore but 197 

coincided with negative surge values at the tide gauge. This suggests that winds blowing away 198 

from the shoreline were responsible for the high offshore waves and it is likely that smaller 199 

waves occurred close to shore and did not result (in combination with the water level) in 200 

collision or overwash. To account for this we only consider events where the Hs thresholds 201 

were exceeded and the simultaneous surge was positive. A careful screening of the initial data 202 

set, including the wave direction, confirmed that there were no relevant events where high 203 

waves and negative surge resulted in high TWL. 204 

Based on these definitions we apply the following approach to identify individual multivariate 205 

sea-storms: we search for the Hs threshold exceedances and select the concomitant Tp and θ 206 

values; the duration (D) of an event is defined as the time period where Hs remains above the 207 

threshold, if it drops below the threshold and stays there for more than 24 hours (that is the 208 

same value used for example by Li et al. [2014b]) we assume a new event, otherwise we 209 

assume that the threshold exceedance is still associated with the same large scale weather 210 

system. This assures that events are approximately independent for the subsequent statistical 211 

analysis. Once we know the start and end dates of individual events we select the largest 212 

(positive) ηNTR and simultaneous ηA values. This event definition approach is outlined by the 213 

schematic in Figure 4. In total, we use six variables to define individual multivariate sea-214 
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storm events: ηA, ηNTR, Hs, Tp, θ, and D. We find 358 events in summer (~1.8 events/month) 215 

and 421 events in winter (~2 events/month) for the 1980 to 2013 period.  216 

  217 

3.2 Modelling marginal variables 218 

In Section 3.3 we describe a copula-based approach to model the interdependency between 219 

the different sea-storm variables. One of the advantages of using copulas is the decoupling of 220 

the marginal and dependence problem [e.g., Nelson, 2006]. This allows us to be flexible in 221 

selecting (and mixing) various marginal distributions that are most suitable to capture the 222 

behavior (mainly in the tail regions) of the underlying data sets. In terms of the marginal 223 

distributions, the six variables are treated differently as described below. We fit the following 224 

distributions, which are typically used in (coastal) hydrologic applications, to the summer and 225 

winter samples of ηNTR, Tp, and D: generalized extreme value (GEV), exponential, gamma, 226 

inverse Gaussian, logistic, log-logistic, lognormal, Rayleigh, t location-scale, and Weibull. 227 

The distributions that fit best to the underlying data (see Figure 5) are identified by 228 

minimizing the root mean squared error (RMSE) between theoretical and empirical (obtained 229 

here with Weibull’s plotting position formula [Chow, 1964]) non-exceedance probabilities 230 

(Pu). 231 

As described in the previous section, the maximum Hs associated with each event are derived 232 

with a peaks-over-threshold approach and therefore – instead of testing different distributions 233 

– we assume, similar to Serafin and Ruggiero [2014], that the generalized Pareto distribution 234 

is capable of modelling the tail behavior of the samples (Figure 5b). The Quantile-Quantile 235 

plots in Figure 5 show that, in general, the selected distributions fit well to the summer and 236 

winter samples of ηNTR, Hs, Tp, and D. The GEV distribution selected to model summer ηNTR 237 

underestimates the largest values, which were the result of strong hurricanes that are typically 238 

underrepresented in (short) observational records [e.g., Haigh et al., 2014; Nadal-Caraballo 239 



11 
 

et al., 2015]. However, it has been shown here that the wave contribution dominates most of 240 

the large TWL values, and therefore we expect the moderate underestimation of the most 241 

extreme ηNTR to have only a negligible effect on the overall results. Furthermore, all selected 242 

distributions (including the GEV distribution for summer ηNTR) pass the Kolmogorov-243 

Smirnov goodness-of-fit test at the 95% confidence level.  244 

The two remaining sea-storm variables, ηA and θ, vary within restricted ranges, and therefore 245 

– instead of fitting parametric distributions that can be extrapolated beyond the observed 246 

values – we use their respective empirical distributions (ECDFs) to draw samples within the 247 

