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Climate controls multidecadal variability in U. S. extreme sea
level records
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Abstract We investigate the links between multidecadal changes in extreme sea levels (expressed as
100 year return water levels (RWLs)) along the United States coastline and large-scale climate variability. We
develop different sets of simple and multiple linear regression models using both traditional climate indices
and tailored indices based on nearby atmospheric/oceanic variables (winds, pressure, sea surface tempera-
ture) as independent predictors. The models, after being tested for spatial and temporal stability, are capa-
ble of explaining large fractions of the observed variability, up to 96% at individual sites and more than 80%
on average across the region. Using the model predictions as covariates in a quasi nonstationary extreme
value analysis also significantly reduces the range of change in the 100 year RWLs over time, turning a non-
stationary process into a stationary one. This suggests that the models—when used with regional and
global climate model output of the predictors—will also be capable of projecting future RWL changes. Such
information is highly relevant for decision makers in the climate adaptation context in addition to projec-
tions of long-term sea level rise.

1. Introduction

Most climatic variables exhibit considerable fluctuations at time scales ranging from months (e.g., seasonal-
ity) to several decades, which are superimposed onto the underlying long-term trends. In sea level research,
efforts to understand the driving mechanisms of the observed variability inherent to the system have
mostly been directed toward mean sea level (MSL), as one of the most important indicators for climatic
change [e.g., Church et al., 2013]. Changes in extreme sea levels can, however, be more important than MSL
changes for coastal regions, but have had less attention in the past. A rigorous assessment with the main
objective of identifying the (design-) relevant variations in extreme sea levels along the U.S. coastline unre-
lated to MSL changes, and associated 100 year return water levels (RWLs), was conducted by Wahl and
Chambers [2015] (hereafter referred to as W15).

The key findings of that study are summarized in Figure 1, showing: (1) the locations of the 20 tide gauges
that were used in W15; for all sites hourly water level observations are available for the common period
1929–2013; (2) six regions which have been identified to exhibit coherent multidecadal variability; (3) the
relevant season (here we split the year into halves) when storm surges tend to be larger along a particular
coastline stretch; tropical cyclones dominate the storm surge climate in summer (S) (May–November) and
extratropical cyclones in winter (W) (December–April); (4) the tide gauges which have been selected as
being representative for each of the six regions (and the relevant seasons); and (5) the temporal variations
in 100 year RWLs. The latter were obtained with a quasi nonstationary extreme value analysis based on
annual maxima and a 37 year (i.e., twice the nodal cycle) running window approach; the changes through
time are compared to the 95% confidence levels derived from the stationary analysis. The results shown in
Figure 1 were cross validated with neighboring sites and by applying a range of different sampling and
inference techniques.

In total, eight time series were identified which explain a major portion of the relevant multidecadal variabil-
ity in extreme sea levels along the U.S. coast unrelated to MSL change. The fluctuations in 100 year RWLs
range from a few centimeters to several decimeters and deviate significantly from the stationary assump-
tion in all eight cases. These results suggest that accounting for future decadal variability is crucial for
coastal adaptation planning, in order to provide sufficiently high safety standards throughout the expected
lifetimes of new and existent infrastructure, or when adapting/restoring natural protection measures such
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as dunes or berms. After identifying the relevant variations, the next important step to accomplish the
aforementioned long-term objective of projecting future changes lies in exploring and understanding the
driving mechanisms.

Several studies have investigated the links between extreme sea levels along different parts of the U.S.
coastline and large-scale climate variability. It is known, for example, that indices resembling (or being
influenced by) the El-Ni~no Southern Oscillation (ENSO) phenomenon and activity (e.g., Southern Oscilla-
tion Index (SOI), Pacific Decadal Oscillation (PDO), Pacific-North America pattern, Multivariate ENSO Index,
North Pacific Index (NPI), Ni~no 3.4 index) are linked to the storm surge climate along the U.S. west coast
[e.g., Bromirski et al., 2003; Cayan et al., 2008; Komar et al., 2011; M�endez et al., 2007; Serafin and Ruggiero,
2014] (i.e., the South Pacific and North Pacific regions in this study). ENSO has also been shown to be
related to the tropical cyclone activity (in combination with the NAO determining the tracks) in the North
Atlantic and Gulf of Mexico [e.g., Elsner, 2003; Kennedy et al., 2007]. This in turn affects the storm surge
climate, especially during the tropical cyclone season (May–October) in the Gulf of Mexico and South
Atlantic regions (as defined in Figure 1a), as well as the extratropical cyclone activity (mainly from December
to April) along the U.S. east coast [e.g., Sweet and Zervas, 2011] (Mid Atlantic and North Atlantic regions in
this study). Park et al. [2010a,b] also highlighted a strong connection between extreme sea levels observed
around Florida and the Atlantic Multidecadal Oscillation (AMO); Talke et al. [2014] identified a close link
between storm surges observed at the Battery tide gauge in New York City and the North Atlantic Oscillation
(NAO).

