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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE

PHYSICS

Doctor of Philosophy

THE THEORY OF DYNAMIC CORRELATIONS IN CONDENSED MATTER SYSTEMS

by Margaret Hood

This thesis 1s concerned mainly with spin waves in localised
ferromagnetic systems. In the first four chapters we consider, for
one—dimensional magnetic chains, the effect of two-spin—wave
interactions on the single spin-wave lifetime and calculate the
dispersion of two—spin-wave bound states and discuss how they affect
the spectral weight, which can be measured by thermal neutron
scattering. These calculations are done firstly for an easy-axis
system and then for an easy—plane system. In the fifth chapter we use
a linear spin-wave theory and discuss how it may be possible to
determine the form of the Hamiltonian for some simple ferromagnetic
systems using the experimental technique of neutron polarisation
analysis. All of these calculations are done by using a Green function
equation—of-motion method to calculate spin—spin correlation
functions.

In the last chapter we consider a Fermi fluid system and attempt to
calculate a density-density correlation function and obtain a
self—energy, from which lifetime effects can be studied, for our
particular choice of Hamiltonian. We use an equation—of-motion method
similar to that used in the previous chapters. However, problems arise

in the calculation that we are unable to solve.
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CHAPTER 1: INTRODUCTION TO ONE-DIMENSIONAL FERROMAGNETS

1.1 Physical Systems and Experiments

In this section we will give a very Dbrief introduction to
guasi—one—dimensional magnetic systems. Much work has been done on
these systems in recent years (Steiner et al. 1976).

Truly one-dimensional magnets are obviously uncbtainable in nature.
However, there are some magnetic systems which behave as if they are
one—dimensional above a critical temperature T.. The reason for this
iglftt::he magnetic coupling, J, between nearest-neighbour atoms or ions
along one direction in a three—dimensional crystal is much greater
than the magnetic coupling, J‘, between nearest—neighbour atoms or
ions in the other two directions. This critical temperature, T.,
depends on the values of J and J’ and also on the nature of the
interactions between the spins of the atoms or ions, for example T, is
less for a Heisenberg system than for an Ising system. Below T, the
interchain coupling leads to three—dimensional ordering. We will not
be concerned with the evaluation of T., which is in fact proportional
to J’, in this thesis.

Various measurements have been made on several materials with
antiferromagnetic exchange coupling, J<0, and a few materials with
ferromagnetic exchange coupling, J>0, that show the existence of
one—dimensional behaviour. The static properties of these systems are
studied by measuring the specific heat at constarit magnetisation, the
magnetic susceptibility, etc. Such measurements suggest that the
correlations between spins are predominantly one—dimensional in some
systems., Some of the dynamic properties can also be measured. For
example, well—defined magnetic excitations can be studied using
ferromagnetic or antiferromagnetic resonance and infra-red absorption,
and diffuse dynamics studied using electron spin resonance and nuclear
magnetic resonance. We will not be concerned with any of these

experimental techniques in this thesis but will concentrate on thermal



neutron scattering which can be used +to measure the wave vector
dependence of the magnetic excitations and also to show the existence
of short—range order, a concept that will be discussed in Sec.l1l.4.
These quasi-one-dimensional systems usually consist of chains of
magnetic atoms or ions with a large spacing and other, non—magnetic,
atoms or ions between the chains.
We will be concerned with only localised magnets rather than

itinerant ones in Chs.1l to 5.

1.2 Some Useful Definitions

In this section we will introduce some of the parameters and
functions that we will need to use in solving the problems of the
following chapters.

We will work throughout in the Heisenberg representation. A

Heisenberg operator is time—dependent. At time t,

A(t) = et 5 o 1Ht (1.2.1)

where H is the Hamiltonian, or enexrgy operator, for the system being
considered and A is the corresponding Schrodinger operator. We have
set h=1 here and everywhere else in this thesis. The wave functions
are independent of time.

We will frequently take the thermal average of such an operator,

defined by,
..l -
<A>=12 Z<}\|eH/TA|7\>
A (1.2.2)
Z=Z<A|e"H/T|A>
A

where |A> denotes a state of the system, T is the temperature and Z is
the partition function. We have set Boltzmann's constant equal to one
here and everywhere else in this thesis.

We define the commutator of two operators, A and B, by,

[ A, B]=AB- BA (1.2.3)



We will consider magnetic chains with N sites and work with spin

operators denoted,

§1(t), 1 =12,2,...N
or, in component form,
o
Sl(t), x =X, ¥, 2, 1=1,2,...N

for the spin at the site labelled by 1. Because of translational

invariance it will be more useful to work with the Fourier sum of

these operators defined by,
o ikl o
= 2.4
Sy g e S4 (1.2.4)

where we have chosen to work in units where the lattice spacing is
equal to one, and k is a wave vector in the direction of the magnetic
chain. In a three—dimensional system (kl) is replaced by (E.l) but in
our magnetic chains the wvector l lies along the chain direction so
only the component of 5 in this direction is relevant. The inverse

Fourier sum is,
x -1 -ikl «
S, =N Z e Si (1.2.5)
k
where the sum is taken over the N allowed values of k in the first

Brillouin zone, defined by,

We will normally take N to be very large and replace this sum by an

integral using,

1 1 7
ﬁZ > ~2....ﬁjﬁdk (1.2.6)

* -



We will also find it useful to work with the linear combinations of

the spin operators that form spin raising and lowering operators,

defined by,
+ X, .y
S1 = S1 + i S1
(1.2.7)
--x-.‘y‘
S, = S1 i S1
or,
+ X .Y
Sk = Sk + i Sk
(1.2.8)
-”X- y
Sk = S_k i S~k

where in Eqns.{(1.2.7) and (1.2.8) the operators S~ are chosen to be
the hermitian conjugates of the operators S*,.
The commutation relations for these spin operators will be

discussed in Sec.l1.5 when we will need to use them.

1.3 The Spectral Weight Functions

We will introduce the spectral weight functions by considering
their role in magnetic neutron scattering (Marshall and Lovesey 1971).
Neutrons are a weak probe of condensed matter systems and hence
Fermi's Golden Rule, which is equivalent to linear response theory,
can be used to describe the scattering of the neutrons. We record the
result for the partial differential cross—section for pureiy magnetic

scattering in the first Born approximation,

2 232 k
do _ Yy e 1 2 3 -2W(K)
- | zerm [P = B 5 a
k

df de m c2 i —
f e

x Z ¢ 82 - k% Py s%Px,w)
o, B

(1.3.1)



K= L Ef
w = Ei - Ef

where k; and ks are the incident and scattered wave vectors of the
neutrons, Ej and Ef are their incident and scattered energies, F(K) is
the form factor, exp{-W(E)} is the Debye-Waller factor, T is a
reciprocal lattice vector and K’ is a unit vector in the direction of
K with components K’8, a=x,y,z. The function S8d(k,w) is the spectral
weight and the other parameters on the right-hand side of Egn.(1.3.1)
that we have not mentioned are constants. As explained in the previous
section, we only consider the component of E parallel to the magnetic
chain in our calculations. Then the spectral weight function is
defined in terms of a spin operator correlation function by,

iwt

s%0c,0) = 51 J ®at e < % (t) sPoy > (1.3.2)
~-00

x, B=X,9, 2z

The spin operators in this equation are discussed and the angular
brackets defined in Sec.l1.2. The spectral weight function is the
quantity that we aim to calculate in Chs.3 to 5. Egn.(1.3.1) shows
that it can be measured experimentally. It is purely real and positive
and it contains information on the dynamics of the systems we study.
In Chs.3 and 4 we will be considering the transverse spectral

weight function,
S(k,w) = .23:; J ® gt et ¢ S, () s: > (1.3.3)
=00
since it contains a lot of the useful information on the dynamics of
the systems we study.

Finally in this section we mention briefly the dynamic
susceptibility, x(k,s), which describes the response of a system to an
external perturbation and is related to the spectral weight function
and the static susceptibility. It is usually defined by using linear
response theory and we will not go into details here because it is

rather involved (Lovesey 1980) and not necessary for our calculation.



1.4 Theoretical Models

We describe the one-dimensional magnetic systems in terms of the
spins of the atoms or ions at sites, 1, on the chain, denoted S;, and
the interactions between the spins on different sites. We consider
only localised magnets so the magnitude of each spin is a constant,
denoted S. Depending on the nature of the interactions between the
sping, various Hamiltonians can be constructed. Some of the most

useful are the Heisenberg model,

b4
= - J E . + E b
H §1 §m h S1 (1.4.1)

1,m 1

the Ising model,

A Z A
H= - S § X
I ) s/ s +n s (1.4.2)

1,m 1

and the XY quel,

X X Y ¥ X
H= -J <} h.
g ( s] s slsm)+h§ s (1.4.3)

1,m m

where J is the ferromagnetic exchange coupling, J>0, h is an external
magnetic field applied in the easy direction, h>0, and 1 and m are
usually nearest-neighbour sites on the chain. For convenience we work
in units where 4JS=1 here and in the following chapters.

All of these Hamiltonians possess translational symmetry since they
are invariant under a translation of the lattice spacing along the
chain direction. If we set the field, h, equal to =zero they have
different spin symmetries. The Heisenberg Hamiltonian, Egn.(1.4.1), is
invariant under any rotation of the spins, where each spin in the
chain is rotated through the same angle about the same direction, i.e.
it is a global symmetry. The XY Hamiltonian is invariant under
rotations in the x,y-plane and the Ising Hamiltonian is only invariant
under spin inversion., The application of a field, h#0, breaks these

symmetries. Such symmetries have important physical consequences. For



example, there 15 no gap at =zero wave vector in the spin-wave
dispersion for systems with rotational spin symmetry but there is a
gap when a field is applied, this will be shown in Sec.1l.5.

We now give a short discussion on phase transitions in systems with
these Hamiltonians (Steiner et al. 1976). In three dimensions all such
systems have an ordered . phase for low temperatures and a disordered
phase for high temperatﬁres. In two dimensions the existence of a
phase transition from an ordered to a disordered phase at a finite
temperature depends on the symmetry of the Hamiltonian. For the
isotropic Heisenberg system there is no phase transition and the
system 1is in an ordered phase only at zero temperature, but for the
Ising system, which has uniaxial anisotropy, there is a phase
transition at a finite temperature. The XY system also has a phase
transition but it is unusual and will not be discussed here. In one
dimension, the case of interest to us, there is no phase transition in
any of these systems and they are disordered at any non-zero
temperature. At zero temperature some of the systems are in an
ordered, ferromagnetic, state and they lose their entropy in going
from a disordered to an ordered phase as the temperature approaches
zero by building up short—range order. Such systems have a wide
critical region near zero temperature and critical properties can be
studied over a large temperature range. We note that some systems do
not have an ordered, ferromagnetic, phase even at zero temperature,
for example the one we will study in Ch.4. Hence all these systems are
in a paramagnetic phase at non—zero temperatures and spin—wave theory,
which will be described in Sec.l1.5, is therefore an approximation.

There are various reasons for studying the theory of magnetism in
one dimension. One is that there are new features which do not appear
in three dimensions, such as the occurrence of two-spin-wave bound
states which are present for all wave vectors, these will be discussed
in Sec.2.3. Another reason is that the theory simplifies in one
dimension. For example, one-dimensional integrals occur instead of
three—dimensional ones and in fact it is sometimes possible to obtain

exact solutions.



Another advantage of working in one dimension is that it is often
feasable to do detailed computer simulations and exact numerical
calculations for finite chains of spins, that cannot be done in higher
dimensions because of computer limitations. For example, Schneider and
Stoll (1981l) have made numerical calculations of the spectral weight
for the Ising-Heisenberg chain 1in =zero field, defined by the
Hamiltonian,

o z _z + -
H = ZJZ ( 875, *&85 S, (1.4.4)
1

for spin S=1/2 and eight sites in the chain. This involves finding the
eigenvalues and eigenvectors of a 2Mx2N matrix. The Hamiltonian in
Egn.(l.4.4) is a special case of the Hamiltonian that we will study in
Ch.3 and comparison can be made beilween these numerical results and

our results.

1.5 Spin-wave Theory

Spin waves are small amplitude oscillations about the ground state
of the spin system. They were introduced by Bloch (1930), who
considered only non—interacting spin waves. Most of the subsequent
work on spin waves has been concerned with the effects of interactions
between them.

In this brief introduction to them we shall consider only the
Hoisonbarg farromagnel. in the presence of a magnetlc field, defined by
the Hamiltonian in Egn.(1l.4.1). The simple Heisenberg Hamiltonian
possesses full spin rotational symmetry and one of the effects of the
magnetic field is to break this symmetry. We will consider other more
complicated systems in Chs.3 and 4. The ferromagnetic ground state has
all the spins aligned in the direction of the magnetic field and a
single spin wave consists of one spin reversal spread coherently over
these aligned spins. Spin—wave theory is an approximation in one
dimension at finite {emperature because, as explained in Sec.l.4,

there is no ferromagnetism for non—zero temperature.



We now give a short discussion of spin-wave theory for the
state

Heisenberg ferromagnet (Keffer 1966, Mattis 1965). The ground, energy

is,
Eg = -2NJSZ - NhS (1.5.1)

where N is the total number of spins in the chain. In a classical
approach the spins precess about the z direction with angular velocity
wig, and each sucessive spin differs in phase from the previous one by
an angle of k. Prom the classical torque equations—of-motion for the

spins, the dispersion relation for a single spin wave is found to be,
wgk = 1 - cos(k) + h (1.5.2)

This wvanishes for h=0, k=0, in agreement with Goldstone's theorem
which tells us that the symmetry of the Hamiltonian leads to bosons,
in this case spin waves, with zero energy. For h#0 the symmetry is
broken and there is an energy gap.

Quantum mechanically, single spin—wave states are generated from
the ground state by applying spin—raising operators St. Denoting the
vacuum ground state by |0>, there are N such orthogonal states given

by,

¥, = (28) /2 s’; | 0> (1.5.3)

where 1 denotes sites on the chain, as in Sec.1.2.
Because of the translational symmetry of the Hamiltonian there are
eigenfunctions of the translation operator, in this case the

plane-wave states,
4 = N /2 Z oK1 v, (1.5.4)
1

that are eigenfunctions of the Hamiltonian. Hence these states

diagonalise the Hamiltonian. The energy eigenvalues are,

E(k) = Eg + wk (1.5.5)
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as expected from the classical theory. Two—spin—wave states are more
difficult to calculate Tbecause the plane—wave states are not
automatically orthogonal to each other. Also they do not diagonalise
the Hamiltonian and this gives rise to bound states. Physically these
bound states occur because under certain conditions the interaction
between spin waves is attractive.

The algebra of the spin operators 1is non—trivial because the

commutator,

[ s*, 8~ ] = 282 (1.5.6)

is not merely a complex number. There are many transformations,
however, from spin operators to boson operators. The ones that we will
consider treat spin waves as particles which are created and
annihilated by the boson operators at and a respectively.

One such transformation was introduced by Holstein and Primakoff

(1940) and is given by,

+ 1/2
s = (25yY/? [ 1 -4 ] a,
55
+ 1/2 (1.5.7)
s; = (25)Y/? a; [ 1-%1 % ]
3
z +
s¥=-s+a a

The boson operators satisfy the usual commutation relations,

+  _+

(1.5.8)

U]

&

La 1m

4
10 8, !

and it is easy to show that the transformation given by Egn.(1.5.7)

then satisfies the correct spin commutation relations given by

Egn.(1.5.6) and,

+ = +
{ 510 5 I1=-5 ®Im

(1.5.9)
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- Z _ -
[ Sy S 155 By

Tt is usual to work with the Fourier sums of these boson operators,

defined by,
I V4 -ik1l
Y
1
(1.5.10)
+ _ -1/2 ikl +
At o w2 ST
1

which are also boson operators because they satisfy the correct
commutation relations, similar to Eagn.(1.5.8). However, the
Hamiltonian obtained from the spin Hamiltonian, Egqn.(1.4.1), by using
the Holstein—Primakoff transformation is still difficult to use in
calculations, partly because of complications due to the square roots
which appear, and partly because the terms in it which are not
quadratic in the boson operators are large compared to the quadratic
terms 50 a perturbative treatment is not usually valid.

Another such transformation from a spin Hamiltonian to a boson
Hamiltonian was proposed independently by Dyson (1956) and Maleev
(1958). We will use this transformation in Ch.3. Its advantage over
the Holstein—Primakoff transformation, apart from its being easier to
use, is that the kinematical interaction between spin waves, which is
due to the spin—wave states defined in the theory not being orthogonal
to each other for states of two or more spin waves, 1is treated
separately. Then the dynamical interaction between spin waves, due to
the Hamiltonian not being diagonal in these states, has a non-
‘—quadratic part which is small compared to the part that is quadratic

in the boson operators. The transformation can be written,

- 1/2
s, = (25) a,
+ 1/2 _+ + a
S, = (25) ar | 1-*1 % ] (1.5.11)
1 1 4
25
2z

S, = ~8S +a, a
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and for +the Heisenberg spin Hamiltonian it gives the boson

Hamiltonian,

+ 1 + +
H= :g: W ak ak + NS :g: K(1,2,3,4) al az a3 a4
k 1,2,3,4
(1.5.12)

wk =1 - cos(k) + h

K(1,2,3,4) = 8 [ cos(3) - cos(1-3) ]

142,3+4

where we have chosen to work in units with 4JS=1, as usual. The wave
vectors in the quartic interaction are denoted by numbers here, for
‘convenience. The boson Hamiltonian is not hermitian so it cannot be
interpreted as a Hamiltonian for a real physical system and states
like at|0> cannot be real physical states. However this does not cause
any problems in the calculation. We will not discuss the reasons why
this transformation gives good results here.

Thermal averages, defined in Sec.l.2, of the boson operators are

given by, With respect to the quadratic part of H,

< a > = +at = 0
akp --<akap>-

(1.5.13)
<+a>'— 8
% % > T % %p
where the Bose factor is defined by,
ng = [ exp(wy/T) - 1 177 (1.5.14)

and is the average number of spin waves with wave vector k.
In our calculations we will always normal order the operators so
that annihilation operators appear to the right of creation operators.

This requires use of the commutation relations so that, for example,
at =a" + 5 1.5.15
3 P P A kp (1.5.15)

After normal ordering, a product of four operators, atataa, is of
higher order in the Bose factor than a product of two operators, ata,

etc.