Monte-Carlo simulation (Section 3.4). Histograms derived from the observed samples of all 248 

variables are shown on the diagonal of Figure 6. This highlights the advantage of separating 249 

summer and winter samples as some of them (especially ηNTR and Hs) clearly stem from 250 

different populations.  251 

 252 

3.3 Dependence analysis and modelling 253 

Next, we want to identify dependencies between variables. Therefore, we calculate Kendall’s 254 

rank correlation τ for all data pairs in our sample of extreme events; we prefer the rank 255 

correlation over the widely applied linear correlation coefficient because it also captures 256 

potential non-linear relationships. When τ is significant (95% confidence) for a given variable 257 

pair the respective scatter plot in Figure 6 is colored, when τ is insignificant the data are 258 

plotted in grey. In both seasons ηNTR, Hs, Tp, and D share significant (95% confidence) 259 

dependency, with τ ranging from 0.34 to 0.58. We want our model to account for those 260 

interdependencies and different multivariate approaches exist (and have been applied in the 261 

past) for this purpose, most notably Archimedean [e.g., DeMichele et al., 2007; Corbella and 262 

Strecth, 2013] and elliptical [e.g., Li et al., 2014b] copulas, the multivariate logistics model 263 

[e.g., Callaghan et al., 2008; Serafin and Ruggiero, 2014], and a conditional model 264 
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introduced by Heffernan and Tawn [2004] [e.g., Gouldby et al., 2014]. Li et al. [2014a] 265 

considered and compared the first three approaches using a data set from the Dutch coast and 266 

concluded – based on a goodness-of-fit test – that the Gaussian copula was most suitable to 267 

model the interdependencies. For the Australian coast Li [2014] identified Archimedean 268 

copulas and the Gaussian copula to be applicable to model the interdependencies, while the 269 

logistics model failed the goodness-of-fit test. The Gaussian and t-Student copulas belong to 270 

the class of elliptical copulas [e.g., Embrechts et al., 2003] arising from elliptical distributions 271 

via Sklar’s theorem [Sklar, 1959]. They are restricted in the sense that they are not capable of 272 

modelling tail dependence (stronger/weaker dependence in the upper/lower tails or vice 273 

versa), but they also have the advantage of being easily constructed and applied to d-274 

dimensional data sets. Archimedean and extreme value copulas are capable of modelling tail 275 

dependence but their extension to higher dimensions is more complicated. Based on the 276 

conclusions drawn by Li et al. [2014a] and Li [2014], and as a trade-off between capturing 277 

much of the relevant interdependencies and reducing model complexity, we test the ability of 278 

the two elliptical copulas to model the observed interdependencies.  279 

Copulas are distributions over the unit hypercube [0,1]d; therefore, we transform the 280 

observations by rescaling their ranks by a factor 1/(N+1), where N is the number of events 281 

(358 in summer and 421 in winter). For a given linear correlation matrix ∑ ∈ ܴௗ	×	ௗ (in our 282 

case d = 4) the multivariate Gaussian copula can be written as: 283 

 284 

ሻݑሺ∑ܥ = Ф∑൫Фିଵሺݑଵሻ, … ,Фିଵሺݑௗሻ൯     (2) 285 

 286 
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with uj ~ U(0,1) for j = 1,…,d, where U(0,1) represents the uniform distribution on the [0,1] 287 

interval, Ф-1 is the inverse distribution function of a standard normal random variable, and Ф∑ 288 

is the d-variate standard normal distribution function.  289 

The t-Student copula can be expressed as:  290 

  291 

ሻݑ୴,∑ሺܥ = ௩ିݐ௩,∑൫ݐ ଵሺݑଵሻ, … , ௩ିݐ ଵሺݑௗሻ൯  (3) 292 

 293 

where tv is the one dimensional t distribution with v degrees of freedom and tv,∑ is the 294 

multivariate t distribution with a correlation matrix ∑ and v degrees of freedom.  295 

After fitting copulas to the transformed 4-dimensional data sets, we can simulate a large 296 

number of quadruplets of ηNTR, Hs, Tp, and D in the unit hypercube while preserving the 297 

interdependencies between them. Using the inverse of the marginal cumulative distribution 298 

functions (CDFs) identified in Section 3.2, the simulated data can be transformed from the 299 

unit hypercube space to real units.  300 

We follow this procedure with the two elliptical copulas and compare 3000 simulated 301 

quadruplets to the observations in order to identify the most suitable one for modelling the 302 

underlying dependence structure. In addition to the visual comparison of the scatter plots we 303 

also compare τ and non-parametric tail dependence coefficients (TDCs; for a threshold of 0.5) 304 

