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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF SCIENCE 

PHYSICS 

Doctor of Philosophy 

LIGHT-CONE AND SHORT DISTANCE 

ASPECTS OF NUCLEON WAVEFUNCTIONS 

by Ian David King 

In recent years the technique of QCD sum rules has been used to obtain 

a number of very satisfactory results in the non-perturbative region 

of QCD. Here we study the first few moments of the quark distribution 

amplitudes of the nucleon, using the same auxiliary operators as 

Chernyak and Zhitnltsky. We differ from these authors in the operator 

product expansions we obtain for the current correlators in the 

Euclidean region. Nevertheless, we are able to confirm that the sum 

rule analysis leads to an asymmetric distribution of longitudinal 

momentum among the constituent quarks of the nucleon. 

We investigate the implications of such an asymmetry for the rate of 

the decay p in the minimal SU(5) GUT. The calculation is 

performed using the chiral lagranglan formalism. We find significant 

enhancement (by a factor of about 6) of the proton lifetime over that 

predicted using a symmetric wavefunction. The effect of an asymmetric 

distribution of quark transverse momenta is also studied. 

Finally we introduce explicit SU(3) symmetry breaking terms into the 

baryon number violating chiral lagrangian and demonstrate that the 

subsequent corrections to the decay rates of the proton are 

consistent with a particular choice of baryon wavefunction. 
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INTRODUCTION 

Quantum Chromodynamlcs (QCD) Is now firmly established as the 

theory of strong interactions. It gives rise to asymptotic freedom^so 

that at short distances the effective coupling of the strong 

Interaction decreases to zero. This implies that it is meaningful to 

apply perturbation theory to hard transverse momentum processes, l̂ se 

of perturbative QCD has led to many successful predictions for hard 

exclusive processes. For example, th^ proton's magnetic form factor, 

measured in elastic electron-proton scattering, is predicted to fall 

off like Q ^ (Q^ is the square of the four-momentum transferred 

between the electron and the proton.) dependence is confirmed by 

the experimental measurements. Recently, however, there has been much 

debate as to whether perturbation theory is applicable in the 

interpretation of data available at the currently attainable energies 

[1]. This discussion has been stimulated by the discovery that spin 

effects are not negligible in large angle proton-proton elastic 

scattering at high energies [2]. When QCD is used in conjunction with 

a conventional (non-relatlvistic) wavefunction for proton it is 

found that spin effects become vanlshlngly small at large Q^. 

Recently, Chernyak and Zhitnitsky [3] have used a QCD sum rule 

analysis to derive a relatlvistic three-quark wavefunction for the 

proton. It is hoped that the spin correlations inherent in this 

wavefunction are such that its use in a QCD calculation of proton-

proton elastic scouttering will eliminate the discrepancy with 

experiment. Already, the wavefunction of Chernyak and Zhitnitsky has 

been applied to many physical processes, leading to results which are 

in close accord with observed values. In a calculation of nucleon 

electromagnetic form factors, for example, it is found that for the 

first time the predicted signs and magnitudes of the form factors are 

in excellent agreement with experiment. One of the most significant 

properties of the inew relatlvlstlc wavefunction is that quarks are 

seen to play very asymmetric roles. Approximately two-thirds of the 

proton's longitudinal momentum (in the infinite momentum frame) is 

carried by one up quark whose spin is parallel to the proton's 

momentum. This contrasts with t±^ completely symmetric distribution 

of quark momenta associated with the naive non-relatlvistic proton 

wavefunction. 



In this thesis we study in detail the derivaticm of the nucleon 

wavefunction given by Chernyak and Zhitnitsky. We also present a 

modification of the approach used by Brodsky et al [4] to obtain a 

lifetime for the proton for the minimal SU(5) model. Some of the 

conclusions are valid for other conventional (i.e. non-supersymmetric) 

theories of grand unification. Allowance is made for a possible 

asymmetric distribution of quark momenta within the proton by using 

the wavefunction of Ref. 3. 

The layout of the thesis is as follows: In Chapter 1 we re-

examine the work of Chernyak and Zhitnitsky,who derive a novel 

wavefunction for the nucleon by using the QCD sum rule approach 

introduced by Shlfman, Vainshtein and Zakharov [5]. We obtain 

different results from these authors for the correlators used in the 

QCD sum rules. 

Chapter 2 begins with a discussion of a phenomenological (chlral) 

lagrangian relevant to proton decay [6]. The rate for tl^ decay 

P Tr°e^ is evaluated by using this lagrangian together with an 

estimate of the proton positron annihilation amplitude. The 

asymmetric proton wavefunction of Chernyak and Zhitnitsky is employed 

in the calculation. Allowance is also made for an asymmetric 

dependence in the quark transverse momenta. We find significant 

enhancement of the proton lifetime over that predicted using a 

symmetric wavefunction. 

In Chapter 3 we examine some of the consequences of using a 

symmetric quark momentum distribution in the chiral lagrangian 

approach to proton decay. We Investigate to what extent it is 

consistent to use such wavefunctions in conjunction with the chlral 

lagrangian. Specifically, explicit SU(3) symmetry breaking terms are 

introduced Into the baryon number violating chlral lagrangian and we 

try to correlate the subsequent corrections with those obtained from a 

refined calculation using symmetric wavefunctions. 

A summary and discussion of our results is given in Chapter 4. 
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CHAPTER 1 

A QCD SUM RULE ANALYSIS OF PROTON DISTRIBUTION AMPLITUDES 

In recent years a lot of effort has been devoted to the study of hard 

scattering hadronic processes. Although the investigation of inclusive 

scattering processes has received m ost attention, hard exclusive 

processes, such as hadronic form factors or elastic scattering at large 

momentum transfers, have also been studied [1,2]. Amplitudes for different 

processes may be related to each other by perturbation theory and the non-

perturbative physics is contained in universal 'quark distribution 

amplitudes'. Unfortunately, only indirect information about the 

distribution amplitudes may be obtained from hard exclusive scattering 

experiments. Measurements do not enable us to extract the distribution 

amplitudes themselves. This is in contrast to the case of hard inclusive 

processes [3] such as deep inelastic lepton hadron scattering, the Drell-

Yan process or the inclusive production of particles or jets with large 

transverse momenta, where the universal quark and gluon distribution and 

fragmentation functions which describe the non-perturbative physics are 

directly measureable in deep inelastic scattering experiments. 

Several years ago, however, Shifman, Vainshtein and Zakharov (SVZ) [4] 

introduced the technique of QCD sum rules^which allows long distance 

effects to be incorporated in QCD calculations in a quantitative way. More 

recently, Chernyak and Zhitnitsky (CZ) have used this method to determine 

distribution amplitudes for both mesons [5] and nucleons [6]. We now 

explain the basic principles of the QCD sum rule technique. 

The operator product expansion (OPE) due to Wilson [7] is assumed 

to hold in the physical vacuum. Both short and long distance effects 

are included in the OPE of a current correlator. The coefficient 

functions contain the short distance effects and are calculated in 

perturbation theory while the long range non-perturbative effects are 

incorporated in the vacuum expectation values of the corresponding 

operators. It is hoped that the OPE gives a correct description of 

physics at distances greater than those of the region of asymptotic 

freedom. 



Dispersion relations are then written down for the invariant 

functions arising from the current correlators. The low energy 

behaviour of the spectral density is saturated by one or two lowest-

lying resonances, while continuum states approximate the high energy 

region. It is usual then to apply a Borel transformation to these 

relations. This suppresses the contributions from the high dimension 

operators in the OPE, as well as increasing the effect of the lowest-

lying resonance. Thus we arrive at the QCD sum rules, which are then 

treated to relate hadronic properties to the parameters of the QCD 

lagrangian and vacuum expectation values. 

In recent years extensive use of QCD sum rules has led to a 

number of satisfactory results on the hadronic spectrum. Properties 

such as meson and baryon masses and couplings [8,9], electromagnetic 

form factors [10], magnetic moments [11] and partial hadronic widths 

[12] have been calculated, and in general the results are in good 

agreement with experiment [13]. 

In this chapter we apply the QCD sum rule technique to correlators 

containing currents with the quantum numbers of the proton. In principle 

this should lead to values of the first few moments of the proton 

distribution amplitudes, thus enabling us to deduce the distribution 

amplitudes (or wavefunctions) themselves at the typical hadronic mass scale 

"p GeV. 

Such a calculation has been performed in Ref. 6 for the case of the 

nucleon. There, CZ obtain a wavefunction in which the total proton 

momentum is not distributed equally among the constituent quarks. About 

2/3 of the proton's longitudinal momentum (in the infinite momentum frame) 

is carried by one u-quark with the same helicity as the proton. In this 

respect the new distribution amplitude differs significantly from the 

symmetric asymptotic form, which is exactly calculable in QCD [1]. In this 

chapter we re-examine the calculation of the proton's distribution 

amplitude. Our results differ-from CZ for the correlators used in the sum 

rules but the values obfco.ined for the moments of the distribution amplitude 

are similar. We also outline how SU(3) symmetry may be used to derive sum 

rules for the moments of distribution amplitudes for other baryons in the 

jP = i+ octet. However, the required OPE's are not computed. 



Using their wavefunction, CZ argue that for the first time a 

calculation of nucleon electromagnetic form factors results in signs 

and magnitudes which are in agreement with experiment. Further 

impressive predictions are obtained for J/y and J/"^-»nn decay 

widths and for the behaviour of the ep and en deep inelastic 

structure functions fP(x) and fJ(x) in the threshold region x —* 1. 

Such asymmetric distribution amplitudes may also lead to interesting 

predictions for polarised hard scattering experiments and it would be 

Interesting to see if they can explain any of the puzzling 

experimental results. (See for example the recent discussion in Ref. 

14 and references therein). 

We shall use the CZ wavefunction as input for the proton decay 

calculation of Chapter 2. However, a cautionary note is appropriate 

here. Only the lowest twist behaviour of the OPE's for the current 

correlators is calculated. Therefore the QCD sum rule analysis 

provides information about the proton wavefunction at light-like 

separation x —>0. As a result the distribution amplitude obtained 

should be applicable to studies of high momentum transfer processes 

such as the QCD calculation of nucleon form factors and the pp 

decay rate. In contrast to these light-cone dominated processes an 

estimate of nucleon decay matrix elements should be sensitive to 

physics as x^->0. Thus the two classes of process involve different 

aspects of the distribution amplitude. This is associated with the 

fact that lowest twist operators are relevant to light-cone dominated 

processes whereas baryon decay operators are of higher twist. In 

principle a proton distribution amplitude more sensitive to short 

distance physics could be extracted from a QCD sum rule analysis. 

This could be achieved by calculating the complete Wilson OPE rather 

than just the contributions of lowest twist. Unfortunately, the 

computations involved would undoubtedly be lengthy. In the absence of 

such a proton wavefunction we must be content to apply the information 

gleaned from the lowest twist contributions to the OPE in our 

estimation of nucleon decay matrix elements. 



1.1 THE OPERATOR PRODUCT EXPANSION FOR QCD SUM RULES 

In this section we introduce a practical method for calculating 

the coefficient functions of the OPE. This will simplify the 

computations of the subsequent sections. This background field method 

has been used in QCD sum rule applications by other authors [15], and 

has been developed by Govaerts et al [16]. Here, we will be relying 

heavily on this last work. 

We begin by writing the lagrangian density of QCD: 

f 

klBrm (11.1) 

— PapoV gkosk ksviM 

where the sum is over quark flavours. The gluon field strength tensor 

Fp4is defined by 

+ 3 (1.1.2) 

and the gauge covariant derivatives in the fundamental and adjoint 

representations of the SU(3) colour group by 

D p = - ^ 3 T ' ^ H ; (1.1.3a) 

,, = 3^ & - 3 f . (1.1.3b) 

represents a quark field and A® a gluon field. 

The quarks transform according to the fundamental representation of 

SU(3) and the gluons according to the adjoint representation. g and 

m^ are the strong coupling constant and the quark mass respectively. 

The T's are generators in the fundamental representation of SU(3), and 

satisfy the relations 

[ T ' , T ' ] = .If"-'' T ' (1.1.4a) 

T r T " T ^ = -^ S"'' , (1.1.4b) 

where f^^^ are the SU(3) structure constants. 



The Wilson OPE is a short distance expansion of the form 

(2,1,1) cXiio) (1.1.5) 

n 
where 0^ and O2 are local operators. To any finite order in x only a 

finite number of operators 0 contribute and they are ordered by 

dimension. The corresponding coefficient functions may be singular 

as X —> 0. The expression (1.1.5) is valid only when sandwiched 

between initial and final states. 

Consider a correlator containing the time-ordered product of two 

currents J®, which contain only light quarks (u, d or s). As 

indicated before, an assumption of the QCD sum rule method is that the 

OPE is valid for external momenta q very much larger than the quark 

masses; i.e. 

^ C r i v l < o | O n | o > , 

n (1 .1 .6) 

where are the Wilson coefficient functions and 0 are local 

Lorentz scalar and gauge invariant operators containing light quark or 

gluon fields. The limit q^-^ - 0© corresponds to the short distance 

limit of Wilson's OPE. The coefficient functions will diminish by 

the corresponding powers of q. The leading terms in the expansion 

should then give the largest contributions to the current correlator. 

We assume that the OPE remains valid when we neglect the contributions 

of operators with dimension D^6. An additional reason for truncating 

the OPE is given by SVZ [4]. They argue that the OPE breaks down for 

operators of higher dimension due to instanton effects in the vacuum. 

Since the magnitude of the non-perturbative interactions falls 

off quickly at short distances the leading contributions to the 

asymptotic behaviour of the coefficient functions may be 

obtained, by using perturbation theory, as the leading terms in series 

in Q(g= 9^. The vacuum expectation values <010^ |®> , with 0^ not the 

identity operator I, parametrise our ignorance of the non-perturbative 

effects. 

The quarks and gluons may be pictured as propagating through the 

physical vacuum, interacting with long distance fluctuations of the 

condensates. The basic idea of the background field approach is to 

10 



expand the quark and gluon fields as quantum fluctuations around 

classical background fields representing the vacuum fluctuations. If 

we then make a short distance expansion of the current correlators in 

the background fields we derive the OPE as a series in <010 |0> with 
n' 

the operators 0 as gauge-invariant functionals of those background 

fields only. (By definition the quantum fluctuations average to zero 

in the physical vacuum). 

Explicitly, we set 

C*) — * (1.1.7a) 

lAp + g&p , (1.1.7b) 

where and A|, are the quark and gluon background fields satisfying 

the QCD equations of motion 

Y r (1.1.8a) 

( Dy, Y f ) == __,n, (1.1.8b) 

( G - p , ) * = 3 (1.1.8c) 

f 

Gpj is the background gluon field strength and and are 

background covarlant derivatives, and represent the quantum 

fluctuations. 

The colour singlet operators with zero Lorentz spin (only such 

operators give rise to non-zero vacuum expectation values) and 

dimension D not greater than six are [4] 

I (D = 0) (1.1.9a) 

0^ - M, (D = 4) (1.1.9b) 

Og = (D = 4) (1.1.9c) 

Og = ipn y i p (D = 6) (1.1.9d) 

11 



"4 (D - 6) (1.1.9e) 

0, (D - 6) <1.1.9f) 

where . . 

= f d j (lJUlO) 

and (yfj = ^ [Tfr,Tf*] . (1.1.11) 

and M2 are mass matrices in flavour space while the matrices Tj and 

have colour, flavour and spinor indices. All other operators with 

D ̂  6 may be reduced to these, together with total derivatives, by 

using the equations of motion. The corresponding (physical) vacuum 

expectation values <0|0^|0> , n = 1,2,3 parametrise the leading non-

perturbative corrections^,while <0|0^|0> and <0|0^|0> are estimated to 

lead to comparatively small adjustments in the OPE[4]. Thus in our 

computations we will neglect the effect of these last two matrix 

elements. 

In our calculation of the coefficient functions we will require 

expressions for quark and gluon propagators. Thus we must use this 

formalism to develop short distance expansions for these propagators. 

These will describe propagation in background, or external, quark and 

gluon fields. Performing the substitutions (1.1,7) in the lagrangian 

(1.1.1) we find 

X . ^ ^ t&Kost) + { ̂ 0 
f 

K [t'"' 19^ !>*)" - 0 - H.) - J 3 f"'" 

3 

f 

where the equations of motion (1.1.8) have been used to arrive at this 

12 



form. The gauge-fixing term L ̂  Dy, has been added to the 

lagrangian. In what follows we choose the Feynman gauge («=1) for 

the quantum fluctuations. 

The quark and gluon propagators, S^Cxjy) and (x,y) 

respectively, satisfy the defining equations 

( . L 0 (1.1.13a) 

+ Za f"'" I*'3' = - l.; 

(1.1.13b) 

We now exploit the residual gauge freedom in the background field Ay. 

Short distance expansions are easiest in the commonly used Schwinger 

gauge [17], defined by 

(xrxQy\Ap(x) = 0, (1.1.14) 

where x^ is an arbitrary reference point which plays the role of a 

gauge parameter. This constraint breaks translation invariance but 

the parameter x should cancel in the current correlators since the 

latter are gauge invariant. Thus, from the beginning, we may set x 

equal to zero. The condition 

xPAp(x) = 0 (1.1.15) 

may be solved to give [18] 

& r* 
:== j (L* * x/* 

* 
*o 

k I ̂ k+z) 
k=* (1.1.16) 

Use of this form will result in gauge covariant expressions for the 

current correlators. Solving equations (1.1.13) for the free quark 

and gluon propagators and adapting the results to perturbative 

expansions in the background fields by iteration we find 

13 



Sf -J 
f 27C* Ikt-lE.)* 4-%! k*-it 

' # I & -

4" 5 

4» ^ , 
8?c^ 

— 

3 2 'Tc' 

3 
4 8 "K* 

s 

lllf* 

_3 

144 "TC* 

"If 3 TT* >1^9* 
k^— 4, & 

iA_ G-t^wi T " or>"' In (-^'^i.'•) 

lD^G-^pr«>l T ' yf" Ln ( . - a H ' ) 

(t»-iE.)' 

( D « G.j^)%<.) T 
^ j 

k*-lt 

- Z b " ' k * ' y ^ +3(.x^+y"<)V"»jk'y''*'»L"*^jkfy''jkf] 

+ terms of higher order in m^ 

+ higher dimensional operators (1.1.17) 

- f G.;, w , 4 ^ 

+ higher dimensional operators ^ (1.1.18) 

where t = x-y and A is an ultra-violet cut-off. The quark propagator 

has been written as a perturbative expansion in the quark mass m^. We 

may make use of (1.1.17) since we will be calculating OPE's for 

correlators of currents containing only light quarks, i.e. m^ « p , 

where jj Is the characteristic hadronlc mass scale. 

14 



The terms in the iterative expansion of S^(x,y) containing two 

factors of have been simplified by isolating the piece singlet in 

Lorentz indices. Just this piece will contribute to the coefficient 

function associated with the vacuum expectation value 

In general, calculations of the coefficient functions tend to be 

simpler when carried out in configuration space. However, we will 

find that some diagrams determining the corrections proportional to 

the matrix element H Y V ItV are more readily computed by 

working in momentum space. For future reference we thus give the 

short distance expansions for the quark and gluon propagators in 

momentum space : 

p 

t) 

t)' 

pf 
A. M , ) lo) T 

^ 5 4- % L n C D_. -r"*" yf* 
tp*+11) 

^ . -r Ok & 
^ 3 C P - T 

4 ^ r (pl+CcJf 

+ terms of higher order in m^ 

+ higher dimensional operators i (1.1.19) 

15 



J L p* + ̂ . t 

+ Zi,& Gr2^ I*) 
lp*+lt)' 

+ 3 i s l p l _ ^ 

lp*4. 4. 6) 

+ higher dimensional operators ? (1.1.20) 

The Blanch! identity 

%x Gfpj) + I trJX/ T \ 

has been used to express the quark propagator in this form. 

I CL Gfuj) + It)* GrJx) + I ]Dj Gnxp) (0 (1.1.21) 

16 



1.2 PROTON DISTRIBUTION AMPLITUDES 

In this section we define distribution amplitudes for the proton 

and derive some of their properties. 

We start by writing the gauge invariant matrix element of the 

tri-local operator for the proton: 

[exp i;.3 u.^1%%]]^ (iy lp> , 

where the exponentials are to be understood as being path ordered. 

Here !p> represents the proton state with momentum p, u and d are 

quark fields, i, j and k are colour indices and a, 3 and y are spinor 

indices. It has been verified [19] that the anomalous dimensions of 

(1.2.1), which were originally calculated graphically [1], correspond 

to the anomalous dimensions of the lowest twist three-quark operators. 

In the light-cone gauge used in Ref 1, for which the separations 

between z^, Z2 and Zg are all light-like [20], the lowest twist part 

of (1.2.1) reduces to 

(1.2.2) 

so that in this gauge we are only interested in the three quark 

component of the proton's wavefunction. Using the transformation 

properties of the fields under proper Lorentz transformations and 

parity, (1.2.1) may be rewritten in terms of three invariant functions 

V, A and T [21] (in the infinite momentum frame p -^*o): 

(\'2 1) 
Vllg. p) 

(1.2.3) 

Here C is the charge conjugation matrix, N is the proton spinor and 

the constant f^ Is a measure of the value of the proton wavefunction 

at the origin. The normalisation condition used to define f^ is given 

below. 

17 



The three scalar wavefunctlons V, A and T determine the complete 

wavefunction of the proton. The purpose of the ensuing QCD sum rule 

analysis is to calculate the lowest twist behaviour of these 

functions. It is convenient to define the function V in momentum 

space as follows: 

= |V (2 , P,%i P,%3 P) p) cxp llkl p)) 
(1.2.4) 

Translation invariance then implies that Xj^+X2+X2=l and we deduce 

the inverse relation 

Xx.n&^-p)h (1.2.5a) 

where 

f [Ax.] == J j j & I I - % ^ ) . (1.2.5b) 

o e 

Similar relations may be written for the A and T functions. The V, A 

and T functions provide information on the longitudinal momentum 

fractions x^ ( O ^ x ^ ^ l j i = 1,2,3) of the quarks within the proton 

and are called distribution amplitudes. 

Determination of wavefunction moments, defined as 

V ' * = = j (1.2.6) 

with similar definitions for A and T , will allow 

us to deduce expressions for the distribution amplitudes V(x^), A(x^) 

and T(x^). We hope that an estimate of the lowest moments 

(specifically, those with n^+n2+n3 4 2 ) will suffice to extract 

approximate distribution amplitudes for the proton. 

The distribution amplitudes are slowly varying functions of at 

least one renormalisation scale. For our purposes it is sufficient to 

have one such scale, p'' say, which is a measure of the separation 

between the quarks: 

The dependence on is found by performing a renormalisation group 

calculation (See [6] and references therein). In the asymptotic limit 

the proton distribution amplitude,^ (x^) say, Is exactly 

calculable in perturbative QCD and has the totally symmetric form 

18 



^1*2*3 [1]' Using explicit forms for the (massless) spinors, 

together with (1.2.2), the lowest twist part of (1.2.3) may be 

rewritten in the form 

I P f ) = t A 

+ ^ [VtXi) + AlXiQ I 

-Tlx;.) j (1.2.7) 

where the arrows denote spin projections onto the z-axis and K, is a 

constant. In the asymptotic limit the flavour-spin structure is known 

to reduce to that of the SU(6)-symmetric quark model. Thus we deduce 

" Tw;.)! — ^ (5 (1.2.8a) 

^ o . (1.2.8b) 

- ( 0 , 0 , 0 ) 
(The normalisation constant K. is chosen so that = 1.) The 

evolution to the asymptotic form is only logarithmic so that the 

asymptotic result will never be useful phenomenologically. Typical 

results of QCD sum rule calculations of resonance properties are 

estimated to have an accuracy of only 10-15% [4], Thus we feel 

* 2 

justified in calculating the distribution amplitudes at p a 1 GeV 

and neglecting the relatively small corrections resulting from the 

inclusion of renormalisation effects. 

