OPTICAL FIBRE AMPLIFIERS: DEVICES AND SYSTEMS University of Essex Short Course 10-12 March 1993

FIBRE LASERS

A review of devices, techniques and applications

Dr. P.R.MORKEL

OPTOELECTRONICS RESEARCH CENTRE
UNIVERSITY OF SOUTHAMPTON
HIGHFIELD
SOUTHAMPTON
HANTS
U.K.

OVERVIEW:

- History of fibre laser development.
- Fundamentals and key features of fibre lasers fibre amplifiers with feedback
- Review of applications and laser wavelengths
- Continuous wave laser configurations

Power and spectral characteristics

• Other configurations

Tunable lasers

Q-switched lasers

Mode-locked lasers

Single-frequency lasers

Upconversion lasers

Superfluorescent sources

- Some theory
- Summary

HISTORY OF FIBRE LASER DEVELOPMENT 1961-1985

1961 E.Snitzer: "Proposed fiber cavities for Optical Masers",

J.Appl.Phys., Jan. 1961.

Advantages of strong mode selection and high gain identified.

Problem: How to pump?

1964 E.Snitzer: First glass lasers and multimode fibre lasers.

1964 E.Snitzer: Neodymium-doped fibre amplifier

1965 E.Snitzer: First Er (co-doped with Yb) glass laser.

1969 E.Snitzer: Monomode Nd-doped fibre amplifier (low NA)

1973 Stone & Burrus: Longitudinally LED pumped Nd-doped fibre laser.

1985 Southampton University:

High NA (≈0.2) rare-earth-doped fibres

Nd & Er-doped fibre lasers pumped with laser diodes

1987 Southampton University: Er-doped fibre amplifier

.

FIBRE LASER WAVELENGTHS

Silica fibres and Fluoride fibres

BULK-OPTIC AND FIBRE LASER CONFIGURATIONS

Threshold for laser action obtained when Gain G is such that:

G(1-L) = 1

where L = optical losses seen in one "round-trip" of the laser cavity

KEY FEATURES OF FIBRE LASERS

- Small modal volume gives high gain
- Broad emission and absorption lineshapes
 - wide tunability
 - short pulse mode-locking
 - wide tolerance of pump wavelength compared with crystal lasers
- Longitudinal geometry gives minimal thermal effects
- Low (potential) cost

High manufacturing yield gain medium (doped fibre)
Simple and rugged constructions

- Compatibility with fibre transmission media
- Strong mode selection

SOURCES FOR USE IN:

Communications:

- single frequency lasers
- soliton sources
- fibre diagnostics

OTDR type sensors:

- Q-switched lasers at $1.06\mu m$ and $1.55\mu m$

Environmental sensing:

- specific wavelength sources for gas absorption lines. eg. $1.66\mu m\ Tm^{3+}$ for Methane absorption.

Interferometric sensors, eg fibre gyros:

- superfluorescent sources

CONTINUOUS WAVE (CW) FIBRE LASER CONFIGURATIONS

Fibre grating Fabry-Perot

CW FIBRE LASER OUTPUT CHARACTERISTICS

Barnes et al, Opt. Comm, 82(3), p.282, 1991

Nd-doped GeO₂/SiO₂ fibre laser characteristic (800nm laser diode pump)

Nd-doped GeO₂/SiO₂ fibre lasing spectrum

CW FIBRE LASER OUTPUT CHARACTERISTICS

Nd-doped GeO₂/SiO₂ fibre spectral width variation with pump power (normalised to threshold power)

Er-doped Al_2O_3/SiO_2 fibre 980nm pumped laser characteristics

TUNABLE LASERS

Tunable neodymium-doped fibre laser

L.Reekie et al., Journal of Lightwave Technology, LT-4(7), July 1986.

Tunable laser configuration

Laser tuning range and fluorescence spectrum

TUNABLE LASERS

High power tunable erbium-doped fibre laser

R.Wyatt, Electronics Letters, 25(22), Oct 1989

Tunable Er-doped fibre laser configuration

Erbium fibre laser tuning characteristic. 540mW pump power at 980nm. 1100ppm Er^{3+} -doped fibre lengths of 5.5m (\circ) & 9.5m (\triangle).