In many of those studies, the focus was on exploring the relationship between large-scale climate and inter-
annual extreme sea level variability, whereas different mechanisms may act on longer time scales driving
the observed multidecadal changes reported in W15 for the U.S. coast, and by Marcos et al. [2015] at the
global scale. Furthermore, each of the aforementioned studies used a different definition of extreme sea
level events—e.g., different thresholds of storm surge heights (with tide included or removed), storm
(surge) counts, storm surge intensity, or RWLs—and the results are therefore not directly comparable.

Figure 1. (a) Location of the 20 tide gauges used in W15 (circles); regions with coherent multidecadal extreme sea level variability (i.e., North Pacific, NP; South Pacific, SP; Gulf of Mexico,
GOM; South Atlantic, SA; Mid Atlantic, MA; and North Atlantic NA); the relevant season(s) for each region (red: summer; blue: winter; gray: both); and tide gauges assumed to be represen-
tative of a respective region (larger circles). (b–i) Temporal changes (in centimeters) in 100 year RWLs derived with the quasi nonstationary extreme value analysis applied in W15 com-
pared to the results obtained with a stationary analysis (shaded bars; red: summer; blue: winter).
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Here, we use the results from W15 and apply a consistent approach to explore the connection between
multidecadal RWL variations along the U.S. coastline and large-scale climate in the region. Simple and
multiple linear regression models are developed and evaluated in terms of their capability of reconstruct-
ing the observed RWL changes. As predictors we use various climate indices that have been shown in ear-
lier studies to affect the climate over the North American continent and its coastal waters. However,
originally these indices were not developed or defined with the specific aim of explaining multidecadal
RWL variability. The PDO, as an example, was first introduced by Mantua et al. [1997] while investigating
climate impacts on salmon production in the North Pacific (whereas they also already noted impacts on
streamflow and coastal waters). Therefore, in addition, we develop new indices—which are then also
used as alternative predictors in the regression models—from gridded sea level pressure (SLP), sea sur-
face temperature (SST), and wind stress curl. Those indices are specifically tailored toward the objective
of this study, i.e., explaining multidecadal RWL changes along the U.S. coast. Similar approaches were
used for example by Thompson et al. [2013] and Dangendorf et al. [2014] to investigate storminess vari-
ability along the U.S. east coast and in the North Sea, respectively, and by Grinsted et al. [2013] to project
the Atlantic hurricane surge threat.

The data sets used for the analyses are described in section 2, the model development is summarized in
section 3, results from evaluating the different models are presented in section 4, and a summary of the key
findings and conclusions are provided in section 5.

2. Data

The sources of the tide gauge data that were used to derive the time series of changes in RWLs are
described in detail in W15. For the simple regression analysis (see Methods and Results), we consider the
eight climate indices listed in Table 1. The table provides information about the periods that are covered by
the different indices, a brief description of how they are derived, and selected references; in addition to the
ones listed here we also tested the Pacific-North America pattern and Multivariate ENSO Index, but found
that they did not add additional information to the study. The time series of the climate indices are freely
accessible through different websites (see Acknowledgements).

Tailored indices are derived from NOAA’s Extended Reconstructed SST v3b (available on a 28 3 28 grid and
covering the period 1854–2013), and SLP and wind stress curl (calculated from zonal and meridional winds)
are obtained from the 20th Century Reanalysis Project [Compo et al., 2011] (available on a 28 3 28 grid and
covering the period 1871–2012).

Both the traditional and tailored indices used in the study are calculated separately for the tropical (May–
November) and extratropical (December–April) cyclone seasons. They are also low-pass filtered with a 37

Table 1. Summary of the Climate Indices Used in the Present Study

Index Period Covered Description Selected Reference

Atlantic multidecadal
oscillation (AMO)

1856–2013 Area-averaged SST (Kaplan) in the
Atlantic north of 08

Enfield et al. [2001]

Arctic oscillation (AO) 1871–2011 Projection of 1000 mb height anomalies
(from 20CR) onto first EOF poleward
of 208N

Thompson and Wallace [1998]

North Atlantic oscillation
(NAO)

1865–2013 Difference of normalized SLP between
Lisbon and Stykkisholmur/Reykjavik

Hurrell [1995]

Ni~no1 1 2 (N12) 1870–2013 Area-averaged SST (HadlSST1) from 08 to
108S and 908 to 808W

Rayner et al. [2003]

Ni~no3 (N3) 1870–2013 Area-averaged SST (HadlSST1) from 58S
to 58N and 1508 to 908W

Rayner et al. [2003]

North Pacific index (NPI) 1899–2013 Area-weighted SLP 308 to 658N, 1608E to
1408W.