The identity of two u-quarks in the proton implies 

(1.2.9) 

By using the symmetry of the matrices and c'"' C, and the 

antisymmetry of V ̂  Yg C, we deduce from (1.2.2) and (1.2.3) the 

symmetry properties 

,y.a) (1.2.10a) 

(1.2.10b) 

= T \ . X % (1.2.10c) 
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which in turn imply the relations 

(1.2.11a) 

^ (1.2.11b) 

_— VA*, M,,*}) (1.2.11c) 

The proton has isospin I = i. We must ensure that the matrix element 

of the orthogonal I = 3/2 combination vanishes; i.e. that 

+ = O (1.2.12) 

Again using (1.2.2) and (1.2.3) this leads to the constraint 

(1.2.13a) 

where 

"" (1.2.13b) 

We conclude that there is only one independent proton distribution 

amplitude. CZ choose this to be the (dimensionless) function ^(x^x^jx^). 

The constraint (1.2.13) may also be translated into a relation between 

the moments of the proton's distribution amplitudes: 

^ T'".,"..".1 (, ̂ .,4) 

Equation (1.2. lib) implies that = 0, and then from (1.2.14) 

we obtain The decay constant f^ is normalised by 

the choice 

From this lb follows that ^(0,0,0) _ which will ease comparison 

between ^ ( x ^ ) and the asymptotic form (x^). 

Thus far we have considered the case of the proton. The analysis 

for the neutron is similar. However, since the SU(6) flavour-spin 

wavefunction for the neutron is obtained from that of the proton by 

making the substitutions u-^d d-> -u, it follows that K. —> -ic in the 

limit of exact isospin symmetry. It is clear that the assumption of 
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exact isospin symmetry implies that the neutron's V, A and T functions 

coincide with those of the proton^thus enabling us to define a single 

nucleon distribution amplitude 

An alternative definition of the proton distribution amplitude 

has been given by Brodsky and Lepage [1]. The most general form is 

4 ^ V ) = (1^13) 

+ (1.2.16) 

a 11 co rj f Ff Stat ,q^) ,q^)) are symmetric 

(antisymmetric) under the Interchange x ^ ^ X g . The combinations in 

squared brackets arise from the SU(3) mixed symmetry representations 

for the octet states of two u-quarks and a d-quark. By isolating the 

terms with the d-quark in position 3 and comparing with (1.2.7) we 

find the relations 

L [Vtx.ju^ - = cr Cit' (1.2.17a) 

^ [ V u w + AtM.;)] — O" _2.17b) 

T o i l ) (1.2.17c) 

where (T is a constant. The constraints (1.2.10) and (1.2.13) are seen 

to be consistent with equations (1.2.17). This equivalent formulation 

proves to be useful in the proton decay analysis of Chapter 2. In the 

appendix at the end of this chapter both formalisms are used to deduce 

constraints on the V, A and T functions for the and A hyperons, 

where the quarks are of three different flavours. 
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1.3 THE CURRENT CORRELATORS 

This section contains a discussion of the current correlators to 

be used in the QCD sum rule analysis. We study correlators of the 

form 

where are operators whose matrix elements <0|f^ ^(0)jp> may be 

expressed in terms of the moments and T^^^ of the 

distribution amplitudes and J are auxiliary operators or currents 

chosen with the aim of making the proton's contribution to (1.3.1 ) 

large. 

First we turn to the problem of choosing suitable proton 

currents. Unlike the meson case unique quark currents (with no 

derivatives) do not exist. There are three independent quark currents 

j(^|) with quantum numbers of the proton, and no derivatives, which 

give non-zero matrix elements <01J |p>. The current that is chosen 

should satisfy two conditions [22]. In the OPE of the current 

correlator it is desirable that 

(i) the lowest lying baryon resonance give a greater contribution 

than the continuum states; 

(ii)the neglected non-perturbative corrections be small 

compared to the contributions of the retained terms. 

Following CZ we select the proton current 

[ ( IJV Z P Lk C ̂  hw] I Yg fj I 

( 1 . 3 . 2 ) 

where z** is an auxiliary light-like vector introduced to help project 

out the leading twist component. In Ref. 6 it is claimed that use of 

this isospin j current in the QCD sum rule analysis leads to a 

distribution amplitude which gives good agreement with experimental 
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data on nucleon electromagnetic form factors and other quantities. 

The computations will tend to be simpler for small values of n^. Thus 

only the currents and are included in the correlators. 

As mentioned earlier we hope to construct proton distribution 

amplitudes once the wavefunction moments have been determined in the 

sum rule analysis. The moments are introduced via matrix elements of 

suitably chosen local operators. We first consider 

((31 == 

C ) [ U or' C ̂  'L [ t i t IVf j i i I p% 

( 1 . 3 . 3 ) 

where (n)== (n^, n2, n^). 

This may be rewritten as 

where A / Y and t are spinor indices, and we have Introduced the 

compact notation 

t i . p r = 3"" Du,. D*. = (.1")" ( . D ^ r . (,.3.5) 

3 
Because 2 ~ ^ the y-dependence may be taken outside the integrals 

as a factor e Then, choosing the Schwinger gauge (1.1.14), for 

which A^XO) ~ 0) the covariant derivatives may be replaced by 

partial derivatives 3^. After integrating by parts to get rid of the 

partial derivatives, we deduce 

< o l v 4 " \ s , l p > = 

' ^ ( 1 . 3 . 6 ) 

Now we recall (1.2.2) and (1.2.3). The trace theorems for y-matrices 

ensure that only the V term gives a non-zero contribution. The final 

form of the matrix element is 
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<°l N , V " " & (1.3.7) 

In the same way we introduce the moments of the A(x^^T(x^) 

functions: 

[ ( (;.% Dr'u.ty))''C^ Yg D)"^ 

= % ( 1 . 3 . 8 ) 

<o|T:r'(3^ = 

w"' C or̂ 4) 3.̂  li;.% pr^^y^Yg 

= Z f ^ ( 1 . 3 . 9 ) 

Thus we shall evaluate the following correlators in our 

investigation of wavefunction moments: 

I\wi r 
<o| T ( 

" ( 1 . 3 . 1 0 ) 

= -Lj <<)| T ( lo> 

= ( 1 . 3 . 1 1 ) 

Here F ^ ) represents V ^ ) , A ^ ) or and Y*". 

The ̂  factor ensures that the leading twist contributions survive when 

the traces of y-matrices are taken. We shall compute the OPE's for 

j(n)(q2^ and in the spacelike region q^< 0 and for the cases with 

nj^+n2+n2^2 only. We shall neglect terms proportional to the light 

quark masses. Effects due to the breaking of the SU(2) isospin 

symmetry are neglected. Thus we assume 

= < « ' l % a . l o > = < o l % % | o > ( 1 . 3 . 1 2 ) 

and compute a single nucleon OPE. 
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Recalling that we wish to include only the leading non-

perturbative corrections in the OPE (i.e. those parametrised by the 

vacuum expectation values <0|0^j0>, n = 1,2,3) we write the asymptotic 

behaviour of the invariant structures and K^^^(q^) as 

follows: 

/Su * 
^ .n 

<o| ^ |o> 
481(1 IK 

.im; 

:== T,* I* 

(1.3.13) 

8*1% 

JL <oi |»> 
4 * -%* ^ I** 

<oi (1.3.14) 
*a" , , . 

' 

The dependence of the different terms in (1.3.13) and (1.3.14) is 

determined (up to logarithms) by simple dimensional arguments. The 

next section is devoted to a calculation of the a and g coefficients. 
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1.4 CALCULATION OF THE COEFFICIENT FUNCTIONS OF THE OPERATOR 

PRODUCT EXPANSIONS 

In this section we evaluate the asymptotic behaviour of the 

Wilson coefficient functions of the CPE's as defined by equations 

(1.3.13) and (1.3.14). Each of the coefficient functions m&y be 

derived as a perturbative expansion in the effective strong 

interaction parameter For 1 GeV^, at* * 0.3-0.4 and 

hopefully is small enough to enable us to neglect all but the leading 

terms in the series. The coefficient functions w i l l all be found to 

be ultraviolet convergent. This is a consequence of the fact that the 

correlators defined in Section 1.3 were constructed to extract the 

leading twist behaviour. 

We start by considering the I-correlators. From the definition 

(1.3.2) of the proton current we find 

- Yf), C y C (1.4.1) 

With the choice (x) = (x) in Eq. (1.3.10), it follows that 

<<>1T [ 0]%' c. V ( 1 1 

[ uL-io, C 

C (1.4.2) 

where the covariant derivatives coincide with the partial 

derivatives in the Schwinger gauge. Note that (D®'u) (0) stands 

for (I^u(x))'* |x=0. Similarly, 

<"* I T [ ̂  DH' LL c 9/ Yg I u ] I 

[l Y , C u.rto)] 

C j | o > . (1.4.3) 
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The constraint (1.2.14) tells us that the moments of the three 

distribution amplitudes V, A and T are not independent. Indeed, it is 

unnecessary for us to compute the I-correlators with F ^ \ x ) = T^^(x) 

since the values of the 3 coefficients for the corresponding OPE's may 

be deduced from an evaluation of the expressions (1.4.2) and (1.4.3). 

For an evaluation of the K-correlators we need 

(1.4.4) 

which leads to 

T [ I CC' C I L. ivr 

[ l % \ o , T|[ C L L " w ) 

- ^ ^ C u T w ) } lo> (1.4.5) 

when we choose F ^ \ x ) = T ^ \ x ) in (1.3.11). It may be easily checked 

that the perturbative contributions ( OC 0<^) to the K-correlators 

vanish when F ^ \ x ) = A^)(x). This leads to complicated sum rules. 

Thus we shall restrict ourselves to a study of the K' correlators. 

Such an investigation should provide a useful check on the QCD sum 

rule technique as the moments of the T function may also be determined 

by studying the I-correlators with F^^(x) = V ^ \ x ) and A^^(x) and 

using the constraint (1.2.14). In principle, use of the K-correlators 

should enable us to reduce the errors on our estimates of the moments 

of the distribution amplitudes. 

In accordance with the discussion of Section 1.1 we now make the 

expansions 

u(x) —»u(x) + 'V^^(x) (1.4.6a) 

d(x) —» d(x) +'i^^x) (1.4.6b) 

in (1.4.2), (1.4.3) and (1.4.5), where u(x) and d(x) represent classical 
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background fields and and their quantum fluctuations. By 

considering just those terms with quantum quark fields we calculate 

the coefficient functions of the identity operator I and of the 

gluonic operator vacuum expectation value The and 

g coefficients are computed by evaluating diagrams with some 

background quark fields annihilated in the vacuum. 

Details of the evaluation of the a and g coefficients are now 

presented. 

(a) Calculation of and Coefficients 

These coefficients occur in the Wilson functions associated 

with the identity operator in the OPE. Thus in this subsection 

we are determining the purely perturbative contributions to the 

functions and K^^^Cq^). We compute the asymptotic 

behaviour of the coefficient functions, keeping only the terms 

independent of . These terms may be represented 

diagrammatically as in Fig. 1.1. 

We consider I^(°^(q,z). Retaining only the quantum quark 

fields after performing the substitutions (1.4.6) in (1.4.2) we 

use Wick's theorem for Fermi fields to obtain 

+ C s:iK,3,r 

+ (1.4.7) 

where the trace (Tr) and transpose (T) refer to Dirac indices. 

This form exhibits the expected symmetry 

To evaluate the coefficients we neglect all g-dependent 

terms in the expansions of the covariant derivatives and the 

quark propagators. Thus the covariant derivatives reduce to 
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Fig. 1.1. Diagram Contr ibut ing to and 

Legend for Diagrams of Chapter 1 

^ y Quark Propagator 
S i k , 3 ) = ] a ' ' P 

\ A J U U ^ ) U U U L / ^ Gluon Propagator 

Background Quark Field 

Background Gluon Field 

Crosses represent annihilation of the background fields in the vacuum. 
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partial derivatives and the (massless) u- and d-quark propagators 

become the free propagators S^^^^x.y); i.e. 

s:,"; ^--31 ^ ^ (,.4.9) 

The colour factor is then identical for each term in (1.4.7) and 

for each (n). It is 

gk* == L (1.4.10) 

As an explicit example we compute the perturbative contribution 

to %V(0,0,0)(q^2)_ Thus we calculate the asymptotic behaviour of 

yc* 

With the help of (1.4.9) and the relation 

G G — (1.4.12) 

this becomes 

(1.4.13) 

J ^ (x/k.lt)' 

We have made repeated use of the fact that is a null vector, 

z®* = 0, to derive this form. 

In analysing the current correlators we encounter the more 

general integral [16] 

, (*=i) 

Ix.*- ;,E.Y 

(1.4.14a) 

(1.4.14b) 

( p* is an ultra-violet cut-off.) By taking derivatives with 

respect to q we may introduce factors of x into the integrand 

as required. Since we are interested only in those terms which 

have a non-vanishing Borel transform (see (1.5.13)) it is 
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unnecessary to include derivatives of the logarithm when n)> 3. 

2 

For the same reason all polynomials in q may be omitted. As a 

result the perturbative contributions to and are 

cut-off independent and proportional to q^ In q^. 

We find the perturbative contribution to 1^(0,0,0)^^ to 

be In which corresponds to a value of 1/3 for 

the Iclent for the choice F^»0,0) 

in the proton correlator. 

The calculations of all the and coefficients are 

carried out using the same method and the results are summarized 

in Tables 1.1 and 1.2. 

As well as possessing the required symmetry properties 

(1.4.15a) 

(1.4.15b) 

(1.4.15c) 

I ' 

the a3^'^^coefficients are seen to satisfy other relations: 

(X)'"'" = ^ -v (1.4.16a) 

y ' " ' " = 4. ( 1 . 4 . 1 6 b ) & — ^ I f (X * 

^ ^ (1.4.16c) 

(The g obey an identical set of equations.) These relations 

may be proved using Integration by parts and are a consequence of 

momentum conservation. Consider, for example, Eq. (1.4.7). We 

see that when we retain only the leading term in the perturbative 

series, 
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Table 1.1 Values of "1 
(n) 

(n) of*) 

(0,0,0) 1 

(1,0,0) 1/3 

(0,0,1) 1/3 

(2,0,0) 1/7 

(0,0,2) 1/7 

(1,1,0) 2/21 

(1,0,1) 2/21 

Table 1.2 Values of 

(n) 

F(")(x) = 
T 

v(*)(x) 
T T 

A(")(x) 
T 

(n) g^^n) (n) 
pA(n) 

(0,0,0) 1/3 (1,0,0) -1/42 

(1,0,0) 5/42 (2,0,0) -1/56 

(0,0,1) 2/21 (1,0,1) -1/168 

(2,0,0) 3/56 

(0,0,2) 1/28 

(1,1,0) 1/28 

(1,0,1) 5/168 
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')L 

[ T r c Str'w.,3)rc^ ( 3 t . Tr 

+ 3 AkX**" b*rY«iS 

+ llr C (3^3^ C-^ . i v S2\".,t)V 

+ 3 aLhtr k%fM& 

•^Tr C(.5?,s2V,3,)'C^ S'Z\-^.-»i. . T . 13'i S ' X W j y 

+ 3 b&f ms ^ I 

Gt*" lit**') (jL'^x. 3 

{T.-c^-s» s';w,3.f ciji. sS'w,.j ^ 

+ 3 b*r*« ^ 
'O 

(1.4.17) 
J ' ) 

which, by the definitions (1.3,10) and (1.3.13), implies the 

desired result 

y^VU,o,o)^ (1.4.18) 

The constraints (1.4.16) provide a useful check on our 

calculations. 

The symmetries (1.4.15) obviously hold for all « and 

g coefficients. The relations (1.4.16) also generalise, though not 

always for the reason in the example above. Both (1.4.15) and 

(1.4.16) may be rewritten as relations between the corresponding 
(n ,n.,n.) ( n ^ , n g ) 

moments of V, A and T; e.g. V = V etc. 
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(b) Calculation of and '̂ 2 Coefficients 

We now turn our attention to the calculation of the non-

perturbative contributions to the OPE. Since we neglect the 

effects of the u- and d-quark masses the quark condensate <0[0^|0> 

does not contribute. Thus in this subsection we determine the 

coefficient functions of the dimension four gluon condensate (OjOglO) 

For this case the leading terms are linear in the strong coupling 

parameter The diagrams corresponding to such terms are 

displayed in Fig 1.2. 

Again we consider the proton correlator with F ^ \ x ) = 

The expression (1.4.7) is our starting point. We 

choose the Schwinger gauge and determine the short distance 

expansion of using (1.1.16) and (1.1.17). 

All possible terms with two factors of the background gluon field 

strength tensor (without derivatives) are retained. In the 

diagrams of Fig. 1.2 the background gluon fields originating from 

the vertices at x and 0 arise from the expansions of the 

covariant derivatives acting at these points. 

It is seen that diagram (d) gives a vanishing contribution 

to the correlators: in the Schwinger gauge Ap(0) = 0 and the 

covariant derivatives acting at the origin reduce to partial 

derivatives. 

A study of the short distance expansion of the fermion 

propagator S^(x,y) (eq, (1.1.17)) shows that the diagrams (a) also 

do not contribute. The 'G^(O)' term in the expansion vanishes as 

y-»0 implying that with our choice of origin (background field 

gauge) a quark interacting twice with background gluon fields 

cannot propagate. 

Clearly diagrams (c) w i l l contribute only to those 

correlators with at least one covariant derivative acting at the 

vertex x; le, those with > n. 1; while diagram (e) is non-

vanishing only for the correlators with 2. ~ 2. As an 

illustration we sketch the evaluation of diagrams (b), (c) and 

(e) for ][V(0,0,2) (q,z). 
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(n) 
Fig.1.2. Diagrams Contr ibut ing to oc. and P 

X n ) 

(a) 

+ Permutat ions 

( b ) 

Permutat ions 

(c) 

Permutat ions 

(d) ( e ) 

X' 
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Diagrams (b) represent the three different possible ways in 

which a single factor of (0) may appear in the expansions for 

two of the three quark propagators. For those propagators, 

j(x,y) s(2) (x,y), (1.4.19) 

where the superscript (2) denotes the dimension of the gluon 

operator; i.e. 

— (1.4.20) 

2 
Thus we calculate the q —> - oo behaviour of 

<o| T - i. i . 

+ Tr u ? . T . 

- T , ( a j 

- T r O J e ' w " ) ' ' ? u r I ° > | 

(1.4.21) 

where we have defined 

S^(x,y) = C S^(y,x) C~^ , (1.4.22) 

It may be shown that 

S = — S lx.,y) (1.4.23a) 

"" ^ (1.4.23b) 
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For diagrams (b) the fact that = 0 implies that all the 

S^^^(x,y) propagators in (1.4.21) may be replaced by 

g(2)(a)(x,y). The colour factor is 

6**^ = (1.2.24) 

Performing the integration using (1.4.14b) the asymptotic limit 

of the contribution of diagrams (b) to %V(0,0,2)^q ig found to 

be 

4 3 l o ) , 

where we have extracted the Lorentz and colour singlet 

component by making the replacement [23] 

(1.4.25) 

Next we consider diagrams (c). This time one factor of G ^ O ) 

must come from the expansion of the covariant derivatives. 

Thus, for the 1^(0,0,2) correlator, we put 

+ (1.4.26) 

In this case only the S^^^^^^(x,y) term of the interacting 

propagator gives a non-vanishing contribution. Using (1.4.26) 

and the identity 

p ^ ^ ^ ^ ̂  ̂  ̂  ^ ^ (l .4.27) 

together with the properties of the charge conjugate propagator 

S^(x,y), we obtain a contribution of _=J ^ V 

Lastly we must allow for the case when both factors of 

Gpj(O) originate in the expansions of the covariant derivatives; 

X • 6 O 

- 4 (1.4.28) 

for the 1^(0,0,2) correlator. This situation is represented in 

diagram (e) and leads to the contribution 
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,(n) 
Table 1.3 Contributions to ? 

Contribution from 

Diag. 1.2(b) 

Contribution from 

Diag. 1.2(e) (n) 

"2 
(n) 

Contribution from 

Diag. 1.2(b) 

Contribution from 

Diag. 1.2(e) (n) 

"2 

(0,0,0) 1/3 0 1/3 

(1,0,0) 1/6 0 1/6 

(0,0,1) 0 0 0 

(2,0,0) 1/10 1/30 2/15 

(0,0,2) -1/30 1/30 0 

(1,1,0) 1/20 -1/60 1/30 

(1,0,1) 1/60 -1/60 0 
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Table 1.4 Contributions to ^2 
(n) 

(a) ? ( ' ) ( % ) -

Contribution Contribution Contribution 

"̂ 2 (n) 
from 

Diag . 1 .2 (b ) 
from 

Diag. 1 .2(c) 
from 

Diag. 1.2(e) 
"̂ 2 

( 0 , 0 , 0 ) 1/12 0 0 1/12 

( 1 , 0 , 0 ) 7/240 -1 /240 0 1/40 

( 0 , 0 , 1 ) 1/40 1/120 0 1/30 

( 2 , 0 , 0 ) 1/60 - 1 / 3 6 0 1/180 7/360 

( 0 , 0 , 2 ) 1/90 1/180 1/180 1/45 

( 1 , 1 , 0 ) 1/180 - 1 / 3 6 0 -1/360 0 

( 1 , 0 , 1 ) 1/144 1/720 - 1 / 3 6 0 1/180 

(b) = Cx) 

Contribution Contribution Contribution 

^2 (n) 
from 

Diag. 1 . 2 (b ) 
from 

Diag. 1.2(G) 
from 

Diag. 1 .2(e) 
^2 

( 1 , 0 , 0 ) - 1 / 4 8 1/80 0 -1/120 

( 2 , 0 , 0 ) - 1 / 6 0 1/120 0 - 1 / 1 2 0 

( 1 , 0 , 1 ) - 1 / 2 4 0 1/240 0 0 
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We obtain a final total of 

for the asymptotic behaviour of the 1^(0,0,2) correlator due to 

the condensate ^OIC^IO^. This corresponds to a value of 1/45 

for the^^^^^*^coefficient. 

The results for all the and coefficients are 

displayed in Tables 1.3 and 1.4. These values have been checked 

by calculating the Feynman diagrams of Fig 1.2 in momentum space. 

It is clear that such an approach necessitates integration over 

two loop momenta. For these diagrams it is simpler to assume the 

short distance expansion (1.1.17) for the quark propagators and 

perform the manipulations in configuration space. 