[Schmidt and Stadtmüller, 2006] derived from observations and simulations (Figure 7). 305 

Results obtained with the t-Student copula are slightly better than those derived with the 306 

Gaussian copula (not shown) and it also passes the formal goodness-of-fit test proposed by 307 

Genest at al. [2009] at the 95% confidence level. ηA is found to be independent from all the 308 

other variables (Figure 6) and can be simulated randomly from its ECDF (as outlined in 309 

Section 3.2). When comparing the circular data of θ with the other variables the τ values are 310 
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insignificant, but it is obvious from Figure 6 that large waves typically approach from an 311 

angle between ~100 and 210 degrees in nautical convention; this is the south-east direction 312 

where the fetch is relatively open to Dauphin Island. We account for this by obtaining two 313 

different ECDFs for θ, one from values when Hs < 2.7 m and another one from values when 314 

Hs > 2.7 m (marked with dashed green lines in the respective sub-panels in Figure 6). In the 315 

Monte-Carlo framework (Section 3.4) we then sample θ from one of the two ECDFs, 316 

conditional on Hs. This effectively captures the dependency between θ and the other variables 317 

(Figure 6).    318 

Now we are able to simulate a large number of sea-storm events comprised of 6 variables: 319 

values for ηNTR, Hs, Tp, and D come from the copula model and inverse CDFs described in 320 

Section 3.2, whereas ηA and θ are simulated independently from their ECDFs (θ conditioned 321 

on Hs).  322 

 323 

3.4 Time series simulation  324 

We want to use the multivariate model to simulate – in a Monte-Carlo sense – long (or many) 325 

time series of sea-storms which can then be used for the probabilistic erosion risk analysis. 326 

Thereby, we have to keep in mind that our statistical model has no knowledge about physical 327 

mechanisms constraining some of the variables. When the univariate distributions (Section 328 

3.2) of certain variables are unbounded we may sample unrealistically large values of those 329 

variables in the simulations. Hence, we control the model by defining upper boundary values 330 

for some variables. Hs is constrained by the water depth z [e.g., Thornton and Guza, 1982] 331 

and we use the following simple relationship to derive Hs,max: 332 

 333 

max,ݏܪ = 0.5 ∙ √2 ∙  334 (4)   ݖ
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 335 

For a water depth of 28 m where the waves are measured off the coast of Dauphin Island we 336 

obtain Hs,max = 19.8 m (for comparison, the highest observed Hs value is 14.58 m). 337 

Sensitivity tests with smaller thresholds revealed that the effect on the overall results is small, 338 

which means that although we put a high threshold to constrain the model only very few of 339 

the simulated Hs values get close to this value. For Tp we only allow wave periods of up to 25 340 

seconds; waves with periods larger than that are typically allocated to the infragravity wave 341 

energy band(e.g. Munk 1949; Tucker 1950).  342 

For D we tested different thresholds (8, 9, 10, and 20 days) and repeated the application (and 343 

validation) described in Section 4 to find that the differences in the results are relatively small 344 

and that 9 days seems to be the most reasonable choice (the longest observed event lasted D = 345 

6.5 days according to our event definition in Figure 4).  346 

Before we are able to simulate sea-storm time series we also need to know how many events 347 

need to be generated for each year. A simple approach would be to use the average of the 348 

observations which would result in ~23 events per year. This does not, however, account for 349 

the fact that it was only by chance that we observed exactly 358 summer events and 421 350 

winter events between 1980 and 2013 (according to our definition). To allow the model to be 351 

more flexible we calculate the numbers of storms observed in each month between 1980 and 352 

2013 (Figure 7a) and obtain monthly time series (all January values, all February values, etc.). 353 

We then fit Poisson distributions to the monthly data sets and use those to obtain a varying 354 

number of storms for each simulation month. When the simulated time series is long enough 355 

the average number of simulated events converges with the observations (Figure 7b). When 356 

we simulate 10,000 34-year long time series (i.e. the length of the observed record) we obtain 357 

the min/max ranges shown as vertical bars in Figure 7b; instead of 779 events (i.e. the total 358 
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number of observed storms), the model generates between 675 and 893 events across the 359 