Trenberth and Hurrell [1994]

Pacific decadal oscilla-
tion (PDO)

1900–2013 Leading EOF of monthly SST anomalies
over the North Pacific (poleward of
208N); global average SST anomalies
are removed

Mantua et al. [1997]

Southern oscillation
index (SOI)

1866–2013 Normalized pressure difference between
Tahiti and Darwin

Ropelewski and Jones [1987]
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year moving average in order to allow direct comparison to the RWL time series derived with the extreme
value analysis in W15 (which also uses a 37 year running window equaling twice the length of the nodal
cycle; Figures 1b–1i).

3. Methods

3.1. Simple Linear Regression With Climate Indices
We start by building two sets of simple linear regression models. For the first one, we identify the climate
indices showing the strongest correlations with the time series of location and scale parameters derived
with the quasi nonstationary extreme value analysis in W15 (see Figure 10 in their paper). The latter were
then used along with the stationary shape parameter of the Generalized Extreme Value distribution to
obtain the 100 year RWL time series depicted in Figures 1b–1i. Hence, regression models are also first
derived for the location and scale parameters and both are predicted separately before they are used
together with the shape parameter to reconstruct the RWL time series; this model is denoted SLRM0. For
the second set of models, we directly correlate the low-pass filtered climate indices with the RWL time
series and use the one with the strongest correlation to reconstruct the observed temporal RWL changes;
this model setup is denoted SLRM1.

Note that we generally use the climate index with the strongest correlation in the models; however, if two
or more indices exhibit strong correlation with the RWL time series (which also suggests considerable cross
correlation between the different climate indices), we select the one that seems more plausible to affect
extreme sea levels at a particular site. For example, if ENSO and NAO are both significantly correlated with a
tide gauge on the west coast of United States, we select ENSO as the predictor as it is more likely from a
process-based understanding to affect west coast extreme sea levels than the NAO.

Significance of correlation is assessed here in two different ways. When we compare results from the
extreme value analysis with smoothed climate indices we use a resampling approach, i.e., we shuffle the
seasonal maxima values used in W15 (which are approximately independent and identically distributed)
and repeat the quasi nonstationary extreme value analysis to obtain 1000 surrogate time series of RWLs, as
well as location and scale parameters for the sites and seasons shown in Figure 1. Then we correlate each
one with the smoothed climate indices and obtain the 5% and 95% levels (equals the 90% confidence
level); when the actual correlation falls outside this region, it is deemed significant. We also quantify the
cross correlation between the smoothed climate indices. In this case, we have to follow a different approach
for assessing significance since the underlying data already exhibits autocorrelation before the smoothing
is applied. Thus, we use a t-test where we reduce the number of degrees of freedom according to the win-
dow length that is used for the low-pass filtering (here 37 years); if there are for example 148 overlapping
data points we use only 4 degrees of freedom in the t-test. This approach is conservative because it does
not account for the weakening autocorrelation when moving forward in time; when two smoothed data
points are for example 36 years apart they only share one common (raw) value and are therefore virtually
independent whereas we assume that they are fully dependent. We account for this by assessing signifi-
cance at the relatively low one-sigma level.

3.2. Simple and Multiple Linear Regression With Tailored Indices
In order to develop tailored indices, which are expected to allow a better and physically more consistent
reconstruction of observed RWL changes, we first analyze the spatial patterns derived from the pointwise
correlation between the low-pass filtered climate indices and the gridded variables they were derived from,
i.e., either SST or SLP (the time series of all grid points are also low-pass filtered with a 37 year moving aver-
age). This analysis step reveals the location of the centers of action (COAs) of the climate indices in the
summer and winter half years after they have been low-pass filtered. These are the regions we focus on in
the next step when performing the pointwise correlation between the RWL time series and low-pass filtered
gridded SST or SLP. For each site, we develop two sets of tailored indices (referred to as primary and sec-
ondary indices), one derived from SST the other from SLP. The decision of which one is considered the pri-
mary index is guided by the results from the correlation analysis with ‘‘traditional climate indices.’’ For
example, if at a particular site a strong relationship between RWL changes and the PDO was identified the
primary index is based on the pointwise correlation between the RWL time series and the low-pass filtered
gridded SST (for the relevant season); the secondary index comes from SLP. If the NAO (or one of the other
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pressure-based indices) showed the strongest correlation, we use SLP for the primary index and SST for the
secondary index. The spatial stability of the regions with high/low values derived from the pointwise corre-
lation between RWLs and SST/SLP is tested by repeating the same analysis but using only the first and sec-
ond halves of the available time series. The regions with persistent strong correlation where a physical
relationship to RWL variations at a particular site is also plausible are then used to build the tailored indices.

Once this is done, we search for the grid points with the strongest correlation within the COAs and all grid
points exhibiting correlations within 5% of the maxima/minima. In cases where we use SST, we find only
one COA (Figure 2a) and the tailored indices are derived by averaging the low-pass filtered time series from
the grid points fulfilling the aforementioned criteria (Figure 2b). When we use SLP, we often find a dipole
comprised of two COAs (one with positive correlation, one with negative correlation) (Figure 2b); in these
cases, the tailored indices represent the pressure gradients between the two COAs derived from averaged
SLP time series sharing the strongest positive and negative correlation with RWL changes (Figure 2d).

