
 

Sedimentary ancient DNA from Lake Skartjørna, Svalbard: 
Assessing the resilience of arctic flora to Holocene climate 
change  

Inger Greve Alsos,
1

 Per Sjögren,
1

 Mary E Edwards,
2,3 

Jon Y Landvik,
4

 Ludovic Gielly,
5,6

 

Matthias Forwick,
7

 Eric Coissac,
5,6 

Antony G Brown2, Leif V Jakobsen,
5

 Marie K Føreid
1

 and 

Mikkel W Pedersen
8 

 

Abstract  
Reconstructing past vegetation and species diversity from arctic lake sediments can be challenging because of low pollen and plant 

macrofossil concentrations. Information may be enhanced by metabarcoding of sedimentary ancient DNA (sedaDNA). We developed a 

Holocene record from Lake Skartjørna, Svalbard, using sedaDNA, plant macrofossils and sediment properties and compared with published 

records. All but two genera of vascular plants identified as macrofossils in this or a previous study were identified with sedaDNA. Six additional 

vascular taxa were found, plus two algal and 12 bryophyte taxa by sedaDNA analyses, which also detected more species per sample than 

macrofossil analysis. A shift from Salix polaris-dominated vegetation with Koenigia islandica, Ranunculaceae spp. and the relatively 

thermophilic species Arabis alpina and Betula to Dryas octopetala-dominated vegetation ~6600–5500 cal. BP suggests a transition from moist 

conditions 1–2°C warmer than today to colder/drier conditions.[AQ: 1] This coincides with a decrease in runoff, inferred from core lithology, 

and an independent record of declining lacustrine productivity. This mid-Holocene change in terrestrial vegetation is broadly coincident with 

changes in records from marine sediments off the west coast of Svalbard. Over the Holocene sedaDNA records little floristic change, and it 

clearly shows species persisted near the lake during time intervals when they are not detected as macrofossils. The flora has shown resilience 

in the presence of a changing climate, and, if future warming is limited to 2°C or less, we might expect only minor floristic changes in this 

region. However, the Holocene record provides no analogues for greater warming.  
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Introduction  

Future global warming is expected to be strongest in the Arctic, with summer temperatures likely 2–4°C (or more) higher than today and 

sea-ice cover drastically reduced (Collins et al., 2013; Xu et al., 2013). Our understanding of likely responses to future environmental 

change is aided by studies of the past, such as the reconstruction of long-term vegetation dynamics and species diversity patterns in 

relation to past climate change. While most arctic vegetation reconstructions to date have been based on pollen and macrofossils (e.g. 

Bennike, 2013; Bigelow, 2013; Kienast, 2013), the potential of a molecular approach has recently been demonstrated 

(Anderson-Carpenter et al., 2011; Willerslev et al., 2003, 2014). Analysis of sedimentary ancient DNA (sedaDNA) augments information 

on past species composition derived from conventional techniques (Giguet-Covex et al., 2014; Jørgensen et al., 2012; Pansu et al., 2015; 

Parducci et al., 2012b; Pawlowska et al., 2014). In the Arctic, cold conditions favour good preservation of material, and small floras allow 

the development of comprehensive molecular reference libraries (Sønstebø et al., 2010), both of which contribute to effective results. 

However, further exploration of the method is required (Pedersen et al., 2015), particularly in relation to lake sediments, which are 

important palaeo-archives in the Arctic (e.g. Kaufman et al., 2009; Over-peck et al., 1997).  

Pollen analyses of arctic sediments can show compositional changes in herb-dominated tundra vegetation (e.g. Cwynar, 1982; Fredskild, 

1973), but palynologists must deal with the low pollen concentrations that result from low pollen productivity (Lamb  
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and Edwards, 1988). Indeed, in the High Arctic, pollen concentrations may be too low to provide sufficient material for reliable 

reconstructions (Birks, 1991; Rozema et al., 2006). Pollen grains are variably resolved taxonomically, particularly in the Arctic, where taxa 

in several diverse groups are barely distinguishable below family level (e.g. Poaceae, Cyperaceae, Salicaceae). In contrast, macrofossil 

records can be more floristically informative, as they are often identifiable to genus or species level, and they are also more representative 

of the local vegetation (Birks, 2003; Birks and Birks, 2000). However, deposition and preservation of identifiable plant remains vary 

considerably among species and sites.  

How vegetation is represented by sedaDNA is less well understood. Yoccoz et al. (2012) demonstrated that the amount of DNA  

(i.e. sequence abundance) in modern soil samples was related to local above-ground biomass. Noisy but significant linear relationships 

showed an approximate 1:1 relationship for graminoids, whereas woody taxa were under-represented and forbs over-represented in the 

DNA. These patterns may reflect the absolute amount of DNA in the soil, as determined by litter turnover rate, lignin content  and 

root:shoot ratio (Yoccoz et al., 2012). To date, we have no information as to whether such a relationship holds with DNA in lake sediments.  

Several studies based on a range of depositional environments, different floras and varying levels of taxonomic resolution have 

compared sedaDNA and pollen. The conclusions are not readily generalized; results tend to show higher taxonomic resolution in sedaDNA 

but more taxa identified overall in pollen. A generally low floristic overlap between pollen and sedaDNA (Jørgensen et al., 2012; Parducci 

et al., 2012b, 2013; Pedersen et al., 2013) may indicate that sedaDNA is of local origin (Haile et al., 2007, 2009; Willerslev et al., 2007), 

whereas in the localities studied, pollen is probably derived from the regional vegetation. Indeed, comparisons of sedaDNA and plant 

macrofossils show higher taxonomic overlap, which would be expected if both reflect local sources (Jørgensen et al., 2012; Parducci et al., 

2012b; Pedersen et al., 2013; Porter et al., 2013), with one exception (Parducci et al., 2015).  

The sedaDNA technique potentially has several advantages: a standardized and objective mode of identification, high taxonomic 

resolution and (when techniques are well established) more time-efficient production of results. The detailed floristic information retrieved 

(as with macrofossils) can contribute to, for example, biodiversity estimates and interpretations of environmental changes using indicator 

taxa. An effective exploration of the ability of sedaDNA to reveal past plant community composition should ideally be based on floras that 

are well known and should employ careful comparisons across levels of taxonomic resolution. The Svalbard archipelago is an ideal study 

system to investigate the potential of sedaDNA. The majority of the flora is available in a DNA taxonomic reference library (Sønstebø et al., 

2010), assuring reliable assignment to taxon. The number of vascular plant species is low (176), and plant distributions, thermal 

requirements and geological preferences are well known (Alsos et al., 2015; Elvebakk, 1982, 1989). Potential modern vegetation analogues 

are well described from the archipelago (Elvebakk, 1994, 2005; Klimešová et al., 2012).  

Spitsbergen, the largest island in the Svalbard archipelago, was almost completely glaciated at the Last Glacial Maximum (Hormes et al., 

2013; Ingólfsson and Landvik, 2013; Landvik et al., 1998). The fjords on western Spitsbergen were deglaciated between c. 14,100 and 

11,200 cal. BP (e.g. Baeten et al., 2010; Forwick and Vorren, 2009; Hald et al., 2004; Mangerud et al., 1992). While late-glacial vegetation 

records are lacking from this region (reviewed in Birks et al., 1994), a number of  Holocene palaeoecological records (9000 cal. BP and 

onwards) are available (see Bernardova and Kosnar, 2012). Based on a plant macrofossil record from the same lake that is the subject of 

this study, Birks (1991) concluded that while vegetation cover has decreased over time, the flora has not changed substantially in the last 

8000years, suggesting long-term stability in species composition. This contention provides an interesting target to assess using the 

sedaDNA approach.  

Lake Skartjørna was chosen because of the detailed plant macrofossil record mentioned above, which covers most of the Holocene and 

includes several species outside their present geographical distribution (Arabis alpina, Salix herbacea, Harrimanella hypnoides; Birks, 

1991). In addition, the depositional environment of this site is well studied (Holmgren et al., 2010; Landvik et al., 1987). The main goals 

for this study were to (1) compare taxonomic resolution, taxonomic overlap and detection success of the sedaDNA and plant macrofossil 

records; (2) use sedaDNA data, plant macrofossil and sediment analyses to infer past environmental change; (3) consider what Holocene 

vegetation change can tell us about the impact on vegetation of expected future warming in the High Arctic; and (4) explore whether 

sedaDNA increases our understanding of past flora and vegetation when combined with other proxy approaches.  