13

We conclude this section with a brief discussion of the, so-called,
two—spin—wave continuum. For a state containing two spin waves of wave

vectors k and p, the total energy, if we assume that they are

non—interacting, is,

il

2 [ 14+ h - cos(K/2) cos(q/2) ] (1.5.16)

]

K=k + p, q=%k - p, -7 Sk, psT1

using Eqn.(1.5.12) for the single spin wave energy. The wave vector q
can take any value in the range -2<q<27 and so the total energy for

the two spin waves which have total wave vector K lies in the range,

wr 22 {1 +h - | cos(kK/2) | }
(1.5.17)

wr €2 {1+h+ | cos(kK/2) | }

When we plot graphs of energy versus wave vector the area where
Egn.(1.5.17) 1is satisfied is +the two—spin-wave continuum. The

two—spin—wave bound states that we will study lie below this continuum

of states.
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CHAPTER 2: METHOD OF CALCULATION

2.1 Green Functions

Thermal Green functions are both useful and convenient for treating
various complex problems, especially those in which it is necessary to
do a non—perturbative calculation. However, there may be some subtle
difficulties and the approximations used and results obtained should
be dealt with carefully. We will consider two such problems, a simple
one in Ch.3 and a more complicated one in Ch.4. These problems involve
one—dimensional magnetic systems and require a non—perturbative
treatment because of the two—spin-wave bound state which is present
throughout the first Brillouin zone below the two—spin—wave continuum.
This causes non—perturbative effects that no finite order of
perturbation theory can give, for example, poles in the self-energy,
which will be discussed in Sec.2.3.

Following Lovesey (1980), we define a causal thermal Green function

for two Heisenberg operators, defined by Egn.(1.2.1), A and B by,

G(t) = - i e(t) < [ A(t), B 1>
(2.1.1)

= << A(t); B >>

where 8(t) igs the unit step function, the angular brackets in the
first equality denote a thermal average, defined by Egn.(1.2.2), and
the square brackets denote a commutator, defined in Egn.(1.2.3). The

operator A(t) satisfies the equation—of-motion,
+ A(t) = - 1 [ A(L), H ] (2.1.2)

where H is the total Hamiltonian. For convenience, we define B=B(0).
The second equality in Egn.(2.1.1) defines a convenient notation.

The time Fourier transform of G(t) is,

G(w) = j ® gt 1% get)
-0
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To ensure that this is a convergent function we define our G(w) to be,

G(w)

w0 i(wkin)t
t O+
J‘m dt e G(t), n - (2.1.3)

if

<< A; B >>
w

where the second equality defines a useful notation. The parameter n
causes the integrand to tend to zero exponentially as time, t, tends
to infinity. When we take real and imaginary parts of G(w) we often
have to let wwtin and then take the limit 70+ explicitly.

It can be shown (Lovesey 1980) that the real and imaginary parts of
G(w) satisfy a Kramers—Kronig, or dispersion, relation, which, for our

definitions, is,

1 Pjoo du Im G(u) (2.1.4)

G = -
Re G(w) i w + u

where P denotes the principal part of the integral. This relation is a
direct result of G(w) being a causal function and it is easily derived

using the integral representation of the step function,

1 Joo du e—iut
8(t) = 5— T n > o+ (2.1.5)

Another useful result that we will state here, but will not derive,
is the relation between the spectral weight, S(k,w), discussed in
Sec.1.3, and the imaginary part of a Green function. This relation is,

+ - w
Im << S5 S, >> = -7 [1-exp(-g) ] S(k,0) (2.1.6)

It is, in fact, merely a statement of the well-known fluctuation-
—dissipation theorem (Kubo 1966). The spectral weight describes the
spontaneous fluctuations of the system and the imaginary part of the
Green function is simply related to the dissipative part of the

dynamic susceptibility, mentioned in Sec.1.3, since,

G(w) ¢ x(iw) (2.1.7)



le

In Chs.3 and 4 we will write the Hamiltonians in terms of boson

operators, as described in Sec.1.5, and will have to calculate a Green

function,

G(k,w) = — 2.1.8

£} “<<ak,ak>>w (--)
We will find that this Green function has the form,
-1

Glk,w) = [ w - mk - Z(k,w) 1] (2.1.9)
where wkg 1is the single spin-wave energy discussed in Sec.l1l.5.
Egn.(2.1.9) defines the self-energy, I(k,w), which vanishes in the

limit T=0 for the models of interest here. In this 1l1limit the Green

function, G(k,w), takes its non—interacting value, G(0J(k,w), which

is,
0 -
Ok,0) = (w - w ) 1 (2.1.10)
and also,
<« 803 s& = 28 + 2.1.11
L N <A A >y (2.1.11)

Hence to find the spectral weight we take the imaginary part of the
Green function in Egn.(2.1.10), letting wwtin, n20+, and using the

identity,
14
im fo AU gsuy+p [ O (2.1.12)
n*0 J_u+in o U

where §(u) is the Dirac &—function.

The result is,

S(k,w) = 28 & w - w ) (2.1.13)

so the spectral weight function has a resonance peak at the single
spin—wave energy. For most three-dimensional systems at low
temperature the 1lineshape of S(k,w) is Lorentzian. The §—function in
Egn.(2.1.13) can in fact be written as a Lorentzian in the limit that

its width tends to zero,
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1
8 w-w )=z n , Mm-=>0 (2.1.14)
" ) 2
(w-wk)+n

where the parameter 1 is a measure of the width of the lLorentzian. The
physical significance of our parameter 7, introduced in Egn.(2.1.3) is
that it 1is a measure of the width of the resonance peak in the
spectral weight.

We will find that for our one—dimensional systems in Chs.3 and 4
the self—energy, IL(k,w), has structure and is not merely’a purely
imaginary function of temperature. Hence the lineshape of S(k,w) is
not a Lorentzian, it is not symmetric about the single spin-wave
energy in fact. From Egn.(2.1.9) we see that the real part of the
self-energy evaluated at the single spin—wave energy gives the energy
shift in the resonance peak from the single spin—-wave energy, to a
first approximation. The imaginary part of the self-energy evaluated
at the single spin—wave energy gives the width of the peak, which is a
measure of the damping or inverse lifetime of the spin waves.

The self—energy arises because of processes involving interactions
of spin waves. The nonlinear processes contain two—spin—wave bound
states which arise because of the attractive interactions between spin
waves. We will see that the self-energy has poles at the two—spin—wave
bound states in Chs.3 and 4. These bound states can be found by

investigating a Green function of the form,
+ 4
<< aagj;a a >>w (2.1.15)

which involves products of creation and annihilation operators, and
this will be done as an example of the equation—of-motion method in
Sec.2.3. This Green function does not appear directly in any of the
equations which are used in the calculation of G(k,w). However, the
bound states do manifest themselves indirectly in the spectral weight
which has a resonance peak at an energy close to the bound-state
energy, for a given wave vector at low temperatures. This energy is

given by,

w - wx - S(k,w) =0 (2.1.16)
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where the left~hand side of this equation is the denominator of G(k,w)
in Egn.(2.1.9). These resonances will be discussed in detail in Ch.3.

We conclude this section by recording a useful result involving the

self—-energy,
G(k,w) = GIOXN(k,w) + GLOX(k,w) B(k,w) G(k,w) (2.1.17)
This is known as Dyson's equation.

The technique that we will use for calculating the Green functions

is described in the next section.

2.2 The Equation-of-motion Method

wWe now turn to the calculation of the Green function G(w), defined

in Egn.(2.1.3), from its equation—of-motion. Using the identity,
3+ (L) = B(L) (2.2.1)

and the equation—of-motion for the operator A(t), Egn.(2.1.2), we can

write the equation—of-motion for G(t), defined in Egn.(2.1.1), as,
13 G(t)y=8(t)Y< [ A, B]I>+<< [ At), H]; B> (2.2.2)

Then, differentiating both sides of Eqn.(2.1.3) with respect to time

gives
WGw)=<[A B]l>+<< [ A, HI; B>y (2.2.3)

which 1is the equation—of-motion for G(w). This equation provides a
means of calculating the Green function G(w). The last term in the
equation is another Green function that is usually of higher order in
the operators used, as we will see in the following chapters.
Consequently, in most cases, it has to be approximated in some way and
G(w) cannot be calculated exactly. We will discuss the approximation

to be used in Chs.3 and 4 in Sec.2.4.
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2.3 Two-spin—wave Bound States

To obtain the two—spin—wave bound states explicitly we study the
Green function, with pi+g=p’+q’,
c® % (p,qsu) = <« a, ag; a;, a;, > (2.3.1)
at =zero temperature. The energy Fourier transform of this Green
function involves the creation of two spin waves at zero time and
their annihilation at time t. We will find that the calculation of
GBS(p,q;w) involves an integral equation that can be solved because it
has a separable kernel. If the kernel had not been separable then
there would have been no two—spin-wave bound states in the system.
For simplicity, we will consider the boson Hamiltonian in
Egn.(1.5.12) here. The equation—of-motion for GBS(p,qi;w) is, from

Eqn.(2.2.3),

B S. + 4
W (p,qsw) = < [ ap aqa aq; a'p/ 1>+
(2.3.2)
<< [ a_a H ]; a+ a+ >
p q’ P8 Fpr 27w

Consider the second term on the right-hand side. The part of the

commutator involving the non—interacting term in the Hamiltonian

gives,
a a . jg: W ak a, ] ( m + wq ) ap aq (2.3.3)
where we have used the identity,
[ AB, CD ]=A[B,C]D+AC[B, D]+
(2.3.4)

{a,c]pB+Cc[A, D]B

The rest of the commutator gives,
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1
a, 31 355 z K(1,2,3,4) a:L a2 a, aA] 2Ns Z K(1,2,3,4) x
1,2,3,4 1,2,3,4

+ + +
§ a a a_a, +8 +
{ 8gp 8y 3,338, +8,,3 8,38 +8,, 3, a a;a +

4
-+ .
pl a2 a.q a3 aA ( Sql sz + 8pl 8q2 ) a3 az; } (2.3.5)

Hence the equation—of-motion for GB85(p,q;w) contains six-particle
Green functions of the form,
<<a+aaa-a+a >> 2.3.6)
« By 8 "a p’ (2.3.
We will now perform a Hartree—-Fock approximation on the product of

four operators,

aa aﬁ ay a8 (2.3.7)

which involves taking the sum of all possible terms in which the
product of two operators is replaced by its thermal average. Using
Egn.(1.5.13), for the thermal averages of products of two boson

operators, then gives, for Egn.(2.3.7),

& n a a_+ 8§ + .3.
o8 a2y 25 aynaaﬁas 80(8 nqaﬁay (2.3.8)

In the 1limit of zero temperature the Bose factor, and hence the
expression in Egn.(2.3.8), vanishes. In this 1limit all six-—particle

Green functions of the form in Eqn.(2.3.6) vanish. Hence, for T=0,

a a ,  H]l=(w +w a a +
[p’](pq)pq

q
(2.3.9)
1 o
NS Z { X(p,q,3,4) + X(q,p,3,4) } a3 a4
3,4
The first term on the right-hand side of Eqn.(2.3.2) is,
<[ a_ a a+a+]>- + 8 + 5 n_ + 8 n +
b q’ q' pl qq/ pq/ qql P pp, q

which, in the limit T-0, is,
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+ +
< a a,a b6 a,, >=8_ ,+ 8 2.3.10
C P 9 q° p ! aq Pq ( )
Hence Egn.(2.3.2) becomes,
(w- w6 -6 ) GB‘S'(p qQiw) = ( 8 + 8 ) +
P q T qq’ pa’

(2.3.11)

1 B.S.
ans 0 L K(B,2,3,4) + K(a,p,3,4) 1 65 (3,450)
3,4

We note that K(1,2,3,4) in Egn.(1.5.12) contains a 8&—function. Using

the change of variables,

i

K/2 + Q , q=K/2 -Q

o)
il

(2.3.12)

w
it

K/2 + X, 4 = K/2 - X
and the expressions for the single spin-wave energy and the

interaction in Eqn.(1.5.12) then give, for Egn.(2.3.11),

[ w-2( 1 - cos(K/2) cos(Q) + h) ] GB'S'(K/2+Q,K/2~Q;w)

- ﬁig ZE: cos(X) [ cos(K/2) -

X

= ( )

5 + 8
K/2-Q,q’ K/2+Q,q’

cos(Q) 1 GB 5" (R/24X,K/2-X;0) (2.3.13)

where we have also used the fact that GBS(K/2+4X,K/2-X;w) is an even

function of X so that,

:E: sin(K/2) sin(X) Gt 5" (k/24X,X/2-X;0) = O (2.3.14)
X

Eqn.(2.3.13) is an integral equation for GBS(X/2+4Q,K/2-Q;w) which is

easily solved. Writing it in the form,

GB'S'(K/2+Q,K/2—Q;w) ={w-21[1 - cos(K/2) cos(Q) + h ] }':L X

( Yy -~ {w-2[1 - cos(K/2) cos(Q) +

& + 8
K/2-Q,q’ K/2+Q,q’
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X

GB'S'(K/2+X,K/2—X;w)
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ZE: cos(X) [ cos(K/2) - cos(Q) ] X

multiplying by cos(Q) and taking the sum over wave vectors Q gives,

Zgj cos(X) GB'S'(K/2+X,K/2'X;w) =[1-wWK) 17T x

X
Z € ®/2-9,a’ * ®k/2+q,q’
9

) cos(Q)

cos(K/2) cos(Q) + h ] } %

where

{w-21011-

(2.3

W(K) = ﬁig jg: {w=-21{ 1 - cos(K/2) cos(Q) + h ] }—l X

Q

cos(Q) [ cos(X/2) - cos(Q) ]

Changing the sum into an integral,

2. 7w
27

il
Q
and using the results,
1 J " 4aqQ
27 o cos(Q) - £
1 j 7w dQ
27 ) cos(Q) - f

enables us to evaluate the

If we define,

f 7o

il

Sfe1 - £

i

function W(K).

_[2(1+h)-w]

£ 2 cos(K/2)

then, for |[f|>1,

Re W(K) = [ cos(K/2)

" f1 1

Im W(K)

I

2 5 cos(K/2)

- sign(f) ( fz

-1/2

(2.3

(2.3

-1/2

- 1) s 1] > 1

, IFl <1 (2.3

(2.3

2

(£ -1/2

- 1)

(2.3

.16)

.17)

.18)

.19)

.20)

.21)
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and for (fi<1,

cos(K/2) - £
2 S cos(X/2)

i

Re W(X)

(2.3.22)
cos(K/2) - f 2 . -1/2

Im W(K) 2 S cos(K/2) (-f)C1-£ )

i

The region |fi<1l defines the two-spin—wave continuum, described in
Sec.1.5.

The Green function GBS(K/2+4Q,K/2-Q;w) contains a term with the
factor {1-W(K)} in its denominator. The two—spin—wave bound states are

resonances of this Green function and they occur when,

i
[

Re W(K)
(2.3.23)

il
O

Im W(K)

The function W(K) is also a function of energy, w, and to obtain the
dispersion of the bound states we look for a solution of Egqn.(2.3.23)
below the two—-spin-wave continuum, f>1, in the form =w(K).
Egn.(2.3.23) then gives,

[ cos(Kr/2) - £ ]
25 cos(K/2)

-1/2

[1-F( £ -1) ]1=1 (2.3.24)

which can be written,

45 cos(K/2) £3 + [ 4S5 ( S - 1 ) cos2(K/2) - 1 ] f2 -
(2.3.25)
2 (28 -1 )cos(K/2) £ - ( 25 -1 ) cos?(K/2) = 0

This 1is a cubic equation in f. The analytic solution is very
complicated but simplifies in two special cases. Firstly for S=1/2 it

gives,

1 + cos®(K/2)

5 CoS(K/2) (2.3.26)

f =

or, using the definition of £, Eqn.(2.3.20),

. 2, K
wy = sin ( 3 Yy + 2h (2.3.27)
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secondly at the zone boundary, K=r, Ean.(2.3.25) gives the result,

1
= - e A . D
LAB 2 57§ 2h (2.3.28)

Apart from these two special cases we solve Egn.(2.3.25) numerically.
We will discuss bound states and their effect on the spectral

weight function further in Ch.3.

2.4 Approximation Method

When we use Egn.(2.2.3) and a boson Hamiltonian with interaction
terms, for example Eqn.(1.5.12), to write down an equation for G(k,w),
defined in Egn.(2.1.8), we find that higher order Green functions are
generated. Consider the Hamiltonian in EQn.(1.5.12), to be specific.
Then the exact equation—of-motion for G(k,w) contains the temperature-
~independent term G(0)(k,w) added to a term which includes a
four—particle Green function of the form,

+ +
G(p,9,9',k;jw) = << a_a_a_,; a

b %q %g X >>m (2.4.1)

which is temperature-dependent and wvanishes in the 1limit that
temperature, T, tends to zero. The exact equation-of-motion for this
Green function includes terms with six—particle Green functions and so
on. Hence we cannot calculate G(k,w) exactly and we have to make some
approximations.

For our Hamiltonian, n'h order perturbation theory corresponds to
neglecting all terms in the Green functions which contain powers of
the interaction that are greater than n. However, as we stated in
Sec.2.1, perturbation theory is not adequate for describing these

systems.



25

The approximation that we will use is valid for low temperatures
but: not necessarily small wvalues of the interaction, and is as
follows. The exact equation—of-motion for G(p,q.q’,k;w) contains a
term which includes the same Green function and another term that is
of the form,

+ +  +
<< [ ap aq aq,, a1 a2 a a 1; ak >>

+
] a a ak >>

= <L a+ [ a a a+
P q q'’ "1

+ <L a+ a+ [ a+ a_ a
172 p’ 3 4

1 aq aq,; a; >>w (2.4.2)

The first term on the right-hand side of Egn.(2.4.2) contains
four—particle and six-particle Green functions and the second term
contains only six-particle Green functions, after evaluating the
commutators and normal ordering the operators, as described in
Sec.1l.5, Six particle Green functions are effectively higher order in
temperature than four—particle Green functions since they are higher
order in the Bose factor, defined in Eqn.(1.5.11). If we neglect all
six—particle Green functions, the expression on the right—hand side of
Eqn.(2.4.2) becomes,

) << a; ay a,; a: >>w (2.4.3)

( 8q1 %qr2 ¥ g2 8qr1

which has the same form as our original four-particle Green function.
Within this approximation the equation—of-motion for G(p,q,q’,kjw) is
an integral equation which can be solved and hence we can calculate
G(k,w). Another way of stating our approximation, which brings out
more of the physics of the system, is as follows. We approximate the
first term on the right-hand side of Egn.(2.4.2) by,

+ + + +
<[ aq aq,, al a2 1> <« ap a3 a,; a, >>m (2.4.4)

The thermal average of the commutator is merely the amplitude for the
production of two—spin-wave bound states, as in Egn.(2.3.2), and we

evaluate it in the limit of zero temperature to obtain,

& 3] + 8 b
a1 g2 qu q’1 (2.4.5)
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Hence we obtain Egn.(2.4.3), The second term on the right-hand side of
Eqn.(2.4.2) arises from spin-wave collisions which result in energy
shifts and damping in G(p,q,q’,k;w) and are neglected.

