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ABSTRACT
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Forecasting Financial Markets with Online Information

Doctor of Philosophy

By Paul Vincent Gaskell

This thesis explores the relationship between what investors say on online social media and
price movements in financial markets. Recent studies have applied techniques from the
natural language processing literature to distil the content of blogs, micro-blogs and user
generated content sites to a ‘sentiment’ measure, pertaining to whether the content is good
or bad for a given stock. Sentiment is then measured over a time series and compared to
stock price returns. There is general agreement in the literature that a relationship between
online sentiment and returns exists, but the strength, sign and timing of this relationship
vary across studies.

In this thesis | argue that this type of sign-strength-timing variability is an inherent
part of the sentiment-price relationship. My rationale for this is that existing sentiment
metrics miss important contextual information that can significantly alter the interpretation
of a piece of text. The fact that sentiment measures lack this type of contextual awareness
means that the relationship between sentiment and price will vary based on factors that are
latent from the sentiment measure.

Based on this argument | make three key contributions in this thesis: firstly, |
document significant evidence that sign, strength and timing variability are a characteristic
feature of the online textual sentiment-price relationship. Secondly, | develop a novel time
series analysis methodology, signal diffusion mapping (SDM), that is capable of modelling
and forecasting effectively based on relationships that are characterised by this type of
variability. Third, | show that when appropriately modelled using SDM, it is possible to use
the sentiment signal to forecast prices. Using this methodology | document that the
sentiment-price relationship is much stronger than has previously been assumed in the
literature. | go on to show it is possible to develop trading strategies based on SDM that
generate excess returns once reasonable costs have been accounted for.

I conclude that there is economically meaningful financial information in online
social media, and that a characteristic of this information with respect to prices is
variability. Modelling variability more accurately using SDM opens the possibility for
using online information directly in asset pricing models or trading strategies.
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Notational Conventions

Papers two and three contain a number of equations that require the manipulation of
vectors and matrices. To unify the style of the thesis, | have used standard vector notation
throughout, so r indicates a scalar variable, r indicates a vector and R a matrix. The only
time I have deviated from this convention is in the factors of well-known asset pricing
models, where the factors are typically denoted in capital letters. These cases only occur in
the introduction to the thesis where the context of the equation should make the usage

obvious.

I have also reserved a number of letters for recurring variables, p always indicates
price, r returns, q a measure of textual sentiment and t is reserved for time. As is common
in the financial literature, | primarily use the natural logarithm of a stock price return series
in my analyses. This means the r mostly indicates the log return, but can also designate the
raw return. The exact definition of r is always made clear in the text. As p is reserved, |
designate probabilities with Pr. | have also reserved f to indicate a function and E to
designate the expected value of a random variable. On a number of occasions I find it
necessary to state the length of several vectors. To limit the number of characters used for
this purpose, | use the special notation Nq to indicate the length of vector g, intuitively this
notation mean 'number of elements of type . This is the only occasion outside of the

introduction where | deviate from standard vector notation.
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Chapter 1: Introduction

Recent years have seen a rapid growth in online services, such as StockTwits® and Seeking
Alpha®, facilitating the sharing of financial information. McIntyre (2009) reports that these
services now rival established financial media monopolies in the scale and quality of the
content they provide. Goldman Sachs (2015) considers this to be part of a wider trend in
investment practice, reporting that younger investors, born between the years 1980 and
2000, are beginning to eschew traditional ways of investing based on relationships with
institutional equity managers. Instead, this capital is being allocated on the basis of
conversations and reviews from online community resources. In monetary terms this
change is significant, as Goldman Sachs report that the estimated size of the addressable

opportunity created by online social investment services is $4 trillion.

Besides direct influence on investors capital allocation, there are other ways the
web is being considered to influence financial services practice. Recent research reports on
how consumers are increasingly likely to use peer review in purchasing decisions. Deloitte
(2007), reports that 82% of US internet consumers have been directly influenced by peer
reviews when choosing which products and services to buy. Similarly, Datamonitor (2010)
describes how consumers are moving away from traditional forms of print reviews to using
online consumer review services. Since ultimately consumer purchasing choices affect
company performance, these reviews have implications for company earnings and the

pricing of stocks.

To give some idea of the scale of the content that now exists online, the sample of
data I gathered for this thesis covers the 100 stocks in the Standard and Poor’s 100 stock
index for the period running January 2014 to March 2015. This sample includes over 10.2
million messages and over 6 billion individual words from 45,516 different content
sources. These sources range from micro-blogging services like Twitter, to social media

sites like Facebook, to dedicated financial content aggregator sites like

2 Stock Twits is available at: http://stocktwits.com/
¥ Seeking Alpha is available at: http://seekingalpha.com/
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financialcontent.com. There is no good way of telling just how much information now
exists online, but I certainly haven’t collected every relevant piece of content, meaning that
the total volume of content is likely to be extremely large indeed. Financial theory
considers information to be the primary, and only important, driver of asset prices, so even
though the reports mentioned so far do not constitute peer reviewed findings, the sheer

scale of online activity warrants closer examination.

The financial literature in this area is sparse. At the time of writing there are four
main papers published in mainstream financial journals addressing the relationship
between the content of online services and prices in financial markets (Antweiler and
Frank 2004; Das and Chen 2007; Chen et al. 2014; Sprenger et al. 2014). The aim of these
studies is to evidence whether there is any information in these services that can be used to
model or forecast asset prices. To do this, researchers distil online content into a “textual
sentiment” metric, measuring whether the general tone of the messages implies a good or
bad outlook for a stock. For example, phrases like “bull market” or “SP500 rises by 5pts”,
would indicate positive news about a market prices, whereas, “bear market” or “SP500
falls by 5pts” would be indicative of negative news. A feature of these approaches is that
sentiment is considered to be a simple function of the words in the text, so that the word
‘good’” would be expected to hold positive sentiment regardless of the context in which it is
used. Studies then apply econometric techniques to test whether this variable is related to

prices.

There is agreement across studies that a relationship exists, but studies give
contradictory accounts of the sign, strength and timing of the relationship; where, by sign |
refer to whether the correlation between sentiment and price is positive or negative in sign,
the strength is how closely the two variables are correlated and the timing is the lag time
between information occurring in the sentiment series and it being reflected in prices. For
example, Antweiler and Frank (2004) and Das and Chen (2007) both report
contemporaneous correlations between sentiment measures and asset price returns but find
no evidence of lagged relationships. By contrast, Sprenger et al. (2014) report a short-run
lagged between sentiment and price, where sentiment is shown to negative influence future
returns. The situation is further complicated by the findings of Chen et al. (2014), who
document a positive correlation between sentiment and the return of stocks over the
following two- to three-months following the date a piece of content is published. Further

to this, Chen et al. also document that the cumulative return of a stock is positively



correlated to sentiment up to three years after a piece of content is published.

Perhaps unsurprisingly, given the variation in results across studies, authors have
given different theoretical interpretation to their findings. For example, Antweiler and
Frank (2004) consider their results to be the product of a small pricing inefficiency so that
online sentiment is reflected in prices almost instantly, but there are occasional delays that
lead to some predictability in price features. On the other hand, Chen et al. (2014) argue
that investors may be drawing utility directly from community membership, this motivates

them to post valuable information online and creates significant price predictability.

While they differ in their interpretation, the focus of these differing results is
variability; variability in the sign, strength and timing of the relationship. As sentiment
measures are constructed from word frequencies, what this means in practice is that returns
are reported to respond differently to changes in the frequency of similar groups of
sentiment carrying words over different studies. There are at least three plausible

explanations for what might be causing this:

Firstly, investors could interpret the same words differently due to changes in their
state of mind, or heuristics they are using to process the information they receive. There is
a large behavioural literature documenting how investor cognitive biases affect their
trading decisions, including behavioural asset pricing theories, such as Daniel et al. (1998),
Daniel et al. (2002), Grinblatt and Han (2005), Barberis et al. (1998), Harrison Hong and
Stein (1999) and Frazzini (2006), that consider how price predictability can emerge as a
product of these biases. A key theme within this literature is that investor cognitive biases
prevent them from responding immediately to new information, creating a lagged
relationship between information and price. This relationship takes the form of a wave or
oscillation where returns are sometimes positively correlated to information and sometimes
negatively. As a result, this body of theory provides a potential explanation to account for
the sign-strength-timing variability reported in the online sentiment studies.

Secondly, sign-strength-timing variability could emerge from the relationship
between investors and the authors of online content. A number of studies, such as Davis
and Tama-Sweet (2011), Huang et al. (2012), Loughran and Mcdonald (2011), Larcker and
Zakolyukina (2012) and Rogers et al. (2011), have documented how managers of stock
exchange listed companies may use deceptive language to misinform investors about the

state of conditions in the company during earnings announcements and press releases. In a



less Machiavellian example, Tetlock et al. (2008) discusses how different people express
themselves with different words, for example, some authors will generally be more
hyperbolic than others when describing an event. In these cases investors have to make a
judgement about the authors meaning based on a prior experience of the authors natural
level of hyperbole. In either of these examples there is a natural feedback relationship
between an investor’s interpretation of the content, trading decision, and revised
interpretation of future content from the same author. For example, an investor who is
misled by a particular manager and loses money is likely to revise their assessment of
future content produced by the same manager. Sign-strength-timing variability arises in
this case because, although investors may be misled or mistaken in the short term, over
time they move to correct their mistakes, which may create a lagged price response to

information.

Third, there is often a level of assumed understanding an author will consider their
reader to possess. For example, an active participant in financial markets would be
expected to have a different understanding of words like ‘tax’, ‘liability’, ‘bull’ and “bear’,
than a member of the general population. Without an understanding of how language is
used in a specific context some of the meaning of the text is lost. A number of studies have
shown evidence this is an important factor in classifying financial content, including Henry
and Leone (2009) and Loughran and McDonald (2011b). This type of context can also
change quite rapidly, ‘Libor’, for example, would have been a neutral word to most
financial researchers before the recent rate fixing scandal. Now, associating a financial
institution with Libor is likely to hold significant negative connotations. As with the other
examples, the sentiment-price relationship would be expected to vary as the context this
content is published in varies. There are a number of similar contextual features of
language that are not measured by counting the frequencies of sentiment carrying words. A
good example of this is how financial content often gives a commentary of expected future
valuations of stocks, for example, a piece of text may make a statement like ‘Dow Jones
expected to top 17,000 points this week’. Read the week before, this statement appears
positive and suggests investing in a fund that tracks the Dow may provide positive returns,
read a week after when the target has been missed and the statement takes on a different

semantic meaning.

Current sentiment analysis methodologies are not equipped to model this type of

variability as they are based entirely on the frequency of words in a piece of text. The type



of factors 1 list above will often not be explicitly referenced in the text, making any
variability they cause not directly contained in — or latent from — the sentient measure. A
further complication is that in general some of these factors are not measurable. For
example, it is difficult to see how investors trust in a given author could be explicitly
measured in most cases. The result is that some sign-strength-timing variability is almost
certainly going to persist irrespective of the sentiment analysis methodology being used.
Given these difficulties, the fact that significant statistical relationships have been reported
in the literature, by authors such as Antweiler and Frank (2004), Das and Chen (2007),
Chen et al. (2014) and Sprenger et al. (2014), suggests the presence of a much stronger
relationship between online textual sentiment and price exists, it just may require

significant methodological innovations to gain a deeper understanding of it.

There are two gaps | identify in this literature that I will address in this thesis:
firstly, based on the available theory and evidence there is good reason to suspect there will
be variability in the strength, sign and timing of the sentiment-price relationship. There is
currently no literature which studies this aspect of the relationship in detail. Secondly,
current methodologies are limited in their ability to model relationships that exhibit the
type of strength-sign-timing variability | describe.

To bridge these gaps, the substantive part of this contribution is developed in three
papers; the conceptual link between the three is an investigation into how online textual
sentiment can be used to forecast prices in financial markets. More specifically, this link
focuses on how the variability in the online textual sentiment-price relationship can be

modelled in order to forecast prices with textual sentiment measures.

In chapter three; | address the first gap in the literature, and study in detail the time-
evolution of the sentiment-price relationship. To do this | have assembled the largest and
most diverse corpus of online financial content studies in the literature to date. The corpus
contains over 10.2 million pieces of content from 45,516 different online sources, ranging
from micro-blogs, to articles, to message-boards. To put this in perspective, Antweiler and
Frank (2004) use the second largest corpus of 1.5 million message-board posts, these are
drawn from two online services, Yahoo Finance and Raging Bull. This matters because
different online platforms are likely to attract different user bases, and place different
restrictions on how information is accessed and shared. For example, Twitter places a 140

character limit on messages, whereas, a blog post may have no character limit at all. The



size of the corpus | use in this thesis reduces the chance of bias being introduced as a result

of these factors.

| then adapt econometric techniques pioneered in the momentum literature by
authors, such as Moskowitz et al. (2012), to study lagged relationship between sentiment
and price at a time horizon of up to 5 months. | find evidence of significant long-run
relationship between sentiment and price. | show using cross-correlation analysis, that this
is characterised by an oscillation or waveform over the length of the lag period, suggesting
that sign-strength-timing variability is a feature of the sentiment-price relationship. I note
that this is similar in form to the type of relationship studies in the momentum literature,
where researchers have documented an oscillatory relationship between return series and
their own lagged values (see for example; Jegadeesh and Titman 1993; Asness et al. 2014;
Asness et al. 2013). Using multivariate regressions, | show that some of the sentiment-
price relationship can be explained by price momentum, but that there is also some
incremental information about future returns contained in the lagged values of the

sentiment series that cannot be explained by prior prices.

The importance of this paper to the overall thesis is that | provide empirical
evidence of an economically meaningful relationship between sentiment and price that also
shows significant sign-strength-timing variability. As this variability cannot be fully
explained by price momentum, the evidence suggests that one or more of the other sources
of variability | have discussed play a role in the sentiment-price relationship. Yet these
sources of variability are not realistically measurable, leading to the conclusion that to
more effectively model the sentiment-price relationship requires developing modelling
techniques for capturing variability in the sign, strength and timing of time series

relationships.

In chapter four; | address the methodological challenge of modelling sign-strength-
timing variability, suggested by the findings of earlier studies and evidenced explicitly in
the findings of chapter three. To do this I introduce the signal diffusion mapping (SDM)
algorithm which has been published in the Journal of Forecasting®. SDM is the optimal
Bayesian estimator for time varying relationships that exhibit sign-strength-timing
variability of the type I describe. | develop SDM based on techniques from the computer

science and statistical physics literatures for finding the optimal temporal alignments

* Gaskell, P., McGroarty, F. and Tiropanis, T., 2015. Signal Diffusion Mapping: Optimal Forecasting with
Time-Varying Lags. Journal of Forecasting. Published Online September 2015.
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between time series. | adapt these techniques for forecasting by incorporating them into a
recursive Bayes estimation framework. The result is the optimal Bayesian forecast of time
varying lagged relationships. | show the effectiveness of the SDM algorithm with tests on

simulated data.

In chapter five; | return to the same modelling task I attempted in chapter three, this
time armed with the SDM algorithm. If the sentiment price is significantly variable as |
have suggested, then SDM should generate a better forecast than the modelling strategy |
applied in chapter three. To test this | employ a similar approach to the Diebold-Mariano
test (Diebold and Mariano 1995) to compare the forecast produced by SDM against the
forecast produced by the simpler techniques I applied in chapter three, | show that SDM
greatly improves the forecast, | go on to show how it is possible to generate large excess

returns via a simple trading strategy based on the output of the SDM estimator.

I then introduce a novel hypothesis testing framework based on the output of the
SDM algorithm to analyse where the extra predictive power comes from. | find that there
are stock specific lag distributions which characterise the sentiment-price relationship. |
also show that these distributions are significantly variable over time. | conclude that this is
evidence in support of the fact that there are contextual factors, specific to stocks and
particular time periods, that play an important role in determining how the words in text
are interpreted by investors. | conclude that sign-strength-timing variability is a significant
aspect of the sentiment-price relationship, and that SDM can be used to model it in a much

more effective manner than existing approaches.

In developing SDM | draw on statistical methods from outside the field of finance
and econometrics. The SDM method | develop in chapter four is based on mathematical
concepts from the computer science and statistical physics literatures. This not only fulfils
the interdisciplinary requirement for my research program, but also provides significant
improvement on existing econometric methods. As well as providing an innovative
modelling strategy for research into the online textual sentiment-price relationship, the
general issue of variability in modelling semantic meaning in text touches a number of
other areas and disciplines interested in the study of online content. As a result, the
methodology | develop for this thesis is generalizable to a number of other contexts in the

web science, computer science and internet science literatures.

The following chapter contains a literature review highlighting some of the most



relevant literature in this area; | first introduce the major bodies of theory that inform this
research. In section 2.2 | consider how the relationship between information, investors and
prices is viewed in mainstream financial theory. In section 2.3 | review what literature
exists documenting the relationship between the information of textual content and prices.
In section 2.4 | describe what methodologies have been applied to measure textual
sentiment, both in the financial and computer science literatures. In section 2.5 | describe
the time series modelling techniques that have been used to model the relationship between
textual sentiment and other variables like asset prices. Finally, in section 2.6 | synthesise
the evidence from the literature into an argument about how variability is an inherent

feature of the online textual sentiment-price relationship.



Chapter 2: Literature Review

2.2. Information, investors and prices in financial theory

In section 1 | describe how investors may interpret textual sentiment information
differently based on a number of factors latent to the content of the text. In this section, |
introduce how, in financial theory the relationship between prices and explanatory
variables is often thought to vary based on factors not captured in financial models. How
this variability is captured and modelled depends on the underlying assumptions
researchers make about investor behaviour. The importance of this section to the narrative
of my thesis is to show where the idea of sign-strength-timing variability in the

information-price relationship might be located within financial theory.

There are a number of assumptions about investor behaviour that are relatively

uncontroversial in mainstream financial literature. These are summarised by Lo (2008) as:

Individuals prefer ...

(i) ... more money to less
(i) ... money now over money later
(iii) ... to avoid risk

(iv)  All agents act to maximise their own self-interest

Based on these assumptions, investors act in ways to maximise the value of their
asset holdings whilst attempting not to take unnecessary risks. To do this an investor needs
to make probabilistic decisions about the future prices of stocks. The information investors
use to make these decisions is the main, and only important, driver of asset prices in
financial theory. There are two categories of information the mainstream literature
considers: objective information — material information about the conditions inside a firm
or institution that affect the fundamental valuation of a stock, for example reports of

company earnings, changes in management or macro-economic news; and investor



sentiment — defined by Baker and Wurgler (2007) as the thoughts, attitudes and opinions
investors have about stocks that are not justified by the facts at hand. The role each of these
types of information plays in the price formation process is a key differentiating factor
between the two major bodies of asset pricing theory: efficient markets theory; and

behavioural theories and momentum.

2.2.1. Efficient markets theory

Efficient markets theory is based on the assumption that investors are probabilistically
rational. Asset pricing models based on this assumption can be traced back to Markowitz's
(1952) modern portfolio theory (MPT) . Markowitz proposes that the concepts of
probabilistic return and risk can be captured mathematically by the mean and variance of a
stock’s price. It follows from this assumption that the expected return and risk of holding a
portfolio of stocks is a function of their means, variances and covariance. Markowitz
(1999) discusses how the assumptions of MPT serve as both a hypothesis about investor
behaviour, but also as a maxim for how a good, or rational, investor ought to act in a given
situation. On the one hand, if the mean and variance of prices is an adequate description of
the way stock prices move then the hypothesis is that investors behave in a way that allows
these guantities to be defined. On the other hand, if these assumptions are true then there

are mathematically optimal decisions an investor can make.

Under the assumptions of MPT investors have two levers they can use to build
portfolios; the first is to hold portfolios of stocks with higher expected returns. This is both
intuitively obvious and follows from the fact that investors prefer more money to less. If it
is not possible for investors to estimate the return of stocks directly, the second lever is to
diversify the risk of holding the portfolio. Diversification is important because, given the
mean and variance assumptions, it can be shown mathematically that the ratio of the mean
of a portfolio to its variance will generally increase the more stocks are held in the
portfolio. The rate of increase is also a function of how correlated the constituent stocks in
the portfolio are, the less positively correlated, the greater the increase in the mean-
variance ratio of the portfolio. This allows for mathematically optimal portfolios to be

created without the necessity for an estimate of future returns.

Building on MPT, Fama (1965a; 1965b; 1970) effectively removes the idea of

10



forecasting expected returns from the mainstream literature in proposing the efficient
market hypothesis (EMH). The EMH is based on the synthesis of a large body of evidence
showing that it is very difficult to systematically ‘beat the market’. Fama (1970) reviews a
large range of proposed trading systems and shows that none of them return profits in
excess of reasonable transaction costs. This work has been corroborated by authors, such as
Brock et al. (1992), who similarly find that technical trading rules, reported to be used by
investors, do not generate returns in excess of reasonable costs. The conclusion Fama
draws from this is that prices must be an accurate reflection of all available information. If
they were not, there should be a period of time over which prices moved in a stable
trajectory as investors adjust their holdings. This should cause prices to trend. Fama
(1965b) shows that, although prices are serially correlated, this correlation is too small for
investors to profit from it in excess of costs. The EMH itself comes in three forms; in its
weak form it prescribes that asset price returns cannot be predicted by their own prior
return or other available market data, the semi-strong form asserts that prices cannot be
predicted by any publicly available information, whilst the strong form asserts that prices
cannot be predicted at all as they reflect all information both public and private (Fama
1970).

The EMH is one of the most influential concepts in asset pricing theory. By
removing the ability to forecast expected returns, the only remaining lever for investors is
diversification. Following this to its logical conclusion, it means that all investors should
attempt to hold the portfolio with the most widely diversified risk, which corresponds to
holding every stock in the market. Based on these assumptions the price of an asset should
be a function of the difference in the risk profile of an asset relative to other potential
investments. This insight forms the basis of the capital asset pricing model (CAPM), where
the expected return of a stock is given based on its risk profile set against the risk of

holding the market portfolio. This is expressed mathematically as

E[ri,t] = rfree,t + Bi,mkt (E [rmkt,t] - rfree,t) (1)

where ri is the return of the ith stock at time t, I is the return from a risk free asset, for
example U.S. Treasury Bonds, and ryy is the return of the market portfolio. The parameter
Limke represents the sensitivity of fluctuations in the stock’s price to fluctuations in the
market return. The expected return of the asset in CAPM is a premium on the excess

variance the investor takes on by holding the stock.
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CAPM has been extremely influential in shaping the way financial researchers
think about risk. The model implies there is a portion of the stock’s variance that cannot be
reduced by diversifying over the market portfolio. This systematic risk represents the effect
of exogenous shocks on the market as a whole. The risk of a world war, for example,
affects all stocks in the market and so cannot be diversified away. Idiosyncratic risk,
features of a company that are independent of other companies, can be diversified away by

constructing portfolios.

In the CAPM model the only parameter is the relationship between the return of the
stock and the market portfolio provided by i mk. As specified, equation (1) implies that this
relationship is a fixed property; a company has a pre-defined systematic risk profile.
CAPM in this form is known to perform quite poorly in modelling asset price returns. One
of the ways it has been extended is to make pim time varying in a conditional CAPM
model, this takes the same form as equation (1) but p;n: is fitted based on the rolling
lagged values of the market portfolio (Jagannathan and Wang 1996). Conditional CAPM
implies that systematic risk is affected by changing context, that there are factors affecting
investor perceptions of risk that alter the premium demanded for an incremental unit risk at

different points in time.

An assumption of CAPM is that investors are only motivated by the mean and
variance profiles of stocks. An issue with this, raised by Merton (1973) and Fama and
French (1993; 2004), is that the market does not exist in a vacuum from other factors in the
wider economy. For example, an investor is likely to be motivated by the goods and
services that can be consumed using profits from trading. In this case there may be a
covariance between returns and consumer prices. Another argument against CAPM is that

there is empirical evidence that other variables explain the cross section of returns.

Fama and French (1993) find that two factors significantly influence the cross
section of returns, the size of companies and the ratio of their fundamental accounting
valuation to current stock price. These factors are added to CAPM to form the Fama

French three-factor-model, given as

E[ri,t] = rfree,t + .Bi,mkt (E [rmkt,t] - rfree,t) + .Bi,SMBE[SMBt] (2)
+ Biumr E[HML,]

where CAPM forms the first part of the model as before, SMB; stands for 'small (market
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capitalisation) minus big’, and HML; stands for 'high (book-to-market ratio) minus low. The
SMB factor captures the risk premium for holding small capitalisation stocks, whilst the
HML factor captures the risk premium for holding stocks whose current price is relatively

large compared to their accounting valuation.

Similar to conditional CAPM, the parameters associated with the extra factors in
equation (2) are allowed to be time varying, they are also allowed to take both positive and
negative values. Again, the interpretation of these changes must be that an investor will
price an incremental unit risk differently at different points in time. There are contextual
aspects to investor interpretations of the factors in the model that change over time, but

these are not expressed explicitly in equation (2).

This represents the state of the art in asset pricing theory based on the assumptions
of rational expectations. It is not possible to forecast future returns directly because of the
EMH. Instead, asset pricing models are tools to assess the risk profile of companies or to
assess the performance of investments against a benchmark of how much an asset should
have returned based on its risk profile. Effectively, the EMH removes variability in the
time axis from the modelling of the information-price relationship. This is justified by the
assumption that investors can quickly and rationally interpret new information they receive
into their trading strategies. What is allowed to vary is investor interpretations of the risk
profile of companies based on the explanatory factors in the models. Factors like the return
of the market portfolio or book-to-market ratio of a company act as yardsticks for assessing
how risky an asset is, but these relationships are able to vary over time based on other un-
modelled variables.

2.2.2. Behavioural theories and momentum

The second major branch of asset pricing theory concerns the observation by Jegadeesh
and Titman (1993) that prices exhibit momentum. Momentum is the phenomenon where
stocks which have greater than average returns over a six- to twelve-month period will tend
to have higher than average returns over the following three month period. This
phenomenon has been observed over a large range of stocks and asset classes, and over a
large range of different time periods (Asness et al. 2013; Asness et al. 2014). More

recently, Moskowitz et al. (2012) document that momentum is not only present in the
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cross-section of returns, but that the one month return of a stock can be forecast with its
own twelve month lagged return. The momentum literature is supplemented by the long
run reversal in prices documented by Thaler and De Bondt (1985), where excess profits
can be earned by betting against stocks with high three- to five-year returns. There is also a
short term reversal effect documented by Jegadeesh (1990) and Gutierrez and Kelley
(2008), although the effect is generally not significant enough to trade for profits in excess

of costs.

This evidence contradicts the assumptions of the EMH; the serial correlations show
prices do not fully reflect all available information. In turn, this casts doubt on the
hypothesis that investors are mean-variance optimising agents in the sense of Markowitz. A
major strand of financial theory now deals with the expected behaviour of prices when
investors are not considered to be probabilistically rational in this sense. The genesis of this
research can be traced to Kahneman and Tversky (1979), who document how people make
systematic mistakes in probabilistic reasoning tasks. From this foundation, a number of
reported biases in investor decision-making have been proposed in asset pricing models

purporting to yield price momentum as a consequence of investor psychology.

Daniel et al. (1998) and Daniel et al. (2002) consider investors to be overconfident
in their own abilities. Due to this overconfidence they will over-react to their own private
information. They also have self-attribution bias so they are more likely to act on new
information that confirms their current thinking than on information that contradicts it.
This exacerbates the initial overreaction creating price momentum. Over the long term the
effects of overconfidence subside and investors alter their holdings accordingly, this

generates long run reversal.

Barberis et al. (1998) consider momentum to be generated by representativeness.
Representativeness describes the way in which investors assign specific properties to
different stocks. An investor may mentally label some stocks ‘growth stocks’, for example.
Investors will tend to favour keeping this mental model over changing it to suit new
information. This creates a lag between new information occurring and investors altering

their mental models to reflect it.

Grinblatt and Han (2005) and Frazzini (2006) model momentum as the product of
the disposition effect, which is the tendency of investors to sell winners and hold losers.

Investors are more likely to sell a stock that rises in value by one unit than a stock that falls
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in value by the same amount. Similar to the theory of Barberis et al. (1998), this causes

investors to initially under-react to new information creating price momentum.

Hong and Stein (1999) consider a different approach to modelling momentum.
They propose that there are two types of traders present in the market, newswatchers and
momentum traders. Newswatchers only trade based on their private information, this
private information is considered to diffuse slowly through the market. Momentum traders
adopt a naive trend following strategy based only on prior returns. As the momentum

traders observe these changes they adjust their positions, thus creating serial correlation.

The running theme of these papers is that momentum is the product of investor
psychology. These psychological traits cause prices to be positively serially correlated over
time horizons between three and twelve months, then negatively correlated in the longer
term. Despite momentum being a recognised effect across the financial literature, there is
no single accepted theory of what drives the momentum effect. There are also features of
empirical momentum that are unexplained by existing theories. For example, Daniel and
Moskowitz (2011) document how momentum portfolios experience crashes, short periods
during market downturns where the stocks with lower than average prior returns greatly
outperform stocks with higher than average prior returns. As existing behavioural theories
exclusively consider the pricing of a single risky asset, market-wide features such as this

current remain outside of their explanatory power.