The primary tailored indices are used to develop a third set of simple regression models (denoted SLRM2),
before multiple regression models (denoted as MLRM1) are derived with both the primary and secondary
tailored indices as independent predictors. The latter is to acknowledge the dynamic coupling between SST
and SLP and their respective effects on storminess, with SST being closer related to cyclogenesis and SLP to
storm tracks [e.g., Elsner, 2003].

In general, the occurrence of extreme sea level events requires strong winds blowing onshore pushing
water toward the coastline. To account for this, we develop a final set of models (denoted MLRM2) using
multiple linear regression with both sets of tailored indices and wind stress curl as predictors. For wind
stress curl, we use the low-pass filtered (37 year moving average) time series of the grid point with the
strongest correlation within 108 around a particular tide gauge location.

Figure 2. Procedure to derive tailored indices from SST (a–b; San Francisco, winter) and SLP (c–d; Mayport, summer). (a, c) Filled squares mark the grid points with the highest (lowest)
correlation; crosses show regions with correlation within 5% of the maxima (minima) and magenta filled circles denote the tide gauge location. (b) Tailored index for San Francisco
derived by averaging the SST from grid points marked in Figure 2a. (d) Average SLP from grid points with the lowest (magenta) and highest (green) correlation marked in Figure 2c and
the tailored index (black-dashed) for Mayport derived by subtracting the two.
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In all multiple regression models used for the study, we include terms to account for interaction effects
between the different predictors; i.e., the contribution of one predictor to the dependent variable may be
stronger or weaker conditional on the state of one of the other predictors [e.g., Jaccard et al., 1990]. Hence,
the relationship between RWL at a tide gauge at time t and the independent variables, xt1; xt2; . . . ; xtp, is
given by

RWLt5xT
t b1ut; t51; 2; . . . ; n (1)

where T is the transpose, xt5ð1; xt15t; . . . ; xtp; xt1 xt2; . . . ; xtp21 xtpÞT, b 5ðb0; b1; . . . ; bpÞT is a (p11)-
dimensional vector containing the regression coefficients, and ut is an error term.

4. Results

4.1. Simple Regression With Traditional Climate Indices
The correlation analysis in Figure 3 shows that, with a few exceptions (e.g., San Francisco and Galveston),
there is generally at least one climate index exhibiting significant correlation with the RWL time series
and the strongest absolute correlation is at least 0.6 at all sites. In many cases, more than one climate index
shows strong (or even significant) correlation with the RWL time series suggesting considerable cross corre-
lation of the climate indices with each other (Figures 3d and 3e). Especially in winter, when the signals of
some of the indices are stronger, the correlation between them is large and often significant. For the pur-
pose of the present study, this suggests that they also share and contribute the same information to the
regression models.

We do not use the climate index with the strongest correlation when it is physically more plausible that one
of the others (with similar correlation) has a more direct effect on extreme sea levels at a particular site. This
may be the case when teleconnection patterns are intimately linked at multidecadal time scales (as sug-
gested from Figures 3d and 3e). However, given the relatively small number of degrees of freedom in the
analysis, we can also not rule out that high correlations occur simply by chance, which would imply that the
resulting regression models are not generalizing the problem very well. Therefore, the more detailed analy-
sis using the SST and SLP fields and testing the robustness of spatial correlation patterns (see section 4.2) is
important.

Here, for the SLRM0 models (i.e., location and scale parameters are predicted separately and then used to
obtain RWLs), we use AMO as predictor for the location parameter at Mayport (S) although NPI has a slightly
stronger correlation, but its footprint is mainly in the Pacific. The AMO on the other hand has been found to
be related to the size of the Atlantic warm pool, which in turn affects the Atlantic hurricane activity [Park
et al., 2010a,b and references therein] and hence the storm surge climate in the southeastern U.S. and Gulf
of Mexico during the summer months; note that AMO is also selected at Galveston (S). Furthermore, we
select the NAO as predictor in winter for the location parameter at Mayport (instead of PDO), the scale
parameter at Portland (instead of NPI), and for RWL (in the SLRM1 models) at the same two sites instead of
the PDO. Both tide gauges are located at the east coast and therefore it seems more plausible that extreme
sea levels are affected by the NAO [e.g., Bernhardt and DeGaetano, 2012]—especially in winter when the sig-
nal is stronger—than by the PDO, which is derived from SST anomalies in the Pacific. We use AMO as a pre-
dictor for Seattle—even if the tide gauge is located at the northwest coast—as it is the only index showing
significant correlation in all three cases (location and scale parameters, and RWLs).