It is seen that relations analogous to (1.4.16) hold also 

for the and coefficients. Indeed, they are satisfied 

for each individual diagram. For diagrams (b) the relations 

follow using the integration by parts argument of Section 1.4(a). 

For diagram (e), however, the fact that, for example, the 

contribution to the I^^^\q,z) correlators satisfy 

^ ( 1 . 4 . 2 9 ) 

is a consequence of the colour factors. Specifically, the 

identity 

( 1 . 4 . 3 0 ) 

is required. Both types of argument are needed to prove the 

relations between the contributions from diagrams (c). 

(c) Calculation of ^ and 3^ ^ Coefficients 

So far we have determined the first order perturbative 

contributions to the functions and as well as 

the leading contributions of the dimension four gluon 

condensate.. The and coefficients occur in the Wilson 
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functions associated with the four quark operator Og ((1.1.9d)), 

which has dimension six. In our calculations we again wish to 

retain only the leading terms in the perturbative expansions of 

the coefficient functions. Contributions independent ofWg(i.e. 

of order ) could be expected to enter via Fig. 1.3(a) 

while the remainder of the diagrams of Fig. 1.3 represent the 

possible contributions of order c&g. Again we illustrate our 

arguments with reference to the i^(^)(q,z) correlators. 

We start by considering diagram (a). As this diagram has 

only one quark propagator we retain only one pair of quantum 

quark fields after performing the substitutions (1.4.6) in the 

general expression (1.4.2). Since the four background quark 

fields will contribute to condensates of dimension D ̂  6 (see 

later), all covariant derivatives must reduce to ordinary 

derivatives. Thus we find 

V J i V e-'V 

+ w A4<"' 

+ w cLpw, ia;u V 

^ I ' O (3^5.);w, o ; j 

+ (af;, s'l' 

S^IO) 

ft*; 
w a LL 

( 1 . 4 . 3 1 ) 

(X.) s r 
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(n) , o(n) 

Fig.1.3 D i a g r a m s Contributing to oc ^ an p g 
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( c ) \ 

I 
\ 

Permutat ions 

(d ) 

Permutat ion 

( e ) 

+ Permuta t i on 

(f) 

+ Permu ta t i on 
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where a,g,Y,6,p and a are Dirac Indices. Clearly this expression 

satisfies the symmetry relation 

) n.4.32) 

as expected. 

Each of the terms of (1.4.31) contains a vacuum condensate 

of four background quark fields and their derivatives. Consider 

the general form 

( 1 . 4 . 3 3 ) 

where A,B,C and D are quark flavour indices. We saw earlier 

((1.1.16)) that the background gluon field A^(x) could be 

expanded in powers of covariant derivatives of the field strength 

tensor G®j(0) in the Schwinger gauge. In the same way [23] the 

gauge condition allows us to substitute covariant derivatives for 

oridinary derivatives in Taylor expansions of the background 

quark fields. Thus 

oo 

^ (1.4.34a) 

= V J. W (1.4.34b) where 

V — •Sp -^3 T " flP . (1.4.35) 

Use of these equations will result in gauge covariant expressions 

for products of background quark fields. It is clear that 

inclusion of any terms other than the leading ones of the 

expansions of any of the quark or anti-quark fields in (1.4.33) 

will lead to contributions to quark condensates of dimension D 

> 6. Thus the dimension six part of (1.4.33) is 

_n.e c*** <°i 
(1.4.36) 
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To estimate this four quark vacuum expectation value we follow 

SVZ [4] and introduce the vacuum saturation hypothesis. In this 

approximation only the vacuum intermediate state is retained in 

each channel: 

% <o| 

( 1 . 4 . 3 7 ) 

Since only Lorentz, colour and flavour singlets may have a non-

vanishing vacuum condensate we find [23] 

< » l ^ ( 1 . 4 . 3 8 ) 

(No sum over A). The vacuum expectation values 

(A = u,d,s) have been estimated by several authors [24,25]. 

Recalling our assumption (1.3.12), for our purposes the 

condensate (1.4.33) may finally be written 

g a k g i l _ gmc gBD g 

( 1 . 4 . 3 9 ) 

We now apply this approximation to our expression (1.4.31) 

for the contribution of diagram (a). It is clear that the action 

of the Kronecker delta symbols with Dirac indices is such that 

each term vanishes for all (n). This is because for each term at 

least two of the following pairs of indices are contracted: 

The contraction of any of these pairs in the expression (C^)^ 

(^) gives zero, either because = 0 or because the 

trace of an odd number of y-matrices vanishes. We conclude that 

the leading non-zero terms in the perturbative expansions of the 

coefficient functions are of order Wg . To compute these terms 

we must calculate the rest of the diagrams of Fig. 1.3. 
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Consider first the diagrams (b)(i). The contributions are 

most readily determined by modifying each term of (1.4.31) to 

allow for the gluon loop. For the sample graph shown, the first 

term of (1.4.31) must be altered by making the replacement 

(1.4.40) 

Since the Dirac index of only one quark field is altered the 

contraction of these indices still ensures the vanishing of each 

term of (1.4.31). A similar change occurs when the substitutions 

appropriate to diagrams (b) (ill) are made while the insertion of 

the gluon loop in the internal quark propagator of diagram (b) 

(11) does not interfere with the Dirac index structure of the 

background quark fields at all. 

For the graph Illustrated in Fig. 1.3(b)(iv) the replacement 

to be made in the first term of (1.4,31) is 

(1.4.41) 

This diagram too gives a vanishing contribution to the 

correlators. To show this, it is simplest to transfer to 

momentum space by using the definitions 

(1.4.42a) 

(1.4.42b) 

^ (1.4.42c) 

(The background quark fields do not carry any momentum.) 

The expression (1.4.41) becomes 

( 

(1.4.43) 
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Recalling from Section 1.1 that 

:= (1.4.44a) 

== (1.4.44b) 

we see that (1.4.43) contains as a factor the integral 

which vanishes in the prescription of dimensional regularisation. 

Having shown that none of the diagrams (b) contributes to 

the Wilson coefficient functions we turn to diagrams (c). We 

must amend each term of (1.4.31) to account for each of the four 

possible Feynman graphs. Each graph corresponds to the mediation 

of a gluon between a chosen quark and antiquark pair. For 

example, one modification which must be made to the first term of 

(1.4.31) is given by 

ITi")"" (1.4.45) 

Once the appropriate substitutions have been carried out it is 

again found to be easier to complete the computations in momentum 

space. The final result for the contribution of diagrams (c) to 

the %V(n)(q g) correlators is 

t 
== --- — ( o l J a Q ^ 

Q 4 

+ S* a 4. (1.4.46) 
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Using this form it is readily confirmed that 

^2^ 

kc) 
+ I 

i9L ;[ 
Vin)| 

( 1 . 4 . 4 7 ) 

(n) 
which implies that the 3^"' coefficients satisfy a set of 

relations analogous to (1.4.16). 

For reference we now give the contributions of these 

diagrams to the proton I-correlators with F^^(x) = A^^(x) and 

to the K-correlators with F ^ \ x ) = T^^(x): 

tt) 

I _ i 

L ' + 

in, + O ) 4.3)\ 

In, + m* + 3 ) I 

I*) 

lit 

) .''a -

( 1 . 4 . 4 8 ) 

+ It tn,4.U! 

In,*, + %) \ 

( 1 . 4 . 4 9 ) 
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These contributions also display the required symmetries under n^f^ 

n2 and satisfy relations analogous to (1.4.16). 

Diagrams (d), (e) and (f) differ from those already 

calculated in that they possess two quark propotgators (whether 

free or interacting) connecting the vertices at x and o. Thus, 

to determine the contributions of these diagrams to the 

%V(n)(q g) correlators, we retain two pairs of quantum quark 

fields after making the substitutions (1.4.6) in the general 

expression (1.4.2). We find 

1. ) 

= jay,,, 

<oj [ I V , ̂  UL, . T r I ( l A DC 

+ a . V i V ( l C % DC iD^'uLrix.). T r iDJZi 

- 11)2% DC IDC* 

+ (K, 4^11 ^ ^ 1iC)> (1.4.50) 

Note that these diagrams each contain a zero momentum gluon 

propagator. We do not attempt to evaluate such graphs by using 

conventional perturbation theory. Instead, graphs at a lower 

order in perturbation theory are computed and the diagrams in 

which we are interested are then produced by using the equation 

of motion (1.1.8c) in the lower dimensional condensates to 

generate the D = 6 four-quark condensates. 
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First let us consider the contribution of diagrams (d). 

Clearly we may replace all covariant derivatives in the general 

expression (1.4.50) by ordinary derivatives and let either of the 

two quark propagators of each term reduce to the free propagator 

To illustrate the procedure we study the simplest case, 

the correlator, and demonstrate the manipulations for 

the first term of (1.4.50) only. Thus 

IVWI 

=== 1 A.** 

+ obXtr btrms (1.4.51) 

We wish to determine the contribution of this expression to 

the D=6 quartic quark condensate. The two background quark 

fields will give rise to operators of dimension D^3. So we must 

allow a maximum dimension of three in the terms that we retain in 

the expansions (1.1.17) of the quark propagators. There are two 

ways of achieving a total operator dimension of six: 

(!) Let the interacting quark propagator contribute a 

gluon operator of dimension two; i.e. S(x,y) — ^ S^^\x,y) 

((1.4.20)). Then the background quark fields must generate 

an operator of dimension four. 

(ii) Let the interacting quark propagator contribute a 

gluon operator i 

where ((1.1.17)) 

/ O \ 
gluon operator of dimension three; i.e. S(x,y)-}S^ /(x,y), 
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* - & - . l D v & * w y \ ^ % r*" 
'i*** I 

*. 

^ Y 16 Y^" - Y''/ Y"^ 

-Zb"*k''Y') + 3l?L"'+y"<)Y'*ji^Y'' 

Here the background quark fields must give rise to an 

operator of dimension three. 

Thus we may write 

V ( o ) 

<°|{4.''„1<., A j u u . T . [ S ' ° W l ^ O E 

+ S'"»w->' i C'C 

+ ^ u : 

4- oLVit,*" L t f m t (1.4.53) 

For case (i) the condensates to be evaluated are of the form 

^ 2 I*) C*; (1.4.54a) 

(1.4.54b) 

(A = u, d), where 

^ (1 .4.55) 
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Suppressing the colour indices and expanding the quark field 

using (1.4.34a), we obtain 

< 0 | IO> 

== Koi 
+ 

+ c*nj .**%seLk,aa vitbV* D ^ 7 . ( 1 . 4 . 5 6 ) 

The first condensate on the right hand side is of dimension five 

but does not contribute to the correlators because of the 

assumption of massless quarks. The computation of the dimension 

six vacuum expectation value has been described in detail by 

Pascual and Tarrach [23]. By writing down the most general form 

consistent with Lorentz covariance they find 

Do-to) 

&=WL.&.S 
( 1 . 4 . 5 7 ) 

where the equation of motion (1.1.8c) has been used. With the 

help of (1.4.37) this becomes 

^ < .0 " , , < o l J S ; . ( 1 . 4 . 5 8 ) 

Expanding the quark field in (1.4.54b) and integrating by parts, 

I ( D«r (O) I <»> 

= - < 0 | 

+ c o M d a n s o u k e t w l k K D ^ l ( 1 . 4 . 5 9 ) 

Pascual and Tarrach evaluate this condensate too: 

< 0 | 

2 1 

( 1 . 4 . 6 0 ) 
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For case (li) Che vacuum condensate 

has to be computed. Again we Taylor expand the background quark 

field: 

"k v*lY,X . (1.4.61) 

It is found that [23] 

4 . .. f T, f. \ _ A 

A. It 

1 7 
( 1 . 4 . 6 2 ) 

The expressions (1.4.58), (1.4.60) and (1.4.62) for the required 

condensates may now be used to complete the computation in the 

usual manner. We find the contribution of diagrams (d) to the 

I^^*^\q,z) correlator to 

It is important to observe that the 'log' term of S^^\x,y) 

does not contribute to the final result as a consequence of the 

fact that z^ is a light-like vector. Thus the contribution of 

diagrams (d) to the I^^®^(q,z) correlator (and indeed to all the 

correlators that we study) is cut-off independent. 

Next we consider the evaluation of diagrams (e). Clearly 

all quark propagators in the general expression (1.4.50) must be 

non-interacting. One covariant derivative in each term 

contributes gluon operators to the condensate while the rest 

reduce to ordinary derivatives. Thus, in the Schwinger gauge, 

there w i l l be no contribution from these graphs to the 

correlators I^^®^(q,z) and K^°\q,z). The condensates to be 

evaluated are of the form 

where 

( 1 . 4 . 6 3 ) 
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Recalling the short distance expansions for the quark and gluon 

background fields, we obtain 

lO) 

+ < o | (V2(o)lo> 

+ Cofki&**s»Afts ivlLVi D & 7 . ( 1 . 4 . 6 4 ) 

The two dimension six condensates were encountered in (1.4.57) 

and (1.4.62) where their values were determined. 

Finally we must include the contribution of the graphs of 

type (f). In this case the operator of dimension six is 

generated by performing Taylor expansions of the quark fields 

in the condensate tx.) * . 

The term of dimension six is [23] 

( 1 . 4 . 6 5 ) 
2 ' 3 

Using this r e s u l t it is straightforward to complete the 

computation of these contributions to the correlators. 

The contributions from diagrams (d), (e) and (f) have been 

verified by repeating the calculations in momentum space. 

Diagrams with three quark propagators connecting the 

vertices at x and o may also give non-vanishing coefficients to 

the quartic quark condensate. However, such graphs are at least 

of order ((Xg)^ and so represent contributions to the next-to-

leading terms of the perturbative expansions of the Wilson 

functions. 
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The calculations for the K-correlators and for the I-

correlators with F^^(x) = A ^ \ x ) are carried out in a similar 

way and the values of the and g coefficients are given in 

Tables 1.5 and 1.6. 

W e o b s e r v e d e a r l i e r that the v a l u e s of the a and 3 

coefficients for the I-correlators with = T^^(x) may be 

deduced from those for the correlators with F ^ ^ ( x ) = V ^ ^ ( x ) and 

A^^(x). From (1.2.14) it follows that the sum rules for the 

J T correlators must be equivalent to those for the 

combination L I ^ ^ 

This is achieved when 

C-2) .66) 

T 
(See Section 1.5). The 3 coefficients are listed in Table 1.7. 

We have now completed our calculation of the invariant functions 

j(n)^q2^ and for the proton. Note that the v a c u u m 

condensates of the operators 0^ and 0^ ((1.1.9)) do not appear since 

we have neglected the effects of the u- and d-quark masses. Apart 

from the higher dimensional condensates we have also neglected the 

'G ' condensate <0|0^|0> . Like the four-quark condensate it has 

dimension six. However, the relevant diagrams for the lowest order 

contributions have two loops while those for the four-quark condensate 

have only one. Because of this the coefficients have a large relative 

suppression factor which hopefully is sufficient to make the 

contribution from the 'G ' condensate negligible. 
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Table 1.5 Contributions to a 
(n) 

(n) Diag. 1.3(c) Diag. 1.3(d) Diag. 1 .3(e) Diag. 1 .3(f) 
4 " ' 

(0,0,0) 108 -36 0 36 108 

(1,0,0) 45 0 0 12 57 

(0,0,1) 18 -36 0 12 -6 

(2,0,0) 63/2 2 4 12 99/2 

(0,0,2) 9 -28 4 12 -3 

(1,1,0) 9 2 -2 0 9 

(1,0,1) 9/2 - 4 -2 0 
3/2 1 
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Table 1.6 Contributions to 6 
(n) 

(a) (x ) (x ) 

(n) Diag. 1.3(c) Diag, 1.3(d) Diag. 1 .3(e) Diag. 1.3(f) 

( 0 , 0 , 0 ) 36 2 
0 6 44 

( 1 , 0 , 0 ) 63/4 1/4 1/4 3 77/4 

( 0 , 0 , 1 ) 9 /2 3 /2 - 1 / 2 0 11/2 

( 2 , 0 , 0 ) 117/10 2 /5 4 /5 27/10 156/10 

( 0 , 0 , 2 ) 9 /5 4 /5 2 /5 3 /5 18/5 

( 1 , 1 , 0 ) 27/10 - 1 / 2 - 1 / 1 0 3 /5 27/10 

( 1 , 0 , 1 ) 27/20 7/20 - 9 / 2 0 - 3 / 1 0 19/20 

(b) pC*)(x) A<°>(x) 
T 

(n) Diag. 1.3(c) Diag. 1 .3(d) Diag. 1.3(e) Diag. 1 .3(f) f.A(n) 
^3 

( 1 , 0 , 0 ) - 4 5 / 4 - 7 / 4 - 3 / 4 -3 -67 / 4 

( 2 , 0 , 0 ) - 9 9 / 1 0 - 7 / 5 - 2 / 5 - 2 1 / 1 0 -138 /10 

( 1 , 0 , 1 ) - 2 7 / 2 0 - 7 / 2 0 - 7 / 2 0 - 9 /10 - 59 /20 
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Table 1.7 Values of 
, T ( n ) 

Coefficients 

(n) gT(n) 3T (n , 

( 0 , 0 , 0 ) - 2 / 3 - 1 / 6 - 8 8 

( 1 , 0 , 0 ) - 5 / 2 1 - 1 / 1 5 - 8 3 / 2 

( 0 , 0 , 1 ) - 4 / 2 1 - 1 / 3 0 - 5 

( 2 , 0 , 0 ) - 3 / 2 8 - 1 / 2 0 - 3 3 

( 0 , 0 , 2 ) -1/14 - 1 / 4 5 - 1 8 / 5 

( 1 , 1 , 0 ) - 1 / 1 4 - 1 / 9 0 - 3 9 / 5 

( 1 , 0 , 1 ) - 5 / 8 4 - 1 / 1 8 0 - 7/10 
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1.5 DERIVATION OF TEE QCD SUM RULES 

The OPE's calculated in Section 1.4 for the current 

correlators (1.3.10) and (1.3.11) provide the basis for our analysis. 

To relate the moments of the proton distribution amplitudes to the 

parameters of the OPE's it is necessary to postulate alternative forms 

for the invariant functions and This is done by 

modelling the spectral densities as follows [6]: 

(1.5.1a) 

— K S . 5 .1b ) 

These expressions correspond to singling out the proton's contribution 

to the spectral densities (m^ is the nucleon mass) and assuming that 

the remainder is well approximated by a continuum of states above some 

threshold The constants and may be expressed as 

functions of the moments and T^*) in the manner shown 

below. In Section 1.6 we shall consider the dependence of our results 

on the particular choices (1.5.1). 

Dispersion relations are then written down for the invariant 

functions: 

L K ' ( e ) 

% I S ) 
\ ( 1 . 5 . 2 ) 

These allow us to extract information on the wavefunction moments by 

using the OPE's calculated in the last section. Using the dispersion 

relations it is easily checked that the forms of the continuum terms 

in (1.5,1) are chosen to agree with the known perturbative results. 

(See (1.3.13) and (1.3.14)). 
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We now return to the derivation of the constants and 

The vacuum expectation value occurring in the I-correlators may be re-

written as 

<0| T 

o< 

< o | F^\o)|o(><(x|(3"^'\o))+|o), (1.5.3) 

where the sum is over all states with the quantum numbers of the 

proton. Retaining the contribution of the proton resonance only 

and using (1.3.7), (1.3.8) and (1.3.9) together with the matrix 

element 

<olT^"'(o,|p>= --f„ u-p)' 

( 1 . 5 . 4 ) 

we find 

(m; 

• j d - p 5 i p » - m S ) e ^ f v 

ip) fVgtf) 

( 1 . 5 . 5 ) 

where we sum over the proton spins s ° "T, ̂ a n d 
or w h e n F ^ ) ( x ) = V ̂ ° ̂  ( x) , A % x ) or T ^ % x ) 
respectively. A Gordon decomposition leads to the simplification 

^ N^^p) = W^p) ^ = Z t . p , ( 1 .5 .6 ) 
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where we have used the fact that the spinors satisfy the normalisation 

condition 

h j f l p ) = = == - ( 1 . 5 . 7 ) 

Performing the x integration we now have 

IPROTON 

Jd'^p 8ipo) 

r s " ' n - p > _ I ( , . 5 g) 

"V 

With q°> 0 the imaginary part of this expression is 

IPR0T*N ( 1 . 5 . 9 ) 

which implies 

I m ^ |f^|% F^n) 

IPR«T*N 
( 1 . 5 . 1 0 ) 

Comparing with (1.5.1a) it now follows that 

pw: _ (1.5.11) 

By similar reasoning we find 

= — I Z I f w l ^ ( 1 . 5 . 1 2 ) 

Thus in order to obtain the moments of the proton distribution 

amplitudes we need to determine the r^^^* s and s. 

By means of the dispersion relations (1.5.2), together with the 

spectral density models (1.5.1) and the results for the invariant 

functions I^^^(q^) and K^^^(q^), we may relate the moments of the 

distribution amplitudes to the strong coupling parameter and the 
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vacuum condensates. These are QCD sum rules. We wish to use the 

relations to predict the properties of the proton. To enhance the 

contribution of the proton to the right hand side of (1.5.1) we must 

study low Q (= -q > 0) values. On the other hand the OPE's are good 

approximations only for large Q . To overcome this conflict of 

interest it is conventional to apply the Borel transformation to both 

sides of the sum rules. It is defined as follows [4]: 

_ L _ c-Q'-;" (1.5.13) 

2 

where M is fixed. By making a Borel transformation of the sum rules, 

the relative contribution of the lowest-lying resonance to the 

dispersion integral is increased while simultaneously the effect of 

the higher dimensional operators in the OPE is decreased. As the 

action of the operator B^ is to take an infinite number of derivatives 
2 2 

all polynomials in q give zero contribution. Neglecting the Q 

dependence of the strong coupling parameter and evaluating all running 

quantities at the scale M the sum rules now take the form 

M"* [i - u + 
IGoTr"* 

At*) 

243 "R 
(1.5.14a) 

M - [ i - e:"'"' 
gOTt'' 

< o | W > 
7? 