Principle:

Population inversion allowed to build up in a fibre laser amplifier medium by preventing feedack (holding cavity in a high-loss state)

Rapidly switching the cavity to a low-loss state allows rapid increase in the laser intensity and saturation of the gain medium to produce a high power pulse.

Q-switched laser schematic:

Features of Q-switched lasers:

- Energy stored in the gain medium due to the long lifetimes associated with the rare-earth media.
- Energy extracted in a short time scale to produce a pulse output power orders of magnitude (~10⁵) greater in power than that of a CW laser.
- Pulse durations ≈ 1ns demonstrated for Nd doped fibres
 ≈ 10ns for Er doped fibres.
- Repetition rate determined by the fluorescence time constant of the material.
- Applications in Optical Time Domain reflectometry (OTDR)
 and time division multiplexed sensor systems.

Q-switched Neodymium-doped fibre laser

Morkel et al, IEEE Photonics Tech. Lett., 4(6), p.545, 1992

Experimental Q-switched Nd-doped fibre laser cavity

Pulse characteristic obtained at 1.05 µm

Q-switched Neodymium-doped fibre laser

Pulse power and duration dependence on pump power

Pulse power and duration variation with repetition rate

Q-switched Neodymium-doped fibre laser

Q-switched Nd-doped fibre laser output spectrum

Q-switched erbium-doped fibre laser (Myslinski et al, IEEE Jounal of Quantum Electronics, 28(1), 1992.

Experimental configuration. 1600ppm erbium fibre. Pump 514nm.

1

Experimental pulse power (a) and duration (b) dependence on pump power

Fabry-Perot mode spectrum

Randomly phased modes → noise

Phased modes \rightarrow short pulses. Pulse duration $\delta t \sim 1/\Delta \lambda$ (~1ps)

Methods to lock phases:

Active

AM - Modulate cavity loss at cavity round trip frequency (or multiple)

FM - modulate cavity phase at cavity round trip frequency (or multiple)

Passive

Introduce non-linear loss component (saturable absorber) into cavity

Passive mode-locking generally gives shorter pulses than active mode-locking for fibre lasers.

Examples of mode-locked fibre laser configurations

Figure-8 laser

CW lasing → high loss

Short pulse operation (high peak power) → low loss

Shortest pulses ≈300fs

Non-linear amplifying loop mirror (NALM)

Semiconductor saturable absorber mode-locked fibre laser

Loh et al, IEEE Photonics Tech. Lett, 5(1), Jan 1993

Principle: Saturation of absorption in a semiconductor material is used to provide a non-linear loss mechanism which favours short pulse and hence mode-locked operation. Fast carrier dynamics give rise to ultra-short pulses.

Laser configuration

Saturable absorber construction

Semiconductor saturable absorber mode-locked fibre laser

Pulse characteristic measured with fast InGaAs detector (bandwidth limited). After pulsing due to detector ringing.

Autocorellation trace showing pulse duration ≈ 1ps with slight pedestal.

MODE-LOCKED FIBRE LASERS

Semiconductor saturable absorber mode-locked fibre laser

Optical spectrum of mode locked laser. Residual etalon modulation apparent.

, Ki

SINGLE FREQUENCY LASERS

Combination of wide gain bandwidth, spatial hole burning & long fibre cavities generally gives rise to multi-longitudinal-mode operation.

To achieve single mode or single frequency operation, two main approaches have been used:

- Operate laser in travelling-wave mode (no spatial hole burning)
 Advantages:
 - Can incorporate tuning elements
 - Can use high efficiency, low concentration fibres
 - Very narrow ultimate linewidth (Shawlow Townes limit <'1Hz)

 Disadvantages:
 - Susceptible to mode hopping
- 2. Reduce cavity length and include frequency selective feedback elements (gratings) to maximize longitudinal mode loss discrimination.