The SLRM0 models explain between 33% (San Francisco) and 81% (Atlantic City) of the variability of the 100
year RWL time series (57% on average) (Figure 4). The explained variance with the SLRM1 models ranges
from 34% (Galveston) to 81% (Atlantic City) and the average is slightly higher (59%) (Figure 4). In most
cases, the results from both models are similar (or even identical) and the RWL time series derived from
observations in W15 are within the 95% confidence bounds obtained from the SLRM1 predictions. None of
the two models leads to significantly better results than the other. Therefore, in order to keep the complex-
ity at a minimum, we prefer the direct approach and the following models SLRM2, MLRM1, and MLRM2 are
developed to directly predict RWL variations instead of the location and scale parameters separately. The
model results also highlight that only four of the climate indices (AMO, AO, NAO, and PDO) are required to
explain a major fraction of the observed multi-decadal variability along the U.S. coastline.
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4.2. Development of Tailored Indices
The results from the pointwise correlation between low-pass filtered SST/SLP and the four climate indices
that explain most of the RWL changes are shown in Figure 5; results for the other four indices are shown in
supporting information Figure S1.

The COA of the smoothed AMO is confined to the North Atlantic, with the strongest correlation in the
region between Iceland and the British Isles. However, there is also a region of strong correlation in the
northeastern Pacific that is likely the source of relationship between Seattle RWLs and the AMO shown in
Figure 4. The AO is marked by low correlation with SLP at higher latitudes and high correlation at lower lati-
tudes; it also shows similarity with the NAO, as expected from the results presented in Figures 3d and 3e.
The location and size of the two COAs representing the NAO are different in summer (in the North Atlantic
between the U.S. northeast coast and Europe and over the Gulf of Mexico) compared to winter, where both
COAs are wider and shifted northward (in addition to changing the sign). For the PDO, we find strong nega-
tive correlation with SST in the northern Pacific, which extends west all the way to Japan, and positive

Figure 3. (a–c) Correlation between low-pass filtered climate indices and (a) the location parameter, (b) scale parameter, and (c) 100 year RWL time series derived in W15 at representa-
tive sites and for the relevant seasons; time series pairs with the highest correlations (for each climate index) are highlighted by circle frames. (d, e) Cross correlation between the low-
pass filtered climate indices used in the present study for summer (d) and winter (e) half years. Larger circles denote significant correlation (at the one-sigma level).
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correlation in the Ni~no 3.4 region in the tropical pacific and Ni~no 1 1 2 region off the northwest coast of
South America. The other four indices (supporting information Figure S1) also resemble the known spatial
features, with the NPI showing strong correlation with SLP in the northeast Pacific, N3 and N12 being
closely related to SST in the tropical Pacific, and SOI showing a pressure dipole between the western and
eastern tropical Pacific.

Next, we perform the pointwise correlation between the RWL time series and low-pass filtered SST/SLP; first
for the entire record lengths, and then for the first and second halves to test the spatial stability of the
results. Correlation maps for the variables (SST or SLP) that were selected to be used for the primary tailored
indices are shown in Figure 6; those for the other variable at each site (used for the secondary indices) are

Figure 4. Observed (blue) and predicted RWL changes with the SLRM0 (green) and SLRM1 (red) models; captions denote the indices that are used as predictors and numbers indicate
the amount of the explained variance. Shaded gray areas represent 95% confidence levels from the SLRM1 predictions.
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shown in supplementary information Figure S2. For Seattle (W), we found a strong relationship between the
winter RWL time series and the AMO in the previous analysis step; this is confirmed here by the persistent
strong negative correlation between RWL and SST in the North Atlantic around Iceland. We also find
another region off the U.S. northwest coast where the correlation is almost as strong (note that the same
region stands out in Figure 5). In this case, it seems more likely that the SST in this region affects extreme
sea levels at Seattle than the SST in the North Atlantic, although connections between the AMO and North
Pacific climate variability have been suggested, but with a time lag of several years [Zhang and Delworth,
2007]. Among the pressure-based climate indices, the correlation is highest with the AO (Figure 3c); this is
confirmed by finding a region over the North American mainland showing persistent strong correlation. For
San Francisco (W), the PDO was selected for the SLRM1 model and here we find persistent strong negative
correlation with the SST off the coastline of California. For the secondary index, we find relatively week cor-
relation with all pressure-based climate indices. Therefore, we focus on a (persistent) diploe with one COA
in the tropical Pacific and another one over the U.S. mainland that does not directly resemble the pattern of
one of the known climate indices but may facilitate strong flows toward the site of interest. For Galveston
(S), the AMO was selected for the SLRM1 model and we find negative correlation with the SST in the North