One way momentum has been reconciled with existing asset pricing theory is as a
further explanatory variable in the Fama French model. Carhart (1997) proposes this in a

four-factor-model

E[ri,t] = rfree,t + Bi,mkt (E [rmkt,t] - rfree,t) + Bi,SMBE[SMBt]

3)
+ Bium EITHML.] + Bi ymp E[UMD, ]

where UMD; stands for up-minus-down, which is a factor representing the risk premium
for stocks’ one year momentum. This casts investor psychology as a conditional risk factor

in a similar manner to the market efficiency models described in section 2.2.1.

What this model doesn't capture is the fact that, unlike the other explanatory
variables, momentum can be shown to forecast future prices. In existing behavioural

theories the effect of investors’ cognitive biases is to create a time-distortion in the way
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objective information is included in prices. The specifics of how this relationship works
remains a very active area of investigation. Given the lack of agreement in the literature,
possibly the strongest mathematical statement that can be made regarding momentum at
present is that expected returns over some holding period h, are some function of a stocks

prior returns, that is

S=h

Z ri,t+s] = f(ri,t—m:t) (4)

s=1

E

where the literature suggests values for h between one month and three months, and m is

the length of the look-back period, typically taking values of up to one year.

A feature of the difference between behavioural theories and empirical evidence
from the momentum literature is that empirical work typically considers f to be the
cumulative return of the stock over the period t — m:m, whereas, theoretical work typically
considers f to be a more complex waveform, or oscillation in prices over the look-back
period. Note also that equation (4) does not include any description of the relationship of a
stocks momentum to other stocks, or to the market as a whole. The evidence suggests these
relationships are an important part of the momentum effect but there is no universally

accepted explanation for how or why this occurs.

Equations (2) and (4) serve to provide a simple mathematical distinction between
EMH based models and behavioural models. Under the EMH there is no future
predictability in returns, it is possible to find explanatory variables concerning the cross-
section of returns but there is no variability permitted on the time axis. Behavioural
theories put the timing of the information-price relationship at the centre of research.
Returns are not only forecast-able based on serial correlation, but this serial correlation
may itself be time varying or complex.

2.2.3. The adaptive markets hypothesis

The two bodies of theory | have discussed thus far both view investors interpretation of
information as a homogenous feature of all investors in the market. Under the efficient

markets interpretation investors are entirely homogenous mean, variance optimising
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agents. In the case of behavioural theories investors have psychological biases but these
biases are the same for all investors. In either case there may be latent contextual factors
which change prices reaction to information or explanatory variables, but these are
exogenous to the thought process of the investor which is assumed to be fixed. There is
another body of theory which attempts to unify empirical evidence in favour of both
market efficiency and behavioural models by proposing a market made up of

heterogeneous agents.

Lo (2004; 2005) argues that it is possible to reconcile these bodies of theory by
framing financial markets in evolutionary terms. Lo’s adaptive markets hypothesis (AMH)
asserts that investors are not necessarily probabilistically rational, but they are capable of
adapting and learning. The market then has a type of ‘ecology’, where different ‘species’ —
for example, investment banks, hedge funds and pension funds — are all heterogeneous
agents acting to further their own interests. Market efficiency in the AMH sense is then a
special case of a price formation process governed by a particular form of market ecology.
Under the assumptions of the AMH, investor risk preferences are a function of their
historical experiences. For example, the technology bubble in the early 2000’s would have
bankrupted many risk seeking investors, the remaining population of investors would then

be expected to have an altered set of risk preferences (Lo 2007).

There is some empirical evidence in support of the AMH. Researchers, such as
Urquhart and Hudson (2013), have shown that returns sometimes show serial correlation
and other times do not. A particularly striking example of adaptive behaviour the authors
present is a ‘runs analysis’ of the FT30 stock index, showing that before Fama’s work on
market efficiency there was significant serial correlation in the index, this ends abruptly
after the EMH become widely accepted in the 1970s. Another form of evidence comes in
the form of surveys, such as Menkhoff and Schmidt (2005), who ask equity managers to
disclose the trading strategies they use. Most respondents report that they use several
different strategies to help them trade. Some of these will be “value’ strategies based on
ideas consistent with the EMH, others will be strategies based on the assumption of price
momentum. The authors note that it is rare for an investor to report relying exclusively on

one type of strategy.

Importantly for the arguments | make in this thesis the AMH allows for the way

investors react to new information to be variable over time. Since investors can learn and
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adapt, it is possible that an investor may respond differently to the same piece of
information at different points in time. It is also possible that changes in market ecology,
for example a fund withdrawing from trading in a particular category of stock will cause
changes to the price formation process. The consequence of this is that prices response to
new information is not just a feature of exogenous context, but also the context of what
type of investors are currently trading in a given asset, and what their current states of

mind are.

2.3. Financial studies of textual sentiment

In practice a large amount of the financial information discussed in the previous sections
comes published in some form of text document, for example, companies quarterly
earnings announcements will be published in a document containing both the numerical
quantities of the company’s fundamental accounting values, and a qualitative description of
the figures. The earnings figures in the document are directly referenced in the HML; factor
of the Fama French three-factor-model (equation (2)). As the numerical quantities in the
document are known to drive prices, a natural question is whether the qualitative content
does as well. In order to answer this question financial researchers have used a range of
text processing methodologies, mostly derived from the computer science and machine
learning literatures. These methodologies aim to measure the polarity or affect in the text

so this can be used as an explanatory variable in econometric models.

A feature of textual content is that the type of information under study does not fit
neatly into the existing categories of financial information | introduced at the beginning of
section 2.2. Textual content can contain both objective information and traces of investor
sentiment. In order to capture this distinction, Kearney and Liu (2014) categorise measures
of affect in text as textual sentiment. The subject of this thesis is specifically the
relationship between textual sentiment expressed on online social media and prices. There
are only a small number of papers in the financial literature on this topic. A much larger
literature, however, deals with other forms of content. Kearney and Liu separate these
different forms of text content into three categories; corporation-expressed sentiment,
including the content of corporate annual or interim reports and company earnings

announcements; media-expressed sentiment, for example the content of articles in the
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mainstream financial press of analysts’ reports; and sentiment expressed online, for
example blog posts and the content of micro-blogging platforms like Twitter. In the rest of
this section | review the main contributions to the literature for each of these categories to
make the link between the theories presented in section 2.2 and the actual content of text

documents more explicit.

2.3.1. Corporation-expressed sentiment

The most widely studied form of textual content in the financial literature is the public
disclosures of stock market listed companies. These come in the form of quarterly earnings
announcements and annual or interim reports. Many of these reports are legally required by
regulatory authorities like the Securities and Exchange Commission. As these documents
are authored by company managers, they have access to inside information about the
conditions inside the firm that may not be fully reflected in the accounting values in the
company’s financial statements. The aim of research in this area is to test whether this

information is picked up by investors.

There is broad consensus in the literature that the tone of announcements has some
short term forecasting ability for either returns or quarterly earnings. This has been
documented by a large number of authors including Feldman et al. (2008), Davis et al.
(2012), Doran et al. (2012), Mangen and Durnev (2010), Ferris et al. (2013) and Price et al.
(2012). The most widely accepted interpretation of these findings is that managers convey
some objective, inside information about the conditions in a company through the text of
these disclosures. Loughran and McDonald (2013) also report that textual sentiment may
reflect other concepts linked to prices like uncertainty. Within this literature textual
sentiment is conceptually another form of objective information, but one that may be

difficult for investors to access.

Other authors have suggested that investors may be psychologically manipulated by
managers’ use of language in disclosures. Henry (2006) documents how the written style of
disclosures can alter investors’ reactions to content. Subsequently, Henry (2008)
hypothesises that investors may be psychologically influenced by a document’s tone. The
rationale Henry provides is that investors use mental framing as a heuristic in their decision

making, the tone of disclosures influences this framing and subsequently alters investors’
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heuristics with respect to the company. Other researchers go further, suggesting managers
actively attempt to influence investors’ impressions of earnings information. Davis and
Tama-Sweet (2011) document how managers use alternative forms of media
communication to frame the content of earnings announcements. Huang et al. (2012),
Loughran and McDonald (2011a) and Larcker and Zakolyukina (2012) all document how
managers may use deceptive language to mislead investors about future earnings. Finally,
Rogers et al. (2011) documents how overly optimistic language, coupled with insider

selling of stock, can be used as a predictor of prosecutions for fraud.

There is an important distinction between the ways textual sentiment is interpreted
theoretically in this literature. One interpretation is that the information is simply another
form of objective information. Under this interpretation investors may still make
probabilistically rational judgements based on the information they receive. The short
lagged predictability documented in the literature can be explained by the difficulty

investors have accessing the objective elements of the content.

The second interpretation implies that investors are to a certain extent
programmable based on the textual content they read. This makes the relationship between
managers and investors potentially far more complex since, if managers can understand the
value of attempting to manipulate investors’ mental models; it is likely that investors
would be aware of this attempted manipulation. There is some indication that this is the
case, for example, Loughran and McDonald (2011a) have documented media services that
claim to identify managers’ use of deceptive language. The actual content of the text in
these cases is a product of the game of cat and mouse investors and managers are playing
over the sharing of information. The strict rules on sharing information in major financial
markets mean that there is only a limited space for this type of manipulation to occur. Still,
managers only have to disclose earnings quarterly so may use the content of filings to buy
themselves time to correct failings in the company. In more extreme cases, such as those

documented by Rogers et al. (2011), this may lead to managers committing fraud.

The suggestion in these papers is that the honesty of the author of the document is a
latent contextual factor which significantly modifies the way the content is interpreted by
investors. The amount of money investors make is a function of the quality of information
they receive. If they are misled, or misinterpret information, this will cause a drop in their

wealth which is likely to alter their future decisions when faced with information from the
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same source in future. This type of relationship is similar to Soros’ reflexivity theory,
where prices move based on a symbiotic feedback relationship between information and
price (Soros 2009). Under these conditions, the relationship between sentiment and prices
is a function of the trust investors have in the author of a piece of content, which is a
function of previous relationships between sentiment and price. In other words, the current
sentiment-price relationship varies based on prior sentiment-price relationships. This type

of relationship could drive the strength-sign-timing variability I discuss in chapter one.

2.3.2. Media-expressed sentiment

The second most widely studied form of text is the content of the mainstream media. In a
financial context this includes newspapers, the financial press and reports by stock
analysts. A difference between this literature and the corporate-expressed sentiment
literature is that these studies often do not model stock specific sentiment. New articles
will generally report on market or sector wide issues and so are not suitable for modelling
the return of stocks directly. Instead, studies look at the effect of textual sentiment on
market indices or portfolios of stocks.

Similarly to the corporate-expressed sentiment literature, there is broad agreement
that the content of mainstream news articles can be used to forecast future returns or
earnings at short lag lengths. Examples of studies that reach such conclusions include
Ferguson et al. (2014), Engelberg et al. (2012), Carretta et al. (2011) and Tetlock (2007).
There are also studies that have looked at other forms of market behaviour, for example,
Liu and McConnell (2013) and Buehlmaier (2013), both of which concluded that the tone
of press reporting on corporate acquisitions can affect the outcome of a takeover. The
predictive power of analysts’ reports is less clear. Huang et al. (2012) document that
analysts’ reports can predict earnings up to three years in advance, whereas, Twedt and
Rees (2012) report there is a contemporary relationship between sentiment and prices but

no significant lagged relationship.

There are again two separate theoretical interpretations of these findings. Tetlock et
al. (2008) conclude that the media encodes hard to quantify aspects of firms performance
that investors might judge rationally but with a small time delay. On the other hand Garcia

(2013) shows that the predictive power of the mainstream news is accentuated during
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recessions. Garcia hypothesises that this is a reflection of investors’ altered cognitive state
during these times changing their perceptions of the information they read. The second
interpretation links directly to the behavioural asset pricing literature. This link is drawn by
Sinha (2010), who compares the predictive power of media expressed sentiment and the
momentum effect. Sinha concludes that although the two effects are similar there is
information in textual sentiment that cannot be explained by momentum. As with the
corporate-expressed sentiment literature, the implication of these studies is that there are
contextual factors, such as content being created during a recession, that are latent from the
words in the text but affect how the information in the text is incorporated into prices.

As an example of the type of contextual feature that may alter investor
interpretations of content is the time a piece of text refers to. Often, financial content
makes some forecast of the future value of a company, for example, ‘AAPL to suffer losses
in Q4’, clearly references a period in time. Existing sentiment measures do not take timing
into account as they only measure the polarity of the content. If this statement was read in
the third quarter of the financial year then the semantic meaning is clearly negative, but
read in the first quarter of the following year and investors may see it as a sign AAPL will
bounce back in the new-year, making it a good time to buy stock. With financial forecasts
of this type the time period referenced in the forecast has a massive impact on the reading
of the content, yet it is exactly the sort of contextual information sentiment measures do
not detect. In terms of sign-strength-timing variability, the sign of the relationship in this

case changes with the timing.

2.3.3. Online textual sentiment

The online textual sentiment literature concerns the measurement of sentiment expressed in
blog posts, message-boards and micro-blogs. Kearney and Liu (2014) note that this is by
far the least regulated of the forms of textual sentiment studied in the literature. Company
filings have set formal structures and laws which govern their content. To a lesser degree
press reports are also bound by structural norms and regulation. By contrast, different
online platforms provide different structural constraints to the sharing of content, for
example, micro-blogs like Twitter have character limits on messages restricting their length

whilst blogs generally do not, but the authors are not bound by the same laws or codes of
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conduct as with other forms of content. There is also a certain level of anonymity provided
by the use of online services that makes the authors less likely to suffer reputational

damage from the content they post.

There is consensus in the literature that a contemporary relationship exists between
online textual sentiment and prices. Some studies, such as Sprenger et al. (2014) and Chen
et al. (2014) document a lagged relationship, where sentiment can be used to forecast
future prices. Other studies, such as Antweiler and Frank (2004) and Das and Chen (2007)
report a contemporaneous relationship between sentiment and prices but no lagged
relationship. Where a lagged relationship has been documented the sign and timing of the
relationship vary, Sprenger et al. document a short-run, negative correlation between
sentiment and price, whereas, Chen et al. document a positive correlation between

sentiment and price up to three years in the future.

The online medium studied varies; Antweiler and Frank and Das and Chen study
online message-board services, Chen et al. study the content of Seeking Alpha, a website
dedicated to financial articles with an active comments section, Sprenger et al. study
Twitter. Each of these platforms comes with their own structural constraints for
information sharing. Twitter allows users to share messages of no more than 140
characters, whereas, Seeking Alpha is an articles and comments site allowing members to
express themselves in lengthier prose. Each of these services is also likely to engage
slightly different types of investor, as different cultures of users emerge around different

services.

Another feature of online services that distinguishes them from other forms of
media is that they contain content that may be created by investors as well as content that
investors consume. This distinction has been noted in the theoretical interpretations authors
give to their findings. Antweiler and Frank (2004) discuss how investors must think before
they place a trade. Messages about a stock in this case might indicate that a particular stock
has grabbed an investor’s attention. An issue with this argument conceptually is that it
suggests investors post messages somewhat unconsciously, that their posts are a sort of
exhaust left behind during the decision making process. This type of reasoning does not
provide any insight into what motivates investors to do this.

Motivation is another aspect of the online sentiment literature that distinguishes it

from the wider literature. There is a clear legal or monetary motivation for managers to file
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earnings announcements and journalists to write financial news stories. There is no such
imperative for investors to post information online. The only study that has attempted to
address the issue of motivation is Chen et al. (2014); the authors argue that investors may
derive utility from the act of community participation, or may reap tangible economic

benefits from active community membership.

In support of this hypothesis Chen et al. cite a number of articles documenting
cases where social relationships played a role in investors’ decisions. Hong et al. (2004)
document how social relationships play a role in whether households choose to invest in
the stock market. The authors argue that observational learning and utility derived from
shared social experiences increase the attractiveness of investing. Advice from friends may
also lower barriers to entry, for example, by providing advice on the best brokerage service
or strategy to pursue. Ivkovi¢ and Weisbenner (2007) find that co-located households are
more likely to invest in the same stocks; the authors consider this evidence of a type of
‘information diffusion’ effect that occurs as a result of neighbours sharing information with

each other.

2.4. Methods for measuring textual sentiment

In this section | discuss the methodologies that have been used to model the textual
sentiment-price relationship in the financial literature. | describe the ones that have been
used most frequently in detail and provide an overview of other methodologies. Many of
the sentiment analysis methods present in the financial literature were pioneered by
computer scientist and machine learning researchers. To give a full account of the
technology that is available for research in this area | also describe some of the more recent
innovations in the wider sentiment analysis and natural language processing literatures.
One of the features of these methodologies I wish to draw attention to is that they present a
static interpretation of the semantic meaning in text. I discuss the implications this has in
light of the arguments presented above about variability in the context the text is written in

being a key feature of the sentiment-price relationship.

There are two main methodologies for measuring textual sentiment that have been
applied in financial studies: dictionary based classifiers (DC) and naive Bayes classifiers

(BC). In the financial literature the DC has been applied much more often than the BC
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(Kearney and Liu 2014). The basic anatomy of either approach is the same. A set of
messages needs to be selected that the researcher believes references a stock’s price or
other financial variable. This is typically done by some simple keyword selection process,
for example, Sprenger et al. (2014) select messages based on specific tags given to
messages about stock prices on Twitter. Messages then undergo some form of pre-
processing. Common types of pre-processing include removing punctuation and in some
cases common words like 'and’ and 'the'. The content of these messages is then classified
and a measure of sentiment taken over different time periods. These measurements are then
compared to the price of the asset using some econometric model. In the following
subsections | describe the main procedures applied at each stage in the process, | also
summarise some of the other innovations that have been reported in the computer science
literature but have not yet made it into financial journals. This is to give an overview of not

just what has been done, but also what is possible with existing technology.

2.4.1. Naive Bayes classifiers

The BC is based on the assumption that the semantic content of text can be adequately
described by a histogram of word frequencies. This is the 'bag-of-words' assumption that
underpins many of the content analysis and sentiment analysis algorithms in the machine
learning literature. The bag-of-words assumption implies that a message is equivalent to
the set of frequencies it contains. For example, a message me, containing N4 words, could

be described as the vector
me = [Wdl, Wdz, Wd3"'WdNWd] (5)

where wd; is the frequency of the ith word. The basic task of a BC is to assign a probability
score to a message based on its likely membership to a set of different classes. A typical
example in the sentiment analysis literature is to define a class representing positive tone,
clpos, and then calculate the conditional probability of this class given a message, that is,
Pr(cl,os|me). Due to the bag of words assumption, me is simply a vector of word

frequencies, so clys can also be defined based on the word frequencies directly. That is

Pr(clpoS | wd,, wd,. ..Wded) (6)
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which implies the word frequencies that define the class in equation (5) are independent of

the messages they are contained in.

The BC then assumes it is possible to assign probabilities to words based on their
likely class membership. The way this is done in practice is for researchers to hand classify
a training sample of messages as belonging to different classes. Words are then scored
based on how frequently they occur in each class. A simple way of doing this is to assign
probabilities based on the percentage of words in the training set that occurred in messages

assigned to a given class, that is
Pr(Wdi | Clpos) = Wdilclpos/Wdiltrain (7)

where wijq is the sum of the frequencies of the ith word that occurred in messages assigned

to a given class, Wiprain 1S the frequency of the ith word in the training set.

There are a number of other common approaches to assigning these probabilities.
Sparck Jones (1972) introduced the term frequency inverse document frequency (tf-idf)
approach; one of the most commonly used methods in the computer science literature. The
purpose of tf-idf is to normalise the raw frequencies of words by the frequency of their
occurrence across messages. This is done by dividing the word count by the number of
messages with at least one occurrence of the word and taking logs. Another issue with
assigning probabilities to words is that not all words that occur in the full sample will
necessarily occur in the training set. To counter this it is common to use Laplace

smoothing, so that each word is assigned a minimum frequency of 1 for each message.

Under the 'naive' assumption that word frequencies are independent variables, the

conditional probability of a message belonging to a class can be written as
Pr(me | cl,ys) = nPr(wdi | clyos) ®)
i

It is then possible to calculate the value of equation (6) using Bayes theorem;

Pr(clp0 S)

Pr(clyos | me) = Pr(me)

Pr(me | cly,s) 9)

where equation (9) describes the probability model the BC uses. The classifier itself is the

algorithm that assigns probabilities to different classes. A typical example in the sentiment
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analysis literature is a case where there are two classes, positive sentiment cly,s and
negative sentiment clyeg. It is also typical to see a neutral classification but the logic is the

same as in the two class case.

In the two-class case the classifier faces a straight choice between two options; the
conditional probability of negative sentiment is defined similarly to equation (9). That is

Pr(clyeg)

WPT(IHG | Clneg) (10)

Pr(clyey | me) =

where we have simply substituted clpos for Clneg in equation (9). Relative class membership

can then be given as an odds ratio by dividing equation (9) by equation (10). That is

Pr(clpoS | me) B Pr(clpos) Pr(me | clpos) Pr(clpos) nPr(wd | clpos)
Pr(clyey | me) — Pr(clyey) Pr(me | clyeg)  Pr(clug

where a value of greater > 1 indicates the message belongs to the positive sentiment class
and a value of < 1 indicates the negative class.

The BC has been used much less frequently in the financial literature than the DC,
although the BC has been used more frequently in the analysis of online textual content. Of
the four published studies on online textual sentiment, three of these have used a BC
(Antweiler and Frank 2004; Das and Chen 2007; Sprenger et al. 2014) and only one, Chen
et al. (2014), has used a DC.

The advantage of this approach over the DC is that it allows for the researcher to
input some domain specific knowledge into the classifiers probability model of how words
are related to prices. This allows the classifier to potentially pick up on features of
language, like the name of a prominent manager or CEO, which would not be included in a
generic sentiment dictionary. The downside of this approach is that, in terms of the likely
variability | argue characterises the online textual sentiment-price relationship, it implies
there is a fixed probability distribution that accurately describes the relationship between
words and prices. Further, it assumes that enough concepts are present in the training
sample for the measured probabilities to be contextually relevant across the rest of the
study period. This is quite problematic in a financial context because generally information
is more valuable the less common it is. Domain specific knowledge researchers input into

the classifier at the training stage is already public, so of questionable value. For example,

27



before the recent scandal the word “Libor’ would probably not have been considered to
have significant price implications. After the news broke the semantic meaning of the word

changed significantly.

2.4.2. Dictionary classifiers

The DC approach is very similar to the BC approach. The main difference is that typically
DCs use predefined word lists, rather than having researchers train the classifier
themselves. A further difference is that often DCs will either assign a word to a class or
not, rather than assigning them a probability score. A typical example of this is Chen et al.
(2014), who define the relative negative sentiment of a message as the count of negative
sentiment carrying words divided by the message length. Although the use of a list of pre-
defined terms means the classification is not domain specific, it does mean that terms can
be included from a longer timeline of historical events. For example, if there are particular
terms for a stock market crash then clearly a crash does not happen every day but it would

be useful to know if people were using similar language to when the last one happened.

There are a number of general purpose dictionaries available. Two that have been
used often in the financial literature are DICTION and the General Inquirer dictionaries,
studies employing these dictionaries include Tetlock (2007), Engelberg et al. (2008),
Feldman et al. (2008), Tetlock et al. (2008), Kothari et al. (2009), Doran et al. (2012),
Carretta et al. (2011), Demers and Vega (2011), Loughran and McDonald (2011b),
Engelberg et al. (2012), Ferris et al. (2013), Price et al. (2012) and Twedt and Rees (2012),
all using General Inquirer, and Davis et al. (2012), Davis and Tama-Sweet (2011), Demers
and Vega (2011), Mangen and Durnev (2010), Rogers et al. (2011) and Ferris et al. (2013),
who all use DICTION. An issue with using these dictionaries is that they can often miss
words which carry a different meaning in financial terminology to standard usage. Kearney
and Liu (2014) give the example to “tax” and ‘liability’, both of which are classified as
carrying negative sentiment in the General Inquirer dictionary but are not negative in
financial context. Studies, such as Henry and Leone (2009) and Loughran and McDonald
(2011b), find that the use of finance specific word lists provide a better gauge of sentiment
than general word lists. The words list developed by Loughran and Mcdonald (2011b) has

become increasingly popular in the financial literature. Studies using this dictionary
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include Doran et al. (2012), Huang et al. (2012), Ferguson et al. (2014), Garcia (2013),
Jegadeesh and Wu (2013), Chen et al. (2014), Liu and McConnell (2013) and Loughran
and McDonald (2013).

A key aspect of both the DC and BC approaches | wish to highlight is that they aim
to classify content based on word frequencies alone. There is no way of picking up changes
in the time period referenced in a piece of content, nor is there any way of detecting factors
like the trust relationship between investors and authors. The result is that the type of sign-
strength-timing variability these factors are likely to cause is not picked up at the sentiment

measurement stage, and so is latent from the measure.

2.4.3. Other methods

The overwhelming majority of financial research articles use either the BC or DC
approach. There are, however, a number of other methodologies for sentiment extraction
that have not been popularised in the financial literature. In this section I describe a number

of these approaches.

Several finance papers have explored the use of term weighting schemas on
classifier performance. These approaches can be seen as a cross between the BC and the
DC approaches. Researchers first obtain a dictionary of sentiment carrying words then
weight the terms based on some measure of their relative sentiment. Loughran and
McDonald (2011b) employ a term weighting schema similar to tf-idf, Jegadeesh and Wu
(2013), employ a term weighting schema based on the correlation between the words
frequency and time series of stock price returns. Jegadeesh and Wu report that their term
weighting schema significantly increases the strength of the sentiment-price relationship.
The authors conclude that term weighting may be just as important as word selection when

defining a sentiment measure.

There are a number of techniques that are popular in the computer science literature
but conspicuously absent from the financial literature. Support vector machines are a
commonly used alternative to the BC, these appear to have been popularised in a sentiment
analysis context by Mullen and Collier (2004). Antweiler and Frank (2004) use both a

support vector machine and BC but find the results are very similar, in the paper the
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author’s only report results from using the BC.

Often researchers in the computer science literature will make use of lexical
semantics and other linguistic structures to help identify when words are sentiment
carrying. This can include methodologies like part-of-speech tagging®, where sentence
structure is used to identify the role words are playing in a sentence. This can be
particularly useful in a sentiment context because of the difficulty with dealing with
negation. Bag-of-words based approaches have difficulty with negation because they do

not recognise the interrelationship between words or sentence structure.

Another more recent innovation is the use of sentiment ontologies; these are large
knowledge-bases of semantic concepts. The aim of the ontology is to provide a more
contextual description of a word or set of words in a given context (Cambria et al. 2013;
Grassi et al. 2011). This idea is familiar to the financial literature as finance specific
dictionaries have been introduced for a similar reason. The major difference between
ontologies and domain specific word lists is that the network structure of the ontology
allows for the presence of inter-relationships between words. This allows for the creation

of probability models that are more consistent with a human understanding of language.

A unifying theme throughout each of these approaches is that they aim to improve
classifier performance by introducing more contextual information to the classification
algorithm than is present in the initial group of words. This could be based on an
understanding of sentence structure, linkages to other semantic concepts, or the
introduction of domain specific lists of sentiment carrying terms. A feature of the type of
variability I’ve described throughout this introduction, however, is that even if aspects of
investors trust in an author, or the time period referenced in the text could be extracted
using more sophisticated language processing techniques, these factors are also variable
over time. Current methodologies are simply not capable of modelling this aspect of the

sentiment-price relationship.

® See, for example, the Stanford NLP project part-of-speech tagger
http://nlp.stanford.edu/software/tagger.shtml
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2.4.4. Classifier performance

A number of studies have reported some descriptive statistics based on how well different
classifiers perform. Typically, authors will train the classifier then apply is to a different
sample of content and which has been hand classified in advance by the researcher. How
well the classifier performs is then a function of how similar to the human classification

the algorithm achieves.

Huang et al. (2012) document the performance of different approaches in
classifying the content of analyst reports. The BC performs best with an out of sample
classification accuracy of 76.91%. Finance specific word lists are the next best performing;
the list supplied by Loughran and McDonald (2011b) achieves an accuracy of 62.02%.
Dictionary based approaches based on general word lists are reported to perform no better
than random. Kearney and Liu (2014) note, however, that there are significant differences
in the form and style of text from different content sources. Company filings, for example,
have defined formats they are expected to follow. Similarly, analyst reports are likely to be
structured in a fixed format. In contrast, online textual content is not bound by regulation
of formal rules which makes the classification of online sentiment potentially more

difficult than content from other sources.

Illustrating this point, Rosenthal et al. (2015) document the result of a competition
to find the sentiment classification algorithm that most accurately classifies the tone of
messages from Twitter. The winner of the competition achieved an accuracy of 64.84%,
well below the 76.91% reported by Huang et al. Rosenthal et al. (2015) also test the
accuracy of human classification. The authors gave a set of messages to some human
participants then scored each participant based on how often their classification matched
the majority classification. They found that the best human classifier will only agree with
the majority view between 71.2% and 86.4% of the time, the lower estimate being for
messages that contained sarcasm. This result raises some questions about how well

investors could be expected to interpret price signals in online forums of this type.

The findings of these studies suggest there is some noise expected in the
classification of text because it simply is difficult to ascertain the meaning the author is
trying to convey. This could take the form of random error, but Rosenthal et al.’s result
suggests there is also systematic error introduced by the authors writing style. Authors that

are more sarcastic will see up to a 15% reduction in the ability of the reader to understand
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the meaning of the text. This echoes the argument of Tetlock et al. (2008), that there may
need to be some normalisation of an author’s style of writing to adjust for the fact investors
will be used to information being presented in a particular way. Subsequently, they would
be expected to adjust their trading behaviour not on the words in the text per se, but on a
combination of the words and an understanding of how the author historically presents

information.