 Advantages:
 - "Rugged" single mode operation without mode-hopping
 - Simple construction with fibre gratings

Disadvantages:

- Limited tuning potential
- High concentration fibres required (reduced efficiency)

SINGLE FREQUENCY LASERS

Travelling-wave fibre laser

Iwatsuki et al. Electronics Letters, 26(4), Nov. 1990.

Experimental set-up of travelling-wave fibre ring laser.

Max output 1mW for 70mW pump power at 1480nm. Self heterodyne line width measurement ≈ 1.4kHz (narrowest line fibre laser).

SINGLE FREQUENCY LASERS

Fibre grating fibre laser

Ball & Morey, Proc OFC '92, paper WA3, p.97, San Jose, Feb 1992.

source source λ_1 λ_2 (b)

Experimental grating-fibre-laser/amplifier configuration.

(a) single laser, (b) two lasers

Output spectra of two lasers (a) & (b) showing wavelength tuning by stretching. Single laser operation (c)

FIBRE GRATING FABRICATION

- Refractive index perturbations formed in GeO₂ doped fibre cores by exposure to U.V. radiation around 240nm.
- Sources of suitable U.V. radiation include KrF Excimer lasers,
 frequency doubled Argon Ion lasers.
- Interference of UV beams in a fibre core produces longitudinal indexperturbation gratings with wavelength selective reflection characteristics.

Schematic grating reflection characteristic

Narrowest linewidth achieved < 10GHz FWHM. Highest reflectivity > 99%.

UPCONVERSION LASERS

- Multi-stage pumping achieved by absorption of more than one pump photon in a dopant ion. Gives rise to upconversion in frequency between pump light and laser emission
- Single or multiple wavelength pumping
- Fibre based on low phonon energy host glasses (eg Fluorides) usually required to ensure long lifetimes of multiple levels
- Emission in the visible spectrum

Upconversion schematic

UPCONVERSION LASERS

Blue upconversion Tm³⁺-doped ZBLAN fibre laser

Grubb et al., Electronics Letters, 28(13), p.1243, June 1992

Tm³⁺ energy level diagram showing upconversion pumping scheme

Laser characteristic for 1.12 μ m pumped Tm³⁺ upconversion fibre laser

FIBRE SUPERFLUORESCENT SOURCES

Principle:

- Very high gain amplifier > 30 dB
- Substantial amplification of spontaneous emission in a single pass of the amplifier - Amplified Spontaneous Emission (ASE)
- ASE undergoes single-pass or double-pass of amplifier. No round-trip feedback

Other terms (same meaning):

Superfluorescence, Superradiance, Superluminescence

Configurations:

FIBRE SUPERFLUORESCENT SOURCES

Morkel et al, IEEE Photonic Tech Lett., 4(7), p.706, 1992 Superfluorescent source characteristics

Nd-doped fibre superfluorescent source configuration

Nd-doped fibre superfluorescent source output characteristic

FIBRE SUPERFLUORESCENT SOURCES

Nd-doped fibre superfluorescent source spectral characteristics

Fibre emission spectrum (fluorescent)

Fibre superfluorescent spectrum (5mW output power)

DOUBLE CLAD FIBRE LASERS

"Cladding pumping" with multi-stripe laser diodes

- Quasi longitudinal pumping.

General fibre cross section-section

Attractions:

- Allows higher power laser diodes to be used for high output power
- Simplified pump coupling (direct butting to LD)

Problems:

- Difficult fibres to make
- Higher background loss fibres
- Fibres not completely compatible with standard telecoms fibres
- Limited application for 3-level systems

DOUBLE CLAD FIBRE LASERS

Neodymium-doped lead-silicate, multi-clad fibre laser

Minelly et al, paper CWE6, Proc. CLEO '92, Anaheim, Ca.

Fibre construction

Laser output power (W)

Fibre laser output characteristic

DOUBLE CLAD FIBRE LASERS

Erbium/Ytterbium double-clad-silica fibre laser

- Pump at 962 nm with multistripe laser diode
- Pump absorption in Yb with resonant energy transfer to Er.
 Lasing at 1.54µm due to gain in erbium.
- Silica core and inner cladding. Polymer outer cladding.