Methods  

Study site  

Lake Skartjørna (previously named Skardtjørna) is located on the west coast of Spitsbergen (61m.a.s.l., Figure 1). It is dammed by a 

prominent raised beach ridge that forms the postglacial marine limit at 65m.a.s.l., and it has been cut off from the sea since formation about 

13,000 cal. BP (Landvik et al., 1987). An almost circular 7.5m deep basin east of the centre constitutes the deepest part of the lake. The 

lake area is 0.10km
2 and the total catchment is 1.24km2 (Holmgren et al., 2010). Air photos from recent decades 

show the lake level fluctuating by 1–2m (Figure 1). The site was visited for coring from lake ice in March 

2013 and then again on 9 September 2015 to record the flora and geology of the catchment area. The catchment of the lake is located 

on the South facing thrustal scarp of the junction between the Southwestern Basement Province dominated by metamorphic rocks (phyllites 

and quartzite) and the post Caledonian orogeny lithologies that make up the bedrock slopes draining into the lake (Hjelle et al., 1986; Ohta 

et al., 1991; Dallmann, 2015).[AQ: 2] The northern bedrock slopes are on the Neoprotozoic Løvliebreen formation of 

psammo-pelitic phyllite, while the southern slope is on limestone with magnetite and haematite layers of the Malmberget unit. 

The north eastern bedrock free-face also revealed a zone of mineralization and enhanced weathering. However, parts of the 

northern and all of the southern bedrock slopes are obscured by ice-cored and vegetation-free morainic ridges that contain a 

wider range of lithologies including marbles, shales, siltstones, dolomitic limestone and sandstones predominantly of 

carboniferous age. These lateral moraines also contain a sand and silt-rich matrix which contributes sediment directly into the 

lake. It is also pertinent that most of these slopes are steep with free faces above steep debris-cones. There is therefore in this 

small catchment a direct coupling between slope conditions and sediment delivery into the lake, making it highly sensitive to 

changes in snowmelt runoff, active layer instability and vegetation cover. Although not observable, it is likely that the upper 

raised beach ridge that bounds the lake to the west overviews a terminal moraine. The axial drainage of the catchment to the 
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lake is from the drainage from Tjørnskaret pass (Figure 1), which has formed a fan delta along the northeast shore of the lake. 

A small component of clastic sediment is also expected to derive from lakeshore erosion and wind transport.  

The site is within the bioclimatic zone B (northern arctic tundra zone, Elvebakk, 2005; Walker et al., 2005). The catchment area 

is characterized by polygon features and vegetation with  
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Figure 1. The arctic archipelago Svalbard (with the 

exception of the island Bjørnøya to the south) and the Lake 
Skartjørna.  

overall only 10% cover, except locally in more stable sites where 

there is up to 100% vegetation. The vegetation mosaic comprises 

wet sites dominated by bryophytes, unstable mesic sites domi-

nated by Saxifraga aizoides and/or the trailing form of Saxifraga 

oppositifolia; stable mesic sites dominated by Salix polaris, Silene 

acaulis and Bistorta vivipara; and, locally, dry Dryas octopetala 

heath. Other common species are Saxifraga cespitosa, Oxyria 

digyna, Luzula nivalis, Luzula confusa and Papaver dahlianum. 

There are scattered occurrences of Puccinellia vahliana, 

Saxifraga svalbardensis, Micranthes tenuis, Cochlearia groen-

landica, Sagina nivalis, Poa alpina, P. pratensis, Cerastium arcti-

cum and C. regelii. In the upper part of the catchment area, at 

Tjørnskaret, patches of 100% bryophyte cover with 10% cover of 

Huperzia arctica occur, indicating slightly warmer growth condi-

tions (Alsos and Brown, 2015, personal observation). The annual 

precipitation measured at Isfjord Radio, 12 km north of the lake 

(Figure 1), is 320–470 mm (Førland et al., 2011). Mean July and 

February temperatures in the period 1961–1990 were 4.8°C and 

−12.4°C, respectively, with an annual mean of −5.1°C (http:// 

eklima.met.no ).  

Sediment coring and sub-sampling  

Ground-penetrating radar was used to locate the deepest sediment 

package (77.96167° N, 13.81958°E). A 5.3 m sediment core 

(7.40–12.70m below ice surface) was retrieved using a Nesje 

corer (Nesje, 1992) loaded with a 6m long, 10cm diameter PVC 

tube. The upper 65cm of the core consisted of soft/liquid sedi-

ments that had to be discarded in the field. The core was split into 

three sections to facilitate transport and handling. Core tops were 

plugged and taped immediately to prevent contamination. When 

splitting the core, some sediment was pushed out under pressure, 

and the lowermost 5 cm from the uppermost section was lost (sec-

tion C, 166cm below sediment surface). In order to account for 

this, a 5cm hiatus was added (166–171cm) and the applied depths 

of the core segment were adjusted upwards. All depths are given 

as centimetres below sediment surface.  

The core was kept at 1–10°C during transport and subsequently 

stored at 4°C at the University of Tromsø (UiT). It was later 

transported to the Centre for GeoGenetics, Copenhagen Uni-

versity, where it was split in half. From one half, sub-samples of 

8g were taken using sterile disposable syringes. The core was 

returned to Tromsø, where the same core half was sub-sampled 

for radiocarbon dating, loss-on-ignition (LOI), grain-size analysis 

and plant macrofossil analysis. The second half was kept intact as 

a reference core and exclusively used for line-scan imaging and 

non-destructive x-ray fluorescence core scanning.  

Radiocarbon dating and chronology  

Twelve samples of plant macrofossils were AMS radiocarbon 

dated at the Poznan Radiocarbon Laboratory of the Adam Mick-

iewicz University, Poland (Table 1). Calibration was done using 

IntCal13 (Reimer et al., 2013), and the age–depth relationship was 

modelled by Bayesian statistics using the program MacBacon 2.2 

with default settings (Blaauw and Christen, 2011). The 

sedimentation rate was based on the age–depth relationship and 

rounded off to closest 0.1 mm/yr.  

Lithological analyses  

Colour line-scan images with a resolution of approximately 70 

µm were acquired using a Jai L-107CC 3 CCD RGB Line Scan 

Camera installed on an Avaatech XRF core scanner. The sediment 

surface was subsequently covered with 4-µm-thick Ultralene foil, 

and qualitative element-geochemical analyses were carried out 

with the Avaatech XRF core scanner. The measurements were 

carried out at 10 mm steps (each step covered 10 mm down-core 

and 12 mm cross-core). Instrument settings were 10kV, 1000µA, 

10s count time and no filter. Data processing was performed using 

WinAxil version 4.5.6. The results are presented as ratios of 

selected elements divided by the most conservative element, Ti, to 

minimize the influence of water and matrix effects (Tjallingii et 

al., 2007; Weltje and Tjallingii, 2008). Scanning failed for a part 

of the core (319–341cm), and re-scanning revealed problems with 

the calibration; we thus had to exclude this part to avoid risks of 

bias.  

LOI and water content were measured using 10g sub-samples 

every 4cm, with intervals occasionally adjusted in relation to 

lithological boundaries. Samples were weighed, dried overnight at 
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105°C, weighed again, combusted for 3h at 550°C, allowed to 

cool in a desiccator and re-weighed. Water content is based on the 

dry weight and expressed as a percentage of the wet (original) 

weight. LOI is based on the post-ignition weight and expressed as 

a percentage of the dry weight (see Heiri et al., 2001).  



Table 1. Radiocarbon dates for the Lake Skartjørna 

sequences shown with their 1σ error, calibrated weighted (W) 

mean, calibrated median and calibrated 95% confidence age 
ranges.  

 
Radiocarbon ages were calibrated (cal. BP) following IntCal13 

(Reimer et al., 2013) and an age–depth model was obtained with 

the software Bacon (Blaauw and Christen, 2011).  

Approximately 0.5 cm
3 of sediment was sub-sampled 

for grain-size analysis from the same intervals as for 

LOI. The analysis was carried with a Beckman 

Coulter Laser Particle Size Analyser (LS 13320) at 

the geological laboratory at UiT. The results were 

analysed using Gradistat v8 (Blott and Pye, 2001), 

and presented as fractions of clay (<2µm), fine silt 

(2–8µm), medium silt (8–16µm), coarse silt 

(16–63µm) and sand (63–500µm). Although small 

stones (gravel sized particles) were observed 

occasionally in the sediments, no such particles 

were recorded, probably because of the small 

sample size.  