10,000 simulated time series and it resembles the seasonal cycle in the frequency of events.  360 

Finally, we follow Li at al. [2014b] in distributing the simulated storms randomly within a 361 

month (i.e. each event gets assigned a time stamp) accounting for their duration and making 362 

sure that there are at least 24 hours between successive events.  363 

  364 

4. Model application  365 

4.1 TWL return periods 366 

As outlined in the introduction we want to use the MSSM to explore how different our 367 

interpretation of the erosion risk could be – defined through TWL return periods (in this 368 

section) and impact hours (in the next section) – if more or less extreme realizations of the 369 

different sea-storm variables and/or their combinations had occurred between 1980 and 2013. 370 

Therefore, as already mentioned in the previous section, we simulate 10,000 sea-storm time 371 

series, each one comprising 34 years, and derive TWLs for all events assuming an average 372 

beach slope of 0.07. We then fit GEV distributions to the observed and each of the simulated 373 

TWL time series. From the 10,000 GEVs derived from the simulations we also obtain 95% 374 

confidence levels (Figures 8a and 8b). In summer, the GEV distribution from the observations 375 

is closer to the upper end of the 95% level of the simulations, but taking the 100-year return 376 

level as an example the simulations are still more than 0.6 m higher. Focusing on the full 377 

range of simulation results, the TWL associated with a 100-year return period could be up to 3 378 

m higher than our best estimate based on the observational data. In winter the 100-year TWL 379 

could be ~0.6 m higher than the best estimate derived from the observations when looking at 380 

the full range of simulation results, and ~0.1 m higher when focusing on the upper 95% 381 

confidence level.  382 
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For comparison – and noting that the results are unrealistic but represent simplifications that 383 

reduce model complexity and have been applied in previous studies – we repeat the same 384 

analysis with three different model assumptions to generate synthetic sea-storm time series. In 385 

this case we only show the upper end of the range of GEV distributions fitted to the 386 

simulation results. For the first experiment we assume that all six sea-storm variables are 387 

completely independent from each other. The GEV distributions for summer and winter, 388 

shown as black dashed lines in Figures 8a and 8b, reveal that this assumption leads to an 389 

underestimation of the TWLs associated with a 100-year return period of ~1.65 m in summer 390 

and ~0.25 m in winter relative to those derived from the observed TWL time series. For the 391 

second experiment we assume that most sea-storm variables are independent but that Hs and 392 

Tp are fully dependent. We derive Tp using the following regression model that was also used 393 

by Stockdon et al. [2012] to construct extreme event scenarios for the Gulf of Mexico.  394 

݌ܶ = 3.846 + ଶݏܪ0.012−ݏܪ1.7812 −  395 (5)  ݖ	0.0049

where z is the water depth. Consistent with the model development, we do not allow Tp 396 

values larger than 25 seconds. In this case the return TWLs (shown as green dashed lines in 397 

Figures 8a and 8b) are significantly overestimated relative to the ones obtained from the 398 

observations and also compared to the ones derived from the simulations that used the more 399 

realistic interdependencies. For the third and final experiment we account for the 400 

interdependencies between the different sea-storm variables as explained in the previous 401 

sections but do not allow the individual variables to reach values larger than their observed 402 

maxima. The results (shown as dashed brown lines in Figures 8a and 8b) reveal that 100-year 403 

TWLs could be approximately 2.6 m higher in summer and 0.25 m in winter only due to 404 

different (but according to our model realistic) extreme event combinations where none of the 405 

individual variables exceeds its observed maximum.  406 
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Similar to Serafin and Ruggiero [2014], we perform a second analysis where we use 500 407 

simulated time series with a time-span of 500 years (instead of 34 years). From such long time 408 

series we can obtain the relevant return water levels empirically so that no uncertainties are 409 

involved from fitting parametric distributions; however, we still have to use the GEV 410 

distribution for the observations to facilitate comparison of the results (Figures 8c and 8d). 411 

The medians of relevant return TWLs (10-, 20-, 50-, and 100-years) from the simulations 412 