In summary, the approximation we use is basically to work to first
order only 1in the Bose factors., In the Ilanguage of diagrammatic
perturbation theory it is called the one backward line approximation.

This will be discussed in the next section.

2.5 Comparison With T-matrix Theory

We will now show that our approximation is equivalent to the
standard T-matrix approximation as done by, for example, Pini et al.
(1981) for similar systems to the ones that we consider. We will find,
however, that the equation—of-motion method is particularly convenient
in more complicated systems, with anisotropy for example.

For convenience we will use diagrams to describe the T—-matrix
approximation (Abrikosov et al. 1963, Fetter and Walecka 1971). In

these diagrams the non—interacting Green function,
0 + 0
& )(k,t) =< a (t); a >>( ) (2.5.1)

is denoted by a straight line with an arrow pointing forward in time
and the interaction, X(1,2,3,4) in Egqn.(1.5.12), by a wiggly line, as
shown in Fig.2.1.

In perturbation theory the full Green function,
+
G(k,t) = << &, (t); a >> (2.5.2)
is given by the expression,

4]
(-1
>
n=0

)n

Jdtl..dtn < T [E(E).LE(E ) A (t) a:(o) 1>,
(2.5.3)

where T denotes time-ordering, ¢ denotes taking the sum over connected
diagrams only, the perturbation, H’, is the second term in the

Hamiltonian of Ean.(1.5.12) and n denotes the order of the
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perturbation theory. In our theory t>0 always. To lowest order, n=0,
the expression in Eqn.(2.5.3) gives G(0)(k,t). To obtain the first
order, n=l1l, connected diagrams we consider all possible pairings, or

Wick contractions, of,
’ + P
H'(t,) a (t) a (0) =
HERENG t t t) af 4
a,(t)) a,(t)) a,(t;) a,(t)) a, (t) a,(0) (2.5.4)

For example consider,

| |
[ | | |
ai(tl) a:(tl) a3(tl) aA(tl) ak(t) a:(O) (2.5.5)

which gives the diagram in Fig.2.2a. Other possible connected diagrams

are given in Fig.2.2. Each of these gives a contribution to G(k,t) of,

(-1) j at zg: K(p,k,p,k) &t °)(p.0y &'k, t-try ok, )

p (2.5.6)

All of these diagrams can be written in the abbreviated form of
Fig.2.3. PFor n=2 there are approximately eighty possible pairings
leading to connected diagrams and we will not go into the details.

In the T-matrix, or dilute gas, approximation we consider only the
so—called “ladder” diagrams and neglect all others, i.e. we include
only repeated pair interactions. The Green function G(k,t) is then
given by the expansion in Fig.2.4. To obtain G(k,w) we take the time
Fourier transform of this result and can write down the same diagrams
as we used for G(k,t) with energies as well as wave vectors labelling
the lines and a slightly different prescription for calculating the
contribution of each diagram to G(k,w). The self-energy, defined by
Eqn.(2.1.92) 1is then given by the expansion in Fig.2.5, where the
T-matrix is defined by the diagrammatic equation in Fig.2.6. This
equation is rewritten as an integral equation in Fig.2.7, which is
similar to the integral equation for the four—particle Green function

that will be solved in Chs.3 and 4, and is written algebraically as,

T(k,P,a,a’) = K(k,p,q,q’) + jgj j K(k,p,3,4) a<%7(3,u) x

u,v
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at®4,v) T(1,2,q,q’) a3 d4 (2.5.7)

The T-matrix approximation is wvalid for interactions which are
short—ranged, but not necessarily small, so their effects are small.
It is valid as a low temperature expansion for the systems we consider
because it is considering the scattering of two particles which may,
however, scatter from each other many times. Hence we only consider
one particle, apart from our particle of wave vector k and energy w,
and so only need one power of the Bose factor, which is just the
average number of particles with a given wave vector. We then, of
course, integrate over all wave vectors to include all possible
interactions of our particle, 1labelled by k and w, with other
particles in the system. For example diagrams like those in Fig.2.8 do
not contribute because they contain factors ngng. This demonstrates
that our approximation is equivalent to the T-matrix approximation. A
calculation of the self-energy evaluated at the single spin—wave
energy for the easy—axis ferromagnet was done by Rastelli (1982) and

it agrees with our result in Ch.3.
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Figure 2.1: Non—interacting Green function and interaction
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Figure 2.2: First order perturbation theory diagrams
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Figure 2.4: Expression for Green function
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Figure 2.5: Expression for self-energy
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Figure 2.6: Definition of T-matrix
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Figure 2.7: Equation for T-matrix
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Figure 2.8: One diagram of higher order in temperature
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CHAPTER 3: EASY-AXIS FERROMAGNET

3.1 Spin Hamiltonian

This chapter 1is concerned with the application of the previous
results to an easy—axis ferromagnetic chain (Lovesey and Hood 1982). A
more complicated system will be considered in Ch.4.

The Hamiltonian that we consider for the easy—axis ferromagnet is,

z % + - zZ z. 2
H = J :E: ( S1 Sm + g S1 Sm )y + jg: {h S1 - D (Sl) }
i1,m 1
(3.1.1)

where J is the ferromagnetic exchange coupling and h is the applied
magnetic field. The parameter g lies in the range between zero, the
Ising limit, and one, the Heisenberg limit, and it is a measure of the
exchange anisotropy. The parameter D is the single—site anisotropy.
The spin operators are defined in Sec.l1l.2 and the first sum in
Egn.(3.1.1) is taken over all nearest—neighbour sites 1 and m. The
parameter J is positive and the parameters h and D are either positive
or zero. We note that for the special case S=1/2 the term involving D
reduces to a constant and therefore has no effect on the dynamics of
the system. This fact provides us with a useful check on our results.
The parameter J causes the spins on the chain to tend to align
parallel to each other. The parameters g, except for the Heisenberg
limit g=1, and D cause them to align parallel or anti-parallel to the
z—axis, which is the easy axis. The field h tends to align them in the
negative z-direction. The ground state of the system has all the spins
in the chain aligned along the negative z—direction. Spin waves are
then small amplitude oscillations of the spins about this direction

and we will discuss them in the following sections.
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3.2 Boson Hamiltonian

We transform the spin Hamiltonian in Eqn.(3.1.1) to a boson
Hamiltonian using the Dyson—Maleev transformation defined in

Egn.(1.5.11). This gives,

+ + 1 + 4+
H = 2JS ZE: [ ¢ al a1 - g a1 am )y - 5§ ( a1 am a1 am -
l,m

+ _+ +
g a1 a1 a1 am )y ] + jg: [ {h+D(28 -1) 1} al a1 -
1
+ 4+
D a1 a1 a1 a1 ] (3.2.1)

where we have used the commutation relations, Egn.(1.5.8), to normal
order the boson operators. We write these operators in terms of their

Fourier sums, that is,

" 1/2 ikl
a1 = N :{: e ak

k
(3.2.2)
+  -1/2 -ikl _+
S D I ™
k
to obtain the boson Hamiltonian,
+ 1 + _+
= R
H :g: W a.k ak 5HS :E: K(1,2,3,4) a, a, a, a4
k 1,2,3,4
(3.2.3)

W = 1+h+D( 25 -1 ) - g cos(k)

K(1,2,3,4) = 8 [ g cos(3) -~ cos(1-3) - 2DS ]

142,344

which is the same as the Hamiltonian in Egn.(1.5.12) for the special
case g=1, D=0, i.e. the Heisenberg ferromagnet, as required.

From the transformation, Egqn.(1.5.11), it is obvious that the Green
function that we are aiming to calculate to obtain the transverse

spectral weight function, Eqn.(1.3.3), is,
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-+ +
<< 85 5 > =28 << aga > -

1 +
N <L ak, a a. a (3.2.4)
1 2 142~ k
1,2

The calculation of this Green function is described in the next

section.

3.3 Calculation

We now turn to the calculation of the two-particle Green function
G(k,w), defined in Eqgn.(2.1.8). Its equation—of-motion is, from

EqQn.(2.2.3),
+ +
w G(k,w) =< [a,a 1>+ [a,H ] a, >> (3.3.1)

Using the commutation relations for the boson operators, Egqn.(1.5.8),

and the boson Hamiltonian in Egn.(3.2.3), we find,

.]-
[ ak, ak 1 =1 (3.3.2)

and,

[ ak, H ] = mk ak 2NS jgj { K(k,2,3,4) + K(2,k,3,4) } a a3 a4

2,3,4
(3.3.3)

so that Egn.(3.3.1) becomes,

- = i 4
( w wk ) G(k,w) 1+ 2NS :Zd { K(k,2,3,4) + K(2,k,3,4) } %
2,3,4
+ +
<L a2 a3 34; ak >>m (3.3.4)

This equation has a term which includes four—particle Green functions
of the form G(p,q,q’,k;w) with g+q’=p+k because of the Kronecker § in
the interaction XK(1,2,3,4), defined by Egn.(2.4.1). Its

equation—of-motion, from Eqn.(2.2.3), is,
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’ - + +
w G(p,q,q",k;w) = < [ a, 3,3y, 1>+

+ +
<< T ap aq aq,, H ]; ak >>w (3.3.5)

The first term on the right-hand side of Egn.(3.3.5) is,

+ +
<[a a_ a >=( &  + &, n 3.3.6
[a,a, a,,a 1>=(8, +8, )n ( )

using the commutation relations, Egqn.(1.5.8), and the thermal averages

of boson operators in Egn.(1.5.13). The commutator in the second term
is,

[ a+ a a,, H]l=(w +w,6 -w_ ) a+ a a , +
P Q g q a P P a a

1 j:: + + +
4
5NE XK(1,2,3,4) [ ap aq aqf, al a2 a3 a4 ]

1,2,3,4
(3.3.7)

Hence the equation-of-motion, Egn.(3.3.5), becomes,

( w + wp - wq - wq, Yy G(p,q,q’ ,kiw) = ( qu + sq’k ) np +

1 + + _+ +
RS ZE: K(1,2,3,4) << [ ap aq aq,, al a2 a3 a4 1; ak >>m

1,2,3,4
(3.3.8)
We use the approximation method described in detail in Sec.2.4 to
approximate the Green function in the last term on the right-hand side

of Edgn.(3.3.8) by the expression in Egn.(2.4.3). Hence Eqgn.(3.3.8)

becomes, in our approximation,

( w+ wp - wq - wq, ) G(p,q,9",k;w) = ( qu + sq'k ) np +

1

aws 0 (K(@,07,3,4) + K(2/,,3,4) ] G(P,3,4,k;0)  (3.3.9)

3,4

We define the wave vector X by,
K=k+p=qgq+q’ =3+ 4 {3.3.10)

Then we change variables,



35

K/2 +Q , Q' =K/2 - Q

o]
1]

(3.3.11)

K/2 + Q" , 4 =K/2-Q'

W
il

We treat k, p and w as constants for the moment and define,
A(Q) = G(p,q,q’ ,k;w) (3.3.12)

Then Egn.(3.3.9) can be written,

( @ - E(P,K/24Q,K/2-Q) } A(Q) = ( By 0y + By o0 ) n

l ’ 7
NS :E: { K(K/24Q,K/2-Q,K/2+Q’ ,K/2-Q") +
QI
K(K/2-Q,K/24+Q,K/2+Q" ,K/2-Q") } A(Q") (3.3.13)

where,

E(p,K/24Q,K/2-Q) = wg/2+g + wr/2-g - Wp
(3.3.14)

=1 +h+D(25 -1) + g cos(p) - 2 g cos(K/2) cos(Q)

Because the boson annihilation operators commute with each other, A(Q)

is an even function of Q. Hence sums such as,

:g: sin(Q) A(Q)

Q

vanish. Substituting the expression for the interaction K(1,2,3,4), in

Egn.(3.2.3), into Eqn.(3.3.13) then gives,

{ - E(P,K/24Q,K/2-Q) } A(Q) = ( 8y 4 o+ B4 o p ) B+

wiw { g cos(XK/2) - cos(Q) } F(l) -t D (2) (3.3.158)

N S NS 2J
where,

AR Zg: cos(Q’) A(Q’)

QI
(3.3.16)
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P2 = )

QI
Eqn.(3.3.15) is an integral equation for A(Q) which can be solved

because it has a separable kernel. To soclve it we divide both sides

by,
w - E(p,K/2+Q,K/2-Q)

to obtain an expression for A(Q) which contains the numbers F(1) and
F{(2), fThen taking the sum over all wave vectors Q in the first
Brillouin zone gives an expression for F(2) in terms of F{(1), (2} and
other numbers. Similarly multiplying by cos(Q) and then taking the sum
gives an expression for F(1). Hence we obtain two equations for F(1)

and F(2} of the form,

a ¥y A, %) =B

1 1
(3.3.17)
(1) | (z2) _
A, F +AF = B,
and we find,

A =1 - L jg: cos{Q) { g cos(K/2) - cos(Q) }

1 NS w - B(p,K/24+Q,X/2-Q)

Q

A = 1 D Z cos(Q)

2 NS2J w - E(p,K/2+Q,K/2-Q)

Q

A = - 1 }‘: g cos(K/2) - cos(Q)

37 NS w - E(p,K/2+Q,K/2-Q)

Q
(3.3.18)
_ i D 1
A1 *ys33 :Ej © TE(p,K/2%Q,K/2-0)
Q
_ cos(Q)
By = ZE: o T Ep,k/240,%2-0) p ¢ So,xks2 t %q,x/2-x )

Q

1
By = ZE: o - Ep,K/2F,k2-0) p ¢ %qk-xs2 T %q,x/2k

Q
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The solution of Egn.(3.3.17) is,

A B. - A B
F(1)__ 4 "1 2 2
. 1 - W
A, B - A
F(z) 172 3 B, (3.3.19)

We will now perform the sums over wave vectors Q in Egn.(3.3.18). For
convenience we define the dimensionless parameter f by,

1+h+D (25 -1)+gcos(p) -w (3.3.20)

£= 3g Cos(K/2)

The two—spin—-wave continuum discussed in Sec.l1.5 is, for this system,

wr 22 {1+h+D(285-1)-g | cos(K/2) | }

(3.3.21)
wr €2 {1+h+D(28-1)+g | cos(K/2) | }
The region [f;sl is
wH+wg 22 {1+h+D (28 -1)-g | cos(Kr/2) | }
(3.3.22)

w+wp €2 {1+h+D(28-1)+ g | cos(Kr2) | }

In our low temperature approximation we work with p close to zero so
wp 1s merely the energy gap in the single spin-wave dispersion. We
will, in the rest of this chapter and in Ch.4, refer to the region
|£l€1 as the two—spin-wave continuum since we will be considering
two—spin-wave states with total energy (wtwp).

Then, using Egn.(3.3.14),
w - E(p,K/2+Q,K/2-Q) = 2g cos(K/2) { cos(Q) - f } (3.3.23)

We also define a function Y(f) by,

1 " dq
Y(£) = 57— J-ﬁ oSGy —FF IR ' N7 o] (3.3.24)
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The parameter n is included to make the integrand finite everywhere
for |[f|<1. The integral in Eqn.(3.3.24) can be calculated analytically

and the result gives,

wey=-i¢1-£)yY%, £ <1

Y(E) = - ( £ -1 )"1/2 , £>1 (3.3.25)
wey=( £ -1y, fc-n

We note also that,

1 i cos(Q) dQ _ _

2w J cos(Q) - £ +1in 1+£Y(f), n-~=>0
(3.3.26)
2

1 ( cos"(Q) dQ _ 2

2w J cos(Q) - F+1in £+ £ YWEY , n~=>0

We then replace the sums in Egn.(3.3.18) by integrals, using

Egn.(1.2.6), to obtain,

g cos(K/2) - £

Al . ) 2gS cos(K/2) {1+ £Y(£) )}
D 1
A2 33 Zgsces(rrzy ¢ LT EY(R)]
1
Ay = g5 cos(ryzy L1t fY(E) - g cos(K/2) Y(£) }
(3.3.27)
D 1
A,=1t53 285 cos(K/2) Y(£)
— ~ - k-p
Bl =( W W ) nP cos(~§~
-1
B2 = ( w - wk ) np
where we have used the fact that,
E(p,p,k) = wg (3.3.28)

to simplify the last two egquations.

We now stop treating k, p and w as constants and write Egn.(3.3.15)
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as,

{ @« - E(p,K/2+Q,K/2-Q) } G(P,K/24Q,K/2-Q,k;w) =

1
( 80 x-p " B29,p-x ) Pp * 5 | 8 CO8(K/2) - cos(Q) } x

A, B " A B 1 p A By A3 B

1 - W NS ZJ 1 - W (3.3.29)

where K, k and p are not independent but are related by K=k+p and W is

a function of two of these parameters and w. We choose to write it as

W(p,K;w) and it is given by,

W(P,K;0) = > £ 101+ £ Y(E) ]+

28 [1- g cos(K/2)

D [ L+ £ Y(f) - 2g8 cos(K/2) Y(Ff) 1] (3.3.30)

2gzszcos (K/2)

For the special case of the Heisenberg ferromagnet, g=1 and D=0, this
expression has the same form as the expressions for W(K) in

Edgns.(2.3.23) and (2.3.24). In fact the solution of the equation,
Re W(O,kjw) =1, f>1 (3.3.31)
is,
w=wg(K) -wg , P=20 (3.3.32)

where wg(K) is the bound—state energy for wave vwvector K, i.e. the
solution of Egn.(3.3,31) is just the bound—-state energy up to an
additive number which is the gap in the single spin-wave energy at
zero wave vector. Bound states will be discussed in detail for this

system in Sec.3.6.

