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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SCIENCE 

PHYSICS 

Doctor of Philosophy 

THE THEORY OF DYNAMIC CORRELATIONS IN CONDENSED MATTER SYSTEMS 

by Margaret Hood 

This thesis is concerned mainly with spin waves in localised 

ferromagnetic systems. In the first four chapters we consider, for 

one-dimensional magnetic chains, the effect of two-spin-wave 

interactions on the single spin-wave lifetime and calculate the 

dispersion of two-spin-wave bound states and discuss how they affect 

the spectral weight, which can be measured by thermal neutron 

scattering. These calculations are done firstly for an easy^-axis 

system and then for an easy^lane system. In the fifth chapter we use 

a linear spin-wave theory and discuss how it may be possible to 

determine the form of the Hamiltonian for some simple ferromagnetic 

systems using the experimental technique of neutron polarisation 

analysis. All of these calculations are done by using a Green function 

equation—of-motion method to calculate spin—spin correlation 

functions. 

In the last chapter we consider a Fermi fluid system and attempt to 

calculate a density—density correlation function and obtain a 

self-energy, from which lifetime effects can be studied, for our 

particular choice of Hamiltonian. We use an equation—of-motion method 

similar to that used in the previous chapters. However, problems arise 

in the calculation that we are unable to solve. 
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CHAPTER 1: INTRODDCTION TO ONE-DIMENSIONAL FERROMAGNETS 

1.1 Physical Systems and Experiments 

In this section we will give a very brief introduction to 

quasi—one—dimensional magnetic systems. Much work has been done on 

these systems in recent years (Steiner et al. 1976). 

Truly one-dimensional magnets are obviously unobtainable in nature. 

However, there are some magnetic systems which behave as if they are 

one-dimensiona1 above a critical temperature Tc. The reason for this 
that 

isthe magnetic coupling, J, between nearest-neighbour atoms or ions 

along one direction in a three-dimensional crystal is much greater 

than the magnetic coupling, J', between nearest—neighbour atoms or 

ions in the other two directions, This critical temperature, Tg, 

depends on the values of J and J' and also on the nature of the 

interactions between the spins of the atoms or ions, for example Tc is 

less for a Heisenberg system than for an Ising system. Below Tc the 

interchain coupling leads to three-dimensional ordering. We will not 

be concerned with the evaluation of Tq, which is in fact proportional 

to J', in this thesis. 

Various measurements have been made on several materials with 

antiferromagnetic exchange coupling, J<0, and a few materials with 

ferromagnet ic exchange coupling, J>0, that show the existence of 

one-dimens iona1 behaviour. The static properties of these systems are 

studied by measuring the specific heat at constant magnetisation, the 

magnetic susceptibility, etc. Such measurement s suggest that the 

correlations between spins are predominant ly one-dimensional in some 

systems. Some of the dynamic properties can also be measured. For 

example, well-dofined magnetic excitations can be studied using 

ferromagnet ic or antiferromagnetic resonance and infra-red absorption, 

and diffuse dynamics studied using electron spin resonance and nuclear 

magnetic resonance, We will not be concerned with any of these 

experimental techniques in this thesis but will concentrate on thermal 



neutron scattering which can be used to measure the wave vector 

dependence of the magnetic excitations and also to show the existence 

of short-range order, a concept that will be discussed in Sec.1.4. 

These quasi-one-dimensional systems usually consist of chains of 

magnetic atoms or ions with a large spacing and other, non-magnetic, 

atoms or ions between the chains. 

We will be concerned with only localised magnets rather than 

it inerant ones in Chs.1 to 5. 

1.2 Some Oseful Definitions 

In this section we will introduce some of the parameters and 

functions that we will need to use in solving the problems of the 

following chapters. 

We will work throughout in the Heisenberg representat ion. A 

Heisenberg operator is time-dependent. At time t, 

A(t) = e ^ ^ A e'lBt (1.2.1) 

where H is the Hamiltonian, or energy operator, for the system being 

considered and A is the corresponding Schrodinger operator. We have 

set h=l here and everywhere else in this thesis. The wave functions 

are independent of time. 

We will frequently take the thermal average of such an operator, 

defined by, 

< A > = ^ < X I e " H / T A I A > 

^ (1.2.2) 

= 1 < X I e " 9 / T I A > 

where | K> denotes a state of the system, T is the temperature and Z is 

the partition function. We have set Boltzmann's constant equal to one 

here and everywhere else in this thesis. 

We define the commutator of two operators, A and B, by, 

[ A, B ] = AB - BA (1.2.3) 



We will consider magnetic chains with N sites and work with spin 

operators denoted, 

S^(t), 1 = 1,2,...N 

or, in component form, 

a = X, y, z, 1 = 1,2,...N 

for the spin at the site labelled by 1. Because of translational 

invariance it will be more useful to work with the Fourier sum of 

these operators defined by, 

= ]>] S* (1.2.4) 

where we have chosen to work in units where the lattice spacing is 

equal to one, and k is a wave vector in the direction of the magnetic 

chain. In a three-dimensional system (kl) is replaced by (k.l) but in 

our magnetic chains the vector 1 lies along the chain direction so 

only the component of k in this direction is relevant. The inverse 

Fourier sum is, 

s* = N'l ^ e'lkl S* (1.2.5) 

k 

where the sum is taken over the N al lowed values of k in the first 

Brillouin zone, defined by, 

- TT < k < TT 

We will normal ly take N to be very large and replace this sum by an 

integral using, 

s Z " A I " ® 2'S) 



We will also find it useful to work with the linear combinations of 

the spin operators that form spin raising and lowering operators, 

defined by, 

- 1 - - I 

(1.2.7) 

or, 

(1.2.8) 

S, = S" - i 

where in Eqns.(1.2.7) and (1.2.8) the operators S~ are chosen to be 

the hermitian conjugates of the operators S+. 

The commutation relations for these spin operators will be 

discussed in Sec,1,5 when we will need to use them. 

1.3 The Spectral weight Functions 

We will introduce the spectral weight functions by considering 

their role in magnetic neutron scattering (Marshall and Lovesey 1971). 

Neutrons are a weak probe of condensed matter systems and hence 

Fermi's Golden Rule, which is equivalent to linear response theory, 

can be used to describe the scattering of the neutrons. We record the 

result for the partial differential cross—sect ion for purely magnetic 

scattering in the first Born approximation, 

do dE. 

y G 

m c 
e 

2 * 

2 kf -2*% 
®K,k+T * 

(%3 '*K'f ) S*P(k,w) 

(1.3.1) 



5 - hi ' hf 

w = E. - E 
1 f 

where kj and Xf are the incident and scattered wave vectors of the 

neutrons, E, and Ef are their incident and scattered energies, F(K) is 

the form factor, exp{ -W(K)) is the Debye-Waller factor, r is a 

reciprocal lattice vector and K' is a unit vector in the direction of 

K with components K'a, a=x,y,z. The function sab(k,w) is the spectral 

weight and the other parameters on the right-hand side of Eqn.(1.3.1) 

that we have not mentioned are constants, As explained in the previous 

section, we only consider the component of k parallel to the magnetic 

chain in our calculations. Then the spectral weight function is 

defined in terms of a spin operator correlation function by, 

(k.w) = 2 ^ [ * dt < S^^(t) S^(0) > (1.3.2) 
- 0 0 

a, 2 = X, y, z 

The spin operators in this equation are discussed and the angular 

brackets defined in Sec.1.2. The spectral weight function is the 

quantity that we aim to calculate in Chs.3 to 5. Eqn.(1.3.1) shows 

that it can be measured experimentally. It is purely real and positive 

and it contains information on the dynamics of the systems we study. 

In Chs.3 and 4 we will be considering the transverse spectral 

weight function, 

S(k,w) = ^ r " dt < s^(t) S+ > (1.3.3) 
- 0 0 

since it contains a lot of the useful information on the dynamics of 

the systems we study. 

Finally in this section we mention briefly the dynamic 

susceptibility, x(k,s), which describes the response of a system to an 

external pert urbat ion and is related to the spectral weight function 

and the static susceptibility. It is usually defined by using linear 

response theory and we will not go into details here because it is 

rather involved (Lovesey 1980) and not necessary for our calculation. 



1.4 Theoretical Models 

We describe the one-dimensional magnetic systems in terms of the 

spins of the atoms or ions at sites, 1, on the chain, denoted Si, and 

the interactions between the spins on different sites. We consider 

only localised magnets so the magnitude of each spin is a constant, 

denoted S. Depending on the nature of the interactions between the 

spins, various HamiItonians can be constructed. Some of the most 

useful are the Heisenberg model, 

H = - J ^ S^.S^ + h ^ S* (1.4.1) 

1 ,m 1 

the Ising model, 

1 ,m 1 

and the XY model, 

H = - J ^ sj; ) + h ^ (1.4.3) 

1 ,m m 

Where J is the ferromagnetic exchange coupling, J>0, h is an external 

magnetic field applied in the easy direction, h>0, and 1 and m are 

usually nearest-neighbour sites on the chain. For convenience we work 

in units where 4JS=1 here and in the following chapters, 

All of these Ramiitonians possess translational symmetry since they 

are invariant under a translation of the lattice spacing along the 

chain direction. If we set the field, h, equal to zero they have 

different spin symmetries. The Heisenberg Hamiltonian, Eqn.(1.4.1), is 

invariant under any rotation of the spins, where each spin in the 

chain is rotated through the same angle about the same direction, i.e. 

it is a global symmetry. The XY Hamiltonian is invariant under 

rotations in the x,y—plane and the Ising Hamiltonian is only invariant 

under spin inversion. The application of a field, h^O, breaks these 

symmetries. Such symmetries have important physical consequences. For 



example, there is no gap at ^ero wave vector in the spinr-wave 

dispersion for systems with rotational spin symmetry but there is a 

gap when a field is applied, this will be shown in Sec.1.5. 

We now give a short discussion on phase transitions in systems with 

these Hamiltonians (Steiner et al. 1976). In three dimensions all such 

systems have an ordered phase for low temperatures and a disordered 

phase for high temperatures. In two dimensions the existence of a 

phaise transition from am ordered to a disordered phase at a finite 

temperature depends on the symmetry of the Hamiltonian. For the 

isotropic Heisenberg system there is no phase transition and the 

system is in an ordered phase only at zero temperature, but for the 

Ising system, vAiich has unietxial anisotropy, there is a phcise 

transition at a finite temperature. The XY system also has a phase 

transition but it is unusual and will not be discussed here. In one 

dimension, the case of interest to us, there is no phase transition in 

any of these systems and they are disordered at any non—zero 

temperature. At zero temperature some of the systems are in an 

ordered, ferromagnetic, state and they lose their entropy in going 

from a disordered to an ordered phase as the temperature approaches 

zero by building up short-range order, Such systems have a wide 

critical region near zero temperature and critical properties can be 

studied over a large temperature range. We note that some systems do 

not have an ordered, ferromagnetic, phase even at zero temperature, 

for example the one we will study in Ch.4. Hence all these systems are 

in a paramagnetic phase at non—zero temperatures and spin-wave theory, 

which will be described in Sec.1.5, is therefore an approximation. 

There are various reasons for studying the theory of magnetism in 

one dimension. One is that there are new features which do not appear 

in three dimensions, such as the occurrence of two-spin-wave bound 

states which are present for all wave vectors, these will be discussed 

in Sec .2.3. Another reason is that the theory simplifies in one 

dimension. For example, one-dimensional integrals occur instead of 

three-dimensional ones and in fact it is sometimes possible to obtain 

exact solutions. 



Another advantage of working in one dimension is that it is often 

feasable to do detailed computer simulations and exact numerical 

calculations for finite chains of spins, that cannot be done in higher 

dimensions because of computer limitations. For example, Schneider and 

Stoll (1981) have made numerical calculations of the spectral weight 

for the Ising—Heisehberg chain in zero field, defined by the 

Hamiltonian, 

H = - 2J ( S= + g S+ ) (1.4.4) 

1 

for spin S=l/2 and eight sites in the chain. Chis involves finding the 

eigenvalues cwd eigenvectors of a 2^x2* nKdzriuc. The Hamiltonian in 

Eqn.(1.4.4) is a special case of the Hamiltonian that we will study in 

Ch.3 and comparison can be made beLween these numerical results and 

our results. 

1.5 Spin-wave Theory 

Spin waves are small amplitude oscillations about the ground state 

of the spin system, They were introduced by Bloch (1930), who 

considered only non-interacting spin waves. Most of the subsequent 

work on spin waves has been concerned with the effects of interactions 

between them. 

In this brief introduction to them we shal 1 consider only the 

TTciiicnbdrg fHT-romagnol. in I.Tim presence of a magneLic field, defined by 

the Hamiltonian in Eqn.(1.4.1). The simple Heisenberg Hamiltonian 

possesses full spin rotational symmetry and one of the effects of the 

magnetic field is to break this symmetry. We will consider other more 

complicated systems in Chs.3 and 4. The ferromagnetic ground state has 

all the spins aligned in the direction of the magnetic field and a 

single spin wave consists of one spin reversal spread coherently over 

these aligned spins. Spin-^ave theory is an approximation in one 

dimension at finite temperature because, as explained in Sec.1.4, 

there is no ferromagnetism for non—zero temperature. 



a short discussion of spin^wave theory for iMhe 
state 

Heisenberg ferromagnet (Keffer 1966, Mattis 1965), The ground^energy 

is. 

Eo = -2NJS2 _ NhS (1.5.1) 

where N is the total number of spins in the chain. In a classical 

approach the spins precess about the z direction with angular velocity 

Wk, and each sucessive spin differs in phase from the previous one by 

an angle of k. From the classical torque equations—of-motion for the 

spins, the dispersion relation for a single spin wave is found to be, 

Wk = 1 - cos(k) + h (1.5.2) 

This vanishes for h=0, k=0, in agreement with Goldstone's theorem 

which tells us that the symmetry of the Hamiltonian leads to bosons, 

in this case spin waves, with zero energy. For hXO the symmetry is 

broken and there is an energy gap. 

Quantum mechanically, single spin-wave states are generated from 

the ground state by applying spin-raising operators S+. Denoting the 

vacuum ground state by |0>, there are N such orthogonal states given 

by, 

-1/2 + 
= (2S) / I 0 > (1.5.3) 

where 1 denotes sites on the chain, as in Sec.1.2. 

Because of the translational symmetry of the Hamiltonian there are 

eigenfunctions of the translation operator, in this case the 

plane-wave states, 

^ gikl (1.5.4) 

1 

that are eigenfunctions of the Hamiltonian. Hence these states 

diagonalise the Hamiltonian. The energy eigenvalues are, 

E(k) = Eo + Wk (1.5.5) 
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as expected from the classical theory. Two—spin-wave states are more 

difficult to calculate because the plane-wave states are not 

automatically orthogonal to each other. Also they do not diagonalise 

the Hamiltonian and this gives rise to bound states. Physically these 

bound states occur because under certain conditions the interaction 

between spin waves is attractive. 

The algebra of the spin operators is non-trivial because the 

commutator, 

[ S+, S- ] = 2SZ (1.5.6) 

is not merely a complex number. There are many transformations, 

however, from spin operators to boson operators. The ones that we will 

consider treat spin waves as particles which are created and 

annihilated by the boson operators a+ and a respectively. 

One such transformation was introduced by Holstein and Primakoff 

(1940) and is given by, 

= (2S) 
1/2 

1 - 4 
2S 

1/2 

= (2S)^/^ a^ 1 . 4 
2S 

1/2 (1.5.7) 

= - S + a^ a^ 

The boson operators satisfy the usual commutation relations, 

[ =1- ] = [ 4 - 4 ] = ° 

(1.5.8) 

and it is easy to show that the trans format ion given by Eqn .(1.5.7) 

then satisfies the correct spin commutation relations given by 

Eqn.(1.5.6) and, 

«im 

(1.5.9) 
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[ S]/ S* ] = S" *lm 

It is usual to work with the Fourier sums of these boson operators, 

defined by, 

. N-l/: V e - i " aj 
z 

1 

4 = I a ' " < 

1 
(1.5.10) 

1 

which are also boson operators because they satisfy the correct 

commutation relations, similar to Eqn.(1.5.8). However, the 

Hamiltonian obtained from the spin Hamiltonian, Eqn.(1.4.1), by using 

the Holstein—Primakoff transformation is still difficult to use in 

calculations, partly because of complications due to the square roots 

which appear, and partly because the terms in it which are not 

quadratic in the boson operators are large compared to the quadratic 

terms so a perturbative treatment is not usually valid. 

Another such transformation from a spin Hamiltonian to a boson 

Hamiltonian was proposed independently by Dyson (1956) and Maleev 

(1958). We will use this transformation in Ch.3. Its advantage over 

the Holstein-Primakoff transformation, apart from its being easier to 

use, is that the kinematical interaction between spin waves, which is 

due to the spin-wave states defined in the theory not being orthogonal 

to each other for states of two or more spin waves, is treated 

separately. Then the dynamical interaction between spin waves, due to 

the Hamiltonian not being diagonal in these states, has a non-

-quadratic part which is small compared to the part that is quadratic 

in the boson operators. The transformation can be written, 

= (25)1/2 

S* = (23)1/2 

S= = - S + 

1 -

2S 
(1.5.11) 
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iami for Heisenberg spin Hamlltonian it gtunss the boson 

Hamiltonian, 

4 4 s 

k 1,2,3,4 
(1.5.12) 

= 1 - cos(k) + h 

K(l,2,3,4) = 6^+2 2+4 [ cos(3) - cos(l-3) ] 

where we have chosen to work in units with 4JS=1, as usual. The wave 

vectors in the quartic interaction are denoted by numbers here, for 

convenience. The boson Hamiltonian is not hermitian so it cannot be 

interpreted as a Hamiltonian for a real physical system and states 

like a+10> cannot be real physical states. However this does not cause 

any problems in the calculation. We will not discuss the reasons why 

this transformation gives good results here. 

Thermal averages, defined in Sec.1.2, of the boson operators are 

given by, with respect to the quadratic part of H, 

< a ^ a > = < a ^ a _ > = 0 
+ + 

P 
(1.5.13) 

< \ > = W p 

where the Bose factor is defined by, 

nk = [ exp(wk/T) - 1 ]-1 (1.5.14) 

and is the average number of spin waves with wave vector k. 

In our calculations we will always normal order the operators so 

that annihilation operators appear to the right of creation operators. 