Laser output power (mW)

Pump power (mW)

Er/Yb doped fibre laser characteristic

FIBRE LASER THEORY

Fibre laser output can be described by rate-equations for population inversion and laser photon density

4-level laser (e.g. Nd-doped)

For fast non-radiative decay rates (relative to fluorescent lifetime):

$$\frac{dN_3}{dt} = \frac{I_p \sigma_p}{h v_p} (N_T - N_3) - \frac{N_3}{\tau_f} - c \phi_1 \sigma_{32} N_3$$

$$\frac{d\phi_1}{dt} = c \phi_1 \sigma_{32} N_3 - \frac{\phi_1}{\tau_c} + S$$

laser output:

$$P_{\text{out}} = \phi_1 h v_1 c A$$

where:

 I_p , σ_p , $h\nu_p$ = pump intensity, absorption cross section & photon energy σ_{32} = emission cross section, r_f = fluorescent lifetime, A = core area S = spontaneous emission component, $h\nu_1$ = laser photon energy

FIBRE LASER THEORY

3-level laser (e.g. Er-doped)

$$\frac{dN_{2}}{dt} = W_{p} (N_{T} - N_{2}) - \frac{N_{2}}{\tau_{f}} - c\phi_{1}[N_{2} (\sigma_{21} + \sigma_{12}) - \sigma_{12}N_{T}]$$

$$\frac{d\phi_{1}}{dt} = c\phi_{1}[N_{2} (\sigma_{21} + \sigma_{12}) - \sigma_{12}N_{T}] - \frac{\phi_{1}}{\tau_{c}} + S$$

laser output:

$$P_{out} = \phi_1 h v_1 c A$$

where:

 I_p , σ_p , hv_p = pump intensity, absorption cross section & photon energy σ_{21} = emission cross section, σ_{12} = absorption cross section r_f = fluorescent lifetime, A = core area, hv_l = laser photon energy S = spontaneous emission component

FIBRE LASER THEORY

Laser input/output characteristic

Solution of 3-level rate equations in equilibrium gives a general laser characteristic for low loss cavities (applicable for 3 & 4-level lasers):

$$P_1^{out} = \frac{T}{T+L}hv_1\frac{1}{1+\alpha}A\left(\frac{(1+\alpha)\eta P_p}{hv_pA} - \frac{(L+T)+2\alpha\sigma_{21}N_TI}{2\tau_f\sigma_{12}}\right)$$

where:
$$\alpha = \sigma_{12}/\sigma_{21}$$

= 0 for 4-level system, 1 for 3-level

T = laser output mirror transmission

L = other optical losses in the cavity

A = fibre core area, I = fibre length

 N_T = dopant concentration, η = pump quantum efficiency

Laser threshold power:

$$P_p^{th} = h v_p A \frac{((L+T) + 2\alpha \sigma_{21} N_T I)}{2(1+\alpha) \eta \tau_f \sigma_{21}}$$

laser slope efficiency:

FIBRE LASERS

Summary (1)

Research and development of fibre lasers has seen a resurgence in activity over the past 7 years due primarily to:

- Availability of high brightness laser-diode pump sources
- Development of high NA low-loss doped silica fibres.

Main features of doped fibres which make them attactive as gain media:

- Small active volume give high gain
 - Low threshold lasers
 - Efficient Q-switched lasers
 - Superfluorescent sources
 - Up-conversion lasers
 - Wide tuning range lasers
 - Simple cavity constructions
- Broad emission and absorption lineshapes
 - Low sensitivity to pump wavelength
 - Wide tuning ranges
 - Short pulse mode-locking
 - Low-coherence fluorescent and superfluorescent sources

FIBRE LASERS

Summary (2)

- Preform engineerring allows high power multistripe laser diode pumps to be used.
- Output characteristics well described by rate-equation theory
- Applications in:
 - optical sensors (gyros, temperature sensors)
 - Fibre diagnostics (OTDR)
 - Environmental sensing (eg. gas sensors)
 - Communications (single-frequency sources, soliton sources)
 - Spectroscopy (mode-locked sources)

etc. etc.