(1.5.14b) 
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where 

(Ml C**) 
(1.5.15) 

and we have used the results 

B w Ln Q * == - I (1.5.16a) 

G " U * ) ' ' = , ± ; , 1 F > ° (1.5.16b) 

Thus from the correlators in (1.3.10) and (1.3.11) there follow sum 

rules from which we hope to obtain the and and hence the 

corresponding moments of the distribution amplitudes. 
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1.6 ANALYSIS OF THE QCD SUM RUIES 

In this section we attempt to use the Borel transformed sum rules 

(1.5.14) to determine as much as possible about the proton 

distribution amplitudes V, A and T. We hope that values of the 

constants r^^) and (and of the thresholds s^^^) may be obtained 

by fitting the two sides of equations (1.5.14) in the region of M 

where the non-perturbative terms are less than about 40%^of the 

perturbative contributions. It is in this region, where 1.0 GeV^4 

1.5 GeV , that the sum rules are expected to be approximately valid. 

As indicated earlier^ the quantities appearing in the sum rules are 

9 9 

taken Co be renormallsedat a point p sal GeV . Values for the 

vacuum expectation values and 

are required. Unfortunately, at present there is no standard 

procedure to evaluate these condensates. The quark condensate may be 

estimated by using PCAC arguments and SU(6) symmetry. The value 

l O Z S G e V ) (1.6.1) 

has been quoted by SVZ [4]. For the coupling parameter we take [3] 

r—- ) (1.6.2) 

where A ig the QCD scale parameter. With A = 0.1 GeV this formula 

yields the value 0(̂ (1 GeV^) % 0.30. Thus we find 

^ 0 | |.g * lO""* (1.6.3) 

The gluon condensate has been estimated by SVZ [ 4 ] using sum rules 

for charmonium decays and is found to be 

<°I \o> % I Z x I o - ' (1.6.4) 

We start by studying the sum rules for the K-corre lators, from 

which we hope to determine the moments T^^^. For the case (n) = 

(0,0,0) the sum rule (1.5.14b) becomes 
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80'r:'*k + e T " " li+ H'*') 

==: I + O O b k + o n t (1 6 5) 

(M in GeV), where the required o< coefficients have been extracted from 

Tables 1.1, 1.3 and 1.5 and the condensate values (1.6.3) and (1.6.4) 

have been used. (1.6.5) has been written so that the contributions of 

the non-perturbative corrections (second and third terms on the right 

side) may be readily compared to the perturbative term (first term on 

right). It is clear that for M ss 1 GeV the corrections are of the 

order of 25%. Note that the 0(M~'^) and 0(M~^) terms are comparable 

for M 1 GeV . This does not imply a breakdown of the expansion at 
n 

such values of M . We must remember that we expect the coefficient of 

M ^ to be anomalously large. This is because the term in M ^ comes 

from one-loop graphs (Fig. 1.3) while the 0(M"^) contribution enters 

via two-loop graphs (Fig, 1.2). 

To extract the 'best-fit' values of and 

(= s^®Vm^) from this sum rule we analyse both sides of (1.6.5) in the 

region of M where the sum of the non-perturbative corrections lies in 

the range 10%-40% of the perturbative contribution. (It has been 

checked that the results of the ensuing analysis are largely 

insensitive to the chosen window.) It is found that = 1.43 GeV^ 

(0.86 GeV^) when the non-perturbative corrections are 10% (40%). In 

practice the fit is achieved by minimising the sum of squared 

differences between the left and right sides of (1.6.5) over the 

2 
required range of M ; i.e. we minimise the integral 

(1.6.6) 

with respect to the variable parameters k^®^ and The optimal 

values of these parameters (obtained numerically) are as follows: 

U. 
(ytV (1.6.7a) 

. (1.6.7b) 
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Recalling the definition (1.5.12) and the normalisation = 1 

((1.2.15)) we find 

N 5 1 X 10-^ , (1.6.8) 

in agreement with Ref 6. The error is dominated by the theoretical 

contributions which have not been included rather than by the details 

of the fit itself. It is of the order of 10-15% but it is not 

possible to control or significantly reduce the theoretical 

uncertainties without an enormous effort. While it is extremely 

difficult to check that the neglected non-perturbative corrections to 

the sum rules are small (condition (11) of Section 1.3) it is easily 

confirmed that for this sum rule the contribution of the proton 

resonance is greater than that of the continuum of states (condition 

(i)). In fact the latter terms range from 'w 15% to ^ 7 0 % of the 

proton contribution over the range of M in which we are interested. 

The value of s^®^ in (1.6.7b) is roughly what we would expect 

for the continuum threshold of the spectral density. Indeed, the 

best-fit values of this threshold for all the well-behaved sum rules 

(see be 1ow) are found to lie within the range 2.5 GeV^ ̂  s^°^ ̂  3.0 

GeV^. 

In order to investigate the dependence of our results on the 

choice of model expressions for the spectral density we modify 

(1.5.1b) by introducing to the right side an extra narrow resonance 

with a mass m̂ ^ of about 1.5 GeV. This "effective resonance" 

contribution corresponds to the experimental spectrum in the isospin i 

channel [6]. If we now define 

^ ( 1 . 6 . 9 ) 
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the new expression corresponding to (1.6.5) is 

_ I + o alt o nt, . ( 1 . 6 . 1 0 ) 

We study this sum rule by varying s^®^ within % 15% around the value 

(1.6.7b) and obtaining optimal values for and The best-fit 

values of (and hence If^^f) are found to be relatively stable 

(varying only by about 4%) whereas the optimal values of k ^ ^ range 

from about -0.9 (at s^®^ = 2.3 GeV^) to about +0.9 (at s^^^ 

= 3.1 GeV^.) (Of course from our previous analysis we know that k^^^ 

must vanish when = 2.69 GeV^.) This indicates that the sum rule 

is satisfied with a large contribution from the proton and is 

insensitive to the contribution of the effective resonance. Clearly 

this is a desirable feature for our analysis and gives us confidence 

in our estimate of the decay constant !%!• 

Similar analyses are possible for the sum rules derived from the 

K-correlators with (n) = (1,0,0), (2,0,0) and (1,1,0). These sum 

rules may also be satisfied with a large contribution from the proton. 

For the corresponding moments we find 

A 0 3 ? O M-O ( 1 . 6 . 1 1 a ) 

A : 0 . | 8 0 - 2 % ( 1 . 6 . 1 1 b ) 

^ % O o l - O lO ( 1 . 6 . 1 1 c ) 

Because the sum rules determine the optimal values of the parameters 

|f^| and there is an uncertainty in our estimate of Lf̂ ql 

, the corresponding uncertainties in the moments are typically about 

40% larger than that for |f̂ | . 
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Let us now try to understand why it is possible to satisfy the 

sum rules studied above. Looking again at (1.6.5) we see that the 

right side decreases with increasing M while the second term on the 

left is an increasing function of M^. For a fit, therefore, must 

be negative, implying a positive value of |f jj! ̂ , as required. When 

the optimal values of the fitting parameters are inserted into (1,6.5) 

the left and right sides assume almost Identical values over the 

2 

entire range of M in which we are interested. This feature is 

reflected in the particularly small value of the Integral (1.6.6): 

C l k ' W A : 3 * l o - * & a V 

2.*/* t,)/* (1.6.12) 

In general, for sum rules showing similar trends when is varied, it 

is possible to obtain excellent fits with positive moments and 

thresholds in the range 2.5 G e V ^ 4 s^^^^ 3.0 GeV^. However, an 

inspection of Tables 1.1, 1.3 and 1.5 reveals that the a coefficients 

with (n) = (0,0,1), (0,0,2) and (1,0,1) are such that the right sides 

of the corresponding sum rules are increasing functions of M^. In 

particular it is the negative 

coefficients which cause this problem. One might still expect to 

obtain a reasonably good fit. Unfortunately, this is possible only 

when the continuum thresholds fall below about 1 GeV^. If, 

instead, we try to fit the sum rules by constraining the threshold 

parameters to lie between 2.5 GeV^ and 3.0 GeV^, the squared 

difference integrals have comparatively large values of approximately 

10 ^ GeV^. This indicates that the curves representing the left and 

right sides of the sum rules as functions of have significantly 

different shapes. In fact, the right sides increase with much 

faster than the left sides. 

Despite the fact that the sum rules for the moments ^(0,0,1)^ 

n[(0,0,2) 'j'(ljO,l) not satisfied very well without modifying 

the spectral densities we now give the results for the best fits 

obtained by including only the proton resonance (together with the 

continuum) and letting the parameters s^^^ and k^^) assume their 

optimal values. They are 



^(0,0,1) 0 16 (1.6.13a) 

^(0,0,2) 0 oy (1.6.13b) 

T(1,0,1) % 0.05, (1.6.13c) 

which approximately satisfy the momentum conservation relation (see 

Section 1.4(a)) 

22(1,0,1) + ^(0,0,2) _ (1.6.14) 

As we have seen, the inclusion of an effective resonance at m̂ ;̂ 

1.5 GeV in the spectral densities generates a contribution, 

proportional to to the left side of the sum rules. This term 

increases more rapidly with M in the range of interest and good fits 

are obtained for the sum rules with (n) = (0,0,1), (0,0,2) and 

(1,0,1). Not surprisingly, however, the fits are insensitive to the 

proton's contribution and the values in (1.6.13) are reduced 

significantly, although now it is not possible to determine these 

moments very precisely. If we interpret this by concluding that the 

values in (1.6.13) should be taken as upper limits for these moments 

then the momentum conservation relation 

II 

implies that and 2^2,0,0) ̂  ^(1,1,0) g^ould both be increased 

from the values given in (1.6.11) to the following: 

2(1,0,0) = Q 42 (1.6.16a) 

2(2,0,0) + ^(1,1,0) 0 2 7 (1.6.16b) 

We now turn to the sum rules for the moments and ( = 

Y(n) _ A^^)) obtained using the current in the correlators. 

Looking at Tables 1.2, 1.4 1.6 It Is apparent that for all (n) the/3 

coefficients are of the same sign as the corresponding and (non-

vanlshlng) coefficients. The same Is also true for all/) 

coefficients except those for (n) = (0,1,1.) This means that when the 
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sum rules are written in the form of (1.6.5) (so that the non-

perturbative corrections may be easily compared to the perturbative 

contributions) the right sides, except for the case just mentioned, 

2 

all decrease with increasing M . As we saw in our study of the K-

correlators this behaviour leads to sum rules which are satisfied with 

a large contribution from the proton. We obtain best-fit values for 

the and (see (1.5.14a)) and investigate their stability when 

an effective resonance at about 1.5 GeV is included in the spectral 

density. The results are listed in Table 1.8. 

The uncertainties in the moments may be reduced by ensuring that 

the momentum conservation relations are not violated. Indeed, we may 

use these constraints to help us to write down definite predictions 

for the moments These values are given in Table 1.9. 

Also included are our results for the moments A^^^ and T^^^ obtained 

from the and by using the relations 

,0*' == 3)1** (1.6.17) 

and (1.2.14.) The moments of the distribution amplitude T(x) are seen 

to be in fairly good agreement with those obtained from our analysis 

of the K-correlators. Thus the study of the K-correlators provides a 

useful check on the consistency of the QCD sum rule method. 
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Table 1.8 Estimates of Moments 

Extracted From Sum Rules 

(n) v(n) 

(0,0,0) 1 1 

(1,0,0) 0.34 - 0.42 0.46 -0.59 

(0,1,0) 0.34 -0.42 0.18 - 0.21 

(0,0,1) 0.22 -0.26 0.22 -0.26 

(2,0,0) 0.18 -0.24 0.27 -0.37 

(0,2,0) 0.18 -0.24 0.08 -0.09 

(0,0,2) 0.10 - O J ^ 0.10 - O J ^ 

(1,1,0) 0.08 -0.10 0.08 - o j m 

(1,0,1) 0.06 -0.07 0.09 - 0 J 1 

(0,1,1) 0.06 - 0.07 Unreliable 
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Table 1.9 Proposed Moments of'Proton Distribution Amplitudes 

(n ) v ( n ) a / n ) ^Xn) 

( 0 , 0 , 0 ) 1 1 0 1 

( 1 , 0 , 0 ) 0 . 3 8 0 . 5 5 - 0 . 1 7 0 . 3 9 5 

( 0 , 1 , 0 ) 0 . 3 8 0 . 2 1 0 .17 0 . 3 9 5 

( 0 , 0 , 1 ) 0 . 2 4 0 . 2 4 0 0 . 2 1 

( 2 , 0 , 0 ) 0 . 2 2 0 . 3 5 - 0 . 1 3 0 .235 

( 0 , 2 , 0 ) 0 . 2 2 0 . 0 9 0 . 1 3 0 . 2 3 5 

( 0 , 0 , 2 ) 0 . 1 2 0 . 1 2 0 0 . 0 9 

( 1 , 1 , 0 ) 0 . 1 0 0 . 1 0 0 0 . 1 0 

( 1 , 0 , 1 ) 0 . 0 6 0 . 1 0 - 0 . 0 4 0 . 0 6 

( 0 , 1 , 1 ) 0 . 0 6 0 . 0 2 0 . 0 4 0 . 0 6 
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1.7 DISCUSSION OF RESULTS 

In this section we attempt to reconcile the values obtained for 

some of the moments of the proton distribution amplitudes in Section 

1.6 with the results of other authors. We shall mainly be concerned 

with comparing our work to that of Chernyak and Zhitnitsky [6] 

although other studies are also mentioned. 

We start with a comparison of the conclusions of this chapter 

with those of Ref. 6. By inspection of the a- and g- coefficients we 

see that different results are obtained when the OPE's are computed in 

the spacelike region for the correlators (1.3.10) and (1.3.11). The 

main features of the comparison may be summarised as follows: 

(i) Our evaluation of the leading perturbative 

contributions to the OPE's is in complete agreement with 

Ref. 6, i.e. the same values are obtained for the a, and 

coefficients. 

(ii) The coefficient functions of the gluon condensate 

differ. Note, however, that if we take the linear 

combinations 

1. Diag. 1.2(b) - 4. Diag. 1.2(c) + 4. Diag. 1.2(e) 

(1.7.1) 

in Tables 1.3 and 1.4 then we get the results of CZ for 
(n) (n) . (1,1,0) , 

the a and g (on the assumption that the ot̂ , and 

coefficients in Table 4 of Ref. 6 should have the opposite 

sign so that the momentum conservation relations hold). 

(iii) The coefficient functions of the quark condensate 

are different. We cannot see a relation analogous to 

(1.7.1) which would help to resolve the discrepancy. 

Indeed, from our calculations we cannot understand how a 

factor of 5 can appear in Ref. 6 in the denominator 

for the with ti2+n2+n2 = 1 and the with ^1+112+ 

n 2 = 2. Although we disagree with CZ about the magnitudes 
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of and coefficients, the signs agree. 

The observations on signs are particularly significant. We have 

seen that if ) has the same sign as 

then, for the sort of values which arise in these calculations, it is 

possible to satisfy the sum rule (1.5.14) in the range where the non-

perturbative contribution is approximately between 10% and 40% of the 

perturbative one. In particular, the fact that we obtain positive 

values for all 3^ means that the simplest form of the sum rule 

(i.e. using duality to model all the contributions, except that of the 

proton, by a continuum) is satisfied. Because the signs of the 

and g^^^^ coefficients are the same a reliable determination of the 

moments is possible. This is also the case for all moments of 

the function ^ (x^), except that with (n) = (0,1 ,1.) The moments of 

Table 1.9 may be compared with those of the asymptotic form (1.2.8) of 

the distribution amplitude: 

AS 

AS 

(1.7.2a) 

O If (1.7.2b) 

O-IO (1.7.2c) 

The asymptotic form corresponds to a completely symmetric distribution 

of momentum, with each quark carrying one third of the total proton 

longitudinal momentum. By contrast, if, following CZ, we choose J(x^) 

to be the proton distribution amplitude (see Section 1.2) we see that 

the momentum is not distributed equally among the constituent quarks. 

About 55% of the proton's longitudinal momentum (in the p^->wframe) 

is carried by one u-quark with the same helicity as the proton. 

CZ propose the following as models for the functions V(x^) and 

= I 2 0 

[ll + + 8 8ZX.3 - I - 2 14] 

(1.7.3a) 
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+ 8 9ZX.) - I k S x . a - Z '):̂  

(1.7.3b) 

The moments of these functions are given in Table 3 of Ref. 6. We 

note that the predicted asymmetry among the quark momenta is greater 

than that implied by our results. Nevertheless, since the moments of 

the functions (1.7.3) lie within or close to the ranges determined by 

the sum rule analysis of this chapter (see Table 1.8) we feel 

justified in using the distribution amplitude (1.7,3b) for the proton 

decay calculation of Chapter 2. 

Our results using as the correlator current are 

also qualitatively similar (although numerically different) to those 

in Ref.6. 

As was the case there, we find that some of the sum rules can be 

satisfied and information about the corresponding moments of the 

distribution amplitude T can be obtained. The values we extracted 

((1.6.11)) may be compared with those of the model wavefunction 

proposed by CZ: 

4. i-o S** W.3 - 318]^ (1.7.4) 

for which and are 0.425, 0.26 and 0.10 

respectively. We saw in Section 1.6 how the inclusion of an effective 

resonance in the spectral density leads to an improved fit of the sum 

rules for the moments ^(0,0,2) ,j,(l,0,l)_ Assuming that 

this determination of the moments is reliable, momentum conservation 

then implies that and T(^)0,0) ^ ,^,(1,1,0) g^ould both be 

increased to the values given in (1.6.16). These values are in 

reasonably good agreement with the results of Ref. 6. 

Despite the encouraging results obtained using a QCD sum rule 

treatment of the current correlators it must be remembered that this 

method of analysis involves several approximations. Among the more 

obvious ones are 
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(i) Neglect of Higher Order Perturbative Corrections. 

Perturbative corrections to hard scattering processes vary 

considerably, e.g. the corrections to R in e^e annihilation are 

about 10% whereas for the Drell-Yan process they are over 100%. 

Recently Gorskii [26] has calculated the effects of radiative 

corrections to the sum rules used in determining the moments of 

the pion wavefunction. He concludes that the corrections are 

inessential for an evaluation of low moments. In the proton 

case, although there is no reason to expect that the corrections 

will be particularly large, it is possible that they will be 

significant. 

(11) Neglect of Operators of Higher Dimension 

It is difficult to estimate what effect the inclusion of further 

condensates will have. 

(iii) Vacuum Saturation of the Four Quark Condensate 

Since the magnitude and sign of the coefficient of the four quark 

condensate play such an important role, one might worry whether 

the assumption of vacuum saturation of this condensate is 

correct, and to what extent this affects the present analysis. 

On the other hand it should be said that such worries about the 

approximations would also apply to many other quantities for which 

nevertheless the sum rules work very effectively, leading to 

impressive agreement with experiment. 

An independent study of the moments of the proton distribution 

amplitudes has been reported by Lavelle [27]. This author analyses 

light cone sum rules for vertex functions Involving baryon-meson 

couplings and obtains the estimates 

A(1,0,0) = (1.7.5a) 

2^(2,0,0) _j_ y(0,0,2) _ 2^(2,0,0) ^ 0.70, (1.7.5b) 
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which are to be compared with the values -0.17 and 0.82 obtained for 

these quantities from Table 1.9. 

Estimates of the moments are also being sought by means of 

lattice calculations. However, at present, such studies are in the 

embryonic stage [28] and it may be some time before accurate results 

are available. 

The sum rule analysis of this chapter indicates an asymmetry in 

the distribution of momentum among the constituent quarks of the 

proton at the typical hadronlc scale p~l GeV, although the asymmetry 

may not be as great as that predicted by the wavefunction of Ref. 6. 

Elsewhere in the literature [14, 29] there is increasing evidence that 

an asymmetric proton wavefunction may be required to correctly 

2 
describe hard exclusive processes at available Q . 

Subsequent correspondence with Drs. Chemyak and'Zhitnitsky has 
established agi:eement with the results presented "above. We are 
grateful to these authors for pointing o u t a mistake in our original 
preprint. 
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APPENDIX 

COMMENTS ON DISTRIBUTION AMPLITimES AND CORRELATORS FOR OTHER BARYONS 

In Ref. 6 an attempt was made to derive a nucleon distribution 

amplitude. In Chapter 2 of this thesis the result is used to estimate 

the amplitude for the decay p ̂  ir̂ e"̂ . To use the same method to 

estimate the decay rates of the proton into other possible decay 

products (as predicted by the SU(5) (̂ 7T for example) would require 

distribution amplitudes for the and A hyperons. Here we 

define distribution amplitudes and correlators for these J = 2 

baryons and derive some of their properties. 

A treatment analogous to that given in Section 1.2 for the proton 

is also valid for the hyperon. The d-quark of the proton is 

replaced everywhere by the s-quark of the E"*". However, although the 

matrix element of the orthogonal SU(3) decuplet state must vanish as 

in (1.2.12), this is not for reasons of isospin. 

Corresponding V, A and T functions may also be defined for the 

and A hyperons, where the quarks are of three different flavours. 

To deduce constraints on these functions we shall make use of the 

formalism introduced by Brodsky and Lepage [1]. The matrix element of 

the leading twist piece of the tri-local operator for is written 

(A.I) 



As for the proton, this may be re-expressed as 

" 1 ^ * . (A. 2) 

Similar equations hold for A. The requirement that the orthogonal 

SU(3) decuplet and singlet states give vanishing matrix elements 

leads to the conditions 

<0| 

+ U.̂  It,) 111&) I %* = O 

(A.3a) 

and 

'V 

+ i t u.̂  I t , ; s I Z*", 
(A.3b) 

Using (A.l) these reduce to 

(A.4a) 

and 

== 2 (A.4b) 

respectively. To make further progress we introduce the Brodsky and 

Lepage definitions of distribution amplitudes for these baryons: 
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+ S^ti) ̂  u.^ia)) 

^ [ lu.^ti) d.̂ (.l) + Sf 13) 

- S^U) 

+ I I 4-4%) + (A.5) 

^ ^ [ 5^iu(u.^(z) d^lt) - d.;,l%) 

+ l(l^lU U.^11) -LL^U* 

- - W.^n) A^IZ)) 

+ 2 S^(Z) *^t3) - u* &^IZ% u.^13))] 

L * 4-^ Zl + t%44> &) . 

By using the relevant pieces of these wavefunctions and (A.2) we find 

(A.7a) 

(A.7b) 

(A.7c) 

(A.8a) 

z ^ A ^ (^^)] =z (^ [ ^ t*!,".,,**]] 

(A.8b) 

l%(x.;.) = . (A.8c) 
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From (A.4), (A.7) and (A.8) it is now clear that the functions 

^ and ^ satisfy the following constraints: 

(A.9a) 

A g * — —'A^* (A.9b) 

(A.9c) 

(A.9d) 

=: — ( A . 1 0 a ) 

(A.10b) 

(A. 10c) 

Z = 6 ^ . (A.IOd) 
A ^ A 

^ are defined by analogy with (1.2.13b) and may be chosen as the 

independent distribution amplitudes of the E° and A hyperons. The 

relations (A.9) and (A.10) may readily be translated to relations 

among the moments of the distribution amplitudes. As a final check on 

our reasoning, we note that the vanishing of the asymptotic forms of 

and T \ Is confirmed by the reduction of the flavour-spin 

structures of (equation (A.2)) and | to those of the SU(6) 

model. 

Suitable hyperon currents to be included in the correlators may 

be obtained from (1.3.2) by use of SU(3) symmetry: 

(A.11) 

(A . 12) 
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C y «l^oL)](Yg s^ut))o. 

+[((;.% 0^' ULiN.))"' & y (x.)] (Xg (l\x.))» 

+ 2 [(i^% IVg 

-2[((;.t.p)^' SUL))^ Ci^ (L^(x.Q IVf 

(A. 13) 

The current has Isospln 1=1, and I=0 for , &s 

required. 

The current correlators for the E , E° and A hyperons may be 

defined as in (1.3.10) and (1.3.11). Definitions similar to (1.3.3), 

(1.3.8) and (1.3.9) are appropriate for U*.) and 

, with s-quarks replacing d-quarks. It Is convenient to 
, * \/tA) \/WI 

choose Vg.yglx.1 - IX.) — (with similar relations for 

the A and T functions). We define 

(A. 14a) 

(A. 14b) 

(A . 14c) 

and use equation (A.l) to determine the matrix elements: 

<°i V.';; , 

(A. 15a) 

<°1 u w | y ° W > = - f . N 

a I'") 6 t 
E'lA) ^ 
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_-4,y 

— 9 1 fll N., 

y, (A. 15c) 

The computation of the coefficient functions of the OPE's for the 

various correlators for the hyperons is similar to that for the 

proton. In principle care must be taken to account for the mass of 

the strange quark by: 

(i) including mass terms in the background field expansion of 

the strange quark propagator 

(11) including the condensate (010, I. 0) (and po8slb 1 y{o|0^10» 

in the OPE's with the corresponding coefficient functions 

obtained by calculating the diagram of Fig. 1.4. 