Figure 5. Pointwise correlation between four low-pass filtered climate indices and SLP or SST for summer (left) and winter (right); COAs are highlighted.
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Atlantic (in the actual AMO region), but much stronger positive correlation further south in the Atlantic and
the Caribbean Sea. This is the region where the tropical cyclones typically originate [e.g., Tannehill, 1938]
that ultimately produce high water levels at the Galveston tide gauge. The secondary index is derived from
a NAO-like pattern that we believe affects the hurricane tracks [Elsner, 2003]. For Mayport (S), the strongest
relationship was found with the NAO and therefore we analyze SLP instead of SST for the primary tailored
index. The two COAs are located in the northeast Atlantic and the southeast U.S. and Gulf of Mexico. For
the secondary index, we find strong (AMO-like) correlation with SST in the North Atlantic that stretches into
the South Atlantic Bight toward the site of interest with an effect on the tropical cyclone activity. The NAO
was also selected to predict the winter season RWLs at Mayport, and the location of the COAs is similar (the
one in the North Atlantic expands a little bit further westward) but the correlation switches signs. For the
secondary index, we focus on a region of strong correlation with the SST in the South Atlantic Bight. For Bal-
timore (S), the AO was selected in the SLRM1 model and the COAs found from the correlation analysis are
again similar to those derived for Mayport (S) (note that the NAO also showed strong correlation with
summer RWLs at Baltimore, in addition to the AO). For the secondary index, we find almost the exact same
pattern as for Mayport with very strong and AMO-like SST correlation confirming the existence of physical
mechanisms linking the AMO and summer RWLs in the southeast of the U.S. Winter RWLs at Atlantic City
also showed a strong link to the AMO, and accordingly we find strong correlation with the SST around Ice-
land and the southern tip of Greenland. The secondary index is constructed from a SLP dipole with one
COA over Canada and the other one in the North Atlantic. Finally, for Portland (W), where the NAO was
selected in the SLRM1 model, we find one COA in the northwest Atlantic off the U.S. coastline, and the other

Figure 6. Pointwise correlation between representative RWL time series for the relevant season and low-pass filtered gridded SLP or SST (depending on which index was selected for
the SLRM1 models) for the (left) entire record lengths, and the (middle) first and (right) second halves. Regions of interest that we focus on to develop primary tailored indices are high-
lighted by frames; the magenta-filled circles denote the tide gauge locations.
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one over and around southern Greenland. For the secondary index, we focus on a region of persisting
strong negative correlation with SST in the North Atlantic.

The overall spatial patterns in the map extracts shown in Figures 6 and supporting information Figure S2
change substantially when different subsets of the RWL and low-pass filtered SST/SLP time series are used,
but within the highlighted regions of interest the correlation remains strong (relative to the surrounding
areas) in all cases, especially for the primary indices (Figure 6). The patterns and COA locations also often
resemble the ones associated with the climate indices (Figure 5) but the COAs can be refined to allow a
more robust and physically meaningful prediction of multidecadal RWL variability.

4.3. Simple and Multiple Linear Regression With Tailored Indices
The SST/SLP grid points exhibiting the strongest correlation (within 5% range of the maxima/minima) with the
RWL time series are highlighted in Figure 7. They are used to derive the tailored indices that are subsequently
considered as predictors in the SLRM2 and MLRM1 models. To identify potential systematic temporal offsets
between changes in RWLs and the large-scale climate, we calculate correlations between the primary tailored
indices and the time series representing changes in 100 year RWLs for time lags ranging from 215 to 115 years
(supporting information Figure S3). In some cases, the correlation gets stronger when time lags of a few years
are considered, but these changes are not systematic and negligible (<0.03); hence, we do not account for any
time lags when building simple and multiple regression models from the tailored climate indices.

The RWL predictions obtained with the SLRM2 models (Figure 7, left) are similar to those derived with
SLRM1, but the explained variance increases at five of the eight sites, now ranging from 49% to 93%, with
an average increase of 17%. There are three cases where the explained variances drop (average 11%) when

Figure 6. (continued)
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we use the tailored indices instead of the traditional climate indices. For Seattle the AMO showed the
strongest correlation but instead of focusing on the region with strong correlation in the North Atlantic, we
derived the primary tailored index from SST in the northeast Pacific, where the correlation is a little bit
weaker (but still in the order of 0.75, compared to 0.85 around Iceland). In San Francisco, the tailored index
goes back to 1854, whereas the PDO starts in 1900. If we build the SLRM2 model from this shorter time
period the SLRM1 and SLRM2, predictions become more similar (and the explained variance increases to
53%). The third location where the explained variance drops is Mayport (S). In this case, the NAO was used
in the SLRM1 model and we find very strong correlation between the Mayport summer RWLs and SLP over
northern Europe and the Norwegian Sea. For the tailored index, however, we focus on the area of high (but
a little bit weaker) correlation over the Gulf of Mexico; it is more reasonable to assume a physical connection
between the RWLs at Mayport and a SLP dipole with its COAs in the northeast Atlantic and over the Gulf of
Mexico (instead of northern Europe/Norwegian Sea).