We substitute our expression for the four—particle Green function,

G(p,K/2+Q,K/2-Q;w)

given by Eqn.(3.3.29) into Eqn.(3.3.4) to obtain an expression for
G(k,w). There are three wave vectors to be summed over in the last

term on the right—hand side of Egn.(3.3.4). One of these is taken care
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of by the Kronecker § in the interaction term. Another can be written

in the form of the sums in Eqgn.(3.3.16). Hence we find that

Eqgn.(3.3.4) becomes,

k- -
(o - o) GRe) =1+ e > [ (g cos(-3E) - cos(XFR) ) x
] (3.3.33)

The functions F{1) and F{2) both contain the factor,
(w - wg )

and so we can write Eqn.(3.3.33) in the form,

_ _ _ -1
( 0w - W Y G(k,w) =1 + Z(k,w) ( w W )
or, using Egn.(2.1.10),
G(k,w) = G(O)(k,w) + G(O)(k,w) Z(k,w) G(O)(k,w) (3.3.34)
where
(k,w) = Fig Jw_k dp np ( { g cos(E%E - cos(EéE) } cos(E%E) +

D[ g cos(Egg) 1781 2 cos(EéE) - 2g8 cos(E;g) - f -

( cos( By - £1% ¥(£) 1) [ 1 - Wp,ktpiw) 17
(3.3.35)

We have changed the sum over wave vectors p to an integral, using
Egn.(1.2.6), 1in obtaining this equation. The upper limit of the
integral is (w-k), rather than w7, to make the integrand finite
everywhere as the parameter f diverges as p»rw-k. For low temperatures
this is not important since the Bose factor ensures that the main
contribution to the integral comes from small p. The integrand, apart

from the Bose factor, is just a T-matrix, as discussed in Sec.2.5.
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We note that Egn.(3.3.34) is similar to Dyson’s equation,
Ean.(2.1.17). To make it exactly the same we replace +the last
G(0)(k,w) in the second term on the right-hand side by G(k,w), which
enables us to identify I(k,w) as the self-energy. Within our
approximation of working to first order in the Bose factor this
replacement does not affect our results because, if we expand the
Green function in Egn.(2.1.16), which satisfies Dyson’s equation, in

powers of the self-energy, we obtain,

(0) (0) (0)

G(k,w) = G (k,w) + G (k,w) Z(k,w) G (k,w) +

o E(k,w)2 ] (3.3.36)

where G(0)(k,w) is defined by Eqn.(2.1.10). The self-energy is of
first order in the Bose factor. Neglecting terms of higher order in
the self-energy causes Eqn.(3.3.36) to reduce to Ean.(3.3.34). This
replacement of the non—interacting Green function by the interacting
one accounts for multiple scattering events instead of merely
scattering from a single spin wave.

To obtain the spectral weight function we also need to calculate

the four—particle Green function,

+ _+

<L ak, at at, at+t’—k >>m (3.3.37)
which appears in Egn.(3.2.4). This calculation is similar to the
calculation of G(k,w) and therefore we will omit some of the details.

The equation—of-motion is,
w <L 3 a+ a+ a >> = L + a ] +
Bt B By Bpgprx e T SU B B By By 12
<< [ H 13 atat a (3.3.38
By s PR B, Bk T +3.38)

The commutator in the second term on the right—hand side of this
equation 1is the same as in Eqgn.(3.3.1) and in fact +the only
differences between the calculation of this Green function and G(k,w)
arise because of the different thermal averages. The thermal average

in Egn.(3.3.38) is,
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<[ a a+ a+ a 1>=8 n + 8 3.3.39
k' 2t 2t Prat x = n (3.3.39)

where we have used Eqns.(1.5.8) and (1.5.13), the definitions of
commutators and thermal averages of the boson operators.
We obtain an integral equation for the Green function generated by

the second term on the right—hand side of Eqn.(3.3.38),

+ _+
a_a_,

aK/2+Q aK/z-Q; + Bt -k (3.3.40)

+
A(Q) = << ap

which is the same as Egn.(3.3.15) except that the first term on the

right—-hand side is, to lowest order in the Bose factors,

< [ a+ a a a+ a+ a 1>=
P K/2+Q K/2-Q° “t "t/ “t+t/-k -

)

€ 8 2-q,t %x/249,t” ¥ ®xs2-q,t* %k/24q,t } %p,t+t’x Tp

(3.3.41)

neglecting terms of the form <atataa> which are quadratic in the Bose

factors. Hence if we change the parameters Bq and Bz in EqQn.(3.3.18)

to,
5 - ZE: 8,4tk ¢ Bxr2-0,t Bxr240,tr t Bks2-0,t’ Sks24q,t y
1 w - E(p,K/2+Q,K/2-Q)
Q
n [efel]
o (Q)
2 t-t
s e T EpR.EE "p %p,t4tr-x SOS(Z)
5 - p,t+t’ -k ¢ Bxs2-9,t Bxs240,tr T Bks2-0,t Sks2+0,t ) Tp
2 7 w - E(p,K/24+Q,K/2-Q)

Q

2

w - E(p,E,E7) p 8p,t+t'-k (3.3.42)

then we obtain,

+ 4+
- = +
o W ) << Ay, B % Fprer ok 0 T Bke Mo T Ok Ty
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w5 0 ([ ecos(y®) - cos(By ¥t . B s(2)

(3.3.43)

where F(1) and ¥(2) are given by Eqn.(3.3.19) and we use the new
values of Bq1 and By in Egn.(3.3.42).
We define a function A(k,w) by,

1 +
& :E: << ak, t a., t+t’—k >>w = G(k,w) 25 AMKk,w) (3.3.44)
t,t’
so that,
- +
<L Sk; Sk >>w = 28 G(k,w) [ 1 - A(k,w) ] (3.3.45)

using Eqn.(3.2.4). The result for A(k,w) is,

1 (w 1 ﬂ ™ dq
N9 = ) Pt 23 J_,T M J_ﬂ b T P, @, M)

1 k+p, 2g-k-p
T = W(p Kip70) { [ g cos(uim cos( ) ] cos(———

D k-p 2q-k-p k+p
g cos[(kipy/z] | CoS(-z ) ¥ cos(—=5——) - 285 cos(—5~) -
- £ - (eos(SB) - £ (cosBLERy L £y viey 1)
(3.3.46)

We note that the first term on the right-hand side of this equation

can be written,

218 P 213

2 f Tdpn = 1 J Tadp (8 +<85°>)
-1 p

(3.3.47)

it

1 z
1 4 3 < S >

We will now analyse the results obtained in this section.
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3.4 Spin-wave Damping and Shift

In the 1limit of low temperatures, T<<J in our units, the Bose
factor, defined by Egn.(1.5.14), is small. Hence the self-energy and

the function A(k,w), which are first order in the Bose factor, are

small.
The Green function that gives us the transverse spectral weight

function can be written,

(3.4.1)

- + -

k w - mk - Re (k,w) - 1 Im Z(k,w)

using Egns.(3.3.45) and (2.1.9). Since I(k,w) and A(k,w) are small,
this Green function has a maximum, for a given k, at an energy close
to the single spin—wave energy. This energy, the renormalised

spin—wave energy, is approximately,

nk wk + Re ):(k,mk)

=W - A(k)

(3.4.2)

where A(k) is the spin-wave shift. We evaluate the self-energy at the
single spin-wave energy, assuming that it does not vary much for
energies close to the single spin-wave energy. The spin—wave damping,

or inverse lifetime, is given by,

r(k) = - Im Z(K,w ) (3.4.3)

and is a measure of the width of the spin—wave peak in the spectral
weight function.

We will evaluate the self-—energy, Eqn.(3.3.35), at the single
spin—wave energy for low temperatures. The Bose factor, Eaqn.(1.5.14),
is largest for small wave vectors in this system. We will assume that
the integrand in Egn.(3.3.35) is dominated by small wave vectors p. We
expand the integrand, except the Bose factor, in powers of p and

retain only the lowest power. For convenience we define the integrals,

1 b1l .. m
Rm(T) = "ﬁf dp np sin (p/2) , m= 0,1,2,... (3.4.4)

o
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For O«<k<rr, the integrand is non—zero for p=0 and we obtain, after some

simple algebra,
NMKk) = g RO(T) sinz(k) { (1 -g) cosz(g) + D( 28 - _:;. y } X

2.k D 1
{[COS(-2~)~E][2gS+1—g]+D(ZS~1)}»—-?-—]:

I'(k) = 2g RO(T) cosz(]%) sin(k) { (1 - g ) cosz(-ki) + D ( 25 -

1 2,k D 1
g)}{(l—g)[cos(§)~§]+D(2S~1)}-——;

_ 2k, D ) A 2 .2k
Fk—«{[cos(-é») El(l g )+ D ( 28 1)}+31n(-2«)><

4gS [ cos™(3) - 21 { [eos®(3) - 21 (1-g+es)+

D(25-1)}220 (3.4.5)

For the isotropic case, g=1 and D=0, the expressions for A(k) and
(k) given in Egn.(3.4.5) vanish and it is necessary to retain terms
of higher order in p. In this case the shift and damping have been

calculated by Lovesey (1981) and are given by,

mijl-c:os(k)](s—l)R(',[')

A(Kk)
2 s?
k) = W (3.4.6)
2 s
R(T) = 1.04 T7/%

For the anisotropic case and small wave vectors k, we note that the
damping is 1linear in k and the shift is quadratic in k. At long
wavelengths the damping is therefore the bigger effect and is likely
to be more important experimentally.

At the first Brillouin zone boundary, k=, we have to be careful
when evaluating the shift and damping because the parameter f is
singular for small p. At the single spin-wave energy f is given by,

using Egn.(3.3.20),
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cos(p) + cos(k)

2 cos[(k+p)/2] (3.4.7)

f =

Then for a given k, f has a singularity at p=m-k. For p slightly
greater than (w-k), f is large and positive. For p slightly less than
(m-k), £ is large and negative. Hence for k=m, the singularity is at
p=0 and f£>1 for all p>0. The region given by |f}<1l, which is the one
that we are considering, is given by -w<p<0. To calculate the shift
and damping we first set k= and then restrict the range of

integration to -m<p<0. We then find, from Egn.(3.3.35), that for D#0,

A(m) = - 2g (1 + 285 ) Ry(T)
(3.4.8)
r(m) = 2g ( 1 + 288 )° R (T)
and for D=0,
- D
(3.4.9)

2
2g (1 +g)

(1+g - 285 )°

()

it

R.(T)

Egns.(3.4.8) and (3.4.9) give the same results for S=1/2, as expected.
For the special case of g=1, h=D=0 and S=1/2, the damping is given by,

T T2
M) =5~ , T>0 (3.4.10)

from Eqn.(3.4.9).

3.5 Bound States

Two—spin—wave bound states for the Heisenberg ferromagnetic chain
have been discussed in Sec.2.3 by studying a Green function of the
form <<aaj;atat>>,. However, neutrons do not couple directly to such
bound states and they cannot be observed. They do manifest themselves
in the spectral weight as resonances caused by a spinywave, created by

the scattering of a neutron, interacting with another spin wave in the
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system in such a way that they form a bound state. The energies of
these resonance peaks in the spectral weight are usually less than the
corresponding bound state energies.

The bound state is a solution of Egn.(3.3.31), up to a constant
additive term, Eqn.(3.3.32), that we will neglect. Using Egns.(3.3.25)
and (3.3.30), we find that Egn.(3.3.31) becomes,

£
R —_ S — 1 - +
[ g cos (k/2) ] [ -1 )l/2 ]
. D2 14 [ 2gS cos(k/Z) - £ ] ] =1 (3.5.1)
2g S cos (k/2) ( f - 1) 172

which is difficult to solve analytically in most cases. We note that
it reduces to Eqn.(2.3.24) for the case g=1 and D=0. At the zone
boundary, k=w, the equation can be solved analytically and there are

two solutions given by,

1+h+D(25 -1)+g - o

W
2 S

B

i

(3.5.2)

wy=1+h+D(25-1)+g-2D

which are known as the exchange and single—-site bound states
respectively. These agree with the results of Silberglitt and Torrance
(1970). From Eqn.(3.3.35), it can be seen that these are in fact poles
of the self-energy, which contains a factor {1-W(p,kip3;w)} in the
denominator.

Below the two—spin-wave continuum, £>1, the imaginary parts of the
self—-energy and the function A(k,w) are zero, because the integral
Y(f) is real, Eagn.(3.3.25). The spectral weight is obtained from the

imaginary part of the Green function,

-t 2SS [ 1 - AMk,a) ]
<< S5 S, >> = & T, (3.5.3)

using Eqns.(3.3.45) and (2.1.9), which can only be non—-zero if the
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denominator,

I(k,w) = 0w - wg ~ Z(k,w) (3.5.4)

vanishes. Let wg(k) be a resonance energy given by,

L(k,wg) = O (3.5.5)

Then for energies near this resonance energy,

L(k,w) = L(k,wg) + ( @ - wg ) L'(k,wg) + ...

(2.5.6)
L/(k,w) = 9yL(k,w)
and we can write,
- &t _ 1lim 1 25 [ 1 - Mk,w) ]
<SS 220 T o T(Ke,) ©- e Fin (3.5.7)

Hence,

1 _ + 28 [ 1 - A(k,mo) 1
"= Im << Sk; Sk >>m =8 ( w - wk ) L’(k,wo)

(3.5.8)

The spectral weight function must be positive so only solutions which
have a positive amplitude weighting the & function, and hence a
positive L’(k,wqg), are physical,

We have not been able to obtain analytic expressions for the
resonances and amplitudes, even in the low temperature limit, except
at the zone boundary.

We follow the same procedure as in the previous section of
expanding the integrand of the self-energy, Eqn.(3.3.35), in powers of
p and retaining only the leading order term. We treat A(k,w),
Eqn.(3.3.46), in the same way. For k=rr we restrict the integration
range to -7<p<0. The results are as follows.

For k=w and D=0,
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1

l - W(O,k;w) = 1 - Z«év—sfi (3;5.9)
where,

2egx =1+ h+ g - w (3.5.10)
We then find,

2(1+¢g)RJ(T)

I(k,w) = - 2gx + ST 1 -~ 1/(Zg5%) ] (3.5.11)
and the solution of Egn.(3.5.5) is,

X = wi_ 14+ 4 ( 1+ Y R(T) ] 3.5.12

o~ Zgs T8 2 (3.5.12)

where the integrals Ry(T) are defined in Eqgn.(3.4.4). At this

resonance energy,

, ~ 1
L<k"°o)“l+4(1+g)R2(T)

(3.5.13)

R,(T) 1

MER,05) = —5— - 755

)

so the amplitude is,
25 - 2R (T) + 1/(2x,)

(3.5.14)

1+ 1/T 4 (1+g) R (T) ]

In Fig.3.1 we plot the bound state as a function of wave vector for
g=0.9, S=1/2, h=0 and T=0.3. For these values the resonance at the

zone boundary has energy 0.321 and the amplitude is 0.283.

For k=r¢ and D#0, we simply set p=0 in the integrand of the
self-energy and the function A(k,w) and expand all functions in powers

of cos(k/2). Then we set k=r and obtain the results,

D 1
1-WOokse) = [1 - 01 - =]

(3.5.15)

D . -1
L(k,w) = 2gx + 4D RO(T) [ 1 - % 1
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where now,
2¢x = 1+ h+D( 28 -1)+g-w (3.5.16)

The solution of Egqn.(3.5.5) is,

D
xo =g [ 1+ ZRO(T) ] (3.5.17)

and at resonance,

1
’ - +
L (k,wo) 1 WZRO(T)
(3.5.18)
R
ACK,©) = oo + oa
o) T 5 ¥ 28

In Fig.3.2 we plot the resonance for the case g=1l, D=0.1, S=1, h=0
and T=0.3. At the zone boundary the resonance energy is 1.750 and the
amplitude is 0.106. This resonance exists only for a small range of
wave vectors near the zone boundary and disappears into the
two—spin-wave continuum at approximately k= 0.9w. It also has very
little dispersion. The resonance due to the exchange bound state, that
does not appear as a solution of Egn.(3.5.5) with L(k,w) given by
Eqn.(3.5.15) because it involves higher powers of p in the integrand
of the self-energy, has zero amplitude at the zone boundary. However,
the amplitude increases as the wave vector decreases and it becomes a
significant feature for small wave vectors. For example, for k=n/3 the
resonance energy is 0.3 and the amplitude is 0.080.

We will discuss some of these results in the next section.

3.6 Discussion

Experimentally, the most important results of +this calculation
concern the spin-wave damping and the significant amplitude of the
bound-state resonances.

From Egn.(3.4.5) we see that the damping shows a pronounced wave
vector dependence. For the isotropic case, g=1, D=0, h=0, and spin

S=1, we see from Eqn.(3.4.9) that the damping diverges at the zone
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boundary. For the anisotropic case the damping increases significantly
at the zone boundary but does not diverge. For other values of the
spin, including S=1/2, the damping at the zone boundary is less than
for S=1. For a classical system with this Hamiltonian, Eqn.(3.1.1),
the damping at the =zone boundary is zero. This suggests that S=1,
rather than S=1/2, may exhibit the most pronounced quantum effects.

For the isotropic case, g=1 and D=h=0, we find, from Eans.(3.4.6)

and (3.4.9),

'(k) o« T3/2 sin(k) , T>0, k<7

(3.6.1)
() o« T2 , T >0

and these results are consistent with the results obtained from a
numerical study of quantum spin chains (Schneider and Stoll 1981). We
will not go into the details of these numerical studies in this
thesis. Agreement with numerical results is not as good for systems
with any anisotropy.

We have shown in the previous section that for a temperature of
0.3, measured in units of 4JS as usual, the amplitude of the
bound-state resonance is significant and the resonance would probably
show up experimentally as a detectable peak in the spectral weight.
Also the energies and amplitudes of these resonances depend strongly
on the anisotropies, measured by g and D, and on the wave wvector, k.