In practice, however, all terms linear in m vanish because they 

involve traces of odd numbers of "Jf -matrices. If terms of order m^ 

are retained they will enter the Bore1-transformed sum rules as 

corrections of the form const, x . With 0.15 GeV [25] and 
2 s 

1-2 GeV we may conclude that such terms may safely be neglected in 

the QCD sum rule analysis provided that the multiplicative constants 

are not anomalously large. 
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Fig. 1 .4 D iag ram Relevant to Coefficient 

Function Associated with <01 Oi 10> 
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CHAPTER 2 

A CALCULATION OF THE PROTON LIFETIME USING AN ASYMMETRIC DISTRIBUTION 

OF QUARK MOMENTA 

In this chapter we investigate the effect of the introduction of 

an asymmetry to the distribution of quark momenta on the decay rate of 

the proton. The distribution amplitudes obtained by Chernyak and 

Zhitnitsky [1] are used to estimate a non-perturbative hadronic 

matrix element, leading to a determination of the rate for the decay 

p The method used is that of Brodsky et al [2]. The chiral 

lagrangian formalism of Claudson et al [3] is then employed to deduce 

amplitudes of other decays of the proton. 

We must also bear in mind the reservations expressed in Chapter 1 

on the applicability of a wavefunction sensitive to light-cone physics 

to a determination of nucleon decay matrix elements. Nevertheless we 

have no reason to expect that the asymmetry in the proton wavefunction 

implied by lowest twist contributions should not be retained when 

contributions of higher twist are included. 

The distribution amplitudes govern the longitudinal momentum 

fractions of the quarks within the proton. As well as investigating 

the effect of asymmetric longitudinal momentum components on the 

proton lifetime, we briefly discuss the influence of the distribution 

of transverse quark momenta on such a calculation. 



2.1 PROTON DECAY 

Attempts to develop a single theory describing all non-

gravitational physics led to the proposal several years ago of a 

number of candidate so called Grand Unified Theories (GUTS). (For a 

review, see Langacker [4]). The simplest of these is the minimal 

SU(5) GUT invented by Georgi and Glashow [5], which has the symmetry 

breaking sequence 

SU15-) ) S U ( 3 ) x S U ( 2 ^ x U U ) — 

(2.1.1) 

Below the unification scale GeV the couplings for the gauge 

groups SU(3), SU(2) and U(l) evolve differently, leading to the very 

different observed interaction strengths. 

One of the consequences of the SU(5) scheme is that the 

superheavy gauge bosons mediate baryon number violating transitions. 

This novel feature of GUTS implies that the proton is no longer 

predicted to be an absolutely stable particle. There have been a 

large number of attempts to estimate branching ratios and lifetimes 

for nucleon decay. Calculations with the SU(5) model indicate that 
0 4" 

the mode p ir e should dominate. It is found that the proton 

lifetime f (p-̂ ir°e"'") is of the order of 10^0^:2 yg^j-g^ Despite the 

fact that the decay rate is so small it is quite possible that proton 

decay could be detected experimentally. Several major experiments 

have been set up throughout the world in an attempt to confirm the 

exciting predictions of the GUTS. (See Ref. 6 for a review.) So far, 

however, no events have been recorded which can definitely be 

attributed to nucleon decay. These negative results have led to the 

present experimental limit 'Tr(p-)-Tr°ê ) ^2.5 x 10^^ years [7] which 

is already in conflict with the theoretical predictions of the SU(5) 

model [8], Clearly some modification in either the decay rate 

calculation or the SU(5) scheme itself is required if the Georgi-

Glashow model is to be acceptable as a GUT. Here we study the former 

option. 

Given a model for grand unification there are several stages in 

the evaluation of a lifetime for the proton. Since the unification 

scale is so large the interactions of the superheavy gauge bosons give 
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rise to effective four-fermion interactions at low energies. Thus, 

first, an effective lagrangian is deduced to describe the baryon 

number violating transitions. Then the effective lagrangian must be 

renormalised down from the unification mass to the typical hadronlc 

scale of about 1 GeV. Finally the baryon number violating 

interactions at the quark level must be formulated in terms of the 

hadrons and the relevant decay matrix elements evaluated. 

It is this last step, together with our ignorance of the 

unification mass M , which gives rise to the large uncertainty in the 

proton lifetime. A variety of phenomenological techniques have been 

used to determine the matrix element of the effective lagrangian 

between the hadron states. (See Falkenstelner et al [9] and 

references therein.) One method is to use current algebra and PCAC 

techniques. When the effects of SU(3) symmetry breaking are ignored 

these relate all nucleon antllepton + pseudoscalar meson decay 

amplitudes to just two three-quark annihilation matrix elements. The 

results of current algebra and PCAC calculations may be derived by 

means of the elegant chiral lagrangian formalism. We follow the 

approach of Claudson et al [3] who give a phenomenologlcal lagrangian 

based on chiral SU(3)2^ x SU(3)g^ to describe the baryon number 

violating interactions of baryons, leptons and pseudoscalar mesons. 

The pseudo-GoIdstone bosons associated with the spontaneous symmetry 

breaking of SU(3)^ x SU(3)ĝ  down to the vectorial subgroup SU(3)y are 

identified with the pseudoscalar mesons. The great predictive power 

of the chiral lagrangian, which allows decay rates for different modes 

to be related to one another, is a consequence of the small number of 

parameters. The chiral lagrangian is model-dependent and we perform 

our calculations for the minimal SU(5) GUT. 

The determination of the decay rate Into any particular channel 

requires a knowledge of non-perturbatlve bound-state physics of 

hadrons. Brodsky et al [2] express the decay rate for the mode 

p-»xe"̂  In terms of the unknown proton wavefunction (which describes 

the distribution of the longitudinal and transverse light-cone 

components of the quark momenta within the proton). They suggest a 

trial wavefunction symmetric in the quark momenta and find a decay 

rate in conflict with the experimental limit. 
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In this chapter we modify the calculation of Ref.2 to allow for a 

possible asymmetric distribution of quark momenta within the proton. 
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2.2 THE CHIRAl LAGRANGIAN 

Any candidate theory of the strong interaction must be 

approximately chiral x SU(3)g^ symmetric. Phenomenological 

lagrangians based on chiral symmetry have been used to reproduce 

current algebra results in the soft pseudoscalar limit [10], 

Predictions for low energy hadronic processes are then made by 

extrapolating from this zero momentum limit to the physical region in 

a systematic way [11]. Such a procedure is justified for nuc1 eon 

decay by Brodsky et al [2]. In this section we give the lagrangian 

introduced by Claudson et al [3] to describe the strong interactions 

of baryons and pseudoscalar mesons. Using power counting arguments it 

may be shown that expansions in both the number of derivatives in the 

interaction terms of this chiral lagrangian and In the number of loops 

in the Feynman diagrams to be calculated are valid for low energy 

processes. 

The chiral lagrangian is an effective field theory based on a 

non-linear realisation [12] of the chiral SU(3)ĵ  x SU(3)^ group. The 

chiral symmetry is spontaneously broken, leading to non-vanishing 

vacuum quark-antlquark condensates <0|q q|0> 

The associated octet of pseudoscalar Goldstone bosons is 

Introduced In the special unitary matrix ^ ; 

where the plon decay constant f^ (131 MeV) sets the scale of the 

chiral symmetry breaking and 

7C- K ° (2.2.2) 

K " K ' " J F l , / . 

transforms non-llnearly under an SU(3)^ x SU(3)^ transformation: 

> L ]§ = 0 3 ; (2.2.3) 

where L(R) is an element of SU(3)]̂  (SU(3)g^) and the unitary 3x3 matrix 

U is a function of L, R and TT. The transformation becomes linear 
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for the unbroken SU(3)y subgroup, when L=R=U. 

The baryon fields are Included in tlbe matrix 

IE n I (2.2.4) 

Under a chiral transformation 

B-*UBU+ . (2.2.5) 

The chiral symmetry breaking is symmetric with respect to U%e diagonal 

EnX3)Y subgroup, so that tibe baryon fields transform linearly like an 

octet and the baryon spectrum displays the observed SU(3) symmetry. 

We now write down (using four-component splnor notation) the 

most general SU(3)j^ x SU(3)g^ invariant lagrangian describing the 

strong interactions of the pseudoscalar mesons and baryons. 

+ T r 

+ ^-i. T r B 

+ Terms with more derivatives. (2.2.6) 

Here mg represents the degenerate mass of a baryon in the 

chiral limit. From measurements of semileptonic baryon decays the 

values D = 0.81 and F = 0.44 are obtained. 

Explicit chiral symmetry breaking terms are also included, in a 
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manner consistent with the light quark mass terms in the Q(^ 

lagrangian. As the quark mass terms transform according to + 

under SU(3)j^ x SU(3)g^, an SU(3)y-breaklng lagrangian with 

the same transformation properties is added to 

U"̂  Tr ( i S y m + m 

+ CI, Tt- B ( S+m B 

+ oLi B B ( 4 

+ b, Tir + 

+ i;. B Yg B ( 

+ Terms with derivatives 

+ Terms with more factors of m (2.2.7) 

where the quark mass matrix 

m 

o o \ 

o o 1 (2.2.8) 

o o Mg / . 

The values of a^CRg -0.45) and a2(A^0.88) are fixed by the known baryon 

masses. When v is chosen to be 196 MeV, the observed masses of the 

pseudoscalar mesons imply the usual current quark masses: m = 4.2 

MeV, m^ = 7.5 MeV and m = 150 MeV. The magnitudes of the parameters 

b^ and b2 are not known but are thought to be small. 

We now turn to the problem of writing a chiral lagrangian for 

baryon number changing interactions. First we must write down an 

effective lagrangian for proton decay in terms of quark and lepton 

fields. The most general form of the dominant part of the AB = 1 

lagrangian will include all dimension six baryon number violating 

operators possessing the low energy SU(3) x SU(2) x U(l) symmetry. 

This is because the leading effective operators with the required 
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properties are four-fermion operators. Also, contributions frian 

operators of higher dimension will be suppressed by corresponding 

powers of the grand unification mass and need not be considered. A 

complete list of the dimension six operators is given in Refs. 13. 

The effective lagrangian for proton decay is 

i i c i T ' o r + i i c i " o r 

l A.,1 -̂ =1 (2.2.9) 

where the coefficients C^'and C^are GUT dependent and their values 

must be adjusted, using renormalisation group techniques, from those 

at the unification mass down to the typical hadronic mass scale of 

approximately 1 GeV. The sums are over two lepton generations and tihe 

fourteen operators relevar^ for nucleon decay (six of conserve 

strangeness S while the others contain one strange quark): 

A S = O : 

( 3 L , 3 J (2.2.10a) 

^ (2.2.10b) 

Q i (2.2.10c) 

O Z (lL,8R) (2.2.lOd) 

Q'J' = (3^,3^) (2.2.lOe) 

l8u,lR) (2.2. lOf) 

S = I : 

l^L, 3^) (2 .2. 11a) 

Qdi ::2 (st U.2) ( u.^ (2 .2. lib) 

Q ® =C (^L etc) ( 8^^ 1 *) (2 .2. 11c) 

SI' (SR III, 8*) (2 .2. 11d) 

Q A c. 1 3 , , a J (2 .2. lie) 

^;.6k 
U.1) Is!^ (2 .2. 11f) 
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:(T) 
( 2 . 2 . i i g ) 

fe% ' »& ' 
(2.2.lih) 

We use the two-component splnor notation of Abbott and Wise [14] (see 

Appendix 1) and list the transformation properties of the operators 

under SU(3)^ x SU(3)g^, which are needed, together with their parity 

transformation properties, to rewrite ^ in terms of baryon and 

pseudoscalar meson fields. The result is 

2 
I 

T r OlS 

+ c " " ^dlR T r 0 1* B„ f 

-IP) 
(-i T r 0 ' 1 8 ^ 5 

+ CjL T r 6 S B , 1 

+ T - 0 S ' B » ?• 

+ c T <îL T. o" s B. 1 

- cT OiL T . o ' 5 8 , 1 ) 

+ C"' tie T , O r S R S 

- c'l' Oiu T r 0' « B. 

"Ol 
+ Cj, Tr 0 'S B, •S t L 

t 

+ c Z Q&L T r 6 " ^ 6 , r 

0^, i : 6 ' 

+ Terms with derivatives 

+ Terms with factors of m + h.c. (2.2.12) 
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Inclusion of the matrices 

0 0 0 

1 0 0/ 

/O 0 0\ /O 0 0\ 

, 0' = 0 0 0 

0 1 of 

, 0 = 

0 0 0 

- 1 0 0 

0 0 0/ 

0' 

0 0 0 

0 - 1 0 

\ 0 0 0 

and 0" = 

0 0 0\ 

0 0 0 

lO 0 I j 

(2.2.13) 

ensures that the required components of the SU(3)^ x SU(3)^ 

representations are projected out. Neglecting SU(3) violating 

effects, the a and $ coefficients are given by the three-quark 

annihilation matrix elements [2] 

<< 

.)k. 

U.. 
tL 

'Y& ^ 
k 
'&L 

(2.2.14a) 

(2.2.14b) 

where y, 6 and E are two-component spinor indices and p represents 

the two-component proton spinor. We see that the amplitudes for all 

baryon number changing processes may be expressed in terms of the two 

non-perturbative parameters a and g. Indeed we shall consider only 

those interactions mediated by the exchange of gauge bosons. (It is 

assumed that the coloured Higgs particles are heavy enough for their 

effects to be ignored.) Then all dependence on g disappears and we 

obtain definite predictions for the ratios of the rates for the 

various nucleon decay modes. 

Using the total lagrangian 

* Z, - Z 
we may evaluate the different nucleon decay rates. 

(2.2.15) 
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Vector axial vector mesons have recently twzem incorporated 

into the chiral lagranglan formalism by Kaymakcala^ et al [15]. Some 

vector meson decay modes of the proton are significant when the non-

relativistic quark model and the bag model are used to estimate the 

hadronic matrix elements. Nevertheless, throughout our work 

neglect the effect of these possible decay products. 

We now outline briefly how to obtain the decay rates from the 

lagranglan The procedure is illustrated for the process p ̂ m°e* . 

(Decays of the proton into more than one pseudoscalar meson and an 

antilepton will not be considered since the decay rates corresponding 

to these modes are seen to be suppressed using phase space arguments.) 

The leading contributions to the two-body decay amplitude arise from 

the tree diagrams of Fig. 2.1. Only those terms in ZC which contribute 

to the amplitudes at lowest order in the momenta are retained. 

For the pole diagram (Fig. 2.1(a)) the pp^r^ vertex is found by 

expanding ^ in the strong interaction lagrangian ^ whereas the 

pe* interaction violates baryon number and is obtained from * . 

The amplitude for this diagram is (in four-component notation) 

p l , k , r ) , ( 2 . 2 . 1 6 ) 

where r and s represent the spins of the positron and proton 

respectively and the projection operators and are defined as 

1 + Ys (2.2.17) 

Neglecting the positron mass and using the Dlrac equation for both the 

proton and the positron, expression (2.2.16) reduces to 

- C ' , " p j p l p , 5 , . ( 2 . 2 . , 8 ) 
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Fig. 2.1 Feynman D iagrams for p ^ r r ° 2 

( a ) Pole Diagram 
rr 

Proton p Prot on 

(b ) Direct Conversion Diagram 

-rr" 

Proton 
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The amplitude for the direct conversion diagram (Fig. 2.1(b)) 

. It is 

~ # f ( . C p , - C " " P ^ ) p l p , s ) , ( 2 . 2 . 1 9 ) 

By averaging the total amplitude over the initial proton spins and 

summing over the final positron spins the decay rate for the process 

obtained: 

rCp->'7CC+) = ) (2.2.20) 

where 

== I I -- (2.2.21) 
* \ r*, / -

The laboratory frame (in which the proton is at rest) is the most 

convenient for calculating the phase space factor. 

The proton -> pseudoscalar meson + antilepton decay rates are 

listed in Table 2.1. We have neglected all lepton masses in the 

calculations. For the channel and some of the 21S=1 channels the 

rates are dependent on the symmetry breaking parameters b^ and b2 

ofj^. Following Kaymakcalan et al [15] we choose = b2 = 0. 

Allowing for a non-vanishing Cabbibo mixing angle 8^ between the 

first two generations [4] the coefficients and C^^*\ake the 

following values in the minimal SU(5) model: 

C'i'' = itJT U + cos^8c) 

C'" = C r = H. J ? 

c r = c r = c c s G , 

fg) ^ 
C, = = H-JT &su(g) Cos 8c 

= - 4 J ? 8(_ 

All oLK&r ; c * ' = O (2.2.22) 
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Table 2.1 Two-Body Proton Decay Rates 

Decay Mode 
Intermediate 
Baryon(s) in 

Diagram 
Decay Rate 

Branching 
Ratio in 
Minimal 
SU(5) (Z) 

o + 
p -» TT e 

P ^ ne 

n + 
p ^ K jj 

P n+V; 

p -> K % 

p + K°e* 

0 + 
p ->• TT y 

p + np 

.j— 
p ^ K V 

n 

Z°,A 

A 

2 
a m 

1 Sirf 

+ cj2))2](i+D+F)2A^ 63.0 

2 
a m 

+ (c|2))2](i+D-3F)2A^ 0.5 

48mf 

& [(C<1))2 + (C<2))2](1 + 
SnfZ 2 2 % 

9.9 

2 
a m 

Sirf 

§ (c(5))2 (1+D+F)2 
24.9 

m 
_ c, [;2<D-F) +,^jL_(D+3F)]-c( )[1+j_E_(D+3F)]} 

OTTf Z A A 
ir 

2 
a m 

0.5 

gnf 

r(2)\2T,,^ *p _.2, 
(C; /) ](1+ (D-F) A^ 

2 
a m 

16lTf 

+ (c(2))2] (1+D+F)2A^. 

48wf 

+ (c(2))2] (1+D-3F)2A^ 

2 
a m 

0.2 

0.6 

I {4S!"[^(D-F) + A ( D + 3 F ) +A-(D+3F)]}2a 
STTf̂  ^ ' "E 

IT 

3m 1 3m. 

0.4 

Notation: 

A. 
1 

- ( 1 -

m.2 2 

-f-) ; 1 
m 

= IT, n , K. 
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where 

Is the strong interaction coupling evaluated at the unification 

mass and A = 2.9 [2] is the renormaligation group amplitude 

enhancement factor. We are thus a^^Le deduce ti^ branching ratios 

listed in Table 2.1. The value |cos 6̂ 1 ° 0.9737 + 0.0025 [16] is used 

in the calculation. 

In passing, we note that in the derivation of the baryon number 

violating terms oc of the chiral lagrangian it was assumed that all 

the baryonic three-quark annihilation matrix elements of the form 

^l(q^qg^) q̂ ^ had the same value as the proton amp 1 itude ̂  | (dĝ uĝ )û  

; i.e. SU(3) violating effects in the matrix elements were neglected. 

Consider for example the decay rates for the channels p-»Tr°ê  and p-̂ K°y"'" 

(Table (2.1)). The terms arising from the direct conversion diagrams 

may be related to the same three-quark annihilation matrix element 

<0 |(dĵ uĝ )û  Ip> in the soft pseudoscalar limit. However, whereas the 

terms contributed by the pole diagram (i.e. the D and F terms) in the 

process are also related to the amplitude <0 | (dgU )u^|p> the 

corresponding terms for the p^K°ju^ decay depend on the matrix element 

<01 (s^ug^)u IZ > which could differ due to SU(3) symmetry breaking. 

One method of accounting for such symmetry breaking effects could be 

to use baryon distribution amplitudes (possibly determined from QCD 

sum rule analyses) in a revised evaluation of the baryon number 

violating vertices of the pole diagrams. This would lead to new 

branching ratios for the various two-body proton decay modes. 
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2.3 AN ESTIMATE OF THE PROTON LIFETIME 

In order to determine absolute values for the proton partial 

decay rates it is necessary to calculate the magnitude of the three-

quark annihilation matrix element (2.2.14a), which we write 

symbolically as <01 (d^u^)u^ | p> . This section describes one possible 

procedure for obtaining an estimate for the parameter ot , and hence 

for the proton lifetime. 

Following Brodsky et al [2] we take as a model for the amplitude 

<0|(dgUg)u^|p> the three-quark antilepton (qqq I ) annihilation 

following the emission of a meson. This is a natural choice in the 

chiral lagrangian framework where the magnitude of thebaryon-)-

antilepton interaction of the pole diagram is proportional to the 

coefficient a. For example, baryon number violating vertex of 

the pole diagram for the decay mode p w^e^ may be represented as in 

Fig. 2.2. From%,^^"^ (2.2.12) this proton positron vertex Is found 

to be 1(C|" PR)*-

We use the light-cone formalism of Brodsky and Lepage [17] in our 

evaluation of the three-quark annihilation diagram of Fig. 2.2. With 

the definitions k^ = k ° ± k^ the proton momentum k^ may be re-

parametrised as (k^, k~, kj.). The quark light-cone momentum fractions 

, where k^ (1 = 1,2,3) are the quark momenta, reduce to 

longitudinal momentum fractions In the frame where k —» oo , as in 

Chapter 1. 

Because of our lack of understanding of hadron dynamics in the 

strong coupling regime of QCD we are unable to write down an exact 

three quark Fock state wavef unction I kt, F» for the proton. 

Here the represent the quark hellcltles. It is possible to 

perform calculations using an ansatz for the wavefunction, as Is done 

in Refs. 2 and 18, fixing the parameters of the trial wavefunction by 

using experimental data. However, the valence Fock state wavefunction 

is closely related to the distribution amplitude [2]: 

(2.3.1) 

where 
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Fig 2.2 Tine Three Ouarl< A n n i h i l a t i o n D iag ram 

For The Proton Posi t ron P rocess 

Proton 
Positron 
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(2.3.2) 

<0= I \ 

(The precise relationship between and the Brodsky and Lepage 

distribution amplitude (1.2.16) is given in (2.3.7).) Thus, as well 

as providing Information on the quark light-cone momentum fractions 

the distribution amplitude may be interpreted as a probability 

amplitude for finding the three quark valence state in the incident 

proton. The more complicated non-valence Fock states of the proton, 

which are components with extra quark-antiquark pairs and gluons, are 

neglected here since they do not contribute to the basic three quark 

annihilation matrix element. We shall choose the proton distribution 

amplitude ^ (x.,M ^1GeV)to be that obtained from the analysis of Ref. 

1 by using the definition (1.2.16) together with the relations 

(1.2.17). 

The terms of the low energy effective lagrangian (2.2.9) relevant 

to the three quark annihilation diagram of Fig. 2.2 are (in four 

component spinor notation) 

Z = c r Q'," + c?' q'." 