2.5. Econometric methods for comparing sentiment metrics to prices

Once a textual sentiment metric is defined researchers will attempt to model and
hypothesis test aspects of the sentiment-price relationship using some form of time series
analysis. By far the most common approach is to use some form of linear regression
model. Another popular methodology is to examine the returns from applying some simple
trading rule based on the sentiment variable. In this section | describe these two
methodologies in detail. There are a number of less common approaches that have been
applied in the financial literature, such as vector auto-regressions and volatility models. |
summarise some of the features of these less common approaches at the end of this
subsection. Finally, I discuss some other methodologies that have been applied outside of
the financial literature to provide a full overview of the field. The aim of this section is to
discuss how time series modelling strategies that have been applied in the literature do not
account for the type of sign-strength-timing variability | describe as characteristic of the

sentiment-price relationship.

2.5.1. Linear regressions

Most studies in this area will apply some form of linear regression model in their analysis.
Kearney and Liu (2014) summarise the basic linear regression model that has been applied

in the literature to date as

s=Ng S=Ng i=N, s=Ng j=Ngq

Ye=a+ Z By, s + Z z ,31'1,5 Xit-s T Z Z ,31'2,5 Qit-s T & (12)
s=1 s=0 i=1 s=0 j=1
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where y is typically a time series of asset price returns but may be some other price or
market feature, x; represents the ith control variable out of a total of Ny different control
variables, g; is similarly the ith sentiment variable out of a total of N, different sentiment
variables included in the model. The intercept is given by «, whilst £°, g* and 4 are vectors
or matrices of parameter values. In practice different researchers may use different
numbers of lags of different variables we have set all of these to N for notational
convenience. Studies into the online textual sentiment-price relationship also tend to use
simpler models, for example omitting control variables and autoregressive terms from

regressions.

In the literature to date equation (12) has been fitted with the ordinary least squares
algorithm in most cases, and in all of the online textual sentiment papers we have cited.
The assumption is that the error term & follows a normal distribution so that price is a set
of linear functions of explanatory variables with normally distributed errors. The issue with
this formulation, in light of the sign-strength-timing variability | have discussed, is that the
assumption of the model is that price is related to sentiment via a set of linear functions. |
argue that there are aspects of the sentiment-price relationship that are variable due to
latent factors, like trust, that are not reasonably measurable. Since equation (12) requires &
to follow a normal distribution, the only way of introducing this type of variability is

through further explanatory variables, but this is not possible unless they can be measured.

2.5.2. Trading strategies

A more direct way of illustrating the strength of the sentiment-price relationship is to show
returns based on some sentiment trading strategy. The sense in this approach is that the
results of the strategy can be assessed independently of the strategy used, and mimic more
closely how sentiment may be applied in real world trading scenarios. In the online textual
sentiment literature this has been done in two ways; Sprenger et al. (2014) use a threshold
filter to select days where there is significant excess sentiment around a stock. They then
buy this stock and sell it again quickly to realise the return. Chen et al. (2014) take a
different approach, they form portfolios of stocks based on which have the highest
sentiment over some look-back period. They then hold these stocks for several months. A

number of variations on these strategies have been tried in the wider textual sentiment
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literature, for example, Tetlock et al. (2008) trade mainstream media news stories by each
day forming long-short portfolios by buying stocks with positive sentiment and short

selling stocks with negative sentiment.

These strategies do not make any attempt to model time varying latent factors
explicitly; rather, they attempt to counter this type of complexity by introducing simple
heuristics that should hold true in most cases. As a result, they are similar to the linear
regression approach in that they assess the strength of the statistical relationship between

sentiment and price in spite of sign-strength-timing variability as opposed to with it.

2.5.3. Other approaches

Other less common approaches that have been tried in the financial literature are vector
auto-regressions (VAR; Tetlock 2007), logistic regressions (Huang et al. 2012; Loughran
and McDonald 2011a; Loughran and McDonald 2011b; Rogers et al. 2011; Buehlmaier
2013) and GARCH models (Antweiler and Frank 2004). Each of these brings some extra
insight, but in terms of the sign-strength-timing variability | have discussed, they suffer
from all of the same issues as linear regression models or trading strategies.

To expand on this point, consider the logistic regression approach as used in the
literature to-date. Logistic regression is an intuitively useful model in this case because the
sentiment variable is typically measured as a compound of two categorical outcomes, the
frequency of positive sentiment words and negative sentiment words. Logistic regression
can be seen as a generalisation of the linear regression approach to use with this type of
categorical data. This is done by first modelling the probability of a given outcome using

the logistic function. Given as

o(x) = (13)

1+e™*

where o is the logistic function and x is the value of the categorical variable in question.
After these probabilities have been calculated the logistic regression model can be fitted
with ordinary least squares in the same manner as linear regression. Lags of the categorical
variable can also be included in the same manner as linear regression, so the model can be

specified as
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i=p

r=a+ Z Bio(xi_;) + & (14)
i=1

so the model is a simple linear model of the relationship between the return at t, and p lags

of the predictor variable, each transformed to probabilities using the logistic function.

The main advantage of logistic regression is that the model assumes sentiment is a
categorical variable rather than a continuous one. What is clear from equation (14),
however, is that the model still assumes that returns are a simple linear function of lagged
sentiment, each parameter in B models an independent relationship between a single
lagged value of x and the returns series. What | have argued throughout this introduction is
that this relationship is likely to vary over time so this type of model is likely to miss

important features of the relationship and subsequently underestimate its strength.

Another common econometric approach applied to the financial sentiment literature
by Antweiler and Frank (2004) are GARCH models. GARCH models are an extension of
the classic autoregressive model to cases where the variance of the time series process is

time varying. The standard autoregressive model is given as

=5
X =a+ Z Bixe—i + & (15)
i=1
where « is the intercept, B is a vector of parameters and ¢ is the error term, assumed to be a
normally distributed random variable so that
& = N(0,0,) (16)
where o, is the standard deviation of the error term, typically set to 1.

The autoregressive model can be extended to an autoregressive moving average

model by including further moving average parameters, that is

i=5 i=5
Xr=a+e&+ Z Bixe_i + Z 0,1 a7
i=1 i=1

where again the error is assumed to be normally distributed with consistent variance.

GARCH extends this model by assuming that, rather than being constant, the error
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term also follows and autoregressive process, so that
agz,t =w+ ai&_i + ﬁiagz,t (18)

The autoregressive moving average model is than as stated in equation (17) but where the

error term variance is now controlled by the model in equation (18).

For bi-variate regressions, GARCH models are typically applied as a way of
adjusting for time-varying variance in a time-series before the series are compared using
linear regression. This is important as linear regression assumes that the variances of the
processes being compared are constant. Some returns data is known to have time-varying
variance and so fitting GARCH models in advance of regression analysis makes sense in
this case. Also, since there is little available work on the structure of sentiment time series

it may be the case that sentiment series also have time-varying variances.

When using GARCH models, however, the series are still compared using linear
regression. As a result, the comparison of the returns series is still based on an independent
assessment of the relationship of each lag of the sentiment series with the leading value of
the returns series. Although the model may capture important aspects of the frequency
structure of the time-series under study, it assumes there is no variability in the lagged
relationship between the series of the type | have discussed being a likely feature of this
relationship.

Outside of the mainstream financial literature studies, such as Bollen et al. (2011),
have applied neural networks to fit time series models between sentient and price. The
sense in this approach is that the neural network may detect non-linear relationships
between the series that would not be detected by standard econometric techniques. In
theory, the fact that the neural network can detect complex non-linear relationships
suggests this approach may be useful in modelling sign-strength-timing variability in the
sentiment-price relationship. There are, however, two major drawbacks with their use in
this regard: firstly, neural networks require large training datasets to be effective, and out
of sample validation for hypothesis testing. This makes their usage impractical with time
series of limited length. As gathering large corpuses of textual content is practically
challenging constructing very long sentiment time series is difficult. Secondly, because the

network is trained in advance it will not change its model based on new input. Contextual
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changes, like changes in the semantic meaning of the word Libor, cannot be accounted for

once the network is trained.

2.6. Synthesising the evidence for sign-strength-timing variability

In this section | synthesise the theoretical and empirical evidence for why variability would
be expected to be a central aspect of the online textual sentiment-price relationship. This is
important for understanding why | focus this thesis on the methodological challenges of
modelling statistical relationships that exhibit sign-strength-timing variability. All of the
sources of variability I describe in this section have been discussed in previous sections, |
will repeat them here to make more explicit some of the assumptions about the sentiment-
price relationship that underpin the rest of this thesis. I will also discuss how existing state
of the art technologies from both the financial and natural language processing literatures

do not capture this property of time series relationships.

My argument is justified around three possible sources of variability: variability in
interpretation, variability in authorship and variability in context. The nature of, and
evidence for, each of these is described in the following three subsections. Please note that
| do not intend this to represent a complete list, simply a set of enough examples to suggest
variability is likely to be a defining aspect of the online textual sentiment-price
relationship.

2.6.1. Variability in interpretation

The first source of variability describes the way investors interpret information may vary
based on their current state of mind. Under the assumptions of behavioural theory investors
use heuristics to make trading decisions. New information drives price, but how this
information is interpreted is a product of an investor’s state of mind at the time the
information is received. This may introduce variability into the textual sentiment price
relationship for the same reasons prices exhibit momentum. In this simple case,
behavioural theories suggest that investors will under-react to new information. So we
might expect to see an oscillating, lagged relationship between sentiment and price in the

same way prices exhibit lagged serial correlation.
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A more complex situation arises if, as assumed in the AMH, different species of
investor use different heuristics when interpreting text or adapt the heuristics they are using
over time. In this case we would expect a lagged relationship but also that the strength and
timing of this relationship will vary due to changes in market ecology. As a result, there
may be two relationships between online textual sentient and price, one where sentiment
measures objective information but is the incorporated slowly into prices due to investors
cognitive biases. The second could be that sentiment measures the extent to which different

cognitive biases are represented in the current market ecology.

In either of these cases sign-strength-timing variability arises as a consequence of
investors current cognitive states. These cognitive states are not likely to be fully reflected
in the words used in text, leaving the investors cognitive state latent from the online textual

sentiment-price relationship.

2.6.2. Variability in authorship

Another potential source of variability is in the trust, or contextual understanding investors
have about the authorship of a piece of content. Trustworthiness of content is an issue that
has been raised by a number of authors in the company filings and disclosures literature,
for example, Huang et al. (2012), Loughran and McDonald (2011a), Larcker and
Zakolyukina (2012) and Rogers et al. (2011). Each of these authors argues that managers
may manipulate investors interpretations of earnings announcemnets with deceptive us of
language. A less malicious type version of the argument above is discussed in Tetlock et
al. (2008) who note that some authors have different writing styles to others. Some authors
may use many sentiment carrying words and phrases but mean to convey the same
message. Understanding the message requires investors to make judgements on how

subjective they believe the author intended to be.

In either of these cases, investors must make a judgement about the effect of
content on prices. Ultimately, the proof of the accuracy of this judgement is whether prices
move in the way the investor believed they would. This means that there is a feedback
relationship between information and trading behaviours, where investors judge future
sentiment-price relationships as a function of observed senitment-price relationships that

occurred in the past. For example, an investor may read a report by the manager of a
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company which implies that the companies earnings are likely to be strong for the quarter.
At face value, this is a clear indication that buying the stock will lead to a profit for the
investor. If at the end of the quarter the stock price has plummeted, when the manager
again uses language implying strong earnings for the company the same investor may take
this as a signal to sell due the experience of having suffered a previous loss from trusting
the managers account. Sign-strength-timing variability in this case results from the process

of continually reviewing the accuracy of prior accounts from different authors.

2.6.3. Variability in context

This third source of variability refers to aspects of the context in which a piece of content
was published that modify the semantic meaning in the text, but that are not explicitly
referenced. This has been addressed in the financial literature by authors like Henry and
Leone (2009) and Loughran and McDonald (2011b), who have shown that dictionaries of
specifically financial sentiment carrying words are superior classifiers of sentiment in a
financial context than general dictionaries of terms. In this case, the fact that the message
contains a type of semantic information particular to the financial community is not
explicit in the text itself, but is assumed by association. This is a widely accepted issue in
the sentiment analysis literature where authors like Cambria et al. (2013) and Grassi et al.
(2011) have pioneered methodologies for enhancing the context of sentiment analysis

measures through the use of massive ontologies.

There are aspects of the context of a piece of content that can cause sign-strength-
timing variability. An example of this is the point in time a piece of content references, for
example, making a forecast that a stock will rise to a particular price by June 3™ 2015, will
be interpreted very differently on the 2™ of June to the 4™ of June. This type of context
does not indicate polarity explicitly, so measuring whether the message is generically good
or bad will not account for occasions when timing is a factor in whether the statement

would be considered good or bad.
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2.6.4. The issue with modern technology

The issue with the technologies for measuring textual sentiment | describe being used in
the financial literature in section 2.4, is that they rely on there being a set of fixed
sentiment carrying words. Even when more complex methodologies are used, such as the
sentiment ontologies | describe in section 2.4.3, the assumption is that there are concepts
that convey a fixed semantic meaning. These can be captured and recorded and then used
to model future sentiment as function of prior sentiment. The Libor scandal provides a
good example to illustrate a number of issues with this approach, the Libor scandal broke
in the mainstream media in 2012, in summary, a number of employees at major financial
institutions colluded to fix the London interbank offered rate (Libor). This is the
mechanism that fixes the cost of banks borrowing from other banks in the UK market, and
underpins the price of a large number of other financial instruments. Pre-2012, Libor
would take a specific meaning in financial vocabulary. To most the term would not convey
any particular semantic meaning. Post-2012, being associated with Libor would be seen as

negative for an institution drastically altering the semantic meaning of the word.

How would this be modelled using current techniques? Neither the BC nor the DC
approaches allow for words changing their semantic meaning mid-sample, so pre- and
post-2012 samples would need to be classified differently. This leads to the sense in
sentiment ontologies, as Libor could be linked to good sentiment pre-2012 and bad
sentiment post-2012. Digging deeper, however, there were reports of issues with Libor as
early as 2008 (Mollenkamp and Whitehouse 2008) and some suggestion that Libor fixing
dates back as early as 1991 (Keenan 2012). What we are trying to ascertain in a study into
online textual sentiment is what sort of price response we expect given the occurrence of a
set of words, which implies making a judgement about what we expect a population of
investors to do given after reading a piece of text. What this example shows is that for a
term like Libor, there is a web of overlapping, time-varying factors that affect its
interpretation. Given the different accounts, we have three dates for when Libor should be
considered negative by investors, 1991, 2008 and 2012. Which of these represents the shift
in investor perceptions from neutral to negative depends on which author you consider to
have influence over the opinions of most investors. Assessing sign-strength-timing
variability in this case requires making a judgement about investors reading of a text that

requires information that is difficult or impossible to measure.
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In light of this difficulty, some issues with the time series analysis methodologies |
describe in section 2.5 become apparent. Linear regression models assume that factors can
be found with linear relationship to asset price returns, up to the point where the residual
fluctuations in the return series are normally distributed Gaussian noise. What the Libor
example demonstrates is that there are latent factors affecting the interpretation of words
that cannot reasonably be measured in this way. Even with more advanced modelling
strategies, such as neural networks, there are ‘known unknowns’ that obfuscate the
relationship. The types of variability | describe in this section suggest that we know there is
going to be variability in the relationship in future we just don’t know what it’s going to
look like. Neural networks require training on a sample of the data that contains all
relevant inter-relationships between variables, yet the situation | describe is one where |
know there are likely to be relationships between variable in the future that have not
occurred in the past. To model the sentiment-price relationship requires a strategy for

dealing with these ‘known unknowns’.

This forms the backdrop to the three papers | present as the substantive part of this
thesis, in chapters two, three and four. Up to this point, the arguments | have made about
sign-strength-timing variability are not well evidenced in the literature. In the literature to-
date this type of variability is either assumed not to exist at all, for example in the
assumptions of the EMH, or is intentionally left out of text classification models like the
dictionary and naive Bayes classifiers. In chapter three | use a standard econometric
approach to look for evidence of this type of behaviour in the sentiment-price relationship.
The main result I report in chapter three is that there is significant evidence of sign-
strength-timing variability in the relationship. In chapter four, I then address the issues of
modelling time series relationships that have these properties. Chapter five then applies the
methodology | develop in chapter four to analyse the sentiment-price relationship |
observed in chapter three in more detail.

For the next three chapters | am going to switch to using the plural ‘we’ rather than
‘I” as | have up to this point. This reflects that fact that the following three chapters are
intended to be standalone papers, and | have included my supervisory team as co-authors
for each.
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Chapter 3: Returns to Buying Online Sentiment Winners

3.1. Introduction

A recent Goldman Sachs (2015) report discusses the “socialisation’ of financial investing,
described by the authors as the “increased social nature of personal investing driving
consumer empowerment”. In practical terms, this describes the trend for investors to
eschew traditional investment channels and sources of investment advice in favour of
community lending and advice platforms. These platforms largely live online, tying the
trend for increased personal empowerment closely to the rise of online investment
communities. To set this trend in context, Cogent Research (2008) report that one in four
US adults had gone online looking for investment advice, whilst (Deloitte 2007) report that
82% of US Internet customers were directly influenced by peer review services in their
investment decisions. Although these figures are from the industry press rather than peer-
reviewed journals, they suggest that when people go online they tend to be influenced by
communities in how they spend their money, and they go online to look for investment
advice. In monetary terms the scale of this activity is economically significant, Goldman
Sachs (2015) estimate that there is a $4 trillion addressable market in investment services

that utilise online social platforms.

These trends have not escaped financial researchers who have in recent years
become increasingly interested in measuring sentiment or affect in text. A large number of
studies now exist detailing the relationship between ‘textual sentiment metrics’, derived
from news articles and company filings, and stock prices (Kearney and Liu 2014). In these
studies, researchers define a quantitative measure of the tone of a document based on
features of language used in the text. For example, the word “bullish’ would be considered
to carry positive sentiment in a financial context whilst ‘bearish’ would be expected to
carry negative sentiment. Metrics are based on the frequency of these words in the text, so
that by ‘textual sentiment’, what is really being measured is some function of the number

of times sentiment carrying words appear.
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In contrast to this larger literature, the literature concerning online sentiment and
prices is still quite sparse. There are four main finance papers describing the relationship

between online content textual sentiment and prices:

Antweiler and Frank (2004) study the relationship between the content of over 1.5
million messages from the Yahoo Finance® and Raging Bull” message boards, and the price
of stocks in the Dow Jones Industrial Average and Dow Jones Internet Commerce Index.
They find that textual sentiment measures predict price features, such as trading volume
and volatility, at short lag lengths. They also find that sentiment is contemporaneously
correlated to asset price returns, but that there is no predictive relationship between the

sentiment and returns.

Das and Chen (2007) study the relationship between the content of 145,110
messages from a number of financial message boards and the prices of 24 stocks in the
Morgan Stanley High-Tech Index. The authors report that sentiment predicts next day
prices, but not next day returns. Similar to the findings of Antweiler and Frank, the authors

document a contemporaneous relationship between sentiment and returns.

Sprenger et al. (2014) document a predictive relationship between messages from
the micro-blogging platform Twitter® and returns to stocks referenced in the messages. The
study examines 249,533, 140 character messages containing the ticker symbol of a stock
exchange listed company. The authors show evidence of a negative correlation between
sentiment and prices at short lag lengths, this relationship is shown to be strong enough to

make small profits in excess of costs from a simple trading strategy.

Chen et al. (2014) also document a predictive relationship between textual
sentiment and returns. Using 97,070 articles and 459,679 comments on these articles from
the financial content site Seeking Alpha®. The authors document a positive correlation
between sentiment and returns over the following three months from the date the content

was posted. The authors go on to show that this relationship persists for up to three years.

The results of Sprenger et al. and Chen et al. suggest a predictive relationship exists

between sentiment and prices, but there are contradictory accounts of the sign, strength and

®Yahoo Finance, available at http:/finance.yahoo.com/
" Raging Bull, available at http://ragingbull.com/

& Twitter, available at https:/twitter.com/

® Seeking Alpha, available at http://seekingalpha.com/
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timing of this relationship. For example, Antweiler and Frank and Das and Chen both
report contemporaneous correlations between sentiment and returns but no lagged
relationship. Sprenger et al. report short run negative lagged correlations between
sentiment and price, and Chen et al. report long run positive relationships between

sentiment and price of up to three years.

A further issue with this body of evidence is that studies to-date, have used
relatively small, platform specific samples. Antweiler and Frank and Das and Chen study
message-board postings, for example, although there are a range of other content sharing
platforms that exist. Each platform comes with its own structural constraints regarding how
content is shared, so it is likely different platforms will attract slightly different
demographics, or cultures of people to use the services. Twitter, as studied by Sprenger et
al., is a good example of this; messages on Twitter are constrained to be no more than 140
characters, placing a structural constraint on the information that is being conveyed.
Another consideration is how different platform may host different types of investment
communities, the comments section on Seeking Alpha, for example, may be home to

discussions between different types of investors to those found posting on Yahoo Finance.

As a result we see two gaps in the current literature: firstly, there is a lack of
empirical evidence of the time evolution of the sentiment-price relationship. Studies have
focused mainly on short lag lengths, whilst Chen at al. show there may be a long run
relationship as well. The sign-strength-timing variability reported across studies also
suggests there may be a more complex interaction between sentiment and price than has
usually been considered. Secondly, studies to-date have used one or two sources of content
to form their sentiment measures, and have used fairly small corpus sizes, this risks biasing
the results towards the behaviour of particular types of investors or investment

communities associated with specific online platforms.

To address these issues, in this paper we consider the lagged relationships between
the component stocks of the Standard and Poor’s 100 (S&P100) stock index and the
content of over 10.2 million messages from 45,516 separate content sources referencing
these stocks over a 15-month period running from January 2014 to March 2015. As a
result, our corpus is an order of magnitude larger than the number of messages that have
been used in previous studies, and the range of content sources is far less platform specific

than previous studies.
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Our main finding is that the sentiment signal oscillates around prices in a
predictable manner. We see evidence of short-run (20- to 40-trading days) negative
correlation between sentiment and price, followed by a midterm (80- to 100-trading days)
positive correlation, ending in longer-term (100- to 120-trading days) negative correlation.
We see that these correlations strengthen significantly the larger the number of lagged
sentiment days we consider in the regression. We go on to show that using a simple trading
rule of buying “sentiment winners’, stocks which have on average greater negative
sentiment attached to them over the past five months via our measure and holding them for
the following two months, returns 9.766% APR in excess of the market rate over the
sample period once reasonable transaction costs have been accounted for. This corresponds
to approximately double the return of holding an equal weighted portfolio of the

underlying assets over the same period.

Our results suggest that the same words that make up our sentiment measure lead to
different trading behaviours at different time scales from the date the content was
published. This somewhat confirms the joint findings of Sprenger et al. (2014) and Chen et
al. (2014), since our results show that both the short-run negative correlation documented
by Sprenger et al., and the longer-run positive relationship documented by Chen et al.,
could be consistent with price responding to sentiment in an oscillatory fashion. This
evidence points to there being a latent factor influencing the way word frequencies are
interpreted by investors that is not captured by current sentiment analysis methodologies

which influences the sign, strength and timing of the sentiment-price relationship.

Looking to the wider literature, there are a number of possible sources of latent
variability that have been documented in relationships between prices and information.

These include:

Variability in investor interpretations of new information — there is a large body of
research showing that prices exhibit momentum, that is, stocks with greater than average 6-
to 12-month returns tend to continue to produce excess returns for the following 3- to 6-
month period (Jegadeesh and Titman 1993; Asness et al. 2014; Asness et al. 2013). A
number of behavioural asset pricing theories, such as Daniel et al. (1998), Daniel et al.
(2002), Barberis et al. (1998), Hong and Stein (1999), Grinblatt and Han (2005) and
Frazzini (2006), purport to yield price momentum as a consequence of the cognitive biases

and heuristics investors use to make trading decisions. For example, Daniel et al. (1998)
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consider investors to be overconfident about their private information and likely to over
attribute their successes to their own skill and their failures to bad luck. As new
information comes to light, investors’ irrational belief in the value of their information
creates a delayed reaction the new evidence. The presence of self-attribution bias also
causes a build-up in overconfidence during times when the market is performing well,
magnifying existing biases. Over the long term, the effect of these biases reduces, leading

to a long-term price reversal following midterm momentum.

In another example, Hong and Stein (1999) reach approximately the same
conclusions via a slightly different route. They consider two types of investor;
newswatchers and momentum traders. Newswatchers rely entirely on their private
information, whilst momentum traders rely solely on past prices to inform their decisions.
The model assumes that private information diffuses slowly into the marketplace, so there
is an initial under reaction to new information. Once momentum traders pick up the price
signal from observing the effects of the newswatchers’ trades they follow suit, creating
price momentum. As in the Daniel et al. (1998) theory, over time the effects are reduced
and prices are reversed in the long run. Hong and Stein also propose a mathematical model
of their theory illustrating the interplay between newswatchers and momentum traders as

oscillating waveform following an information event.

Based on the assumptions of these theories it is possible that textual sentiment
holds some price relevant information, but that investors under-react to this information.
This leads to an oscillatory effect in the sentiment price relationship due to investor
cognitive biases. Clearly some of the information required to form a full model of the state
of mind of investors in the market will be missing from the words in the text, making this a
potential candidate for the oscillatory pattern we observe in the textual sentiment-price

relationship.

Variability in the authorship of online content — there is a trust relationship between
the author and reader of online content. In other areas of the financial literature authors,
such as Huang et al. (2012), Loughran and McDonald (2011a), Larcker and Zakolyukina
(2012) and Rogers et al. (2011), have noted that managers of companies may use deceptive
language to mislead or manipulate investor perceptions of earning announcements. As
online content is much less regulated than company filings it is natural to assume that some

manipulation or misleading may take place. What authors like Rogers et al. (2011) suggest,
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however, is that the fact the information presented to investors is intended to be misleading
may itself be material information about the likely conditions in a company. The relative
trust investors have in the author of the content acts as a semantic marker altering the

interpretation of the text.

A similar possibility, noted by Tetlock et al. (2008), is that different authors have
different writing styles, so the same information about a stock may be conveyed with
different language by different authors. In this case rational investors would be expected to
adjust their interpretation of the language used to match an understanding of the author’s
style. Another possibility is that investors do not pick up on this nuance and act literally on
the content of the text, subsequently altering their trading decisions based on a change of
authorship style. Since the dataset we consider covers many different online communities it
is reasonable to assume there will be varied styles across different content sources, but also
that the main contributors, and thus dominant writing styles, across these services will be

variable over time.

The result of these factors is that, given the same wording, different semantic
meaning will be placed on the text due to an understanding of its provenance or authorship.
In the case of financial investing, ultimately, the quality of information from a given author
is assessed based on how well it matches to the future price of stocks. The trust relationship
between reader and author in the investors mind is likely to be constantly reassessed based
as new information about prices occurs. In this case the oscillatory relationship could be
due to investors re-assessing their opinion of prior content in light of new price

movements.

Variability in the context the content was created in — text content does not contain
a full list of all of the contextual information an investor is expected to know on reading
the text. In a financial context, authors like Henry and Leone (2009) and Loughran and
McDonald (2011b), have noted that dictionaries of specifically financial words are better at
classifying financial sentiment than general dictionaries. For example, words such as
‘liability” or ‘tax’ would generally be considered to be negative in general parlance, but in a
financial context are not necessarily. The reason is that in financial content online there is
an assumed level of contextual knowledge the creator of the content assumes the reader of
the content has about financial investing. Adding in this context improves the accuracy of

sentiment classification. Jegadeesh and Wu (2013) expand on this by showing that, even

48



when financially specific words are considered, fitting a stock, and time specific model to
the derive term weightings for sentiment carrying words improves their ability to classify
sentiment. This suggests that even words chosen for their supposedly unambiguous
financial meaning can be interpreted in different ways by investors at different times and in
different contexts.

The fact that this type of contextual information is an important aspect of
measuring the semantic content of text is also widely accepted outside the financial
literature. The techniques researchers currently use for measuring textual sentiment are
largely drawn from the natural language processing literature, of which sentiment
classification is a sub-discipline. Major avenues of research include the creation of massive
online data-stores of linked semantic context, in recognition of the fact that even simple
concepts like “‘good’ and “bad’ can have vastly different meanings if referenced in different
contexts (Cambria et al. 2013; Grassi et al. 2011). There is evidence documented in the
financial literature that time varying context may play a role in the textual sentiment-price
relationship. Garcia (2013) shows evidence that investor interpretations of sentiment varies
during recessions. Clearly recessions do not happen all of the time, so as the present

context changes over time the suggestion is so will investors interpretations of content.

Applying this same logic, it is plausible that pieces of content reference uncertain
or changing points in the future. For example, the news that ‘the Dow Jones Industrial
average will top 17,000 points next week’, would presumably constitute good news in
most cases, however, if you have just placed a bet that this would occur this week then the
semantic meaning of the statement changes significantly. Much of the existing financial
content makes some assessment of the likely future return of stocks, so investors may buy
on the expectation of a statement being true only to sell when the prediction window for
the statement expires. This type of temporal information is latent from our sentiment

measure as we only consider the date the message was posted.