This requires use of the commutation relations so that, for example, 

*p = Bp \ + \ p (1.5.15) 

After normal ordering, a product of four operators, a+a+aa, is of 

higher order in the Bose factor than a product of two operators, a+a, 

etc. 
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We conclude this section with a brief discussion of the, so—called, 

two—spin-wave continuum. For a state containing two spin waves of wave 

vectors k and p, the total energy, if we assume that they are 

non—InteraKzting, is, 

WT = Wk + Wp 

= 2 [ 1 + h - cos(K/2) cos(q/2) ] (1.5.16) 

K = k + p, q = k - p , - TT < k, p < Tf 

using Eqn.(1.5.12) for the single spin wave energy. The wave vector q 

can take any value in the range -2Tf<q<27r and so the total energy for 

the two spin waves which have total wave vector K lies in the range, 

WT > 2 { 1 + h - I cos(K/2) I } 

(1.5.17) 

WT < 2 { 1 + h + I cos(iq/2) I } 

When we plot graphs of energy versus wave vector the area where 

Eqn. (1.5.17) is satisfied is the two—spin-wave continuum. The 

two—spin-wave bound states that we will study lie below this continuum 

of states. 
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CHAPTER 2: MKTHOD OF CALCULATION 

2.1 Green Functions 

Thermal Green functions are both useful and convenient for treating 

various complex problems, especially those in which it is necessary to 

do a non—perturbative calculation. However, there may be some subtle 

difficulties and the approximations used and results obtained should 

be dealt with carefully. We will consider two such problems, a simple 

one in Oh,3 and a more comp]icated one in Ch.4.. These problems involve 

one-dimensional magnetic systems and require a non—perturbat ive 

treatment because of the two—spin-wave bound state which is present 

throughout the first Brillouin zone below the two—spin-wave continuum. 

This causes non-perturbative effects that no finite order of 

perturbation theory can give, for example, poles in the self-energy, 

which will be discussed in Sec.2.3. 

Following Lovesey (1980), we define a causal thermal Green function 

for two Heisenberg operators, defined by Eqn,(1.2,1), A and B by, 

G(t) = - i e(t) < [ A(t), B ] > 

(2.1.1) 

= « A(t); B » 

where B( t.) is the unit step function, the angular brackets in the 

first equality denote a thermal average, defined by Eqn.(1.2.2), and 

the square brackets denote a commutator, defined in Eqn,(1.2,3). The 

operator A(t) satisfies the equation-of-motion, 

at A(t) = - i [ A(t), H ] (2.1.2) 

where H is the total Hamiltonian. For convenience, we define B=B(0). 

The second equality in Eqn.(2.1.1) defines a convenient notation, 

The time Fourier transform of G(t) is, 

G(w) = r dt e^'^ G(t) 
- 0 0 
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To ensure that this is a convergent function we define our G(to) to be, 

(2.1.3) 
G(w) = r * dt G(t), n 0+ 

- 0 0 

= << A; B >> 
w 

where the second equality defines a useful notation. The parameter rj 

causes the integrand to tend to zero exponentially as time, t, tends 

to infinity. When we take real and imaginary parts of G(w) we often 

have to let w^w+i^ and then take the limit rî O+ explicitly. 

It can be shown (Lovesey 1980) that the real and imaginary parts of 

G(w) satisfy a Kramers-Kronig, or dispersion, relation, which, for our 

definitions, is, 

.e = . i P J" 
- 0 0 

where P denotes the principal part of the integral. This relation is a 

direct result of G(u) being a causal function and it is easily derived 

using the integral representation of the step function, 

8(t) = ^ 
2 TT 

00 - iut 

Another useful result that we will state here, but will not derive, 

is the relation between the spectral weight, S(k,u), discussed in 

Sec.1.3, and the imaginary part of a Green function. This relation is, 

"t" "• (i) 
Im « S^; [ 1 - exp(- -) ] 8(k,w) (2.1.6) 

It is, in fact, merely a statement of the well-known fluctuation-

-dissipation theorem (Kubo 1966). The spectral weight describes the 

spontaneous fluctuations of the system and the imaginary part of the 

Green function is simply related to the dissipative part of the 

dynamic susceptibility, mentioned in Sec,1.3, since, 

Q(w) oc x(iw) (2.1.7) 
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In Chs.3 and 4 we will write the Hamiltonians in terms of boson 

operators, as described in Sec.1.5, and will have to calculate a Green 

function, 

G(k,w) = « a ; » (2.1.8) 

We will find that this Green function has the form, 

G<k,w) = [ w - - C(k,w) ] ^ (2.1.9) 

where Wk is the single spin-wave energy discussed in Sec.1.5. 

Eqn.(2.1.9) defines the self-energy, C(k,w), which vanishes in the 

limit T-»0 for the models of interest here. In this limit the Green 

function, G(k,w), takes its non-interacting value, G(0)(k,w), which 

is, 

G(°)(k,w) = ( w - )"^ (2.1.10) 

and also, 

« \ (2.1.11) 

Hence to find the spectral weight we take the imaginary part of the 

Green function in Eqn.(2.1.10), letting w-^w+in, 'n-»0+, and using the 

identity. 

lim f 00 du 
n-K) 

- 0 0 - 0 0 

where 6(u) is the Dirac S-function. 

The result is, 

S(k,w) = 2S 8( w - ) (2.1.13) 

so the spectral weight function has a resonance peak at the single 

spin-wave energy. For most three-dimensional systems at low 

temperature the lineshape of S(k,w) is Lorentzian. The S-function in 

Eqn.(2.1.13) can in fact be written as a Lorentzian in the limit that 

its width tends to zero. 
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8( w - ) = 1 ZL-̂ ; 2 , n * 0 (2.1.14) 
( W - ) +11 

where the parameter rj is a measure of the width of the Lorentzian. The 

physical significance of our parameter T), introduced in Eqn.(2.1.3) is 

that it is a measure of the width of the resonance peak in the 

spectral weight. 

We will find that for our one-dimensional systems in Chs.3 and 4-

the self-energy, E(k,w), has structure and is not merely a purely 

imaginary function of temperature. Hence the lineshape of S(k,w) is 

not a Lorentzian, it is not symmetric about the single spin-wave 

energy in fact. From Eqn.(2.1.9) we see that the real part of the 

self-energy evaluated at the single spin-wave energy gives the energy 

shift in the resonance peak from the single spin-wave energy, to a 

first approximation. The imaginary part of the self-energy evaluated 

at the single spin-wave energy gives the width of the peak, which is a 

measure of the damping or inverse lifetime of the spin waves. 

The self—energy arises because of processes involving interactions 

of spin waves. The nonlinear processes contain two—spin-wave bound 

states which arise because of the attractive interactions between spin 

waves. We will see that the self-energy has poles at the two-spin-wave 

bound states in Chs.3 and 4. These bound states can be found by 

investigating a Green function of the form, 

+ + 
« a a ; a a » (2.1.15) 

u 

which involves products of creation and annihilation operators, and 

this will be done as an example of the equation—of-motion method in 

Sec .2.3. This Green function does not appear directly in any of the 

equations which are used in the calculation of G(k,w). However, the 

bound states do manifest themselves indirectly in the spectral weight 

which has a resonance peak at an energy close to the bound—state 

energy, for a given wave vector at low temperatures. This energy is 

given by, 

w - Wk - C(k,w) = 0 (2.1.16) 
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Where the left—hand side of this equation is the denominator of G(k,w) 

in Eqn.(2.1.9). These resonances will be discussed in detail in Ch.3. 

We conclude this section by recording a useful result involving the 

self-energy, 

G{k,w) = G(0)(k,w) + G(0)(k,w) E(k,w) G(k,w) (2.1.17) 

This is known as Dyson's equation. 

The technique that we will use for calculating the Green functions 

is described in the next section. 

2.2 nie Equation-of-motion Method 

We now turn to the calculation of the Green function G(u), defined 

in Eqn.(2.1.3), from its equation-of-motion. Using the identity, 

at e(t) = B(t) (2.2.1) 

and the equat ion-of-mot ion for the operator A( t), Eqn.(2.1.2), we can 

write the equat ion-of-mot ion for G(t), defined in Eqn.(2.1.1), as, 

i at G(t) = 6(t) < [ A, B ] > + « [ A(t), H ]; B » (2.2.2) 

Then, differentiating both sides of Eqn.(2.1.3) with respect to time 

gives 

W G(w) = < [ A, B ] > + « [ A, H ]; B » w (2.2.3) 

which is the equation-of-motion for G(w). This equation provides a 

means of calculating the Green function G(w). The last term in the 

equation is another Green function that is usually of higher order in 

the operators used, as we will see in the following chapters. 

Consequently, in most cases, it has to be approximated in some way and 

G(w) cannot be calculated exactly. We will discuss the approximation 

to be used in Chs.3 and U in Sec.2.4. 
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2.3 Two-spin-wave Bound States 

To obtain the two-spin-wave bound states explicitly we study the 

Green function, with p+q=p'+q', 

cf ^'(p,q;w) = « a a^; a^, a*, (2.3.1) 

at zero temperature. The energy Fourier transform of this Green 

function involves the creation of two spin waves at zero time and 

their annihilation at time t. We will find that the calculation of 

GBS(p,q;w) involves an integral equation that can be solved because it 

has a separable kernel. If the kernel had not been separable then 

there would have been no two—spin-wave bound states in the system. 

For simplicity, we will consider the boson Hamiltonian in 

Eqn .(1.5.12) here. The equat ion-of-mot ion for G8S(p,q;w) is, from 

Eqn.(2.2.3), 

w cf'^"(p,q;w) = < [ a a , a*, a*, ] > + 

<< [ ap aq, H ]; a+, a+, 

(2.3.2) 

Consider the second term on the right-hand side. The part of the 

commutator involving the non-interacting term in the Hamiltonian 

gives, 

t Z "k 4 \ ] = < "p + "q ' ( 2 - 3 3 ) 

where we have used the identity, 

[ AB, CD ] = A [ B, C ] D + AC [ B, D ] + 

(2.3.4) 

[ A, C ] DB + C [ A, D ] B 

The rest of the commutator gives, 
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[ K(l,2,3,4) a* ag a^ ] _ K(l,2,3,4) 

X}2j3ji4- 1,2,3,/* 

' ®q2 4 »p S + =p2 4 % ®3 ^ + ®ql 4 =p »3 »4 + 

®pl 4 \ "3 >4 + < V =p2 + =pl \ 2 > ̂  1 (2'3'S) 

Hence the equation—of-motion for GBS(p,q.u) contains six—particle 

Green functions of the form, 

•=< »a S *y »6' V ®p' (2 3'G) 

We will now perform a Hartree-Fock approximation on the product of 

four operators, 

(2 3 7 ) 

which involves taking the sum of all possible terms in which the 

product of two operators is replaced by its thermal average. Using 

Eqn .(1.5.13), for the thermal averages of products of two boson 

operators, then gives, for Eqn.(2.3.7), 

"« % ^ + V 'e ^ % (2-3 9) 

In the limit of zero temperature the Bose factor, and hence the 

expression in Eqn.(2.3.8), vanishes. In this limit all six-particle 

Green functions of the form in Eqn.(2.3.6) vanish. Hence, for T=0, 

[ *p Sq. H ] = ( Wp + Wq ) Sp Sq + 

(2.3.9) 

^ ^ ( K(P,q,3,4) + K(q,p,3,2L) } a^ a^ 

3,A 

The first term on the right-hand side of Eqn.(2.3.2) is, 

< [ ap Sq. a^, a+, ] > = 6^^, + 6̂ ^̂ , + S ^ , + 

^pq' "q ^ ^qp' "p 

which, in the limit T-»0, is, 
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< [ ^p, ] > = Gqq/ + Gpq, (2.3.10) 

Hence Eqn.(2.3.2) becomes, 

( w - Wp - Wq ) G^'^'(p,q;w) = ( 8^^, + 6 ) + 

^ ^ [ K(P,q,3,^) + K(q,P,3,4) ] (3,4;w) 

3,^ 

We note that K( 1,2,3,4) in Eqn.(1.5.12) contains a 8—function. Using 

the change of variables, 

p = K/2 + Q , q = K/2 - Q 

(2.3.12) 

3 = K/2 + X , 6 = K/2 - X 

and the expressions for the single spin-wave energy and the 

interaction in Eqn.(1.5.12) then give, for Eqn.(2.3,11), 

[ w - 2 ( 1 - Cos(K/2) COS(Q) + h) ] G^'^'(K/2+Q,K/2-Q;w) 

^ ^ ^K/2-Q,q' ®K/2+q,q' ^ ^ cos(X) [ cos(K/2) 

COS(q) ] G^'^ (K/2+X,K/2-X;w) (2.3.13) 

where we have also used the fact that GBS(K/2+x,K/2-X;w) is an even 

function of X so that, 

^ sin(K/2) sin(X) G^'^"(K/2+X,K/2-X;w) = O (2.3.14) 

Eqn.(2.3.13) is em integral equation for GBS(K/2+q,K/2-q;w) which is 

easily solved. Writing it in the form, 

G CK/2+q,K/2-qjU) = { w - 2 [ 1 - cos(K/2) COS(Q) + h ] X 

< V2-Q,q- + V2+Q,q' > " ( " ' 2 C 1 " COS(K/2) COS( Q) f 
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h ] } ^ ^ cos(X) [ co8(K/2) - c o s ( Q ) ] x 

^'(K/2+X,K/2-X;w) 

multiplying by cos(Q) and taking the sum over wave vectors Q gives, 

COS(X) cf 'S (K/2+X,K/2-X;u) = [ 1 - W ( K ) ]'^ x 

Z < V 2 - Q , q ' + V 2 + Q , q ' ' ^ t 1 -

Q 

cos(K/2) cos(Q) + h ] (2.3.16) 

where 

W(K) = ]>] { w - 2 [ 1 - co8(K/2) cos(Q) + h ] }"^ x 

Q 

cos(Q) [ cos(K/2) - cos(Q) ] (2.3.17) 

Changing the sum into an integral, 

y * 2^? f " dQ (2.3.18) 

'TT -* 

and using the results, 

Tn I " co.(q'? - f = - f) ( f' - I . Ifl > 1 
- 7 f 

j_ r 
! TT J 

Tf dQ _ T ^2 \-l/2 

-rr 
2 TT J cos(Q) - f 

= -t( 1 - f ) ' , IfI < 1 (2.3.19) 

enables us to evaluate the function W(K). 

If we define, 

then, for |f|>l, 

' r s ' c o s w z - f ^ [ 1 - Ifi (f' - 1 : 

Im W(K) = 0 (2.3.21) 
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and for |f|<l, 

rs'co5(lC/2l 

The region |f|<l defines the two-spin-Afave continuum, described in 

Sec.1.5. 

The Green function GBS(K/2+Q,K/2-Q;w) contains a term with the 

factor {l-W(K)} in its denominator. The two—spin-wave bound states are 

resonances of this Green function and they occur when, 

Re W(K) = 1 

(2.3.23) 

Im W(K) = 0 

The function W(K) is also a function of energy, w, and to obtain the 

dispersion of the bound states we look for a solution of Eqn.(2,3.23) 

below the two^-spin-wave continuum, f>l, in the form w=w(K). 

Eqn.(2.3.23) then gives, 

' [ 1 - f ( - 1 ] = 1 (2.3.2i) 

which can be written, 

^ cos(K/2) f3 + [ 4S ( S - 1 ) cos2(K/2) - 1 ] f2 -

(2.3.25) 

2 ( 2S - 1 ) COS(K/2) f - ( 2S - 1 ) COs2(K/2) = O 

This is a cubic equation in f. l̂ ie analytic solution is very 

caqplicated but sinyplifies in two special cases. Firstly for S=l/2 it 

gives, 

or, using the definition of f, Eqn.(2.3.20), 

w_ = sinf( 5 ) + 2h (2.3.27) 
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secondly at the zone boundary, K=Tf, Eqn.(2.3.25) gives the result, 

Wg = 2 - + 2h (2.3.28) 

Apart from these two special cases we solve Eqn.(2.3.25) numerically. 

We will discuss bound states cind their effect on the spectral 

weight function further in Ch.3. 

2.4 Approxiination Method 

When we use Eqn.(2.2.3) and a boson Hamiltonian with interaction 

terms, for example Eqn.(1.5.12), to write down an equation for G(k,w), 

defined in Eqn.(2.1.8), we find that higher order Green functions are 

generated. Consider the Hamiltonian in Eqn.(1.5.12), to be specific. 

Then the exact equation—of-motion for G(k,w) contains the temperature -

-independent term G(0)(k,w) added to a term which includes a 

four—particle Green function of the form, 

G(P,q,q',k:w) = « a^ a^ a ; aĵ  (2.4.1) 

which is teng)erature-dependent and vanishes in the limit that 

temperature, T, tends to zero. The exact equation-of-motion for this 

Green function includes terms with six—particle Green functions and so 

on. Hence we cannot calculate G(k,w) exactly and we have to make some 

approximations. 

For our Hamiltonian, nth order perturbation theory corresponds to 

neglecting all terms in the Green functions which contain powers of 

the interaction that are greater than n. However, as we stated in 

Sec.2.1, perturbation theory is not adequate for describing these 

systems. 
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The approximation that we will use is valid for low temperatures 

but not necessarily small values of the interaction, and is as 

follows. The exact equation-of-motion for G(p,q,q' ,k;w) contains a 

term which includes the same Green function and another term that is 

of the form, 

p \ 4 4 ^ \ 

= « \ =q" 4 4 ] S \ » » 

+ « 4 4 [ 4 ' ^ ' 4 ' \ *q'' 4 

The first term on the right—hand side of Eqn .(2.4.2) contains 

four—particle and six—particle Green functions and the second term 

contains only six-particle Green functions, after evaluating the 

commutators and normal ordering the operators, as described in 

Sec.1.5. Six particle Green functions are effectively higher order in 

temperature than four-particle Green functions since they are higher 

order in the Bose factor, defined in Eqn.(1.5.11). If we neglect all 

six—particle Green functions, the expression on the right—hand side of 

Eqn.(2.6.2) becomes, 

< \'2 * > « 4 S '4- \ < = 

which has the same form as our original four—particle Green function. 

Within this approximation the equation—of-motion for G(p,q,q',k;w) is 

an integral equation which can be solved and hence we can calculate 

G(k,w). Another way of stating our approximation, which brings out 

more of the physics of the system, is as follows. We approximate the 

first term on the right-hand side of Eqn.(2.4.2) by, 

< [ \ 4 4 ] > « ^ p ^3 ^4* 4 

The thermal average of the commutator is merely the amplitude for the 

production of two—spin-wave bound states, as in Eqn.(2.3.2), and we 

evaluate it in the limit of zero ten$)erature to obtain, 

^ ' 2 + "q2 
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Hence we obtain Eqn.(2.4.3). The second term on the right-hand side of 

Eqn.(2.4.2) arises from spin-wave collisions which result in energy 

shifts and damping in G(p,q,q',k;w) and are neglected. 