= X f u t ) 

I c, + (2* Yp A* ) . (2.3.3) 

From the Feynman rules of Ref. 17 it follows that the amplitude S for 

the diagram may be written as 

(2.3.4) 

where 

cTQT-c',"Q',"| 

u. ^ Q'," 

y k + k r k* k 

(2.3.5) 

and A and A represent the proton and positron helicities 
p e 

respectively. The stm Is over quark hellclty configurations 
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satisfying ^ A. = A and the coefficients h(x.) are given by the 
4 ^ 1 P 1 

proton's SU(6) flavour-spin wavefunction. The proton is assumed to be 

travelling along the 3-axis. Isolating those terms which have the d-

quark in position three we may write the amplitude with X = T as 
P 

OO 

I 

< e + ( ^ ) j u.i.u) u.Ti%) AiW&j, 

(2.3.6) 

where the functions , jj, X. ) are defined by equation (2.3.1). 

The colour factor ensures the correct normalisation for the 

flavour-spin dependence of the proton distribution amplitude (1.2.16), 

from which we find 

(2.3.7a) 

(2.3.7b) 

(2.3.7c) 

since 

= ""& - (2.3.8) 

It is not yet possible to perform the integrations over the transverse 

momenta and thus express the amplitude S in terms of the 

distribution amplitude. We must first evaluate the matrix elements of 
(O (2) 

the baryon number violating operators Q j and Q ^ to determine their 

momentum dependence. To simplify the computation of the matrix 

elements we first apply the Flerz transformation (A.1.8) to the 

operators Q*" and Q*** : 
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Y*' Fl e+ p^ (2.3.9a) 

— -&")*< l u F ' u ) Fk (1^3)) pL (2.3.9b) 

:i'r = PL LL" PL cl\&)) 

= -E_;.6k p^ 

We choose to evaluate the matrix elements using the helicity spinors 

of Brodsky and Lepage [17] (Appendix 2). The results are listed in 

Tables 2.2 and 2.3. All matrix elements include a colour factor of 6 

which arises as a result of the anticommutative property of Fermi 

fields. We now use these values to compute S( T, T). The operator 

does not contribute to this amplitude when the mass of the positron is 

neglected. We find 

[ 
S ( f , T ) = C, j x.iita'L, 

1%., - x-gklj. 

(2.3.10) 

where we have used the fact that, in the frame in which we are 

working, the positron does not carry any transverse momentum. The 

masses and are those appearing In the Dirac equation for the 

quarks: 

( /p' — = O . (2.3.11) 

Thus they are constituent quark masses and not to be confused with the 

current masses of the last section. The definition (2.3.1) now allows 

us to express the second and third terms as functions of the 

distribution amplitude. However, we need to introduce some sort of 

approximation to perform the integration over transverse momenta in 

the first term. (Note that the contribution of this term vanishes for 

a wavefunction "^^(k^, p , f, -L , f ) symmetric under the Interchange k^** 

As Is usual In the literature we assume a symmetric transverse 

momentum dependence for the proton wavefunction. This implies 
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Table 2.2 Matrix Elements of the Operator Q 
(1) 
1 

+ 1 . 2 
For all momenta p, pj = P ± ip 

^2 ^3 
^ (K )P (K_) if (K)P,U. (K,) 

+_+ + + 1 * ^3 3 L ^2 ^ 
/K K^KzK] 

t + + t 

t + + + 

+ f + + 

t + + + 

i t 4 + 

4 + t t 

X, &2 ^3 + 

- GMgMg 

(K;K;^ - K^K;,) - K+K^,) 

K K^K^K, 

- 6M^ 

k̂ K; 

6MM_ 

< < 

- K % ^ ) 

6M 
k \ - ^ ) 

0 (for all X^, neglecting positron mass) 
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Table 2.3 Matrix Elements of , the.Operator Q 
m(2) 

^2 ^3 

;(2) 

/K+K+KlK: 2 3 1 1 
1 2 3 

t t 4 4 

t i + 4 

+ t t + 

f 4 4' 4 

'i' t 4 4 

4" 4 t 4 

^2 ^3 * 

6M. 

+ "t~ "f* 
K K^Kg 

-6ML 

k; 4 

' "^"<1 - « ) 

—6 

"H "f" "4" + 
K 

(k\;_^ - K ^ ) 

0 

(4*2^ K * K ^ ) 

6M Mj 

k̂ K; 

0 (for all neglecting positron mass) 
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1L I f,4tf) k,^ . (2.3.12) 

This last form we approximate by 

" i < k,l > j ^7t A k ) V3^(k,,e,-l-,-l.,T) , <2-3.13) 

where * 300 MeV (1 =1,2,3) [19] is the root mean square 

transverse quark momentum in the nucleon. Expression (2.3.10) for the 

amplitude S(T,f) now becomes 

z= c)" [&,t] 

[ 
+ M2: %3 ^3^ ^ 

+ Z Mw. M * X., ^3,^ ^ . (2.3.14) 

Further simplification occurs when the symmetry properties of the 

expressions (2.3.7) are recalled. After some manipulation we find 

(2.3.15) 

Because of the uncertainty Introduced by the quantity we cannot 

justify a treatment of SU(2) symmetry breaking effects by retaining 

distinct u- and d-quark masses. Thus we write M for the masses of 

these quarks. However, the form (2,3.15) will be useful in the 

calculations of Chapter 3. The distribution amplitudes V, A and T 

obtained by Chernyak and Zhitnitsky [1] correspond to the expressions 

— 3'79l (2.3.16a) 

(2.3.16b) 

(Here we have made use of (1.2.17). The normalisation has been fixed 

by enforcing agreement with the electromagnetic form factor 

calculation of Ref.Lj The integrations over the light-cone momentum 

fractions In (2.3.15) are performed using the formula 
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[jLxl x l " TcC* = " t ! "3^ (2.3.17) 

L ^ * 

valid for non-negative Integers n^ (i = 1,2,3). result is 

(2.3.18) 

Consider now the amplitude SIT,*). From (2.3.4) and Tables 2.2 

and 2.3 we deduce 

S c&x.] 
^3 J ^ 

+ . (2.3.19) 

If we assume 

jl'7r«lk)k* % <k+>jl'RAk)'Y3tlk*,P,'Xc) 

(2.3.20) 

then the amplitude vanishes since the mean transverse quark momentum 

is zero. (Alternatively, in the literature it is common to propose an 

ansatz for the proton wavefunction which is a function of the squares 

of the quark transverse momenta and/or scalar products with one 

another [2,18]. In this case, after a suitable change of variables, 

if necessary, the amplitude S v a n i s h e s upon integration of an odd 

function over all momenta). 

Using similar reasoning and manipulations we find 

= S l T , W = 0 (2.3.21) 

C , . r 
— (—1 Sk'TiTj . (̂9 Q 99^ 

cY* 

These results are the expected ones since, when the coefficients 

multiplying the baryon number violating operators are isolated, the 

amplitude for the quark annihilation diagram of Fig. 2.2 must be 

unaltered when all helicitles are reversed. We obtain the desired 

structure for the proton-positron vertex: 

+ 5 ( 4 , , ^ (2.3.23) 
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Note however that while the vertex as calculated using the baryon 

number violating chiral l a g r a n g l a n ( 2 . 2 . 1 2 ) has dimensions of 

inass the above expression has dimensions of (mass)^. This is because 

in the evaluation of the matrix elements leading to the amplitudes S 

and S we have included splnors for the incoming and outgoing 

particles whereas the chiral lagrangian vertex 1*(C^' 

has not yet been sandwiched between proton and positron spinors. 

Before using the result (2,3.23) to compute the pole diagram, 

therefore, it must be normalised by the matrix elements of the 

projection operators and Pĵ  between proton and positron splnors. 

Since 

Ik) P,_ Pi-tk) = pR = M p (2.3.24) 

we deduce that the appropriate normalisation factor is . Thus we 

conclude that 

fV — S l T j t ) (2.3.25) 

I*) 
"I 

With the values ) = (300 MeV) and m = 3M = 938 MeV we find 

(X = O O O S . (2.3.26) 

The decay rates and branching ratios for the various two-body 

decays of a proton into a pseudoscalar meson and an antilepton have 

already been listed in Table 2.1. The value of the parameter a just 

found allows us to obtain a numerical estimate for the proton 

lifetime. Choosing towork with the decay mode p ̂  n°e* we find the 

rate of decay into this channel to be (a^ = 9 ^ ^ = 0.0242) 

(p->"7C*e*) = ^ — G e V . (M in GeV) (2.3.27) 
X 

This corresponds to a proton lifetime of 

^ I p = F ueosra X f — — ) (2.3.28) 
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With the experimental lower limit IT (p n°e*)>2.5 x 10^^ years [7] 

this result leads to the inequality 

> I S X lo'f (2.3.29) 

These conclusions are to be compared with those of Brodsky at al 

[2], who use the same method of calculation. They adopt the following 

ansatz for the proton wavefunction: 

I , P , 
31 

I 

(2.3.30) 

The parameters B and b are constrained by using various pieces of 

experimental information (including nucleon magnetic form factor and 

decay data). The proton distribution amplitude is a completely 

symmetric function of the light-cone momentum fractions. The 

parameter a is found to be 

= O 0 Z 2 6 e V ^ . (2.3.31) 

Since the proton lifetime 'TT varies as a ^ we see that by 

performing the calculation with the distribution amplitude (2.3.16) 

obtained by Chernyak and Zhitnitsky we obtain an enhancement factor 

for f of about 6 when we compare with the result of Ref.2. Note that 

in (2.3.15) the contribution of the antisymmetric piece (under x^ 

Xg) of the distribution amplitude ^""(x^, X2, Xg) tends to cancel 

that of the symmetric function (x^, X2, Xg), leading to a reduction 

in the magnitude of the amplitude S(?^f). We may argue that a similar 

analysis will give rise to such a suppression in the decay rate of the 

proton for all grand unified models consistent with the chiral 

lagranglan (2.2.9), i.e. for all conventional (non-

supersymmetric) GUTS. 

Finally, we note that we may perform a similar evaluation of the 

three quark annihilation diagram of Fig 2.2 using as a trial 

wavefunction a factorisable form suggested by Isgur and Llewellyn 

Smith [19]: 

I + k L ) 
(2.3.32) 
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Here = J^^p(k2+k2-2k2) so that the exponent Is 

a completely symmetric function of the quark transverse momenta. The 

value 5= 0.32 GeV is thought to best fit the low energy properties of 

the proton. The normalisation constant C is fixed, by using 

experimental data on the rate of the decay J/"y —4 pp. When the 

parameter v is varied in the range 1.0 - 1.5 the calculation of the 

three quark annihilation matrix elements gives 

(2.3.33) 

implying a suppression in the decay rate of the proton by a factor of 

the order of 10^ when compared with the calculation of Brodsky et al. 

However, this model gives very poor agreement with nucleon magnetic 

form factor data and thus is unreliable for predicting non-

perturbative bound state physics. 
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2.4 THE EFFECT OF AN ASYMMETRIC TRANSVERSE MOMENTUM DISTRIBUTION 

In this section we briefly discuss a modification to the proton 

decay calculation of Section 2.3 to a l l o w for an asymmetric 

distribution of quark transverse momenta in the proton wavefunction. 

The analysis of Chapter 1 offered no Information on the transverse 

momentum dependence of the wavefunction. Here we postulate a form for 

this dependence while ensuring that we retain the distribution 

amplitude (2.3.16). 

To keep the calculations as simple as possible we propose a 

wavefunction which factorises into the product of two functions; the 

longitudinal momentum dependence Is restricted to the function ,P, 

while the transverse momentum distribution is given by the function 

Thus we write 

(2.4.1) 

We see Immediately that if we impose the constraints 

(2.4.2) 

iTT JLk) , P ) = I (2.4.3) 

then the corresponding distribution amplitude will coincide with 

(2.3.16). The form of the function 9 ^ p ) is further restricted by 

ensuring that the root mean square quark transverse momentum is 

approximately 300 MeV and that the amplitude falls off for Increasing 

transverse momenta. These conditions may be satisfied by choosing 

appropriate decaying exponential or Inverse power law functions, for 

example. We opt for the former. 

The question then arises as to how we should parametrise the 

asymmetry in the exponent. The simplest way would appear to be to 

allow only terms quadratic in the momenta and to add to the completely 

symmetric quantity 
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C., ( k , ^ 4 . k ^ + k a ^ ) + (2.4.4) 

terms of the form 

^11 ^k%j.-k^j^) + (2.4.5) 

It turns out that such a combination is unnecessarily complicated -

only two independent parameters are required to control the asymmetry. 

If we perform the usual calculation of the three quark annihilation 

diagram (Fig. 2.2) we find that for the amplitude to be invariant 

under inversion of all helicities we must impose the condition 

13 (2.4.6) 

Thus in the exponent it is forbidden to have a non-zero coefficient of 

the quantity 

(2.4.7) 

It is natural then to parametrise the asymmetric terms in the 

following way: 

/> 
(k,^-k:^)^ + ^ ( k , ^ 4 r k i ^ - 2 k 3 ^ ) ^ . (2.4.8) 

and to modify the symmetric transverse momentum distribution (2.3.32) 

of Ref. 19. Therefore we choose 

/M(k ,P) = + j (2.4.9) 

where the normalisation has been fixed by satisfying Eq. (2.4.3). 

We note in passing that the matrix element involved in the 

calculation of the decay rate ratio r(ir/"Y'"*PP)/r(3'/'Y"^0LlL) 

depends only on the proton distribution amplitude [1, 18]. Thus it is 

unaffected by our choice of transverse momentum distribution. Similar 

reasoning is valid for predictions of the nucleon electromagnetic form 

factor [1]. (Use of the Chernyak and Zhitnitsky distribution 

amplitudes (2.3.16) leads to predictions for both these quantities 

which are in good agreement with experiment). 
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We now turn our attention to the evaluation of the three quark 

annihilation matrix element using the wavefunctlon defined by Eqs. 

(2.4.1), (2.4.2) and (2,4,9). In contrast to the two calculations 

just mentioned the parameter a does depend on the asymmetry 

coefficients p and X. Recalling Eq. (2.3.10) for the amplitude 

this dependence arises through the terms with the factors 

II ( 2 . 4 . 1 0 a ) 

( 2 . 4 . 1 0 b ) 

Now that we have a simple mathematical form for the transverse 

momentum distribution these integrals may be evaluated without the 

need to revert to an approximation. We find 

3 ll+%) 

Eq. (2.3.15) is modified to 

( 2 . 4 . 1 1 a ) 

( 2 . 4 . 1 1 b ) 

S I t . f ) I J X., X. 

.(311+A) 6*1 
J ^ ( 2 . 4 . 1 2 ) 

while we still have 

= S(4',1') = O . (2.4.13) 

Performing the integrations over the light-cone momentum fractions in 

(2.4.12) we deduce that 

« = 0 . 0 „ - (2.4.,4) 
ll+%) (l+f) 

What restrictions may be placed on the values of the parameters 

^ and ̂  ? Clearly we require 
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> " I ( 2 . 4 . 1 5 ) 

to ensure that the magnitude of the wavefunctlon falls off as the 

transverse momenta increase. Further Information may be gained from a 

determination of the probability for finding the valence three 

quark Fock state in the proton. This quantity is defined as follows: 

( 2 . 4 . 1 6 ) 

A calculation of requires a knowledge of the proton wavefunction 

rather than the distribution amplitude. Thus, unless we assume an 

explicit form for the transverse momentum dependence, the constraint 

0 ̂  Pg ^ 1 cannot be checked for the distribution amplitude (2.3.16). 

With the factorised wavefunction defined above, we find 

=:^ 2 23 ^ ( 2 . 4 . 1 7 ) 

which implies the inequality 

C l + / ^ ) W + ̂ ) ^ 0 4 - 5 . (2.4.18) 

(We see that a negative probability is already excluded by the 

conditions (2.4.15)). 

Similarly a direct evaluation of the root mean square quark 

transverse momentum Is possible: 

( "L j c T T & k ) 

= M S MeV. (2.4 19) 
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Let us restrict the value of <k^%J>*to the Interval 300 MeV < < 

400 MeV [19]. Recalling the constraints (2.4.15) and (2.4.18) we see 

that if such a factorised wavefunction is to describe the long 

distance bound state physics of the proton then the coefficients 

controlling the asymmetry of the quark transverse momenta should be 

confined to the regionsof (P,AJ parameter space indicated in Fig. 2.3. 

Note that the special case = o corresponds to a symmetric 

transverse momentum distribution with an appropriate rescaling of the 

parameter 6. 

For the physically acceptable v a l u e s of the asymmetry 

coefficients P and A we find that the magnitude of the parameter a is 

bounded from below: 

> O O o Z (2.4.20) 

Thus we obtain an upper limit on the proton lifetime of 

/ 
ICl p I o X X I 

r 3 ^ (2.4.21) 

using this model. 

We see that the physically acceptable values of p and X in this 

model allow further suppression of the decay rate of the proton 

beyond that discovered in Section 2.3. Indeed, if we relax our 

constraint on so that the lower limit of the permittedrange 

is less than 297 MeV, then the shaded regions of Fig. 2.3 merge and we 

do not obtain an upper limit for the proton lifetime. However, should ^ 

the true value of Pg be less than 0.5 then, assuming 300 MeV <Kk2J> 

< 400 MeV, we must conclude that no extra enhancement of th^ proton 

lifetime is predicted using this model for the distribution of the 

quark transverse momenta. 
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Fig. 2.3 Region of Physical ly Acceptable Values 

of The Asymmetry Coefficients p and ^ 

r 

(-1,-0.21) 
, ^ , 
I (-0.04,-0.53) 

" 7 ~ i 
P g q = 0 - ^ 

- 1 

(0.4I,-0G$ 

K ? ; > / 2 = 4 0 0 M e V 

300 MeV 
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APPENDIX 1 TWO COMPONENT SPINOR NOTATION 

There are two types of two component spinor, called left-handed 

and right-handed in the literature. They transform under the group 

SL(2,C) (the group of 2x2 complex unimodular matrices) according to 

representations which are complex conjugates. Left-handed fields are 

labelled by an undotted index and right-handed fields by a dotted 

index. Indices may be raised or lowered using the SL(2,C) invariant 

antisymmetric tensors 6 / ^ = 6,^: 

The relationship with the four component spinor notation is 

readily seen when the chiral representation is used for the ^-matrices; 

o 
(A.1.1) 

C P 

(A.1.2) 

where 

== ll , e * ) == (A. 1.3a) 

(Pf := ( 1 ; -cri) = IcrP)** (A. 1.3b) 

and the O"- (i = 1,2,3) are the Pauli spin matrices. The projection 

operators (2.2.17) become 

P. = f ° ) ' = f ° ° ) • (A.,.4) 

\ o c)/ \c> IL/ 

A four component spinor may be built using two of the two 

component spinors: 

) "y/ = ( F i * L i j 

The charge conjugate spinor may also be constructed: 

(A.1.5) 

' y = ( L " R i . ) , (A.I.6) 

For two component spinors A, B, C and D it may be shown that 
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A u == - B * cFr (A. 1 .7) 

( A * B R ^ l C i D i ) == 0 1 ) 1 0 - ^ 6 * ) . (A. 1.8) 

The latter identity is a Fierz transformation. 

As an example of how to transcribe from two component to four 

component notation consider the baryon number violating operator 

(2.2.10a). The two component form is 

== 1 6 % U. . (A. 1.9) 

Performing the Fierz transformation (A.1.8) this becomes 

( S i ' == ( A l l ( f r e - j u L l l u t ( r r ) (A. 1.10) 

== -4^ III* (pr u.3)(e&L djk) ^ 

by (A.1.7). Using Eqs.(A.l.l), (A.1.4), (A.1.5) and (A.1.6) we deduce 

the equivalent four component form: 

== - y K u t * r A t ) . (A. 1.11) 
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APPENDIX 2 DIRAC SPINORS IN TEE HELICITY FORMALISM 

Four component splnors for particles and antlpartlcles may be 

constructed from elgenstates of the projection operators 

% ( 1 - (A.2.la) 

(A.2.lb) 

The Dlrac splnors for a particle with momentum p and mass M are 

Ip) 

(A.2.2a) 

% (4.) (A.2.2b) 

while those for an antiparticle are 

1̂ 4. IP) 

SKCJV (A.2.3a) 

(A.2.3b) 

where % ^ — = and are 

elgenstates of /\+. The splnors are hellclty elgenstates In the p^-*oo 

frame. 

With the Dlrac representation for the y-matrices, 

(A.2.4) 

we find the following explicit forms for the splnors: 

/ P*+ M \ 

i. 

\ PJ 

(A.2.5a) 
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Ip) = ip) 

P*+i^ 

rj. 

P + +.M, ( A . 2 . 5 b ) 

ULip) 

P * - M 

PZ 

— p+_ M (A.2.5c) 

= _J. 

Vzp+' 

(A.2.5d) 

U.^tp) = V\.lp) 
PZ -P +1 (A.2.6a) 

U.,lp) = ur\lp) 
V z p 

P*+M - p 2 P*-M) (A.2.6b) 

ip) a. FLT P*4. (A.2.6c) 

v^.ip) — PZ - p ^ n - p 2 ) (A.2.6d) 

The notation pj- = p ± -L p^ has been used. 
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CHAPTER 3 

THE CHIRAL LAGRANGIAN APPROACH TO PROTON DECAY WITH A SYMMETRIC 

BARYON WAVEFUNCTION 

tlw: last chapter we estimated the proton lifetime by ualng a 

lagranglan based on chlral SU(3^^ x SU(3^^ symmetry and evaluating the 

three-quark annihilation diagram with an asymmetric proton 

wavefunction. The computation was a refinement of that carried out by 

Brodsky and co-workers [1] who performed the calculation with a 

wavefunction which was symmetric in the quark momenta. Here we 

consider again the work of Ref. 1 and ask to what extent it is 

consistent to use a symmetric baryon wavefunction when calculating 

with the chlral lagrangian of Section 2.2. To this end we evaluate, 

using the wavefunction (2.3.30) and its analogues for other = i"*" 

baryons, all nine baryon ^ antilepton annihilation amplitudes which 

occur in the pole diagrams for the various two-body decay modes of the 

proton. This problem is tackled in two stages: 

(1) We use one wavefunction (with equal quark masses) for the 

proton, neutron and the Z , and A hyperons and neglect quark 

mass differences in the matrix elements of the baryon number 

violating operators. We expect the baryon antilepton 

amplitudes to be in proportion to the corresponding vertices 

calculated from the chlral l a g r a n g l a n I n other words, 

when SU(3) symmetry breaking effects are neglected, comparison of 

the two sets of amplitudes should imply a unique value for the 

parameter a. This is what we mean by consistency. 

(ii) We adjust both sets of calculations to allow for the 

effects of explicit SU(3) symmetry breaking. Mass terms are 

Introduced into the baryon number violating lagrangianeC^^ ^ and 

we look for consistency with the calculation of the three-quark 

annihilation amplitudes when we allow quark mass differences in 

the operator matrix elements. An obvious difficulty must be 

overcome before we may compare the results of the two sets of 

calculations: the quark masses in the chiral lagranglan are 

current masses whereas those occurring in the exponent of the 

baryon wavefunctions are constituent masses. An application of 
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chiral perturbation theory [2], in which baryon masses are 

expressed as expansions in the short-distance masses of the light 

quarks, is found to be helpful in relating the two formalisms. 