Of the three latent factors we suggest, only the first has a natural proxy in the
literature. Behavioural asset pricing theories are largely based on the empirical observation
of price momentum, first documented by Jegadeesh and Titman (1993). Momentum
describes the tendency for prices to continue going in the same direction. Empirically, this
means that it is possible to systematically profit from a strategy of buying winners and

selling losers, where winners are stocks that have better than average performance over the
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previous 3- to 12-months, and losers are stocks with lower than average performance over
the same period. Holding this portfolio will earn excess returns over the next three months.
Recent work by Asness et al. (2013) and Asness et al. (2014) has shown this effect to be

remarkably persistent across asset classes and time periods.

Moskowitz et al. (2012) document a similar “‘time series momentum’, whereby the
future one-month return of a stock is shown to be predictable based on its prior 12-month
return. The difference between the two effects being that the first refers to the predictability
in the relative price of an asset to the wider market and the second to the predictability of
the return of a single stock from its own prior price. In either case, the picture is one where
a mid-term (up to one year) sample of past prices can be used to forecast a shorter-term (up
to three months) return period, so there is an asynchronous relationship between the

predictive period and the predicted future period.

The momentum literature is augmented by the long-run reversal phenomenon
documented by Thaler and De Bondt (1985), where over the longer term (three- to five-
years), returns on average reverse so that forming portfolios of average long-term losers
outperforms the market. Together, these bodies of evidence describe how monthly returns
are likely to be positive following 3- to 12-months of past positive returns and negative in

the longer term, forming an oscillatory effect on prices.

In order to test to what extent the sentiment-price relationship can be explained by
momentum, we use multivariate regression analysis to test for whether the sentiment-price
relationship can be explained by serial correlations in price. We show that whilst the two
effects are similar, the predictive power of the model is significantly increased by including
both factors. Our results suggest that online textual sentiment contains economically
significant, incremental information above what is already recorded in serial correlation in

price.

In conclusion; as there is predictability over and above serial correlation in price,
we suggest that one of the other forms of viability in the lagged relationship is playing a
role in forming the oscillations we observe. If this is the case then it may be very difficult
to find suitable proxy variables for some forms of variability in the relationship. For
example, it seems unlikely that there exists a simple measure of investors trust in a piece of
contents author that we could use in forecasting models. As a result, it is likely that

variability is a feature of the relationship that needs to be modelled in its own right. The
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crux of this point relates to what we consider a piece of text to be with respect to price.
Current methodologies assume there are features of a piece of text that have a consistent
interpretation, that is, there are words that always hold incremental positive or negative
information about prices. What we show is evidence that the relationship between words
and prices is not that simple, echoing the conclusions of Jegadeesh and Wu (2013), we

argue that the semantic meaning of a word is determined largely by contextual factors.

Our findings should then speak to a number of different areas of the literature.
Firstly, we contribute to the nascent online textual sentiment literature by conducting a
sentiment study over the largest and most diverse range of content yet considered. We
confirm some of the contemporary and short-run effects observed by Antweiler and Frank
(2004), Das and Chen (2007), Sprenger et al. (2014) and Chen et al. (2014) but also
highlight a new and significant aspect of the longer-term sentiment-price relationship. We
provide methodological innovations supported by interesting empirical results that could
inform future work in this area. Secondly, we draw a link to the under reaction and
momentum literature, highlighting an empirical feature of the sentiment-price relationship

that could shed new light on existing behavioural theories.

The rest of this paper is laid out as follows: section 3.2 describes our data and
variable construction, section 3.3 introduces the lagged regression model we used in our
analysis, section 3.4 shows our empirical results, section 3.5 shows the returns from
applying some simple trading rules based on our results, and section 3.6 concludes and

discusses future work.

3.2. Data and variable construction

In this section we introduce our data and variable construction. For price data, we follow
Sprenger et al. (2014) in using the component stocks of S&P100. We find that for 93 of
these stocks, we have messages every day in the sample period, so we omit the 7 stocks
without full coverage from the analysis (a full list is given in the Appendix). We download

daily adjusted closing prices from the Yahoo Finance website.

For text data, we have access to a huge range of social media content crawled
between the beginning of January 2014 and the end of March 2015. To gather this content,
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we searched sources for company-specific content using query strings given in the
Appendix. These queries are designed to return messages where the content references the
company by name or the company’s stock ticker directly. Some companies, however, have
ambiguous names or ticker symbols. In these cases, the query strings are edited to remove
any ambiguity. In total, we have more than 10.2 million messages containing over six
billion separate words covering 45,516 different content sources for the 93 component
stocks of our reduced S&P100 index. A breakdown of the messages by stock is given in the
Appendix with corresponding descriptive statistics. To put this dataset in context, the
second largest corpus considered in a study of online sentiment was 1.5 million message
board posts from the Yahoo Finance and Raging Bull message-boards by Antweiler and
Frank (2004). As a result, our dataset is an order of magnitude larger and drawn from a far

more diverse range of sources than previous studies have considered.

3.2.1. Price variables

We convert the stock price data to log returns in the usual manner, so that r;; denotes the
logarithmic return of the ith stock at time t, that is

T = log( Pi > (19)

Pit-1

where pi; is the adjusted closing price of the ith stock at time t, and log denotes the natural

logarithm.

There is a risk in defining returns in this manner that any relationship we reveal
might be due to the influence of sentiment on the market as a whole rather than a stock-
specific relationship. To control for this, we follow Sprenger et al. (2014) in defining a
simple measure of abnormal returns as the return of the stock minus the average return of

the basket of stocks over the same time period, that is
arie = Tit = Tmkt,t (20)

where the rp indicates the return of the market portfolio at time t, in our case this is an

un-weighted portfolio of all the stocks in the sample.
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3.2.2. Measuring textual sentiment

The size and diversity of our corpus of messages gives us some unique challenges that
have not been addressed in the online textual sentiment literature before. Antweiler and
Frank (2004), Das and Chen (2007) and Sprenger et al. (2014) all use machine learning
techniques to measure the tone of documents. For these techniques to work requires the
hand classification of a subset of messages, but given the diversity of the content sources,
to hand code a representative sample of the content to train a classifier on would be too
laborious. The other option, used by Chen et al. (2014), for online textual sentiment and,
for example Doran et al. (2012), Huang et al. (2012), Garcia (2013), Jegadeesh and Wu
(2013) and Liu and McConnell (2013) for other forms of textual sentiment, is to use the
dictionary of positive and negative financial sentiment-carrying words provided by
Loughran and McDonald (2011b). Message tone can then be assessed by counting the
number of words in a message that occur on these lists. Following this second approach,
we count the number of positive and negative words as listed in the Loughran and
McDonald dictionary for each message for each day. We further omit messages that occur
on days where the market does not open and count days in Eastern time, so as to align with

the time zone of the New York Stock Exchange.

A second consideration we face is that the length of messages in our corpus and the
writing styles of the authors are varied. A typical construction for a sentiment metric used
by, for example, Kothari et al. (2009), Ferguson et al. (2014) and Chen et al. (2014), is to
count the number of negative sentiment-carrying words and divide them by the number of
words in the text. A consideration we face because of the varied content, however, comes
from the fact that the words are not evenly distributed in texts but follow an approximate
Zipf-Mandelbrot distribution (Mandelbrot 1966). What this means in practice is that non-
sentiment-carrying words in the text such as ‘and’ or ‘the’ will increase as a multiple of the
number of times a sentiment-carrying word appears, so we would expect that the sentiment
content of longer texts would be underweighted by this approach. Conversely, we would
also expect that positive and negative words would be playing approximately the same role
in the structure of a document, so their relative relationship to each other would be a less-

biased indication of document tone.

In light of this, we classify the tone of a message as the natural logarithm of the

ratio of positive to negative words in a document. The log transform is similar to that
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employed by Antweiler and Frank (2004) and Sprenger et al. (2014) in their metrics and is
useful as it evenly distributes the ratio around the mean. A consequence of doing this is that
both sides of the ratio are sum-able over messages, so we can define sentiment as the log of
the total amount of positive words in all messages at time t divided by the total number of
negative words for the same time period, that is

(1+ lmpi,t)} 1)

=1
it 4 {(1 + lmni,t)

where q;; is the total sentiment expressed towards the ith stock at time t via our measure,
Imp; ¢ is the count of the number of positive sentiment-carrying words in messages
referencing the ith stock at time t, and Imn; is the count of negative sentiment-carrying
words for the ith stock at time t. We add one to these counts to control for situations where

there may be no positive or negative word over a particular time period.

3.3. Methodology

In this section, we introduce the model we are going to use to analyse our data based on the
axes of the sentiment-price relationships we wish to consider. The area of the financial
literature where empirical results most closely resemble the type of variable time series
relationships we describe in section 3.1 is the momentum literature. This literature has
some well-established techniques for studying long-run price predictability and accounting
for complexities in the time-evolution of time series relationships. A typical approach
employed by authors such as Moskowitz et al. (2012) and Jegadeesh and Titman (1993) is
to perform multiple regression tests with different averaging periods. For example,
Moskowitz et al. (2012) construct a model where the return of a stock over the previous 12
months is used to forecast the following one-month return. The predictor and holding
period windows are not always adjacent in time. Jegadeesh and Titman (1993), for
example, skip a week between the lagged return period and forecast period. Including all
these features in a model requires considering three axes of the data: the predictor period,
holding period, and lag length.

Considering these axes in the context of the online information price-relationship,

the predictor period is suggestive of the fact that one day might not always fully measure a
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single information event. Similarly, variation in holding periods suggests that it may take
several time periods for investors to fully respond to an information event. The third factor,
lag length, suggests it might take some time before investors react at all to a sentiment

event.

3.3.1. Modelling lag lengths

To model the lag length between sentiment events and prices, we are going to use a
standard time-sequencing approach in the financial literature and hypothesise a simple
linear relationship between the returns series and the sentiment series lagged by  days.
One way of doing this is for each individual stock, but more interesting in this context is to
know if there are global features describing how investors generally interpret online
information about a range of stocks.

To do this, we first normalise the sentiment series to z-scores following Tetlock et
al. (2008). We do this because there may be features of the sentiment series that are distinct
to individual stocks; messages may be dominated by a small number of authors with
writing styles that are distinctly different from the general population. Denoting the z-score

for the ith stock at time t as q'i;, we then specify this model as
Tie =+ Beq i+ & (22)

where a and Sy are the intercept and slope we will fit in the corresponding regression, z is
the lag length being considered, and ¢ is the error term. We will use r in the descriptions of
these models, but in our analysis, we will consider both returns and abnormal returns in the
same manner. The interpretation of 5, in equation (22) is then the average size over the 93
stocks of the movement in a single stock’s return given a movement in the same stock’s

sentiment series.

3.3.2. Modelling prediction windows

To model the average time it takes for a sentiment event to occur, we are going to use

simple moving averages over different numbers of days on the sentiment series. Denoting
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the moving average function as MA, we define this function as

1 k=m
MA(qie,m) = m+D Z Qit—k (23)
k=0

where m is the window over which the average runs. Combing equations (22) and (23), we
have a model capable of assessing a variety of different lag lengths and prediction

windows, that is

Tie=a+fg+ MA(qi’t_T, m)’ + & (24)

3.3.3. Modelling holding periods

To model holding periods, we use the same approach as for the sentiment windows.
Denoting the holding period function as H, similar to the moving average function, we

define this fully as

k=h
1
H(ri.t’ h’) = (h + 1) Z Tit+k (25)
k=0

where the only difference between the moving average function and this, is that the

parameter of the function h moves the window forward in time rather than backwards.

3.3.4. Full model specification

Aggregating these further features into one model gives a functional form flexible enough
to model all three axes of the relationship, that is

H(re h) = @ + BaMA(qir—rm) + & (26)

where the dash indicates that we convert to z-scores after applying the average to adjust for
variations in the writing styles of authors in relation to different stocks. By varying m in
equation (26), we vary the average, where intuitively m = 0 means that we apply no

average to the series. By varying z, we vary the time differential between the series, where
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7 =0, we consider the contemporary relationship. And by varying h, we vary the holding

period, where h = 0 corresponds to a holding period of a single day.

As we are using moving averages in fitting the unknown parameters of the model o
and Sy with linear regression, we would expect the presence of auto-correlated errors. To
control this, we fit the model using the generalised least squares algorithm (Aitken, 1934)

as implemented in the statsmodels library of the python programming language.

3.4. Empirical Results

In this section, we present findings from fitting various parameterisations of equation (26)
to our data.

3.4.1. Lagged regressions

We start by considering simple lagged regressions, where the holding period h = 0, but the
lag length 7 and the prediction window m are allowed to vary. We show values form=1, m
= 20, and m =40 and for the value of z ranging from 0 to 120, so in effect calculating the
cross correlation function between sentiment and price of over a six-month period in
trading days. We have limited the number of averaging windows to make the presentation
of the results easier to follow but have run the same analysis on a larger range of values of

m with very similar results.

Following the way Moskowitz et al. (2012) present their results, figure 1 shows the
plot of the t-statistics for fitting these regressions to the returns series r. The x-axis is the
lag length z, and the y-axis is the value of the t-statistic for the regression. The coloured
lines represent the different averaging windows, where blue corresponds to m =1, green to
m = 20, and red to m = 40. We see that there appears to be oscillations in the value of the
regression parameters, where the most significant of these fall between 7 = 20-40, r = 80-
100, and = = 100-120, with the first oscillation being negative, then positive, then negative
again. For each of these oscillations, the t-statistics would indicate the parameters are
significant at the p < 0.1 level.
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The evidence from figure 1 indicates that the sign of the relationship between a
given piece of content and price changes as we move away in time from when the content
was posted. This oscillation in the strength and sign of the relationship shown in figure 1 is
very similar to the time series momentum effect documented by Moskowitz et al. (2012),
which draws a natural link to behavioural asset pricing literature and theories, such as
Hong and Stein (1999), that yield oscillatory price movements as the product of investors

under-reacting to new information.

Figure 2 shows the corresponding plot to figure 1, but reporting on the abnormal
returns series rather than raw returns. We see immediately from the lower t-statistics that
the relationship between sentiment and abnormal returns is much weaker. This suggests
that the sentiment effect measured in figure 1 is influenced by a market factor rather than
being entirely discrete to individual stocks. One interpretation of this is that there must be
overlapping information contained in messages about certain stocks, so that a message that
specifically references Apple’s stock price would also be read by investors as news
influencing the price of other similar shares that are not explicitly referenced in the
message content. The general shape of the results is the same as figure 1, suggesting that it
is the same effect being measured in either case, but the result for abnormal returns is
noisier, again supporting the idea of the leaking of information across contexts where it is
difficult from the content of the message to understand the implication of the content of the

message in all possible contexts it could be applicable.

Moskowitz et al. (2012) also documents some cross correlation in the time series
momentum effect between stocks, drawing another parallel between the momentum
literature and our findings. Interestingly, an aspect of time series momentum documented
by Moskowitz et al. is that it is correlated across stocks, in much the same way we observe
that the sentiment-price relationship is stronger when market factors are also included in
price. Behavioural asset pricing theories, such as Daniel et al. (1998), Daniel et al. (2002),
Barberis et al. (1998), Hong and Stein (1999), Grinblatt and Han (2005) and Frazzini
(2006), all concern the pricing of a single risky asset. As a result they are not suitable for

describing the market factor we see in the sentiment-price relationship.
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Figure 1: Cross correlation analysis of raw returns: The x-axis shows the lag length z,
and the y-axis shows the value of the t-statistic for the fitted parameter of equation (8). The
key in the upper right-hand corner shows the different values of the prediction period m
displayed on the plots. For the m = 1 model, we see there is a large number of significant t-
statistics, but the lag length where these occur is unpredictable. Where we have applied the
prediction window, an oscillating pattern emerges, where the sign of the correlation is
initially negative though lags 20-40, then turns positive through lags 80-100 before finally
turning negative again through lags 100-120.
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Figure 2: Cross correlation analysis of abnormal returns: Similarly to figure 1, the x-
axis shows the lag length t, and the y-axis shows the value of the t-statistic for the fitted
parameter of equation (8), the difference being that the model is now fitted to abnormal
returns rather than raw returns. The key in the upper right-hand corner shows the different
values of the prediction period m displayed on the plot. The t-statistics are calculated using
the generalised least squares algorithm (Aitken 1934) to control heteroskedasticity. We use
the version provided in the statsmodels library of the python programming language. The
key difference between figures 1 and 2 is that now the t-statistics are much smaller than for
raw returns. The oscillations remain similar and take positive and negative signs at
approximately the same lag lengths as raw returns.
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3.4.2. Lagged regressions with different holding periods

Figures 1 and 2 only consider one-day holding periods. To expand our analysis, figures 3
and 4 consider holding periods of h = 20 and h = 40 days. Again, we considered a range of
other holding periods in our initial analysis, but the results are similar, so we omit further
results for ease of presentation. Figure 3 shows the results of this analysis for raw returns,
thus the corresponding plot to figure 1 with the holding periods included. The key in the
top left-hand corner of the table shows the model specification. The x-axis and y-axis are
the lag length and t-statistics, respectively, as before.

We see from figure 3 that considering longer holding periods strengthens the
relationship very significantly in all cases. The different oscillations we observed in figures
1 and 2 are still present and occur at approximately the same lag lengths. We also see that
there is a slight upwards trend in the sentiment-price relationship as the lag length
increases. This supports the finding of Chen et al. (2014) who reported a similar increase
at greater lag lengths, however, this finding did not include evidence of the same type of

oscillatory effect we observe here.

Figure 4 shows the corresponding plot to figure 2 for abnormal returns and different
holding periods. Again, we see a similar pattern in the shape of the oscillations. We also
see the strength of the relationship increase significantly once the holding periods have
been included. An interesting aspect of figure 4 that we do not observe from the other plots
is that the sign of the correlation between sentiment and price is almost always negative.
Also, there is a general negative trend in the t-statistics as the lag length increases.

The general story from figures 1-4 is that there is sign-strength-timing variability of
the type we describe in section 3.1. At different timings from the date a piece of content is
created there are different sign and strength responses from the returns series. These
responses are strong enough to have significant coefficient values.
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Figure 3: Cross correlations of raw returns with different holding periods: Similarly
to figures 1 and 2, the x-axis shows the lag length z, and the y-axis shows the value of the
t-statistic for the fitted parameter of equation (8). The key in the upper left-hand corner
shows the different values of the prediction period m and holding period h displayed on the
plot. The t-statistics are calculated using the generalised least squares algorithm (Aitken
1934) to control for heteroskedasticity. We use the version provided in the statsmodels
library of the python programming language. We see that the inclusion of a holding period
significantly smooths the shape of the oscillations we observed in figures 1 and 2. The size
of the t-statistics also indicates that the result has been significantly strengthened.
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Figure 4: Cross correlations of abnormal returns with different holding periods:
Similarly to figures 1, 2 and 3, the x-axis shows the lag length z, and the y-axis shows the
value of the t-statistic for the fitted parameter of equation (8). The key in the upper left-
hand corner shows the different values of the prediction period m and holding period h
displayed on the plot. The t-statistics are calculated using the generalised least squares
algorithm (Aitken 1934) to control for heteroskedasticity. We use the version provided in
the statsmodels library of the python programming language. As with figure 3, we see from
the size of the t-statistics that the sentiment-price relationship is significantly stronger with
the inclusion of a holding period. We also see, unique to this plot, that almost all of the t-
statistics are negative in sign, and they decrease as the lag length increases. This suggests
that as the lag length increases as the sentiment-price relationship becomes predominantly
negative.
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3.4.3. Prediction and holding periods

A feature of figures 1-4 is that increasing the prediction window and holding periods
appears to have a larger effect on the strength of the relationship than varying the lag
length. To analyse this in more detail we run regressions for different prediction windows
and holding periods setting the lag length z = 1 so that the two windows do not overlap. We
choose prediction windows of m = 20 to m = 100 trading days at 20 trading day intervals,
so approximately 1- to 5-months in trading days. We use holding periods of h = 10, h = 20
and h = 40 trading days. Again, we have run the same analysis with various other values of

m and h but find the results we present representative of other model specifications.

Table 1 summarises the results of these regressions for both raw and abnormal
returns. Coefficient values are reported in standard deviations. For raw returns, we see that
the initial relationship is positive in sign, with the strongest relationship being the m = 20,
h = 20 model, where R*= 2.27%. This changes for longer prediction windows, where the
signs of the relationship are all negative. In these cases, the longest holding period always
has the strongest relationship, with the highest being the m = 60, h = 40 model where R*=
4.11%.

For abnormal returns, the relationships are all weaker, with the positive short-term
relationship having disappeared completely. At longer prediction windows, we see the
relationship returns has the same sign as the raw returns, although the relationship is not as
strong. Again, we see that the relationship is strongest for longer holding periods, where
the highest R? value is now the model, where m = 80 and h = 40, R*= 1.37%.

The evidence from table 1 suggests that the long-term aggregate of information has
a predominantly negative correlation with returns. This is in contrast to the finding of Chen
et al. (2014), where the authors reported the long-run relationship between sentiment and
price had a positive sign. Table 1 illustrates how, although there is sign-strength-timing
variability present in the relationship, there are trends in the relationship which lead to long
term correlations. This is somewhat similar to the situation described by the momentum
literature, where theories, such as Hong and Stein (1999) model momentum as an
oscillatory structure in the information-price relationship, but empirical work by authors
like Moskowitz et al. (2012) evidence long run relationships that occur as a consequence of

trends in the oscillatory structure.
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Returns Abnormal Returns

Model By  %AdjR? By  %AdjR?

m=20,h=10 0.1 0.99 -0.001 -0.01
t-statistic (10.354) (-0.083)

m=20,h=20 0.151 2.27 -0.002 -0.01
t-statistic (15.737) (-0.176)

m=20,h=40 -0.046 0.2 -0.037 0.13
t-statistic (-4.718) (-3.813)

m=40,h=10 -0.023 0.04 -0.02 0.03
t-statistic (-2.338) (-2.07)

m=40,h=20 -0.051 0.25 -0.045 0.19
t-statistic (-5.265) (-4.599)

m=40,h=40 -0.174 3.01 -0.084 0.69
t-statistic (-18.165) (-8.655)

m=60,h=10 -0.057 0.32 -0.047 0.22
t-statistic (-5.918) (-4.895)

m=60,h=20 -0.093 0.86 -0.076 0.57
t-statistic (-9.669) (-7.868)

m=60,h=40 -0.203 411 -0.112 1.26
t-statistic (-21.333) (-11.654)

m=80,h=10 -0.064 0.39 -0.044 0.18
t-statistic (-6.552) (-4.522)

m=80,h=20 -0.1 0.99 -0.077 0.59
t-statistic (-10.359) (-7.993)

m=80,h=40 -0.163 2.65 -0.117 1.37
t-statistic (-17.024) (-12.174)

m=100,h=10 -0.024 0.05 -0.04 0.15
t-statistic (-2.521) (-4.103)

m=100,h=20 -0.032 0.09 -0.069 0.47
t-statistic (-3.3) (-7.148)

m=100,h=40 -0.098 0.95 -0.114 1.29
t-statistic (-10.121) (-11.82)

Table 1: Prediction and holding periods: The left-hand column gives the model
specification, where m is the prediction window, and h is the holding period. Both numbers
indicate the length of the window in trading days. The betas are given in standard
deviations of the return, and the regressions are fitted with generalised least squares. In all
cases, the sample size n = 10,695 stock trading days. Both the mean return and abnormal
return are 0 to 5 decimal places, and the standard deviation of the raw return is 0.017 and
0.014 for abnormal returns. So for example, the expected log percent return for a standard
deviation increases in sentiment due to the m = 100, h = 40 raw return, the model would be
calculated as 100*(0.017*-0.098) = -0.167%. We see from the results that the strength of
the abnormal returns relationship strengthens as both the prediction window and holding
period increase. At the m=20 prediction window, we observe no relationship. For raw
returns, we see that there is a positive relationship at m = 20 and h = 10 or h = 20. The
relationship is then negative at other prediction windows and holding periods. The middle
prediction windows m = 40 to m = 80 show stronger relationships, and the longest holding
period h = 40 always shows the strongest relationship.

65



3.4.4. Comparison to time series momentum

Since we have made heavy use of existing momentum evidence and under reaction
theories in the explanation of our results, it is natural to consider the possibility that textual
sentiment is simply a proxy for existing forms of price momentum. To test this, we repeat
the analysis from table 1, including lagged returns as an explanatory variable over the same

prediction window, that is
H(ri,t' h) =a+ BqMA(Qi,t—T' m) + ﬁtsmomMA(ri,t—rr m) + & (27)

where the subscript q indicates the sentiment parameter, and tsmom indicates the time-
series momentum parameter of the model. Table 2 reports the results from fitting equation
(27) to our data for the same specifications of h and m as before and where z is still 1 to

ensure that the prediction window and the holding period do not overlap.

The results from table 2 evidence the fact that momentum and sentiment are
different and are complementary predictors of price. Looking at raw returns, we see that all
sentiment parameters are still significant. We also see that many of the lagged returns
parameters are also significant and that the adjusted R? values for the regression in most
cases are several times larger than using sentiment alone. The highest of these results being
the m = 100, h = 40 model, where R?= 14.37%.

We see largely the same story for abnormal returns. We see no relationship between
the short prediction and short holding period models for sentiment, but there is now a
significant relationship between sentiment at a 20-day prediction window and a holding
period of 40 days. This relationship is heavily influenced by a positive relationship
between the momentum factor and price at this model specification. We see that, when
considered together, both sentiment and momentum are mostly negative predictors of
prices. The higher R? values for these models again all come where the holding period is
40 trading days. The highest of these results is for the m = 100, h = 40 model, where the
adjusted R® = 11.58%.

A feature of the results reported in table 2 is that sentiment plays a greater role in
the results of prediction windows of 40 to 80 trading days, and momentum becomes much
more of a factor in the 100-trading day models. This is consistent with theory as the

momentum literature typically concerns a longer-run relationship than the one we
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document here. The result also suggests that one of the other sources of variability, not
linked to investor psychology, may be the cause of some of the variability in the sentiment-

price relationship.
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Returns Abnormal Returns

Model B, B tsmom % Adj R? B, B ismom % Adj R?

m=20,h=10 0.101 -0.161 3.59 0 -0.032 0.08
t-statistic (10.62) (-16.935) (0.017) (-3.304)

m=20,h=20 0.153 -0.214 6.86 -0.002 -0.007 -0.01
t-statistic (16.292) (-22.879) (-0.155) (-0.693)

m=20,h=40 -0.045 -0.099 1.18 -0.038 0.029 0.2
t-statistic (-4.664) (-10.302) (-3.902) (2.942)

m=40,h=10 0.006 -0.191 3.59 -0.019 -0.033 0.13
t-statistic (0.623) (-19.768) (-1.906) (-3.352)

m=40,h=20 -0.027 -0.16 2.75 -0.044 -0.015 0.2
t-statistic (-2.784) (-16.518) (-4.52) (-1.525)

m=40,h=40 -0.16 -0.09 3.79 -0.083 -0.025 0.75
t-statistic (-16.624) (-9.344) (-8.522) (-2.583)

m=60,h=10 -0.04 -0.122 1.78 -0.044 -0.052 0.48
t-statistic (-4.103) (-12.576) (-4.504) (-5.38)

m=60,h=20 -0.068 -0.179 4.01 -0.071 -0.071 1.06
t-statistic (-7.057) (-18.664) (-7.346) (-7.294)

m=60,h=40 -0.175 -0.192 7.72 -0.103 -0.126 2.83
t-statistic (-18.608) (-20.402) (-10.78) (-13.126)

m=80,h=10 -0.043 -0.176 3.45 -0.029 -0.112 141
t-statistic (-4.425) (-18.356) (-3.019) (-11.524)

m=80,h=20 -0.069 -0.266 7.94 -0.056 -0.168 3.34
t-statistic (-7.3) (-28.303) (-5.784) (-17.395)

m=80,h=40 -0.127 -0.306 11.85 -0.087 -0.235 6.78
t-statistic (-13.806) (-33.266) (-9.202) (-24.818)

m=100,h=10 0.01 -0.247 6.03 -0.003 -0.189 3.57
t-statistic (1.054) (-25.982) (-0.321) (-19.431)

m=100,h=20 0.016 -0.342 11.55 -0.021 -0.25 6.46
t-statistic (1.705) (-37.072) (-2.167) (-26.074)

m=100,h=40 -0.046 -0.37 14.37 -0.051 -0.327 11.58
t-statistic (-5.084) (-40.769) (-5.426) (-35.128)

Table 2: Comparison of sentiment and momentum: Similar to table 1, the left-hand
column gives the model specification, where m is the prediction window, and h is the
holding period. Both numbers indicate the length of the window in trading days. Both betas
are given in standard deviations of the return, and the regressions are fitted with
generalised least squares. In all cases, the sample size n = 10,695 stock trading days. We
see from the t-statistics that sentiment relationships are complementary to momentum
effect. We also see across the board that the adjusted R? values are strengthened by the
inclusion of both variables. Particularly for abnormal returns, the sentiment-price
relationship is significantly stronger than the momentum-price relationship. In the case of
raw returns, the relationship, judged by the size of the respective t-statistics, is
approximately equal apart from m = 100, where the relationship is dominated by
momentum. Interestingly, this is not the case for the m = 100 model for abnormal returns,
suggesting an asymmetry in the way stock-specific rather than more general sector or
market information is processed by investors.
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3.5. Returns to buying sentiment winners

A simple test of how economically meaningful this information is, is to see whether a
simple trading rule can produce excess returns. Our results suggest the stronger sentiment-
price relationships, particularly for abnormal returns, to be the ones where we have long
prediction and holding periods and the lag length parameter z = 1. As a result, we will form
portfolios of stocks based on models where z = 1. Given that we know that there is a
stronger relationship at longer holding periods, we utilise a trading strategy developed by
Jegadeesh and Titman (1993) in their early work on price momentum but adopted for use

with a sentiment input signal rather than a lagged price input signal.