DNA extraction and amplification  

DNA was extracted from 40 samples and 15 negative controls at 

the ancient DNA (aDNA) dedicated laboratories at the Centre for 

GeoGenetics. For whole genome extraction, we used PowerMax 

Soil DNA Isolation kit (MO BIO Laboratories, Carlsbad, CA, 

USA), following the manufacturer’s instructions, with the 

exception that the centrifuge steps were done at 4600 r/min, and 

samples were placed in a Fast-Prep for 2 × 20 s at 4.0 m/s at step 2. 

At step 4, samples were incubated at 65°C for 30 min while 

continuously rotated. All samples were finally recovered in 3 mL 

elution buffer.  

All PCRs were performed in an aDNA dedicated room at the 

Laboratoire d’ECologie Alpine, University Grenoble Alpes, using 

the g and h universal plant primers for the short and variable P6 

loop region of the chloroplast trnL (UAA) intron (Taberlet et al., 

2007), and including a unique 8bp long flanking sequence (tag) at 

the 5′ end to allow parallel sequencing of multiple samples (Bin-

laden et al., 2007; Valentini et al., 2009).  

DNA amplifications were carried out in 50µL final volumes 

containing 5µL of DNA sample, 2U of AmpliTaq Gold
® DNA 

Polymerase (Life Technologies, Carlsbad, CA, 

USA), 15mM Tris-HCl, 50mM KCl, 2.5mM MgCl
2
, 

0.2mM each dNTP,  

0.2µM each primer and 8µg Bovine Serum Albumin. One PCR 

negative control was carried out. All PCR samples (DNA and 

controls) were randomly placed on PCR plates. Following the 

enzyme activation step (10min at 95°C), PCR mixtures underwent 

45 cycles of 30s at 95°C, 30s at 50°C and 1min at 72°C, plus a 

final elongation step (7 min at 72°C). Four individually tagged 

PCR repeats were made for each sample to increase the chance of 

detecting taxa represented by low quantities of DNA, as well as to 

increase confidence in the taxa identified (Ficetola et al., 

2015).[AQ: 3] Equal volumes of PCR products were mixed (15 µL of 

each), and 10 aliquots of 100 µL of the resulting mix were then 

purified using MinElute Purification kit (Qiagen GmbH, Hilden, 

Germany). Purified products were then pooled together before 

sequencing; 2×100+7 paired-end sequencing was performed 

on an Illumina HiSeq 2500 platform using TruSeq SBS Kit v3 

(FASTERIS SA, Switzerland).  

DNA sequences analysis and filtering  

Sequence data were analysed using the OBITools software package 

(http://metabarcoding.org/obitools/doc/index.html). First, direct 

and corresponding reverse reads were assembled using illu-

minapairedend, and sequences having a low alignment quality 

score (threshold set at 40) were filtered out (Supplementary Table 

S1, available online). The retained reads were assigned to relevant 

samples using ngsfilter, keeping sequences matching 100% with 

tags and allowing a maximum of three mismatches with primers 

(Bienert et al., 2012). Strictly identical sequences were then 

merged together (dereplication) using obiuniq, keeping information 

on their distribution among samples. All sequences with only a 

single copy and/or shorter than 12 bp were filtered out using 

obigrep. Obiclean was then used to identify amplification and 

sequencing errors, using a threshold ratio of 5% for reclassifying 

‘internal’ sequences to their relative ‘head’ sequence (Bellemain et 

al., 2013; De Barba et al., 2014). Finally, using the ecotag program 

(Yoccoz et al., 2012), sequences were compared with a local 

taxonomic reference library containing 2445 sequences of 815 

arctic (Sønstebø et al., 2010) and 835 boreal (Willerslev et al., 

2014) vascular taxa as well as 455 bryophytes (Soininen et al., 

2015), and assigned to the relevant taxon. Using the local reference 

library confers the advantage of a more accurate match with 

species that are found in the local environment. As almost all vas-

Depth (cm)  Laboratory ID  14C age  Cal. W. mean  Cal. median  Cal. 2o range  Sample contents  

75.0  Poz-58874  1305±30  1238  1235.5  1120–1302  
Salix polaris leaves, leaf 
frag.  

135.0  Poz-58875  1930±30  1884  1874.0  1781–1988  Salix polaris leaves  
204.0  Poz-58870  2600±30  2746  2746.0  2613–2863  Salix polaris leaves, leaf 

frag.  
259.0  Poz-58871  3580 ±50  3810  3902.0  3629–3970  Salix polaris leaves, leaf 

frag.  
309.0  Poz-58872  4025 ±30  4497  4483.0  4400–4624  Salix polaris leaves  
341.0  Poz-58873  4420 ±50  4946  5045.0  4825–5080  Salix polaris leaves, leaf 

frag.  
375.5  Poz-65652  4560 ±40  5337  5194.5  5186–5472  Salix polaris leaves  
383.0  Poz-58865  4700 ± 160  5424  5342.0  5294–5551  Salix polaris leaves  
387.0  Poz-65653  4700± 40  5479  5449.5  5350–5595  Salix polaris leaves, leaf 

frag.  
434.0  Poz-58866  5650± 40  6421  6443.5  6271–6594  Salix polaris leaves  
496.0  Poz-58868  7170± 40  7945  7985.5  7736–8098  Moss (Drepancladus, 

Cinclidium)  
526.0  Poz-58869  7740± 40  8477  8506.5  8330–8604  Salix polaris leaves  
Family  Taxa sedaDNA  Taxa macrofossils  Max. 

repeats  
Sum 
repeats  

Sum 
reads  

Birks 
n  

Ther
m.  

Zo
ne  

Betulaceae  Betula (nana ssp. tundrarum)   2  5  786   I  
C(
r)  

Brassicacea
e  

 Brassicaceae 
undiff.2  

   5    

Brassicacea
e  

 cf. Braya glabella 
ssp.  

   1  IV  
A(
r)  

  purpurascens2        
Brassicacea
e  

Arabis alpina  Arabis alpina1,2  2  5  223  1  II  B(
r)  

Brassicacea
e  

Cardamine (bellidifolia)   2  4  218   V  A(
f)  

Brassicacea
e  

Cochlearia (groenlandica)   2  8  524   V  A(
f)  

Brassicacea
e  

Draba (13 species)  Draba2  
3  47  5,211  2    

Caryophyllac
eae  

 Caryophyllaceae1,2     1    

Caryophyllac
eae  

Cerastium (arcticum, alpinum,  Cerastium 
arcticum/  

4  44  2,507  1    

 regelii)  Cerastium alpinum2        
Caryophyllac
eae  

Minuartia (rubella)  Minuartia rubella2  1  3  86  1  V  A(
f)  

Caryophyllac
eae  

Sagina (nivalis, cespitosa)  Sagina nivalis2  1  3  109  2  V  A(
r)  

Caryophyllac
eae  

Silene (uralensis, involucrata)   1  3  112     

Caryophyllac
eae  

Silene acaulis (ssp. acaulis)  Silene acaulis1,2  4  47  15,824  6  IV  A(
s)  

Ericaceae   Harrimanella 
hypnoides2  

   1  
II  C(

r)  

Juncaceae  Juncus biglumis  
Juncus2  

1  3  50  5  V  
A(
f)  

Juncaceae  
Luzula (arcuata, confusa, 

nivalis,  
Luzula2  

4  77  10,584  11    

 wahlenbergii)         
Lycopodiace
ae  

Lycopodiaceae (Huperzia arctica)   2  4  84   III  B(
s)  

Orobanchac
eae  

Pedicularis (hirsuta, 
dasyantha)  

 4  43  1,759     

Papaveracea
e  

Papaver (dahlianum,  
Papaver2  

4  120  29,857  7    

 cornwallisense)         
Poaceae  Agrostidinae (Calamagrostis 

neglecta)  
 2  4  164   II  C(

s)  

Poaceae  Festuca (rubra, baffinensis,   4  23  2,148     
 hyperborea, edlundiae,         
 brachyphylla)         

Poaceae  
(Phippsia algida, Phippsia 
concinna,  

 2  5  460     

 Hierochloë alpina)         
Poaceae  Deschampsia (alpina,   3  9  298     
 sukatschewii)         

Poaceae  
Poeae (Poa alpina var. alpina, 

Poa  
 4  38  2107     

 alpina var. vivipara)         
Poaceae  Puccinellia (7 species)   3  12  612     
Polygonacea
e  

Bistorta vivipara  Bistorta vivipara1,2  4  156  406,904  25  V  A(
f)  
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cular plant species in Svalbard and the majority of those found in 

neighbouring territories, as well as the circum-arctic region, are in 

the local reference library, we prioritized matches against this 

database. On the other hand, if taxa were lacking in the local 

library, there may have been no assignment, or an erroneous one. 