When we include the secondary indices and use the MLRM1 models for the prediction the explained var-
iance increases to an average of 77% (ranging from 60% to 93% at individual tide gauges). The increase is
substantial at some sites (e.g., Mayport (S), Portland (W)) but zero at others, where including the second

Figure 7. (middle and right) Pointwise correlation between RWL and SST or SLP; grid points with the highest correlation and used for the tailored indices (middle: primary indices; right:
secondary indices) are marked by green crosses; tide gauge locations are denoted by the magenta filled circles. (left) RWL changes derived from observations in W15 (blue) and predic-
tions from the SLRM2 (green) and MLRM1 (red) models; numbers in brackets denote the amount of the explained variance when secondary indices are used in simple regression models;
gray-shaded bands represent 95% confidence levels of the SLRM2 predictions.
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predictor does not add any new information to the model. We also test how much variability can be
explained by the secondary indices alone when used in a simple regression model (numbers in brackets in
Figure 7). At several sites the secondary tailored indices explain as much, or even more, of the variability
than the primary indices highlighting the strong coupling between SST and SLP in altering storm surge
water levels at multidecadal time scales.

For the last set of models (MLRM2), we include the low-pass filtered wind stress curl time series from the
grid points with the strongest correlation in a 108 area around the tide gauge locations as additional predic-
tors. Incorporating wind stress curl into the model leads again to an improvement of the explained variance
(Figure 8), now ranging from 60% to 96%; the average increases to 82% (compared to 57% explained with
the first set of models SLRM0). With the exception of Mayport (S), the improvement is relatively small or the
explained variance with the MLRM2 models is the same as with the MLRM1 models. We also test again how
much variability can be explained when using only wind stress curl as predictor (numbers in brackets in Fig-
ure 8). The results vary, at some sites it seems to be a poor predictor compared to SST and/or SLP, at others
it explains almost as much variability as the other predictors (alone or combined).

We have already tested the spatial stability of the correlation patterns for the tailored indices (Figure 6 and
supporting information Figure S2) and have shown that the models—especially SLRM2 and multiple

Figure 7. (continued)
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regression models MLRM1 and MLRM2—are capable of explaining a large fraction of the multidecadal RWL
variability at all sites. Next, in order to test the temporal stability, we fit the models to different data subsets
instead of the entire records, and test the stability of the regression coefficients. This is done for the SLRM2
models where we have only one predictor and, exemplarily, for the slope parameter a at San Francisco (W)
and Mayport (W) (Figure 9). For San Francisco the regression coefficient becomes stable (i.e., within the
range of the 95% confidence bounds derived from fitting the model to the entire data set) for all start years
when �120 years of data are used; for short window lengths (we start with 50 years; i.e., 14 values after
applying the nonstationary extreme value analysis/low-pass-filter) the coefficient varies significantly. At
Mayport �80 years of data are enough to derive stable results in relation to the ‘‘full model,’’ which is in this
case based on shorter records than in San Francisco and therefore the fact that less data are required for
stability is not surprising. In both cases, there is a tendency that the coefficients are overestimated when
data from the first half are used, while they are underestimated when data from the last few decades are
considered. When we increase the window length and use the latter part of the time series in the model,
the coefficients become stable earlier (10 years at San Francisco, 3 years at Mayport) than when using the
first parts of the data sets. This suggests that the quality of the underlying data sets improves toward the
end of the records relative to the 19th century. Similar results and patterns were found for the other sites
(not shown).

Figure 8. RWL changes derived from observations in W15 (blue) and predictions obtained with the MLRM1 (red) and MLRM2 (green) mod-
els; numbers in brackets denote the amount of the explained variance when wind stress curl is used in simple regression models; gray-
shaded bands represent 95% confidence levels of the MLRM1 predictions.

Journal of Geophysical Research: Oceans 10.1002/2015JC011057

WAHL AND CHAMBERS U.S. EXTREME SEA LEVELS AND CLIMATE 1287



Finally, we use the predictions that we obtained with the SLRM2, MLRM1, and MLRM2 models as covariates
in the extreme value analysis of W15 to test by how much it reduces the range of change in the 100 year
RWLs (i.e., the difference between highest and lowest values). In their Figure 10 (black vertical bars), W15
showed that the latter fluctuate by between 9 and 79 cm over time during the relevant seasons at the eight
study sites. The results were compared to those derived with a stationary extreme value analysis and
exceeded the 95% confidence limits in all cases. The results from the stationary approach are shown as
blue-shaded bars in Figure 10 of the present paper (centered on zero); those obtained with the quasi non-
stationary extreme value analysis performed in W15 are shown as black vertical bars. When we use the
SLRM2 predictions as covariates in the extreme value analysis, the range of change in the 100 year RWLs
reduces (Figure 10, green vertical bars) between 12% and 56% (31% on average across all sites) and in most
cases proceeds within the uncertainty bands obtained from the stationary assumption. Using the MLRM1
predictions as covariates leads to a reduction of the RWL changes between 17% and 64% (40% on average)

Figure 9. Regression parameter a (i.e., the slope parameter) of the SLRM2 models for San Francisco (W) and Mayport (W) for all window
lengths and start years; hatched areas denote that the estimated coefficient from the data subset lies within the 95% confidence limits of
the best estimate obtained for the full model; color bars were cutoff for presenting purposes, but min/max values are provided.