The strategy is as follows: at each time period, we sort the stock based on their j
trading day average sentiment. The following trading day, we purchase an even-weighted
portfolio of the top 20 or 30 stocks with the intention of holding them for g trading days.
The following day, we purchase the next set of stocks according to the same criteria. At t +
g trading days, we then sell the first portfolio we purchased as the holding period expires.
We continue along the same lines until the end of the series so that after we purchase the
first g days’ worth of portfolios, we are holding 20g or 30g open positions on any single
trading day, although the same stock may appear in several of these open positions. We
report returns as the average return between t and t - g for all open positions we close on a
given trading day so that we have a single number indicative of the rolling return we would

realise from the strategy.

Table 3 shows the results of applying this strategy for sentiment averaging periods
of 60, 80, and 100 trading days and holding periods of 10, 20, and 40 trading days. The
returns are reported as log percent. Firstly, we see that the results clearly strengthen as we
lengthen the holding period, echoing the results of our regression analysis. For any
averaging period, we see that the best returns and highest t-statistics are for holding periods
where g = 40. We also see that the results strengthen as we lengthen the averaging period,
with the best results coming where j = 100. In cases where j = 80 and j = 100, most of the
portfolios have t-statistics high enough to still be significant after applying the Bonferroni
correction, adjusting for the fact we have run many tests. For example, the probability of
achieving a t-statistic of > 3 after adjusting for the fact we show the results of 18 portfolios
is 0.0243.

The highest result we see is for the 20 stock portfolios with a 100-day averaging

69



period and a 40-day holding period. For this portfolio, we see an excess return, calculated
as the return of the portfolio minus the return from holding the market portfolio over the
same period of 0.042%. To put this into perspective, an excess return of that size over a full

year would equate to excess returns of 10.577% APR.

3.5.1 Transaction costs

Assessing these results in terms of the reasonable cost of pursuing these strategies,
Clarkson et al. (2006) report the average transaction costs for trading stocks with an online
broker is between 0.15% and 0.2% of the trade value. Taking the j = 100, g = 40 strategy
where we buy the top 20 stocks as an example, at the close of each holding period, we sell
20 stocks each time period. The 40-day average return of a single stock over this time
period is 1.692%, so subtracting the 0.2% transaction fees; this leaves a gross log profit
from the trade of 1.492% per completed trade. Dividing by 40 leaves a gross log profit per
day of 0.037% for pursuing this strategy, which is equivalent to an APR of 9.776%
(calculated as 100(e1+(0-:00037250) _ 1Y) jn excess of the market portfolio and a gross

APR of 15.606% overall after reasonable costs have been deducted.
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20 Stock Portfolio 30 Stock Portfolio

Return Excess Return Return Excess Return
t-stat(market)  t-stat(strategy) t-stat(market) t-stat(strategy)
j =60,g =10 N=4060 N=6090
Return 0.037 -0.019 0.041 -0.015
t-statistic (-2.897) (-1.34) (-2.802) (-0.904)
j =60, =20 N=3860 N=5790
Return 0.042 -0.004 0.043 -0.003
t-statistic (-0.907) (-1.12) (-0.844) (-1.102)
j =60,g =40 N=3460 N=5190
Return 0.06 0.019 0.06 0.019
t-statistic (6.287) (2.633) (7.498) (3.123)
j =80,g =10 N=3660 N=5490
Return 0.054 0.014 0.048 0.008
t-statistic (1.978) 1.7) (1.354) (1.015)
j =80, =20 N=3460 N=5190
Return 0.057 0.016 0.056 0.015
t-statistic (3.5) (2.824) (3.927) (3.114)
j =80,g =40 N=3060 N=4590
Return 0.06 0.03 0.063 0.033
t-statistic (8.701) (4.551) (11.684) (6.669)
j =100,g =10 N=3260 N=4890
Return 0.049 0.016 0.054 0.021
t-statistic (2.239) (2.633) (3.464) (3.94)
j =100, =20 N=3060 N=4590
Return 0.052 0.022 0.05 0.02
t-statistic (4.32) (4.208) (4.793) (4.656)
j =100,g =40 N=2660 N=3990
Return 0.063 0.042 0.058 0.038
t-statistic (11.338) (7.963) (12.073) (8.05)

Table 3: Returns to buying sentiment winners: The left-hand column denotes the
portfolio. We report results for 20 and 30 stock portfolios. Returns are given as daily log
percent average returns for the whole portfolio. The excess return is defined as the return
minus the return of holding an even weighted portfolio of the 93 underlying stocks. We
calculate the t-statistic(market) as a comparison of the portfolio return per stock per day
versus the market return per stock per day. The t-statistic(strategy) is calculated as the
return per stock per day versus the return of holding the market portfolio using the same
rolling investment strategy, thus buying 93 stocks each day and holding them for G days.
We note that several of the t-statistics would be robust after applying the Bonferroni
correction for the fact we have analysed 18 portfolios. For example, the probability of
achieving a t-statistics of greater than three after applying the Bonferroni correction is p =
0.0243.
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3.6. Conclusions, limitations, and future work

In the introduction we argued that there were both empirical and theoretical reasons for
expecting variability in the sign, strength and timing of the sentiment-price relationship.
We use the largest dataset gathered for a study of this type to document how this type of
variability is indeed a key feature of the relationship. Importantly, we also show the
strongest evidence available in the literature to date that online textual sentiment can be
used to forecast future prices and that this relationship is strong enough to have genuine
economic meaning for investors. We build on the evidence documented by Chen et al.
(2014), by showing that there is a long run relationship between sentiment and price. We
extend this finding by showing that the relationship takes the form of an oscillating wave,

as the price moves away from a given point in time on the sentiment series.

Because of this feature, we draw a link to the behavioural finance literature and
empirical work on price momentum. We use multivariate regression analysis to show that,
although the price momentum is similar to the sentiment-price relationship, sentiment
contains incremental information over that which is already recorded in the serial
correlation of prices. This suggests that some of the sign-strength-timing variability in the
sentiment price relationship may be due to factors, such as the trust relationship between

content authors and investors, which are difficult or impossible to measure effectively.

In terms of future work, a methodological consideration we raise is that we have
made extensive use of linear regression models. Given the different sources of variability
in the relationship we outline in section 3.1, and our empirical observations of this
variability we present in our results, this leads to quite a crude analysis as we have to make
decisions about the different lag lengths as well as prediction and holding periods to use for
each of these models. The problem is that there does not seem to be any theoretical reason
for the choice of prediction window or holding periods. Ideally, we would like to be able to
identify the best model so that we could consider all the possible lag lengths and prediction
and holding periods at once. Also, our analysis considers the parameters for these models
to be fixed. There appears to be no theoretical reason why the lag lengths and prediction
and holding periods in these models would be static over time. We suggest a major area of
further investigation for both the textual sentiment and momentum literature to develop

techniques for fitting models more suitable for the types of relationship we observe.
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Appendix

Ticker Query String Messages Return o Return Sentiment o Sentiment
AAPL (AAPL AND NASDAQ) OR "Apple Inc.” 694157 42.72 145 -23.26 0.78
MO (MO AND NYSE) OR "Altria Group™ 63307 40.56 0.9 1455 0.87
GD (GD AND NYSE) OR "General Dynamics" 34101 389 115 20.17 0.86
UNH (UNH AND NYSE) OR "United Health Group Inc." 37977 385 125 61.99 0.94
UNP (UNP AND NYSE) OR "Union Pacific" 20005 3721 127 0.85 0.69
CVs (CVS AND NYSE) OR "CVS Caremark" 45246 37.06 0.92 102.29 0.91
LLY (LLY AND NYSE) OR "Lilly (Eli) & Co." 34880 36.71 1.09 412 0.86
SPG (SPG AND NYSE) OR "Simon Property Group" 28223 36.57 0.84 356.93 139
LOW Lowe's 25083 36.27 124 121.21 1.04
GILD (GILD AND NASDAQ) OR "Gilead Sciences" 59548 35.42 21 -11.74 0.74
BIIB (BIIB AND NASDAQ) OR "BIOGEN IDEC Inc." 48708 34.01 231 54.95 0.81
HPQ (HPQ AND NYSE) OR "Hewlett-Packard" 67812 32.94 154 2.25 0.67
EXC (EXC AND NYSE) OR "Exelon Corp." 28150 32.02 127 91.37 0.95
ALL Alistate Corp 24885 31.26 0.9 68.28 113
LMT (LMT AND NYSE) OR "Lockheed Martin" 58504 30.55 1.09 449 0.77
INTC (INTC AND NASDAQ) OR "Intel Corp." 183908 29.87 141 26.7 0.79
WBA (WBA AND NASDAQ) OR "Walgreens Boots Alliance" 19680 298 179 64.32 0.96
AMGN (AMGN AND NASDAQ) OR "Amgen" 61224 29.27 1.56 -7.33 0.82
HD (HD AND NYSE) OR "Home Depot" 53998 2894 113 -53.72 0.96
SO (SO AND NYSE) OR "Southern Company" OR " Southern Co" 19071 28.64 0.85 100.63 1.09
MDT (MDT AND NYSE) OR "Medtronic" 48944 28.59 121 -341 0.78
COST Costco 28083 271.76 0.97 -28.74 0.49
TXN (TXN AND NASDAQ) OR "Texas Instruments” 39445 26.66 127 157.79 0.91
CsCo (CSCO AND NASDAQ) OR "Cisco Systems" 69137 23.97 11 77.09 0.73
MRK (MRK AND NYSE) OR "Merck & Company* OR " Merck & Co" 73582 23.96 122 -52.91 0.64
DIS (DIS AND NYSE) OR "The Walt Disney Company" 70870 2227 111 69.07 0.51
BRK.B (BRK.B AND NYSE) OR "Berkshire Hathaway" 49175 2222 0.88 -4.52 0.67
FDX (FDX AND NYSE) OR "FedEx Corporation” 39200 2181 119 -53 0.8
TGT (TGT AND NYSE) OR "Target Corp." 24193 21.47 13 -39.48 0.88
ABBV (ABBV AND NYSE) OR "AbbVie" 40923 20.99 159 -44.59 0.74
MMM (MMM AND NYSE) OR “3M Company" 12879 20.73 0.97 -9.27 0.73
RTN (RTN AND NYSE) OR "Raytheon Co." 33505 20.49 122 49.18 0.89
WEFC (WFC AND NYSE) OR "Wells Fargo" 193937 19.92 0.95 -83.17 0.77
ABT (ABT AND NYSE) OR "Abbott Laboratories"” 26751 19.55 1 -14.63 0.68
TWX (TWX AND NYSE) OR "Time Warner Inc." 105619 19.37 179 -21.55 0.61
NKE (NKE AND NYSE) OR "Nike" 59276 18.86 132 1311 0.63
PEP (PEP AND NYSE) OR "PepsiCo Inc." 51080 18.67 0.85 97.63 0.72
BMY (BMY AND NYSE) OR "Bristol-Myers Squibb” 31634 16.95 144 14.35 0.76
\% Visa Inc 98614 16.92 133 -21.75 0.73
DD (DD AND NYSE) OR "Du Pont (E.I.)" 57664 16.82 1.06 3218 0.78
SBUX (SBUX AND NASDAQ) OR "Starbucks Corp." 63171 15.55 121 10.85 0.63
NSC (NSC AND NYSE) OR "Norfolk Southern Corp." 19156 15.49 135 7155 0.93
JNJ (JNJ AND NYSE) OR "Johnson & Johnson" OR " Johnson and Johnson" 65997 14.56 0.95 2217 0.78
ORCL (ORCL AND NYSE) OR "Oracle Corp." 98175 14.37 126 95.58 0.79
MSFT (MSFT AND NASDAQ) OR "Microsoft" 410677 14.01 138 52.72 0.83
HON (HON AND NYSE) OR "Honeywell Int'l Inc." 39515 11.93 103 1125 0.87
WMT (WMT AND NYSE) OR "Wal-Mart Stores™ 98972 113 0.9 -42.81 0.72
ACN (ACN AND NYSE) OR "Accenture" 41030 10.58 107 229.09 0.99
PG (PG AND NYSE) OR "Procter & Gamble" 62884 10.32 0.78 54.05 0.7
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BK (BK AND NYSE) OR "The Bank of New York Mellon Corp." 62018 10.24 119 -96.34 0.86
CL (CL AND NYSE) OR "Colgate-Palmolive" 18299 9.99 091 -5.25 0.75
BA (BA AND NYSE) OR "Boeing Company" 193094 9.82 128 51.48 0.72
APC (APC AND NYSE) OR "Anadarko " 29781 9.64 21 -19.18 0.91
CMCSA  (CMCSA AND NASDAQ) OR "Comcast Corp." 117113 9.1 12 34.15 0.82
EMC (EMC AND NYSE) OR "EMC Corp." 43541 8.76 118 54.76 0.91
PFE (PFE AND NYSE) OR "Pfizer Inc.” 94617 8.44 1.02 -50.81 0.68
usB (USB AND NYSE) OR "U.S. Bancorp" 23469 834 0.95 -30.19 0.88
UTx (UTX AND NYSE) OR "United Technologies" 50835 7.66 0.98 53.43 0.9
DOW Dow Chemical 28486 6.09 157 56.26 0.75
DWN (DVN AND NYSE) OR "Devon Energy Corp." 12436 5.63 1.86 4125 0.75
F Ford Motor" OR " Ford 203008 552 137 -3.93 0.75
MON (MON AND NYSE) OR "Monsanto Co." 46712 539 1.05 -120.46 0.79
KO (KO AND NYSE) OR "The Coca Cola Company" 95534 53 0.95 66.04 0.58
T AT&T"OR"ATand T 227148 4.86 0.9 150.31 0.86
MDLZ (MDLZ AND NASDAQ) OR "Mondelez International” 22409 334 11 66.95 0.93
GS (GS AND NYSE) OR "Goldman Sachs" 332367 3.18 1.16 -143.84 0.74
vz (VZ AND NYSE) OR "Verizon Communications"” 167099 312 0.95 61.47 0.83
AlIG (AIG AND NYSE) OR "American International Group" 40286 215 113 -164.42 0.71
MA (MA AND NYSE) OR "Mastercard" 61868 1.25 151 90.37 0.94
CopP (COP AND NYSE) OR "ConocoPhillips™ 36417 0.81 144 -36.7 0.7
MCD (MCD AND NYSE) OR "McDonald's Corp." 71680 0.78 0.86 -38.11 0.75
EBAY (EBAY AND NASDAQ) OR “eBay Inc." 113884 057 143 2731 0.76
JPM (JPM AND NYSE) OR "JPMorgan Chase & Co." 228061 0.05 122 -111.12 0.33
SLB (SLB AND NYSE) OR "Schlumberger Ltd." 28547 -0.32 155 -9.03 0.67
BAC (BAC AND NYSE) OR "Bank of America" 238181 -0.56 1.46 -115.4 0.74
UPS (UPS AND NYSE) OR "United Parcel Service" 15660 -0.59 1.08 -2355 0.78
MET (MET AND NYSE) OR "MetLife Inc.” 23542 -1.65 1.39 8.06 091
COF (COF AND NYSE) OR "Capital One Financial” 24620 -2.16 111 -29.23 0.9
FOXA (FOXA AND NASDAQ) OR "Twenty-First Century Fox' OR " Twenty Fire 21654 -2.53 144 -18.02 0.83
CAT (CAT AND NYSE) OR "Caterpillar Inc" 69169 -341 137 -46.05 0.75
XOM (XOM AND NYSE) OR "Exxon Mobil" 73226 -5.02 11 -60.86 0.74
AXP (AXP AND NYSE) OR "American Express Co" 57402 -5.23 117 4574 0.83
OXY (OXY AND NYSE) OR "Occidental Petroleum" 15320 -6.14 144 -112.99 091
c Citigroup 227549 -6.61 1.36 -186.72 0.72
QCoM (QCOM AND NASDAQ) OR "QUALCOMM Inc." 74712 -6.95 145 83.15 0.92
GE (GE AND NYSE) OR "General Electric" 148786 -8.19 0.96 92.15 0.7
CvX (CVX AND NYSE) OR "Chevron Corp." 77541 -9.02 124 -77.73 0.6
EMR (EMR AND NYSE) OR "Emerson Electric Company™ 15285 -12.63 116 133.65 1.01
HAL (HAL AND NYSE) OR "Halliburton Co." 53379 -13.19 2.04 -61 0.96
IBM (IBM AND NYSE) OR "International Business Machines" 170544 -13.36 113 105.02 0.83
GM (GM AND NYSE) OR "General Motors™ 132773 -15.18 151 -54.86 0.9
APA (APA AND NYSE) OR "Apache Corporation” 32175 -21.26 1.87 11.59 0.82
FCX (FCX AND NYSE) OR “Freeport-McMoran" OR * Freeport McMoran* 17170 -71.83 2.02 -127.54 0.63

Appendix: Query Strings and Descriptive Statistics. The table shows the ticker symbol,
query string and some descriptive statistics for the data in our sample. The statistics are for
the cumulative return and cumulative sentiment over the sample period of 273 trading
days. We also show message numbers, and standard deviations for either series. The
correlation coefficient between cumulative sentiment and returns is 0.33, indicating that
sentiment does provide some useful information in differentiating over the cross-section of
stocks.
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Chapter 4: Signal Diffusion Mapping: Optimal Forecasting with
Time Varying Lags

4.1. Introduction

Conventional time series methodologies for financial forecasting are limited in their ability
to handle lags. They can only accommodate lags fixed integer length, e.g. a one-period lag,
a two-period lag. We argue that the relationship between real time series can often have a
richer, more dynamic time structure than has been implicitly assumed in the traditional
methodological approaches. We introduce a new forecasting methodology, signal diffusion
mapping (SDM), which extracts the maximum possible information from the modelled
relationship and produces the best possible forecast at each point in time, in circumstances

where the lag-length is time-varying.

The notion of time-varying lag-lengths may strike some researchers as odd. Indeed,
we suspect that the fact that lags have been almost invariably modelled as fixed-integer-
lags in time-series financial modelling has probably conditioned most financial forecasters
to believe that financial data actually behaves in the manner that their models seek to
measure. However, we contend that such a conclusion would be a classic case of ‘if all you

have is a hammer, everything looks like a nail’.

Real-world temporal relationships are less well ordered than we might like to think.
The history of financial markets is replete with colourful examples of convicted insider
traders who exploited access to privileged information for pecuniary gain. This can include
information about companies' earnings announcements, future takeover targets, price-
sensitive macroeconomic news, etc. An insider trader trading prior to a news event will
reverse the time-order that financial theory conventionally assumes, i.e. information first,
price- reaction second. On the other hand, nobody would accept the assertion that insider-
trading occurs prior to each and every information event. In other words, a reasonable
conclusion would be that occasional cheating happens and this distorts the information-
price time lag. If a fixed-integer lag model were imposed on such a scenario, it would

result in the measured correspondence between information and price being lower than if
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the modeller had a means of adjusting for the time distortion.

Insider trading is not the only source of lag-length distortion. Cheung et al. (2004)
survey the opinions of foreign exchange dealers and conclude that “news’, ‘speculative
forces’ and ‘bandwagon effects’ are the main drivers of price within a day and that
fundamentals, which mainstream finance theory assumes to be the key drivers of price, are
perceived as only relevant in determining returns over the long term (i.e. over 6 months).
These speculative forces and bandwagon effects are perhaps best captured in Soros'
reflexivity theory which posits a bi-directional symbiotic feedback relationship between
information and price (Soros 2009). Importantly, Soros argues that some reflexivity
relationships are sustained for extended periods, while others can fizzle out after a short
time. Trying to extract the relationship between such variables with a fixed-length-lag

model is like trying to eat soup with a fork — quite simply the wrong tool for the job.

The key contribution of this paper is the introduction of a new model (SDM) to the
forecasters' arsenal which can handle time-varying lag-lengths of the type we describe
above, retrieving the maximum possible information about the relationship between two
time series. Our method builds upon well-established, published methods from the data
analysis and econophysics literature, which were developed to measure optimal
relationships in related series of fixed lengths, e.g. Keogh and Pazzani (1999), Sornette and
Zhou (2005) and Zhou and Sornette (2007). However, in their original form none of those
methods were appropriate for forecasting. We adapt those methods to the problem of
forecasting in a manner analogous to a Kalman filter or recursive Bayes estimation with
time-varying-lags, which we name signal diffusion mapping. We test SDM with synthetic
data and we demonstrate that it is able to recover the true optimal relationship between
series where we have deliberately distorted the temporal relationship by

shortening/lengthening the lag at different points in time.

Note that SDM does not rule out the possibility that the true relationship between
two time series could actually be a fixed length lag. An important feature of our proposed
methodology is that it will identify the optimal underlying relationship between the two
series whether the lag structure is fixed of varying in time. In other words, if the best
possible relationship is obtained by lagging one of the series by two time-periods, then that
is what the model will find. On the other hand, if an even better link between the two series
could be shown by allowing series 1 to lead series 2 some of the time and to lag series 2 at

other times, our method will identify this as the best model.
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The remainder of our paper is structured as follows: section 4.2 introduces some
concepts and notations from the relevant literatures we will use in defining our approach.
Section 4.3 will describe a Bayesian interpretation of the time-sequencing problem. In
section 4.4 we present the SDM algorithm in full. In section 4.5, we present results from
testing the SDM algorithm on simulated data. Finally, section 4.6 presents our conclusions.

4.2. Background

In the introduction we highlight the work of Soros (2009) and Cheung et al. (2004) as
examples of work which highlights the temporal complexity of the information-price
relationship. In the case of Soros, this complexity is captured as a constantly shifting
feedback mechanism, capable of rapid changes; for example, periods of constant growth
lasting years can shift to huge market crashes in the space of less than a week. In the case
of Cheung et al. the emphasis is on scale, where short term information effects (intra-day)

are augmented with long term effects of 6 months or more.

As described, this implies the information-price relationship has a complex
causality structure. Statistical causality in the financial literature is mostly considered in
terms of Granger causality (Granger 1969), so that where the time-sequencing of a
relationship is unclear, Granger causality tests are employed as the main tool in

determining the nature of the statistical causality.

In section 4.2.1, we introduce the Granger causality model and cases where it has
been applied in the study of information-price relationship. We also discuss some other
approaches to determining statistical causality. We then to discuss the limitations of these
models in terms of the dynamism and scaling of the relationship we wish to measure. In
section 4.2.2, we discuss how the Bayesian framework is a good fit for problems of this
type. We briefly highlight other work where Bayes Estimators have been used for model
fitting in a financial context and draw the link to other state space techniques used in time-

series analysis.

4.2.1. Time-sequencing in financial forecasting

To give the issue of variable lag-lengths a mathematical framing, the standard relationship
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that is considered in the Granger causality approach is that some autoregressive series of

the form
X¢ = axg_q, + N(0,1)

where « is the autoregressive parameter, | a | < 1 so the process is stationary, and N(0,1)
indicates a normally distributed random variable with a mean of 0 and variance of 1. We

then consider another variable related to x as;
Ve = BiXe—1 + BaXe—z- - PrXe— T Uy (28)
where
us = N(0,02)
is the noise term obfuscating the relationship.

Granger causality in the bi-variate case is simply a regression model specified on
the lagged values of x. Throughout this paper bold-face type will denote a vector in the
usual manner, where p are the coefficients values or parameters of the model; in some
cases we might also consider lags of y but here we omit them for brevity. The parameters
of the model are then estimated with the ordinary least squares (OLS) algorithm. If any of
the B coefficients are statistically significant, researchers can then state that there is

evidence to support the hypothesis that x Granger causes y.

This is by far the most common form of analysis of the lagged dependence between
time-series, example studies of information price relationships using this methodology
include; (Bollen et al. (2011) and Sprenger et al. (2014), both studying the effect of public
sentiment on stock prices; Hong et al. (2009), modelling risk spillover between
international financial markets; and Hiemstra and Jones (1994), studying the causality
between stock prices and volume using the Granger causality test specified in equation

(28) and a non-linear variant.

Even in cases where more complex methodologies are applied, usually the
treatment of the temporal relationship between the variables reduces to some variant of
Granger causality. An example of this is Sharkasi et al. (2005), who use wavelet
decomposition to study spillover effects from international stock indices, then use linear
regression to fit models on the decomposed wavelets.

One of the attractions of the Granger causal approach is that it gives a clear

pathway to constructing a forecasting model. Based on the results of equation (28) it is
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possible to identify lags with significant p-values then construct a second regression using
these lags. This second model can then be used to determine estimates of future values of y

based on the coefficient values in the second regression model.

The situation Soros (2009) and Cheung et al. (2004) describe, however, is one of
significant variation in the temporal relationship between variables, both in terms of the
speed by which the relationship can change but also the fact that the relationship can exist
at varied scales. In Soros's description of reflexivity he states how financial markets can
switch from bull to bear periods very quickly; these switching moments are characterised
by changes in the information-price relationship that happen over the course of days -
suggesting any model would have to adjust almost immediately to the change in
circumstance. Cheung et al. report how professional traders consider information effects at

different scales, from intra-day effects to long run effects, > 6 months.

Now consider trying to capture this with the Granger causal approach, firstly
tackling scale: Cheung et al.'s conclusions indicate we would need to fit a model with a
large number of parameters to capture each different scale considered. Considering daily
intervals, for example, this would lead to a model with ~180 parameters, leading to very
low statistical power for the test due to the ‘curse of dimensionality’. Secondly, assuming
the parameters of equation (28) are time-varying, we could employ a version of equation
(28) on some rolling window. In order to achieve reasonable results, however, requires
specifying a reasonable sized window — yet theory suggests that change in the relationship

will occur almost instantly.

4.2.2. Parameter estimation using Bayesian inference

To be specific, the issue we have is that given the Granger causal model we believe the
model specification would have too many parameters - and that these parameters would
change too quickly for us to be able to fit the model we need to test the available financial
theory with the OLS algorithm. We are not arguing that the basic structure of the Granger
causal model is deficient in its ability to characterise the information-price relationship per

se - just that we cannot fit the model in the way we would like.

Recently, there have been a number of papers in the finance and econometrics

literatures using various types of recursive Bayes estimator (RBE) to estimate model

79



parameters. Examples of this work include, Carvalho and Lopes (2007), who present an
RBE for dynamically parameterised stochastic volatility models, and Carvalho et al.
(2009), who fit the parameters of a dynamic, conditionally linear model (see Arulampalam
et al. (2002) and Lopes and Tsay (2011) for reviews of the filed). As yet, however, no work
exists attempting to fit causality models in a similar fashion.

From a Bayesian perspective the parameter values for the lags in equation (28) can
be considered as a state space, where the parameters are represented as probabilities that a
given lag could be causally influencing the value of y;. Simplistically, this means that we
can update the parameters based on their relative probabilities as they transition from one
time-period to another, rather than on their goodness-of-fit over a large number of previous
observations. We will show how this can allow the lag-structure to vary much more

dynamically than it could do if fitted with OLS and circumvents issues of dimensionality.

This state space representation also links to other areas of the time-series analysis
literature where variable lag paths have been considered. The dynamic time warping
(DTW,; see, for example, Keogh and Pazzani 1999; Senin 2008; Warren Liao 2005; Sakurai
et al. 2005) and optimal thermal causal path (OTCP; Sornette and Zhou 2005; Zhou and
Sornette 2007) literature both study historical lagged relationships using similar state space
techniques. Much of section 4.4.2 concerns integrating these ideas into the RBE
framework, so that we can forecast with variable lag-structures rather than view them

historically.

The key contribution we make in this paper, is to show it is possible to dynamically
fit the model in equation (28) using a RBE; we will begin by fitting the simple linear
model and expand to more exotic cases in later sections. The specific RBE algorithm we
present to complete this task is the signal diffusion mapping (SDM) algorithm. The
rationale for the name is because we will map the diffusion gradient of information flowing
between the two series over the state space of possible lags; this results in us being able to
plot the time evolution of this relationship on a heatmap, i.e. the map of the flow of the
signal between the series.

In section 4.3 we will further define the time-sequencing problem in Bayesian

terms and introduce the notational conventions we will adhere to throughout this paper.
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4.3. A Bayesian view of the time-sequencing problem

In this section we are going to interpret the Granger causal model in terms of the common
general dynamical model (GDM), this a more general form of the normal linear dynamical
model which forms the basis of the Kalman filter (Lopes and Tsay 2011). We then outline
the general method of solving the GDM equations recursively using Bayes' theorem.
Finally, we describe the criteria by which an estimator can be seen as optimal, which will

leave a clear pathway to introducing SDM as the optimal solution to these equations.