Therefore, we also made comparisons with a second reference 

library generated after running ecopcr on the global EMBL data-

base (release r117 from October 2013). Sequences assigned to 

non-native taxa were blasted to check for potential wrong assign-

ments (http://www.ncbi.nlm.nih.gov/blast/).  

Extreme caution must be taken before accepting a taxonomic 

assignment in an environmental sample (Pedersen et al., 2015). 

Accordingly, to avoid any misidentifications, only sequences 

matching 100% to reference library entries and occurring as at 

least 10 reads per PCR repeat were kept. The following were also 

removed: (1) sequences having higher frequencies in negative 

controls than in samples, (2) sequences occurring in <3 repeats in 

total (i.e. across all samples), (3) sequences belonging to food 

plants and thus suspected to be contaminants, and (4) sequences 

suspected to be droplet contaminants or overflow from samples 

from another study run at the same time. One complete sample, 

which appeared as an outlier in terms of low number of reads and 

repeats, was excluded (Supplementary Table S1, available online). 

By applying these thresholds, rare taxa were possibly missed but 

potential errors were removed. In four cases, two sequences were 

assigned to the same taxon and combined (Saxifraga oppositifolia, 

Micranthes, Pedicularis and Dicranaceae). For sequences that 

matched several taxa or were assigned to genus level only, the 

likely taxa based on the current native flora of Svalbard were 

listed as potential species. Taxa identified in more than two of the 

four PCR repeats per sample were assumed to be certain, whereas 

the validity of taxa found in fewer repeats was assessed carefully.  

http://www.ncbi.nlm.nih.gov/blast/


Plant macrofossil analysis  

Macrofossils were analysed for direct comparison with the 

sedaDNA record as well as for biostratigraphic correlation with 

the record of Birks (1991). In total, 36 samples were collected 

contiguously as 4–6cm slices. Sediment volume was determined 

by water displacement. Sample volumes were approximately 50– 

60cm
3 (cf. Birks (1991), c. 160cm

3). Prior to sieving 

each sample,  
c. 10g sodium pyrophosphate (Na4P2O7×10H2O) was added, 

mixed and left for at least 1h to disaggregate clay materials. For 

some samples, this step was repeated. Samples were sieved using 

250µm meshes and plant macrofossils were identified using a bin-

ocular microscope and based on the reference collection at the her-

barium TROM. The analyses were not intended to be exhaustive 

and no attempt was made to identify bryophytes.  

Results  

Chronology and lithostratigraphy  

All 12 AMS radiocarbon dates returned plausible ages spanning 

7740±40 to 1305±30 
14C years, corresponding to a 

calibrated weighted-mean range of 8477–1238 cal. 

BP (Table 1). The age– depth model revealed a 

fairly even sedimentation overall, although periods 

of lower sedimentation rate occurred around 

530–390cm depth (8500–5500 cal. BP) and 

260–210cm depth (3800–2800 cal. BP, Figure 2). 

Five lithostratigraphic units (L1–L5) were identified, 

based on sediment structure (Supplementary Figure 

S1, available online), geochemical and lithological 

compositions and organic content (Figure 3). The 

elements Si, K and Ca are assumed to characterize 

relative changes in input of terrigenous sediments 

derived from the local metamorphic bedrock. 

Variations in sulphur appear to track changes in 

organic content, and changes in Fe likely relate to 

redox variation. The presence of the delta close to 

the northern part of the basin strongly suggests that 

the main terrigenous sediment source has been 

direct input from the northern slopes rather than the 

drainage from Tjørnskaret pass. Aeolian input is 

regarded as a minor sediment source, as the 

catchment area wind speeds are relatively low. 

Consequently, the changes in minerogenic content 

can be regarded as a proxy for changes in slope 

stability and erosion from the catchment through 

time.  

L1 (531–455cm depth, 8600–6900 cal. BP). The unit is 

dominated by alternating clayey laminae (5–10mm) and silty beds 

(up to 40mm thick), which are reflected in frequent (reciprocal) 

fluctuations in percent LOI and the elements Si, K, Fe and S 

(Figure 3). The thin laminae are characterized by higher LOI (up 

to 10%), high S and lower Si and K ratios. In the thicker, silty 

strata, distinct peaks in Si and K, together with lower S and 

percent LOI, suggest sedimentation dominated by terrigenous 

minerogenic input. The upper unit boundary is defined by the top 

of the uppermost silty  

Figure 2. Age–depth model for Lake Skartjørna, Svalbard.The 

calibrated 
14C dates are shown in blue, and the 

lines show the age–depth curve (darker grey 
indicate more likely calendar ages, grey 
stippled line show 95% confidence interval 
and red line show best model based on 
weighted average of the mean).  

bed and a marked drop in Ca. Unit L1 likely reflects alternation 

between low-energy hydrologic conditions with minerogenic 

deposition from suspension (clay), interrupted by phases of 

enhanced slope input from the catchment.  

L2 (455–387cm depth, 6900–5500 cal. BP). A transition to 

more regularly alternating 2–5 mm thick clayey laminae occurs at 

455cm. Si and K are lower and their fluctuations are smaller. This 

suggests more stable sedimentation, mainly from suspension, and 

less variable influx of minerogenic sediments, probably because of 

reduced runoff from the catchment. The organic contribution to the 

sediments as shown by the percent LOI is the highest of any unit 

(average LOI 8.3% as compared with average 7.3% of all samples 

below and average 5.6% of all samples above). Also, the S and Fe 

are high, likely indicating higher organic input and/or a change in 

redox conditions.  

L3 (387–315cm depth, 5500–4600 cal. BP). A distinct drop 

in LOI to ca 5% and abrupt increases in Si, K and sedimentation 

rate define the base of unit L3. The unit is dominated by 1- to 

3-mmthick laminae interrupted by successions of coarser beds up 

to 50–100 mm thick. There are large fluctuations in Si and K, with 

peaks also associated with the reappearance of Ca. These variations 

suggest a reversion to sedimentation driven by relatively 

high-energy terrigenous inputs.  

L4 (315–165cm depth, 4600–2300 cal. BP). The unit is 

dominated by clayey beds. The thicker silty beds characterizing 

units L1 and L3 are absent. At the base of the unit is a small but 

distinct increase in LOI to about 6%; Si and K fluctuate less than in 

L3 and increase gradually from 227cm depth. The more 

fine-grained character of the sediments, the absence of the thick 

silty laminae and the increase in the percent LOI indicate 

sedimentation mainly from suspension, probably with less 

slope-derived influx to the basin.  
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L5 (165–60cm depth, 2300–1100 cal. BP). At 165 cm, a 

transition to more weakly laminated sediment occurs. The lower 

boundary is also characterized by a distinct temporary drop in Si 

and K, and the start of synchronous, larger amplitude fluctuations 

of these elements. The percent LOI is generally low. Periodic 

highs in Si and K may indicate episodes of higher influx of ter-

rigenous sediments to the lake from the catchment, but they are 

not evident as major textural changes.  
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Figure 3. Sediment properties of the core from Lake Skartjørna, 

Svalbard. Black dots (•) indicate the depth of 
14C-samples. 

Lithostratigraphic units (L1–L5) are 
marked.Water content is given as percentage 
wet weight. Loss-on-ignition (LOI) is given as 
percentage dry weight. Selected elements 
analysed by XRF are given as ratio to Ti, see 

methods). Filled areas mark values above the mean. Grain size 

fractions are given for clay (<2µm), fine silt (2–8µm) medium silt 

(8–16µ), coarse silt (16–63µm) and sand (63–2000µm) as 

percentages of total volume.The width of the core has been 

increased (×3) to enhance visibility, for high resolution photo 

see electronic (Supplementary Figure S1, available online).  

sedaDNA  
We obtained 13,030,207 reads of 62,568 unique sequences  

assigned to 40 samples (Supplementary Table S1, available online). 

