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OVERVIEW:

L History of fibre laser development.

° Fundamentals and key features of fibre lasers - fibre amplifiers with

feedback
o Review of applications and laser wavelengths
o Continuous wave laser configurations

Power and spectral characteristics

° Other configurations
Tunable lasers
Q-switched lasers
Mode-locked lasers
Single-frequency lasers
Upconversion lasers

Superfluorescent sources

® Some theory

L Summary



HISTORY OF FIBRE LASER DEVELOPMENT 1961-1985

1961 E.Snitzer: "Proposed fiber cavities for Optical Masers",
J.Appl.Phys., Jan. 1961.
Advantages of strong mode selection and high gain identified.

Problem: How to pump?

1964 E.Snitzer: First glass lasers and muitimode fibre lasers.

1964 E.Snitzer: Neodymium-doped fibre amplifier

1965 E.Snitzer: First Er (co-doped with Yb) glass laser.

1969 E.Snitzer: Monomode Nd-doped fibre amplifier (low NA)

1973 Stone & Burrus: Longitudinally LED pumped Nd-doped fibre
laser.

1985 Southampton University:

High NA (=0.2) rare-earth-doped fibres
Nd & Er-doped fibre lasers pumped with laser diodes

1987 Southampton University: Er-doped fibre amplifier



FIBRE LASER WAVELENGTHS

Silica fibres and Fluoride fibres
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BULK-OPTIC AND FIBRE LASER CONFIGURATIONS
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Threshold for laser action obtained when Gain G is such that:
G(1-L)=1

where L = optical losses seen in one "round-trip" of the laser cavity



KEY FEATURES OF FIBRE LASERS
° Small modal volume gives high gain

o Broad emission and absorption lineshapes
- wide tunability
- short pulse mode-locking

- wide tolerance of pump wavelength compared with crystal

lasers
] Longitudinal geometry gives minimal thermal effects
° Low (potential) cost

High manufacturing yield gain medium (doped fibre)

Simple and rugged constructions

] Compatibility with fibre transmission media

o Strong mode selection



SOURCES FOR USE IN:

Communications:
- single frequency lasers
- soliton sources

- fibre diagnostics

OTDR type sensors:

- Q-switched lasers at 1.06ym and 1.55um

Environmental sensing:
- specific wavelength sources for gas absorption

lines. eg. 1.66um Tm3* for Methane absorption.

Interferometric sensors, eg fibre gyros:

- superfluorescent sources



CONTINUOUS WAVE (CW) FIBRE LASER CONFIGURATIONS
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CW FIBRE LASER OUTPUT CHARACTERISTICS

Barnes et al, Opt. Comm, 82(3), p.282, 1991
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CW FIBRE LASER OUTPUT CHARACTERISTICS
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TUNABLE LASERS

Tunable neodymium-doped fibre laser

L.Reekie et al., Journal of Lightwave Technology, LT-4(7), July 1986.
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TUNABLE LASERS

High power tunable erbium-doped fibre laser

R.Wyatt, Electronics Letters, 25(22), Oct 1989
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Q-SWITCHED LASERS

Principle:
Population inversion allowed to build up in a fibre laser amplifier
medium by preventing feedack (holding cavity in a high-loss

state)

Rapidly switching the cavity to a low-loss state allows rapid

increase in the laser intensity and saturation of the gain medium

to produce a high power pulse.

Q-switched laser schematic:
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Q-SWITCHED LASERS

Features of Q-switched lasers:

® Energy stored in the gain medium due to the long

lifetimes associated with the rare-earth media.

® Energy extracted in a short time scale to produce a pulse
output power orders of magnitude (_ 10°) greater in power

than that of a CW laser.

L Pulse durations = 1ns demonstrated for Nd doped fibres

= 10ns for Er doped fibres.

[ Repetition rate determined by the fluorescence time

constant of the material.

° Applications in Optical Time Domain reflectometry (OTDR)

and time division muitiplexed sensor systems.



Q-SWITCHED LASERS

Q-switched Neodymium-doped fibre laser

Morkel et al, IEEE Photonics Tech. Lett., 4(6), p.545, 1992
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Q-SWITCHED LASERS

Q-switched Neodymium-doped fibre laser
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Q-SWITCHED LASERS

Q-switched Neodymium-doped fibre laser
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Q-SWITCHED LASERS
Q-switched erbium-doped fibre laser (Myslinski et al, IEEE Jounal of Quantum

Electronics, 28(1), 1992.
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MODE-LOCKED LASERS
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Fabry-Perot mode spectrum

Randomly phased modes — noise

Phased modes — short pulses. Pulse duration ét ~ 1/AA (~1ps)

Methods to lock phases:

Active
AM - Modulate cavity loss at cavity round trip frequency (or multiple)
FM - modulate cavity phase at cavity round trip frequency (or multiple)
Passive

Introduce non-linear loss component (saturable absorber) into cavity

Passive mode-locking generally gives shorter pulses than active mode-locking

for fibre lasers.