Once we have a consistent framework for dealing with the effects 

of SU(3) symmetry breaking it becomes possible to estimate 

quantitatively the resulting corrections to the two-body decay 

rates of the proton. 

Note that we could not hope to extract a single value for the 

parameter a if we were to use asymmetric baryon distribution 

amplitudes^ Asymmetries in the quark momenta could in principle arise 

from derivative terms in a chiral lagrangian formulated in terms of 

quark fields. However, this cannot be achieved using the chiral 

lagrangian of Section 2.2. It is constructed in the hadron basis and 

so any derivatives will act on the baryon as a whole, giving no 

information on the distribution of momentum among the constituent 

quarks. 

Throughout, the calculations are based on a determination of the 

baryon ^ antilepton annihilation amplitude. Therefore we are 

interested only in the consequences of adding mass terms to the baryon 

number violating piece of the chiral lagrangian. We do not 

account for SU(3) symmetry breaking effects arising from the terms of 

j C ^ ( 2 . 2 . 7 ) ) . 

We restrict ourselves to an analysis of the minimal SU(5) GUT by 

retaining just the non-zero coefficients of Eq. (2.2.22). 
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3.1 INCLUSION OF LINEAR MASS TERMS IN THE CHIRAL LAGEANGIAN 

In this section we introduce explicit quark mass terms into the 

baryon number violating chiral lagrangian Such terms 

addltonally break the chiral SU(3)^ x SU(3)^ symmetry. 

We must ensure that when we include factors of the quark mass 

matrix m we do not destroy the SU(3)2^ x SU(3)g^ transformation 

properties of the various terms lnj&^^"l. In general this implies 

that powers of m must not be inserted adjacent to the matrix B of 

baryon fields. This restriction arises because of the complicated 

non-linear transformation (2.2.5) of B under SU(3)x x SU(3)p. To 
(1) 

illustrate, consider the operator (2.2.10a). In the hadron basis 

the corresponding term in the lagrangian is (see Eq. (2.2.12)) 
2 

__ 
d=1 

a ^ Tr Og g + h.c. (3.1.1) 

The combined operation of premul tip lying by the matrix 0 and taking 

the trace ensures that only the relevant component, in this case the 

component in the first row and third column, of the SU(3)^ x SU(3)^ 

representation is projected out. The term (3.1.1) transforms 

according to (3^, 3g^ since 

g B C + L 5 B S R* . (3.1.2) 

We may add to the chiral lagrangian the terms 

2 
(K^l) e^^ Tr OmgB % + L^^^ e^^ Tr mOgB^g) + h.c. 

(3.1.3) 

since these do not alter the chiral transformation properties. 

and are model-dependent constants. Thus the term in ^ 

associated with the baryon number violating operator becomes 

a 2Z TrOgByC + h.c., (3.1.4) 

where the constant T^*) is given by 

+ m + m Lj^) . (3.1.5a) 
d d u d s d 
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We observe that the inclusion of linear mass terms injC,̂ ^ ^ has the 

effect of adjusting only the coefficient multiplying the operator. 

A similar analysis is valid for the other operators listed in 

Section 2.2. For those transforming like (3^, 3^^) or (3^, 3̂ )̂ the 

modifications to the coefficients are 

Cd'' " = c'Z) + (3.1.5b) 

+ -d Kd'' + (3.1.5c) 

" "u " °d ».1.5d) 

^ -u ^ «d ^ ' ".1.5e) 

~^(5) —'(5) 
+ "s Kd + mg Ld 

+ m ^(7) , (3.1.5g) 

, 0 0 = 
d 

r(5) 
^d 

"d 
f(1) = 
d 

r(l) 
^d 

r(2) 
^d 

f(2) _ 
^d -

r(2) 
^d 

p(5) 
^d 

f(5) = 
d ^d 

f<7) 
^d 

f(7) _ 
^d " 

;X7) 
^d 

where m = i(m^+m^). This last substitution deserves some comment. 

The operator is of interest since it contributes to the 

and A V annihilation amplitudes. The relevant term in the 
M P 

chiral lagrangian is 

z c ^ Q r - E c y ) p , / ) . o.-.s) 
d=1 d=1 ^ 

which becomes 

2 

-a IZ Cj Tr 0 g g (3.1.7) 
K7) 

d=1 

when reformulated in terms of hadron fields. A naive analysis based 

on the arguments given above for the operator leads to the 
d 

substitution 

+ m^ K(7) + m^ (3.1.8) 

when linear mass terms are included. However, the operator ' has 

no definite isospin. It may be rewritten as a linear combination of 

isospin one and isospin zero components: 
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2 2 

(Vj 

+ [ (u^^PRs j ) ( v4^PLd^ ) - (dCkpgs j ) (vC p ^ u / l ] } ( 3 . 1 . 9 ) 

In a more careful treatment only the first term (which has isospin 

1=1) should contribute to the amplitude, while the 

vertex should be derived from the second (1=0) term. In the hadron 

basis expression (3.1.9) becomes 

9 
1 -t. -(7) f 
2 « E C d Ir 0 5B^5] 

d=1 

+ Tr 5 ' {Bĵ C - Tr 5 " ' (3.1.10) 

where the projection matrix 0''' is defined as 

r ° ° \ 

0 = I 0 0 0 I ( 3 . 1 . 1 1 ) 

\ 0 0 o / . 

We now deduce that the introduction of linear mass terms is effected 

by the replacement (3.1.5g). (A similar treatment of the operator 

is unnecessary since it has no 1=1 component). 

The modified expressions for the baryon-»antllepton vertices 

required for the two-body decays of the proton are displayed in Table 

3.1. 

We shall investigate the effects of linear mass terms only. 

Terms of higher order in the current quark masses Incorporated 

by extending the above procedure - the general expression occurring in 

corresponding to the operator is 
d 

G 2] '(n^.ng) e^^ Tr m i 0 m * + h.c., (3.1.12) 
d=1 n^=0 n2=0 

where the coefficients are dependent on the non-negative integers 
d 

n^ and n2' As we shall discover later, the inclusion of linear mass 

terms leads to relatively small corrections and so we have reason to 

believe that higher order terms may be safely neglected. 
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Table 3.1 Baryon ^ Antilepton Vertices from the Chiral 

Lagrangian When Linear Mass Terms are Included 

Baryon Antilepton 

Interaction in Pole 
Diagram 

Relevant Decay 

Mode (s) 
Vertex from 

AB=1 

p e 

+ 

n -> V 

A V 

Z* + e* 

p y 

A ^ 

o + + 
p -> IT e , p ne 

P + 

p IT V 

+ — p K V 

p K V 

p + K° e* 

0 + + 
p -> TT y , p + nw 

p + K+ V 

•la 

ia T(7)p 

/2 2 

l a 

/6 ^ 

-la 

p K V 

R 

ia T(2)p* 

0 

2ia m(5)p 

/6 1 ^ 
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Since the inclusion of linear mass terms is accounted for by the 

replacement of the ' C' coefficients by the corresponding 'T' 

coefficients we deduce that only the overall amplitudes and decay 

rates for each mode are altered. (See Table 2.1). In particular, the 

relative contributions of the two tree diagrams of Fig. 2.1 to the 

decay rates are not affected. In this respect we differ the work 

of Campbell et al [3]. 

Consider the example of the decay p + K° y"*". We find the 

contributions of the direct conversion diagram and the pole diagram to 
m 

the decay amplitude to be in the ratio 1 : — (D-F), even when the 

corrections due to mass terms are incorporated. Campbell and co-

workers write this ratio as 1 : A (D-F) and argue that the SU(3) 

symmetry breaking factor X varies when the effects of mass terms are 

Included. They write the mass terms associated with the operator 
d 

in the form 

2 
Z Z Z N^^\n.,n.) e_ Tr 0 g + ^.c. (3.1.13) 
d=1n^ ^ ^ ^ ^ ^ 

n^+n^^l 

Factors of the matrix 5 of pseudoscalar fields, which are required to 

preserve the SU(3)j^ x SU(3)^ transformation properties, have been 

omitted. Terms such as (3.1.13) contribute to the pole diagram but 

not to the direct conversion diagram and this leads to a change in the 

value of A. We agree that the ratio of contributions from the two 

diagrams may change as a consequence of a discrepancy between the 

values of the matrix elements <0|(d u ) u |p> and <ol(s u ) u |Z >. 
K K L K K L 

However, we believe that a treatment of mass corrections within the 

chiral lagrangian framework does not provide information on SU(3) 

symmetry breaking in the three-quark annihilation matrix elements. 

Nevertheless the conclusions of Ref. 3 may remain valid. The 

authors were attempting to see if the inclusion of SU(3) breaking 

effects in the chiral lagrangian formalism enhanced the rate for the 

decay p K°y relative to that for p TT̂ e"*". We find 

m 

[(p^^"") _ ^ f \ Ag. 

j \ 1 + D + F / 0.+^ M r T ( 1 ) ^ 2 . . r m ( 2 ) , 2 ( \ l + D + F / ^^-(3.1.14) 
r(p-Mr"el ((!)")" +(T|"^) 
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Since the coefficients and are expanded in powers of the u-

and d-quark masses only we expect the corrections to be of the order 

of 1%. Although and depend on the deviations from 

and should not be greater than 20%. Thus it seems likely that 
0 4-

the mode p w e w i l l remain dominant in the minimal SU(5) model 

when the effects of SU(3) symmetry breaking are included. This 

conjecture is substantiated in Section 3.5. 

At first sight it appears that nothing has been gained by writing 

down mass terms for Many new unknown parameters (the 'K' and 

'L' coefficients) have been introduced. Only if we are able to 

determine these coefficients will any firm predictions on the effects 

of SU(3) symmetry breaking be possible. In the following sections we 

examine the possibility of using a refined calculation of the three-

quark annihilation diagram to resolve this problem. 
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3.2 SU(3) SYMMETRY BREAKING IN THE THREE - QUARK ANNIHILATION 

DIAGRAMS 

Here we briefly describe the evaluation of the baryon —^ antilepton 

interactions occurring in the pole diagrams of the two-body decays of 

the proton. The assumptions and approximations used are discussed. 

As before we follow Brodsky and co-workers in using as our model 

the three-quark annihilation diagram of Fig. 2.2. We choose the 

valence three-quark wavefunction for the jP = i"*" baryons to take the 

form of the proton wavefunction of Ref. 1. The effects of SU(3) 

symmetry breaking are included by allowing differences in the 

(constituent) quark masses occurring in the matrix elements of the 

various baryon number violating operators. However, for ease of 

computation, such differences are e x c l u d e d from the baryon 

wavefunctions. This also ensures a symmetric distribution of momentum 

among the quarks. We write the degenerate baryon wavefunction as 

(x^, = Bg exp 
I? +M^ 
i-i- q 
X . 
1 

(3.2.1) 

M (ft; 350 M e V ) represents the typical constituent quark mass of a 

baryon in the jP = octet. The parameters Bg and bg may be 

estimated from experimental data but this is inessential for the 

forthcoming analysis. Performing the integrations over the quark 

transverse momenta we find 

.B 

3q Dg xXgXg exp -b^M^ (J_ + _ L + J_) 
, B q =1 =2 Xg 

(3.2.2) 

where 

Bg n 

(16^3)2 b* 
(3.2.3) 

The evaluation of the three-quark annihilation diagrams using 

this distribution amplitude is straightforward. The procedure has 

been outlined in Section 2.3. In the notation used previously, 
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" *3q (3.2.4a) 

(x .Xg.Xg) = 0 - (3.2.4b) 

It follows that the corresponding flavour-spin structures are simply 

those given by SU(6) symmetry. Once again we must split the operators 

and into components of definite isospin before evaluating 

the hadronic matrix elements. Tables 2.2 and 2.3 are sufficiently 

general to allow the matrix elements of all the baryon number 

violating operators to be readily deduced. We note that the use of a 

wavefunction symmetric in quark momenta implies a cancellation of the 

contributions of terms with explicit transverse momentum dependence to 

the amplitudes S(f,f) and S(4,+). Thus these quantities may be 

expressed directly in terms of the baryon distribution amplitudes 

without the need to use an approximation such as that in Section 2.3. 

(See (2.3.13)). 

The various three-quark annihilation amplitudes are listed in 

Table 3.2. They are linear in Ig, where 

*3q ' (3-2-5) 

and, when correctly normalised, inversely proportional to the masses 

of the intermediate baryons of the pole diagrams. 

Now let us compare the entries of Tables 3.1 and 3.2 for the 

various baryon ^antilepton amplitudes. When the effects of SU(3) 

symmetry breaking are neglected we are able to deduce a unique value 

for the magnitude of the parameter a : 

3 I 
I a I = ' (3.2.6) 

thereby confirming the consistency, in this limit, of using a 

symmetric baryon wavefunction in c o n j u n c t i o n with the chiral 

lagrangian approach to proton decay. 

We now turn our attention to establishing a link between the 

patterns of SU(3) symmetry breaking in the baryon ^ antilepton 
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Table 3.2 Three-Quark Annihilation Amplitudes Calculated 

Using Symmetric Baryon Wavefunctions 

Baryon Antilepton 
Three-Quark 

Interaction in Pole 
Annihilation Amplitude 

Diagram 

P 
4-

e ^ (M^ 
m u 
P 

+ y ^ (M^ 
m^+ u 

n 
^e 

n 
+ ZM M.) i 

u d 1 L 

V 
y 

- I 
— (m Mj + M M + MjM ) i 

d u s d s 

/\ ^ V y 
_ 
V2 V d i 

+ e (M^ 
/—' (' 2') . 2M„M̂ ) i c; 'Pj, 

p + y ^ (M̂  
m u 
P 

+ i c f 

V 
e 0 

A ^ 
/T ~c g') 

— (M M + M.M ) i C; /p 
V 2 m^ u s d s 1 L 
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vertices predicted by the chlral lagrangianand by the light-cone 

formalism calculation of the three-quark annihilation amplitudes. 

Note that these latter amplitudes are proportional to products of 

pairs of constituent quark masses whereas the modifications to the 

chiral lagrangian are linearly dependent on current masses. A 

consistent method of relating these two sets of masses will have to be 

used if we are to make a meaningful comparison of SU(3) breaking in 

the two formalisms. First, however, we obtain relations among the 

unknown constants introduced by linear mass terms l*to o K b y 

examining a chiral lagrangian formulated in terms of quark fields [4]. 
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3.3 A CHIRAL LAGRANGIAN INVOLVING QUARK FIELDS 

Weinberg [5] and Manohar and Georgi [6] h a v e used the chiral 

lagrangian formalism to write down an effective field theory 

describing strong interactions between quarks, gluons and pseudoscalar 

Goldstone bosons. This has been extended to include baryon number 

violating processes by Chadha et al [4], who perform a nucleon decay 

calculation for the minimal SU(5) GUT. As with the chiral lagrangian 

formulated in terms of baryon fields the chiral quark theory is based 

on an SU(3)^ x SU(3)g^ flavour symmetry which is spontaneously broken 

down to an SU(3)y symmetry, introducing an octet of pseudoscalar 

Goldstone bosons. The scale of the chiral symmetry breaking, A gg , 

has been estimated, using both experimental data [7] and theoretical 

arguments [6], to be of the order of 1 GeV, and is larger than the 

confinement scale "*100 - 300 MeV. effective lagrangian in 

the intermediate region Involves fundamental quark and gluon fields 

together with the pseudoscalar octet. The advantages and problems of 

the chiral quark approach are discussed in Ref. 6. 

The nonlinear realisation of the Goldstone bosons of the 

spontaneously broken SU(3)^ x SU(3)^ group is chosen to be that of 

Section 2.2. (See Eqs . (2.2.1), (2.2.2) and (2.2.3).) The quark 

fields are introduced as a flavour triplet ip of Dirac fermions: 

(=)• (3.3.1) 

Under a chiral transformation 

ip ^ - (3.3.2) 

The effective lagrangian between the chiral symmetry breaking and 

confining scales and invariant under SU(3)^ x SU(3)^ transformations 

may be written as 

= Tp (i # + V)^ + g^ ^ # y ^ 

+ ^ f* Tr(3 Z*)(aUz) - 1 Tr F F^^ 
o ^ y 2 yv 

+ Terms with more derivatives, (3.3.3) 
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where is the QCD covariant derivative (1.1.3a) and 

- Y (5* E + 5 3^ S*) (3.3.4a) 

- S 3^ 5*) ' (3.3.4b) 

The parameters and (which represents a contribution to 

constituent quark masses due to chlral symmetry breaking) take the 

approximate values 0.75 and 350 MeV respectively. 

A chiral symmetry breaking lagrangian with explicit current quark 

mass terms may be added by analogy with the chiral lagrangian of Ref. 

8. However, such terms tend not to contribute significantly to 

physical processes and we neglect their effects here. 

The baryon number violating operators consistent with SU(3) x 

SU(2) x SU(1) symmetry, (1 = 1, ..,6) and (1 = 1, ...,8), 

have been listed in Section 2.2. These operators involve the quark 

fields of the QCD lagrangian. They must be matched across the 

boundary at the chiral symmetry breaking scale A gg to all possible 

operators in the effective theory which have the same chlral 

transformation properties. Since we consider only those interactions 

mediated by heavy gauge bosons we wish to construct operators 

involving quarks and pseudoscalar mesons from the effective theory 

which transform according to (3^, 3j^) and (3^, 3j^). Such operators 

are given in Ref. 4: 

°ad - Y PR < K 3 . 3 . 5 a ) 

^ad " 2 ^ ^ ^efg ^^^gd '1'̂,] j (3.3 .5b) 

where a,b,d,e,f and g are indices in SU(3) flavour space. The parity 

operation has been used to leave a^ and as the only arbitrary 

parameters. Using the identity 

^abd ^ae ^bf ^dg " , (3.3.6) 

which holds for any 3x3 matrix N, and the unitary property of the 

matrix U we find 
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D R D (3.3.7a) 

E + L E R+ (3.3.7b) 

under an SU(3)^ x SU(3)^ transformation. With the help of the 

projection operators (2.2,13) the effective baryon number violating 

lagrangian may be deduced from (2.2.9) via the matching conditions 

Q i " Tr(0 E) = Ei3 (3.3.8a) 

Q ^ ) Tr(0 D) = Di3 (3.3.8b) 

Q O ) -Tr(O'E) = -223 (3.3.8c) 

Tr(0 E) = -Ei2 (3.3.8d) 

Q(2) Tr(t) D) = -Dl2 (3.3.8e) 

q(5) Tr(0"E) " B33 (3.3.8f) 

5(7) - > • Tr(O'E) = -E22 . (3.3.8g) 

We omit terms with derivatives acting on the quark fields. Such terms 

are suppressed by powers of E^/A^gg , where represents the typical 

energy of a constituent quark, and may thus be safely neglected. 

The rates for the nucleonpseudoscalar meson + antilepton 

(N P + j[) decays may be calculated from the diagrams of Fig. 3.1 by 

using the effective lagrangian. 

Now we address the problem of Introducing explicit mass terms to 

the chiral lagrangian The procedure is similar to that of 

Section 3,1 - powers of the current quark mass matrix m are inserted 

so as to preserve the chiral transformation properties of the baryon 

number violating operators. Consider the example of the operator D 

Because of the nonlinear chiral transformation properties of the 

effective quark fields, factors of m must not be inserted in such a 

way that their matrix indices are contracted with the flavour indices 

of the triplets ''P and For example, this excludes the term 

Y E ^ ^efg ™)ab(^ ^gd^^e . (3.3.9) 

Also, the term 
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Fig.3.1 Diagrams for The Decay N P + -(. in 

The Chiral Quark Formal ism 

( a ) Pole Diagram 

+ Permutations 

(b ) Non - Pole Diagram 
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is disallowed since the identity (3.3.6) may not be used. The 

permitted linear mass terms are 

(3.3.11) 

^efg ('^^Lb (81+92^5)4'; 

+ Y E2fg(S+)ab(5*m)gd[^^e (7,+Y2y5)4j][2Cpg4^^. 

An analogous treatment is applicable to the operator E j. 

Considering each baryon number violating operator in turn we find 

that the inclusion of (linear) mass terms is effected by appropriate 

redefinitions of the parameters oi-| and ^2 : 

( 1 ) (2 ) - -
: "i ^ = "i * ™uGi + mgYi (3.3.12a) 

(5) - -
Qj : a. £. = a. + m.g. + m y. (3.3.12b) 

^ J- -L 1 Q. J_ S I 

"I ) ^^(2) 
^d ' ^d : (3.3.12c) 

•^(5) -- — 
Qj : a. X. = a. + m g. + m y. (3.3.12d) 
^ J- 1 1 S X S X 

^ ~ "i + ni Y£ ; i = 1 ,2 (3.3.12e) 

Once again the replacement (3.3.12e) follows from a careful treatment 

of the isospin components of the operator \ The requirement of 

isospin conservation implies that the quarks in the intermediate state 

of the pole diagram must have an isospin 1=1 or 1=0. 

If we compare the above mass corrections to those appropriate to 

the chiral lagrangian formulated in terms of baryon fields (Eqs. 

(3.1.5)) we find linear combinations of the same current quark masses 

for each operator. Moreover, we observe that in the chiral quark 

formalism all linear mass corrections are expressed in terms of just 

four arbitrary parameters, 0^ (1=1,2) and (1=1,2). This is a 

manifestation of the greater predictive power of the chiral quark 

lagrangian noted by Manohar and Georgi [6]. Since our aim was to 

reduce the number of unknowns Introducedkto the chiral lagrangian 

which had baryons as fundamental fields we see that progress may be 

made if we demand that the mass corrections L& added consistently in 

the two formalisms. Before we can write down definite relations 

between the various 'K' and 'L' coefficients of (3.1.5) we must be 
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able to link the values of the parameters 3.(= — ) and Y.(= — ) 
I (X 'j I Or -j 

t o t h e i r r e s p e c t i v e p a r t n e r s ^2 ^2 ' W i t h t h i s In mind we 

briefly consider the evaluation of the proton decay rate with the 

c h i r a l quark lagrang ian . 

Chadha and co-workers [4] use the nucleon wavefunction of the 

non-relativistic quark model to perform their calculations. For our 

purposes the choice of wavefunction and the computation of the 

diagrams of Fig. 3.1 are not crucial. The important thing to note is 

that, independent of the method of calculation, the decay amplitudes 

are linear in the coefficients and (For the moment we neglect 

the effects of mass terms.) For the decay modes involving n and K°, 

the contributions to the amplitudes from the pole and non-pole 

diagrams are different functions of both ct ̂  and oig . (See Ref. 4.). 

Hence the ratios of these contributions are dependent on the quantity 

r = ^-1 . Such a dependence does not arise in the chiral lagrangian of 

Section 2.2 where the ratios of the pole and non-pole contributions to 

the amplitudes are determined by the short distance GUT dynamics [1]. 