(grey circles) are similar to those derived from the observations, highlighting that our model 413 

does a good job in capturing the behavior of the underlying sea-storm variables and their 414 

interdependencies. The interpretation of how much larger TWLs associated with different 415 

return periods could be are, however, slightly different to those derived earlier by fitting GEV 416 

distributions to both the simulated and observed TWL time series. The 100-year TWL could 417 

be almost 2.2 m higher in summer and 0.25 m in winter (black dots and light shaded bands). 418 

Results from the three additional experiments (only the upper ranges are shown) confirm the 419 

underestimation when assuming fully independent sea-storm variables (black crosses) and 420 

overestimation when assuming independency between most variables but full dependence 421 

between Hs and Tp (green crosses). Accounting for the interdependencies but constraining the 422 

model with observed maxima of the individual variables (brown circles) leads to slightly 423 

smaller values as derived with the optimal model setup and from the observations. The 424 

differences increase for larger return periods and may stem from the uncertainties when fitting 425 

the GEV to the observations or from the fact that we have already seen a larger number of 426 

extreme event combinations over the last three decades than our model predicts (especially in 427 

summer).  428 

 429 

4.2 Impact hours 430 
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The TWL time series used in the previous section were derived from ηA, ηNTR, Hs, and Tp, 431 

and the extreme value analysis is also affected by the frequency of events. The duration D 432 

was, however, not included in the analysis. Therefore, and as an alternative way of assessing 433 

erosion risk we calculate average impact hours for Dauphin Island (1980 to 2013) when TWL 434 

exceeded the height of the dune toe (collision) or dune crest (overwash) [e.g., Ruggiero, 2013, 435 

WP15]. Impact hours are affected by the oceanographic forcing variables but also by beach 436 

slope and the elevation of backshore features. Therefore, we no longer assume the foreshore 437 

beach slope (and dune characteristics) are uniform alongshore and instead perform the model 438 

simulations using  the spatially variable measured values at each location. We use the 439 

observed and the 10,000 simulated sea-storm data sets and derive TWL time series for each of 440 

the transects along Dauphin Island and compare them to dune toe and crest elevations. The 441 

impact hours of collision and overwash are determined from both observations and 442 

simulations under the assumption that if TWL associated with a particular event exceeds a 443 

critical threshold, then it is exceeded for the entire event duration. Because of this assumption 444 

the absolute values of impact hours presented here overestimate the “true” values. The latter 445 

could be derived from hourly observations of the different variables accounting for the fact 446 

that critical TWL thresholds are not necessarily exceeded throughout an entire event (as 447 

defined here). However, we are only interested in the relative comparison between 448 

observations and simulations and since impact hours are derived under the same assumption 449 

the direct comparison is valid.  Similar to the previous analysis of TWL return periods we 450 

repeat the analysis with the three additional model assumptions (independence assumption; 451 

full dependence between Hs and Tp; and individual variables constrained with observed 452 

maxima). At this stage of the analysis we can also re-introduce the seasonal cycles, inter-453 

annual variability, and decadal trends that were removed earlier. We add the running medians 454 

that were subtracted at the beginning of the analysis to the simulated time series and assess 455 

relative changes between observations and simulations. This provides information about the 456 
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importance of the timing of extreme events relative to the seasonal cycle or longer-term 457 

variability.    458 

For collision (Figure 9a) we find that the number of impact hours could have been up to 70% 459 

larger (or up to 60% smaller) than inferred from the observed time series in both seasons; 460 

overwash impact hours (Figure 9b) could have been twice as high. For both collision and 461 

overwash the 68% and 95% confidence intervals reach values that are ~20% and ~40% larger, 462 

respectively. Note that the overall number of impact hours decreases after trends and 463 

variability are re-included because we corrected the time series earlier in a way that they 464 

resemble the present-day climate. Accordingly, the heights of TWL events earlier in the 465 

records decrease when trends and variability are re-included. For overwash in summer the 466 

number of impact hours inferred from the observations becomes considerably larger (close to 467 

the upper 68% confidence level) than the median derived from the simulations after trends 468 

and variability of the different variables are re-included. This suggests that the timing of 469 

extreme events relative to the seasonal cycle and climate related variations is important, 470 

especially when focusing on the most extreme events leading to overwash (and inundation).  471 