The Bayesian approach to statistical decision making is based around the definition
of relative beliefs about a set of different events. These beliefs are represented as a state
space of probabilities associated with each possible event; given equation (28), our beliefs
are about a series of discrete causal relationships between x and y. We are going to hold
this set of beliefs in a probability vector containing an entry for each of the lagged values
under consideration; we denote these options as an Ns length probability vector w; where

N is the number of considered lags (read 'number of states'’) at t, that is
Ns
we: [wi...ow,°]

where

The convention we adhere to throughout this paper is that subscripts will denote a
vectors position in time and superscripts denote the relative position of a value in the
vector, so w/, would be read the ith position on vector w at time t. In terms of equation
(28), these probability weights are conceptually similar to the parameter values p — we
differentiate them in the notation to save confusion as they are probability weights rather

than regression coefficients and will further define this difference in section 4.4.2.

The second aspect of the Bayesian approach is to then define a measure of how
well these beliefs map on to some measurements of the processes under study. Let d; be an
N, length measurement vector d,: [d}... diVS] containing some measure of the x, y
relationship corresponding to each of the values of w;. For now the reader simply has to
understand this as a comparative measure of the relationship, we will make this definition

concrete in the following section.

81



We note that it is typical in the RBE literature to use x for the state vector and y for
the measurement vector. We have differed from this notation because in the econometrics
literature x and y are typically the time-series under study. As we believe SDM is mainly
aimed at the financial forecasting community, we have sided with the econometric

notational convention.

The GDM is then given by two equations: the first, usually referred to as the system
model, governs the way in which our beliefs about the system propagate forward through

time; this is defined in probabilistic terms as
wW; < Pr(w; | wi_4) (29)

where the operator should be read as 'varies in proportion to'; so the equation states that the
probability densities of w; vary proportionally to a probability mass function applied to the
densities at t - 1. The second, usually called the measurement model, governs the way we
are going to interpret the measurement vector in terms of the state probabilities:

d, < Pr(d, | w;) (30)

which should be read as 'the measurements vary proportionally to the likelihood of the

measurement given the state vector probabilities'.

If the system model can be characterised as a Markov chain, i.e. the values of w at t
+ 1 depend only on the values at t, then we can define a Bayesian prediction model for the

updated values of w; as

j=Ns
Wg|t—1 = Z (wi | Wtj—1) Wtj—l (31)

j=1
where w,fn_ldenotes the estimate of the probability density of the ith position on the
probability vector w given the prior densities and the system model. All that equation (31)
really states is that, if we have a system model holding the transition probability of the ith
lag holding useful information given the preceding vector of lags, then we can sum over
these probabilities to estimate the next t's value for the lag. It is common in the literature to
see equation (31) written as an integral; the reason for the summation in our case is that the

state space over the lags is discrete rather than continuous.

Given an estimation of the weightings of w based on the known densities at t - 1

and the system model, we then receive a set of measurements d; that we use to update this
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forward projection of the densities based on the observed evidence. Given the
measurement model (30) we can write this due to a combination of Bayes' theorem and the

law of total probability as

Pr(dé | Wt)WtiIt—l

J=Ns . . (32)
> e twow),

j=1

wi =

which gives the likelihood of the measurement given the data, multiplied by the prior
probability if the ith lag normalised over all Ns possible lags.

This yields the basic prediction and update structure of a grid-based filter, which is
a type of RBE defined on a discrete set of possible states — in this case lags - and forms the
basis of a number of RBE algorithms, two of the best known being the bootstrap filter
(Gordon et al. 1993) and the Auxiliary Particle Filter (Pitt and Shephard 1999). The
attraction of this formulation is that, providing we can valid functional forms for equations
(29) and (30), the filter will evolve to the optimal calculation of the probability densities of
w over repeated iterations of equations (31) and (32) (Arulampalam et al. 2002; Lopes and
Tsay 2011).

Optimality in this sense means the probability densities which minimise the
measurement error. Thus we need a measurement model which is consistent with
reasonable assumptions about the X, y relationship. We also need to specify a probability
density function for the values of these measurements, since equation (32) requires that we
calculate the likelihoods for these observations given our beliefs about lag probabilities.
Finally, we require a probability mass function for equation (30) which captures the time
evolution of the lag structure in a theoretically justifiable way.

If these criteria are met, we can claim the estimator is optimal under the specified
assumptions. The trade-off in defining the estimator is then how to posit relaxed enough
assumptions about the forms of equations (29) and (30) to make the estimator generally
applicable to a range of forecasting tasks.

What we are going to show in introducing SDM is that we can specify the form of
equation (29) using very weak assumptions. These assumptions are well supported by
other areas of the literature. This effectively removes time-varying lags as an issue and
allows us to plug in any relevant measurement model available in the econometrics

literature. This makes the SDM algorithm useful in a large number of practical
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applications, since the researcher can still utilise all of the current modelling approaches
for bivariate series and plug in the SDM estimator as the time-sequencing test

supplementing the specified model.

4.4. Signal diffusion mapping

In the following subsections we will being by describing the system model we are going to
use for equation (29). This is the key operation in the SDM algorithm and remains
invariant despite the specification of the measurement model. We will then define a
measurement model to fit the simple Granger causal model (28). After illustrating this
simple case we will then go on to describe more exotic variants of the SDM algorithm, i.e.
bi-directional causality structures and positive-negative switching causality structures.
Finally, we will give an algorithmic implementation of the SDM algorithm and discuss

implementation issues and computational complexity.

4.4.1. System model

To frame the description that follows consider again the Granger causal model; each lag in
the model is considered independent of the others, and models are fitted to ascertain if
there is something peculiar to a particular lag that characterises the relationship between
variables. In the real world people are not likely to consider time-periods this way. As an
example, a common investment strategy ‘discovered’ by Jegadeesh and Titman (1993) is to
buy portfolios of winners: stocks that show high positive returns over a 3-12 month prior

period. These portfolios on average produce higher returns than the market.

An investor following such a strategy must decide on how long to wait before
deciding a stock has momentum. In the literature this is assumed to be between 3 and 12
months, leaving quite a lot of room for manoeuvre. Over time, our investor will likely
review their strategy and take decisions as to whether they should wait longer of shorter
amounts of time during the next investment period. It is likely at different points that some
adjustments will be made to the waiting period. In the context of the Granger causal model,
the information contained in these adjustments is lost since any relationship between time-

periods has already been assumed away.
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We take the position here that a better way to model this situation is to assume the
lag-lengths are interdependent, but the temporal variation in the lag structure as a whole is
finite. Returning to our example, if we knew the time horizon our momentum investor was
using to place trades at t, then we might infer that at t + 1 if they altered their investment
strategy then it wouldn't be by much, i.e. 27-28 days, for example, with the size of an
expected change being proportional to the amount of time that has passed since t. It is with
this assumptions in mind that we specify the system model, in an effort to allow the
modelling of the temporal relationship between variables, which is (more) consistent with
the way we expect people to alter decisions about the timing of their actions.

Purely from a forecasting perspective, clearly we would like to be able to define a
model where the densities over the lags do not change over time. In this case we would be
able to estimate when the relationship was likely to occur perfectly. Another way of stating
this would be that the error in the forward projection of our beliefs in the systems state is 0

and Wt = wt—l'

If there is variation in our beliefs over time then we need to posit an equation
describing this variation. Here, there are two important quantities: firstly, the structure this
variation takes — i.e. how this variation deforms the densities of w. Secondly, the
magnitude of the variation — i.e. how much deformation in the density vector we expect.
After defining this function we then need to find the parameterisation of the function which

minimises the total error for the system model over time.

In terms of the structure of the variation, there is already a large body of literature
dealing with variations in historical lag structures. We are going to follow these literatures
in defining the structure of the temporal variation similarly — just as a probabilistic forward

projection of the state vector probabilities, rather than a historical representation.

Both the DTW (see, for example, Keogh and Pazzani 1999; Senin 2008; Warren
Liao 2005; Sakurai et al. 2005) and OTCP (Sornette and Zhou 2005; Zhou and Sornette
2007) literatures use state space methods to study historical lead-lag relationship between
time-series. The basic premise of either algorithm is to define a matrix of all of the
pairwise relationships between the variables on a matrix containing a measure of the
relationship in each square. Then traverse the matrix from a fixed start to fixed end point in
such a way as to reveal the optimal or lowest cost relationship between the variables based

on the measure.
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In order to do this, both algorithms make the assumption that the structure of the
lagged relationship can vary only slowly in time. Slow varying in this sense means that a
lag path can vary by only 1 unit time period for every unit increase in t. Taking DTW as an
example (although both algorithms are derived from the same premise), given two time-
series c¢: [c;...c] and q: [q;. .. qx], we can construct a kk matrix of the pairwise distances,
I.e. |c; — q;|, between the two series for each lag length. The DTW algorithm then seeks
the lowest distance, continuous 1 to 1 mapping between the two series from a fixed start

point to a fixed end point.

This task is completed by understanding that the lowest distance path to a point on
the matrix must be the summation over the lowest distance pathways up to this point —

which justifies the recursive relation
g j=lci—q;| + MIN (&1, &—1,j-1, €i,j—1) (33)

where & is interpreted as the relative cost of the pathway, so that the minimum distance

pathway is the lowest cost pathway up to a given point on the matrix.

Defined in this way the lag path has some desirable properties we would expect in a

realistic lagged relationship:

0] A relationship is defined for each t — there are no large jumps where no

relationship is defined for a set of time-periods.

(i) The relationship is a continuous 1:1 mapping — if this was not the case there
could be overhangs or cliffs in the lag path implying the causal relationship ran
from the future into the past. (Sornette and Zhou, 2005)

Figure 5 demonstrates the permissible variations in the lagged relationship due to
equation (33). Consider these properties in the context of the momentum trader example,
because the paths over the matrix are constrained to move only 1 unit t per jump; the
variation in the average position of all of the paths between time t and t + n is finite and
increasing with t. We might think of the paths as individual investment strategies being
played out by different investors in the same asset; a lag length where many paths have
congregated is akin to a mutual decision or thought process shared by a group of investors

that a certain time horizon is optimal for momentum investing.

The way we are going to implement these ideas in the SDM estimator is to make

the same assumption — that the time evolution of the lag structure is relatively slow. Given
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that the ideal forecasting scenario is that our beliefs about the lag probabilities are accurate
this means characterising any deviation, or error, in these beliefs as a relatively slow-

varying function of the state vector.
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Figure 5: Slow varying lag paths. (A) describes the three squares in the matrix via which
we can reach square (9, 3) due to the recursive relation used in the DTW and OTCP
algorithms. (B) then shows an example of a path defined as a continuous mapping between
points (0,0) and (4,11).

In our notation, equation (33) implies allowing a given w; to be influenced by one

of the following 3 values:
Wizt wiog, with) (34)

Assume that we knew the amount of variation in the lag structure with certainty, so we
could fix a parameter 8, which captured the total magnitude of the variation. The parameter
controls the rate of change per unit t for each path. Given that we are expecting w; = W3 in
the O error case, equation (34) tells us the structure of the variation, so that we could

substitute into (29) and write
Wy X We_q + error

SO
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e . .
Wi Wi+ Wiz + wi_; +with) (35)

Dividing the magnitude of the error by 3 is just a normalisation to take care of the
times where we reach the sides of the matrix; i.e. when there is no information for the w;'**
lag, in these cases we divide by 2. Equation (35) shouldn't be confused with the weighting
schema discussed by Sornette and Zhou (2005) in introducing OTCP, the weighting
function in the SDM/recursive Bayes case is given in the measurement model specification
later in this paper.

Clearly, in most interesting cases we are not going to be able to assume a constant
amount of variation, so a better characterisation would be as a random sequence of
perturbations in the lag structure v: [v;...v;]. We could define a mass or density function
for v but as we will show this is not necessary and v can be any arbitrary sequence. We
would then like, at each t, to choose a parameter value for @ which minimises the global
error over repeated iterations, i.e. minimises the amount of variation in our beliefs about

the lag structure.

To do this we can define some properties of v due to the properties of the
probability vectors. Firstly, we note that 0 < |w; — w,_;| < 2, S0 assuming no error we
can also state |w;| — [w._;| = 0. It follows then that the magnitude of the error process at
t is the distance between the vectors v, = |w, — w,_;|. Further, we can also infer that v;
always has an expected value, since the expectation of a positive random variable is always

defined, and that this expectation must lie on the bounded interval [0, 2].

Under these circumstances, the optimal choice of value for @ is the median of the
distribution of the errors up to this point. This is due to the fact that the median is the
minimiser of the distance function where the expected value of the function is defined; so

we can define the optimal choice of value for 8 as
O = Vi1 (36)
where the tilde denotes the median of the vector of observed errors.
Substituting into equation (31) then yields the system model for the forward
projection of the state vector as
i — i O i-1 i i+1
Weie—1 = Weg T 3 WeZy +weg +wi) (37)
An important note is that at the first and last positions, i.e. the boundaries, on w not
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all of the 3 positions will be defined since we have no data for either w/=1 or th5+1, here

we simply set the probability of these positions to 0. A further point of note is that equation
(35) implies Ywy,,_ takes values > 1 where 8 > 0, so is no longer a probability vector. At
this stage a better interpretation of these estimates is as a set of weights defined by their
relative likelihoods. We could normalise this vector to 1 by dividing over the sum of the
weights but this is unnecessary as we will compute the actual probabilities using the update
step (32).

In terms of the optimality conditions we state at the end of section 4.2, equation
(37) is always defined for any pair of series irrespective of their spatial relationship. This
follows because the information about the spatial relationship between the series is held as
probabilities; so for the reasons already specified we can always calculate the median of
the distribution and this will always be the optimal estimate for ;. The assumption we
make is that the time evolution of the causality structure is relatively slow, this assumption

is justified by a the large literature on DTW algorithms and the nascent OTCP literature.

The attractiveness of this approach is it allows us to concentrate on modelling the
complexity of the distance relationship between the series independently of the temporal
relationship; to show this we will describe how to fit equation (28) using this system model

in the next section, then expand to a number of other cases.

4.4.2. Measurement models

Returning to our hypothetical momentum trader, the system model accounts how decisions
about the timing of a trade at t are likely to affect decisions at t + 1, the measurement
model is where we model how likely it is that an observed distance in the matrix is due to a
shift in trading strategy. The analogy here is a group of investors all using similar
momentum strategies, at each t they assess their past behaviours and make small
adjustments to their strategies based modelled by the system model. The measurement
model is where we look for evidence of these changes in strategy; this evidence comes in

the form of the empirical distances we observe between the time series.

Expanding on the original example, consider a case a population of investors a
variable proportion of which are pursuing a momentum strategy at any point in time. If

100% of the population is purely momentum investing then we would expect 100% of the

89



observed changes in price to be caused by momentum strategies, if the market is 50%
momentum 50% value investors then only 50% of the price movement would be expected
to be caused by momentum on average. If we had some empirical measure of momentum,
a weekly survey or an online forum for example, the empirical distribution of the distances
between this measure and asset prices, converted to a probability distribution, models the
analytical probability that the observed distance between the price series and the

momentum measure is due to a greater proportion of the population momentum investing.

Given that the state vector w; holds our current beliefs about the timings the
population of investors are using to enact their momentum strategies, it makes sense to
only want to alter these beliefs after assessing the strength of the evidence. If there is
compelling evidence that the changes in price at t + 1 are due to changes in momentum at t
+ 1 then we could like to incorporate all of this evidence into our state vector beliefs. If
there is not, we may wish to disregard most of this information.

There are many ways we could calculate the empirical distribution of d; in the
examples that follow we assume d to follow an exponential distribution and take the
maximum likelihood estimators to ascertain the parameters of the model on a rolling basis.
There are other options: we could use any distribution function for the distances as long as
the parameters are estimable; or if we believed the relationship had a non-standard
distribution we could estimate the empirical probabilities using a particle filter
methodology (see Arulampalam et al. (2002), for a review of potential options).

To complete the SDM estimator we need to define a measure of the x, y
relationship and posit a functional form for mapping these measures into the same
probability space as the system model. This means making some assumptions about the
form of the distances between the two series then using these assumptions to calculate the
likelihood of the measurement. We than substitute these likelihoods into equation (32) and
the estimator is complete. We will begin in section 4.4.2.1 by describing how to fit
equation (28) where x and y are assumed to be positively correlated. We will then show, in
subsequent sections, how we can relax these assumptions so that we can fit bi-directionally
causality structures and models where there are positive-negative regime shifts in the

causality structure.
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4.4.2.1. Simple linear causal models

If we assume that x and y are measured in the same units, for example they may have been
rescaled using their respective means and standard deviations, then if there was one lagged

value of x causally related to y we could write this as;
Ve = Xe—r T U (38)

If there is more than one lagged value of x causally related to y the OLS approach
to model fitting is to interpret further lags as independent random variables. Thus the
model expands by adding more random variables into the regression. The difference in
approach using SDM is that we are going to maintain the assumption that there is only one
causal relationship between the variables but that this relationship is distributed over a
number of lags. In this way we can think of the probabilities as a weighted average over a
partitioned interpretation of x, that is

i=Ng

Ye = U + Z ngt—i (39)
i=1

The importance of equation (39) is that it contains only one global error distribution. The
estimator can then focus on recursively estimating this single distribution rather than
attempting to calculate the parameters of multiple distributions leading to dimensionality

issues.

We will use the squared distance between x and y as the measure of the
relationship, so that in effect the SDM estimator becomes the least squares estimator for a

relationship with time-varying lags. Rearranging the terms in (39) yields

i=Ng

U = YVe — Z WEXe—; (40)
i=1
squaring the terms gives
uf = ye - Z WiXe_; (41)

then, setting the squared distance as the measure of the relationship so that di =

(v — x,_;)?, we can write equation (41) in a more compact form:
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u? = Wt * dt (42)

where the dot indicates the scalar product of the two vectors. If both x and y have been

rescaled to mean 0 and u; is N(0,1), then we can assume w; - d, should equal zero given
the correct probability weights. This justifies the measurement model being given as the
departure of the empirical distribution of d, from zero, which is equivalent in this case to

the distribution of u?.

The assumption of the model (28) is that u; is a mean 0 random variable with
unknown variance. As a result we would expect the squared values of u;® to be drawn from

the exponential distribution. The density function for this distribution is given as.
Pr(u? | ) = de~Mut (43)

Where 4 is the rate parameter with the maximum likelihood estimator given as the

mean of the observed values of u?, that is

1
G AR p——— (44)
tNS S=14&j=1 S

We have included the time-varying subscript for J; as we are going to calculate the
parameter of the distribution through repeated samples over time. Given an estimate for A;
we can then calculate the likelihood of a given distance causally influencing the values of y

using the likelihood function conditional on the value of A:.
Pr(di | A,) = Ae~Hdt (45)
Substituting these likelihoods into the system model equation (32) then yields

Wi = p(d | At)ngt—1
‘ p(de | A¢) - Wye—q

(46)

Note that, unlike equation (32), we have used the scalar product notation for the
denominator of (46). Combining equations (37) and (46) will then give the optimal

recursive estimator of equation (28), under the specified assumptions.

4.4.2.2. Bi-directional causality structures

In the introduction we discussed certain occasions where the time ordering of information-

price relationships may be reversed, i.e. when insider trading occurs in the run-up to an
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information event. The estimator we have presented so far only considers causality running
from information to price. In this section we will show how it is easy to generalise the
SDM estimator to cases of bi-directional causality. A simple bi-directional analogue to

equation (28) is the system of equations

Ve = P1Xe—1 + BaXi—z . BrXe—r + Us (47)

Xt = 01Ye-1 T CVe 2 AgYe—z T U

where 4 = N(0,0;) and u = N(0, 0;7).

As there are now probability weightings associated with the lagged values of either
variable, to simplify the notation we introduce the probability matrix W indexed at t, but
containing a column of values for either series. The first column will contain the lagged
values of x and the second the lagged values of y so that the entry w;"* would indicate the

ith lag of x at time t and wi? indicates the ith lag of y at time t so that

1,1 1,2
Wi W
w=| .. . (48)
Ng 1 Ng,2
W Wy

where since W is a probability matrix the sum of all elements in the matrix at t, equals 1

by definition.

We will define the distance measures associated with each of the lagged values in a

matrix with corresponding entries to W, that is

where di'l = (yr — x,—;)* and di'z = (X — Ye-1)>.

Equation (63) enables us to write the squared distances for system of equations

described in equation (47) as u? = Y- s w'd"" and pZ = Y= wi?d"?, which implies

i=Ns i=Ns
ut +ui = Z weldg! | + Z w;2dy? | = W - D, (49)
i=1 i=1
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Since the summation of two exponential distributions is another exponential distribution,
the maximum likelihood estimator for the sum of the squared error terms u and x is the
mean of the globally observed errors - due to equation (65) we can then write this as

_ 1

At =
1 = i=NS .,1 .,2 (50)
TN D DA+ d

The system model is then applied independently to either column of the matrix and the

measurement model is applied to the D and W matrices using

i = Pr(d;” | 2)wyj;_,
t Pr(D¢ | At) - Weje—q

(51)

The estimator is again optimal under the same assumptions as the unidirectional case.

4.4.2.3. Positive-negative regime shifts

The formulation of the estimator we introduce in section 4.4.2.2 shows how we can allow
different functional representations of the x, y relationship to compete against each other
for a share of the global probability density. Another case we might consider is where there
is unidirectional causality running from x to y, but there are regime shifts from positive to
negative correlation in the nature of the relationship. To capture this structure we can
define a distance matrix containing the positive and negative squared distances so that
dg,l dg,z
D, =

Ng,1 Ng,2
dt dt

where di* = (y, — x,—)? and d¢? = (7 + x,-)?.

The rest of the estimator is constructed in the same way as the bi-directional case
described in section 4.4.2.2. and remains optimal under the same assumptions.

4.4.2.4. Forecasting

Once the probabilities of the either the vector or matrix of values for w are defined, we can
then generate forecasts for the values of the leading series based on the probability mass

over the lagging values. In the simple linear causal case we just multiply the values of the
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lagging series through by the probability mass vector at t - 1, that is

i=Ng
Pi= ) xewis (52
i=1

It might at first appear odd that we don't first apply the Bayesian prediction step
before making the forecast. The reason for this is that we are assuming any deviation from
W, = W;_, is due to noise obfuscating the relationship. We clearly don't wish to include

this noise in our estimate; omitting it then just leaves the previous mass vector at t - 1.

In the positive-negative regime-switching case we can construct the estimate in a

similar fashion by including both the positive and negative values of X, that is

i=N;

Vi = Z (xt—thi'—ll) + (_xt—in;i'—zl) (53)

i=1

In the bi-directional causality case an estimate for either series can be constructed
using (52). The issue with this is that the probability mass on either column of the matrix
may not sum to 1, so that either series may be causally influencing the other at the same
time. In this case the estimate will be lower due to the reduced probability mass not the
actual structure of the relationship.

To counter this we first calculate the mass of either column to give the relative

probability either series is lagging the other

i=Nj

Pr(x = ylt) = Z wi (54)
i=1

or

i=Ng

Pr(y = x|t) = Z Wti’_z1
i=1

where the arrow should be read 'probability x lags y'. Then re-normalise the weights of

either series to a unit mass (i.e. their conditional probabilities) before making the forecast

i1
Wi_q

Xe—i PT‘(X—:>y|t) (55)

or
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i=Ng

z Wt 1
Y-l pr(y = x|

We can use the results of equation (54) as confidence weightings for either forecast, based

on the probability one series is causally influencing the other.

4.4.3. Algorithmic implementation

Up to this point we have assumed that we would include every lag of y in the forecast of x.
In most forecasting scenarios this would lead to a large tail of extremely low probability
lags as more time-periods are considered. It also means that the computational complexity
of the SDM algorithm would scale exponentially with t. Clearly in most forecasting tasks
we only wish to consider a finite number of lagged values of the either series and so we
can bound N; to some reasonably small number; in this case the algorithm scales linearly
with t. Consider the following pseudo-code implementation of the algorithm for the simple

unidirectional linear causality model described in section 4.4.2.1.

The implementation of the algorithm as described is then no more complex than
running three Ns length loops. Note the necessity for the first for loop in the code to be

Ns*1is not

reversed running from Ns to 1; this is due to the boundary condition that where, w
defined, so without reversing the order of the loop the probability of the w'** would always

be undefined.

A second implementation consideration is that over some lags will return
infinitesimal probabilities; in most programming languages this will either, result in an
error as the floating point numbers overflow the memory limit of the language, or in some
cases this will results in the probability being set to 0. A simple fix for this issue is to set a
very small lower limit for the probability of each lag. Not doing this, results in suboptimal
forecasts as the lag structure becomes increasingly path dependent as more lags are set to 0

over time.
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Pseudo-code
Inputs: X: [x; .. X1, ¥: [V1 oo Vel Wemo: [Wity ... w5, | where wi = 1/N;
While < t:

Calculate parameter values

O = Vroc1, A = Ulg_1,9 = 0

Apply system model

For € [Ng:1] : wis_, = wi_, +%(Wsij +wi | +witt)

Update probabilities based on new evidence

For € [1:Ng] : df = (v — xs-)%, wi = p(di | &g )Wijs—1, 9 = G + Wi
Normalise probability weights and update parameter vectors

vs=0,u; =0

For € [1: Ny] : wi = wi/G,vs = vs + |wi —wi_;| ug = us + wi_,dt

s=s+1

4.5. Experiments on simulated data

In this section we are going to show the results of testing the SDM algorithm on a number
of series constructed based on the assumptions of the Granger Causality model, as
specified in equation (49), with the type of causality structures described by Cheung et al.
(2004) and Soros (2009). The purpose of these simulations is not to define exact
mathematical models representative of these theoretical insights, but rather to provide a
number of cases that could arise in empirical work aimed at evidencing this area of
financial theory. In section 4.5.1 we discuss the construction of these examples and present
the equations used to generate the test series. We will then present results in section 4.5.2
of the root mean squared error forecasts we achieve using the SDM procedure to predict
the values of the simulated price series and show forecasts for a range of different noise

levels.
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4.5.1. Construction of simulated series

In the work of Cheung et al. (2004) and Soros (2009) the notion of complex causality
structures is only discussed in qualitative terms; this leaves no clear guidance as to what
the best mathematical model to describe such series would be. To make sure we are
covering a large range of possibilities we are going to test the SDM algorithm on five
different series constructions. For each, we make the same assumptions as the Granger
causality model described in equation (28) that the lagging series, in each of our example

cases this will be the information series, is an autoregressive series constructed using
xt = 0.9xt_1 + N(O,l) (56)

where the autoregressive term is 0.9, so that the series exhibits significant but not infinite
memory. This follows the testing framework used by Sornette and Zhou (2005). Using this
basic series construction we hypothesise a number of different types of lag structure

variation, which we describe in detail below.

We will focus on unidirectional forecasts. This greatly simplifies our results, as
otherwise we have to show two sets of statistics for each test: one for either series,
depending on which is leading in time. We note, however, that we would expect the same
quality forecasts in bi-directional or positive-negative regime shifting cases as in the

simple unidirectional case.

4.5.1.1. Step function models

There are a number of reasons why we might expect a jump in the lag length between time
periods. Sticking to the example of momentum trading, consider a situation in which a
population of investors are investing in price momentum on average s days from a news
event. There are some news events that are so vast in their implications that they would
cause a compete re-evaluation from the market over the strategies that are being pursued.
The Japanese earthquake of 2011 would be one example, investors in Japanese stocks on
the day of the earthquake would not adjust their strategies slowly, they are likely to jump
from s days lag to 0 days lag on receipt of this type of information. We would also expect
the vast majority of investors to act in a similar manner, creating a discontinuity in an

otherwise continuous lag structure.

We construct two step function models. The first is a simple step function where
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there is a single lag at each t causally influencing the value of the price series. The second
is a model where there are multiple lags influencing the price series. For the first model the

price series fi(x) is constructed as
Gt T) =y =X+ (57)
where the lag length 7 varies as

5 if 0<t<200
7, =420 if 201 <t <400 (58)
10 if 401<t <600

The error term u; is a mean 0 Gaussian noise, so that oy is equal to the root mean
square error (RMSE) we would expect from fitting a model of the X, y relationship if we
knew the complete lag structure in advance. For the second model, f»(x), we will also

include the lagged values local to 7 in the series construction that is

=3
1
Lxt) =y, = 7 Z Xe-ty+i T Ut (59)

i=-3

Thus the price series is dependent on the three values of x immediately before and after z in

time.

4.5.1.2. Random walk models

We are also going to consider two models where the lag structure varies due to a random
walk model. This type of model intuitively corresponds with the momentum trader
example we gave earlier. Each investor is trading on a lag-length that varies slowly as a
function of t. To model this, we construct the series similarly to the step function models

but replace the lag length function (58) with a trinomial random walk of the form

Tt = Tt—l + Zt (60)

where
1/2 ze€[-1,0] if t=25
f,(2)={1/3 ze€[-101] if 5<t<25
1/2  z€[01] if t<5

indicating that the random walk is bounded so that the lag-length can only vary between 5
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and 25 time periods. The series f3(x) is then constructed similarly to equation (57), i.e. a
random walk model where only one lag is causally influencing the price series. A second

series f4(X) is constructed where the averaging function (59) is also applied to the series.

4.5.1.3. Fixed-integer-lag model

A final model we consider is a fixed-integer-lag model where

fs(x,t) =y = x5 + Uy

We include this case as a baseline to show how well the algorithm forecasts in cases where

there is no obfuscating lag variation.