In summary, the approximat ion we use is basically to work to first 

order only in the Bose factors. In the language of diagrammatic 

perturbation theory it is called the one backward line approximation. 

This will be discussed in the next section. 

2.5 Ccxigparison With T-matrix Theory 

We will now show that our approximation is equivalent to the 

standard T-matrix approximation eis done by, for example, Pini et al. 

(1981) for similar systems to the ones that we consider, we will find, 

however, that the equation-of-motion method is particularly convenient 

in more c(»g)licated systems, with anisotropy for example. 

For convenience we will use diagrams to describe the T-matrix 

approximat ion (Abrikosov et al. 1963, Fetter and Walecka 1971). In 

these diagrams the non—interacting Green function, 

G(°)(k,t) = « a^(t); a^ (2.5.1) 

is denoted by a straight line with an arrow pointing forward in time 

and the interaction, K(l,2,3,4) in Eqn.(1.5.12), by a wiggly line, as 

shown in Fig.2.1. 

In perturbation theory the full Green function, 

G(k,t) = « a^(t); a^ » (2.5.2) 

is given by the expression, 

00 

Z I < T [ a ^ ( t ) a^(01 ] 

nM) 
(2.5.3) 

where T denotes time-ordering, c denotes taking the sum over connected 

diagrams only, the perturbation, H', is the second term in the 

Hamiltonian of Eqn .(1.5.12) and n denotes the order of the 
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perturbation theory. In our theory t>0 always. To lowest order, n=0, 

the expression in Eqn,(2.5.3) gives G(0)(k,t). To obtain the first 

order, n=l, connected diagrams we consider all possible pairings, or 

Wick contractions, of, 

a^(t) a^(0) = 

a+Ct^) a3(t^) a^(t) a^(0) (2.5.4) 

For example consider, 

a ^ ( ) ag(t^) a^Ct^) a^ft^) a^(t) aj^(O) (2.5.5) 

which gives the diagram in Fig.2.2a. Other possible connected diagrams 

are given in Fig.2.2. Each of these gives a contribution to G(k,t) of, 

(-1) j dt ^ K(p,k,p,k) G(°)(p.O) G(°)(k,t-t') G(°)(k,t') 

P (2.5.6) 

All of these diagrams can be written in the abbreviated form of 

Fig.2.3. For n=2 there are approximately eighty possible pairings 

leading to connected diagrams and we will not go into the details. 

In the T-matrix, or dilute gas, approximation we consider only the 

so-called "ladder" diagrams and neglect all others, i.e. we include 

only repeated pair interactions. The Green function G(k,t) is then 

given by the expansion in Fig.2.4. To obtain G(k,w) we take the time 

Fourier transform of this result and can write down the same diagrams 

as we used for G(k,t) with energies as well as wave vectors labelling 

the lines and a slightly different prescription for calculating the 

contribution of each diagram to G(k,w). The self—energy, defined by 

Eqn.(2.1.9) is then given by the expansion in Fig.2.5, where the 

T-matrix is defined by the diagrammatic equation in Fig.2.6. This 

equation is rewritten as an integral equation in Fig.2.7, which is 

similar to the integral equation for the four—particle Green function 

that will be solved in Chs.3 and 4, and is written algebraically as, 

T(k,p,q,q') = K(k,p,q,q') + F K(k,p,3,4) G(°)(3,u) x 

u.v 
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G^°\4,v)T(l,2,q,q')d3d4 (2.5.7) 

The T-matrix approximation is valid for interactions vAiich are 

short—ranged, but not necessarily small, so their effects are small. 

It is valid as a low ten$»erature e]g)ansion for the systems we consider 

because it is considering the scattering of two particles which may, 

however, scatter from each other many times. Hence we only consider 

one particle, apart from our particle of wave vector k and energy w, 

and so only need one power of the Bose factor, which is just the 

average number of particles with a given wave vector. We then, of 

course, integrate over all wave vectors to include all possible 

interactions of our particle, labelled by k and w, with other 

particles in the system. For example diagrams like those in Fig.2.8 do 

not contribute because they contain factors npHq. This demonstrates 

that our approximation is equivalent to the T-matrix approximation. A 

calculation of the self-energy evaluated at the single spin-wave 

energy for the easy-axis ferromagnet was done by Rastelli (1982) and 

it agrees with our result in Ch.3. 
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Figure 2.1: Non-interacting Green function and interaction 
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Figure 2.2: First order perturbation theory diagrams 
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Figure 2.3: Abbreviated form of first order perturbation 

theory diagrams 
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Figure 2.4: Expression for Green function 
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+ + + , , . 

Figure 2.5: Expression for self-energy 

Figure 2.6: Definition of T-matrix 

-f" # 
Figure 2.7: Equation for T-matrix 

Figure 2.8: One diagram of higher order in temperature 
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CHAPTER 3: EASY-AXIS FERROMAGNET 

3.1 Spin Hamiltonian 

This chapter is concerned with the application of the previous 

results to an easy—axis ferromagnetic chain (Lovesey and Hood 1982). A 

more complicated system will be considered in Ch.4. 

The Hamiltonian that we consider for the easy—axis ferromagnet is, 

H = - J ^ + e ) + ^ { h - D (5=): ) 

1 ,m 1 
(3.1.1) 

where J is the ferromagnetic exchange coupling and h is the applied 

magnetic field. The parameter g lies in the range between zero, the 

Ising limit, and one, the Heisenberg limit, and it is a measure of the 

exchange anisotropy, The parameter D is the single—site anisotropy. 

The spin operators are defined in Sec .1.2 and the first sum in 

Eqn,(3.1.1) is taken over all nearest—neighbour sites 1 and m. The 

parameter J is positive and the parameters h and D are either positive 

or zero. We note that for the special case S-1/2 the term involving D 

reduces to a constant and therefore has no effect on the dynamics of 

the system. This fact provides us with a useful check on our results. 

The parameter J causes the spins on the chain to tend to align 

parallel to each other. The parameters g, except for the Heisenberg 

limit g=l, and D cause them to align parallel or anti—parallel to the 

z—axis, which is the easy axis. The field h tends to align them in the 

negative z-direction. The ground state of the system has all the spins 

in the chain aligned along the negative z—direction. Spin waves are 

then small amplitude oscillations of the spins about this direction 

and we will discuss them in the following sections. 
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3.2 Boson Hamiltonian 

We transform the spin Hamiltonian in Eqn .(3.1.1) to a boson 

Hamiltonian using the Dyson-Ma1eev transformation defined in 

Eqn.(1.5.11). This gives, 

® Z f ^ ® 4 "n. ' • A < 4 >1 "m -

1 ,m 

g a+ ^ [ { h + D ( 2S - l ) } 

D a* a* ] (3.2.1) 

where we have used the commutation relations, Eqn .(1.5.8), to normal 

order the boson operators. We write these operators in terms of their 

Fourier sums, that is, 

= N-l/z V .it: 
Z -k 

(3.2.2) 

< = Z < 

k 

to obtain the boson Hamiltonian, 

» = Z ' ° k 4 ' \ + 2 ^ Z 4 4 S 

k 1,2,3,4 
(3.2.3) 

w = 1 + h + D ( 28 - 1 ) - g cos(k) 

K(l,2,3,4) = 2+^ [ g COS(3) - Cos(l-3) - 2DS ] 

which is the same as the Hamiltonian in Eqn. (1.5.12) for the special 

case g=l, D=0, i.e. the Heisenberg ferromagnet, as required. 

From the t rans format ion, Eqn.(1.5.11), it is obvious that the Green 

function that we are aiming to calculate to obtain the transverse 

spectral weight function, Eqn.(1.3.3), is, 
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+ 
« =k S » 

i ^ < 4 Sl+Z-k » w 

1,2 

The calculation of this Green function is described in the next 

section. 

3.3 Calculation 

We now turn to the calculation of the two-particle Green function 

G(k,u), defined in Eqn,(2.1.8). Its equation—of-motion is, from 

Eqn.(2.2.3), 

w G(k,w) = < [ a^, ] > + « [ a^, H ]; (3.3.1) 

Using the commutation relations for the boson operators, Eqn.(1.5.8), 

and the boson Hamiltonian in Eqn.(3.2.3), we find, 

[ 3%, ] = 1 (3.3.2) 

and, 

[ 5^, H a^ + gpg ^ { K(k,2,3,4) + K(2,k,3,4) } a^ a^ a^ 

2,3,6 
(3.3.3) 

so that Eqn.(3.3.1) becomes, 

( w - ) G(k,w) = 1 + ^ ^ { K(k,2,3,6) + K(2,k,3,4) } x 

2,3,6 

« a+ a^ a^; â ^ (3.3.6) 

This equation has a term which includes four—particle Green functions 

of the form G(p,q,q',k;w) with q+q'=p+k because of the Kronecker 6 in 

the interaction K(l,2,3,6), defined by Eqn.(2.4.1). Its 

equation-^f-motion, from Eqn.(2.2.3), is. 
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w G(p,q,q',k;w) = < [ a* a , ] > + 

« [ \ H ]; (3.3.5) 

The first term on the right—hand side of Eqn.(3.3.5) is, 

< [ Sp 'q Sq-' Sk : ) ' ( V V k > "p (3 3 G) 

using the commutation relations, Eqn.(1.5.8), and the thermal averages 

of boson operators in Eqn.(1.5.13). The commutator in the second term 

is, 

' "p 'q " 1 - < "q * "q- ' "p > "p \ * 

* 2 ® Z = ' »p 'q = q " 4 4 S ^ 

1,2,3,4-
(3.3.7) 

Hence the equation-of-motion, Eqn.(3.3.5), becomes, 

( w + Wp - Wq - Wq, ) G(p,q,q',k;w) = ( 8^^ + 6^,^ ) + 

2 ® Z = [ >p \ V 4 4 ^ \ » . 

1,2,3,4 
(3.3.8) 

We use the approximation method described in detail in Sec.2.6 to 

approximate the Green function in the last term on the right-hand side 

of Eqn.(3.3.8) by the expression in Eqn.(2.4.3). Hence Eqn.(3.3.8) 

becomes, in our approximation, 

( w + Wp - Wq - Wq, ) G(p,q,q',k;w) = ( 8^^ + 8^,^ ) + 

255 { K(q,q',3,4) + K(q',q,3,4) } G(p,3,4,k;w) (3.3.9) 

3,4 

We define the wave vector K by, 

K = k + p = q + q' = 3 + 4 (3.3.10) 

Then we change variables, 
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q = K/2 + Q , q' = K/2 - Q 

(3.3.11) 

3 = K/2 + Q' , 4 = K/2 - Q' 

We treat k, p and w as constants for the moment and define, 

A(Q)=G(p,q,q',k;w) (3.3.12) 

Then Eqn.(3.3.9) can be written, 

{ W - E(p,K/2+q,K/2.Q) } A(Q) = ( + ^K/2-Q,k > "p + 

^ ^ { K(K/2+Q,K/2-q,K/2+<)',K/2-q') + 

Q' 

K(K/2-Q,K/2-H),K/2+<)' ,K/2-Q' ) } A(Q' ) (3.3.13) 

where, 

E(p,iy2+Q,K/2-Q) = WK/2 + Q + (̂ K/2-Q " Wp 

(3.3.14) 

= l + h + D ( 2 S - 1) + g cos(p) - 2 g cos(K/2) cos(Q) 

Because the boson annihilation operators commute with each other, A(q) 

is an even function of q. Hence sums such as, 

^ sin(q) A(q) 

Q 

vanish. Substituting the expression for the interaction K(1,2,3,4), in 

Eqn.(3.2.3), into Eqn, ( 3.3 .13) then gives, 

{ w - E(p,K/24q,iV2-q) } A(q) = ( ) np + 

^ { g cos(K/2) - COS(q) ) ^ ^ (3.3.15) 

vAiere, 

,(1) 
= ^ cos(q') A(q') 

Q' 
(3.3.16) 
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p'Z' . ]>] A(Q' , 

Q' 

Eqn .(3.3.15) is an integral equation for A(Q) which can be solved 

because it has a separable kernel. To solve it we divide both sides 

by, 

w - E(p,K/2+Q,K/2-Q) 

to obtain an expression for A(Q) which contains the numbers pC1> and 

p(2). Then taking the sum over all wave vectors Q in the first 

Brillouin zone gives an expression for F^2) in terms of ptl), p(2) and 

other numbers. Similarly multiplying by cos(Q) and then taking the sum 

gives an expression for pCI). Hence we obtain two equations for pt1 ' 

and f(2) of the form, 

A + A = B 
1 2 1 

(3.3.17) 

A + A = B 

and we find, 

COS(Q) { e COS(K/2) - COS(Q) } 

w - E(p,K/2+Q,K/2-Q) 
Q Q 

_ 1 D V - co8(q) 
2 N S 2 J 2_. w - E(p,K/2+Q,K/2-Q) 

Q 

A _ - \ . cos(K/2) - cos(Q) = - — y 
N S z L 3 N S w - E(p,K/2+Q,K/2-Q) 

Q 

A = i + _ i _ J 2 _ y 
4 N S 2 J zL . 

(3.3.18) 

w - E(p,K/2+q,K/2-q) 
Q 

B = cos(q) n r 8 + 8 
1 z L W - E(p,K/2+Q,K/2-Q) p ^ Q,k-K/2 Q,K/2-k 

Q 

^ w - E(p,K/2+Q,K/2-Q) "p < * ^Q K/g-k 
Q 
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The solution of Eqn.(3.3.17) is, 

?(!) = - Ag Bz 
1 - W 

(2) ^2 " ̂ 3 (3.3.19) 
1 - W 

1 - W = - A, A, 

We will now perform the sums over wave vectors Q in Eqn. (3.3.18). For 

convenience we define the dimensionless parameter f by, 

_ 1 + h + D ( 2S - 1 ) + g cos(p) - w . 
f - 2e cos(K/2) (3.3.20) 

The two—spin-wave continuum discussed in Sec.1.5 is, for this system, 

WT > 2 { 1 + h + D ( 2S - 1 ) - e I cos(K/2) | } 

(3.3.21) 

WT < 2 { 1 + h + D ( 25 - 1 ) + g I cos(K/2) | } 

The region |f|<l is 

w + Wp > 2 ( 1 + h + D ( 2S - 1) - g I cos(K/2) | } 

(3.3.22) 
w + Wp < 2 { 1 + h + D ( 28 - 1) + g I Cos(K/2) | } 

In our low temperature approximat ion we work with p close to zero so 

Wp is merely the energy gap in the single spin-wave dispersion. We 

will, in the rest of this chapter and in Ch. 4, refer to the region 

|f|<l as the two—spin-wave continuum since we will be considering 

two-spin-wave states with total energy (w+wp). 

Then, using Eqn.(3.3.14), 

w - E(p,K/2+Q,K/2-Q) = 2g COS(K/2) { COS(Q) - f } (3.3.23) 

we also define a function Y(f) by, 

dQ 
cos(Q) - f + i T) ' — g — ^ i ^ * O (3.3.24) 
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The parameter n is included to make the integrzmd finite everywhere 

for I f I<1. The integral in Eqn.(3.3.24) can be calculated analytically 

and the result gives, 

Y(f) = - i ( 1 - fZ , I f I < 1 

Y(f) = - ( f* - 1 , f > 1 (3.3.25) 

Y(f) = ( f2 - 1 )"l/2 ^ f < - 1 

We note also that, 

n cos(Q) dQ 
2 TT J cos(Q) - f + i T| 

= 1 + f Y(f) , -» 0 

^ J " s s r ' g f f i n = ' " 

(3.3.26) 

We then replace the sums in Eqn. (3.3.18) by integrals, using 

Eqn.(1.2.6), to obtain, 

^ ^ ^ " 7 ( f ) I 

" 2"J 2gS COS(K/2) ( ) 

S = 2iS^<ii(K75) ' " + f 7(f) - e cos(K/2) Y(f) ) 

^ * 2lj 2gS cos(K/2) 

(3.3.27) 

= ( w - ^ Hp cos(h_P) 

Bg = ( W - )'l Hp 

where we have used the fact that, 

E(p,p,k) = Wk (3.3.28) 

to simplify the last two equations. 

We now stop treating k, p and w as constants and write Eqn.(3.3.15) 
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as, 

{ w - E(p,K/2-M),K/2-Q) } G(p,K/2-K),K/2-Q,k;w) = 

< S2q.k-p * =2Q,p-k ' "p + f 6 OOS(K/2) - OOS(Q) ) x 

- J L ^ (3 3 2,) 
1 - W N S 2 J 1 - W ( ' ' ) 

where K, k and p are not independent but are related by K=k+p and W is 

a function of two of these parameters and lo. We choose to write it as 

W(p,K;w) and it is given by, 

W<P,K,») = jig [ 1 - ̂  coI(K/2) J I 1 + f T(f) ] + 

[ 1 + f Y(f) - 2gS COS(K/2) Y(f) ] (3.3.30) 
2 2 

2g 8 cos (K/2) 

For the special case of the Heisenberg ferromagnet, g=l and D=0, this 

expression has the same form as the expressions for W(K) in 

Eqns,(2.3.23) and (2.3.24). In fact the solution of the equation, 

Re W(0,k;w) = 1 , f > 1 (3.3.31) 

IS, 

w = WB(K) - Wp , p = 0 (3.3.32) 

where wg(K) is the bound—state energy for wave vector K, i.e. the 

solution of Eqn.(3.3.31) is just the bound-state energy up to an 

additive number which is the gap in the single spin-wave energy at 

zero wave vector. Bound states will be discussed in detail for this 

system in Sec.3.6. 