After subsequent filtering, 53 taxa (9,197,220 reads) remained, of 

which 48 (9,191,407 reads) were assumed to be of local origin, 

whereas five taxa (5813 reads) were exotics (Table 2, S3).[AQ: 4] 

Of the 48 local taxa, 27 taxa were recorded in three or more repeats, 

and a further five were confirmed by macrofossils (Table 2). The 

identities of these 32 taxa were assumed certain. A further 16 were 

found in only one or two out of four PCR repeats in a sample, many 

likely the same as identified macrofossils, but they are interpreted 

with caution (Table 2, Figure 4). In total, 34 taxa of 13 families of 

vascular plant were identified, 32 (94%) determined to genus level 

and 19 (56%) to species level (when assuming a correct match 

to local taxa). In addition to the vascular plants for which the 

primers are designed, we also detected 12 bryophytes and 

two algal taxa (Table 2).  

Salicaceae, Oxyria digyna, Bistorta vivipara, Micranthes, 

Papaver and Saxifraga oppositifolia were present nearly all PCR 
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repeats of all samples (Figure 4). Further taxa present in most 

samples, but with lower repeats, were the herbs Pedicularis, Silene 

acaulis, Cerastium, Draba and the rush Luzula. The majority of 

taxa identified are temperature-indifferent or weakly ther-

mophilous in Svalbard and common in the northern arctic tundra 

and polar desert zones (Table 2). Three taxa that are only present in 

climatically more favourable sites in Svalbard today, Arabis alpina, 

Betula and Agrostinae, have scattered occurrences in one to two 

repeats between 8600 and 2900, 1800 and 5100 cal. BP,  Commented [i60]:  

Commented [i61]:  

Commented [i62]:  



Table 2. All taxa recorded from Lake Skartjørna from sedaDNA (this study) and macrofossils (1 is this study, 2 is Birks, 1991).  Commented [i63]: This table should be in colour, see 
revised file submitted. 



 Depth (cm)  Laboratory ID  14C age  Cal. W. mean  Cal. median  Cal. 2o range  Sample contents  

75.0  Poz-58874  1305±30  1238  1235.5  1120–1302  
Salix polaris leaves, leaf 
frag.  

135.0  Poz-58875  1930±30  1884  1874.0  1781–1988  Salix polaris leaves  
204.0  Poz-58870  2600±30  2746  2746.0  2613–2863  Salix polaris leaves, leaf 

frag.  
259.0  Poz-58871  3580 ±50  3810  3902.0  3629–3970  Salix polaris leaves, leaf 

frag.  
309.0  Poz-58872  4025 ±30  4497  4483.0  4400–4624  Salix polaris leaves  
341.0  Poz-58873  4420 ±50  4946  5045.0  4825–5080  Salix polaris leaves, leaf 

frag.  
375.5  Poz-65652  4560 ±40  5337  5194.5  5186–5472  Salix polaris leaves  
383.0  Poz-58865  4700 ± 160  5424  5342.0  5294–5551  Salix polaris leaves  
387.0  Poz-65653  4700± 40  5479  5449.5  5350–5595  Salix polaris leaves, leaf 

frag.  
434.0  Poz-58866  5650± 40  6421  6443.5  6271–6594  Salix polaris leaves  
496.0  Poz-58868  7170± 40  7945  7985.5  7736–8098  Moss (Drepancladus, 

Cinclidium)  
526.0  Poz-58869  7740± 40  8477  8506.5  8330–8604  Salix polaris leaves  
Family  Taxa sedaDNA  Taxa macrofossils  Max. 

repeats  
Sum 
repeats  

Sum 
reads  

Birks 
n  

Ther
m.  

Zo
ne  

Betulaceae  Betula (nana ssp. tundrarum)   2  5  786   I  
C(
r)  

Brassicacea
e  

 Brassicaceae 
undiff.2  

   5    

Brassicacea
e  

 cf. Braya glabella 
ssp.  

   1  IV  
A(
r)  

  purpurascens2        
Brassicacea
e  

Arabis alpina  Arabis alpina1,2  2  5  223  1  II  B(
r)  

Brassicacea
e  

Cardamine (bellidifolia)   2  4  218   V  A(
f)  

Brassicacea
e  

Cochlearia (groenlandica)   2  8  524   V  A(
f)  

Brassicacea
e  

Draba (13 species)  Draba2  
3  47  5,211  2    

Caryophyllac
eae  

 Caryophyllaceae1,2     1    

Caryophyllac
eae  

Cerastium (arcticum, alpinum,  Cerastium 
arcticum/  

4  44  2,507  1    

 regelii)  Cerastium alpinum2        
Caryophyllac
eae  

Minuartia (rubella)  Minuartia rubella2  1  3  86  1  V  A(
f)  

Caryophyllac
eae  

Sagina (nivalis, cespitosa)  Sagina nivalis2  1  3  109  2  V  A(
r)  

Caryophyllac
eae  

Silene (uralensis, involucrata)   1  3  112     

Caryophyllac
eae  

Silene acaulis (ssp. acaulis)  Silene acaulis1,2  4  47  15,824  6  IV  A(
s)  

Ericaceae   Harrimanella 
hypnoides2  

   1  
II  C(

r)  

Juncaceae  Juncus biglumis  
Juncus2  

1  3  50  5  V  
A(
f)  

Juncaceae  
Luzula (arcuata, confusa, 

nivalis,  
Luzula2  

4  77  10,584  11    

 wahlenbergii)         
Lycopodiace
ae  

Lycopodiaceae (Huperzia arctica)   2  4  84   III  B(
s)  

Orobanchac
eae  

Pedicularis (hirsuta, 
dasyantha)  

 4  43  1,759     

Papaveracea
e  

Papaver (dahlianum,  
Papaver2  

4  120  29,857  7    

 cornwallisense)         
Poaceae  Agrostidinae (Calamagrostis 

neglecta)  
 2  4  164   II  C(

s)  

Poaceae  Festuca (rubra, baffinensis,   4  23  2,148     
 hyperborea, edlundiae,         
 brachyphylla)         

Poaceae  
(Phippsia algida, Phippsia 
concinna,  

 2  5  460     

 Hierochloë alpina)         
Poaceae  Deschampsia (alpina,   3  9  298     
 sukatschewii)         

Poaceae  
Poeae (Poa alpina var. alpina, 

Poa  
 4  38  2107     

 alpina var. vivipara)         
Poaceae  Puccinellia (7 species)   3  12  612     
Polygonacea
e  

Bistorta vivipara  Bistorta vivipara1,2  4  156  406,904  25  V  A(
f)  

Polygonacea
e  

Koenigia islandica   3  6  154   III  B(
r)  
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Table 2. (Continued)  

Family Taxa sedaDNA Taxa macrofossils Max. repeats Sum repeats Sum reads Birks n Therm. Zone 

 Bryaceae Bryum 3 13 430 N/A  Bryaceae Bryaceae 2 6 146 N/A  Dicranaceae Dicranaceae 2 9 283 N/A  Ditrichaceae Distichium 

(capillaceum, hagenii, 1 4 90 N/A  

inclinatum)  Encalyptaceae Encalypta alpina 3 33 934 N/A  Grimmiaceae Grimmiaceae 3 13 416 N/A   Arctoa (fulvella, cf. 

anderssonii) 2 9 339N/A 

Rhabdowei-  

siaceae  Seligeriaceae Blindia acuta 1 4 132 N/A  Sphagnaceae Sphagnum 2 9 337 N/A  Timmiaceae Timmia 2 9 322 N/A  

Taxa only identified by one of the proxies are shown in blue (sedaDNA) and purple (macrofossils). Green indicates that the same taxa might 

have been detected with both methods; darker green indicates that the taxa were identified with a higher taxonomic resolution. Taxa identified 

by sedaDNA in minimum three of the four PCR repeats and/or confirmation by macrofossils record are regarded certain identifications and 

shown in bold. For DNA sequences matching to several species, the Svalbard representatives are given in brackets. ‘Max repeats’ are the 

maximum number of PCR repeats within one sample, whereas ‘sum repeats’ are sum of PCR repeats where the taxa occur across all samples. 

‘Birks n’ is number of samples where the taxa were found out of 36 samples analysed (Birks, 1991). Division of species into thermal groups (I 

= Strongly thermophilous, II = Distinctly thermophilous, III = Moderately thermophilous, IV = Weakly thermophilous, and V = Temperature 

indifferent) follows Elvebakk (1989). Nomenclature and northernmost bioclimatic zone (A = Polar desert zone, B = Northern arctic tundra zone, 

C = Middle arctic tundra zone) where the species occurs as rare (r), scattered  

(s) or frequent (f) follows the PanArctic Flora checklist (Elven et al., 2011). Thermal groups and bioclimatic zones are given for the taxa 

identified to the lowest taxonomic level; bold indicates thermal conditions warmer than present.  