The results obtained from the three additional experiments with varying model setups (only 472 

maxima values are shown in Figure 9 for the simulations without trend and variability) are 473 

somewhat different compared to those derived in the previous section for TWL return periods. 474 

Under the full independence assumption the erosion risk is still underestimated; the same is 475 

also true now for the assumption that Hs and Tp are fully dependent (whereas we found 476 

overestimation in the previous section). This is because impact hours are strongly affected by 477 

the duration D, and by assuming that it is independent from the other variables the highest 478 

modelled TWL events do not tend to have longer durations (contrary to what is inferred from 479 

the observations). When we constrain the model so that none of the individual variables can 480 

reach values larger than the observed maxima we find that the number of impact hours could 481 
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have been ~50% larger for collision and overwash in summer and ~30% for collision and 482 

~45% for overwash in winter. These higher values solely stem from a larger (but physically 483 

consistent) number of extreme event combinations of the different sea-storm variables over 484 

the 34 year analysis period, instead of more extreme realizations of the individual variables.  485 

 486 

5. Discussion 487 

When assessing erosion or flooding risk for certain regions we often rely on the observational 488 

data sets that are available to estimate extreme-value statistics. The observational records of 489 

wave properties rarely go back more than a few decades, which we show has limited the 490 

accuracy of such estimates. In this present study we focus on how different our interpretation 491 

of the erosion/flooding risk could be if observations had sampled different realizations of the 492 

individual sea-storm parameters and their combinations over the last few decades (or if we 493 

had hundreds of years of observations available instead of only 34 years). If we use very long 494 

simulated data sets return water levels become more stable and in our case the range of results 495 

from the simulations proceeds within the theoretical uncertainties from fitting a GEV to the 496 

short observational record (Figures 8c and 8d). On the other hand, if we use the exact same 497 

approach for both observations and simulations of fitting the GEV to 34 year long records the 498 

range of results is much wider (Figures 8a and 8b) and would exceed the theoretical 499 

uncertainties that are shown in Figures 8c and 8d. This highlights the importance of a detailed 500 

uncertainty assessment in extreme value analysis and its inclusion into engineering design 501 

concepts.  502 

Based on our analysis we cannot say which variable contributes most to the identified 503 

differences in estimates of return water levels and impact hours from simulations and 504 

observations. Future work is needed to explore the role of individual sea-storm variables and 505 

identify those which need to be carefully constrained in future applications when the 506 
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methodology is for example transferred to other regions with different oceanographic (and 507 

morphologic) conditions.        508 

The MSSM output derived here may be used for various future applications, including long-509 

term simulation of erosion and/or recession under different sea level rise scenarios (similar to 510 

Corbella and Strecth [2012a] and Li et al. [2014b]). The results may also be used along with 511 

more sophisticated (but computationally demanding) numerical models (e.g. XBeach) that 512 

include estimates of morphological change and/or flood impacts and require, as boundary 513 

conditions, a meaningful selection of extreme events and, depending on the application, their 514 

(joint) return periods in order to perform a full risk analysis; this is something we will explore 515 

in a future investigation. The uncertainties in return TWL estimates stemming from short 516 

observational record availability can furthermore be incorporated into more robust and risk 517 

aversive design strategies for coastal infrastructure and/or restoration of backshore features.  518 

There are two quantities that we derive through the MSSM that are not used in the TWL-519 

based applications presented above. By assigning time stamps to the simulated sea-storms we 520 

implicitly derive the time spans between the end of one extreme event and beginning of the 521 

next which are relevant, for example, for long-term simulation of erosion/recession and 522 

accretion. The wave direction θ is directly simulated in the MSSM but also not used here. 523 

Depending on the purpose of the application it can, however, be an important variable, e.g., 524 

when quantifying morphological change including long-shore sediment transport. 525 