We conclude this section with a comparison of our results and the
results of Cooke and Hahn (1970), who studied a similar system using

the Holstein-Primakoff transformation, EqQn.(1.5.7). They obtained the

result,
- + CH 25
<< Sk; Sk >> = “"’é"f{“""——"‘" (3-6.2)
L (k,w)
where,

LOH(R,w) = (0w - wx ) [ 1 + AMk,w) 1 - Z(k,w) (3.6.3)
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in our notation. These results were obtained after expanding the
square roots in the transformation, normal ordering the operators and
truncating the infinite series obtained. Within the approximation of
working to first order in the Bose factors, this result coincides with

our result, Egqns.(3.5.3) and (3.5.4), since,
[ 1+ Ak,w) 77T =1 - A(k,0) +0 [ AMk,w)2 ] (3.6.4)

and [AMk,w)Z(k,w)] 1is second order in the Bose factor, so is
neglected.

However, there remains the question of what the form of the
spectral weight is for higher temperatures, not working to first order
only in the Bose factor. We will now consider how it may be possible
to distinguish between the two forms of the spectral weight
experimentally.

Firstly we note that the spin—wave damping and shift are the same
since they depend only on the denominator of the spectral weight
evaluated at the single spin—wave energy, and so depend only on
Z(k,wk) in both cases. However, the dispersion and amplitude of the
bound states and resonances are different for the two forms of the
spectral weight. We work at the zone boundary, k=w, for ease of

comparison of results. We define,

x=[1+h+D(28-1)-wl]l/2 (3.6.5)

For D=0,
R (T) (1 +g YR(TY [ 2+ 1/(28x) ]
17(k,w) = - 2gx [ 1 4 0S I 1 ? W(0,k;w)

(3.6.6)

For S=1/2, g=0.9, h=0 and T=0.3, the resonance energy, which is a

solution of,

LCH(k,wg) = 0O (3.6.7)
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is 0.388 and the amplitude is 0.167. From Sec.3.5, our corresponding

results are 0.321 and 0.283 respectively, so there is a difference.
For D#0 and g=1,

R ZDRO(T)(ZS—].)

CH o}
L(k,w):«Zx(l%-..sw)-l— ST 1 T Db/x)

(3.6.8)

For D=0.1, h=0, S8S=1 and T=0.3, the resonance energy, the solution of
Egqn.(3.6.7), is 1.945 and the amplitude is 0,321, Our corresponding
results are 1.750 and 0.106. Again the resonance energy obtained from
the results of Coocke and Hahn (1970) is greater than ours and the
amplitude is significantly larger. These differences may well be
measurable experimentally.

Finally we note that working to higher order in the Bose factor
should give the same results whichever transformation we use and
should tell us the correct form of the spectral weight function. We

have not, however, pursued such a calculation.
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Figure 3.1: Dispersion of bound state for £=0.9, S=1/2,

=0 and T=0.3
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Figure 3.2: Dispersions of resonances for g=1, D=0.1,

S=1, h=0 and T=0.3
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CHAPTER 4: EASY-PLANE FERROMAGNET

4.1 Introduction to CsNiFg

The compound CsNiF3; has been studied extensively in recent years
both experimentally and theoretically (Steiner 1981). It is
quasi—one—dimensional above a temperature of approximately 2.66K. The
exchange coupling 1is ferromagnetic and there 1is an easy—-plane
anisotropy that encourages the spins to lie in the plane perpendicular
to the direction of the magnetic chain of NiZ2* ions. The Hamiltonian

is assumed to be of the form,

H:—J‘ZSS+DZ(S’1‘2 (4.1.1)

1,m

where 1 and m are nearest—neighbour sites, J is the exchange coupling
and D is the single—site anisotropy. The magnetic chain lies along the
X direction. For CsNiF3 various measurements give J=11.8K and D=9.0K.
The spin is S=1. We will describe one method of testing the form of
the Hamiltonian for such a system in Ch.5 but will assume in this
chapter that the Hamiltonian in Eqn.(4.1.1) describes CsNiF3 well.

The specific heat, magnetic susceptibility, c¢ross—sections for
thermal neutron scattering and other quantities mentioned in Sec.l.l
have been measured for this compound. Again we will concentrate only
on the neutron scattering results. It is found that the spectral
weights contain peaks at w=twyg, where wig is the 1linear spin-wave
energy. The intensities of these peaks in SYY(k,w) and SZZ(k,w), the
“in—plane” components of the scattering, are greater than for the
peaks in SXX{(k,w), the “out—of-plane” components. For experiments done
with a magnetic field applied in a direction which lies in the easy
plane, there is also a central peak around w=0 which depends on the
applied field. Unlike the spin—wave peaks, which broaden and decrease
in height as the temperature is increased, this central peak increases
in height as the temperature is increased. More experimental work on
this compound, involving polarisation analysis, will be discussed in

Ch.5.
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Unlike the system discussed in Ch.3, there is no long—-range order
in the ground state of this system. Hence spin-wave theory may not be
a good approximation. The Hamiltonian in Ean.(4.1.1) 1is invariant
under rotations in the y—z plane so there should not be a gap in the
spin—-wave dispersion, according to Goldstone’s theorem. For the case
of no applied field, Vvillain (1974) introduced a representation of the
spin operators expected to be valid even in the absence of long-range
order and made an expansion in the operators which correspond in the
classical limit to the differences in angles in the y—z plane between
nearest-neighbour sites. However, this approach is not easily
generalized to the case where a magnetic field is applied in the easy
plane because it is then necessary to make an expansion in operators
which correspond to the angles themselves, rather than their variation
from site to site, and these angles are not necessarily small.

In the calculation described in the following sections of this
chapter (Hood 1984), we will use a transformation introduced by
Lindgard and Kowalska (1976) that is easily generalized to non—zero
field in the easy plane. This transformation is equivalent to the
Holstein—Primakoff and Dyson—Maleev +transformations within the
framework of perturbation theory (Rastelli and Lindgard 1979) but has
the advantage that it is easy to show that Goldstone’s theorem is
satisfied. It will be discussed further in Sec.4.2.

The Hamiltonian for the system with a magnetic field in the plane

can be written,

x 2 z

H = JZ§1.§m+DZ(Sl) +thl (4.1.2)
1,m 1 1

We now briefly state some results obtained from the classical limit

of Egn.(4.1.2) involving solitons (Mikeska 1978). If we write the

spins on the sites in the form,

b4
Sl

1t

S 31n(el)

g

S Cos(el) Sin(¢1) (4.1.3)
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SZ = S cos(8,) cos(d, )
1 1 1
take the continuum limit,

81(t) » o(x,t)
(4.1.4)

$1(t) » o(x,t)

and linearise in the parameter 6, assuming that the spins deviate

little from the y,z—plane, then the classical equations—of-motion

give,
a,.,d - 026 ¢ - wz sin(¢) = O (4.1.5)
tt 0 zz 0 - T
and,
6 = ~i EI) (4.1.6)
T 2D8 Tt T
where,
2 2
CO—Z.DJS
(4.1.7)
wz = 2DhS
0 =

Ean.(4.1.5) 1is the sine—Gordon equation which has three basic
solutions, one corresponding to spin waves. Another solution
corresponds to kink solitons where the parameter ¢ changes by 27 over
a finite change in x. The other solution corresponds to breather
solitons which are more complicated. We have mentioned solitons in
this section because they are usually considered to be the cause of
the central peak in the spectral weight function. However, this is a
controversial topic and recent numerical work (Loveluck et al. 1980,
Wysin et al, 1982) suggests that spin deviations out of the easy plane
may be important.

The rest of this chapter concerns two—spin—wave processes and their
effect on the spectral weight. The calculation is similar to that of

Ch.3.
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4.2 Boson Hamiltonian

In this section we transform the spin Hamiltonian of Egn.(4.1.2)
intoe a boson Hamiltonian wusing the transformation introduced by
Lindgard and Kowalska (1976) that was mentioned 1in the previous
section. Before doing this we give a very brief outline of how the

transformation is obtained.
The aim is to express the spin operators as sums of products of

boson creation and annihilation operators. For example,

+ + 2
S1 = co + Cl al + c2 al + 03 a1 a1 + c4 a1 R (4.2.1)
The coeffients, c;, are determined by a method known as the Matching
of Matrix Elements, that we will now describe. We denote the
eigenstates of our Hamiltonian by |¥,> with eigenvalues E,, so that,

H I \pn > = En | "Iln > (4.2.2)

and write the eigenstates in the form,

| Wn > = :E: bm | S,m > (4.2.3)

m

where,

[ :g: §1 ]2 | S,m>=8S(sS+1)]| s,m>
1

z si | S,m>=m | S,m> (4.2.4)
1

+
ZSIlS,m):[S(S+l)-m(mil)]l/2|S,mil>
1

The states |S,m> are eigenstates of the Heisenberg Hamiltonian,
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=-J s
5y

Z
.S+ .2.
5,5, hgs1 ) (4.2.5)
1

l,m

It is possible to write the eigenstates in the form of Eqn.(4.2.3)

since, for our Hamiltonian, the operator,

is a constant of the motion, i.e. it commutes with the Hamiltonian. We
assume that for each state |[¥,> there is a state |n> containing n

bosons and,

4

a | n>=(n-+1 )l/2 | n+l >
(4.2.6)

ajln>= nl/2 | n-1 >

We write,
<WIZSZ|¢ >=<njc . +c a+c a++ | n>
n 1 n = 0 1 2 tee
1

(4.2.7)

and determine the coefficients, ci, from this equation by setting n=0,
then n=1, etc. For example n=0 gives the coefficient cg.
We have not yet determined the eigenstates for our Hamiltonian. We

do not calculate them exactly, but write,

H = Hyg + Hq (4.2.8)
so that,
x 2
H =D Z ( 57) (4.2.9)
1

and do first order perturbation theory, assuming that D<<J. Hence we

are working to first order only in the parameter D. To this order we

find,
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e DS 1 ,\1/2 2 +.2
DS 1 \1/2 ) o1 172
s rry (- 3g) [1-Cl-g)" 1x
4+ 3 + .3
[ a1 a1 -+ (al) a1 ]
s'-—(zs)l/z{a- DS (1_1)a+_
17 1 2 ( 435 +Fh) 25 1
1 .1/2 + 2 DS o1
L1-Cr-5)" I3 *sr7msrry !l 38
1 1/2 3 + 2
2 s 1 + S o1 172 2 +.2
(sl)"§+(s -2-)a1a1+_2~(1 §§) [a1+(a1)]
1 2 2 s 1 \1/2 ) 1 .1/2
+ _3 +.3
[ .:—11 a1 + (al) a1 1 (4.2,10)
and St 1is the hermitian conjugate of S8~. We have obtained the

expansion for (S8X)2 to zeroth order in D since it appears in the
Hamiltonian multiplied by D. We have truncated these expressions so
that only terms which contribute to quadratic and quartic terms in the
boson Hamiltonian are included. In doing this calculation it was
assumed that n is small and that each spin sits in the average field
of the other spins. Derivations of these expansions are given in more
detail by Lindgard and Kowalska (1976).

Since we have worked only to first order in the parameter D in
obtaining these expansions we will work to first order in D throughout
the calculation in this chapter.

The boson Hamiltonian obtained by substituting the transformation
in Egn.(4.2.10) into the Hamiltonian in Egn.(4.1.2) is, after Fourier

transforming to wave vector space,

H";Z[El(k)a:ak+81(k)(aka_k-i»a:a__*:k)]'*“

k
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1 + _+
& Z U 8140,344 Bol1:2:3,4) @) 3y a3 8, + 8 5 004 %
1,2,3,4
+ + _+ _+
B2(1,2,3,4) ( al a2 a3 a4 + a2 a3 a4 al ) ] (4.2.11)
where,
h D 1
== - S — =
El(k) 1 cos(k) 55 + 75 (1 55 )

DS
Bl(k) T2 (43 ¥ 1)

(1 - E% ) cos(k)

1 _ 1 172
E(1,2,3,4) =5 [ 1 -(1-55) ] [ cos(1l) + cos(2) +
cos(3) + cos(4) ] - 5% cos(2-4) - §§§
= D 2 2y DS
B2(1)2’3y4) = 5 ( Z385 TR ) ( 1 -2-—§ ) COS(2‘|3) m X
L _ 112 !
[1-35-C1-355) (1-35)1cos(l)

(4.2.12)

This Hamiltonian is correct to first order in D and to fourth order in
the boson operators. Unfortunately the quadratic term is not diagonal
and the relations in Egn.(1.5.13) do not hold in this case. This
causes problems when we try to make power series expansions in the
Bose factor as we did for the easy-axis system in Ch.3. We expect such
problems to arise because the ground state of the system does not have
all the spins aligned in the direction of the magnetic field so there
are bosons, that are created and annihilated by the operators at and
a, present in the system even at zero temperature. In the next section
we will make a transformation to new boson operators so that the

quadratic part of the Hamiltonian obtained is diagonal.

4.3 Diagonalisation of the Hamiltonian

We wish to rewrite the Hamiltonian in Egn.(4.2.11) in such a way

that the quadratic part is diagonal. We write,



63

+
a = cosh(sk) Q’k - sinh(ek) o (4£.3.1)

k k

The operators « and aof are also boson operators since they satisfy the

correct commutation relations, Egn.(1.5.8), for all wvalues of 6y. We

note that @ is an even function of k. Substituting this expression

for ag, and its hermitian conjugate for ayx', into Egn.(4.2.11) gives

the quadratic terms,

where,

Z { E,(K) ( 012( + si ) - 4B(K) s o + 13\“1. Z [ 2E,(k,p,p,k) X

k P

2 2 2 2 2 2

+
( sp ck 2 sp cp sk Ck + sp Sk ) + 2E2(k,p,k,p) ( sp ck +
szsz)-ZB(k -k)(sccz-kscs2 - 4B_(k,k -p)
p °k AR 0 p “p %k ppk) 2,,P,P
2 2 2
+ - - -

X (sp cp Ck sp cp Sk ) ABZ(p,k, k,p) sp sk ck
8B_(p,k -k) 52 s, ¢ ] + +

2! P2 R%0Py Pk k } %% %

{—E(k)cs+B(k)(cz+sz)+—-l E_(k k) X

E 1 k "k 1 k k N [ E,(k.p,P,k)
k P

2 2 2 2
¢ sp cp ck sp cp Sk - 2 sp Ck sk y - ZEz(k,p,k,p) sp sk Ck +

2Bz(k,p,-p,k) sp c Sk ck + I.Bz(k,k,p,'p) s cp sk ck 4

p P
2 2 2 2 2 2
Bz(pska'kap) { SP ck + SP Sk )+ ZBZ(Psksps'k) ( Sp ck +
2 2 + 4+
Sp S Y1)« o x + L ) (4.3.2)

for convenience,

Sk = s:.nh(ek)
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ck = cosh(ek)

This is diagonal if the coefficient of (agax-k+axta-¢¥) wvanishes,
Setting this coefficient equal to zero defines the variables cosh(6y)
and sinh(@g). However, this condition gives an integral equation for
cosh(®8k) or sinh(eyg) that we have been unable to solve. We have also
not taken account of terms in the Hamiltonian that are of higher order
in the operators ay but still contribute to the quadratic terms in the
operators k.

If the parameter D is equal to zero then the Hamiltonian is

diagonal in the operators aig and so,
cosh(9y) = 1 , sinh(6kg) = O

For D#0, sinh(8y) is of order D, unless h=0 and k=0. Hence, to order

D, Egn.{(4.3.2) becomes,

+ N 1 .
E { El(k) ak o + [ Bl(k) - 31nh(ek) El(k) " & E 31nh(ep) X
k P
E.(k x + o o 4.3.3
2(KoPsPok) 1 (oq &+ ol ) ) (4.3.3)
so that the quadratic part is diagonal if,
B, (k)
1 1 1
sinh(8, ) = R g sinh(&_) E_(k,p,p,k) (4.3.4)
13 E (k) N E (k) P2

p

Replacing the sum by an integral, using Egn.(1.2.6), this equation

becomes an integral equation that can easily be solved. We find,

. _ DS 1 1 i i
Sinh(8) = st Z3s vy (! "3 )EeToesgy L T C[1
(1-550"210ccc® -1y M2 a1 YR
[1-C2-5290"%1c¢c®- 1) cosk) ) (z(1-0C)

~-1/2

x[c(c?-1) ~171+137¢ (4.3.5)
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h D 1
C=ltzzstzz (L 3s)

The method for solving Egn.(4.3.4) is similar to the method for
solving Eqn.(3.3.13).

The boson Hamiltonian is then,

H = :E: wk qk X + ZE: { 81+2 344 E(1,2,3,4) “1 az %y x, +

l 2,3,4

+ + 4+
8 B(1,2,3,4) ( o, o, o, &, + o 3

+
1,2+3+4 ’ 1% %3 % T % %, % )} (4.3.8)

where,

h D 1
w = 1 - cos(k) + 738 + o5 (1 - 35 )

E(1,2,3,4) =3 [ 1- (1 - 52 )72

55 ] [ cos(1l) + cos(2) +

cos(3) + cos(4) ] - 5% cos(2-4) - §§§

B(1,2,3,4) = - sinh(e,) { [ 1 - ( 1 - 5% Y2 1 [ cos(1) +

cos(2) + cos(3) + cos(4) 1 - 5% [ cos(1l-4) 4+ cos(2+4) ] } +

D 1 .1/2 DS 1
sz TRy (Y Tas ) coS(23) - sy U155
(1- 5% )1/2 (1 - é ) ] cos(4) - % :E: sinh(et) b4

t
{—[1-(1-..2%)1/2 1% [ cos(2) + 2 cos(3+4-t) ] -
1 ) 1 /2 1172
501 -201 -5 1 -2 1 [ cos(ay +
3 cos(2) + 2 cos(t) ] } (4.3.7)

The term invelving sinh(8+) in B(1,2,3,4) comes from a term of the

form,
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a+ a+ a+ a, a_a

1 2 3 4 5 '8
that we have previously omitted. However, +the terms involving
B(1,2,3,4) will not enter our calculation so we will not derive the
expression for B(1,2,3,4) here. All other higher order terms in the
operators ag do not contribute to quadratic and quartic terms in the
operators ag to first order in D.

Eaqn.(4.3.3) is not wvalid for the special case h=0 and k=0 because
then E4q(k) is of order D and we cannot assume that sinh(éyx) is of
order D. Also the spin—wave energy, wyk, in Eqn.(4.3.7) does not vanish
for h=0 and k=0, violating Goldstone’s theorem. Small wave vectors
will be important in our 1low temperature calculation since they
correspond to low energies. Hence we conclude that our calculation is
not valid in the case of zero applied field, and indeed it may only be
valid when the applied field h is equal to or greater than DS.