We substitute our expression for the four—particle Green function, 

G(p,K/2+Q,K/2-q;w) 

given by Eqn.(3.3.29) into Eqn.(3.3.4) to obtain an expression for 

G(k,u). There are three wave vectors to be summed over in the last 

term on the right—hand side of Eqn.(3.3.4). One of these is taken care 
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of by the Kronecker 6 in the interaction term. Another can be written 

in the form of the sums in Eqn.(3.3.16). Hence we find that 

Eqn.(3.3.4) becomes, 

( w - ) G(k,w) = 1 + ^ ^ [ { g cos(h^) - cos(h^) } X 

(3.3.33) 

P 

(1) _ D_ (2) 

2 J ^ 

The functions F(1) and F(2) both contain the factor, 

( w - Wk )-1 

and so we can write Eqn.(3.3.33) in the form, 

( w - ) G(k,w) = 1 + E(k,w) ( w - ^ 

or, using Eqn.(2.1.10), 

G(k,w) = G(°)(k,w) + G(°)(k,w) E(k,w) G(°)(k,w) (3.3.34) 
vAiere 

E(k,w) = ^ dp n^ ( { g cos(h^) - cos(h^) } cos(!yB) + 

D [ g cos(^g^) ] ̂  [ 2 cos(^^^) - 2gS cos(^^^) - f -

{ C08(]^) - f Y(f) ] ) [ 1 - W(p,k+p;w) ]"1 

(3.3.35) 

We have changed the sum over wave vectors p to an integral, using 

Eqn.(1.2.6), in obtaining this equation. The upper limit of the 

integral is (rr-k), rather than n, to make the integrand finite 

everywhere as the parameter f diverges as p-»Tr-k. For low temperatures 

this is not important since the Bose factor ensures that the main 

contribution to the integral comes from small p. The integrand, apart 

from the Bose factor, is just a T-matrix, as discussed in Sec.2.5. 
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W6 note that Eqn.(3.3.34) is similar to Dyson's equation, 

Eqn .(2.1.17). To meUte it exactly the same we replace the last 

G(0)(k,w) in the second term on the right—hand side by G(k,w), which 

enables us to identify C(k,w) as the self-energy. Within our 

approximation of working to first order in the Bose factor this 

replacement does not affect our results because, if we expand the 

Green function in Eqn.(2.1.16), which satisfies Dyson's equation, in 

powers of the self—energy, we obtain, 

G(k,w) = G(°)(k,w) + G(°)(k,w) E(k,w) G(°)(k,w) + 

O [ C(k,w)2 ] (3.3.36) 

where G(0)(k,w) is defined by Eqn.(2.1.10). The self-energy is of 

first order in the Bose factor. Neglecting terms of higher order in 

the self—energy causes Eqn.(3.3.36) to reduce to Eqn.(3.3.34). This 

replacement of the non-interacting Green function by the interacting 

one accounts for multiple scattering events instead of merely 

scattering from a single spin wave, 

To obtain the spectral weight function we also need to calculate 

the four-particle Green function, 

<< St St+t'-k (3.3.37) 

which appears in Eqn.(3.2.4), This calculation is similar to the 

calculation of G(k,w) and therefore we will omit some of the details. 

The equation-of-motion is, 

" « \ % , V t ' - k % 4 ' \+t'-k 1 > + 

« [ tl ] ( (3.3.38) 

The commutator in the second term on the right—hand side of this 

equation is the same as in Eqn. (3.3.1) and in fact the only 

differences between the calculation of this Green function and G(k,w) 

arise because of the different thermal averages. The thermal average 

in Eqn.(3.3.38) is, 
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^ *t+t'-k ] ̂  \ t " f * \ t ' "t (3.3.39) 

where we have used Eqns .(1.5.8) and (1.5.13), the definitions of 

commutators and thermal averages of the boson operators. 

We obtain an integral equation for the Green function generated by 

the second term on the right—hand side of Eqn. (3.3.38), 

A<Q) = « < < - V t ' - k » w (3-3-") 

which is the same as Eqn.(3.3.15) except that the first term on the 

right-hand side is, to lowest order in the Bose factors, 

< [ ^k/2+q *K/2-Q' *t *t+t'-k ] > = 

( ^K/2-Q,t ^K/2+Q,t' ^K/2-Q,t' ®K/2+<),t ^ ®p,t+t'-k "p 

(3.3.41) 

neglecting terms of the form <a+a+aa> which are quadratic in the Bose 

factors. Hence if we change the parameters Bi and B2 in Eqn.(3.3.18) 

to, 

_ V - ^p,t+t'-k ( ^K/2-Q,t ^K/2+Q,t' ®K/2-Q,t' ^K/2+Q,t ^ 
^1 - X w - E(p,K/2+<),K/2-Q) 

n cos(Q) 

t-t' 
" G t t / 1 cos( — ) w - E(p,t,t') p p,t+t'-k 2 

B = y — t + t ' - k ^ ® K / 2 - Q , t ^ K / 2 + q , t ' ^ K / 2 - Q , t ' ® K / 2 + q , t ^ " p 

2 U) - E(p,K/2+Q,K/2-Q) 
Q 

n (3.3.42) 
(I) - E(p,t,t') p p,t+t'-k 

then we obtain, 

< " • " k ' « » k ' \ 4 ' 't+t'-k " f + \t- "t + 
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]>^ { [ g cos(^±P) - cos(h-P) ] p d ) - ̂ 2_ pCZ) } 

^ (3.3.63) 

where p(l) emd ?(%) are given by Eqn.(3.3.19) land we use the new 

values of Bi and B2 In Eqn.(3.3.62). 

We define a function A(k,w) by, 

Z™i* 
« \ *t' *t+t'-k = G(k,w) 2S A(k,w) (3.3.66) 

1 

N 
t ,t 

SO that, 

« S^; S+ = 2S G(k,w) [ 1 - A(k,w) ] (3.3.65) 

using Eqn.(3.2.6). The result for A(k,w) is, 

r 1 r TT . r dq 
r (kMi + do n — 3 L A(k,w) = 2 ^ j ''dpnp+ — ^ j * dp "p j 
-Tf r 6n-S- / -n " w ' E(p,q,k+p.q) 

( [ g cos(htE) - cos(h_E) ] C08(^9-k p 
1 - W(p,k+p;w) I L * I 2 ' ^ 2 ' ^ ^ 2 ) 

^ [ cos(h 2) + cos(35_h_E) . 2gS cos(hlE) 
g C08[(k+p)/2] L \ 2 ' t 2 ' * 

- f - { cos(^^E) - f } { cos(39Lb_E) - f } Y(f) ] } 

(3.3.66) 

We note that the first term on the right—hand side of this equation 

can be written, 

1 
2Trs 

{ ' dp n . j ' dp ( s + < s» > , 
-TT -TT 

(3.3.67) 

= 1 + g < > 

We will now analyse the results obtained in this section. 
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3.4 Spin-wave Damping and Shift 

In the limit of low teng)eratures, T « J in our units, the Bose 

factor, defined by Eqn.(1.5.14), is small. Hence the self-energy and 

the function A(k,w), which are first order in the Bose factor, are 

small. 

The Green function that gives us the transverse spectral weight 

function can be written, 

S". S+ = 2S [ 1 - A(k,w) ] / i\ 
k' k w u - - Re E(k,w) - i Im E(k,w) 

using Eqns.(3.3.45) and (2.1.9). Since E(k,w) and A(k,w) are small, 

this Green function has a maximum, for a given k, at an energy close 

to the single spin-wave energy. This energy, the renormalised 

spin-wave energy, is approximately, 

0^ = + Re E(k,w^) 

(3.4.2) 
= - A(k) 

where A(k) is the spin-wave shift. We evaluate the self—energy at the 

single spin-wave energy, assuming that it does not vary much for 

energies close to the single spin-wave energy. The spin-wave damping, 

or inverse lifetime, is given by, 

r(k) = - Im C(k,(d̂ )̂ (3.4.3) 

and is a measure of the width of the spin-wave peak in the spectral 

weight function. 

We will evaluate the self—energy, Eqn.(3.3.35), at the single 

spin-wave energy for low temperatures. The Bose factor, Eqn.(1.5.14), 

is largest for small wave vectors in this system. We will assume that 

the integrand in Eqn.(3.3.35) is dominated by small wave vectors p. We 

expand the integrand, except the Bose factor, in powers of p and 

retain only the lowest power. For convenience we define the integrals, 

R^(T) = 1 ^ dp n^ sin™(p/2) , m = 0,1,2, . . . (3.4.4) 
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For 0<k<m, the integrand is non-zero for p=0 and we obtain, after some 

simple algebra, 

A(k) = g Ro(T) sinf(k) { ( 1 - g ) cos^(^) + D( 2S - ̂  ) } x 

{ [ cos^C^) - § ] [ 2gS + 1 - g ] + D ( 2S - 1) } 

r(k) = 2g R^CT) co8^(^) sin(k) ( ( 1 - g ) cos2(b^ + D ( 2S -

^ ) } { ( 1 - e ) [ cos^(^) - ̂  ] + D ( 2S - 1 ) } 

= { [ co8*(h^ - 2 ] ( 1 - g ) + D ( 2S - 1 ) }2 + sinf(h^ x 

4gS [ cos2(k) - 2 ] { [ cos^ch) - 2 ] ( 1 - g + gs ) + 

D ( 28 - 1 ) } > 0 (3.4.5) 

For the isotropic case, g=l and D=0, the expressions for A(k) and 

r(k) given in Eqn.(3.4.5) vanish and it is necessary to retain terms 

of higher order in p. In this case the shift and damping have been 

calculated by Lovesey (1981) and are given by, 

A(k) = [ 1 - COS(k) ] ( S - 1 ) R(T) 

2 

r(k) = (3.4.6) 
2 S 

R(T) = 1.04 

For the anisotropic case and small wave vectors k, we note that the 

damping is linear in k and the shift is quadratic in k. At long 

wavelengths the damping is therefore the bigger effect and is likely 

to be more important experimentally. 

At the first Brillouin zone boundary, k=Tr, we have to be careful 

when evaluating the shift and damping because the parameter f is 

singular for small p. At the single spin-wave energy f is given by, 

using Eqn.(3.3.20), 
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cos(p) + cos(k) , 
2 COs[(k+py/2] (3.4.7) 

Then for a given k, f has a singularity at p=Tr-k. For p slightly 

greater than (n-k), f is large and positive. For p slightly less than 

(n-k), f is large and negative. Hence for k=n, the singularity is at 

p=0 and f>l for all p>0. The region given by |f|<l, which is the one 

that we are considering, is given by -if<p<0. To calculate the shift 

and damping we first set k=n and then restrict the range of 

integration to -Tr<p<0. We then find, from Eqn.(3.3.35), that for D/0, 

A(n) = - 2g ( 1 + 2gS ) R2(T) 

r(n) = 2g ( 1 + 2gS )2 R (T) 

(3.4.8) 

and for D=0, 

(3.4.9) 

A C ) = i': g - u ' v ^ > 

r(n) = ^ ^ \ R (T) 
( 1 + g - 2gS ) 

Eqns.(3.4.8) and (3.4.9) give the same results for S=l/2, as expected. 

For the special case of g=l, h=D=0 and 5=1/2, the daiq)ing is given by, 

n T^ 
r(n) = , T -* O (3.4.10) 

from Eqn.(3.4.9). 

3.5 Bound States 

Two—spin-wave bound states for the Heisenberg ferromagnetic chain 

have been discussed in Sec ,2.3 by studying a Green function of the 

form «aa;a+a+»w. However, neutrons do not couple directly to such 

bound states and they cannot be observed. They do manifest themselves 

in the spectral weight as resonances caused by a spin wave, created by 

the scattering of a neutron, interacting with another spin wave in the 
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system in such a way that they form a bound state. "Rie energies of 

these resonance peaks in the spectral weight are usually less than the 

corresponding bound state energies. 

The bound state is a solution of Eqn.(3.3.31), up to a constant 

additive term, Eqn.(3.3.32), that we will neglect. Using Eqns.(3.3.25) 

and (3.3.30), we find that Eqn. (3.3.31) becomes, 

' ^ 1 - — ^ ] [ 1 -
2 S g cog2(k/2) ( - 1 

[ 2gs cos(k/2) - f ] 
[ 1 + I ' ] = 1 (3.5.1) 

2g2s cos2(k/2) ( f* - 1 

which is difficult to solve analytically in most cases. We note that 

it reduces to Eqn.(2.3.24) for the case g=l and D=0. At the zone 

boundary, k=Tf, the equation can be solved analytically and there are 

two solutions given by, 

u)g = l + h + D ( 2S - 1 ) + g -

(3.5.2) 
w_ = 1 + h + D ( 2 S - 1 ) + g - 2D 

which are known as the exchange and single—site bound states 

respectively. These agree with the results of Silberglitt and Torrance 

(1970). From Eqn. (3.3.35), it can be seen that these are in fact poles 

of the self-energy, which contains a factor {l-W(p,k+p;w)} in the 

denominator. 

Below the two-spin-wave continuum, f>l, the imaginary parts of the 

self-energy and the function A(k,w) are zero, because the integral 

Y(f) is real, Eqn.(3.3.25). The spectral weight is obtained from the 

imaginary part of the Green function, 

using Eqns.(3.3.45) amd (2.1.9), v^ich cam only be non-zero if the 
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denominator, 

L(k,w) = w - Wk - C(k,w) (3.5.4) 

vanishes. Let wo(k) be a resonance energy given by, 

I.(k,wo) = 0 (3.5.5) 

Then for energies near this resonance energy, 

I.(k,w) = L(k,wo) + ( w - WQ ) L'(k,oJo) + ... 

L'(k,w) = a(jL(k,w) 

(3.5.6) 

and we can write, 

« < » w = n'o i 7 < ^ ^ 

Hence, 

1 . + 2S [ 1 - A(k,w^) ] 
~ — Ini <C<C S- ) S- — S ( (x) " w, ) 
TT k k (I) k L' (k, u) ) 

(3.5.8) 

The spectral weight function must be positive so only solutions vAiich 

have a positive amplitude weighting the B function, and hence a 

positive L'(k,WQ ). are physical. 

We have not been able to obtain analytic expressions for the 

resonances and amplitudes, even in the low temperature 1 imit, except 

at the zone boundary. 

We follow the same procedure as in the previous section of 

e^)anding the integramd of the self-energy, Eqn. ( 3.3.35), in powers of 

p and retaining only the leading order term. We treat A(k,w), 

Eqn.(3.3.46), in the same way. For k=Tf we restrict the integration 

range to -7f<p<0. The results are as follows. 

For k=Tr and D=0, 
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1 - W(0,k;w) = 1 - (3.5.9) 

*#iere, 

2gx = 1 + h + g - w (3.5.10) 

We then find, 

2 ( 1 + g ) RgCT) 

l.(k,^) = - 2S* + s [ 1 - l/(«esx) ] <3.5.11) 

and the solution of Eqn.(3.5.5) is, 

*0 = ZES [ 1 + 4 ( 1 + g ) RgCT) ] (3.5.12) 

where the integrals R,(T) are defined in Eqn. (3.4.4). At this 

resonance energy, 

L'(k,wu) = 1 + 1 
0' 4 ( 1 + g ) Rg(T) 

(3.5.13) 
FLCT) 1 

A(k,Wo) = __g__ - 235-

0 

SO the amplitude is, 

2S - 2R^(T) + l/( 2%^) 
(3.5.14) 1 + l/[ 4 ( 1 + g ) Rg(T) ] 

In Fig.3.1 we plot the bound state as a function of wave vector for 

g=0.9, S=l/2, h=0 and T=0.3. For these values the resonance at the 

zone boundary has energy 0.321 and the amplitude is 0.283. 

For k=Tf and DA), we simply set p=0 in the integrand of the 

self-energy and the function A(k,w) and expand all functions in powers 

of cos(k/2 ). Then we set k=Tr and obtain the results, 

1 - W(0,K,«) = [ 1 ! [ 1 - 4 s ; 1 

L(k,w) = - 2gx + 4D R^(T) [ 1 - ̂ 2 

(3.5.15) 
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where now, 

2gx = l + h + D ( 2 S - 1 ) + g - w (3.5.16) 

The solution of Eqn.(3.5.5) is, 

= 2 [ 1 + 2R^(T) ] (3.5.17) 

and at resonance, 

I.'(k,w^) = 1 + 
2Rg(T) 

(3.5.18) 

A(k,w^) = ^ ^ 

In Fig.3.2 we plot the resonance for the case e=l, D=0.1, S=l, h=0 

and T=0.3. At the zone boundary the resonance energy is 1,750 and the 

amplitude is 0.106. This resonance exists only for a small range of 

wave vectors near the zone boundary and disappeeurs into the 

two—spin-wave continuum at approximately k= 0.9ir. It also has very 

little dispersion. The resonance due to the exchange bound state, that 

does not appear as a solution of Eqn.(3.5.5) with I,(k,w) given by 

Eqn.(3.5.15) because it involves higher powers of p in the integrand 

of the self—energy, has zero amplitude at the zone boundary. However, 

the amplitude increases as the wave vector decreases and it becomes a 

significant feature for small wave vectors. For example, for k=Tr/3 the 

resonance energy is 0.3 and the amplitude is 0.080. 

We will discuss some of these results in the next section. 

3,6 Discussion 

Experimentally, the most important results of this calculation 

concern the spin-wave damping and the significant amplitude of the 

bound—state resonances. 

From Eqn.(3.4.5) we see that the damping shows a pronounced wave 

vector dependence. For the isotropic case, g=l, D=0, h=0, and spin 

S=1, we see from Eqn .(3.4.9) that the damping diverges at the zone 
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boundary. For the anisotropic case the dancing increases significantly 

at the zone boundary but does not diverge. For other values of the 

spin, including S-1/2, the damping at the zone boundary is less than 

for S=1. For a classical system with this Hamiltonian, Eqn.(3.1.1), 

the damping at the zone boundary is zero. This suggests that S=l, 

rather than S=l/2, may exhibit the most pronounced quantum effects. 

For the isotropic case, g=l and D=h=0, we find, from Eqns.(3.4.6) 

and (3.4.9), 

r(k) oc sin(k) , T -» 0 , k < tt 
(3.6.1) 

r(n) oc , T 0 

and these results are consistent with the results obtained from a 

numerical study of quantum spin chains (Schneider and Stoll 1981). We 

will not go into the detai Is of these numerical studies in this 

thesis. Agreement with numerical results is not as good for systems 

with any anisotropy. 

We have shown in the previous section that for a temperature of 

0.3, measured in units of 4JS as usual, the amplitude of the 

bound—state resonance is significant and the resonance would probably 

show up experimental ly as a detectable peak in the spectral weight, 

Also the energies and amplitudes of these resonances depend strongly 

on the anisotropics, measured by g and D, and on the wave vector, k. 

We conclude this section with a comparison of our results and the 

results of Cooke and Hahn (1970), who studied a similar system using 

the Holstein-Primakoff transformation, Eqn.(1.5.7). They obtained the 

result, 

« S. ; S. » = ^ (3.6.2) 
^ ^ I.^(k,w) 

where, 

LCH(k,w) = ( w - Wk ) [ 1 + A(k,w) ] - E(k,w) (3.6.3) 
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in our notation. These results were obtained after expanding the 

square roots in the transformation, normal ordering the operators and 

truncating the infinite series obtained. Within the approximation of 

working to first order in the Bose factors, this result coincides with 

our result, Eqns.(3.5.3) and (3.5.4), since, 

[ 1 + A(k,w) ]-1 = 1 - A(k,w) + O [ A(k,w)2 ] (3.6.4) 

and [A(k,w)C(k,w)] is second order in the Bose factor, so is 

neglected. 