MODE-LOCKED LASERS

Examples of mode-locked fibre laser configurations
Figure-8 laser
short pulse
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Short pulse operation (high peak power) = low loss
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MODE-LOCKED LASERS

Semiconductor saturable absorber mode-locked fibre laser
Loh et al, IEEE Photonics Tech. Lett, 5(1), Jan 1993

Principle:  Saturation of absorption in a semiconductor material is used to
provide a non-linear loss mechanism which favours short puise

and hence mode-locked operation. Fast carrier dynamics give

rise to ultra-short pulses.

Laser configuration
980 nm pump

D_*_ WDM L\/ . /

Saturable Absorber Poped Fibre Output
Saturable absorber construction
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InP 500A
i — MQw 1 InP 65A —
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MODE-LOCKED LASERS

Semiconduétor saturable absorber mode-locked fibre laser

Pulse characteristic measured with fast InGaAs detector (bandwidth

limited). After pulsing due to detector ringing.

Autocorellation trace showing pulse duration =~ 1ps with slight pedestal.




MODE-LOCKED FIBRE LASERS

Semicondudtor saturable absorber mode-locked fibre laser
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Optical spectrum of mode locked laser. Residual etalon modulation

apparent.



SINGLE FREQUENCY LASERS

Combination of wide gain bandwidth, spatial hole burning & long fibre
cavities generally gives rise to multi-longitudinal-mode operation.
To achieve single mode or single frequency operation, two main approaches

have been used:

1. Operate laser in travelling-wave mode (no spatial hole burning)
Advantages:
- Can incorporate tuning elements
- Can use high efficiency, low concentration fibres
- Very narrow ultimate linewidth (Shawiow Townes limit <1Hz)
Disadvantages:

- Susceptible to mode hopping

2. Reduce cavity length and include frequency selective feedback
elements (gratings) to maximize longitudinal mode I‘oss discrimination.
Advantages:

- "Rugged” single mode operation without mode-hopping
- Simple construction with fibre gratings

Disadvantages:

- Limited tuning potential

- High concentration fibres required (reduced efficiency)



SINGLE FREQUENCY LASERS
Travelling-Wave fibre laser

Iwatsuki et al. Electronics Letters, 26(4), Nov. 1990.
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SINGLE FREQUENCY LASERS

Fibre grating fibre laser

Ball & Morey, Proc OFC ‘92, paper WAS3, p.97, San Jose, Feb 1992,
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FIBRE GRATING FABRICATION

° Refractive index perturbations formed in GeO, doped fibre cores by
exposure to U.V. radiation around 240nm.

L Sources of suitable U.V. radiation include KrF Excimer lasers,
frequency doubled Argon lon lasers.

| Interference of UV beams in a fibre core produces longitudinal index-

perturbation gratings with wavelength selective reflection

characteristics.
240nm 240nm

x 4
fronts /%&A\\

/ ‘Ge02

interference doped
pattern fibre core
Grating writing technique

Reflectivity

Wavelength
Schematic grating reflection characteristic

Narrowest linewidth achieved < 10GHz FWHM. Highest reflectivity > 99%.



UPCONVERSION LASERS

L Multi-stage pumping achieved by absorption of more than one pump

photon in a dopant ion. Gives rise to upconversion in frequency

between pump light and laser emission

| Single or multiple wavelength pumping

[ Fibre based on low phonon energy host glasses (eg Fluorides) usually

required to ensure long lifetimes of multiple levels

o Emission in the visible spectrum

oz JRLT w
wa—rp >
A 4

Upconversion schematic



UPCONVERSION LASERS
Blue upcom)ersion Tm3*-doped ZBLAN fibre laser

Grubb et al., Electronics Letters, 28(13), p.1243, June 1992
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FIBRE SUPERFLUORESCENT SOURCES

Principle:

° Very high gain amplifier >30 dB

° Substantial amplification of spontaneous emission in a single pass of
the amplifier - Amplified Spontaneous Emission (ASE)

L ASE undergoes single-pass or double-pass of ampilifier. No round-trip

feedback

Other terms (same meaning):

Superfluorescence, Superradiance, Superluminescence

Configurations:
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Q
output output

3-level

— % Q ,=>
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PSS

output anti-
reflection



FIBRE SUPERFLUORESCENT SOURCES

Morkel et al, IEEE Photonic Tech Lett., 4(7), p.706, 1992

Superfluorescent source characteristics
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Nd-doped fibre superfluorescent source configuration

output power (mWwW) spectral width (nm)

6 10
exponential
extrapolation

pump power (mW)

Nd-doped fibre superfluorescent source output characteristic



FIBRE SUPERFLUORESCENT SOURCES

Nd-doped fibre superfluorescent source spectral characteristics
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DOUBLE CLAD FIBRE LASERS

"Cladding pumping” with multi-stripe laser diodes

- Quasi longitudinal pumping.