Figure 10. 95% confidence intervals of the 100 year RWLs derived from the stationary extreme value analysis in W15 (blue-shaded bars
with horizontal lines); range of change in 100 year RWLs obtained with the quasi nonstationary extreme value analysis performed in W15
(black), and from the same approach but with the SLRM2 (red), MLRM1 (green), and MLRM2 (brown) predictions as covariates; for present-
ing purposes, the results were vertically adjusted so that the 95% confidence bounds from the stationary analysis are centered on zero.
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and using MLRM2 reduces the changes by between 36% and 73% (51% on average). The remaining
changes result from the fact that the regression models, although being capable of explaining a large por-
tion of the observed variability, do not capture all the peaks which determine the range of change we are
focusing on here.

5. Conclusions

In the present study, we investigated the links between multidecadal variations of design relevant 100 year
RWLs (as identified in W15 and summarized in Figure 1) along the U.S. coastline and large-scale climate vari-
ability. Multidecadal fluctuations in RWLs—which are currently unaccounted for in design and coastal plan-
ning processes—were shown to be considerable (when we follow the procedure that is currently most
often used to derive them) and will likely dominate over long-term sea level rise for the next few decades
(i.e., coastal management time scales). Therefore, following the long-term objective of being able to project
RWL changes into the future, the main focus of the present study was to understand the driving mecha-
nisms of the observed variations and develop statistical models to reconstruct them.

A correlation analysis of the location/scale parameters of the Generalized Extreme Value distribution and
the resulting RWLs with various indices, which are known to affect the climate over the U.S. mainland, North
Atlantic/Gulf of Mexico, and East Pacific, revealed strong relationships between RWLs and at least one of
the climate indices (some of which were also shown to be significantly correlated with each other at multi-
decadal time scales) (Figure 3). Based on the results from the correlation analysis and ‘‘expert judgement’’
(i.e., when two or more climate indices showed strong correlation with RWLs, we picked the one where a
physical connection seems more reasonable) we developed two sets of simple regression models, SLRM0
and SLRM1. Those are able to explain 57% and 59% of the RWL variability, respectively, and also showed
that a direct prediction of RWLs leads to similar results than the separate prediction of location and scale
parameters and determining the RWLs from them afterwards (Figure 4). Here, we focus on the 100 year
RWLs which are most often used for design purposes; the results can, however, be scaled to obtain predic-
tions of the temporal variations for other return levels, e.g., 50 or 1000 years, and if one is interested in the
entire distribution the SLRM0 models can be used (along with tailored indices for location/scale parameters
from SST, SLP, and wind stress curl if desired).

Since the climate indices used here were originally not defined with the main purpose of predicting multi-
decadal RWL variations, we developed tailored indices to use them as alternative predictors. They were
derived from gridded SLP and SST fields by refining the COAs (after testing their spatial stability) of the tra-
ditional climate indices to allow a better and physically more consistent reconstruction of the RWL changes.
For each region, we developed primary and secondary indices, one coming from SST the other from SLP;
the correlation analysis with the traditional climate indices guided the decision of which variable was used
for the primary indices. We then used the primary tailored indices to build the SLRM2 models, which explain
on average 66% of the variability (Figure 7). When we use both primary and secondary indices as predictors
in a multiple regression model (MLRM1), we can explain 77% of the variability, on average across the region.
A last set of models was derived with a multiple linear regression approach where the tailored SST/SLP indi-
ces were complemented by a third predictor based on low-pass filtered time series of wind stress curl. With
the MLRM2 models, the explained variance increases to 82% on average (Figure 8). Finally, we used the
RWL predictions as covariates in the nonstationary extreme value analysis and tested how much of the
range of change in 100 year RWLs can be explained. The MLRM1 and MLRM2 (and in most cases also
the SLRM2) models allow to turn a nonstationary process into a stationary one at all sites (Figure 10),
thereby cutting the range of change almost into half.

This implies that one would be able—given that climate models are capable of simulating temporal
changes in the variables used here as predictors (SLP, SST, and wind)—to project a major fraction of the
nonstationarity (or temporal changes) in design relevant RWLs into the future, and to include the informa-
tion into decision making in the climate adaptation context. Using computationally efficient statistical mod-
els for this purpose allows one to include all representative concentration pathways and to evaluate
individual climate models (thereby accounting for the full range of scenario and model uncertainties) as
well as ensembles comprising all models, or only those that are able to reconstruct much of the observed
RWL variability. This will be explored in a future investigation.
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