4.5.1.4. Descriptive statistics and model fitting

For each of the models we use the SDM algorithm exactly as specified in the pseudo-code
example given in section 4.3 where we set Ns to 30 time periods. To generate the forecast
we take the probability weightings given to each of the lagging values, that is, each of the

values of wi.; and multiplying them by the corresponding values of x using
Vi = Wi_q " Xt-Ngit—1 (61)
which is identical to equation (52) given in scalar product notation.

The benefit of using simulated data is that we know what the optimal forecast value
would be for a series of this type. In our case the error in the model is equal to oy Since in
all cases yi-X; = U, and u is a standard normal variate with mean 0. This can be verified

since calculating the RMSE for this forecast against the observed values of y we get

=t
. 1 N
RMSE(y,y) = ;Z(yl — ¥;)? (62)
i=1

which, in the optimal case where ¥ = x, can be stated as

,.
1l
o~
—_—

(63)

&+ | =

%Z{(xi bu) -0 =

,..
1]
oy
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where the right-hand side of the equation is the same as a,. Since we know that the
expected error between the series is equal to o, we also calculate a statistic for the

deviation from expected forecast error as

FE(y,y) = RMSE(y,y) — oy (64)

4.5.2. Experimental results

Figure 6 presents the results, each point on either plot represents the average over 500 trials
for each model and noise level, g,. The left hand plot shows the RMSE in its raw form
calculated using equation (62). The right hand plot shows the FE statistic calculated using

equation (64).

We can see from the left-hand plot that the RMSE statistic tracks the value of oy
closely in all cases. For series where there is significant temporal variation, the random
walk model f3(x) for example, we can see a period where the noise level is low o, < 1, there
is a significant difference between the SDM model and the perfect fit. This is explicable by
the fact that for these models the expected fit does not take into account the extra noise

from the temporal variation in the model structure.

The right hand plot also supports this theory; we see that for the fixed-integer lag
model the SDM generated model fits very close to the maximum achievable < 0.1 standard
deviations difference for all noise levels. As the temporal variance of the models increases,
we see the initial (low-noise) fits generated by the SDM algorithm getting increasingly

poor - although the model fits are clearly still very good.
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Figure 6: Experimental results. The left hand plot shows the RMSE for the SDM model
fit. The key indicates each of the different model types so f;(x) = step function, f(x) = step
function averaging, f3(x) = random walk, f4(x) = random walk averaging and fs(x) = fixed
lag. The right hand plot shows the FE statistic for each model.
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4.6. Conclusions

The work of Cheung et al. (2004) and Soros (2009) highlights a key issue with the way
most financial forecasting research deals with time-sequencing. Participants in financial
markets do not see the relationship between information and price as temporally fixed, but
describe a situation where fluctuations in the timing of the information-price relationship
are key drivers of the variation seen in asset prices. In this situation, the authors describe
how understanding when information is likely to affect price is key to successful
forecasting. In this paper we have introduced a methodology that can capture the type of

fluctuation the authors describe.

We have shown that, under the same assumptions as the standard Granger causality
approach to time sequencing, the SDM algorithm produces the optimal Bayesian estimate
of the forecasting distribution over the values of the lagging series. Importantly, the SDM
algorithm we present will provide optimal Bayesian forecasts of the leading series in
situations where the lag structure is not time varying, but also in situations where it is. As
we have noted, given the construction of the system equations we provide in this paper it
would be possible to substitute the Gaussian measurement model we use for a range of
other more complex models of bivariate relationships present in the literature. The result is
an estimation framework for time-varying lags, which is optimal under the conditions we

describe, but also highly extensible to other cases.

There are a variety of ways SDM could be used to advance financial theory. For
example, a classic approach in empirical finance is to take the aggregated values of an
indicator series as a portfolio optimisation function. Taking the momentum theory work of
Jegadeesh and Titman (1993) as an example, here the authors take the lagged 3-12 month
return of a series as an indicator of its future 3-12 month return. If we consider this model
mathematically we are assuming a uniform distribution of the lagged returns is a predictor
of future returns. Why would a uniform distribution be optimal in this case? Surely there
are other distributions that could be considered. With the introduction of SDM we provide
forecasters with the ability to find the optimal distribution, even if this distribution is time
varying. We propose that any work that uses this type of aggregated lagged indicator would

benefit from being repeated with the optimal estimating distribution for comparison.

Another currently popular avenue of research is the temporal synchronicity of high

frequency trades, Alsayed and McGroarty (2014), for example, use the Hayashi-Yoshida
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(HY) cross-correlation estimator to study sub-second arbitrage opportunities in high-
frequency index futures data. This work could be supplemented by using the SDM
estimator to ascertain the changing distribution over time, to analyse if certain market

conditions or events lead to greater arbitrage opportunities.

The second example suggests a key way this research could be extended in future.
Currently the state vector w is assumed in the model to be a discrete set of binned
probabilities. There is, however, no particular reason why we couldn't model the lag length
probabilities as a continuous distribution, or use a particle filter type approach to estimate
the empirical probability of an event occurring at a given distance from the last event. This
could be a particularly useful addition to the estimator for working with asynchronous data

or models that assume continuous return curves.
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Chapter 5: Variability in Textual Sentiment-Price Relationships

5.1. Introduction

In this chapter we address a deficiency in the time series model we applied to model the
sentiment-price relationship in chapter three. Based on the evidence from the cross-
correlation plots in figures 1-4 of chapter three, there is a lagged relationship between
sentiment and price that takes the form of an oscillator, of waveform. We used a simple
moving average process to capture this relationship, which in light of the oscillatory
structure of the relationship misses much of the structure shown in figures 1-4. In this

chapter, we address this issue by applying the SDM estimator to model the relationship.

In chapter three of this thesis we describe how communities of self-declared
investors are now going online to exchange information about stocks. This is happening in
large enough numbers for Goldman Sachs (2015) to estimate there is a $4 trillion
addressable market for online social investment services. A number of research articles
have attempted to assess whether the content of these services can be used to model and
forecast prices (Antweiler and Frank 2004; Das and Chen 2007; Sprenger et al. 2014; Chen
et al. 2014). In these studies, researchers define a ‘textual sentiment metric’, a quantitative
measure of the tone of a document based on features of the language used in the text. This
is done by identifying some sets of words that are expected to indicate a generally positive
or negative outlook for a stock. For example, the presence of the word ‘bullish” may be
considered an indicator of positive sentiment and ‘bearish” may be an indicator of negative
sentiment based on the lists of sentiment carrying words provided by Loughran and
McDonald (2011b). A feature of these methodologies is the assumption that the semantic
meaning conveyed by a piece of content is fully characterised by the presence of certain
words in the text. The definition of the sentiment measure is some function of the

frequency of a group of words.

Using this type of approach, several studies have documented a statistical

relationship between online textual sentiment and prices, although the nature of the
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reported relationship varies significantly over studies. For example, Das and Chen (2007)
and Antweiler and Frank (2004) report a contemporaneous relationship between sentiment
and returns but not lagged relationship. In contrast, Sprenger et al. (2014) reports a
negative correlation between sentiment and returns at lag lengths of up to eight trading
days, whereas, Chen et al. (2014) documents a positive correlation between sentiment and

returns of up to three years.

In chapter three of this thesis we also document a long run relationship between
sentiment and price. We go on to show, using cross-correlation plots, that prices oscillate
around sentiment in a predictable manner: first there is a short-run (20- to 40-trading days)
negative correlation between sentiment and price, followed by a midterm (80- to 100-
trading days) positive correlation, ending in longer-term (100- to 120-trading days)
negative correlation. We show that using a very simple trading strategy, of buying stocks
based on their 100-trading average sentiment and holding them for 40-trading days, returns
profits well in excess of the market benchmark once reasonable transaction costs have been

accounted for.

Based on our results from chapter three and the inconsistencies in the findings of
previous studies, we suggest that variability in sign, strength and timing may be a feature
of the relationship between sentiment and price. In chapter three we discussed three

potential sources of variability:

Variability in interpretation, where investor’s cognitive biases lead them to
interpret the word in the text differently based on their current state of mind. Evidence for
this is drawn from the behavioural asset pricing literature, where authors such as Daniel et
al. (1998), Daniel et al. (2002), Barberis et al. (1998), Hong and Stein (1999), Grinblatt and
Han (2005) and Frazzini (2006), describe how variability in the sign, strength and timing
of the relationship between information and price can vary as a function of the cognitive

biases of investors.

Variability in authorship, where there may be variation in how much investors trust
particular sources of information, or how easily investors can process the semantic
meaning of an author’s writing style. Evidence in support of this type of variability comes
from the literature on managers use of language in corporate filings, where authors, such as
Davis and Tama-Sweet (2011), Huang et al. (2012), Loughran and Mcdonald (2011),
Larcker and Zakolyukina (2012) and Rogers et al. (2011), document how investors may be
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misled by managers use of deceptive language. This creates a feedback loop between
investor beliefs about a manager’s honesty and observed relationships between prices and

managers pI’EViOUS statements.

Variability in context, where there may be contextual factors that affect the
semantic meaning of the content that are not explicitly referenced in the text. Several
authors, such as Henry and Leone (2009) and Loughran and McDonald (2011), have
described how finance specific words work better as a classifier of financial content than
standard lists of sentiment carrying words. Extending this line of reasoning, timing is an
important aspect of whether a statement is good or bad. The statement ‘Dow Jones to top
17,000 points by Wednesday’, takes on a different semantic meaning if viewed on Tuesday
or Thursday. Sentiment measurement techniques which focus on the polarity of a message

alone will miss this type of contextual information.

Of these three sources of variability, only one has a natural measure that has been
reported in the literature. In the momentum and reversal literatures, empirical work by
authors such as Jegadeesh (1990), Jegadeesh and Titman (1993), Thaler and De Bondt
(1985) and Moskowitz et al. (2012), has contributed to the evidence on similar oscillating
patterns in serial correlations in prices. This empirical evidence has driven the development
of a range of behavioural asset pricing models that produce this type of oscillatory
structure as a consequence of investors innate cognitive biases. Examples of this work
include, Daniel et al. (1998), Daniel et al. (2002), Barberis et al. (1998), Hong and Stein
(1999), Grinblatt and Han (2005) and Frazzini (2006). We use multivariate regression
analysis in chapter three to show that, whilst some of the relationship between sentiment
and price can be explained by serial correlations in prices, sentiment contains significant

incremental information about future prices that cannot be explained by price momentum.

We are then left with the fact that there are significant sources of variability in the
sentiment-price relationship which are not measurable in any meaningful way. For
example, it is difficult to see how the level of trust investors place in a given author could
be measured effectively in most cases. This leaves a gap in the literature concerning how
this relationship can be modelled effectively in light of the latent variability that appears to
be one of its characteristic features. More concretely, the empirical results we present in
chapter three document an oscillatory relationship between sentiment and price, yet the

strategy we employ in chapter three to trade online sentiment is significantly less complex
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than the sentiment-price relationship we observe. The relationship we document takes the
form of an oscillating waveform, yet the trading strategy we employ uses a simple average

of the lagged sentiment series as the signal to trade.

To fill this gap, we return to modelling the same relationship tackles in chapter
three, this time armed with the new time series analysis methodology we presented in
chapter four. Signal diffusion mapping (SDM), is a recursive Bayes estimator which we
show in chapter four is the optimal Bayesian estimator of complex, time varying, lagged
relationships we documented in chapter three. The estimator attempts to find the best
average over the lagged values of a time series to forecast the values of the leading series.
Consequently, we can directly compare the results we get from using the simple moving
average strategy we introduced in chapter three against the SDM averaging distribution.
Our hypothesis is that, if the sentiment-price relationship is time varying or more complex
than a simple average, SDM should identify a better distribution and subsequently provide

a better forecast.

We show that SDM does indeed outperform a simple average by a substantial
margin; we evaluate this performance using a similar method to the Diebold-Mariano test
and by comparing the directional forecasting accuracy of both SDM and the simple
average. We go on to present a portfolio of ‘SDM winners’, which returns an excess APR
of 19.424% over the market benchmark after reasonable transaction or trading costs have
been accounted for. This is more than double the excess return we generated using a simple
average in chapter three, and suggests SDM can successfully identify significant,

economically meaningful information about future prices.

In terms of interpreting these results, SDM is an upgrade on a simple averaging
model because it allows the sentiment-price relationship to vary, across stocks, and over
time. We are not alone in reporting that allowing for extra variability on either of these
dimensions in the data leads to greatly improved forecasts. For example, Jegadeesh and
Wu (2013) document how assigning weights to dictionaries of sentiment carrying words
greatly improves the performance of their classifier. The authors fit linear regression
models to find parameter estimates for the size of the return associated with the frequency
of a given word. This forms a stock specific set of parameter estimates for a list of words.
The authors document that some apparently positive sentiment carrying words have

negative weights and vice versa, leading them to conclude that identifying the correct term
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weights is as important as identifying the correct words for the sentiment dictionary.

In another example, Daniel and Moskowitz (2011) document how returns to
momentum portfolios experience short periods of significantly negative returns. These
momentum crashes occur during short market downturns and significantly reduce portfolio
performance. The authors show that introducing a time varying aspect to their stock
selection strategy doubles the return of portfolios by avoiding these crashes. Although the
predictor variable in this case is price momentum rather than textual sentiment, the
example serves to illustrate how a similar type of price predictability is affected by change

over time.

This raises the question whether we can ascertain which type of variability is most
responsible for the improvement in performance: variability in the averaging distribution
across stocks, or over time. To answer this question, we develop a novel hypothesis testing
framework based on the output of the SDM estimator. We document that stock specific
distributions over the lagged values of the sentiment series are responsible for most of the
improvement in estimator performance. We also find strong evidence that the distributions
vary significantly over time. We conclude that latent variables do significantly alter the
way content is interpreted, that they are variable over time, and that there are contextual

factors that are specific to different stocks.

In conclusion; we present strong evidence that the sentiment-price relationship
exhibits significant variability. We show that using SDM we can capture much more
information about the relationship than traditional methods allow. Using this information,
we document excess returns from trading sentiment that are large enough to have

significant economic meaning for investors.

The rest of this paper is presented as follows: section 5.2 describes our data and
variable construction; section 5.3 introduces the SDM estimator and how we intend to
apply it to our data; section 5.4 describes empirical findings from comparing the
forecasting accuracy of SDM over a simple average, and shows results from portfolios
optimised with the SDM algorithm. In section 5.5 we explore the structure of returns

predictability using SDM and section 5.6 concludes.
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5.2. Data and variables

So that our results are comparable, we use exactly the same data and variable construction
as we used for chapter three. Here we provide descriptions of key variables again for
reference, but omit some of the corresponding justifications for brevity since these remain
the same. As a recap, for prices we are using the component stocks of the Standard and
Poor's 100 (SP100) stock index. Of the 100 stocks we find that 93 have messages covering
every day in the sample period so we omit the remaining 7 stocks from the rest of this
study to prevent low sampling rates from biasing our results. We downloaded the daily

adjusted closing price for each stock from the Yahoo Finance website.

For text data we have collected over 10.2 million messages, each of which
specifically references one of the companies in our sample, from the period running
January 2014 to March 2015. These messages are drawn from 45,516 different content
sources across the web adding up to over 6 billion separate words. As a result we believe
this to be at least one order of magnitude more content than is typically considered for a
study of this type. For example, Antweiler and Frank (2004) use a corpus of 1.5 million
messages from the Yahoo Finance and Raging Bull message boards, this is the second
largest corpus that has been considered in the online textual sentiment literature. Full
details of the query strings we to collect this sample and descriptive statistics can be found

in the Appendix of chapter three.

Following standard practice, we convert closing prices to log returns using

T = log( Pit > (65)

Pit-1

where p; indicates the adjusted closing price of the ith stock at time t and r;; is the

corresponding log return.

To measure sentiment, we use the Loughran and McDonald (2011) lists of
sentiment carrying words. We count the number of positive and negative sentiment

carrying words that occur on each day in the study period, we then define sentiment as

(1 + lmp; t)}
th Og {(1 +l ni,t) ( )

where Imp;; indicates the count of the positive sentiment carrying words from the
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Loughran and McDonald dictionary which occurred in messages referencing the ith stock
at time t, Imn;; indicates the corresponding negative sentiment carrying words. In this paper
we consider raw returns only, rather than abnormal returns, as we are primarily interested
in testing the performance of SDM against the simple moving average we used to model
the sentiment-price relationship in chapter three, particularly the returns to sentiment

trading strategies based on either modelling approach.

5.3. Methodology

In this section, we introduce the model we employed as part of the sentiment trading
strategy we describe in chapter three, then discuss problems with this model in light of the
argument we make about time variability being characteristic of the sentiment-price
relationship. We then introduce the SDM algorithm and describe how it is appropriate for
solving these problems. The focus of this description is on the application of SDM to the
specific task at hand, rather than a discussion of the methodology per se, as full technical
details of the estimator, its derivation and necessary assumptions for optimality are covered
in chapter four. Throughout we adhere to standard vector notation, so lowercase italic x

denotes a variable, lowercase bold a vector x and upper case bold a matrix X.

5.3.1. Moving average models

The strategy we employ in chapter three was based on simple averages, we document,
using linear regression analysis, that the average 60-, 80- or 100-trading-days sentiment is
negatively correlated to the average 20- to 40-trading-day return. We subsequently base our

trading strategy around the model
1 s=h 1 k=m
E [Ez Ti,t+s] = —(m 1) Z —qit-k (67)
s=1 k=0

where h and m are the holding period and moving average period respectively, so in our
analysis we find m = 60, m = 80, m = 100 and h = 40, h = 20 to be the better performing

values. This type of model is now common in the financial literature under the heading of
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momentum trading strategies, for example Moskowitz et al. (2012). The difference in our
case is that the momentum literature considers the stocks relationship to its own prior
price, here, we substitute prior price for the sentiment measure. Also, the momentum
literature considers a positive relationship between prior returns and future returns, whilst

here we consider a negative relationship between sentiment and future returns.

The issue with equation (67) is that in the first paper of this thesis we report that the
lagged relationship between sentiment and price appears to be more like an oscillator or
waveform. Mathematically, the flat average over the sentiment series does not capture this
at all. We also note that this issue is typical of the momentum literature, where empirical
evidence from authors, such as Moskowitz et al. (2012), and theories such as Hong and
Stein (1999), suggest price momentum forms an oscillatory effect on prices, yet
researchers still tend to use simple averages as the basis of momentum portfolios, in spite
of the fact this would be expected to miss important dynamic properties of the relationship.

To account for this type of variation, we can expand equation (67) by considering a
more general functional form, replacing the average with a series of probability weights,
assigned to the lagged values of each stock conditional on the specific stock and time, that

is

1 s=h k=m
E lﬁz ri,t+s] = Z Wil,ct(_qi,t—k) (68)
s=1 k=0

where

k=m
> wh =1 (69)
k=0

so that w* indicates the kth position on vector wi.. Since wi, is a probability vector,
equation (69) states that the values of w;; must some to 1. Under the Bayesian
interpretation of probability we use in this paper, these weights are measuring the strength
of our beliefs that a given lag q; is influencing the sentiment-price relationship at a given

point in time.

Via the same logic, we can then extend the model to include both positive and

negative values of g using
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1 s=h k=m
E Ez ri,t+s] = Z Wi’,(t’o(_qi,t—k) + Wi’,(élqi,t—k (70)
s=1 k=0
where
k=m
Z Wilft'o + Wi’ft'l =1 (71)
k=0

So that w*! is a probability weight attached to the kth lag and j is an indicator variable
taking O if the probability weight is associated with negative sentiment and 1 where the
weight is associated with negative sentiment. Equation (71) states that, since Wi is a

probability matrix, the values must sum to 1.

The form of (69) is then flexible enough to generate values ranging over the full
scale from MIN(-q; k) to MAX(qik), and which is allowed to vary in time. This means that
equation (71) can, in principle, capture the variability over the lagged values of the
sentiment series we report in chapter three. In the next section we are going to show how

we can define the optimal values for these weights using the SDM algorithm.

5.3.2. Preliminaries

Before we begin we are going to introduce some definitions and notational conventions
that will greatly simplify the following description. To make the definition of the
probability matrix explicit; we define Wi as a pair of column vectors, the first contains
probability weights attached to negative values of the sentiment series and the second
contains weights attached to the positive values. A different matrix of weights is defined

for each stock and time period, so that

represents a full matrix of probability weights for the ith stock at time t. One interpretation
of this matrix is as the conditional distribution over the lagged values of the sentiment

series for a given stock and time period. As we are considering both positive and negative
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values of the sentiment series, to simplify notation we are also going to group these by

stock and time in the corresponding matrix to W. that is
—it qit
Wy, = [ ] (73)
—Qit-m —Git-m

Where the dot product of the matrices, denoted W, ; - W, ;, is indicative of the summation

over the product of each pair of elements in either matrix, that is

k=m Jj=1

K., k]
W W= Z Z Wi,t]lpi,t] (74)
k=0 j=0

We are then going to define a further matrix D;;, containing the a measure of the distance

between the sentiment series and the holding period return. First defining this distance as

s=h
) ) 1
dif =iy - (52 ri,m) (75)

s=1

this leads to the definition of the distance matrix as

1 s=h
D, =%, — <Ez ri,t+s) =
s=1

The usefulness of these definitions is that we can now state equation (70) in the simpler

0,0 0,1
di,t di,t

i, (76)

m, m,
di,t di,t

form

s=h
1
E [EZ Ti,t+s] =W Wi, (77)
s=1

or alternatively using the distance matrix
& =W Dy, (78)

where & is the noise obfuscating the relationship.
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5.3.3. Grid based filters

SDM is a type of recursive Bayes estimator where the beliefs about the state of the system
form a grid or matrix, in our case these are the probability weights contained in the
probability matrices, estimators of this form make up a family of estimators commonly
referred to in the literature as grid based filters. The optimal solution to the grid based
filtering equations is well defined under the assumption that the evolution of the system’s
state follows a Markov chain. The Markov chain assumption is typically framed in terms of

the general dynamical model (GDM), which in our notation is the system of equations
W o Pr(W;|W;;_4) (79)
and
D;; « Pr(D;;|W;,) (80)

Equation (79) models the time evolution of our beliefs about the state of the
system, held as probability weights in the matrix. Since this is a Markov chain this time
evolution is only conditionally dependent on the previous time-period. Equation (80)
models some probabilistic measure of the system’s state. Conceptually, Wi models the
combined beliefs of a population of investors as to which lags of the sentiment series are
most relevant for forecasting future prices. Equation (79) models the form and the amount
of change we expect in these beliefs between time t — 1 and time t. D;; is a measure of the
new evidence we receive about the relationship at t. As we assume the sentiment-price
relationship may be noisy these measurements will contain some error, equation (80) states
the amount of error we are expecting. The solution to these equations is found recursively,
by first projecting the system’s state forward in time using the probability model given in
equation (79), then Bayes rule to update the probability weights based on the new

measurements at t.

Firstly, we begin by initiating the system’s state as a set of even probability
weights. Since we have no prior beliefs about the sentiment-price relationship at t = 0, the
weighting of each value in Wi is an even split over the number of possible values, so that

k,j
w ) =

1o = 1/2 (m+ 1). We then define a system model, to project this state forward in time

based on some assumptions about how investor beliefs alter over time. The forward

projection of the system’s state in our notation is defined as
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k=m Jj=1

ltlt 1= ZZPT(W lt 1)Wlt 1 (81)

k=0 j=0

so that for a given probability weight w*®, we calculate the updated weight as the
summation over the weights at t - 1 multiplied by the conditional probability that each of

these weights could be influencing the relationship at t.

To update these beliefs we include a measurement model which governs how we
update the probability weightings in light of new measurements. We do this via a
combination of Bayes rule and the law of total probability, that is

ab Pr(dablwlt) Wlt|t 1
Wie =
t o Pr(Die|Wie) Wie—s

(82)

where the denominator is just a normalising term which contains the sum of the
probabilities over all possible states. This ensures the weights sum to 1. In our case, the
probability weights are indicative of the current relationship between the sentiment series
at a particular lag and returns. What equation (81) models, is how much we expect this
lagged relationship to change in light of new information about the relationship.
Conceptually, the relationship between sentiment and price is a function of how investors
are currently interpreting information in the sentiment variable. In these terms, what
equation (81) captures is how much this interpretation would be expected to change over
time. Equation (82) captures the strength of the new evidence in favour of a change in the
relationship.

There are then two conditional distributions in equations (81) and (82) for which
we have not posed a functional form. If the functional forms for these distributions are an
accurate reflection of the way the system functions, then these equations represent the
optimal Bayesian solution to the estimation of the GDM equations. The signal diffusion
mapping algorithm poses a general form to these equations based on quite relaxed
assumptions about the underlying data generating process. The following section describes

this in terms of the sentiment-price relationship we wish to measure.
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5.3.4. Signal diffusion mapping

The SDM approach to solving these equations is conceptually quite straightforward. We
are simply going to assume that given some distribution over the lags of the sentiment
series, this distribution is only going to change relatively slowly over time. The model we
present for the conditional distribution in equation (81) is one that enforces a relatively
slow rate of change on the system’s state. This is appropriate in this context because we
know there are oscillations in the lagged relationship between sentiment and price, as
documented in chapter three. We also suspect that there may be changes to the lagged
relationship over time, due to latent factors affecting the relationship that are not recorded
explicitly in the text. For either of these types of variability we would expect there to be
some finite rate of change. For example, we would not expect investors to completely
change the heuristics they are using to make decision over a single day. Rather, we would
expect this to be a gradual process over time. Similarly, if there are latent factors
concerning the wider context content was published in that are not reflected explicitly in
the text, we would not expect that these would change completely over the course of a day,
rather, they are likely to trend over time.

To do this, we first consider a situation where we know exactly what values for the
probability weights represent the optimal relationship between sentiment and price at time t
- 1. Further, we also know that this is not expected to change between now and t, in this
case we would simply expect that the system’s state at t was a copy of the system’s state at
t- 1 so that

b _ . ab
wiy = wiily (83)

the issue with this is that we are expecting there to be some variation in the lag distribution
over time and we wish to model how this change is likely to occur. In introducing SDM in
chapter four we argue that a reasonable model of this change is to assume the lag structure
will change by one time period for every unit increase in t. The way we apply this using
SDM is to assume that the lag structure can change, but this change is locally bound to the
immediately adjacent lags on the probability matrix. We do this using

a,b a-1,b

1
— b = a,b a+1,b
Witle-1 = Wig—1 T 3 (Wi,t—l T Wit Wi (84)

so that we are only assuming dependence between lags that are immediately adjacent in
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time and have the same sign. The sense in equation (84) in the case of the online textual
sentiment-price relationship is that, if investors are currently informing their trading
decisions based on textual sentiment at t — 5, it is unlikely all traders investing in the stock
will change their minds completely and start investing based on information from another
lag. More likely, there will be a gradual change over time. SDM models this by assuming

that the probability mass moves slowly away from its current location.

Given this system model, to complete the estimator we need to propose some
functional form for the conditional distribution in equation (82). Here we are going to
assume the distances are normally distributed and so the probability density function of the
distances is given as

(g —n)?
e 207 (85)

1

1
oiV2m

k,j k,j
Pr(d;{ | W) = Pr(d;; | w, o) =

Substituting the conditional distributions in equations (81) and (82) for (84) and (85) then
provides the optimal Bayesian estimator of the lagged relationship providing the

assumptions are correct.

5.3.5. Forecasting

The result of applying SDM to the data is a conditional probability matrix Wi, where each
entry in the matrix contains the probability of a value in ¥; influencing the sentiment-
price relationship for the ith stock at time t. From this matrix we can derive a number of
different probability distributions for forecasting.

Firstly, we might assume that there is a single distribution, common to all stocks,
characterising the way in which information is processed by investors. This is similar to
the assumption of the simple averaging model in that we are assuming there is a fixed
distribution that characterises the relationship, and that this distribution does not vary over
time. The difference in this case is that the form of the distribution is more flexible than the

flat average.

As the estimator is a Markov chain, the optimal estimate of this distribution given
at end of the sample period. Taking the average of these distributions across all stocks
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yields

i=N;

1
Wiein, =3 Z Wi n, (86)
Y=

where N is the length of the sample period and N; is the total number of stocks in the
sample. All equation (86) states is that to derive the distribution for all stocks in the set of
stocks i, we simply take the average of all of the 93 distributions. As each probability
matrix contains the conditional distribution over the lags for a given time period this
calculation corresponds to taking the marginal distribution for the final time-period over all

stocks in the sample.

For forecasting purposes this distribution replaces the moving average in (67) so

the forecast for the expected value of the return over the holding period for the ith stock is

s=h
1
E Ez Tit+s | wiei,Nt] = Wiein, - (1 + Pir) (87)
s=1

where the notational convention E[r | w] means the expected return based on some set of

probabilistic beliefs.

Note that z; is included in the forecast, in chapter three we showed how to estimate
the conditional mean of the distance matrix as part of the estimation procedure. In this
paper we are going to assume we know the mean of the distribution already, as estimating
multiple parameters takes data and we have only a finite time period of data for this study.
Our reasoning is similar to that of Diebold (2015) who argues that studies should clearly
state their modelling assumptions and maximise the use of their data, rather than attempt to
make realistic pseudo out of sample tests. So here we are assuming that the distance matrix
has a definable mean, and that this is estimable from prior data. Similarly, in chapter three
we include a parameter modelling the expected rate of change of the probability

distribution. Again we omit this parameter as there is limited data to estimate it.