Figure 4. Results of sedaDNA analyses from Lake Skartjørna, Svalbard. The x-axis refers to number of PCR repeats with 10 or 
more reads. Only taxa with 100% match to reference database are included. Taxa with either >50% successful PCR repeats in 

minimum one sample and/or confirmation by macrofossil are regarded as certain taxa (black), whereas taxa found in lower numbers 
of repeats (white) should be inferred with some caution (see Table 2). Tentative zonation based on the DNA results are indicated 
(D1–D3). Saxifraga taxa abbreviated as cern. (cernua), riv. (rivularis) and hyp. (hyperborea).  

respectively. Three zones were identified visually based on the flora. Twenty-six of the 34 vascular plant taxa (85%) and six of DNA data 

(D1–D3), the two lowermost roughly corresponding to the 12 bryophyte taxa (50%) appear in this lowermost zone. the lithostratigraphic 

units L1 and L2 (Figure 4).  

D2 (441–387 cm depth, 6600–5500 cal. BP). In this zone, 

KoeD1 (525–441 cm depth, 8500–6600 cal. BP). The zone is char-nigia islandica disappears, whereas Dryas and Saxifraga cespi-

acterized by relatively high values of Festuca and Poa alpina, tosa become more frequent. Ranunculaceae and Festuca are still along with 

Ranunculaceae. Koenigia islandica and Lycopodia-present. Also, there is a turnover of bryophytes, with four taxa ceae are limited to this 

zone, which also features the richest grass disappearing and three new ones appearing; Encalypta alpina appears regularly from this zone 
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onwards. Twenty-three taxa of vascular plants and five taxa of bryophytes are found in this zone. This is a lower taxon count than the other 

two zones, but also the time span and number of samples is lower.  



D3 (387–74cm depth, 5500–1200 cal. BP). At the transition to this zone, Festuca and Ranunculaceae disappear (but the latter 

reappears at 340cm), whereas nearly all species of bryophytes begin to appear regularly, including Blindia acuta and Arctoa, which are rare 

in Svalbard today. Overall, this zone has the highest diversity of vascular plants (32 of 34 taxa) and includes all 12 bryophyte taxa. Except 

for Ranunculaceae, which is restricted to the first part of this zone, there is no clear biostratigraphic pattern.  

Plant macrofossils  

Three zones (M1–M3) are apparent, but the zone boundaries are not that well demarcated and do not coincide with the lithologic or 

sedaDNA zones (Figure 4). M1 corresponds to L1 and D1, whereas the M2/M3 boundary falls within D3 and L4 (Figure 6).  

M1 (529–434cm depth, 8500–6400 cal. BP). The zone has the highest abundance and diversity of plant macrofossils. There is high 

but variable abundance of Salix polaris leaves. Other frequent macrofossils in this zone include Salix reticulata, Saxifraga oppositifolia, 

Saxifraga undiff. and Silene acaulis seeds, as well as Nostoc pruniforme gelatinous spheres. Single seeds of Arabis alpina and Brassicaceae 

undiff. were identified from the lowermost two samples (529–521cm depth, 8500–8400 cal. BP). Samples with fewer macrofossils appear 

to correlate with the coarser sedimentary beds of L1.  

M2 (434–291cm depth, 6400–4200 cal. BP). There is a strong drop in the overall concentration of macrofossils, and whereas the 

diversity is variable. This zone is characterized by a relatively high abundance of Dryas octopetala leaves. The abundance of Salix polaris 

leaves decreases; Salix reticulata leaves are present in the lowermost part but disappear above 397cm (5700 cal. BP). No Saxifraga undiff. 

seeds occur above this zone. The zone displays a gradual decline in species richness from 12 taxa to four.  

M3 (291–63cm depth, 4200–1100 cal. BP). This zone is defined by low abundance and diversity of macrofossils. Only Salix polaris 

leaves and Saxifraga oppositifolia seeds occur frequently.  

Correlation with other records from Skartjørna  

The core lengths and time intervals covered in this study (530 cm; 8600 years) and those of Holmgren et al. (2010; 550 cm; 8200 years) are 

similar. The most significant sedimentological shift reported by Holmgren et al. (2010), a major decline in organic carbon at  415cm depth 

(5400 cal. BP), can be correlated with the decline in percent LOI at the L2/L3 boundary at 387 cm (5500 cal. BP) in the present core 

(Figure 3).  

The chronology of the 335cm core analysed by Birks (1991) rests on a single basal radiocarbon date (330–335cm): 8110±115 
14C BP 

(9000±400 cal. BP 2σ error interval), plus palaeomagnetic correlation. However, an additional unpublished 

date at 155– 160cm of 2470±80 14C BP (2550±130 cal. BP) was done by G. Miller 2005 (H. H. Birks and J. 

Mangerud, personal communica tion) and supports the palaeomagnetic correlation.[AQ: 5] A major decline in 

organic carbon occurs, but earlier than in the core of Holmgren et al. (2010). Birks’ (1991) macrofossil record is also divided 

into three zones. The lowermost and uppermost zones have a similar composition to our M1 and M3. However, in Birks’ record, 

the high concentration of Salix polaris leaves is maintained throughout the middle zone, and the boundary between the middle and upper 

zones is based on a subsequent decline at c. 150cm (2600 cal. BP). The S. polaris leaves aside, it is possible that our M2/M3 boundary at 

291cm correlates with the change in Birks’ (1991) record at 190cm depth, as Dryas octopetala leaves occur more frequently below both 

these boundaries, which date to approximately 4000 cal. BP. Thus, we conclude that the zones of Birks (1991) can be roughly c orrelated 

with our zones M1–M3.  

Comparison between sedaDNA and macrofossils  

All families recorded as macrofossils in either this study or the more extensive study by Birks (1991) were also found in the  sedaDNA 

(Table 2). In addition, sedaDNA identified Betulaceae (the only local species is Betula nana ssp. tundrarum), Lycopodiaceae (only local 

species Huperzia arctica), Orobanchaceae (identified to Pedicularis), Poaceae (Poa alpina identified to species, Deschampsia, Festuca and 

Puccinellia identified to genera, one sequence identified to Phippsia or Hierochloë, and Agrostidinae, assigned to its only local 

representative, Calamagrostis neglecta).  

At lower taxonomic levels, direct comparison is not always possible. For example, Brassicaceae identified in macrofossils could correspond 

to any or none of the four Brassicaceae taxa identified with sedaDNA (Table 2). However, all taxa found in more than one sample of 

macrofossils were identified with high certainty in the sedaDNA analyses (except Juncus). All but two genera identified as macrofossils (cf. 

Braya glabella ssp. purpurascens and Harrimanella hypnoides) were identified with sedaDNA, although some occurred in rather few PCR 

repeats (Table 2). Other taxa are only detected by sedaDNA, for example, Koenigia islandica, Pedicularis and different species of Poaceae 

(Figure 4–6, Table 2). Overall, 34 and 28 taxa of vascular plants were identified with sedaDNA and macrofossils, respectively. In many 

cases, the taxa were identified to species level with both methods. Macrofossils were superior in distinguishing species of Salicaceae. The 

numbers of taxa detected per sample were much higher for sedaDNA(mean±SE =15.9±0.42) than for macrofossils (2.37±0.19 and 

5.83±0.57 for this study and that of Birks (1991), respectively; Figure 6 and Supplementary Figure S2, available online).  

In our record, the pattern of declining macrofossil taxon richness with time follows that of the sedaDNA, but with a much lower number of 

taxa overall (Figure 6). A similar decline is also observed in study of Birks (1991, Supplementary Figure S2, available online). Dominant 

taxa such as Salicaceae, Bistorta vivipara and Saxifraga oppositifolia are represented in all samples of both proxies. For most taxa 

identified with both proxies (Oxyria digyna, Saxifraga aizoides, Papaver, Arabis alpina, Minuartia, Sagina, Ranunculus pygmaeus, Dryas 
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octopetala, Cerastium and Draba), sedaDNA detects them in more samples than do the macrofossils (compare Figure 4 with Figure 5 and 

Birks, 1991). For example, while macrofossils of D. octopetala only were found in nine samples, it was detected in 34 samples of sedaDNA 

(Figure 6).  