However, there remains the question of what the form of the 

spectral weight is for higher temperatures, not working to first order 

only in the Bose factor. We will now consider how it may be possible 

to distinguish between the two forms of the spectral weight 

experimentally. 

Firstly we note that the spin-wave dancing and shift are the same 

since they depend only on the denominator of the spectral weight 

evaluated at the single spin-wave energy, and so depend only on 

E(k,Wk) in both cases. However, the dispersion and amplitude of the 

bound states and resonances are different for the two forms of the 

spectral weight. We work at the zone boundary, k = T r , for ease of 

comparison of results. We define, 

% = [ 1 + h + D ( 25 - 1 ) - w ] / 2 (3.6.5) 

For D=0, 

rn ( 1 + g ) R (T) [ 2 + l/(2Sx) ] 

L (k,w) = - 2gx [ 1 + _ ] + 1 . w<0,k;.) 

(3.6.6) 

For S=l/2, 6=0.9, h=0 and T=0.3, the resonance energy, which is a 

solution of, 

LCH(k,wo) = 0 (3.6.7) 
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is 0.388 and the amplitude is 0.167. From Sec.3.5, our corresponding 

results are 0.321 and 0.283 respectively, so there is a difference. 

For D^O and g=l, 

CH Ro(T) ( 2S - 1 ) 
L (k,w) = - 2x ( 1 4- ̂ — ) + g—^^ —ip/x—^ (3.6.8) 

For D=0.1, h=0, S=1 and T=0.3, the resoncince energy, the solution of 

Eqn.(3.6.7), is 1.945 and the aiqplitude is 0.321. Our corresponding 

results are 1,750 and 0.106. Again the resonance energy obtained from 

the results of Cooke and Hahn (1970) is greater than ours and the 

cunplitude is significantly larger. These differences may well be 

measurable e]q)erimentally. 

Finally we note that working to higher order in the Bose factor 

should give the same results %fhichever transformation we use and 

should tell us the correct form of the spectral weight function. We 

have not, however, pursued such a calculation. 
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W 

f = 1 

Figure 3.1: Dispersion of bound state for g = 0 . 9 , s=l/2, 

h=0 and T=0.3 
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f = 1 

Figure 3.2: Dispersions of resonances for g=l, D=0.1, 

S=1, h=0 and T=0.3 
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CHAPTER 4: EASY-PLANE FEKROMAGNET 

4.1 Introduction to CsNiPg 

The compound CsNiFg has been studied extensively in recent years 

both ei^rimentally emd theoretically (Steiner 1981). It is 

quasi-one-dimensional above a temperature of approximately 2.66K. The 

exchange coupling is ferromagnetic and there is an easy-plane 

anisotropy that encourages the spins to lie in the plane perpendicular 

to the direction of the magnetic chain of Ni2+ ions, The Hamiltonian 

is assumed to be of the form, 

H = - J ^ ° ( S* (4.1.1) 

1 ,m 1 

where 1 and m are nearest—neighbour sites, J is the exchcmge coupling 

and D is the single-site anisotropy. The magnetic chain lies along the 

X direction. For CsNiFg various measurements give J=ll.8K and D=9.OK. 

The spin is S=1. We will describe one method of testing the form of 

the Hamiltonian for such a system in Ch.5 but will assume in this 

chapter that the Hamiltonian in Eqn.(4.1.1) describes CsNiFg well, 

The specific heat, magnetic susceptibility, cross-sections for 

thermal neutron scattering and other quantities mentioned in Sec.1.1 

have been measured for this compound. Again we will concentrate only 

on the neutron scattering results. It is found that the spectral 

weights contain peaks at w=±wk, v^ere is the linear spin-wave 

energy. The intensities of these peaks in syy(k,w) and szz(k,w), the 

"in-plane" ccxqwnents of the scattering, are greater than for the 

peaks in sxx(k,w), the "out—of-plzme" components. For experiments done 

with a magnetic field applied in a direction which lies in the easy 

plane, there is also a central peak around w=0 which depends on the 

applied field. Unlike the spin-wave peaks, which broaden and decrease 

in height as the temperature is incireased, this central peak increases 

in height as the temperature is increased. More experimental work on 

this compound, involving polarisation analysis, will be discussed in 

Ch.5. 
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Unlike the system discussed in Ch.3, there Is no long—range order 

in the ground state of this system. Hence spin-wave theory may not be 

a good approximation. "Rie Bamiltonian in Eqn.(4.1.1) is invariant 

under rotations in the y—z plane so there should not be a gap in the 

spin-^wave dispersion, according to Goldstone's theorem. For the case 

of no applied field, villain (1974) introduced a representation of the 

spin operators expected to be valid even in the absence of long—range 

order and made an expansion in the operators which correspond in the 

classical limit to the differences in angles in the y—z plane between 

nearest-neighbour sites. However, this approach is not easily 

generalized to the case where a magnetic field is applied in the easy 

plane because it is then necessary to make an expansion in operators 

which correspond to the angles themselves, rather than their variation 

from site to site, and these angles are not necessarily small. 

In the calculation described in the following sections of this 

chapter (Hood 1984), we will use a transformation introduced by 

Lindgard and Kowalska (1976) that is easily generalized to non—zero 

field in the eeisy plane. This tremsformation is equivalent to the 

Holstein—Primakoff and Dyson-Maleev transformations within the 

framework of perturbation theory (Rastelli and Lindgard 1979) but has 

the advantage that it is easy to show that Goldstone's theorem is 

satisfied. It will be discussed further in Sec.4.2. 

The Hamiltonian for the system with a magnetic field in the plane 

can be written, 

H = - J X ° Z Z 

1 ,m 1 1 

We now briefly state some results obtained from the classical limit 

of Eqn.(4,1.2) involving solitons (Mikeska 1978). If we write the 

spins on the sites in the form, 

S* = S sin(e ) 

= S cos(e ) Bin($ ) (4.1.3) 
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= S COS(ê ) C08(*^) 

take the continuum limit, 

ei(t) -» e(x,t) 

(4.1.4) 

*l(t) -» $<x,t) 

and linearise in the parameter e , assuming that the spins deviate 

little from the y,z—plane, then the classical equations—of-motion 

give, 

a,,* - c^a * - 8in(*) = 0 (4.1.5) 
LL O ZZ Q 

and, 

-a™ ^ JC^ ̂  3K • ^ 

where, 

2 2 
= ^DJS 

O 

2 
w = 2DhS 

(4.1.7) 

Eqn .(4.1.5) is the sine-Gordon equation which has three basic 

solutions, one corresponding to spin waves. Another solution 

corresponds to kink solitons where the parameter * changes by 2tt over 

a finite change in x. The other solution corresponds to breather 

solitons which are more complicated. We have mentioned solitons in 

this section because they are usually considered to be the cause of 

the central peak in the spectral weight function. However, this is a 

controversial topic and recent numerical work (Loveluck et al. 1980, 

Wysin et al, 1982) suggests that spin deviations out of the easy plane 

may be important. 

The rest of this chapter concerns two—spin-wave processes and their 

effect on the spectral weight. The calculation is similar to that of 

Ch.3. 
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4.2 Boson Hamiltonian 

In this section we transform the spin Hamiltonian of Eqn.(4.1.2) 

into a boson Hamiltonian using the transformati on introduced by 

Lindgard and Kowalska (1976) that was mentioned in the previous 

section. Before doing this we give a very brief out 1 ine of how the 

transformation is obtained. 

The aim is to egress the spin operators as sums of products of 

boson creation and annihilation operators. For example, 

= =0 + ""l + =2 + =3 + =4 ' (4.2.1) 

The coeffients, c, , are determined by a method known as the Matching 

of Matrix Elements, that we will now describe. We denote the 

eigenstates of our Hamiltonian by |$n> with eigenvalues En, so that, 

H I $n > = En | *n > (4.2.2) 

and write the eigenstates in the form, 

I I > (6.2.3) 

m 

where, 

2 

1 

S,m > = S ( S + 1 ) I S,m > 

S,m > = m I S,m > (4.2.4) 

± 1/2 
' S,m > = [ S ( S + 1 ) - m ( m ± 1 ) ] | S,m±l > 

1 

The states |S,m> are eigenstates of the Heisenberg Hamiltonian, 
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"o = - Z -1 Z (4.2.5) 

1 ,m 1 

It is possible to write the eigenstates in the form of Eqn.(4.2.3) 

since, for our Hamiltonian, the operator, 

1 

is a constant of the motion, i.e. it commutes with the Hamiltonism. We 

assume that for each state | fn> there is a state | n> containing n 

bosons and, 

+ 1/2 
a I n > = ( n + 1 ) | n+1 > 

1/2 
a I n > = n | n-1 > 

(4.2.6) 

we write. 

< I ̂  I > = < n I Cg + Cĵ  a + Cg a* + ... I n > 

* (6.2.7) 

and determine the coefficients, c, , from this equation by setting n=0, 

then n=l, etc. For example n=0 gives the coefficient CQ . 

We have not yet determined the eigenstates for our Hamiltonian. We 

do not calculate them exactly, but write, 

H = Ho + Hi (4.2.8) 

so that, 

= D ^ ( S* )̂  (4.2.9) 

1 

and do first order perturbation theory, assuming that D«J. Hence we 

are working to first order only in the parameter D. To this order we 

find, 
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=1 = - s + - i - n s i W s < ^ • s [ 4 + < < ) ' ] + 

< 1 - ^ [ 1 - ( 1 - i ] X 
2 ( 4JS + h ) ̂  2S ' '' S 

[ &! *! + (a^)^ »! ] 

= ( 2S ) / { - 2 ( /̂ JS + h ) ( ^ ^ ^ ̂ 1 " 

[ 1 - ( 1 - §s ] a+ a^ + 2 ( h ) [ " - §s -

( " - Is ^ ] (<)' "l ) 

( = I + ( s . ̂  ) + I ( 1 _ |_ )^/2 [ a^ + (a^)" ] -

i (4)^ ^1 " § ( ^ ^ [ 1 - ( 1 - § ] X 

[ a^ &! + (a^)^ a^ ] (4.2.10) 

and S+ is the hermitian conjugate of S~. We have obtained the 

expansion for (S* )2 to zeroth order in D since it appears in the 

Hamiltonian multiplied by D. We have truncated these expressions so 

that only terms which contribute to quadratic and quart ic terms in the 

boson Hamiltonian are included. In doing this calculation it was 

assumed that n is small and that each spin sits in the average field 

of the other spins. Derivations of these expansions are given in more 

detail by Lindgard and Kowalska (1976 ). 

Since we have worked only to first order in the parameter D in 

obtaining these expansions we will work to first order in D throughout 

the calculation in this chapter. 

The boson Hamiltonian obtained by substituting the transformation 

in Eqn.(4.2.10) into the Hamiltonian in Eqn.(4.1.2) is, after Fourier 

transforming to wave vector space, 

H = X ' Gl'*' 4 \ =l'*' < \ \ ®-k ' 1 + 
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[ ^1+2,3+4 22(1,2,3,4) + 6^ x 

1,2,3,4 

82(1,2,3,4) ( a* a^ a^ a^ + a* a* a* a^ ) ] (4.2.11) 

where, 

Ei(k) = 1 - cos(k) + 2^5 + 33 ( 1 - 25 ) 

DS 1 
Bl(k) = 2 ( 4JS + h ) ( 1 " 2S ) cos(k) 

22(1,2,3,4) = 1 [ 1 - ( 1 - ̂  )^/2 ] [ cos(l) + COB(2) + 

C08(3) + COS(4) ] - COS(2-4) -

BL(1,2,3,4) = =—r—/,—ir—r ( ^ " no ) cos(2+3) -
2^ ' ' ' 2 ( 4JS + h ) "̂  2S ' ^ ' 4JS + h 

[ 1 - 23 - ( 1 - 25 ( 1 - 5 ) ] cos(i) 

(4.2.12) 

This Hamiltonian is correct to first order in D and to fourth order in 

the boson operators. Unfortunately the quadratic term is not diagonal 

and the relations in Eqn.(1.5.13) do not hold in this case. This 

causes problems when we try to make power series expansions in the 

Bose factor as we did for the easy-axis system in Ch. 3. We expect such 

problems to arise because the ground state of the system does not have 

all the spins aligned in the direction of the magnetic field so there 

are bosons, that are created and annihilated by the operators a+ and 

a, present in the system even at zero temperature. In the next section 

we will make a transformation to new boson operators so that the 

quadratic part of the Hamiltonian obtained is diagonal. 

4.3 Diagonalisation of the Hamiltonian 

we wish to rewrite the Hamiltonian in Eqn.(4.2.11) in such a way 

that the quadratic part is diagonal. We write. 
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= coai(e^) - sinh(e^) (4.3.1) 

The operators a and a+ are also boson operators since they satisfy the 

correct commutation relations, Eqn.(1.5.8), for all values of . We 

note that 8^ is an even function of k. Substituting this ei^ression 

for a^, and its hermit ian conjugate for ak+, into Eqn. (4.2.11) gives 

the quadratic terms, 

^ ( E^(k) ( c^ + s^ ) - 4B^(k) ^ ^ [ 2Eg(k,p,p,k) X 

( =p '̂ k + ^ =p "̂ p =k "̂ k =p 4 ) + 2Eg(k,p,k,p) ( s^ c^ + 

Bp 8^ ) - 2Bg(k,p,-p,k) ( Sp Cp c^ + Sp Cp s^ ) - 4Bg(k,k,p,-p) 

(=p "̂ p 4 + =p "̂ p =k ) - =p =k S -

8Bg(p,k,p,-k) =p =1, ] } <\ <\ + 

^ { -E^(k) c^ 8^ + B^(k) ( + 8^ ) + ^ ^ [ Eg(k,p,p,k) X 

( -^p "̂ P 4 - =P ""p 4 - ̂  ^P ""k =k ) - ̂ ^^(k.p.k.p) 8^ S^ C^ + 

2Bg(k,p,-p,k) s c s^ c^ + ^^(k.k.p.-p) s c 8^ + 

Bg(p,k,-k,p) ( Sp + Sp s^ ) + 2Bg(p,k,p,-k) ( 8^ c^ 4-

=p 4 ) ] ) ( "k ''-k + "k ''-k ) (^.3.2) 

where, for convenience, 

s = sihh(e. ) 
k k 
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c = cosh(e ) 

This is diagonal if the coefficient of (akor-k+ctk^a-k^) vanishes. 

Setting this coefficient equal to zero defines the variables c o s h ( ) 

and sinh(0|<). However, this condition gives an integral equation for 

cosh(9(<) or sinh(6k) that we have been unable to solve. We have also 

not taken account of terms in the Hamiltonian that are of higher order 

in the operators a^ but still contribute to the quadratic terms in the 

operators . 

If the parameter D is equal to zero then the Hamiltonian is 

diagonal in the operators a^ and so, 

cosh(ek) = 1 , sinh(ek) = 0 

For D^O, sinh(8k) is of order D, unless h=0 and k=0. Hence, to order 

D, Eqn.(4.3.2) becomes, 

[ E^(k) + [ B^(k) - sihh(e^) E^(k) - ̂  ^ sinhCGp) x 

k p 

EgCk.p.p.k) ] ( a ^ + a* ) ) (4.3.3) 

so that the quadratic part is diagonal if, 

B^(k) ^ ^ 

= E^(%) - N ]>. sinhfGp) E2(k,r^Fsk) (4.3.4) 

P 

Replacing the sum by an integral, using Eqn.(1.2.6), this equation 

becomes an integral equation that can easily be solved. We find, 

Sihh(e^j = 2 ( 4JS + h ) ( 1 ' 2§ ) C - cos(k) ( " C [ 1 

( 1 - 2§ ] [ C ( C= - 1 )'!/= - 1 ] + [ ( 1 - ̂  )l/2 + 

[ 1 - ( 1 - 23 ] C ( - 1 )-l/= cos(k) } { ̂  ( 1 - C ) 

X [ C ( cf - 1 )"l/2 _ 1 ] + 1 )-l (4.3.5) 
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The method for solving Eqn .(4.3.4) is similar to the method for 

solving Eqn.(3.3.13). 

The boson Hamiltonian is then, 

®l+2,3+4 2(1,2,3,4) <\ ^ + 

k 1,2,3,6 

^1,2+3+4 8(1,2,3,4) ( a* *3 *4 "i > ) (4.3.6) 

where, 

"k - 1 " cos(k) + ( 1 - 23 ) 

E(l,2,3,4) = 1 [ 1 - ( 1 - ] [ cos(l) + cos(2) + 

cos(3) + oos(4) ] - —cos(2-4) - ^ 
2S " ' 8JS 

1 1/2 

5(1,2,3,4) = - sinh^Gg) { [ 1 - ( 1 - — ) ' ] [ cos(l) + 

cos(2) + cos(3) + cos(4) ] - ̂  [ cos(l-4) + cos(2+4) ] } + 

° ( 1 - ni C08(2+3) - 1 _ 1 

2 ( 4JS + h ) '̂  25 ' ^ ' 4JS + h 2S 

( 1 - 25 ( 1 - g ) ] cos(4) - 1 ^ sinh(e^) x 

{ - [ 1 - ( 1 - 2§ [ cos(2) + 2 cos(3+4-t) ] -

5 [ 1 - 2 ( 1 - 23 + ( 1 - 5 ] [ cos(l) + 

3 Oog(2) + 2 COS(t) ] } (4.3.7) 

The term involving sinh(8^ ) in 8(1,2,3,4) comes from a term of the 

form, 
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4-4-4-
*1 *2 *3 *5 *6 

that we have previously omitted. However, the terms involving 

8(1,2,3,4) will not enter our calculation so we will not derive the 

expression for 8(1,2,3,4) here. All other higher order terms in the 

operators a^ do not contribute to quadratic and quart ic terms in the 

operators a|< to first order in D. 

Eqn.(4.3.3) is not valid for the special case h=0 and k=0 because 

then E-i(k) is of order D and we cannot assume that sinh(©k) is of 

order D. Also the spin-wave energy, , in Eqn,(4.3.7) does not vanish 

for h=0 and k=0, violating Goldstone's theorem. Small wave vectors 

will be imporkamt in our low temperature calculation since they 

correspond to low energies. Hence we conclude that our calculation is 

not valid in the case of zero applied field, and indeed it may only be 

valid when the applied field h is equal to or greater than DS. 