General fibre cross section-section

//// «———— Outer cladding

doped core

inner cladding

Attractions:
° Allows higher power laser diodes to be used for high output
power

o Simplified pump coupling (direct butting to LD)

Problems:
° Difficult fibres to make
L Higher background loss fibres
® Fibres not completely compatible with standard telecoms fibres
°

Limited application for 3-level systems



DOUBLE CLAD FIBRE LASERS

Neodymium-doped lead-silicate, multi-clad fibre laser
Minelly et al, paper CWES, Proc. CLEO '92, Anaheim, Ca.
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Fibre laser output characteristic



DOUBLE CLAD FIBRE LASERS

Erbium/Ytterbium double-clad-silica fibre laser

L Pump at 962 nm with muitistripe laser diode

® Pump absorption in Yb with resonant energy transfer to Er.

Lasing at 1.54um due to gain in erbium.

° Silica core and inner cladding. Polymer outer cladding

Laser output power (mW)
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Er/Yb doped fibre laser characteristic



FIBRE LASER THEORY

Fibre laser oUtput can be described by rate-equations for population inversion

and laser photon density

4-level laser (e.g. Nd-doped)

} \H HR Output
, coupler
N3

Laser photon density = &,

Cavity photon lifetime = T,

NT' N3

For fast non-radiative decay rates (relative to fluorescent lifetime):

dN_., _ Ipap _ _ N, :
d¢ ¢
—d"él' = C¢,0,,N, - ‘;i +S

c

laser output:
P,,. = ¢,hv,cA

where:
l,, 0,, hv, = pump intensity, absorption cross section & photon energy
03, =emission cross section, r;=fluorescent lifetime, A =core area

S = spontaneous emission component, hv, = laser photon energy



FIBRE LASER THEORY

3-level laser (e.g. Er-doped)
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d: = W, (N,-N,) - “{.i = CPyN, (05;,10,,) — 01Ny
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laser output:

where:
lp» 0, hv, = pump intensity, absorption cross section & photon energy
0,1 =emission cross section, 0,,=absorption cross section

r;=fluorescent lifetime, A=core area, hv, = laser photon energy

S = spontaneous emission component



FIBRE LASER THEORY

Laser input/output characteristic

Solution of 3-level rate equations in equilibrium gives a general laser

characteristic for low loss cavities (applicable for 3 & 4-level lasers):

out T 1 (1+a) ﬂPP (L+T) +2¢021N1'1
T+L l+ea hv A 2t,0,,
where: a = 04,/0, = O for 4-level system, 1 for 3-level

T = laser output mirror transmission

L = other optical losses in the cavity

A = fibre core area, |= fibre length

N; = dopant concentration, 7= pump quantum efficiency

Laser threshold power:

((L+T) + 2a0,,N,1)

P = hy
P A2 (1+a) N7T.0,,
laser slope efficiency:
V; T
S = _'l
5, T

Laser

output

power

Slope
efficiency

Pump
‘ power



FIBRE LASERS
Summary (1)
Research and development of fibre lasers has seen a resurgence in activity

over the past 7 years due primarily to:

° Availability of high brightness laser-diode pump sources

] Development of high NA low-loss doped silica fibres.

Main features of doped fibres which make them attactive as gain media:

® Small active volume give high gain
- Low threshold lasers
- Efficient Q-switched lasers
- Superfluorescent sources
- Up-conversion lasers
- Wide tuning range lasers

- Simple cavity constructions

® Broad emission and absorption lineshapes
- Low sensitivity to pump wavelength
- Wide tuning ranges
- Short pulse mode-locking

- Low-coherence fluorescent and superfiuorescent sources



FIBRE LASERS

Summary (2)

® Preform engineerring allows high power multistripe laser diode

pumps to be used.

® Qutput characteristics well described by rate-equation theory

® Applications in:
- optical sensors (gyros, temperature sensors)
- Fibre diagnostics (OTDR)
- Environmental sensing (eg. gas sensors)
- Communications (single-frequency sources, soliton sources)
- Spectroscopy (mode-locked sources)

etc. etc.