Results from assessing impact hours with and without trends and variability of the underlying 526 

variables included reveal the importance of the timing of extreme events within the seasonal 527 

cycle and relative to monthly mean sea level anomalies. Therefore, for the future it would be 528 

interesting to explore those relations in more detail and ultimately include them in the analysis 529 

either by directly modelling mean sea level anomalies (and their dependence with other sea-530 

storm variables) or including climate indices as covariates [e.g., Serafin and Ruggiero, 2014]. 531 
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The MSSM developed here is generic and can – with very few adjustments – be applied to 532 

other coastlines. Assessing erosion risk in a probabilistic way and the results derived in the 533 

present study in combination with our knowledge on the effects of climate variability and 534 

change can help decision makers and planners to account for previously unseen, but possible, 535 

events when planning for long-term sustainability of  beaches and barrier islands.  536 

 537 

6. Conclusions 538 

Based on 34 years of wave and water level observations from Dauphin Island in the northern 539 

Gulf of Mexico we develop a copula-based MSSM to simulate a large number of synthetic 540 

time series of the six most relevant (for driving erosion/flooding) sea-storm parameters, the 541 

interrelationships among them, and derive TWLs with the empirical formulation of Stockdon 542 

et al. [2006]. We quantify the erosion and flooding risk by calculating return periods of TWLs 543 

and impact hours of collision and overwash. Our results indicate, for example, that the 100-544 

year return TWLs (often used for design purposes of coastal infrastructure or restoring dunes) 545 

could be more than 3 m higher in summer and 0.6 m in winter relative to our best estimate 546 

based on the observational records. The number of impact hours of collision and overwash 547 

could have been up to 70% and 100% larger, respectively, than inferred from the 548 

observations. Many of these differences are explained by an increase in the total number of 549 

extreme events that can occur from plausible combinations of different sea states even when 550 

none of the individual sea-state variables  exceed  the highest value from the observational 551 

record. This demonstrates why incorporating joint correlations  is essential in performing 552 

coastal risk analyses rather than only relying on historical conditions derived from short 553 

observational records.  554 

 555 

 556 
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 683 

Figure 3. Annual averages of TWL exceedances (1.2 m above NAVD88) and of simultaneous 684 

MSL, ηA, ηNTR, R2% (a–b) and Hs (c–d); results are shown separately for summer (a, c) and 685 

winter (b, d).  686 
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 691 

Figure 4. Definition of  independent multivariate sea-storm events as used in the present 692 

study.  693 
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 696 

Figure 5. Q-Q plots of parametric distributions fitted to summer (red) and winter (blue) 697 

samples of different sea-storm variables. 698 
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 709 

Figure 7. (a) Observed number of storms for each month between 1980 and 2013 (a; red: 710 

summer, blue: winter). (b) Average number of storms for each month in a year from 711 

observations (colored bars) and average (grey circles) and min/max values (vertical bars) 712 

derived from simulating 10,000 sea-storm event time series, each one comprising 34 years.   713 
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 718 

Figure 8. (a–b) Solid lines: GEV fit to TWLs derived from observations; shaded bands: GEV 719 

fit to 10,000 simulated time series (each 34-years long), light shading represents full range, 720 

dark shading 95% confidence levels; black dashed lines: MSSM assuming independence 721 

between all variables; green dashed lines: MSSM assuming independence but full Hs-Tp 722 

dependence; brown dashed lines: MSSM capped to observational range of all variables; 723 

dashed lines represent upper ends from 10,000 GEV fits. (c-d) Solid and dashed lines: GEV 724 

fit to TWL derived from observations (same as in a-b but with 95% confidence levels); black 725 

dots and grey circles: empirically derived return TWLs from 500 time series (each 500-years 726 

long), grey circles are medians, light and dark shading represent full range and 95% 727 

confidence levels; black/green crosses and brown circles are results (only upper end is shown) 728 

from three additional MSSM model setups, same color coding as in a-b. Summer results are 729 

shown in (a) and (c), winter results in (b) and (d).      730 
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 732 

Figure 9. Average number of impact hours for Dauphin Island for collision (a) and overwash 733 

(b) as inferred from the observations (black horizontal lines) and 10,000 artificial sea-storm 734 

time series derived with the MSSM (box whisker plots show medians and 68% and 95% 735 

confidence levels; circles are maxima and minima). Maxima values derived with three 736 

additional model setups (see text) are shown as squares (black: independence assumption; 737 

green: full dependence between Hs and Tp; brown: individual variables constrained with 738 

observed maxima) for the case when trends and variability are not included. Results for the 739 

summer half year are shown in red, for the winter half year in blue.  740 
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