This problem with the diagonalisation could apparently be avoided 

by working with the operators ai< instead of the operators . However, 

we would find that, for example, six-particle Green functions are not 

of higher order in the Bose factor than four-particle Green functions, 

and in fact we would need to take Green functions of all orders in the 

operators a^ into account in the calculation, at least for h=0 and 

small wave vectors. The difficulty is basically the same as the one 

that we encounter in the d iagona1i sat ion. 

We describe the calculation in the next section. 

4.4 Calculation 

As in Ch. 3, the spin-wave damping and two—spin-wave bound states 

and resonances are obtained from the self-energy. We obtain the 

self—energy by calculating the two-particle Green function, 

« >>w = { w - - E(k,w) } ^ 

(4.4.1) 
= G(k,w) 

where the second equality defines a useful notation. 
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There are other two—particle Green functions that contribute to 

«Sk";Sk*»w, for example «(Xk;(X-k»w» but they all give terms that 

are of order d2 and so we neglect them. The operators satisfy, 

< "C ''p > = =kp "k 

(4./t.2) 

p k °p <CK^a > = <cx^a_> = 0 

and we use the same, T-matrix, approximation that we used in Ch.3. The 

calculation is very similar to the calculation in Sec,3,3 and we will 

not go into much detail here. In the equat ion-o f-mot ion for G( k, w) the 

Green functions generated by the terms in the Hamiltonian with the 

coefficient B(1,2,3,4) have the forms, 

« «p «q 

or are higher order in . Both of the Green functions in Eqn.(4.4.3) 

are of order D and, since they are multiplied by a factor that is also 

of order D, contribute terms of order d2 to G(k,w). Hence we neglect 

them. 

We find that the self-energy is, 

E(k,w) = ^ dp n_ , _ (4.4.^) 
p i - W(p,k+p;w) 

where, 

1 - W(p,2K,„) = 1 - ji [ 1 - 55!^)] t 1 + f Y<f) ] - zJg X 

[ C08(K) ]'^ ( [ 1 + f Y(f) ] - ^ cos(K) Y(f) } 

P(k,p) = { 28 [ 1 - ( 1 - ̂  ] cos(K) cos(Q) - ̂  } X 

( [ ( ^ - 2§ ^ E5&K) - 2§ ] [ 1 + f Y(f) ] + 

1 1/2 

[ COS(Q) - ( 1 ^ ) C08(Q) - f ] Y(f) } + { - COS(Q) + 

2S [ 1 - ( 1 - ^ ] cos(K) } { [ ( 1 - ^ cos(Q) -
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° ^ + f - ( 1 - f ] [ 1 + f Y(f) ] - [ cos(q) + 
8JS Coe(K) ^ 25 

D COS(Q) 

8JS cos(K) 
] f Y(f) } (6.4.5) 

f = r A m [ : + A + a ' " - 2 3 ) + ===<>=) - " ' 

and Y(f) is defined in Eqn.( 3.3.24) and evaluated in Eqn.(3.3.25). 

We will analyze this result in the next section. 

4.5 Spin-wave Damping 

The spin-wave damping is given by Eqn.(3.4.3). For w=wk, given by 

Eqn.(4.3.7), we find that f, defined in Eqn.(4.4.5), is, 

f = cos( ^ ^ ) (4.5.1) 

Then, taking the imaginary part of the self-energy for this value of 

f, we find, for k<if. 

[ ' '3 V 1 (4.5.2, 
[ X + Y ] 

where, 

X = cot(Q) [ cos(K) - co8(Q) ] 

Y = ( 2S - 1 ) cos(K) + co8(Q) 

and at the zone boundary, 

(4.5.3) 
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r_ = 1 j* dp n_ { 2 [ sin(p /2) ]3 cos(p / 2 ) 

* * ^0 P ( S - 1 )2 [ C08(p/2) ]2 + [ sin(p/2) ]2 

D (2s - 1 ) ( s - 1 ) sin(p /2) [ cos(p /2) 

^ ( [S - 1]^ [ cos(p /2) ]2 + [ sin(p /2) ]2 )2 

(4.5.4) 

For the special case of S=l, 

^ dp Hp sin(p) (4.5.5) 

which is very large compared to the results for EbCL or kXrr. This 

behaviour was also found for the easy-axis system of Ch.3 and was 

discussed in Sec.3.6. 

We have calculated the damping numerically for J=11.8K, D=9.OK, 

h=l. OK and S=1 with T=4. OK and T=12. OK and the results are shown in 

Fig.4.1. There are problems for small wave vectors because the second 

term in Eqn .(4.5.2) dominates the first one and the result is 

negative. This suggests that in this region it is not sufficient to 

work to order D only. 

We have not calculated the spin-wave energy shift for this system 

as it is not so important from an experimental point of view. 

4.6 Bound States 

As in the easy—axis system, the two—spin-wave bound states are 

solutions of Eqn.(3.3.31) and the resonances are solutions of 

Eqn.(3.5.5). Their contribution to the spectral weight is, 

S(w - w ) ( 3L(k,w) 
I o' 1 - exp(-w /T) I aw W.W (4.6.1) 

o 

where wq is a solution of Eqn .(3.5.5). We have neglected the 

contribution to the spectral weight from higher order Green functions 

for this system. 

Below the twor-spin-wave continuum, f<-l, the self^energy is. 
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E(k,») . i f d p , . « t 4< 1 - ̂  + 
-TT 

D 1 

8Jsf { cos(K) 
] cos(K) [ cos(Q) - f ] [ 1 + { COS(Q) -

f } { - 1 ] + g COS(Q) [ cos(K) - cos(Q) ] -

253 [ 1 ' 23 ^^8(K) ] * (4.6.2) 

where K, Q and f are defined in Eqn.(4.4.5) and, 

a - w(p,ktp,w) = 1 - g ( 1 - * 83s : 7 — 2 ' " 
[ cos(K) ] 

( 1 - f ( - 1 1 - gSg ( f" - 1 (6'«'3: 

For this W(p,k+p;w) we find that Eqn. (3.3.31) has one solution for 

small wave vectors and two solutions near the zone boundary. At the 

zone boundary it can be solved easily and the solutions are, 

" 2S 
(4.6.4) 

" 2 " " * '4JS 

which correspond to the exchange and single—site bound states 

respectively. We have solved Eqn. (3.3.31) numerically and the results 

are shown in Fig.4.2 for J=ll.8K, D=9.OK, h=l.OK and S=1. 

In studying the resonances, we use the same approximat ion as we 

used in Sees .3.4 and 3.5 of retaining only the leading order terms in 

p in the integral of Eqn.(4.6.2). Hence we use, 

C(k,w) = 1 { [ 4( 1 - )!/= - 4 + 1 + D ~ 
1 - W(0,k;w) ' I " 28 ' S gjg2 

] cos(^^ [ cos(^^ - f ] ( 1 + [ co8(^^ - f ] X 
[ cos(k/2) ]2 2 2 2 

[ f' - 1 ) - 43s ( 1 - 2S ) : (4'S 5) 

R(T) = ^ * dp n 
-n 
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We solved Eqn,(3.5.5), to find the resonance energies, numerically 

for the values of J, D, h and S used in Pig.4-.2 and temperatures of 

T=4JC and T=12K. The energies were very slightly lower that the 

bound—state energies and almost indistinguishable from them on the 

scale of Fig.4.2. The amplitude corresponding to the exchange bound 

state is largest for small wave vectors whereas the amplitude 

corresponding to the single—site bound state is largest at the zone 

boundary. These results are similar to those found for the easy-axis 

system in Ch.3. 

4.7 Discussion 

The case 8=1 seems to be special, ais it was for the easy-*xis 

system in Ch.3. There is again an increase in the spin-wave damping at 

the zone boundary, Eqn.(4.5.5). There has not yet, to our knowledge, 

been any experimental test of this result, however. 

As we noted in the previous section, the results concerning the 

two—spin-wave resonances and their contribution to the spectral weight 

are also similar to those for the easy—axis system. 

We note that a similar calculation to order d2 would be very much 

more difficult. Firstly the transformation to boson operators would be 

more complicated and the boson Hamiltonian would be more difficult to 

diagonalise since it would contain terms not present in Eqn.(4.2.11). 

Then it would be necessary to keep terms in sinh2(ep), sinh2(ek) and 

[sinh(9p )sinh(©k )] in the equation corresponding to Eqn.(4.3.2) in our 

calculation. Also it would be necessary to take account of higher 

order than quartic terms in the operators a^ to obtain the 

diagonalised boson Hamiltonian, corresponding to the Hamiltonicin in 

Eqn.(4.3.6) in our calculation. In calculating the two-particle Green 

function G(k,w), Green functions such as those in Eqn.(4.3) could no 

longer be neglected. Also other two-particle Green functions, for 

example « a k ;a- k»w, would contribute to the transverse spectral 

weight. There may be many other complications not mentioned here. 
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Finally we note that for the Hamiltonian in Eqn.(4.2.11) the 

variables Ei(k) and Bi(k) are of zeroth order in (1/S), and 

22(1,2,3,4) and 82(1,2,3,4) are of order (1/S). Also the terms 

involving products of six boson operators are of order (l/s2), etc. 

Another approach to this problem is to do the calculation to various 

orders in the parameter (1/S). This gives results for the spin-wave 

damping but does not give any result concerning two-spin-wave bound 

states, since it is a perturbative calculation. 
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Figure 4.1: Spin-wave damping for J=1].8K, D=9.0K, h=1.0K 

and S=] with T=4.0K and T=I2.0K 
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w 

Figure 4.2: Dispersions of bound states for J=11.8K, 

D=9.0K, h=I.OK and S=l 
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CBWrTER 5: DETERMINATION OF SIMPLE inEKRaWNSNETIC HAMILTONIANS ]&r 

NEDTRON POLARISATION ANALYSIS 

5.1 Introduction 

Neutrons are particles with 5=1/2 so if we measure the spin of a 

neutron along any axis of quantisation there are two possible results. 

For a beam of neutrons we define the polarisation, P, to be twice the 

average spin of the neutrons in the beam. Hence |P | <1. In the previous 

chapters we have considered only scattering of unpolarised neutrons, 

i.e. IPI=0, as Eqn.(1.3.1) is not valid for polarised neutrons. 

Experimentally it is possible to polarise the incident neutron beam 

and measure the polarisation of the scattered beam but both of these 

processes involve large reductions in neutron intensity and 

polarisation analysis has not been used much in the past. However, 

there have been recent improvements in the production and analysis of 

polarised neutron beams and there is at least one high intensity 

pulsed neutron source being built so there may be greater use of 

polarisation analysis in the future (Fender et al. 1980). 

It has long been known that polarisation analysis can provide 

information on systems that is not obtained in other ways (Halpern and 

Johnson 1939, Moon et al, 1969, Marshall and lovesey 1971). For 

example, it can be used for separating magnetic from nuclear 

scattering, and paramagnetic scattering from the total cross-section. 

It is a useful technique for identifying spin-dependent processes. 

In this chapter we will be concerned with using polarisation 

analysis in inelastic magnetic scattering to determine the forms of 

the Hamiltonians for some simple ferromagnetic systems (Hood 1983). 

5.2 Polarisation of the Scattered Beam 

For convenience we define a spin operator s(l) by. 
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= K/ X ( S X K' ) (5.2.1) 

where K' is defined Sec.1.3. :m txaima of t̂ iis operator 

inelastic neutron scattering cross—sect ion is proportional to 

{Marshal1 and Lovesey 1971), 

P(k,w) = j * dt e^wt { < s(l)(t) . > + 

"W — — 

i P. < s(^)(t) X > } (5.2.2) 
— — k — K 

where P denotes the polarisation of the incident beam and w is defined 

in Eqn.(1.3.1). The polarisation of the scattered beam is, 

s ' = 

where, 

G(k,w) = 2^: j * dt e^wt { < s(^\t) [ P . ] > + 

< [ P . s[^)(t) ] > - P < s(^)(t) . s(^) > -

i < s(^)(t) X > } (5.2.4) 

As in Sec.1.3, the scattering occurs at wave vectors K^%+T where T is 

a reciprocal lattice vector, 

Experimentally the polarisation of the incident neutron beam 

entering the sample must be in the same direction as the applied 

magnetic field and only the component of the polarisation parallel to 

this field can be measured (Moon et al. 1969). This is because the 

neutron spin precesses about any field that it is not parallel to. 

Also it is necessary to apply a finite magnetic field to avoid 

depolarisation effects. We choose the z—axis to be the field 

direction, set Px=Py=0, Pz=P and measure only Pz'. 

We will be working with a linear spin-wave theory in which the only 

non-zero spectral weight functions are, 

S™(k,w) , S^(k,w) , S^(k,w) , S^(k,w) = - 3*^(11,(4) 

since the other ones involve two—spin-wave processes. With these 
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simplifications Eqns.(5.2.2) and (5.2.4) reduce to, 

F(k,w) = ( 1 - K' ) s (k,w) + ( 1 - K' ) + 
— % — y — 

2 i P S^(k,w) (5.2.5) 

and, 

G (k,w) = P ( 2 K'^ K'2 + K'^ - 1 ) S**(k,w) + 
Z — X Z X — 

2 2 2 w 
P ( 2 K' K' + K' - 1 ) S^^(k,w) -

y z y 

2 i K'^ S*^(k,w) (5.2.6) 
z — 

where we have used the definitions for the spectral weights, 

Eqn.(1.3.2), in deriving these equations. 

In the next sect ion we will discuss the Hamiltonians used, before 

going on to calculate the spectral weights for them in the following 

section. 

5.3 Spin Hamiltonians 

The Hamiltonians that we will consider are all special cases of the 

Hamiltonian, 

1 ,m 

( S= )2 + D* ( S*^)2 + h 3= (5.3.1) 

where the parameters jx, jy, jz, , DZ and h are all either positive 

or zero, and 1 and m label nearest-neighbour sites. 
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WG define five special cases of interest: 

(A) jx=jy=jz=j, DX=DZ=0; 

(B) jx=jy=j, jz=j(l+n), DX=0, DZ=D, with n>0; 

(C) jx=jy=jz=j, DZ=0, DX=D; 

(D) jy=jz=j, jx=j(l-n), DX=DZ=o, with n>0; 

(E) DX=DZ=0. 

Model (A) is the Heisenberg model and model (B) is an easy-axis 

system, the same as the one considered in Ch.3. For these two models 

the total z component of spin commutes with the Hamiltonian and so is 

a constant of the motion. Hence correlation functions of the form 

<S+S+> and <S"S"> vanish and the expressions that we obtain for the 

cross-section and polarisation are simpler than for the other models. 

Model (C) is an easy-plane system with single—site anisotropy and 

model (D) is an easy-plane system with exchange an i sot ropy. In both 

cases the easy plane is perpendicular to the x—axis. Model (C) was 

studied in Ch.4. Finally model (E) has a different exchange 

interaction for each component of the spin. In this model, if we set 

J*=0 and jy=jz=j we obtain the familiar XY model, whereas jx=jy=0 

gives the Ising model. 

For models (A) and (B) the ground states are known. However, for 

most of the other models in one dimension there are zero—point quantum 

fluctuations since the correlation functions <S+S+> and <S"S"> do not 

vanish. As we mentioned in Ch.l, spin-^ave theory is not as good an 

approximation in systems of low spatial dimensionality as it is in 

higher dimensions, because of the lack of long-range order, The theory 

used in this chapter is expected to work best for models (A) and (B) 

which have long—range order at zero temperature, and for small 

anisotropics in the other models, when we are considering magnetic 

chains. 
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5.4 Calculation 

As mentioned in Sec .5.2, we use a linear spin-wave theory to 

calculate the spectral weights. Such a theory is only valid at low 

temperatures and is probably the simplest one possible. Within this 

theory the Ho1stein—Primakoff transformation reduces to, 

S" = ( 2S 

= ( 2S (5.4.1) 

= - S + 

Substituting this into our Hamiltonian, Eqn.(5.3.1), gives the 

quadratic boson Hamiltonian, 

H = ^ { E(k) + B(k) ( a^ ) } (5.4.2) 

k 

after taking the Fourier transform to wave vector space, where, 

E(k) = 2rJ^S - r( )Sy(k) - D''( 1 - 2S ) + D*( S - ̂  ) + h 
— — 2 

B(k) = A ( jy - J* )Sy(k) + 1 l/s( 1 - ̂  )^/^ (5.4.3) 

r is the number of nearest neighbours per site and we have defined, 

y(k) = p cos(k.8) (5.4.4) 

B 

where 5 is a vector from one site to a nearest—neighbour site. If we 

try to diagonalise the Hamiltonian, using Eqn.(4.3.1) and ignoring the 

diagonalisation problems that we encountered in Sec.4.3, we obtain, 

H = { [ E(k) cosh(2e^) - 2 B(k) sinh(28^) ] 4-
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[ B(k) cosh(28^) - ̂  E(k) sinh(2e^) ] [ + 

(\ ] } (5.4.5) 

so the Hamiltonian is diagonal if, 

t:udX28*^ = (5.6.6) 

Hence we have, 

H = ^ w(k) (5.4.7) 

k 

with the spin-wave dispersion, 

7 2 1 / 7 
w(k) = { [ E(kJ ]* - 4 [ B(k) ] } / (5.4.8) 

It is very easy to calculate the two-particle Green functions using 

the equat ion-o f-root ion method described in Sec.2.2 and we find, 

« =k' "k = « -'w(k) 

« 4 ' *k >>w = - s - n w 

« ° k ' " - k = « 4 ' °-k » w = ° 

From Eqn .(1.2.8) we have, 

s* = 5 ( s; + s^k ) 

(5.4.10) 
y T 4- — 

^k = 21 ( ^k " S-k ) 

Hence we can write down expressions for the Green functions, 

« ^-k- < » . • « '̂̂ k' < » w « '̂̂ k' ®k » w 

and use Eqn.(2.1.6) to calculate the spectral weight functions. We 

finally obtain, 

S*^(k,w) = 2 [ + 1 ] 8[ w - w(k) ] + 

B[ w + w(k) ] } 
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S^(k,w) = ^ + 1 ] 6[ w - w(k) ] + 

n^ 8[ w + w(k) ] } (5.4.11) 

s'^Ck.w) = - ̂  + 1 ] 6[ w - w(k) ] + G[ w + w(k) ] } 

where the Bose factor, , was defined in Eqn.{1.5.14). 

The algebra involved in obtaining these spectral weights is very 

simple so we have omitted the details here. 