Discussion  

This new, well-dated record and the previous detailed plant macrofossil study of Birks (1991) together provide an excellent opportunity to 

assess how sedaDNA augments and/or modifies interpretations of past flora and climate in high-arctic settings. The plant material 

contributing to the sedaDNA is likely derived from overland flow from melting snow beds or from rain events, erosion of material by small 

streams or at the lake shore and via wind deposition (possibly from more distant sources; Birks, 1991, 2004; Glaser, 1981).[AQ: 6] These 

are essentially the same sources as macrofossils, but sedaDNA is possibly not represented in the same proportions. In addition, DNA 

from soil may be  
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Figure 5. Macrofossils found in Lake Skartjørna, Svalbard.The x-axis refers to number of occurrences in a total volume of 50–60mL 

except for Nostoc pruniforme gelatinous spheres which are presented on a relative scale: (1) few (1–5), (2) moderate (6–20) and (3) 

abundant (>20). All plant macrofossil are seeds unless otherwise stated.Analysed by P. Sjögren, 2015.Tentative zonation based on 

the macrofossil results are indicated (M1–M3).  

transported as complexes with other particles (England et al., 2004; Taberlet et al., 2012).  

The capacity of sedaDNA to provide a record of past flora  

The sedaDNA provides a coherent record that is, in some instances, complementary to that of the plant macrofossils. For example, while 

sedaDNA has lower taxonomic resolution than macrofossils for the important family Salicaceae, it reveals taxa that were not present as 

macrofossils, such as Huperzia and several species within the Poaceae, taxa less commonly recorded in macrofossil studies. Previous 

sedaDNA studies from the Arctic are characterized by less overlap between sedaDNA and macro-fossils (10–35%: Jørgensen et al., 2012; 

Parducci et al., 2012a, 2012b, 2013, 2015; Pedersen et al., 2013; 56%: Porter et al., 2013). Our higher taxonomic recovery from sedaDNA 

likely reflects the almost complete reference library available, and possibly also the quantity of sediment used for extraction and the PCR 

and sequencing conditions. Only 27 of 48 taxa occurred in all four PCR repeats, suggesting that some taxa would be missed in studies that 

used fewer repeats. This argues for using multiple repeats to detect species with low concentrations of DNA, even though it may increase 

the occurrence of false positives (Ficetola et al., 2015). However, in our case, single repeats seemed to be reliable as using this threshold 

increased the number of local taxa by 16 (Table 2) but added only one new exotic taxon (Convallaria majalis, Supplementary Table S2, 

available online). Overall, the large degree of overlap in species composition between sedaDNA and macrofossils (Table 2) confirms that 

sedaDNA may be a reliable approach to reconstructing past vegetation.  

All but one of the taxa found as macrofossils in more than one sample were identified with a conservative evaluation of the sedaDNA 

results (i.e. three or more PCR repeats). These taxa are widespread in Svalbard today (Alsos et al., 2015), most are typically vegetation 

dominants and they produce a relatively high biomass (e.g. Silene acaulis, Luzula spp., Dryas, Salix polaris, Saxifraga oppositifolia; 

Elvebakk, 1985, 2005), and they are currently common in the catchment vegetation. The high abundance of macrofossils of  Salix polaris 

and Saxifraga oppositifolia, for example, indicate relative high abundance in the catchment vegetation. DNA of several taxa with a 

generally more scattered occurrence today (e.g. Minuartia, Juncus biglumis) or at their thermal limit (Betula, Arabis alpina) was also 

identified, although in less than three of four PCR repeats (Table 2). This suggests that the positive correlation between biomass in vegeta-

tion and recovery in DNA found in modern soil samples (Yoccoz et al., 2012) may also apply to fossil samples from lake sediments. While 

Yoccoz et al. (2012) used number of reads as quantification of plant abundance in their modern soil samples, we used number o f PCR 

repeats (0–4), which is a more conservative interpretation more appropriate for aDNA.  

Variation in macrofossil abundance can often be interpreted as changes in past plant abundances (Birks, 2003, 2014), but infrequent 

occurrences of macrofossil taxa likely reflect changes in source area (e.g. fluvial input vs slope input) and a degree of serendipity in 

detection, with absence particularly hard to interpret. For example, macrofossils of Dryas octopetala are rarely recorded in the top zone of 

both macrofossil records, whereas it is present in most sedaDNA samples (Figure 6). Here, the molecular approach may be superior, as it 

exhibits more consistent detection of taxa.  

Holocene environmental change at Skartjørna  

The set of proxies retrieved from Lake Skjartørna gives insight into past environmental conditions, but many of the signals are subtle, 
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indicating moderate environmental changes. The observed changes are discussed here primarily in conjunction with two other records from 

Lake Skjartørna (Birks, 1991; Holmgren et al. 2010). Sediment properties can be heterogeneous across lake basins for a variety of reasons, 

and not all the proxy records agree. We assume that the longer cores of the current study as well as the one collected by Holmgren et al. 

(2010) have higher influx from the erosion of the northern slope, whereas the shorter one collected by Birks (1991) might be closer to the 

axial inflow (Figure 1).  
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Figure 6. Comparison of zones and selected proxies.Taxon richness sedaDNA – number of vascular plant taxa per samples with one 

or more PCR repeats with 10 or more reads.Taxon richness macrofossils – number of identified taxa per sample as given in Figure 5. 

Scales of sedaDNA results are in number of PCR repeats with 10 or more reads. XRF K/sum is given as the ratio of the 11 most 

abundant elements. Sand and coarse silt (16–2000µm) is given as percentage volume of all fine fraction. Filled areas mark values 

above the mean.  

However, the main patterns in the datasets suggest a warm early Holocene and a subsequent cooling trend until the present.  

Early and mid-Holocene (c. 8600–5400 cal. BP; 560–375cm)  

In the early part of our record (8600–7000 cal. BP), the high-frequency variation in %LOI reflects the alternation of bands of silty  material 

and more organic, fine-grained sediment, suggesting an episodic and dynamic runoff regime to the lake, possibly accentuated in the 

sediment record by the relative proximity of the coring site to the northern slope. The maximum organic content, as expressed  by percent 

LOI, is relatively high for a high-arctic lake (~10%). Values decline ~5500 cal. BP to 4–5%. A similar overall trend in carbon content is 

recorded by Holmgren et al. (2010): ~3% in the early record dropping to ~1.5% after ~5200 cal. BP. In our record, Nostoc, which fixes 

atmospheric nitrogen, is continually present from 8600–6500 cal. BP. Holmgren et al. (2010) report high diatom concentrations between 

8100 and 6600 cal. BP, interpreted as relatively high overall algal productivity. Furthermore, they record low (<10) C:N ratios for this 

period, which indicate dominance of autochthonous over allochthonous sources. Thus, the most likely explanation for the relatively high 

levels of organic carbon observed in the early part of the two records is higher biologic productivity driven by warmer growing-season 
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temperatures and/or a longer ice-free period. The distinct drop in percentage LOI around 5500 cal. BP co-occur with the emergence  of 

silty beds in the sediment and an increased sedimentation rate, and the %LOI values could have been suppressed by increased minerogenic 

inflow. High biological productivity as perceived by the %LOI record could thus have continued for some time, and/or the decl ine been 

more subtle. The overall higher concentration and diversity of macrofossils found in our and Birks (1991) records, the higher diversity of 

plants found in the sedaDNA, as well as the occurrence of relatively thermophilous species in all three records also indicate that a more 

lush terrestrial flora was present.  
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High levels of plant macrofossil delivery to the lake occurred between 8500 and ~7000 cal. BP, declining by 6500 cal. BP to lower 

values, which persist through the remaining record. For much of this time (until ~7000 cal. BP), strong banding of the sediments suggests 

multiple high runoff events, which could have entrained plant material. The runoff events may have been intense but short -lived with much 

of the influx of plant material occurring gradually between events, suggesting relatively high Salix cover. Birks (1991) also reports 

relatively high concentrations early in the record, but they persist to ~2500 cal. BP. The difference in the records  may be largely because of 

proximity to the axial influx versus erosion of the northern slope. Given the difference between the records and the possibil ity of local 

sedimentary variations, we recommend caution in interpreting environmental change based on this change (or lack of change) in 

macrofossil concentrations.  