This problem with the diagonalisation could apparently be avoided
by working with the operators ayx instead of the operators oi. However,
we would find that, for example, six—particle Green functions are not
of higher order in the Bose factor than four—-particle Green functions,
and in fact we would need to take Green functions of all orders in the
operators ak into account in the calculation, at least for h=0 and
small wave vectors. The difficulty is basically the same as the one
that we encounter in the diagonalisation,

We describe the calculation in the next section.

4.4 Calculation

As in Ch.3, the spin-wave damping and two—spin—-wave bound states
and resonances are obtained from the self-energy. We obtain the

self-energy by calculating the two—particle Green function,

- R(k,e) 1T

{ v - mk

4
<< Gk; Gk >>m

(4.4.1)

]

G(k,w)

where the second equality defines a useful notation.
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There are other two—particle Green functions that contribute to
<<BK 738k T>>w, for example <<ak;x-g>>y, but they all give terms that

are of order DZ and so we neglect them. The operators oy satisfy,

+
< % “p > = Skp My
(4.4.2)

+ +
<<xkap>-—-<akap>—»0
and we use the same, T-matrix, approximation that we used in Ch.3. The
calculation is very similar to the calculation in Sec.3.3 and we will
not go into much detail here. In the equation—of-motion for G(k,w) the
Green functions generated by the terms in the Hamiltonian with the
coefficient B(1,2,3,4) have the forms,
+ + + +
<< ap aq Gr’ X >>w s <L ap aq X o >>w (4.4.3)
or are higher order in aig. Both of the Green functions in Egn.(4.4.3)
are of order D and, since they are multiplied by a factor that is also
of order D, contribute terms of order DZ to G(k,w). Hence we neglect

them.
We find that the self-—enexrgy is,

_ 1 [mk F(k,p)
Ek,w) = 5 dp np T TW(E KD @) (4.4.4)

where,
1—W(p,2K;w)=l-§%[1--éB-§z~I-(~)](14—fY(f)]-z-g-gx
[ cos(K) ]-Z{Z—;—[l-!—fY(f) ] -%COS(K) Y(£) }
FOGP) = (25 (1 - (1 - 52 )% ] cos(x) cos(Q) - 42 1
(001304 S ey oy 1 L1+ E¥E) 1+

[ cos(@) - ( 1 - 52 )% cos(q) - £1¥(£) } + { - cos(Q) +

25 [ 1-(1- =172 Jcos(k) } ([ (1- =)/

s 55 ) cos(Q) -
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§§§ EBE%ET +E - (1 - E% W2 £ 101+ £ Y(E) ] - [ cos(Q) +
§§§ 2%2%%% 1 £Y(£f) } (4.4.5)

£ = 5‘6%5??7 [ 1+ Z§§ + Z? (1- 5% )y + cos(K) - w }

=X ; P g=2k é P

and Y(f) is defined in Egn.(3.3.24) and evaluated in Egn.(3.3.25).

We will analyze this result in the next section.

4.5 Spin-wave Damping

The spin-wave damping is given by Eqn.(3.4.3). For w=wk, given by

Egn.(4.3.7), we find that f, defined in Egn.(4.4.5), is,
f = cos( Ewémg (4.5.1)

Then, taking the imaginary part of the self-energy for this value of

f, we find, for k«w,

. 2
r = 1 Jw—k dp n_ { 2 cos(K) sin(Q) X D (1 1 y x

k m o P X2 + Y2 233 25
[ cos(K) ]2 XY
5 s } (4.5.2)
[ X° +Y ]
where,
X = cot(Q) [ cos(K) - cos(Q) ]
(4.5.3)
Y= ( 28 - 1 ) cos(K) + cos(Q)

and at the zone boundary,
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2 [ sin(p/2) 1° cos(p/2)
(8 -1)° [ cos(p/2) 1° + [ sin(p/2) 1°

4

1 (w
rﬁ == Jo dp np {

sin(p/2) [ cos(p/2) ]3

}
( 18 - 11° [ cos(p/2) 12 + [ sin(p/2) 1° )

D
5 (25 - 1) (5 - 1) 5

(4.5.4)
For the special case of S=1,
1 (m .
rﬂ == j dp np sin(p) (4.5.5)

c

which is vwvery large compared to the results for S#l1 or k#m. This
behaviour was also found for the easy-axis system of Ch.3 and was
discussed in Sec.3.6.

We have calculated the damping numerically for J=11.8K, D=9.0K,
h=1.0K and S=1 with T=4.0K and T=12.0K and the results are shown in
Fig.4.1. There are problems for small wave vectors because the second
term in Egn.(4.5.2) dominates the first one and the result is
negative. This suggests that in this region it is not sufficient to
work to order D only.

We have not calculated the spin-wave energy shift for this system

as it is not so important from an experimental point of view.

4.6 Bound States

As 1in the easy—axis system, the two—spin—-wave bound states are
solutions of Egn.(3.3.31) and the resonances are solutions of

EqQn.(3.5.5). Their contribution to the spectral weight is,

25 AL(K,w) -1
1 - exp(-w,/T) ( —3% W=t ) (4.6.1)

S(w - wo)

where wg 1s a solution of Egn.(3.5.5). We have neglected the
contribution to the spectral weight from higher order Green functions
for this system.

Below the two—spin—wave continuum, f<-1, the self-energy is,



70

n

1 (m-k p !
mhmmﬁjm P —rormay ([ 401 " 55)

b 1 Jcos{(K) [ cos(Q) - £ 1 [ 1+ { cos(Q) -

8J52 { cos(K) }

-1/2 1

£} £ -1 } ] + g cos(Q) [ cos(K) - cos(Q) 1 -

D 1 - 2ces(Q) (4.6.2)

zas L 55 Cos(K)

where K, Q and f are defined in Egn.(4.4.5) and,

1 £ D 1
1 - Wp,kipjw) =1 - o= { 1 - + } %
28 cos(K) = 8J8 [ cos(K) 12
_ 2 -1/2 . D 1 2 -1/2
{1-f(f 1) b s EE) ( f 1) (4.6.3)

For this W(p,k+p;w) we find that Egn.(3.3.31) has one solution for
small wave vectors and two solutions near the =zone boundary. At the

zone boundary it can be solved easily and the solutions are,

(4.6.4)
Y2 T % T %38

which correspond to the exchange and single—site bound states
respectively. We have solved Egn.(3.3.31) numerically and the results
are shown in Fig.4.2 for J=11.8K, D=9.0K, h=1.0K and S=1.

In studying the resonances, we use the same approximation as we
used in Secs.3.4 and 3.5 of retaining only the leading order terms in
p in the integral of Egn.(4.6.2). Hence we use,

R(T) 1 .1/2 1 D
1 - W(0,k;0) 4 gt

£(k,w) = (401 -5507° - 5 5 %

1

k k k
lcos(z) [cos(z) - £ 1 (1 4+ [cos(s) -fF ] x
[ cos(k/2) 1° 2 2 2

(e -1 1Y%y -2 12 (4.6.5)

R(T) = % f”'k dp n,
-7
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We solved Egn.(3.5.5), to find the resonance energies, numerically
for the values of J, D, h and S used in Fig.4.2 and temperatures of
T=4K and T=12K. The energies were very slightly 1lower that the
bound—state energies and almost indistinguishable from them on the
scale of Fig.4.2. The amplitude corresponding to the exchange bound
state is largest for small wave vectors whereas the amplitude
corresponding to the single—site bound state is largest at the 2zone
boundary. These results are similar to those found for the easy-axis

system in Ch.3.

4.7 Discussion

The case S=1 seems to be special, as it was for the easy-—axis
system in Ch.3. There is again an increase in the spin-wave damping at
the zone boundary, Egn.(4.5.5). There has not yet, to our knowledge,
been any experimental test of this result, however.

As we noted in the previous section, the results concerning the
two—spin—-wave resonances and their contribution to the spectral weight
are also similar to those for the easy—axis system.

We note that a similar calculation to order D2 would be very much
more difficult. Firstly the transformation to boson operators would be
more complicated and the boson Hamiltonian would be more difficult to
diagonalise since it would contain terms not present in Eqn.(4.2.11).
Then it would be necessary to keep terms in sinhz(ep), sinh2(ey) and
[sinh(ep)sinh(ek)] in the equation corresponding to Egn.(4.3.2) in our
calculation. Also it would be necessary to take account of higher
order than quartic terms in the operators aig to obtain the
diagonalised boson Hamiltonian, corresponding to the Hamiltonian in
Egn.(4.3.6) in our calculation., In calculating the two-particle Green
function G(k,w), Green functions such as those in Egn.(4.4.3) could no
longer be neglected. Also other two-particle Green functions, for
example <<ag;d-k>>w, would contribute to the transverse spectral

weight. There may be many other complications not mentioned here.
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Finally we note that for the Hamiltonian in Eqn.(4.2.11) the
variables Eq(k) and Bi(k) are of zeroth order in (1/S8), and
E2(1,2,3,4) and B2(1,2,3,4) are of order (1/S). Also the terms
involving products of six boson operators are of order (1/52), etc.
Another approach to this problem is to do the calculation to various
orders in the parameter (1/S). This gives results for the spin-wave
damping but does not give any result concerning two—spin-wave bound

states, since it is a perturbative calculation.
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Figure 4.1: Spin-wave damping for J=11.8K, D=9.0K, h=1.0K
and S=1 with T=4.0K and T=12.0K
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Figure 4.2: Dispersions of bound states for J=11.8K,

D=9.0K, h=1.0K and S=I
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CHAPTER 5: DETERMINATION OF SIMPLE FERROMAGNETIC HAMILTONIANS BY

NEUTRON POLARISATION ANALYSIS

5.1 Introduction

Neutrons are particles with S=1/2 so if we measure the spin of a
neutron along any axis of quantisation there are two possible results.
For a beam of neutrons we define the polarisation, P, to be twice the
average spin of the neutrons in the beam. Hence lglsl. In the previous
chapters we have considered only scattering of unpolarised neutrons,
i.e. |P|=0, as Eqn.(1.3.1) is not valid for polarised neutrons.

Experimentally it is possible to polarise the incident neutron beam
and measure the polarisation of the scattered beam but both of these
processes  involve large reductions in neutron intensity and
polarisation analysis has not been used much in the past. However,
there have been recent improvements in the production and analysis of
polarised neutron beams and there is at least one high intensity
pulsed neutron source being built so there may be greater use of
polarisation analysis in the future (Fender et al. 1980).

It has long been known that polarisation analysis can provide
information on systems that is not obtained in other ways (Halpern and
Johnson 1939, Moon et al. 1969, Marshall and ILovesey 1971). For
example, it can be wused for separating magnetic from nuclear
scattering, and paramagnetic scattering from the total cross—section.
It is a useful technique for identifying spin—dependent processes.

In this chapter we will be concerned with using polarisation
analysis in inelastic magnetic scattering to determine the forms of

the Hamiltonians for some simple ferromagnetic systems (Hood 1983).

5.2 Polarisation of the Scattered Beam

For convenience we define a spin operator S(1) by,
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S(L)

=K’ x ( 5 x K/ ) (5.2;1)
where X’ 1is defined in Sec.1.3. In terms of this operator the
inelastic neutron scattering cross—section is proportional to

{Marshall and Lovesey 1971),

1 iwt (L)

F(k,0) = 5= at e { <8 (k) L5 T >+

. (1) (L)
i <8l ey x 8.7 >) (5.2.2)

where P denotes the polarisation of the incident beam and w is defined

in Egn.(1.3.1). The polarisation of the scattered beam is,

;- G(k,w)
P’ = ??§767 (5.2.3)
where,
(ko) = 5= [ Tat e (et ey re . sS) 1sk
® k k
(1) (1 _ (1) L
<rE.silm s> -opasile s>
i<ty x s 5 (5.2.4)

As in Sec.1.3, the scattering occurs at wave vectors K=k+T where T is
a reciprocal lattice vector.

Experimentally the polarisation of the incident neutron beam
entering the sample must be in the same direction as the applied
magnetic field and only the component of the polarisation parallel to
this field can be measured (Moon et al. 1969). This is because the
neutron spin precesses about any field that it is not parallel to.
Also it 1is necessary to apply a finite magnetic field to avoid
depolarisation effects., We choose the z-axis to be the field
direction, set Py=Py=0, P,=P and measure only Pz’.

We will be working with a linear spin-wave theory in which the only

non—zero spectral weight functions are,

s (k,0) , TV(k,0) , (k) , ST(k,w) = - ST (k,w)

since the other ones involve two—spin-wave processes. With these
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simplifications Eqns.(5.2.2) and (5.2.4) reduce to,

F) = (1 - K2 ST 4 (1 - k) S ku)

2 iPK’i sV (k,w) (5.2.5)

and,
2 2 2 KX
G (k,w) = K’ K’ 4+ K’ - S k,w) +
z(«’ ) P(2 X  z x 1) (k,w)

P (2 K’2 K’2 + K’2
p z y

1) s(k,0) -

2 i xz SY(x,w0) (5.2.6)

where we have used the definitions for the spectral weights,
Egn.(1.3.2), in deriving these equations.
In the next section we will discuss the Hamiltonians used, before

going on to calculate the spectral weights for them in the following

section.

5.3 Spin Hamiltonians

The Hamiltonians that we will consider are all special cases of the

Hamiltonian,

H:-Z(st’l‘sx+Jysysy+JZs s® y -
1,m

N

Z
m 1 m 1l m
DZZ(SZ)2+DXZ(SX)2+hZSZ (5.3.1)
1 1 1
1 1 1

where the parameters J%, JY, JZ, DX, DZ and h are all either positive

or zero, and 1 and m label nearest—neighbour sites.
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We define five special cases of interest:

(A) J¥=J¥=JZ=J, D¥=DZ=0;

(B) J*=J¥=J, JZ=J(1+4n), DX=0, DZ=D, with m>0;

(C) I*=J¥Y=JZ=J, DZ=0, DX=D;

(D) J¥=JZ=J, J*=J(1-n), DX=DZ=0, with 1>0;

(E) D%¥=DZ=0,

Model (A) is the Heisenberg model and model (B) is an easy—axis
system, the same as the one considered in Ch.3. For these two models
the total z component of spin commutes with the Hamiltonian and so is
a constant of the motion. Hence correlation functions of the form
<8*st> and <S~S-> vanish and the expressions that we obtain for the
cross—section and polarisation are simpler than for the other models.
Model (C) 1is an easy-plane system with single—site anisotropy and
model (D) is an easy—plane system with exchange anisotropy. In both
cases the easy plane is perpendicular to the x—axis. Model (C) was
studied in Ch.4. Finally model (E) has a different exchange
interaction for each component of the spin. In this model, if we set
J¥=0 and JY¥=JZ=J we obtain the familiar XY model, whereas JX=JY=0
gives the Ising model.

For models (A) and (B) the ground states are known. However, for
most of the other models in one dimension there are zero—point quantum
fluctuations since the correlation functions <S*S+> and <8°S~> do not
vanish. As we mentioned in Ch.l, spin—wave theory is not as good an
approximation in systems of low sgpatial dimensionality as it is in
higher dimensions, because of the lack of long-range order. The theory
used in this chapter is expected to work best for models (A) and (B)
which have long-range order at zero temperature, and for small
anisotropies in the other models, when we are considering magnetic

chains.
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5.4 Calculation

As mentioned 1in Sec.5.2, we use a linear spin-wave theory to
calculate the spectral weights. Such a theory is only valid at low
temperatures and is probably the simplest one possible. Within this

theory the Holstein—Primakoff transformation reduces to,

S. = ( 28 Y2
1
st = (25 yW/2 a7 (5.4.1)
1 1
z +
s;=-S+a a

Substituting this into our Hamiltonian, Eqn.(5.3.1), gives the

quadratic boson Hamiltonian,

afk )y } (5.4.2)

lFP+

H= > CEK) a3y + B(K) (3 a, +
. k K k -k

after taking the Fourier transform to wave vector space, where,

E(k) = 2r3°s - r( 3° + 3 )Sy(k) - D*( 1 - 25 ) + D'( S 523 )y +h

1 .1/2

B(K) _;.( T - T ysyx) + % Ds( 1 - -2 ) (5.4.3)

N

238

r is the number of nearest neighbours per site and we have defined,

y(k) =% Z cos(k.5) (5.4.4)
5

where 5§ is a vector from one site to a nearest—neighbour site. If we
try to diagonalise the Hamiltonian, using Egn.(4.3.1) and ignoring the

diagonalisation problems that we encountered in Sec.4.3, we obtain,

H = Z { [ E(k) cosh(26,) - 2 B(k) sinh(26, ) I oL: x
- k k k 'k
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[ B(k) cosh(ze, ) - 3 E(K) sinh(26,) ] [ % Gy *

o« o 1) (5.4.5)

so the Hamiltonian is diagonal if,

_ 2 B(k)
Hence we have,
H = Z w(k) ork or.k (5.4.7)

k

with the spin-wave dispersion,

2 .1/2

w(ky = ([ ER) 1% - 4 [ B(X) 1% ) (5.4.8)

It is very easy to calculate the two—particle Green functions using

the equation—of-motion method described in Sec.2.2 and we find,

+ 1
W oy H D> T s (K

+ . 1
<L ak; ak >>w = m (5.4.9)

+ o+
WO Ky D> = <L W o >> =0

From Egn.(1.2.8) we have,

x 1 + -
S_]E =3 ( S5 + S_E )
(5.4.10)
y _ +  o-
SE T 21 ( Sk S-k )

Hence we can write down expressions for the Green functions,

X X Y . oY x Y
'E’ Sk >>5 0 << S',],S’ Sk >>5 and << S_E, Sk >>,

<< S

and use Egn.(2.1.6) to calculate the spectral weight functions. We

finally obtain,

E(k) - 2 B(k
S}(X(E,m) ~ ; [ (“)w(k) (k)

1{0n +1 150 w-owk)l]+

8[ w + w(k) 11}

ix
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vy S _ E(k) + 2 B(k)
(o) = 5 0 HETE JCIm +1 180w~ w1+
n 80 + w(k) 1) (5.4.11)
"yu_a,w)z--zé{[nkw«fllstw»wu_c)3+nk“8[w+w<1_g>1}

where the Bose factor, ng, was defined in Eqn.(1.5.14).