In the next section we write down the results obtained for the 

polarisation, etc, 

5.5 Results 

For convenience we write, 

F(k,w) = F(*)(k,w) + F(")(k,w) 

G(k,w) = G(*)(k,w) + G(')(k,u) 

(5.5.1) 

where ( + ) denotes spin-wave creation or neutron energy loss and (-) 

denotes spin-wave annihilation or neutron energy gain. Substituting 

the spectral weights, Eqn.(5.4.11), into Eqns.(5.2.5) and (5.2.6), 

gives, 

p(*)(k,w) = § { ( 1 + K'z ) + ( K'x - K'y ) * 

2P K'Z } [ 1 ± ̂  ] 8[ w T w(kj ] (5.5.2) 

and, 

G'*'(k,o) = I ( P( -1 4 K'l - 2K'4 ) g M + P( K'^ - K'y ) X 

< - - ^ > t n , . i . i , X 
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6[ w T w ( X ) ] (5.5.3) 

Then, using Eqn.(5.2.3), the z component of the polarisation of the 

scattered beam is, 

P ' * = { P( -1 + K'2 _ 22,4 ) + p( K ' Z _ K ' 2 ) ( _i _ ) 
z z z — X y z 

X 2 B ( k ) ± 2K'2 u ( k ) } { ( 1 + K ' ^ ) E ( k ) + ( K ' ^ _ K'^ ) x 
— z — z — X y 

2 B ( k ) T 2P K ' 2 w ( k ) } (5.5.4) 

where (P' )+ is the polarisation of neutrons scattered with energy loss 

w(k) and (P' )~ is the polarisation of neutrons scattered with energy 

gain w(k). 

We will discuss these results and their implications for our five 

special cases, of Sec.5.3, in the next section. 

5.6 Discussion 

We refer to the five models discussed in Sec .5.3. For models (A) 

and (B), B(k)=0 and Eqns.(5.5.2) and (5.5.4) reduce to, 

F ( * ) ( k ^ w ) = E { ( 1 + K ' 2 ) T 2P K'2 ) [ + & ± 1 ] x 

6[ w T w ( k ) ] (5.6.1) 

and, 

P ' * = { P( -1 + K ' 2 - 2K'^ ) ± ZK'^ } X 
z z z z 

( ( 1 + K'g ) T 2P K ' 2 ( 5 . 6 . 2 ) 

which agree with previous results, for example Eqn. (10.153) of 

Marshall and Lovesey (1971). We conclude that for this linear 

spin-wave theory, it is not possible to distinguish between exchange 

ani sot ropy and single-site anisotropy for an easy-axis system using 

polarisation analysis. 

For model (C), 
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B( k) — — DS ( 1 - ) (5.6.3) 

which is independent of wave vector k, and for model (D), 

B(k) = ^ nrJS y(k) (5.6.4) 
— z — 

which depends on the wave vector k through the geometric function 

y(k), defined in Eqn.(5.4.4). Since the neutron scattering wave vector 

K differs from k by a reciprocal lattice vector r, it is possible, in 

principal, to vary K' and k independently by varying r. Hence for any 

k we can vary K' , measure Pg' and calculate B(k) from Eqn.(5.5.4). The 

dependence of B(k) on k then gives us a means of distinguishing 

between single—site and exchange anisotropics for an easy-plane 

system. In fact it is not even necessary to polarise the incident 

neutron beam since for P=0 Eqn.(5.5.4) becomes, 

P'* = ± w(k) { ( 1 + K'^ ) E(k) + 
z z — z — 

( K'2 - K'2 ) 2B(k) (5.6.5) 

This is helpful from an experimental point of view. In principle it 

should be possible to obtain the wave vector dependence of B(k) from 

the spin-wave dispersion, Eqn.(5.4.8). However, for small values of 

the anisotropy w(k) depends on [B(k)]2 whereas (P^' )̂  depends on B(k) 

so we expect polarisation analysis to give a better determination of 

B(k). 

For all these models there are two special cases for which the x 

and y components of the polarisation of the scattered beam, that we 

have not written down expressions for in this thesis, vanish. One such 

case is Kz=0, which gives Pz'=-P and a cros s—sect ion independent of P, 

from Eqns .(5.5.2) and (5.5.4). This is not very useful. The other case 

is Kx=Ky=0 and is more interesting since Eqn.(5.5.2) reduces to, 

w) = S{ 5 ^ T P } [ 1 ± 1 ] S[ w T w(k) ] (5.6.6) 

For models (A) and (B), if P=1 then the cross—sect ion for spin-wave 

creation vanishes, i.e. F^+)(k,w)=0, and if P=-l the cross—section for 

spin-wave annihilation vanishes. For models (C) and (D) both the 
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cross—sections for spin—wave creation and anniliilation are non—zero 

for P=±l. This provides a megms of distinguishing between easy-axis 

and easy-plane systems. 

If B(k) is measured for model (E) with the magnetic field along any 

one direction, it gives the difference between the exchange 

interactions for the other two directions. 

We mention that there are many other Hamiltonians that can be 

studied using this method. For example, Dobrzynski and Bytonski (1980) 

have used it to study Hamiltonians with dipole-dipole interactions. 

In the next section we will discuss the dependence of our results 

on the transformation to boson operators used. 

5.7 Dependence of Results on Boson Transformation 

In this section we consider the question of whether our results of 

Sec,5.5 are dependent on the transformation from spin operators to 

boson operators, We work with model (C) as an example since we have 

already studied this model in Ch,4, The transformation of Lindgard and 

Kowalska (1976), Eqn,(4,2,10), gives the quadratic boson Hamiltonian, 

H 

E(k) = 2rJS [ 1 - y(k) ] + D( S - ̂  ) + h (5.7.1) 

DS 1 
= rJS ( 1 - ) y(k) 

This B(k) depends on k unlike the B(k) obtained previously, 

Eqn.(5.6.3). This seems to contradict our arguments in Sec.5.6 

concerning how to distinguish between single—site and exchange 

anisotropies for easy-plane systems. However, when we calculate the 

spectral weights using this transformation the factors y(k) cancel in 

such a way that the expressions for the cross-section and polarisation 

have the same form as Eqns .(5.5.2) and (5.5.4) with B(k) replaced by, 

B'(k) = 2 DS( 1 - ̂  ) (5.7.2) 
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So the conclusions of the previous section still hold. We do not go 

into details of the calculation using this transformation since they 

are essentially the same as those in Sec.5.4, 

Our conclusion here contradicts that of Lovesey and Steiner (1981) 

since they did not use the full transformation in calculating the 

cross—sect ion and polarisation. 

We suggest that the conclusions of Sec.5.6 are in fact independent 

of the transformations to boson operators that can be used. 

5.9 Experimental Work 

Finally in this chapter we mention briefly some early experimental 

work, testing our predictions, by Kakurai et al. (1984) on CsNiPg. 

These neutron scattering experiments show conclusively that the system 

is easy-plane but for the range of wave vectors over which the 

experiment was done there was very little differences between the 

predicted polarisations for single—site and exchange anisotropies and 

they were effectively indistinguishable. Results for higher 

temperatures seemed to show that the system was becoming more 

isotropic as the temperature was increased. However these last results 

are currently in dispute. 
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CHAPTER 6: FERMI FLUID SYSTEM 

6.1 Introduction 

In the previous chapters we have been studying spin waves in 

localised ferromagnetic systems using a Green function 

equation-of-motion method to calculate the spectral weight. In this 

chapter we study a Fermi fluid, which is a very different system, for 

example fermion operators are used instead of boson operators. 

However, we will still use the equation—of—motion method for 

calculating Green functions described in Sec.2.2. 

The goal of this chapter is to calculate the particle density 

autocorrelation function. We are concerned primarily with density 

fluctuations smd hence focus on the operator c+c, where c+ and c are 

the fermion creation and annihilation operators that we will discuss 

later in this section. We go beyond the RPA (Pines and Bohm 1952) 

using an equation-of-motion for density fluctuations. This is a new 

approach to the task of including lifetime effects. 

Fermi liquid theory is usually applied to physical systems such as 

liquid 3He, the electron gas and electrons in metals, and hence 

itinerant ferromagnets, for exam$)le iron emd nickel. Such systems show 

interesting features for the fermion momenta close to the Fermi 

momentum. These fermions all have spin 1/2 and we will work with this 

value of the spin throughout. We will not go into the details of Fermi 

1 iquid theory in this section but will merely give the necessary 

background for the problem in this chapter. A more detailed review is 

given by, for example, Levin and Vails (1983). We will also present 

some results for non—interacting fermions. 

We denote our fermion creation and annihilation operators by 

c+ap(t) and Cae(t) respectively, such operators are discussed in 

detail by Abrikosov et al. (1963) and Fetter and Walecka (1971). The 

subscript a is the momentum and a is the spin. These are Heisenberg 

operators, as in Eqn.(1.2.1), and they anticcxmmute so that. 

( ^̂ acr' ""ba' ^ ( 4cr' c L ' * = ° 

(6.1.1) 
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where the emticanmutator of two operators A and B is defined, 

{ A, B } = AB + BA (6.1.2) 

The operators in Eqn.(6.1.1) have the same value of time. 

The thermal averages, defined in Eqn.(1.2.2), of the products of 

two fermion operators are, 

< "̂ aa S a ' > = < '̂ aa ° " > = G 

(6.1.3) 

< C C. , > = 8 . 6 , f 
acr be' ab crcr' aa 

For non—interacting fermions fg(y is given by a Fermi distribution, 

f ( e - a ) / T ] + 1 } ^ (6.1.4) 
AO dU 

Wiere egcr is the energy of the fermion and is the chemical 

potential. We usually take the energies to be independent of spin, 

and, 

2 

where m is the mass of the fermion. The chemical potential is 

calculated from, 

"'Y. ""a, 
a.o" 

and is independent of spin. N is the total number of fermions. 

We define the particle density fluctuation operator, 

"qcr̂  P) " q̂cr ®pO q̂or (6.1.7) 

which is the fluctuation of c+p+qo- Cqgr from its thermal average. Also, 
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n(P) = ^ n (p) (6.1.8) 

q,cr 

will be a useful operator in our calculation. We will usually work 

with the time Fourier transforms of these operators, i.e., 

n (P;w) = r * dt e^"t n ^/p) (6.1.9) 
-co 

and, 

n(p;w) = r ™ dt e*^^ n(p) (6.1.10) 
- 0 0 

The Green functions used to calculate the particle density 

autocorrelation function are, 

Gi^XP't) = « n(-P) » 
qcr qcr 

G(p,t) = ^ G (p,t) (6.1.11) 

q,cr 

= « n(p,t); n(-p) » 

and their time Fourier transforms, 

n(-P) >> , 

qcr qcr w 

G(p,w) = ^ G (p,w) (6.1.12) 
q,cr 

= « n(p); n(-p) » 
w 

where the notation is defined in Eqns.(2.1.1) and (2.1.3). From these 

Green functions we obtain all our physical results. We see immediately 

that this problem is more con$)licated than our previous ones since 

G(p,w) is a fouir-particle Green function and the elementary 

excitations of the system involve two fermions, rather than one boson 

as in previous chapters. It is well known that it is impossible to 

create and annihilate single fermions so this is not unexpected. 

For non—interacting fermions the Hamiltonian describing the system 

is, 
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" = Z 'k 4c, S , (6.1.13) 

k,(T 

It is easy to calculate the non—interacting Green function, 

G(0)(p,w), using this Hamiltonian and the equation—of-motion method 

described in Sec.2.2 and the result is, 

G'O'cp.W . ^ fq, ( ̂  . - w + -e ! (S'1'14) 
^ q p+q p+q q 

Because G(p,t) is a causal Green function it satisfies a dispersion 

relation, Eqn.(2.1.4), and we only need to calculate either the real 

or imaginary part. For the latter we find, 

Im G(°)(p,w) = - # f__ { 6( w + G - e ) -

G( -w + Eq - ) } (6.1.15) 

using Eqn.(2.1.12) and the fact that the G—function is an even 

function of its argument. 

It is simple to evaluate this expression in the high and low 

temperature limits. Since fq̂ y is independent of the spin and N is 

large, we can write. 

z 

2V 
d^q (6.1.16) 

where the integral is taken over the volume of the system. 

The high ten$)erature limit, in which quamtum effects are 

negligible, is given by, 

jn/T-^-oo (6.1.17) 

Hence, 

fqa exp[ ( - Eq ) / T ] (6.1.18) 

i.e. a Boltzmann distribution. Eqn.(6.1.6) becomes, 
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N = 
2V 

(2Tf)' 
d q e:q)[ ( ) / T ] (6.1.19) 

Since Eq depends only on q2 ̂  we can transform to spherical polar 

coordinates and do the integration to obtain, 

exp( / T ) = :^ ( ^ (6.1.20) 

where we have used the result, 

roo . 2 , 2 , 1 1 , Tf ,1/2 
dq q e^( -aq ) = y - ( - ) 

^0 4 a a 
(6.1.21) 

The first term on the right-hand side of Eqn.(6.1.15) beccmes, 

-n" e]g)(̂ i/T) 
2V 

(2Tr)' 
d^q exp( ) 2m G( 2mw-p^-2p.q ) (6.1.22) 

and the second term is obtained from this by We choose the 

z^axis to lie parallel to p and work in cylindrical polar coordinates 

since the integrand is invariant under rotations about this axis. 

Then, 

J 
d^q 4. 2,f r dq 1 d(q )̂  

""-co ^0 ^ ^ 
(6.1.23) 

2 2 2 
- '̂ z 

and the integrand in Eqn.(6.1.22) is easy to evaluate. Eqn.(6.1.15) 

becomes, 

, (0) , N . mn .1/2 
Im G (P,w) = - ̂  ( 2^ ) { exp( 

2mT 
) - exp( 

2ir(r 
) } 

(6.1.2^) 

where, 

Q = 

Q' — 

mw p 
P 2 

mw p 
(6.1.25) 
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The low temperature degenerate Fermi fluid limit is given by, using 

Eqn.(6.1.6) to calculate p., 

T * 0 , Ai e = ^ (6.1.26) 

Hence, 

f = 
qcr 

0 for e > fi 

1 for Cq < % (S'l 27) 

Hence the range of integration is effectively reduced to the sphere, 

q < Pf = ( (6.1.28) 

when the integrand contains the factor fqg. 

The expression for Im G(0)(p,w) in Eqn.(6.1.15) is easy to 

evaluate, transforming to cylindrical polar coordinates again. One way 

of writing the results is, 

2 2 
Im GT ^(p,w) = 0 , p^ < Q 

Im G(°)(p,w) = - ̂  ( p2 - qZ ) , qZ < p2 < Q'Z (6.1.29) 

Im G(°)(p,w) = - , pf > Q'^ 

The conditions Pf^<Q^, etc. correspond to regions in the p-ui plane 

(Lovesey 1980). These are well known results. 

In the next section we add interaction terms into the Hamiltonian. 

6.2 Hamiltonian 

We write our Hamiltonian in the form, 

H = ^ cĵ ^ c^^ + ^ I(k) p(k) p(-k) (6.2.1) 

k,cr k 
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where the particle density operator is, 

P(k) = ^ c__ (6.2.2) 
"k+qcr "qa 

q,cr 

and I(k) is the spatial Fourier transform of the particle interaction. 

The other parameters and operators were defined in Sec.6.1 and the 

first term in the Hamiltonian is the non—interacting Hamiltonian, Hg, 

of Eqn.(6.1.13). The second term can be written, 

z z 
kqq' era' 

^q+ka Cqp ^q'-ka' ^q'a' (6.2.3) 

so it represents the scattering of two fermions with initial momenta q 

and q', and final mcxnenta q+k and q'-k. The interaction I(k) depends 

only on the momentum transfer, k, amd I(-k)=I(k), and the spins of the 

fermions are unchanged. 

One problem is deciding What momentum dependence the interaction 

should have. If the only interaction between the fermions is a Coulomb 

interaction then I(k) is proportional to (l/k^). If we have a contact 

interaction, proportional to B(R) vAere R is the distance between the 

fermions, then l(k) is a constant, independent of k. 

We note that p(k), in Eqn.(6.2.2), is related to n(k), defined in 

Eqn.(6.1.8). The relation is, 

p(k) = n(k) + N (6.2.4) 

We will derive some results for a system described by this 

Hamiltonian in the following sections. 

6.3 Calculation of nqg(p,w) 

In this section we discuss our calculation of the spectrum of 

spontaneous fluctuations, n(p,w), outlining the approximations as we 

make them. Our aim is to construct an approximation that embodies the 

RPA and includes the effects of particle lifetimes. 
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First we consider the equation—of—motion for a product of two 

fermion operators, 

Pram the first term in the Hamiltoniam, Ho, we obtain, 

t C V ' "o J = < 'p • > C V 

vAiere we have used the anticcanmutation relations, Eqn.(6.1.1), to 

normal order the operators and to interchange two creation or 

annihilation operators. 

We choose to write the second term in our Hamiltonian as, 

^ I(k) p(-k) c__, (6.3.3) 
4-
'q+ka' "'qa' 

kqa' 

and make the approximation that p( -k) in this term comnutes with c+c. 

This scheme greatly simplifies the calculation. It is a semi-classical 

approximation and we show that it readily reproduces the standard RPA. 

We find, 

[ C Z V t o ' V ' ] = 

kqcr' 

^ K k ) ( C^_ ) p(-k) (6.3.4) 
'a<T ̂ /3-ko ^a+kc "'gc 

In Sec.6.8 we will find that the exact result for this commutator, not 

making the above approximation, can be written, 

Z [ C P'-"' - C k a V ] 

k 

Hence the terms that we have neglected are of the forms, after 

ordering the operators, 

Z C V • Z < - k , 'e-k. = 
k k 
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at this stage. The factor of two in Eqn.(6.3.5) arises from taking the 

commutator with p(-k) as well as with p(k). 

Then, setting a=p+q, /3=q, Eqn.(6.3.1) gives, 

i V q a ' P ' = < 'q - V q > + "''P' ' V q a ' V ' + 

V I(k) [ n ^ ( p + k ) - n (ptk) 1 p(-k) (6.3.7) 

using the definition of nq(y(p), Eqn.(6.1.7). 

Taking the Fourier transform of this equation gives, 

( " + ^p+q - \ < ^p+qa ' ^qa > + 

^ du y I(k) [ n ^^(pfk.u) - n (p+k,u) ] p(-k,w-u) 
-00 —' 

(6.3.8) 

where p(k,w) is the time Fourier transform of p(k). 