The DNA record includes two taxa indicative of relative warmth (Arabis alpina and Betula nana), which first occur early (8500–6500 

cal. BP) and reappear sporadically through the record until ~1500 cal. BP. Arabis alpina was also found as macrofossil both in our and 

Birks record. In addition, Birks (1991) recorded several other thermophilous species: Harrimanella hypnoides (synonym Cassiope 

hypnoides, early Holocene only, ~9000–8000 cal. BP), Salix herbacea and Salix glauca (sporadic to ~4000 and ~2500 cal. BP, 

respectively). All the above-mentioned taxa (except Salix cf. glauca which is extinct) are all classified as strongly or distinctly 

thermophilous in Svalbard today and have a northern limit in the Middle arctic tundra zone (Table 2); the records at Skjartør na lie outside 

their modern range limits (as much as 30km outside for Arabis alpina (nearest site Diabasbukta) and Betula (presumably Betula nana, 

nearest site Colesdalen; Alsos et al., 2015). All the above species also require consistent winter snow cover. Thus, the combined vegetation 

records, and our lithologic record, are consistent with enhanced summer warmth and relatively high levels of precipitation. Mean July 

temperatures may have corresponded to Middle arctic tundra zone values (minimum 6°C, Elvebakk, 2005; Walker et al., 2005), that is, 

1–2°C warmer than today. Other records show increased local pollen production approximately 8000–5200 cal. BP (Hyvärinen, 1968, 1969, 

1970), and peat formation in western Spitsbergen island during the period 8800–4200 cal. BP also suggests a warmer climate (Göttlich and 

Hornburg, 1982).  

The sedaDNA record after ~6400 cal. BP contains taxa tolerant of dry conditions (e.g. Dryas, Andreaea, Encalypta alpina). The 

increase in Dryas is also clearly seen in the macrofossil record. At about the same time, the lithostratigraphic record suggests reduced 

and/or less variable runoff. Overall macrofossil input to the lake dropped dramatically, also ~6400 cal. BP (Figure 6). The changes in 

terrestrial vegetation composition, macrofossil abundance and lithology likely reflect a change in precipitation, such as an overall reduction 

in winter snow cover that favoured the development of Dryas heaths on open slope and tops.  

Mid- and late Holocene (5400–c. 1000 cal. BP; c. 375–60cm)  

The sediment record (particularly lithology, K, Si and Ca) suggest that the magnitude and variability of runoff increased between 5600 and 

4600 cal. BP. More stable sedimentation characterized the period 4600–2300 cal. BP and then was followed by stronger pulses of 

minerogenic input between 2300 and 1100 cal. BP. After 5400 cal. BP, macrofossil plant species richness per sample is generally low 

(Figure 6, Supplementary Figure S2, available online). However, the sedaDNA data show that all taxa except three vascular plants and one 

bryophyte persisted after 4200 cal.  

BP. Thus, most taxa recorded from the early Holocene survived locally. Drier and more open conditions are suggested by consistent 

presence of Dryas and Draba and the bryophytes Andreaea and Timmia. The catchment probably supported a geomorphologically and 

aspect-controlled mosaic of communities, including Dryas octopetala heath, open herb communities and moist snow-bed and drainage 

communities, as it does today.  

The find of a Chara oospore at about 3500 cal. BP is remarkable. Today, Chara canescens is found only in warm springs on Spitsbergen. 

The single find (not identified to species) in Skartjørna might originate from long-distance transport by birds, particularly geese (see 

Langangen, 2000).  

The changes at Skartjørna that may signal sparser vegetation and lower biomass 5500–4000 cal. BP reflect other inferred changes in the 

marine and terrestrial environments. Sea-surface temperatures started to decline c. 7000–5000 cal. BP, and further cooling began around 

4000 cal. BP (Rasmussen et al., 2012). On land, the nearby glacier Linnébreen re-formed around 4600 cal. BP and advanced c. 2800 and 

2400 cal. BP (Reusche et al., 2014; Svendsen and Mangerud, 1997). Overall, these observations are consistent with the onset of the 

Neoglaciation c. 5000–4000 cal. BP in the North Atlantic region (Miller et al., 2010).  

Resilience of tundra communities in the face of climate change  

A striking feature of the molecular record is that there has been little floristic turnover in the local vegetation through the Holocene, despite 

a decrease in vegetation productivity inferred from the macrofossils. This provides firm evidence in support of Birks’ (1991) conjecture that 

was based on macrofossils alone. Even some thermophiles persisted (but only a single repeat of the thermophilic species Arabis alpina is 

recorded after 5700 cal. BP). The scattered occurrence of Betula until 1800 cal. BP, long after cooler conditions were established, may 

reflect its ability to survive by clonal growth under conditions too cold for sexual recruitment (Alsos et al., 2002, 2003). The combined 

vegetation records suggest the gradual attrition of suitable habitats for thermophiles in response to cooling and drying of the climate, but 

nevertheless, survival of most taxa in situ. This may be related to fine-scale heterogeneity of the landscape that supports a range of 

microclimates (Armbruster et al., 2007) that buffed against the overall lowering of temperature by 1–2°C.  

The Skartjørna plant records (this study, Birks, 1991) show that thermophilic species had broader distributions on Spitsbergen in the early 

Holocene. This is consistent with early Holocene range extensions of thermophilic species in the southernmost island of Svalbard 

(Bjørnøya, Wohlfarth et al., 1995), East Greenland and northern Eurasia (Bennike et al., 1999; Binney et al., 2009), and also range 

expansion of Betula nana in Svalbard in the early Holocene (Andersson, 1910). Based on this history, we might expect future warming of 

1–2°C mean July temperature to drive an increase in cover and productivity and the expansion of local thermophilic species (given 

sufficient precipitation and conditions conducive to establishment), but not major floristic change. However, future warming is likely to 

reach at least 2–4°C mean July temperature above present; this temperature increase is unprecedented in the Holocene and may see the 
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appearance of new elements in the flora, assuming effective dispersal and establishment.  

Added understanding of vegetation by sedaDNA compared with only macrofossils  

Because of the large degree of concurrence of taxa detected as sedaDNA and macrofossils (Table 2), one may argue that the proxies show 

overlap rather than being complimentary as suggested by others (Jørgensen et al., 2012; Parducci et al., 2013,  2015; Pedersen et al., 2013). 

However, the timing of zonation based on sedaDNA differs from that of macrofossils (Figure 6 and Supplementary Figure S2, available 

online), indicating that the proxies pick up different signals of change; indeed, the majority of taxa changing around 6600 and 5500 were 

only recorded in sedaDNA. A more important contribution of the sedaDNA from this site is the observation that most taxa persisted 

throughout the period studied even though they are only found in scattered parts of the period as macrofossils. For example, only one and 

two macrofossils of Cerastium and Draba were found, respectively (Birks, 1991), whereas they were recorded in most sedaDNA samples 

(Figure 4). While these taxa tend to be ubiquitous and are components of most vegetation association in Svalbard (Elve bakk, 1994, 2005), 

thus not adding much information about ecological conditions or vegetation type, the more or less continuous record of these and other taxa 

in the sedaDNA increases our understanding of persistence of species over time.  
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Conclusion  

Our results show sedaDNA to be an effective tool for reconstructing past vegetation change in the Arctic. The taxonomic resolution was 

similar to macrofossil, but the latter was superior in distinguishing, for example, Salix ssp., whereas sedaDNA was superior in detecting 

Poaceae. Using the number of repeats as a basic estimate of abundance, sedaDNA reflects the higher biomass of common arctic taxa, and 

these are identified with high certainty. As with macrofossils, the likelihood of detection is probably related to abundance in the vegetation. 

However, more taxa were detected with sedaDNA than with macrofossil analysis, suggesting that it is more sensitive in detecting less 

abundant taxa. The Skartjørna record corroborates other studies in that its record of thermophilic species indicates temperatures 1–2°C 

higher than present on Spitsbergen during the early part of the Holocene. In our record, the main environmental changes occur red c. 

7000–5500 cal. BP, as either gradual or stepwise shifts in temperature, precipitation regime, terrestrial ecosystems and lake sedimentation. 

The molecular data indicate that even species with highly intermittent occurrence as macrofossil persisted throughout most of the study 

period. We might expect that thermophilous species that are currently highly restricted on Spitsbergen will expand again (assuming 

sufficient precipitation) and that both terrestrial and lacustrine productivity will increase. However, as future warming is likely to reach 

2–4°C, we may also see responses that cannot be anticipated by reference to the available Holocene records.  
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