We observed in Section 3.1 that when mass terms are included in this 

lagrangian the relative contributions of the two tree diagrams remain 

unaffected. If we now impose the same condition on the amplitudes 

calculated with the chiral quark lagrangian we deduce the relations 

These equations are satisfied when 

e , = Bg - k ( 3 . 3 . 1 4 a ) 

and 

^ = A (3.3^Mt) 

So f o r t h e mass c o r r e c t i o n s t o be added c o n s i s t e n t l y i n t h e two 

formalisms, the following constraints must hold: 

d d d 
^(1) 
d d _ d 

g y ) d 

R(2) 
^d 

R(5) 
^d s r 

^(2) 
^d 

R(5) R(7) 

(3 

r d ) 
^d 

r(2) 
^d 

r(5) 
^d 

f<7) 
' d 

4 " 
R(2) R(5) 

^d 
;;(1) 
^d 

R(5) 
^d 

R(5) 
^d 

;<7) 
"d 

( 3 . 3 . 1 5 b ) 
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In t h i s way we c o n c l u d e t h a t t h e e f f e c t s o f e x p l i c i t SU(3) 

symmetry breaking due to the inclusion of linear quark mass terms in 

the baryon number violating effective lagrangian are controlled by 

j u s t two a r b i t r a r y parameters; k and In Table 3.3 the express ions 

for the baryon ^antilepton vertices calculated from the chiral 

lagrangian are rewritten to make this dependence explicit. Note in 

particular that the inclusion of mass terms ammounts to just a 

redefinition of t h e parameter appropriate to the vertex in question 

so that the y-matrix structures of the vertices are not changed. 

This result has an important consequence - it allows a direct 

comparison of these values of the vertices with those obtained by 

evaluating the three quark annihilation amplitudes (see Table 3.2). 
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Table 3.3 Baryon -> Antilepton Vertices from the Chiral 

Lagrangian, Exhibiting the Linear Dependence 

on Quark Masses 

Baryon Antilepton 

Interaction in Pole Vertex from ^ 

Diagram 

+ 
p e ia(1+m k+m 

11 S 1 i_i I K . 

+ + 
- ia(1+m k+m,A)(C^ ' P? + ^FL) 

u d 2 L / K 

n ^ V 
e 

("5") 
-ia(1+m^k+m^£) 

+ V 
y 

-"ia f 7) 
^=<1+mk+m&) ^ 
/2 ^ I* 

A . (l+mk+mA) P 
/6 ^ L 

E* + e * -ia(1+mk+m £) C P 
u d 1 R 

+ 
p ^ y 

C2") 
ia(1+m k+m 2) C„ P„ 

U S z K-

e 
0 

A ^ U 
e 

(1+m k+m &) C. Py 
/ 6 s s 1 L 
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3.4 CHIRAl PERTURBATION THEORY 

As we remarked earlier^ the main stumbling block in any attempt to 

link the evaluation of the three quark annihilation amplitudes to the 

corresponding vertices obtained from the chiral lagrangian is that we 

require a consistent method for relating constituent (M^, q = u,d,s) 

and current (m ) quark masses. 

One such procedure is provided by a simple rule of thumb [2], 

The two sets of quark masses are seen to differ approximately by a 

common constant: 

Mq = m + M , (3.4.1) 

where M(~300 MeV) is of the order of the typical scale of the strong 

interaction. However, an inspection of the expressions for the 

various baryon number violating vertices presented in Tables 3.2 and 

3.3 shows that we require a more general set of relations. For 

example, we see that the proton T" positron vertex is dependent on the 

current u- and s-quark masses whereas the corresponding three quark 

annihilation amplitude is a function of M and only. 

A procedure by which hadron masses may be related to current 

quark masses has been given by Gasser and Leutwyler [2]. They develop 

a technique in which hadronic energy levels are expanded about the 

chiral limit m^ = m^ = = 0. This expansion in light quark masses 

is known as chiral perturbation theory. The derivation is outlined 

below. 

As the masses of the u-, d- and s-quarks are small on the scale 

of the strong interactions it is to be expected that the SU(3)^ x 

SU(3)j^ symmetry of the QCD lagrangian with massless quarks should be 

approximately valid in the real world. The deviations from this 

chiral symmetry may be investigated by treating the quark mass terms 

as perturbations of massless QCD. Gasser and Leutwyler consider the 

expansion of any hadronic energy level in powers of the light quark 

masses. Using the results of first order perturbation theory they 

deduce the following result for the mass m^ of the hadron n: 
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B^ + ... , (3.4.2) 

where represents the square of the hadron mass in the unperturbed 

system (massless QCD) and the B^ coefficients denote the matrix 

elements of the operators qq in the chirally symmetric state; i.e. 

= <n|qq|n>. (3.4.3) 

The terms omitted in the expansion (3.4.2) are of two types. 

First there are the terms in the series obtained from higher orders in 

the perturbation theory. However, there are also nonanalytic terms of 

order (mass)^/^ [2] to be added to the naive perturbation expansion. 

These arise when massless Goldstone bosons, which cause infrared 

divergences in the chiral perturbation theory, are present in the 

unperturbed system. It was partly because of the complications caused 

by these latter corrections that we confined our attention to the 

effects of linear quark mass terms in the baryon number violating 

effective lagrangian. Gasser and Leutwyler [2] study the effects of 

the corrections of order (mass)^/^ and (mass)^. They conclude that 

they tend to cancel one another so that the overall correction to the 

first order formula (3.4.2) is small. 

Four unknown coefficients have been introduced in the linear 

expansion (3.4.2). This procedure may be applied to all hadrons but 

will lack predictive power unless the and parameters for 

different particles may be inter-related. This is achieved by using 

the SU(3) flavour symmetry of the QCD lagrangian in the chiral limit. 

This implies, for example, that 

'p - =n • = Bd_ 

Z 
= 

e -
(3, .4.4a) 

-
„s 

= B 
E 

= = B*̂  
3 " 

(3, ,4.4b) 

s 
'n = 

s 
^n = V = B^ 

„d 
= B ^ = 

Ji'a'nrfc 
(3. ,4.4c) 

P 

s 
^n = V E 

„d 
= B ^ 

2 j 

while the constants A^ must be degenerate within each multiplet of 

SU(3). With the definition 

Bg = 3% (3.4.5) 
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the linear mass formulae for the jP = baryon octet are 

nip = A + + nigB^ + .. (3.4.6a) 

= A + m^B^ + m^B" + rngB^ + .. (3.4.6b) 

= A + m^B" + m^BS + rngB^ + .. (3.4.6c) 

m2_ = A + + m^BU + mgE* + .. (3.4.6d) 

A + m^B^ + m^BS + m^B" + .. (3.4.6e) 

= A + + m^B^ + m^B" + .. (3.4.6f) 

m^o " A + m(B"+BS) + ^ (3.4.6g) 

m2 = A + ^[m(B"+4Bd+BS) + JLmg(2BU-Bd+2BS) + .. . (3.4.6h) 

Since we include the effects of isospin breaking there is mixing 

ed 

2 

between the unperturbed E° and A states. Consequently, the squared 

masses of these hyperons receive extra corrections of order (m^-m^) , 

which we neglect. 

If we retain only linear quark mass terms, e q u i v a l e n t 

perturbation expansions may be given for the masses of the baryons. 

Since A=j=0, we may write 

m = a + m^b^ + m^b^ + m^b^ + .. (3.4.7a) 

m^ = a + m^b^ + m^b^ + mgb® + .. (3.4.7b) 

m + = a + (3.4.7c) 

m^_ = a + m^b® + m^b" + m^b^ + .. (3.4.7d) 

mgo = a + m^bd + mjbS + mgb" + .. (3.4.7e) 

a + m^bS + m^b^ + m^b"^ + .. (3.4.7f) 
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m o = a + n{b"+bG) + m^b^ + .. (3.4.7g) 

m = a + i^KbU+4bd+bS) + 1 mg(2b"- + Zb^) + ..,(3.4.7h) 

i . _i 
with a = and b^ = jA The two sets of formulae differ by terms 

2 

of order (mass) and so for our purposes they are equally valid. They 

both satisfy the Gell-Mann - Okubo relation 

i(m + 3m ) = (3.4.8) 
2j l\ %E(B# 

where 

m ̂  = m^o ^ i ( m + m^_) (3.4.9a) 

= i(mp + (3.4.9b) 

= K m _ , + m ), (3.4.9c) 

and the Coleman-Glashow formulae 

= (nL+ - ni _) (3.4.10a) 
r Cf C/ 2, 2, 

(m +- m ) + (m^,_ - m -) = (m^. - m ) (3.4.10b) 
zj 2j 

(mu- - m. ) + (m^o - m^t) = ( m ^ - in ) (3.4.10c) 

which are all well approximated by the physical masses. 

Before we may use these results to correlate the mass corrections 

to the baryon —> antilepton annihilation amplitudes we must be able to 

express the masses of the baryons in terms of their constituent quark 

masses. Such relations are given by the additive rule: 

m = 2M^ + (3.4.11a) 

= My + 2Ma (3.4.11b) 

m = 2M^ + Mg (3.4.11c) 
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= 2Md + Ms (3.4.lid) 

= Mu + ZMg (3.4. lie) 

Mcr = + 2Ms (3.4.1 If) 

'*Z0 = = *u + Md + Mg . (3.4.11g) 

These formulae are consistent with the perturbation expansions (3.4.7) 

provided 

Mu = [a + mu(2bU-bd) + (ma+mg)bS + ..] (3.4.12a) 

Md = [a + ma(2bU-bd) + (my^mg)bS + ..] (3.4.12b) 

Mg = .1 [a + mg(2b"-bd) + (my+ma)bS + (3.4.12c) 

and 

b^ + bS = 2bd. 
(3.4.13) 

These results provide a direct link between constituent and current 

quark masses. 
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3.5 THE CONSISTENCY OF TEE CHIRAL LAGRANGIAN WITH THE PROTON DECAY 

CALCULATION 

H a v i n g expressed the constituent light quark masses as 

perturbation expansions in the current masses we are now in a position 

to study the consistency of the chiral lagrangian formalism with the 

calculation of three-quark annihilation i&mplitudes using symmetric 

baryon wavefunctions. 

Using the results of Section 3.4 it is interesting to note that 

the combinations of constituent quark masses in which we are 

interested, namely those of Table 3.2, are simply related to the 

relevant baryon masses. We find 

+ ZMyMj = j m j (3.5.1a) 

M u + 2M^Mg = Y m 2 + (3.5.1b) 

^d + (3.5.1c) 

MuMd + MuMg + MjMg = y m^o = - (3.5. Id) 

These equations hold only when terms quadratic and of higher order in 

the current masses are neglected. It now follows that the three quark 

annihilation amplitudes are proportional to the masses of the 

intermediate baryons of the pole diagrams. (But see below for a 

comment on the A v and A -> v vertices). 
ju e 

An examination of the expressions for the vertices involving the 

proton, neutron and Z*and z°hyperons In Tables 3.2 and 3.3 leads to 

the following conditions for consistency: 

II * 
|a| = (3.5.2) 

k = — (3.5.3a) 

0 = b^ (3.5.3b) 

, s 

& = ' (3.5.3c) 
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The same constraints are required to equate the sums of the amplitudes 

for the and ^ ^ g vertices. It should not surprise us that the 

individual amplitudes may not be related using the conditions (3.5.2) 

and (3,5.3) since only the sum depends on m in the way that the 

amplitudes for all the other vertices depend on the corresponding 

baryon masses. 

With the vanishing of the coefficient b^ it follows from Eq. 

(3.4,13) that 

b ^ + b S = 0 . (3.5.4) 

We now wish to determine the corrections to the branching ratios 

for the decays of the proton into a pseudoscalar meson and an 

antilepton which result from inclusion of linear mass terms in the 

baryon number violating chiral lagranglan. To achieve this we must 

obtain values for the parameters k and ^ which in turn are determined 

from the coefficients a, b^ and b®. 

By inspecting Eqs, (3.4,7) and (3.5.1) in the chiral limit we 

deduce that 

a = 3M = mg . (3.5.5) 

Thus the single value of the parameter |a| which implies consistency 

for all vertices coincides with that obtained when the effects of SU(3) 

symmetry breaking are neglected. (See Eq. (3.2,6)), 

Using the baryon number conserving part of the chiral lagranglan 

with fundamental baryon fields ( ^ + ^ ) it is possible to express the 

baryon masses in terms of the parameters a^ and 82 of The results 

are 

™p ®B ~ ®s^2^ + •• (3.5.6a) 

(3.5.6b) 

- ^(m^aj + 0^82) + .. (3.5.6c) 
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m 

= mg - + 01^82) + (3.5.6d) 

= mg - 2(mgai + m^ag) + .. (3.5.6e) 

= mg - 2(mgai + m^az) + -- (3.5.6f) 

m_n = Bn - ZmCa^+ag) + .. (3.5.6g) 

(m + 2mg)(ai+a2) + .. (3.5.6h) 

m 

zo wg 

2, 
m = m, 
A J 

As we mentioned in Section 2.1, with the values a^ ss -0,45 and a2~ 

0.88, these formulae give reasonable predictions for the baryon 

masses. The value m^ = 1197 MeV is also required. The relations 

(3.5.6) are entirely consistent with the chiral perturbation results 

(3.4.7) provided 

b" = -2*1 (3.5.7a) 

b* = 0 (3.5.7b) 

= -2a2 (3.5.7c) 

It is encouraging to see that the baryon number conserving chiral 

lagrangian also predicts that the parameter b^ should vanish. 

However, although the coefficients a^ ha^^e opposite signs, th&y 

do not sum to zero. It appears that the consistency of the different 

evaluations of the baryon-^antllepton vertices Imposesan extra 

constraint (b^ = - b ^Eb) which Is not realised when linear current 

quark mass formulae are used to interpret the physical baryon masses. 

However, the condition (3.5.4) has its origins in the use of the 

additive rule to relate the baryon masses to the masses of the 

constituent quarks. Suppose that, instead of solving Eqs, (3.4.7) and 

(3.4.11) to express the constituent quark masses as series expansions 

in the current masses, we directly interpret the functions of 

constituent masses occurring in Table 3,2 as being proportional to the 

squares of the baryon masses. We then arrive at Eqs. (3.5.1) without 

any constraints on the unknowns b^, b*̂  and b®. There is little 

motivation for this. Nevertheless, a pattern for the constituent mass 

combinations of Table 3.2 does emerge. For example, + 2M^M^ Is the 
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sum of the products of all constituent quark mass pairs of the proton. 

If this quantity is taken as being proportional to the correct 

constant of proportionality follows from a study of the chiral limit. 

Similar arguments are valid for the other three-quark annihilation 

amplitudes although, as before, we must sum tlb: imaplitudes for theA + v 

and A V vertices. 
e 

For the purposes of calculating corrections to the branching 

ratios of the two-body decays of the proton we use the knowledge 

gained from a study of the baryon number conservir^ chiral lagrangian. 

The adjustments are then controlled by two parameters (b^ and b®) 

instead of one(b). With this extra freedom the coefficients may be 

chosen so that the chiral perturbation expansions give baryon masses 

which are in closer agreement with experimental values. From the 

best-fit results 

a = 1197 MeV (3.5.8a) 

b^ % 0.90 (3.5.8b) 

b^ % -1.76 (3.5.8c) 

we find the coefficients 

k ^ 0.8 X 10"3 MeV'l (3.5.9a) 

1 -1.5 X 10'3 MeV'l . (3.5.9b) 

The above values of the b^ parameters contrast with those which 

may be deduced from the work of Weinberg [9]. He argues that the 

value = 150 MeV gives a reasonable fit to the observed SU(3) mass 

splittings provided that 

<p| s s|p > # 0 (3.5.10a) 

<Z| s s|Z > % Y < S I s s| S >. (3.5.10b) 

In our notation these assumptions are equivalent to the constraints 

^ 0 (3.5.11a) 
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% i b" . (3.5.11b) 

When we recall tHmt matrix elements of the qq operators entered as 

coefficients in the chiral perturbation expansion we may conclude that 

the conditions (3.5.10) in some sense amount to an identification of 

constituent and current quarks. 

Using the values (3.5.9) together with those for the current 

quark masses quoted in Section 2.2 we have performed a quantitative 

investigation of the effects of explicit SU(3) symmetry breaking on 

the two-body decay rates of the proton in the minimal SU(5) GUT. The 

results are presented in Table 3.4. 

The corrections to the amplitudes obtained in the chiral limit 

are expected to be of the form 1 + m /jj, where ^ (a 0.5-1.0 GeV) is of 

the order of the characteristic scale of QCD [10]. With the values 

(3.5.9) for the parameters k and £, the relative magnitudes of the 

corrections to the decay amplitudes are in close accord with this rule 

of thumb. The SU(2) x SU(2) subgroup of the full chiral symmetry is 

exact when m^ = m^ = 0. As these masses are tiny, we expect the 

resulting deviations from the soft pseudoscalar limit to be small. 

From Table 3.4 we are able to confirm that these corrections are of 

the order of 1%, while those due to SU(3) breaking are roughly 10-20%. 

The fact that the adjustments to the amplitudes are significantly 

smaller than the uncorrected results is a vindication of the validity 

of the expansion in powers of current quark masses. 

A striking feature of our results is that for all decay modes the 

inclusion of SU(3) symmetry breaking effects leads to a suppression of 

the decay rates. This suppression is significant only for those 

channels in which there are non-vanishing coefficients of m in the 

chiral perturbation expansion. In particular i&n enhancement 

factor of approximately 1.6 for the proton lifetime x (p m°e*) 

Nevertheless, the mode p m°e* remains dominant, and relatively large 

rates are still predicted for the decays p-)-Tr'*'v andp . Only 

the branching ratio for the mode p is increased significantly. 
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Table 3.4 Two-Body Proton Decay Rates and Branching Ratios 

With SU(3) Symmetry Breaking Effects Included. 

Decay Mode 
Enhancement Factor for Decay Branching Ratio in 

Decay Mode 
Rate in Minimal SU(5) Minimal SU(5) (%) 

0 + 
p -> IT e (1 + m k 

u 
+ m £)^ 

s 
0.61 59.1 

+ 
p n e (1 + m k 

u 
2 

+ m &) = 
s 

0.61 0.5 

P + (1 + m k 
u 

2 
+ m,£) 

d 
0.98 14.9 

+ — 
p ir v 

e 
(1 + m^k 

2 
+ m £) = 

s 
0.61 23.3 

p K 
y 

(1 + mk + m£)^ = 0.99 0.8 

o + 
p K e (1 + m k 

u 
+ m^£) 0.98 0.3 

0 + 
p ir y (1 + m k 

u 
+ m £) ̂  

s 
0.61 0.6 

p (1 + m k 
u 

N2 
+ m £) 

s 
0.61 -0 

_j— 
p + K V 

e 
(1 + m k 

s 
2 

+ m £) 
s 

0.80 0.5 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

In Chapter 1 an attempt was made to obtain values of the first 

few moments of the proton distribution amplitudes by applying the 

technique of QCD sum rules to the operator product expansions of 

suitably chosen current correlators. Only the lowest twist 

contributions to the OPE's were included. For most of the sum rules 

good fits were found to be possible and reliable estimates of the 

corresponding moments were obtained. The results are displayed in 

Table 1.9. The moments clearly indicate an asymmetric distribution of 

longitudinal momentum among the constituent quarks of the proton. The 

largest part of the proton longitudinal momentum (in the infinite 

momentum frame) is carried by a u-quark with the same hellcity as the 

proton. 

Our results are to be compared with those of Chernyak 

and Zhitnltsky [1], who analysed the same current correlators. These 

authors were also able to extract accurate moment values from almost 

all of their sum rules, and hence deduce explicit expressions for the 

distribution amplitudes. Their results predict a greater asymmetry in 

the distribution of quark momenta than that implied by the moments of 

Table 1.9. Our disagreement with Ref 1 is not one of interpretation 

in the treatment of the sum rules. We differ about the results of a 

well defined calculation, that of the Wilson coefficient functions of 

the OPE's. 

The two most obvious sources of uncertainty in our analysis are 

the omission of n o n - l e a d i n g p e r t u r b a t i v e c o r r e c t i o n s to the 

coefficient functions and the neglect of the contributions of higher 

dimensional operators to the OPE's. Higher order perturbative 

corrections have been Included by Gorskii [2] in the QCD sum rule 

analysis of meson distribution amplitudes originally performed by 

Chernyak and Zhitnitsky [3]. In Ref. 2 it is concluded that the 

resulting corrections to the moments of the pion wavefunction are 

small. It is to be hoped that a similar calculation for the nucleon, 

as well as an estimate of the contributions of operators of higher 

dimension, will be feasible. 
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Perhaps lattice gauge theory offers the best hope of an accurate 

determination of the moments of hadronic imavefunctions. Preliminary 

results for the pion give a much larger value of the second moment [4] 

than that obtained using the technique of QCD sum rules. Predictions 

are not yet available for the moments of nucleon wavefunctions. 

Hopefully Improvements in the techniques of lattice gauge theory and 

increased computational power will lead to more accurate calculations 

of hadronic parameters in the near future. 

Chapter 2 dealt with the application of the distribution 

amplitude obtained by Chernyak and Zhitnitsky to a calculation of the 

proton decay rate. While the details of the analysis of Ref. 1 may be 

disputed there is increasing evidence [5] that an asymmetric 

distribution of quark momenta may be required to give a correct 

description of hadronic physics, p a r t i c u l a r l y hard e x c l u s i v e 

scattering processes. It must also be remembered that only the lowest 

twist contributions were Included In the OPE's of the current 

correlators so that the sum rules were sensitive to light-cone physics 

rather than the short distance physics appropriate to a calculation of 

nucleon decay matrix elements. 

The rate for the decay p m°e* was evaluated by estimating the 

proton-4 positron three-quark annihilation amplitude and using the 

chiral lagrangian formalism. The main conclusion of Chapter 2 was 

that use of the Chernyak and Zhitnitsky distribution amplitude led to 

an enhancement of the proton lifetime by a factor of about 6 over that 

obtained using a completely symmetric wavefunction. The contribution 

of the antisymmetric component of the distribution amplitude to the 

decay amplitude was of opposite sign to that of the symmetric 

component, indicating that a qualitatively similar result may arise 

using other asymmetric wavefunctions. The result obtained (for the 

minimal SU(5) GUT) was 

This implies that 

> 1.5 X 10^^ GeV, 
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on the basis of the experimental lower limit T (p -y Tr°e^)> 2.5 x 10^^ 

years established by the Irvine-Michigan-Brookhaven (IMS) group [6]. 

Calculation gives [7] 

= (1 to 2) X lO^^ X Apyg I 

where the QCD scale parameter (in the MS scheme) /\p^ is found from 

experiments and lattice QCD calculations to lie in the range 100 to 

400 MeV. This is clearly In conflict with the limit /\p^ ^ 1 GeV 

inferred from (4.2) and (4.3). While the enhancement of the proton 

lifetime due to the use of an asymmetric distribution amplitude is 

insufficient to resolve the discrepancy with experiment it is possible 

that other GUTS may not be excluded. 

A model was also chosen for the distribution o-f the transverse 

momentum of the quarks within the proton. It was found that further 

suppression of the predicted decay rate was possible only when the 

probability of finding the valence three-quark Fock state in the 

proton was greater than about 0.5. 

In Chapter 3, explicit SU(3) symmetry breaking terms were added 

to the baryon number violating chiral lagrangianj and the subsequent 

corrections to the decay rates of the proton into its various decay 

products were determined. Using chiral perturbation theory, by which 

combinations of current quark masses may be related to constituent 

quark masses, it was demonstrated that these corrections were 

consistent with those obtained by including the effects of SU(3) 

symmetry breaking in the baryon wavefunctions used by Brodsky et al 

[8]. 
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