Defining the forecast based on the state vector distribution at t,, assumes there is

one distribution which characterises the relationship. Part of our argument is that this
distribution may vary significantly over time. Also, the forecast given in equation (87)
suffers from look-ahead bias as we are using information from the full sample period. A
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more realistic forecasting scenario is to use only the values of Wi we could have
calculated based on prior data. A complicating factor in this case is that we are fitting SDM
to the front running return period, so effectively the estimates for Wi are inclusive of
information about future values of the price series over the holding period running t + 1:t +
h. To prevent this type of look-ahead bias, we need to lag the estimating distribution by h

time periods, that is

i=Nl'
1
Wicit—n = N Z Wit-n (88)
Li=t
leading to the forecast
1 s=h
E [Ez Titts | wiEi,t—h] = Wigiron - (1 + Wie) (89)
s=1

In section 1 we argued that there are at least three major sources of variability in the
sentiment price relationship that could be latent factors affecting the relationship between
our measure of sentiment and price. There are aspects of this variability that could
reasonably be expected to be stock specific, for example, if there are contextual factors
which modify the semantic meaning of certain words then we might expect these to be
different for different industry sectors. As a result, we are also going to consider forecasts
for local distributions for each stock. These are very similar so we just do not need to
average the forecasting distribution over all stocks. The corollary of (86) for the ith stock is
then

s=h

1
E Ez Titss | Wi,Nt] = Wiy, - (i + Pip) (90)
s=1
similarly the forecast
s=h
1
E Ez Titss | Wi,t—h] = Wip - (i + Pip) (91)
s=1

indicates a forecast with the local distribution for the ith stock where any look-ahead bias

has been removed.
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5.3.6. Comparing forecast accuracy

In order to compare the predictive accuracy of the SDM estimates against the moving
average model we use in chapter three we apply two hypothesis tests. As the hypothesis we
are testing is that the SDM estimator produces significantly better forecasts than the
moving average model, the null hypothesis is that there is no statistically significant
different between the forecasts across all stocks using either model. We test this in two
ways: the first is though a t-test on the difference between the forecast errors produced by
either model similar to the Diebold and Mariano statistic (Diebold and Mariano 1995).
This is one of the most widely used statistical tests for comparing competing forecasting
methodologies. The second test we employ is based on the directional forecast accuracy of

either model.

For the first test we define a quantity ¢;; denoting the forecast error between the

estimate of the returns series and the forecasting model. That is
8t = |E[rie | SDM] — 1| — |E[rie | MA] — 1] (92)

where E[rl-,t | SDM] indicated the expected return forecast by the SDM algorithm and

E [ri,t | MA] indicates the forecast from the moving average model (equation (67)), the bar
brackets indicate the absolute value function. Conceptually 6. is a comparison of the
distance between either estimator and the observed values of the returns series, this type of
test has been widely popularised in the forecasting literature by Diebold and Mariano
(1995). If there is no difference between the accuracy of either forecast we would expect
the mean of the forecast errors to be approximately 0. This gives a natural hypothesis test
that the mean of these errors is significantly different from 0. In the Diebold and Mariano
test significant effort is made to model auto-correlation in the forecast errors, as we are
going to compare forecast accuracy over 93 different stocks, we expect that this type of
auto-correlation is not an issue. Our test is then a simple z-test of the difference in forecast

errors.

The second test we employ is based on the directional forecasting accuracy of
either model. For this we count every time the forecast has the same sign as the observed
return. We then calculate the percentage accuracy of the model and compare the difference

in forecast accuracy to the Bernoulli distribution.
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5.4. Empirical results

In this section we present results from applying the SDM and moving average models to

our data.

5.4.1. Comparing forecast accuracy

For the moving average model we use equation (67), for the SDM model we use equations
(86) to (91). We test the models on for maximum lagged windows of m = 60, m = 80 and
holding periods of h = 20 and h = 40, as these correspond to the best performing moving

average models, as shown in chapter three.

Table 4 summarises these results. Each of the 4 models described in section 3.5 are
listed in the first column of the table, we use the same m and h parameters are for both the

SDM and moving average models. Dist(model) is the average distance between the

estimate and the actual values of the return series, that is the mean of |E[r;, | model] —

Ti’t | .

We can see that in all cases SDM models produce smaller mean distances over the
sample set. The t-statistics are all negative, indicating SDM has a smaller average error
than the moving average and are all large enough to be significant at infinitesimal p-values.
Similarly we see that the directional forecast accuracy is in most cases is more than 2%
better using SDM than using a moving average. Again, the significance of these results is
extremely high, a 2% difference between estimates over 10,000 samples has a p-value

approaching 0.

Comparing the average error distances for the different SDM models, it appears the
estimator works better with a holding period of 40-trading-days, although there are fairly
similar results across SDM model specifications. In terms of our initial hypothesis, table 4
provides strong evidence in support of the claim that SDM is a better estimator of the
relationship than a simple average. This suggests that variability in the sentiment-price

relationship is a feature of the data which has not been captured in previous studies.
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Model m h Dist(MA) Dist(SDM) t-stat N Dir(MA) Dir(SDM)

Wiy, 80 40 0.161 0.112 (-49.597) 14322 55.00% 66.51%
Wiin 0.155 0.124 (-26.182) 10509 55.65% 61.08%
W icrn, 0.161 0.121 (-40.39) 14322 55.00% 60.28%
Wiciin 0.155 0.122 (-28.837) 10509 55.65% 62.25%
Wy, 60 40 0.172 0.117 (-53.461) 16182 58.02% 64.00%
Wi 0.17 0.131 (-32.744) 12369 56.54% 58.11%
W icrn, 0.172 0.121 (-48.924) 16182 58.02% 50.30%
W iereon 0.17 0.124 (-38.489) 12369 56.54% 59.85%
Wy, 80 20 0.221 0.188 (-31.514) 16182 54.24% 61.83%
Wiin 0.226 0.211 (-13.851) 14229 52.92% 55.01%
W iern, 0.221 0.199 (-23.056) 16182 54.24% 56.53%
Wiciin 0.226 0.204 (-21.154) 14229 52.92% 56.53%
Wy, 60 20 0.236 0.188 (-41.404) 18042 54.51% 60.21%
Wi 0.236 0.21 (-22.357) 16089 54.68% 51.84%
W icrn, 0.236 0.196 (-35.882) 18042 54.51% 54.72%
Wicreon 0.236 0.2 (-30.087) 16089 54.68% 54.97%

Table 4: Comparing forecast accuracy: The table summarises the results of comparing
the SDM based forecasts with their moving average counterparts. Each of the SDM models
are listed on the left hand side, the summary statistics document the results of applying
different tests of forecast accuracy to the results of the SDM model vs. the moving average
using the same values of m and h. We calculate the summary statistics by taking distances
for each of the forecasts over all stocks and all time-periods and pooling these into one test.
The t-statistics are then calculated as the mean of the pooled distance values for the
moving average forecast minus the SDM forecast, so that the large negative results
indicates that SDM forecasts had much smaller distance errors than moving average
forecasts. The direction statistics are calculated by simply counting the number of times the
pooled forecast results and the same sign as the observed values of r, then dividing by the
total. Again we see that SDM forecasts the direction of the relationship much better than
the moving average model.

5.4.2. Trading strategy

Given the results in table 4 we would expect the SDM models to produce higher returns
based on the same type of trading strategy we use in chapter three. As the strategy we
employ here is the same as in chapter three, we include only a brief description here as a
recap. At the start of each trading day, we sort the stocks based on the results of the SDM
forecast for the next h trading days. We then form a portfolio of the top 20 or 30 sentiment
winners, that is the 20 or 30 stocks with the highest SDM forecast, and purchase these
stocks. We then hold these stocks for the full h trading day period before selling them
irrespective of whether we lose or gain by the sale. On the following trading day we repeat
the process, purchasing a further 20 or 30 stocks for our portfolio, as a result, at any point
in time we have 20h open positions, although any individual stock may be included in up
to h of these positions at one time. We report the return of the portfolio as the average daily
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return of stocks we sell at time t over the period we held them for, so effectively the

average realised daily return of all positions we opened as time t - h.

Table 5 summarises the results from this strategy for m = 60, m =80 and h = 20, h
= 40, excess return figures and t-statistics are calculated based on the return from holding
an un-weighted portfolio of the 93 stocks in our reduced SP100 index. First, we see that
the simple moving average portfolio is outperformed by the SDM portfolios in all cases;

this is as expected given the increased predictability we observed from table 4.

In terms of the expected return we might access from forming an actual trading
strategy around the SDM results, the more realistic estimate of strategy performance is
given by the rolling estimates, since these do not suffer from the same look-ahead bias as
the final distribution strategies. Of these, the best preforming example is the 20 stock
portfolio based on the average distribution over all stocks. Here, we see a total return of
0.137 log percent per day, based on a holding period of h = 40 trading-days and an
averaging period of m = 80 trading-days. Viewing this result in light of reasonable costs,
Clarkson et al. (2006) report that the average cost of realising a trade via an online broker
0.2% of the value of the trade. Taking this into account, the average log return per stock,
per trade from the SDM strategy equates to 0.00137 * 40 = 0.0548. subtracting
transaction costs of log(1.002) gives a log return per stock, per trade minus costs of
0.0528, or 0.0528/40 = 0.00132 per stock, per day, resulting in a projected APR of
100(g(0:00157+250) _ 1) = 39.099%. Performing the same calculation on the excess return
we see a log return per day minus costs of 0.076% equating to a 19.424% APR for the

excess return.

While these results at first appear very high, there are sound reasons why this may
be the case: firstly, it is logical that, since a simple average can be used to form profitable
trading strategies as we showed in chapter three, an optimal average provided via the SDM
algorithm should generate superior results. Secondly, in the momentum literature, Daniel
and Moskowitz (2011) have shown that by augmenting a momentum trading model with a
parameter that allows for positive-negative regime switches returns to momentum
strategies double over long periods. This serves as an example of how accounting for extra
variability, as we have done here via the use of SDM, can lead to dramatic improvements

in portfolio performance.
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20 Stock Portfolio 30 Stock Portfolio

m h Return Excess t-stat Retrurn Excess t-stat
MA 80 40 0.06 0.026 (7.712) 0.063 0.029 (10.432)
Win, 0.149 0.115 (39.418) 0.128 0.095 (38.986)
Wit 0.126 0.066 (17.65) 0.119 0.058 (20.254)
Wicin, 0.127 0.093 (30.9) 0.11 0.077 (31.27)
Wicre-n 0.137 0.076 (20.708) 0.116 0.055 (18.423)
MA 60 40 0.06 0.019 (6.419) 0.059 0.019 (7.608)
Win, 0.134 0.094 (34.595) 0.119 0.079 (34.241)
Witn 0.09 0.024 (7.242) 0.085 0.019 (7.072)
Wicin, 0.115 0.074 (24.787) 0.105 0.065 (28.451)
Wicrt—n 0.116 0.05 (13.942) 0.101 0.035 (12.878)
MA 80 20 0.057 0.017 (3.661) 0.056 0.016 (4.074)
Win, 0.152 0.111 (25.609) 0.132 0.092 (26.007)
Wit 0.093 0.04 (8.526) 0.079 0.026 (6.772)
Wiern, 0.116 0.075 (17.191) 0.1 0.059 (16.678)
Wicrt—n 0.11 0.057 (11.875) 0.099 0.046 (11.693)
MA 60 20 0.042 -0.007 (-1.499) 0.043 -0.006 (-1.554)
Win, 0.142 0.093 (22.376) 0.124 0.075 (22.384)
Wit 0.077 0.016 (3.526) 0.07 0.01 (2.55)
W iern, 0.111 0.063 (14.461) 0.101 0.053 (15.354)
Wiere-n 0.115 0.054 (11.736) 0.102 0.041 (11.291)

Table 5: Returns to buying SDM winners: The table shows the results of the SDM and
moving average based trading strategies. The different models are specified on the left
hand side, MA denotes the moving average model the others are the different
specifications of SDM model. We see that in all cases SDM outperforms a simple average,
most of the time the performance increases by several times. We also see that each of the
SDM portfolios is statistically significant with very high t-statistics. Generally, as would
be expected the 20 stock portfolios outperform the 30 stock portfolios. We also see that in
general the SDM portfolios generated using the final time-periods distribution tend to
outperform the rolling distributions for individual stocks, but also that the rolling
distribution taken over all stocks outperforms the stock specific rolling distribution. We
think this may be because there is either not enough data, or too much noise in the sample
to estimate stock specific distributions accurately in most cases. t-statistics are calculated
for each portfolio against the benchmark of holding the market portfolio.
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5.5. Examining the structure of returns predictability

The results from section 5.4 strongly suggest that SDM forecasts better than a simple
average and can be used to generate profitable portfolios. What we do not see from the
statistics of forecast accuracy is exactly where this extra predictability comes from. SDM is
a methodological upgrade on a simple moving average because it considers stock specific
distributions over the lagged values of the sentiment series, and it allows these distributions
to change over time. In light of the arguments we make about variability in the introduction
and in chapter three, it could be that there are latent factors affecting how words are
interpreted in the context of a specific stock. Alternatively, latent factors could be affecting

how words are interpreted at different times during the sample period.

In this section we introduce a hypothesis testing framework for assessing which of
these factors contributes most to the increased predictability we document in section 5.4
For this section we consider the results from the estimator where the maximum lag length
is m = 80 and where the holding period h = 40, as these correspond to some of the better

results we observed in section 5.4.

5.5.1. Analysis preliminaries

In defining our hypothesis testing framework, we take advantage of the fact that, since
each Wi is a conditional probability distribution, we can define the four dimensional joint
distributions of both dimensions of the matrix, different stocks and time periods as
Pr(k,@,i,t) = WPr(t) Pr(i) = w (93)
r(k, @i, t) = r r(i _(Nt+1)Ni
where k is the lag length dimension, ¢ is the positive or negative sign, t it the time
dimension and i is the stock dimension of the distribution. This characterisation allows us
to define a number of marginal distributions in terms of their log odds ratio. This is
important because the properties of the ratio allow for the construction of t-statistics for

hypothesis testing purposes.

To do this we first define the log odds ratio function LOR as the natural logarithm
of the positive half of the joint distribution given in equation (93) divided by the negative
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half, that is

(94)

Pr(k,i,tlp =1
LOR(k,i, tlp =1) = log{ rlk ity )}

Pr(k,i,t|lp = 0)

The importance of this definition is that LOR has a well-defined mean and variance and so
should tend to the normal distribution asymptotically (Agresti 2003). Further, if the two
series are uncorrelated we would expect the mean of this distribution to be 0. With these
properties defined, we can treat the log odds ratio of different marginal distributions as we

would a normally distributed sample in a standard z-test.

5.5.2. Evidence of fixed lag distributions

The first aspect of the relationship we examine is the SDM equivalent of the cross-
correlation plots shown in figures 1 to 4 from chapter three. As this distribution is taken
across all stocks it is conceptually the average lagged oscillation in the sentiment-price
relationship across the 93 stocks in our reduced S&P100 index. We examine this
distribution again to see if we can confirm the results we reported in chapter three using

SDM. The log odds ratio in this case is then

t_statistic(k|liei,tetp =1)
1 = i=N; .
R T 5 Dyt LORGKj,slp = 1) (%)

OLoRr(k|teticip=1)/v Ni(N; + 1)

where the numerator takes the average log odds ratio for each lag, over all stocks and all

time periods. The denominator is simply the standard error of the numerator where ¢
represents the standard deviation. All equation (95) really states is that if you take the
average over all stocks and time periods for each lag length k, then divide this by the

standard error of the mean to retrieve the t-statistic for a given lag.

Figure 7 plots the t-statistics for each lag length k calculated using equation (95).
The y-axis of figure 7 holds the t-statistic, and the x-axis holds the lag-length k. What we
see is that there does appear to be a statistically significant fixed distribution over all
stocks. The shape of this distribution shows a negative initial relationship between

sentiment and prices, followed by a reversal at a three-month or greater lag length, which
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tallies approximately with the distribution of t-statistics we documented in chapter three
figure 9. In terms of the available literature, this is similar to the short term reversal effect
documented by Jegadeesh (1990), although the length of the reversal period is slightly

longer than the one month period documented in these studies.

t-statstic

a4 i ; i i i . .
0 10 20 30 40 50 60 70 80

Figure 7: Cross correlation plot: the plot shows the average lagged relationship between
all stocks and their corresponding sentiment series. The plot is very similar to the cross-
correlation plot shown in chapter three figure 3. The x-axis holds the lagged values of the
sentiment series and the y-axis holds the value of the t-statistic calculated using equation
(95). We see that there are similar oscillations in the relationship to the ones we observed

in chapter three.
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5.5.3. Lag distributions across stocks

The second aspect of the relationship we consider is whether there is significant variability
in the form of the lagged distribution across stocks. To analyse this property in detail we
consider the t-statistics of a given lag and stock over time, that is

;ZsfgltLOR(k, i,slp=1)

(Ve +1) 7= (96)

OLoR(k,iltetp=1)/v (Nt + 1)

which is identical to the calculation in (95), except we take the mean and the standard error

t_statistic(k,iltet,p =1) =

of k and i over all values of t.

Figure 8 shows a heat-map of the values of (96). On the y-axis are listed all of the
stocks we consider in this study, the x-axis show the different lag-lengths k. Each
horizontal row contains the distribution over the lags, the corollary of the distribution
shown in figure 7. The colours show the magnitude of the t-statistic with the scale given in

the bar on the right hand side of the plot.

What we see immediately from figure 8 is the t-statistics are much higher than
those reported in figure 7, indicating that the stock specific distribution is a much stronger
indicator of prices than the aggregate distribution over all stocks. We also see that there is a
large range of different shaped distributions; these range from stocks like Ebay (EBAY)
and Boeing (BA), which have similar shapes to figure 7, to stocks such as Twentieth
Century Fox (FOXA) and Texas Instruments (TXN) which show the reverse, a positive
relationship followed by a negative one. Other stocks, such as McDonalds (MCD) and

MetLife (MET), show distributions that have several swings from positive to negative.
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t-statistic

Figure 8: Stock specific lag distributions: the plot shows a heat-map of the distribution
shown in figure 1 for each of the 93 stocks in the sample. The y-axis records the ticker of
each of the stocks and the x-axis records the lag length. The colour-bar on the right hand
side shows the colour associated with a given t-statistic value, dark blue being a strong
negative relationship, and dark red being a strong positive relationship. T-statistics are
calculated using equation (96). We see that there is significant variability in the form of the
distributions across stocks, and that the t-statistics are very high in many cases.

130



5.5.4. Lag distributions over time

Figure 8 shows that there is significant variability in the lag distributions over stocks.
Another potential source of variability is over time. To test for this we consider whether
there are statistically significant changes in the sign of the distribution over time,
considering the t-statistic

1 v=m .
m2v=0 LOR(v,i,t|lp = 1) o7)

OLoR (i tlkekp=1)/+/ (M + 1)

which is again identical to (95) and (96), just now the mean and standard errors are taken

t_statistic(t,ilk ek, =1) =

over the values of k, where m refers to the maximum lag considered in the analysis.

Figure 9 shows the t-statistics from (96) displayed on a similar heat-map to figure
8, just with the x-axis now containing the value of t, rather than the lag-lengths k. We see
from the magnitude of the t-statistics in figure 9 that the larger values are about half the
magnitude of the t-statistics in figure 8, but still much higher than those in figure 7. We
see, in general, that stock prices have either a positive or negative relationship to
sentiment, Ford (F) for example, shows a strong, consistent, positive relationship between
sentiment and price. On the other hand Target Group (TGT) shows a strong, consistent,
negative correlation between sentiment and prices over time. There are, however, some
more complex cases, Apache Corp. (APA) or Emerson Electric (EMR) both show

relationships that oscillate from positive to negative over time.
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Figure 9: Changes in distributions over time: the plot shows whether the relationship
between a stock and the lagged values of the sentiment series is predominantly positive or
negative, calculated using equation (97). The y-axis records the ticker of each of the stocks
and the x-axis records the lag length. The colour-bar on the right hand side shows the
colour associated with a given t-statistic value, dark blue being a strong negative
relationship, and dark red being a strong positive relationship. We see from the plat that the
t-statistics are in general lower than in figure 2 although still highly significant. There are
also a number of cases where the sign of the correlation changes over time from positive to
negative.

132



5.6. Conclusions, limitations and future work

We argued in the introduction that there are latent factors that are likely to influence the
way the information measured in sentiment metrics are incorporated into prices. The crux
of this issue is that there are a large number of factors which affect a person’s reading of a
text, for example, how they feel at the time, what they think of the author, or their
understanding of other factors not explicitly referenced in the text that affect its intended
meaning. The potential problem this poses when attempting to model the sentiment-price
relationship is that these factors are not explicit in the actual words in the text, and so
subsequently latent from any measure of textual sentiment. The result is that the time series
relationship between sentiment and price is likely to be affected by significant sources of
latent variability. The methodologies that have been applied in this area to date by authors,
such as Antweiler and Frank (2004), Das and Chen (2007), Sprenger et al. (2014), Chen et
al. (2014) and in our own work in chapter three, are not capable of modelling latent

variability of this type.

To bridge this gap, in this paper we show that introducing a new time series
analysis methodology, SDM, to the study of the sentiment-price relationship which allows
us to model some of this variability. We show that SDM significantly outperforms the
methodology we used in chapter three and allows for the construction of sentiment trading
strategies that generate significant excess returns. We document that the lagged relationship
between sentiment and price is specific to each stock, and also changes over time. We
consider this evidence that there are contextual factors which cause changes in the way
which words are interpreted in with respect to a particular stock at a particular point in
time. Subsequently, we consider this to be evidence in support of our central hypothesis,
which is that there are significant sources of latent variability which characterise the

sentiment-price relationship.
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Chapter 6: Conclusions

This thesis has two aims: firstly, to examine whether sign-strength-timing variability is a
significant factor influencing the online textual sentiment-price relationship. Secondly, to
introduce methodological innovations that can inform future work in this area by allowing
this variability to be accurately modelled. I am going to open this section by discussing the
major findings of this thesis in this regard.

The evidence | present in chapter three and chapter five gives strong indication that
there is sign-strength-timing variability present in the online textual sentiment-price
relationship. In chapter three | document how the relationship between a lagged sentiment
indicator and prices forms an oscillating pattern on a cross-correlation plot. Some of these
oscillations are strong enough to be statistically significant. This result suggests that for all
stocks, sign-strength-timing variability does exist. The large performance increases from
using the SDM estimator documented in chapter five support this conclusion. In chapter
five, however, there is evidence from the odds ratios plots that not only are the sign,
strength and timing of the relationship variable with respect to each other, but these factors
are also variable with respect to time. The success of the SDM estimator in forecasting the
sentiment-price relationship shows that this variability over time must be slow enough to

have been captured by the estimator.

Considering this in terms of the available literature; Chen et al. (2014) provide the
only other evidence of long run relationships between sentiment and price available in the
literature to-date. The authors consider the relationship between sentiment and cumulative
abnormal returns at time horizons of up to three years. They classify two forms of
sentiment, sentiment expressed in articles, and sentiment expressed in comments on
articles, for the financial content site Seeking Alpha. They find that there is a
monotonically increasing positive correlation between sentiment and abnormal returns for
both article and comments content. Interestingly, for comments content they show some

oscillatory structure in the lagged relationship between sentiment and price™, similar to the

19 This oscillatory structure is shown in figure 3 panel B of Chen et al.’s paper. Please note, this is my
inference, the authors do not discuss oscillatory structure in the paper. From the graph there is an initial
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oscillatory structure | report in chapter three. The key difference between the findings of
Chen et al. and my findings in chapter three is that the sign of the relationship is different
in either case. This is explicable due to my findings in chapter five that sign-strength-

timing variability can also itself change over time.

The picture this paints of the sentiment-price relationship is one where investor
interpretations of the semantic meaning in text are significantly complex. | have argued
throughout this thesis that this is to be expected, because much of the contextual
information an investor will be using to judge the semantic content of a piece of text is
latent from existing sentiment measures. | am not making any claim here that | know, or
have shown, what causes this variability specifically. Instead, | have given three broad
examples to show potential driving factors: variability in interpretation, variability in
authorship and variability in context, but there may be more. What | aim to demonstrate
with these examples is that some of these factors are likely to be difficult or impossible to
find suitable proxies for. As a result, the variability I document in chapter three and chapter
five should be considered a feature of the relationship that needs modelling in its own
right, rather than an indication that more variables need to be found to measure different

features of the relationship.

This being true, the second aim of this thesis is to provide methodological
innovations for modelling relationships of this type. To this end I have introduced SDM in
chapter four. SDM is a good fit for problems of this type because it is capable of modelling
sign-strength-timing variability, providing the inter-relationships between these factors
change relatively slowly over time. This assumption is particularly intuitive in the case of
the sentiment-price relationship because the variability in the relationship is a function of
how investors interact with information. Imagine if this relationship did not change slowly
over time but was stochastic, this would indicate that a group of investors could interpret
that same words completely differently each time they read a piece of content. In effect, we
would be saying that the semantic meaning in the content is stochastic, that words do not
carry any fixed meaning. Clearly this does not make sense; words do carry meaning that
most people interpret in a similar way. The result is that semantic meaning in text cannot
be stochastic, but the evidence suggests it is variable. The conclusion | draw is that this

variability must be relatively slow. As a result, SDM provides a key methodological

downwards curve between 1 month and 3 months, followed by an upwards curve between 3 months and 6
months, followed by a downwards curve again.
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innovation for further work in this area. | have extended this work in chapter five, by
showing how the output of the estimator can be used to develop a powerful hypothesis

testing framework for different types of variability.

On a more practical level, a key contribution this thesis makes to the literature is to
show that the online textual sentiment-price relationship is potentially much stronger than
previous studies suggest. | have documented trading strategies, both using SDM and a
simpler model, that return well in excess of the market benchmark once reasonable costs
have been accounted for. How accessible are these returns in practice? There are some
overheads that may prevent these strategies from becoming commonplace in the near
future. For example, there are costs associated with purchasing large datasets of the type |
used in this thesis. | would estimate that yearly running costs for acquiring datasets of this
size would be between £50,000 and £100,000. This is clearly not enough to put off a

reasonable size fund or bank, but may be too much for many smaller investors.

The fact that there is material information about a stocks future price contained in
online messages also has implications for both policy makers and financial theorists. Since
the advent of the web there has been an exponentially increasing quantity of information
available online. Services, such as Google search, have been developed to address the fact
that a person cannot be expected to sift the vast quantities of available information by
themselves. From the sample | have gathered for this study it is clear that there is also too
much financial content available online to reasonably expect any person to read it. This
means that there is now a gap in the knowledge discovery process surrounding price of a
brokerage service between raw content and investors. This service is in some ways nothing
new, analysts already produce reports for investors and traders to help them make
allocation decisions. What is new is that online services are explicitly aimed at investors

themselves rather than a third party information provider.

The key issue with this from a policy perspective is that insider trading law
explicitly forbids investors from making money from material non-public information. As
the people creating the information about future stock prices are also profiting from the
interpretation of this information this may be illegal under U.S. law. It also illustrates the
clear conflict of interest between users of online services as authors of material information
and investors. This is problematic from a theoretical perspective because there is no

theoretical explanation as to why individuals would reveal valuable information to other
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investors. By nature, revealing information to the market in this way should reduce its

value and so reduce the original holder of the information’s profits.

The result is two equally unpalatable options, either: investors could be going
online to share material information at the expense of their profits. This would mean that
theories assuming the presence of rational, profit maximising investors are incorrect. The
second option is that investors are making profits from sharing information they create.
This would mean that there is large scale criminality occurring online in these

communities.

This issue mimics issues the web has created in a number of other industries,
particularly the publishing industry. As the web enables massive scale sharing of
information at low-no cost laws that rely on there being structural barriers to information
sharing are difficult to implement effectively. In the case of sharing financial information
online, tracking down all of the users of online services to see if they have profited from
information sharing would be incredibly difficult and so it is unlikely there will be mass

arrests for online insider trading in the near future.

I would consider a more likely way forward is for the both researchers and policy
makers to relax their assumptions about the information-price relationship. Both U.S.
insider trading law and notions of rational investors have come from an assumption that
stock price moves based on material ‘facts” about a company. Increasingly, with each new
financial crisis we become more aware of the fact that this is a tenuous argument at best.
Once you do away with this idea conceptually the movement of prices and the behaviour
of investors online become much clearer. If Keynes is correct and prices move based on a
recursive ‘beauty contest” where each investor attempts to guess what other investors think,
then the real source of price relevant information is contained in the thoughts, writings and
conversations of investors. In this case we would expect a good investor to also be a master
of building social relationships, and of guessing or manipulating other investors’ intentions
through communication. If this is that case then it may be better to develop a legal
framework for the markets that is forgiving of this aspect of behaviour, rather than

attempting to force an alien structure on investor behaviour.

In summation, | consider this thesis to show evidence that there is good
predictability between online textual sentiment and price. A key issue with modelling this

relationship is that current sentiment analysis methodologies are a long way from being
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able to classify content with the contextual understanding a person is capable of. To
counter this issue, it is possible to use SDM to model the variability caused by a sentiment

measures lack of contextual awareness.

As a final remark, there are several other fields of study which consider the
relationship between textual data and some other variable. Examples include, predicting
elections with social media sentiment measure (Tumasjan et al. 2010) or predicting box
office revenues for films using the sentiment of online content (Asur and Huberman 2010).
Clearly these literatures will face many of the same issues as the financial literature, so the
methodological innovations | present in this thesis are applicable to a broad range of

literatures.
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