In the standard Random Phase Approximation, or RPA, all terms 

involving momentum k, except k=0, are neglected in Eqn.(6.3.8). Hence, 

in this approximation, 

( " + =p+q - ^q ) < ^p+qa ' ^qa > 

(6.3.9) 

Using an equat ion-of-mot ion method, as will be described in 

Sec.6.4, then gives, 

G(P,w) = x(°)(P,w) + x(0)(P,w) I(-p) G(p,w) (6.3.10) 

or, 

G(P,w) = x(°)(P,w) / ( 1 - I(-P) x(0)(P,w) } (6.3.11) 

where, 

/"Vo.,.,, = V , . ,, _ . . 
p+qcr qa p+q q 

X^°\p,w) = ^ ( f,^^_ - f^_ ) ( w + ) ̂  (6.3.12) 

qa 
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We will see that the main difference between these RPA results and 

the results of our calculation is that we obtain a self-energy in the 

denominator of our dynamic susceptibility, from which it should be 

possible to study lifetime effects. 

In our calculation, however, we iterate Eqn.(6.3.8) once, i.e. we 

replace nq-ke(P^k,u) and nq(r(p+k,u) by their expressions to order I, 

obtained from Eqn.(6.3.8). We obtain, 

( " + =p+q - "P) ( ^p+qa ' ^qa ^ + 

du l(k) K - k ) F^(k,w-u) [ ^ ^ ^ 
-00 "p+q ^q+k 

j : - Z u + e ^ - e ' J - '"q+ka(P''') 
p4-q+k q -00 ^ 

^ + 'pfq - 'q+k * " + V q + X " "q ' (6.3.13) 

where the spectral function of prime interest is, 

F,(k,v) = ^ r dt e ^ ^ < p( -k,t) p(k) > (6.3.14) 
- 0 0 

and we have replaced products of the form [p(k,u)p(k',u')] by their 

thermal averages in obtaining Eqn.(6.3.13). 

We then neglect the term in Eqn .(6.3.13) involving nq + kaCP,"^) 

except for k=0. Such terms correspond to fluctuations in nqcr(p,w), 

which is itself a fluctuation, as shown in Eqn.(6.1.7). Clearly we are 

retaining terms neglected by the RPA, however. 

We then make the replacement, 

Z " Z ' - Z 
k k k?50 

which has no effect since terms with k=0 in Eqn.(6.3.13) cancel. 

Finally, 

( + ^p+q - ^q ) "qcr(P'") = < ^pfqa " ^qa > + 
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iw i * du I(k) I(-k) F^Ck.w-u) [ ^ + y 
-w % " "p+q ^q+k 

u 4- e . - e 
pfq+k q 

(6.3.16) 

In the next section we use this approximate result to calculate the 

Green function G(p,w) of Eqn.(6.1.12). 

6.4 Calculation of G(p,w) 

Using the result, 

< [ nq*(P), n(-p) ] > = (6.4.1) 

which is easily derived from the anticommutation relations, 

Eqn.(6.1.1), and thermal averages of fermion operators, Eqn.(6.1.3), 

along with the result for nqe(p,w), Eqn.(6.3.16), we can write an 

expression for Gqg(p,w) immediately, since, 

w Gq^(p,w) = < [ n^q.(P), n( -p) ] > + « [ n (p), H ]; n(-p) 

(6.4.2) 

from Eqn.(2.2.3). The result is. 

[ w + =p+q - =q - Cqa(P'W) ^ °q(r(P'") = 

( fp+q* - fqp ) [ 1 + I(-P) G(p,w) ] (6.4.3) 

where, 

Eqp(P,w) = j * du I(k) I(-k) F (k,w-u) x 

k 

w - u + e . -e._ w - u + e _ - E 
p+q q+k p+q+k q 

is the self—energy, and. 

(6.4.4) 
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F(k,v) = ^ r ™ dt < n(k,t) n( -k) > (6.4.5) 
- 0 0 

We note that, for kiA), F(k,v) is the same as Fi (k,v) of 

Eqn.(6.3.14). 

The fluctuation-dissipation theorem then is, 

1 -v/T -1 
F(k,v) = - - ( 1 - e } Im G(k,v) (6.4.6) 

by arguments similar to those for deriving Eqn.(2.1.6). 

We define the dynamic susceptibility by, 

X(P,w) = ^ ( f,^_ - f__ ) ( w + - E(p,w) } 
- 1 

i , I w . ̂  ^ - Ff n /i\ ̂  I 
p+qcr q<T p+q q 

qcr 
(6.4.7) 

Then, using Eqn.(6.4.3), 

G(p,w) = X(P,w) + I(-p) x(P,w) G(p,w) (6.4.8) 

or, 

G(p,w) = X(P,w) / [ 1 - I(-P) X(P,w) ] (6.4.9) 

Hence we have expressions for G(p,w) in terms of Eq(^(p,w) and for 

Eqcr(P,(̂ ) in terms of Im G(k,u), etc. We do not have an equation for 

G(p,w) or Eq(y(p,w) that we can solve easily. In the next section we 

will make some more simple approximations in an attempt to obtain an 

expression which can be evaluated. We choose to calculate ImEqo-(p,u), 

which is, using Eqns.(6.4.4) and (6.4.6), 

Im Eq^(P,w) = I(k) I(-k) { [ 1 + n(W.e^-Eq^^) ] x 

Im G(k,w+e^-eq^^) + [ 1 + "(uH-E^^^-Sq) ] x 

Im G(k,w+e ^^-Eq) } (6.4.10) 

v^ere, 

n(u) = { e:)̂ ( ^ ) - 1 } ̂  (6.4.11) 
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and we have used the 8—function obtained from taking the imaginary 

part of , 

" - " V q " =q+k " - " + =p+q+k ' \ 

to do the integration over the variable u. 

Re Eqa(p,w) is obtained from the dispersion relation, Eqn.(2.1.4), 

and we can then obtain G(p,w) from Eqo<p,w). 

6.5 First Approximation to Im Eae(P,w) 

wish to explore the features of the self-energy and the 

ramifications for the spectrum by calculating im Eqa(P,w) from 

Eqn.(G.4.10). As a first approximation we replace im G(k,u) on the 

rightHband side by its non-interacting value, Eqn. (6.1.15 ). In 

principle, we should be able to substitute the new expression for 

G(k,u) obtained back into the equation and iterate to obtain better 

approximations to G(k,u). In practice we will stop after the first 

iteration. Then, 

Im C (p,w) = r ™ du [ 1 + n(u) ] Y " ' I(k) I(-k) Im G^^^k.u) x 
-00 , 

k 

[ 6( w - u + ) + 8( w - u + - =q ) ] 

(6.5.1) 

We have retained the integration over u in this expression for 

convenience as it may not be simplest to do the u integration first. 

Using the eaqpression for Cg, Eqn.(6.1.5), we can write the 

arguments of the 8-f unctions as, 

" - " + ^p+q - ̂ q+k = ^ ( h + 5 - 2m( w - u ) -

( p + q } 
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w - " + =p+q+k - Gq = 25 ( ( - + 2 + S + 2m( w - u ) -

qf } (6.5.2) 

We have to integrate over all wave vectors k. The first of these 

expressions is invariant under rotations of k alaout q and the second 

is invariant under rotations about (p+q). Hence it is convenient to 

work in cylindrical polar coordinates taking the z—axis to lie along q 

in the first case and (pfq) in the second. We denote the coordinates 

(kz.kp,*) given by, 

k^ = k cos(@) 

k = k 8in(*) 
y p 

(6.5.3) 

and we have, 

r d^k = d$ r dk k dk (6.5.4) 
J Jo J-m = Jo P P 

and the integration over * gives a factor of (2#). 

Hence we have, from Eqn .(6.5.1), emd using Eqn. (6.1.16) to 

transform the sum into an integral, 

Im E (p,w) = r du [ 1 + n(u) ] F dk d(k^) I(k) x 
(2Tf) -00 -00 O 

I(-k) Im G(^)(k,u) { G( kp + kg + 2qk^ - p^ - 2p.q - 2m[w - u] ) 

+ S( k + k^ + 21 P+q I + p + 2p.q + 2m[w - u] ) } (6.5.5) 

where, 

k = ( k^ + k^ )l/2 (6.5.6) 
P z 

and we are assuming that the interaction I(k) depends only on the 

magnitude of k and not on its direction. 
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The 6—functions in the integreind cam be used to do one of the three 

integrations in Eqn.(6.5.5). Because of the form of the arguments of 

the G—functions it is probably not sensible to use them to do the kz 

integration. 

Doing the kp integration gives, 

Im C (p,w) = r ̂  du [ 1 + n(u) ] [ dk { I(k ) I( -k ) x 

(2*)Z J-m -"-oo ^ ^ 1 

Im G(°)(k^,u) e( k^ - k^ ) + iCkg) IC-k^) im G^O^Ckg.u) x 

8( kg - k^ ) } (6.5.6) 

2 2 
= 2m( w - u ) - 2qk + p + 2p.q 

2 2 
k = 2m( w - u ) -2|p+q|k - p - 2p.q 
2 — — 2 — — 

We can then get rid of the e—functions by changing the integration 

ranges since, for exanyple, ki 2>kz2 places restrictions on the allowed 

values of k^ and u. 

Hence, 

im E <p,^) . " { du [ 1 + „<u) ] X 
(Zn-) -00 

2 1/2 

pq+t(pn) «„(„-„)] I(_k , im ,u) + 

-q-[(P*q) +2in(u-u)) ' 

r , du [ I + n(u) ] {"lE+3l+[q'-2m("-")]"/' dk I(k ) x 

w-q /2m -|P+g.|-[q -2m(w-u)] 

I( kg) ofO^Ckg.u) } (6.5.7) 

or, equivalently, 

im C (p..) = « ( r dk [-"»+( -k^-2q\+p'^-2p.q)/2m ^ 

(2iT) -00 ^ -00 

[ 1 + n(u) ] I(k^) I(-k^) Im G(°)(k^,u) + T * dk^ x 
-CO 
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[ 2 2 du [ 1 + n(u) ] I(k ) I( -k ) X 
w+(k +2|p4-q|k +p +2p. q )/2m 

2 — — 2 — — 

Im G^^^k ,u) (6.5.8) 

These expressions are clearly difficult to evaluate in general. We 

will consider vAiat they give in the high and low temperature limits in 

the next section. 

6.6 High and Low Tenqperature Limits 

The high temperature limit is given by T-*oo. We will work to lowest 

order in (1/T) throughout. To this order, 

1 + n(u) = T / u (6.6.1) 

from Eqn.(6.4.11), and, 

Im G(°\k,u) = -N ( )^/^ " (6.6.2) 

2T 

from Eqns.(6.1.24) and (6.1.25), 

Substituting these expressions into Eqn.(6.5.7) gives, 

I. C (p,.) = - ™ ,V2 , 1 rw.(p+q)'/2m , 

^ (2#) ^ -00 

C ^ dk i(k) i( -k) + r du dk i(k) i( -k) 
-"x '2+91 ''w-qV2m ^y 

(6.6.3) 

where, 

2 1/2 
= I q - [ ( P N ) + 2m(w-u) ] 

2 1/2 
Xg = q + [ (p+q) + 2m(w-u) ] 

= I Ip+gl - [ q - 2m(w-u) ] 

(6.6.4) 
2 ^ , , .1/2 , 
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2 1/2 
y_ = Ip+ql + [ q - 2m(w-u) ] 
z — — 

We consider the special case, 

I(k) = 
I for k < k ,^ ^ _. 

max (6.6.5) 
0 otherwise 

In this case the integrals in Eqn.(6.6.3) are easy to evaluate but 

messy because of the integration limits. For example, we have to 

consider whether xt and xg are less than or greater than k,ax for each 

value of u. We omit these details. The result is, 

im E (p,w) = - ^ k ^ (6.6.6) 
qa (2*)2 T max 

which is independent of p, q and w but depends on the high momentum 

cut-off k,ax and if we let k,ox go to infinity then Im Eqo<p,w) 

diverges. It seems that the interaction of Eqn.(6.6.5) is not very 

useful. 

The low temperature limit is given by T=0. Then, using 

Eqn.(6.6.11), 

1 + n(u) = 1 (6.6.7) 

and Im G(0)(k,u) is given by Eqn.(6.1.29). The integrand in 

Eqn. (6.5.7), or Eqn. (6.5.8), has a simple form that is easy to 

integrate for the interaction in Eqn.(6.6.5). However, the conditions 

Pf2<Q2, etc. in Eqn.(6.1.29) cause the integration ranges in the 
to 

integrals of Eqns.(6,5.7) and (6.5.8)^have to be split up. In fact, 

there are so many cases to take account of that we were not able to 

obtain a useful expression for Im Eq(r(P,w), even for the form of I(k) 

in Eqn.(6.6.5) 

6.7 Expansion in (1/w) 

For a Fermi liquid system such as the one we are considering there 

are sum rules. In terms of F(k,u), Eqn.(6.4.5), one such sum rule is. 
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r 00 
du P(k,u) = S(k) (6.7.1) 

- 0 0 

where the structure factor, S(k), is defined, 

S(k) = < > (6.7.2) 

Another is, 

2 
r * du u F(k,u) = ^ (6.7.3) 

- 0 0 

More of these sum rules are derived by Pines and Nozieres (1966). 

They are obtained by taking moments of the correlation function 

F(k,u). Using Eqn.(6.4.6) we can also write them in terms of the Green 

function G(k,u). 

In this section we expand G(p,w) in (1/to) and make use of these 

moments relations and other known information on Fermi liquid systems 

to assess the features of the G(p,w) that we have obtained and also to 

attempt to place some restrictions on the momentum dependence of the 

Interaction I(k). 

Expanding Eqcr(p,w) of Eqn.(6.4.4) in powers of (1/co) and using the 

sum rules of Eqns.(6.7.1) and (6.7.3) gives, 

Cqp(P,w) = 5 I(k) I(-k) S(k) + 2^ ^ I(k) I(-k) x 

k w k 

( ^ ^ S(k) ] + 0(l/w^) (6.7.4) 
la m 

Then, expanding x(P,w), Eqn.(6.4.7), in (1/w), 

2 2 6 

a X(P,w) = 2-2 + ^ I(k) I(-k) S(k) + 5L_ + 
mw w 4m 

k 

4 
<KE> } + 0(l/w ) (6.7.5) 

m 
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^ B Z 'E-3)' 

qcr 

Finally, eiqianding G(p,w) of Eqn.(6.4.9), using the above result, 

gives, 

G(P»w) = Xp { + Wg / w + 0( 1/w ) } (6.7.6) 

where, 

"o = ^ 

(6.7.7) 
2 2 2 

= ( ̂  )̂  + (̂ ^ ) <KE> + 6 I(k) I( -k) S(k) + ^ I(-P) 

We have chosen to define the functions wg, wi emd Xp for ease of 

co«%)arison with other results on Fermi liquids. For example, there is 

the result, 

2 2 
= ( ̂  ) { ( ̂  ) + WCE> } + n (p) (6.7.8) 

where (Lovesey 1975 ), 

n^(P) = ( ̂  ) d^r g(r) [ 1 - cos(p.r) ] a^^V(r) (6.7.9) 

where V( r) is a pair potential and g( r) is a pair distribution 

function. We will not need to know the definitions or forms of these 

functions here, We note that as p->0, n2(p)->o. 

C(x%)aring Eqns.(6.7.7) and (6.7.8) we have, 

2 
n^(P) = ^ I(-P) + 6 I(k) I( -k) S(k) (6.7.10) 

The second term on the right—hand side of this equation is a 

positive constant. Hence we do not have the required result that 

n2(p)-*o as p-K) unless, 
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I(P) - - ~ y ' I(k) I(-k) S(k) (6.7.11) 

vAiich diverges ais p-K). 

Hence our result for G( p, w) cannot be correct for a general 

momentum dependence of the interaction I(k). We have not been able to 

discover which approximation in our calculation is not valid. 

Finally, in the next section we consider a perturbative calculation 

on our Hamiltonian. 

6.8 Comparison With Perturbative Calculation 

In this section we attempt to increase our understanding of the 

problem by doing a perturbat ive calculation. Using our Hamiltonian, 

Eqn.(6.2.1), we calculate the Green function G(p,w) as an expansion in 

powers of the interaction I. We write the second term in the form of 

Eqn .(6.2.3) and use the equat ion-of-mot ion method described in 

Sec .2.2. The equat ion-of-mot ion for Gqcr(p,w) becomes, 

( + ^p+q - \ = ^p+qa ' q̂cr + Z ^ 

kk'cr' 

^ ^P+qa '̂ k+k'cr' ̂ kcr' ^q+ko' 

^pfq+kcr ^k'-kor' '̂ qa' "('P) ) (6.8.1) 

using the emticommutation relations, Eqn.(6.1.1), and the thermal 

averages of fermion operators, Eqn.(6.1.3). 

If we want G(p,w) to first order in I then we need to calculate the 

six-particle Green functions of the form, 

« 4(7 6̂cr» 

to zeroth order in I, so replace H by Ho in the equat ion-of-mot ion for 

this Green function. Using, 
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^ ^ ^aG 

"aa' "ay "^G % (^'='") 

from Wick's theorem, we find after a little algebra that, to first 

order in I, 

— t 1 X orhn\ rS^^/r^ \ j . Gq^(p,w) = G^^Xp.w) { 1 + 2I(p) G' '(p,w) + ) 2I(k) x 

^ ^ ^p+q+kcr q̂+kcr ^ ̂  ^ ^p+q ^ 

GqSkafP'W) ] } (6.8.6) 

where, 

G^°\p,w) = ( fp+q^ - q̂cr ) ( " + ^p+q - ̂ q (6.8.5) 

The corresponding result in our calculation, if we sum over q and cr 

in this equation, from expanding G(p,w) in Eqn.(6.6.8) to order I is, 

G(p,w) = G(°)(p,w) { 1 + I(-p) G(°)(p,w) } (6.8.6) 

The factor of 2 in Eqn.(6.8.4) was accounted for in Sec.6.3. The 

other terms that we have neglected in Eqn.(6.4.8) are those neglected 

by the RPA. 

To work to order I2 in the calculation of G(p,w) we must calculate 

the Green function in Eqn.(6.8.2) to order I. The calculation is 

straightforward. However, we have not been able to write down the 

result in a form that can easily be compared to our results of 

Sec.6.4. 

We conclude that there are still problems needing to be dealt with 

in this calculation. Clearly the terms involving k in Eqn.(6.8.4) 

cannot be obtained from expanding the G(p,w) of Eqn.(6.4.9), using 

Eqn .(6.4.7) to define x(p,w), to first order in I unless the 

self-energy contains first order terms in I. However, we cannot obtain 

the form of G(p,w) in Eqn .(6.4.9) by doing any finite order of 

perturbation theory. Such a form clearly contains information on 

singularities in G(p,w), which are important physically. Hence we do 

not pursue a perturbative calculation further. 
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It is obvious that there is much work still to be done on the 

problem of this chapter. 
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