The algebra involved in obtaining these spectral weights is very
simple so we have omitted the details here.

In the next section we write down the results obtained for the

polarisation, etc.

5.5 Results

For convenience we write,

=) (-

F(k,w) (k,w) + F'(k,0)

(5.5.1)
(..

a(k,0) = 6,0y + 68Nk 0)

where (+) denotes spin—wave creation or neutron energy loss and (-)
denotes spin-wave annihilation or neutron energy gain. Substituting

the spectral weights, Eqn.(5.4.11), into Egns.(5.2.5) and (5.2.6),

gives,
P00 =S 12 Eg‘;; s (iox?y %-?%l
ZPK’z}[n}S+% %]8[w:w(k)] (5.5.2)
and,
o ) =5 (R -1+ L O )ES:; +B( K2 - K'; ) x

L ,2 2 B(k) ,2
( -1 ZKZ)WiZK n]i

NlH
N =
f—— )
X
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5[ w 7 (k) ] (5.5.3)

Then, using Eqn.(5.2.3), the 2z component of the polarisation of the

scattered beam is,

2

P’t={P( -1+K’2—2K'4)E(k)+P( K"~K'2)( —1-2K’2)
z -4 z - b4 ¥ z

12 /2 12_ 12
x 2B(k) * 2K/ w(k) } { ( 1+ K/ ) E(K) + (K Ky)x

2B(k) ¥ 2P Kz w(k) 1} (5.5.4)

where (_13’)+ is the polarisation of neutrons scattered with energy loss
“(5) and (P’)~ is the polarisation of neutrons scattered with energy
gain w(E).

We will discuss these results and their implications for our five

special cases, of Sec.5.3, in the next section.

5.6 Discussion

We refer to the five models discussed in Sec.5.3. For models (A)

and (B), B(k)=0 and Eqns.(5.5.2) and (5.5.4) reduce to,
() .S ,2 ,2 i1
F (]_E’w)-i-{(l+KZ)$2PKZ}[n1<-+.2.i—.,.2_]x

50 w 7 w(k) ] (5.6.1)

and,
+
P’T = { P( ~1+K'2-2K'4)12K'2}x
zZ z z z

{( 1+ K'i y ¥ 2P KZ 1t (5.6.2)

which agree with previous results, for example Egn.(10.153) of
Marshall and Lovesey (1971). We conclude that for this linear
spin—wave theory, it is not possible to distinguish between exchange
anisotropy and single—site anisotropy for an easy—axis system using
polarisation analysis.

For model (C),
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DS (1 - .= y/? (5.6.3)

B(k) = 5

03]

which is independent of wave vector k, and for model (D),
1
B(k) = 3 nrds y(k) (5.6.4)

which depends on the wave vector k through the geometric function
7(&), defined in Eqn.(5.4.4). Since the neutron scattering wave vector
K differs from k by a reciprocal lattice vector 7, it is possible, in
principal, to vary K’ and k independently by varying 7. Hence for any
5 we can vary 5’, measure P,’ and calculate B(E) from Egn.(5.5.4). The
dependence of B(k) on k then gives us a means of distinguishing
between single—site and exchange anisotropies for an easy-plane
system. In fact it is not even necessary to polarise the incident

neutron beam since for P=0 Egn.(5.5.4) becomes,

P't = % 2K’2 w(k) 1 + K’2 E(k) +
= o w(k) { ( o) E(R)

2,2 -1
( KL Ky ) 2B(k) 1} (5.6.5)

This is helpful from an experimental point of view. In principle it
should be possible to obtain the wave vector dependence of B(k) from
the spin-wave dispersion, Egn.(5.4.8). However, for small values of
the anisotropy w(k) depends on [B(k)]? whereas (P;’)* depends on B(k)
so we expect polarisation analysis to give a better determination of
B(k).

For all these models there are two special cases for which the x
and y components of the polarisation of the scattered beam, that we
have not written down expressions for in this thesis, vanish. One such
case is K;=0, which gives P,’=-P and a cross—section independent of P,
from Eqns.(5.5.2) and (5.5.4). This is not very useful. The other case

is Kx=Ky=0 and is more interesting since Eqn.(5.5.2) reduces to,

E(k) 1

F(i)(lj,m)zmmxp VI nk-i-%'-i'.z_ 160wz wk)] (5.6.6)

For models (A) and (B), if P=1 then the cross—section for spin-wave
creation wvanishes, i.e. F<+)(E,m)=0, and if P=-1 the cross—section for

spin-wave annihilation vanishes. For models (C) and (D) both the
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cross-sections for spin-wave creation and annihilation are non—zero
for P=%1l. This provides a means of distinguishing between easy—axis
and easy—plane systems.

If B(k) is measured for model (E) with the magnetic field along any
one direction, it gives the difference between the exchange
interactions for the other two directions.

We mention that there are many other Hamiltonians that can be
studied using this method. For example, Dobrzynski and Bytonski (1980)
have used it to study Hamiltonians with dipole-dipole interactions.

In the next section we will discuss the dependence of our results

on the transformation to boson operators used.

5.7 Dependence of Results on Boson Transformation

In this section we consider the question of whether our results of
Sec.5.5 are dependent on the transformation from spin operators to
boson operators. We work with model (C) as an example since we have
already studied this model in Ch.4. The transformation of Lindgard and

Kowalska (1976), Eqn.(4.2.10), gives the quadratic boson Hamiltonian,

H= > (EKk)a a +BX)(a a_ +a a. )]}
k% I T e
k

E(k) =2r3s [ 1 - (k) 1+ D( S - % )+ h (5.7.1)
Ds 1
B(k) = xJS TS TR ( T ) ¥(k)

This B(E) depends on 5 unlike the B(E) obtained previously,
Eqn.(5.6.3). This seems to contradict our arguments in Sec.5.6
concerning how to distinguish between single—site and exchange
anisotropies for easy—-plane systems. However, when we calculate the
spectral weights using this transformation the factors y(k) cancel in
such a way that the expressions for the cross—section and polarisation

have the same form as Egns.(5.5.2) and (5.5.4) with B(k) replaced by,

B’(k) = .;: DS( 1 - —éé ) (5.7.2)



85

so the conclusions of the previous section still hold. We do not go
into details of the calculation using this transformation since they
are essentially the same as those in Sec.5.4.

Our conclusion here contradicts that of Lovesey and Steiner (1981)
since they did not use the full transformation 1in calculating the
cross—section and polarisation.

We suggest that the conclusions of Sec.5.6 are in fact independent

of the transformations to boson operators that can be used.

5.9 Experimental Work

Finally in this chapter we mention briefly some early experimental
work, testing our predictions, by Kakurai et al. (1984) on CsNiFj.
These neutron scattering experiments show conclusively that the system
is easy-plane but for the range of wave vectors over which the
experiment was done there was very little differences between the
predicted polarisations for single—site and exchange anisotropies and
they were effectively indistinguishable. Results for  higher
temperatures seemed to show that the system was becoming more
isotropic as the temperature was increased. However these last results

are currently in dispute.
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CHAPTER 6: FERMI FLUID SYSTEM

6.1 Introduction

In the previous chapters we have been studying spin waves in
localised ferromagnetic systems using a Green function
equation—of-motion method to calculate the spectral weight. In this
chapter we study a Fermi fluid, which is a very different system, for
example fermion operators are used instead of boson operators.
However, we will still wuse the equation—of-motion method for
calculating Green functions described in Sec.2.2.

The goal of this chapter is to calculate the particle density
autocorrelation function. We are concerned primarily with density
fluctuations and hence focus on the operator ctc, where ¢t and ¢ are
the fermion creation and annihilation operators that we will discuss
later in this section. We go beyond the RPA (Pines and Bohm 1952)
using an equation—of-motion for density fluctuations. This is a new
approach to the task of including lifetime effects.

Fermi liquid theory is usually applied to physical systems such as
liquid 3He, the electron gas and electrons in metals, and hence
itinerant ferromagnets, for example iron and nickel. Such systems show
interesting features for the fermion momenta close to the Fermi
momentum. These fermlons all have spin 1/2 and we will work with this
value of the spin throughout. We will not go into the details of Fermi
liquid theory in this section but will merely give the necessary
background for the problem in this chapter. A more detailed review is
given by, for example, Levin and Valls (1983). We will also present
some results for non—interacting fermions.

We denote our fermion creation and annihilation operators by
ctag(t) and caze(t) respectively, such operators are discussed in
detail by Abrikosov et al. (1963) and Fetter and Walecka (1971). The
subscript a is the momentum and ¢ is the spin. These are Heisenberg

operators, as in Egn.(1.2.1), and they anticommute so that,

+  +
{ c ¥ Cbo./ } - { Cac_i Cbo_./ } = 0

(6.1.1)
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C+
ac’ “bo’

{c } =

8 5
ab oo’

where the anticommutator of two operators A and B is defined,
{ A, B} =AB+ BA (6.1.2)
The operators in Egn.(6.1.1) have the same value of time.

The thermal averages, defined in Eqn.(1.2.2), of the products of

two fermion operators are,

+ +
c c = c c = 0
< ac bo’ > < ac bo’ >
(6.1.3)
4
C C = § 8
< ac bo’ > ab oo’ fac

For non—interacting fermions fz5 is given by a Fermi distribution,

fo=(expl (e -p )/T1+1) " (6.1.4)

a ac

where e3¢ 18 the energy of the fermion and uyy is the chemical
potential. We usually take the energies to be independent of spin,

and,

2
a
g =

a T (6.1.5)

where m 1is the mass of the fermion. The chemical potential is

calculated from,

N = Zg: £ (6.1.6)
a,o

and 1s independent of spin. N is the total number of fermions.

We define the particle density fluctuation operator,

(6.1.7)

n (py=ct ¢ -8 £
a0 P) T “piqo “go po “qo

which is the fluctuation of c+p+qg Cqo from its thermal average. Also,
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n(p) = Z nqg(p) (6.1.8)
q,0

will be a useful operator in our calculation. We will usually work

with the time Fourier transforms of these operators, i.e.,

0 iwt
nqo,(p,w) = I_m dt e nqc(p) (6.1.9)

and,

n(p;w) = j ® at ™" n(p) (6.1.10)

-0

The Green functions used to calculate the particle density

autocorrelation function are,

Goo(Prt) = << n_ (P,£); n(-p) >>

G(p,t) = Z Gqc(p,t) (6.1.11)
q,o

<< n(p,t); n(-p) >

and their time Fourier transforms,

Goo(P®) = << n_ ()5 n(-P) >>,

]

G(p,w) = qu_(p,t») (6.1.12)

o]
Q

2

il

<< n(p); n(-p) >>

where the notation is defined in Egns.(2.1.1) and (2.1.3). From these
Green functions we obtain all our physical results. We see immediately
that this problem is more complicated than our previous ones since
G(p,w) 1is a four—particle Green function and the elementary
excitations of the system involve two fermions, rather than one boson
as in previous chapters. It is well known that it is impossible to
create and annihilate single fermions so this is not unexpected.

For non—interacting fermions the Hamiltonian describing the system

is,
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+

% %o ko (6.1.13)

]

K,

Q

It 1is easy to calculate the non—interacting Green function,
G{0¥(p,w), using this Hamiltonian and the equation—of-motion method

described in Sec.2.2 and the result is,

(0) . 1 ) 1
G (p,w) = :Ej fqg e T = ! (6.1.14)
q,0 4

p+tq pta g

Because G(p,t) is a causal Green function it satisfies a dispersion
relation, Eagn.(2.1.4), and we only need to calculate either the real

or imaginary part. For the latter we find,

(0)

Im G ,w) = - & - -
m (p,w) bt ZE: ch { 8( w + eq €p+q )

q,0

8( -w + - € 6.1.15
( €y " Spig ) ! ( )

using Eqn.(2.1.12) and the fact that the &—function is an even
function of its argument.

It is simple to evaluate this expression in the high and low
temperature 1limits. Since fgg is independent of the spin and N is

large, we can write,

;E: > 2v 5 [ d3q (6.1.186)
(21)

9,0

where the integral is taken over the volume of the system.
The high temperature 1limit, in which quantum effects are
negligible, is given by,
T » o , u/ T - (6.1.17)
Hence,

i.e. a Boltzmann distribution. Eqn.(6.1.6) becomes,



20

2v

(2my>

N =

Jqu expl (b - )/ T] (6.1.19)

Since €4 depends only on g2, we can transform to spherical polar

coordinates and do the integration to obtain,

4]
exp( 1/ T ) = 5 (oo (6.1.20)

where we have used the result,

1/2

) (6.1.21)

wl=

0 2 2 11
[* aa a® exp( -aa® ) =7 1<
0
The first term on the right—hand side of Egn.(6.1.15) becomes,

2v
(2m)

-7 exp(u/T)

2
3 - 2

and the second term is obtained from this by wr*-w. We choose the
z—axis to lie parallel to P and work in cylindrical polar coordinates
since the integrand is invariant under rotations about this axis.

Then,

j alq > 2m J ®aq, [” % d(qp)z
-00 (o]
(6.1.23)
2 2 2
a) =a" - q,

and the integrand in Egn.(6.1.22) is easy to evaluate. Egn.(6.1.15)

becomes,
(0) N omm 1/2 - -q*?
Im G (P w) = - o ( o ) { exp( S ) - exp( ST )}
(6.1.24)
where,
_mw _p
(6.1.25)
o = .M P
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The low temperature degenerate Fermi fluid limit is given by, using

Egn.(6.1.6) to calculate pu,

37°N  2/3

T (6.1.26)

1
4 -> == S—
T o, u € 5 (

Hence,

0O for e_ >
q H

qu‘ = 1 for Eq <u (6.1.27)

Hence the range of integration is effectively reduced to the sphere,

3ﬂ2N

a<p, = (T3

(6.1.28)

when the integrand contains the factor fys.
The expression for Im G{0)(p,w) in Eqgn.(6.1.15) is easy to
evaluate, transforming to cylindrical polar coordinates again. One way

of writing the results is,

m ¢ %)p,u) =0, p2 < Q
(0) v 2 2 2 2 _,2

m & ®p,w) = - 7 (pf - Q%) Q¥ <pf<Q (6.1.29)
(0) mZVm 2 2

Im G (p,w) = - S py > Q'

The conditions pf2<Q2, etc. corregpond to regions in the p-—w plane
{Lovesey 1980). These are well known results.

In the next section we add interaction terms into the Hamiltonian.

6.2 Hamiltonian

We write our Hamiltonian in the form,

+
H = :g: £x CkG ckg + :g: I(k) (k) p(-k) (6.2.1)
k,o k
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where the particle density operator is,

4
o(k) = Z °ktqo Cqo (6.2.2)
q,c

and I(k) is the spatial Fourier transform of the particle interaction.
The other parameters and operators were defined in Sec.6.1 and the
first term in the Hamiltonian is the non—interacting Hamiltonian, Hg,

of Egn.(6.1.13). The second term can be written,

+ +
ZE: ZE: I(k) Cq+k6 cqU cq,‘kc, Cq'a’ (6.2.3)
kaq’ oo’

so it represents the scattering of two fermions with initial momenta q
and qQ‘, and final momenta qg+k and q’-k. The interaction I(k) depends
only on the momentum transfer, k, and I(-k)iI(k), and the spins of the
fermions are unchanged.

One problem is deciding what momentum dependence the interaction
should have. If the only interaction between the fermions is a Coulomb
interaction then I(k) is proportional to (1/kZ). If we have a contact
interaction, proportional to &(R) where R is the distance between the
fermions, then I(k) is a constant, independent of k.

We note that p(k), in Egn.(6.2.2), is related to n(k), defined in

Egn.(6.1.8). The relation is,

p(k) = n(k) + N 50 (6.2.4)

We will derive some results for a system described by this

Hamiltonian in the following sections.

6.3 Calculation of ngs(p,w)

In this section we discuss our calculation of the spectrum of
spontaneous fluctuations, n(p,w), outlining the approximations as we
make them. Our aim is to construct an approximation that embodies the

RPA and includes the effects of particle lifetimes.
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First we consider the equation—of-motion for a product of two

fermion operators,

. + +
c = .3.
i at Cac Bo { Cac Cﬁc’ H ] (6.3.1)

From the first term in the Hamiltonian, Hp, we obtain,

+ +
[ c{m cﬂg, HO 1=(e. -~ )Yc c (6.3.2)
where we have used the anticommutation relations, Egn.(6.1.1), to

normal order the operators and to interchange two creation or

annihilation operators.

We choose to write the second term in our Hamiltonian as,

n +
j;d I(k) p(-k) Cq+ka' qu' (6.3.3)
kqgo’

and make the approximation that p(-k) in this term commutes with ctc.
This scheme greatly simplifies the calculation. It is a semi—classical

approximation and we show that it readily reproduces the standard RPA.

We find,

+ +
[ oy Cpor TR PR of e, 1=
kqo’

+ +
jgi I(k) ( Cac CB-kG - Ca+kc cﬁg Y p(-k) (6.3.4)
k

In Sec.6.8 we will find that the exact result for this commutator, not

making the above approximation, can be written,
24(k) [ c+ k) ¢ + k) ¢ 6.3.5
(k) [ e, A s-ko ~ Catke PCKR) €45 ] (6.3.5)
k

Hence the terms that we have neglected are of the forms, after

ordering the operators,

+ +
zg: I(k) Cac CBG y :g: (k) Ca-kc cﬁ—kc (6.3.6)
k k
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at this stage. The factor of two in Eqn.(6.3.5) arises from taking the
commutator with p(-k) as well as with p(k).
Then, setting o=p+q, B=qg, Egn.(6.3.1) gives,

Lo,n () = (e - e, 0 ) n (BY + IC-R) ( £, - £ ) n(p)+
DI [ (PR - n () 1 () (6.3.7)
k

using the definition of nge(p), Ean.(6.1.7).

Taking the Fourier transform of this equation gives,

(w+ e - g ) nqg(p,w) =I(p) ( £ - £ ) n(p,w) +

ptq p+go q0

a7 ] Tau D TR [y (PHG) < ng (G T R(Kumu)
k

(6.3.8)
where p(k,w) is the time Fourier transform of p(k).

In the standard Random Phase Approximation, or RPA, all terms
involving momentum E, except k=0, are neglected in Egn.(6.3.8). Hence,

in this approximation,

(e ™ 8g ) o (Pe) = I(B) ( £, - £ ) n(p,w)

(6.3.9)

Using an equation—of-motion method, as will be described in

Sec.6.4, then gives,
G(p,w) = X 0(p,w) + x'0)(p,w) I(-p) G(p,w) (6.3.10)
or,

x0(p,w) / {1 - I(-p) x'9(p,w) } (6.3.11)

Y

G(p,w)

where,

(0) - ; ) -1
Oy = D" Cf - f ) Gt - )Tt (6.3.12)
go
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We will see that the main difference between these RPA results and
the results of our calculation is that we obtain a self-energy in the
denominator of our dynamic susceptibility, from which it should be
possible to study lifetime effects.

In our calculation, however, we iterate Egn.(6.3.8) once, i.e. we
replace ng-ko(ptk,u) and ngg(ptk,u) by their expressions to order I,

obtained from Egn.(6.3.8). We obtain,

(W eig ™ 8q ) PgelP@w) = ICP) € £ 0 - fop ) n(pyw) +

o0 1
n_ (p,w) du % I(k) I(-k) F (k,w-u) [ +
qo j-m ” 1 u -+ €p+q - €q+k

e e LA )L 0 R g () Fy ke
k

1 1
x L - + . 1 (6.3.13)
u + Ep+q Eq+k u -+ Ep+q+k E:q

where the spectral function of prime interest is,

N .
FL(K,v) = o ® gt eVF ¢ p(-k,t) p(k) > (6.3.14)
-0

and we have replaced products of the form [p(k,u)p(k’,u’)] by their
thermal averages in obtaining Eqn.(6.3.13). V

We then neglect the term in Egn.(6.3.13) involving ng+ka(P,w)
except for k=0. Such terms correspond to fluctuations in ngo(p,w),
which is itself a fluctuation, as shown in Eqn.(6.1.7). Clearly we are
retaining terms neglected by the RPA, however.

We then make the replacement,
’
S NS (6.3.15)
L_—.‘l i
k k k#0

which has no effect since terms with k=0 in Egn.(6.3.13) cancel.

Finally,

(ot e 0™ 8 ) ng (Pw) = IC-P) (£, - £ ) n(pwe) +
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1 ® ’ 1
55 nqo(p,w) j du :E: I(k) I(-k) Fl(k,w u) [ TR —
-0 . p+q g+k
1 1 (6.3.16)
T ~ 3.
u €p+q+k eq

In the next section we use this approximate result to calculate the

Green function G(p,w) of Egn.(6.1.12).

6.4 Calculation of G(p,w)

Using the result,

<[ nqd(p), n(-py 1 >= fp+qG - ch (6.4.1)

which is easily derived from the anticommutation relations,
Eqn.(6.1.1), and thermal averages of fermion operators, Egn.(6.1.3),
along with the result for ngg(p,w), Egn.(6.3.16), we can write an

expression for Ggu(p,w) immediately, since,

© G, (Pyw) = < [ n (P, n(-P) 1>+ << [ n (P), H 15 n(-p) >

(6.4.2)
from Eqn.(2.2.3). The result is,
+ - - frond
([ w 8p+q € Eqd(p,w) ] GqG(P,w)
( fp+qc - fqd ) [ 1+ I(-p) G(p,w) ] (6.4.3)
where,
£, (Pyw) = j ® du :gi I(k) I(-k) F (k,w-u) X
q =0
k
1 1
[ + ] (6.4.4)
- 4= - - -
W u E:p+q Sq +k [ u 4 €p+q+k E:q

is the self—energy, and,
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F(k,v) = % J ® gt ™t ¢ n(k,t) n(-k) > (6.4.5)

We note that, for k#0, F(k,v) is the same as Fq(k,v)

Egn.(6.3.14).

The fluctuation—dissipation theorem then is,

_ e~v/T }-l

F(k,v) = - % {1 Im G(k,v) (6.4.6)

by arguments similar to those for deriving Eqn.(2.1.6).

We define the dynamic susceptibility by,

_ _ _ _ -1
X(Paw) = > Eo - £ ) (ude e - B(P,w) )
qo

(6.4.7)
Then, using Egn.(6.4.3}),
G(p,w) = xX(p,w) + I(-p) x(P,w) G(P,w) (6.4.8)
or,
G(p,w) = x(p,w) / [ 1 - I(-P) x(P,w) ] (6.4.9)

of

Hence we have expressions for G(p,w) in terms of Egg(p,w) and for

2qg(p,w) in terms of Im G(k,u), etc. We do not have an equation for

G(p,w) or Igo(p,w) that we can solve easily. In the next section

will make some more simple approximations in an attempt to obtain

we

an

expression which can be evaluated. We choose to calculate ImZqg(p,w),

which is, using Egns.(6.4.4) and (6.4.6),

Im qu(p,w) = :g: I(k) I(-k)y { [ 1 + n(w+ap+q-eq+k) ] x

k
Im G(k,w+ep+q~eq+k) + [ 1+ n(w+ep+q+k—eq) ] x
Im G(k,w+ep+q+k-eq) } (6.4.10)

where,

n(u) = { exp( 7 ) - 1 37t (6.4.11)
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and we have used the S—function obtained from taking the imaginary

part of ,

1 1
- u + € - € +m-u+s - €
© p+q g+k p+g+k ]

to do the integration over the variable u.
Re Zgg(p,w) is obtained from the dispersion relation, Eqn.(2.1.4),

and we can then obtain G(p,w) from Zgus(p,w).

6.5 First Approximation to Im Zgag(p,w)

We wish to explore the features of the self-energy and the
ramifications for the spectrum by calculating Im ZIgq(p,w) from
Egn.(6.4.10). As a first approximation we replace Im G(k,u) on the
right~hand side by its non—interacting value, Egn.(6.1.15). 1In
principle, we should be able to substitute the new expression for
G{k,u) obtained back into the equation and iterate to obtain better
approximations to G(k,u). In practice we will stop after the first

iteration. Then,

. [ ! _ (0)
Im zqg(p,w) = j—m du [ 1 4+ n(u) ] Z I(k) I(-k) Im G (k,u) x
k
[8(w-u+ep+q—eq+k)+8(w-u+ep+q+k~eq)]
(6.5.1)

We have retained the integration over u in this expression for
convenience as it may not be simplest to do the u integration first,

Using the expression for e5;, Ean.(6.1.5), we can write the
arguments of the &—functions as,

w—u+€p+q—€q+k=§a{(_]§+g) -2m( w - u ) -
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2
- + - = - -
w u € " € 5 {(k+p+ag) +2m w u )

a3 (6.5.2)

We have to integrate over all wave vectors k. The first of these
expressions is invariant under rotations of k about g and the second
is invariant under rotations about (g+g). Hence it is convenient to
work in cylindrical polar coordinates taking the z—axis to lie along q

in the first case and (p+tq) in the second. We denote the coordinates

(kz,kp,®) given by,

kx = kp cos(o)
(6.5.3)
kK =k sin(¢o
v - (%)
and we have,
dekzjzn dcbjwdkz J“’k ax (6.5.4)
0 - o P °

and the integration over ¢ gives a factor of (2m).
Hence we have, from Egn.(6.5.1), and using Eqgn.(6.1.16) to

transform the sum into an integral,

mvV o0 o 0 2
Im £ (p,w) = du [ 1 + n(u) } dk d(k ) I(k) x
o (2m)2 j,m j,m z Jo P

(0)

I(-k) Im GO (k,u) { 8¢ kz + kﬁ + 2k - p° - 2p.q - 2mw - u] )

+ 5( ki + X2+ 2ipralk + p° + 2p.q + 2m(w - ul ) ] (6.5.5)

where,

1/2

2 2
K= () + K ) (6.5.6)

and we are assuming that the interaction I(k) depends only on the

magnitude of i and not on its direction.
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The S—functions in the integrand can be used to do one of the three

integrations in Eqn.(6.5.5). Because of the form of the arguments of

the &—functions it is probably not sensible to use them to do the k,

integration.

Doing the k, integration gives,

Im £ (p,w) = —¥. f ®GQu 1+ n(u) ] J © gk I(k ) I(-k, ) x
5] - -0 2z

(217)2
(0) 2 .2 _ (0)
Im G (kl,u) 8( kl kz y + I(kz) I( k2) Im G (kz,u) X
2 2
8( k2 - kz Y } (6.5.6)
2 2
ko =2m( w - u ) - 2gk_ + p + 2p.qg
1 -4 = =
2 2
kz =2m( w ~ u ) —2|g+g|kz - P - 2p.gq

We can then get rid of the &—functions by changing the integration
ranges since, for example, k4<>kz? places restrictions on the allowed
values of k; and u.

Hence,

2
_omv w+(p+q) /2m
Im ch(P;w) = 5 { = = du [ 1 + n{u) 1 x

(2m) -00

2 1i/2
-g+[(p+q) +2m(w-u)] dk_ I(k ) I(-k,) Im G(O)(kl,U) +

-q-[(p+a)2+zm(w-u) 12
2 12
f . du [ 1+ n(u) ] f"9+3'+[q2 2m(w u>]l/2 dk_T(k,) x
w-q%/2m -Ip+al -[a®-2m(w-u)]
I(-k,) Im G(O)(kz,u) } (6.5.7)

or, equivalently,

2 2
+(-k“- +p“-2p.
Im zqa(p’w) - mv ( J ® ax,_ wh(-k_-2gk_+p -2p.q)/2m du x
=0

(2m)?

i} (0) o
[ 1+ n(u) ] I(k)) I(-k;) Im G 7 (k,,u) + j_m dk_ x
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w ) 5 du [ 1+ n(u) 1 I(k,) I(-k,) X
w+(kz+232+glkz+p +2p.q)/2m

Im G(o)(kz,u) (6.5.8)

These expressions are clearly difficult to evaluate in general. We
will consider what they give in the high and low temperature limits in

the next section.

6.6 High and Low Temperature Limits

The high temperature limit is given by T»w. We will work to lowest

order in (1/T) throughout. To this order,
14+ n(u)y="T/u (6.6.1)

from Egqn.(6.4.11), and,

Ok,uy = w (/20 (6.6.2)
g K

Im

from Egns.(6.1.24) and (6.1.25),

Substituting these expressions into Eqn.(6.5.7) gives,

mVN mm (1/2 1 w+(g+3)2/2m

Im £ (P,w) = = ——s ( 5x ) { du X
qo (2my? = T al
X Y
j 2 dk I(k) I(-k) + T*%“T ® o du J 2 dk I(k) I(-k)
xl pra w-q /2m yi
(6.6.3)
where,
x, = 1 a- [ (pra)? + amwu) 172
x, =q + [ (E+S)2 + 2m(w-u) }l/z
(6.6.4)
v. =1 Iptal - [ @ - 2m(w-u) 172 |
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v, = Iptal + [ a® - 2m(w-w) 1772

We consider the special case,

I for R < k
m

I(k) = [ ax (6.6.5)

0 otherwise

In this case the integrals in Egn.(6.6.3) are easy to evaluate but
messy because of the integration limits. For example, we have to
consider whether x4 and x; are less than or greater than kgzyx for each

value of u. We omit these details. The result is,

NV 2m 1/2 2 2
Im 2 (Pyw) = = e (e Ik (6.6.6)
Qo (zﬂ)z T max

which is independent of p, q and w but depends on the high momentum
cut—off kpax and if we let Kkpzx go to infinity then Im Ige(p,w)
diverges. It seems that the interaction of Egn.(6.6.5) is not very
useful.

The low temperature 1limit is given by T=0. Then, using

Egn.(6.4.11),

1+ n(u) =1 (6.6.7)

and Im G{OX(k,u) is given by Eqgn.(6.1.29). The integrand in
Eqn.(6.5.7), or Ean.(6.5.8), has a simple form that is easy to
integrate for the interaction in Eqn.(6.6.5). However, the conditions
ps2<Q2, etc. in Ean.(6.1.29) cause the integration ranges in the
integrals of Egns.(6.5.7) and (6.5.8{:%ave to be split up. In fact,
there are so many cases to take account of that we were not able to
obtain a useful expression for Im Egq(pP,w), even for the form of I(k)

in Egn.(6.6.5)

6.7 Expansion in (1/w)

For a Fermi liquid system such as the one we are considering there

are sum rules. In terms of F(k,u), Eqn.(6.4.5), one such sum rule is,
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j ® Qu F(k,u) = S(k) (6.7.1)
-0

where the structure factor, S(k), is defined,

S(k) = < n_. nk > (6.7.2)
Another is,
2
0 k
f_m du u F(k,u) = 5 (6.7.3)

More of these sum rules are derived by Pines and Nozieres (1966).
They are obtained by taking moments of the correlation function
F(k,u). Using Egqn.(6.4.6) we can also write them in texrms of the Green
function G(k,u).

In this section we expand G(p,w) in (l1/w) and make use of these
moments relations and other known information on Fermi liquid systems
to assess the features of the G(p,w) that we have obtained and also to
attempt to place some restrictions on the momentum dependence of the
interaction I(k).

Expanding ZLqo(p,w) of Eqn.(6.4.4) in powers of (1/w) and using the

sum rules of Eans.(6.7.1) and (6.7.3) gives,

2 ‘ 1
Eo(Pr) = 5 > T Tk) TC-K) s(k) + > > 1) 1K)
k k

2

2
{ % . +m2p’q ) s(k) ] + 0(1/w) (6.7.4)

Then, expanding x(p,w), EqQn.(6.4.7), in (1/w),

2 2 6
1 P 1 ep / ] P
& xX(p,w) = 3 + -~z { - g I(k) I(-k) S(k) + -3 +
me w 4m
k
2p” 6
«123.. KE> } + O(1/6”) (6.7.5)

m
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Finally, expanding G(p,w) of EqQn.(6.4.9), using the above result,

gives,
G(p,w) = x_ { mz / mz + mz wz / m4 + O(l/me) } (6.7.8)
P o 0o 1
where,
2
2 _ P
Yo *p T m
(6.7.7)
) o2 2 02 , o2
o] = (B0 + e Boy ams 46 > 1Ry 1K) s(x) + 2 1¢-p)
k

We have chosen to define the functions wg, w7 and Xp for ease of
comparison with other results on Fermi liquids. For example, there is
the result,

2

2
2 _ ., b p 2
w, = ( >m y { ¢ m ) + 4<KE> } + O (p) (6.7.8)

where (Lovesey 1975),

n
Qz(p) = ( Eg ) j d3r g(x) [ 1 - cos(g.z) 1 asz(r) (6.7.9)

where V(r) 1is a pair potential and g(r) is a pair distribution
function. We will not need to know the definitions or forms of these
functions here., We note that as p»0, NZ(p)-0.
Comparing Egns.(6.7.7) and (6.7.8) we have,
2 pz !
Q(p) = = I(-p) + 6 :E: I(k) I(-k) S(k) (6.7.10)
k

The second term on the right-hand side of this equation is a
positive constant. Hence we do not have the required result that

NZ(p)+0 as p»0 unless,
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1p) > - %5 > I(k) (k) S(K) (6.7.11)
P
k

which diverges as p-~0.

Hence our result for G(p,w) cannot be correct for a general
momentum dependence of the interaction I(k). We have not been able to
discover which approximation in our calculation is not wvalid.

Finally, in the next section we consider a perturbative calculation

on our Hamiltonian.

6.8 Comparison With Perturbative Calculation

In this section we attempt to increase ocur understanding of the
problem by doing a perturbative calculation. Using our Hamiltonian,
Egn.(6.2.1), we calculate the Green function G(p,w) as an expansion in
powers of the interaction I. We write the second term in the form of
Egn.(6.2.3) and use the equation—of-motion method described in

Sec.2.2. The equation-of-motion for Ggg(p,w) becomes,

w4+ e - € G w) = £ - f + 2 I(k) x
( pta ~ %q ) CqolP) = foigs T fgo Z (x)
kk‘ag’
{ c+ c+ c 5 - -
<< p+qo  k4+k‘c’ “ko qtkes’ n(-p) >
<< C+ C+ C c 3 - 6.8.1
ptgtke k‘-ko’ k‘c’ Tqo’ n(-p) >0 } (6.8.1)

using the anticommutation relations, Eqn.(6.1.1), and the thermal
averages of fermion operators, Egn.(6.1.3).
If we want G(p,w) to first order in I then we need to calculate the

six-particle Green functions of the form,

+ 4+
<< ¢ Cops PC-P) >> (6.8.2)

c c
o pBo’ yo! &0

to zeroth order in I, so replace H by Hp in the equation—of-motion for

this Green function. Using,
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+  +
c._>=8

< Cac CBG’ Cyo’ log «8 sﬁy fac fﬁc’

8 8 .8.
oo’ say 38 fac fﬁc (6.8.3)

from Wick'’'s theorem, we find after a 1little algebra that, to first

order in I,

Gyo(Pre) = G0 (pw) € 14 21(p) 6wy + > 2u(k)

qo
k
[ ( f - £ Y(w4+e  -e Yyt
ptgtko q+ko p+q q )
(0)
Gq+kc(p,w) 11 (6.8.4)
where,

(0) - ) ) -1
qu (pyw) = ( fp+qc, ch ) (w ep+q eq ) (6.8.5)

The corresponding result in our calculation, if we sum over g and o

in this equation, from expanding G(p,w) in Eqn.(6.4.8) to order I is,

(0) (0)

G(p,w) = G (p,w) { 1+ I(-p) G (p,w) } (6.8.6)

The factor of 2 in Egn.(6.8.4) was accounted for in Sec.6.3. The
other terms that we have neglected in Eqn.(6.4.8) are those neglected
by the RPA,

To work to order IZ2 in the calculation of G(p,w) we must calculate
the Green function in Egn.(6.8.2) to order I. The calculation is
straightforward. However, we have not been able to write down the
result in a form that can easily be compared to our results of
Sec.6.4,

We conclude that there are still problems needing to be dealt with
in this calculation. Clearly the terms involving k in Eqgn.(6.8.4)
cannot be obtained from expanding the G(p,w) of Egn.(6.4.9), using
Egn.(6.4.7) to define x(p,w), to first order in I unless the
self-energy contains first order terms in I. However, we cannot obtain
the form of G(p,w) in Egn.(6.4.9) by doing any finite order of
perturbation theory. Such a form clearly contains information on
singularities in G(p,w), which are important physically. Hence we do

not pursue a perturbative calculation further.
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It is obvious that there is much work still to be done on the

problem of this chapter.
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