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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE

PHYSICS

Doctor of Philosophy

LIGHT-CONE AND SHORT DISTANCE
ASPECTS OF NUCLEON WAVEFUNCTIONS

by Ian David King

In recent years the technique of QCD sum rules has been used to obtain
a number of very satisfactory results in the non—perturbative region
of QCD. Here we study the first few moments of the quark distribution
amplitudes of the nucleon, using the same auxiliary operators as
Chernyak and Zhitnitsky. We differ from these authors in the operator
product expansions we obtain for the current correlators in the
Euclidean region. Nevertheless, we are able to confirm that the sum
rule analysis leads to an asymmetric distribution of longitudinal

momentum among the constituent quarks of the nucleon.

We investigate the implications of such an asymmetry for the rate of

0et in the minimal SU(5) GUT. The calculation is

the decay p » 7
performed using the chiral lagrangian formalism. We find significant
enhancement (by a factor of about 6) of the proton lifetime over that
predicted using a symmetric wavefunction. The effect of an asymmetric

distribution of quark transverse momenta is also studied.

Finally we introduce explicit SU(3) symmetry breaking termsisto the
baryon number violating chiral lagrangian and demonstrate that the
subsequent corrections to the decay rates of the proton are

consistent with a particular choice of baryon wavefunction.
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INTRODUCTION

Quantum Chromodynamics (QCD) is now firmly established as the
theory of strong interactions. It gives rise to asymptotic freedom,so
that at short distances the effective coupling of the strong
interaction decreases to zero. This implies that it is meaningful to
apply perturbation theory to hard transverse momentum processes. Use
of perturbative QCD has led to many successful predictions for hard
exclusive processes. For example, the proton's magnetic form factor,
measured in elastic electron—-proton scattering, is predicted to fall
off 1like Q_4 (Q2 is the square of the four—-momentum transferred
between the electron and the proton.) This dependence is confirmed by
the experimental measurements. Recently, however, there has been much
debate as to whether perturbation theory is applicable in the
interpretation of data available at the currently attainable energies
[1]. This discussion has been stimulated by the discovery that spin
effects are not negligible in large angle proton-proton elastic
scattering at high energies [2]. When QCD is used in conjunction with
a conventional (non-relativistic) wavefunction for the proton it is
found that spin effects become vanishingly small at large QZ.
Recently, Chernyak and Zhitnitsky [3] have used a QCD sum rule
analysis to derive a relativistic three-quark wavefunction for the
proton. It is hoped that the spin correlations inherent in this
wavefunction are such that its use in a QCD calculation of proton-
proton elastic scattering will eliminate the discrepancy with
experiment. Already, the wavefunction of Chernyak and Zhitnitsky has
been applied to many physical processes, leading to results which are
in close accord with observed values. In a calculation of nucleon
electromagnetic form factors, for example, it is found that for the
first time the predicted signs and magnitudes of the form factors are
in excellent agreement with experiment. One of the most significant
properties of the new relativistic wavefunction is that the quarks are
seen to play very asymmetric roles. Approximately two-thirds of the
proton's longitudinal momentum (in the infinite momentum frame) is
carried by one up quark whose spin is parallel to the proton's
momentum. This contrasts with the completely symmetric distribution
of quark momenta associated with the naive non—-relativistic proton

wavefunction.



In this thesis we study in detail the derivation of the nucleon
wavefunction given by Chernyak and Zhitnitsky. We also present a
modification of the approach used by Brodsky et al [4] to obtain a
lifetime for the proton for the minimal SU(5) model. Some of the
conclusions are valid for other conventional (i.e. non-supersymmetric)
theories of grand unification. Allowance is made for a possible
asymmetric distribution of quark momenta within the proton by using

the wavefunction of Ref. 3.

The layout of the thesis is as follows: In Chapter 1 we re-
examine the work of Chernyak and Zhitnitsky,who derive a mnovel
wavefunction for the nucleon by using the QCD sum rule approach
introduced by Shifman, Vainshtein and Zakharov [5]. We obtain
different results from these authors for the correlators used in the

QCD sum rules,

Chapter 2 begins with a discussion of a phenomenological (chiral)
lagrangian relevant to proton decay [6]. The rate for the decay
1) +-ﬂoe+ is evaluated by using this lagrangian together with an
estimate of the proton - positron annihilation amplitude. The
asymmetric proton wavefunction of Chernyak and Zhitnitsky is employed
in the calculation. Allowance is also made for an asymmetric
dependence in the quark transverse momenta. We find significant
enhancement of the proton lifetime over that predicted using a

symmetric wavefunction.

In Chapter 3 we examine some of the consequences of using a
symmetric quark momentum distribution in the chiral lagrangian
approach to proton decay. We investigate to what extent it is
consistent to use such wavefunctions in conjunction with the chiral
lagrangian. Specifically, explicit SU(3) symmetry breaking terms are
introduced into the baryon number violating chiral lagrangian and we
try to correlate the subsequent corrections with those obtained from a

refined calculation using symmetric wavefunctions.

A summary and discussion of our results is given in Chapter 4.
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CHAPTER 1

A QCD SUM RULE ANALYSIS OF PROTON DISTRIBUTION AMPLITUDES

In recent years a lot of effort has been devoted to the study of hard
scattering hadronic processes. Although the investigation of inclusive
scattering processes has received m ost attention, hard exclusive
processes, such as hadronic form factors or elastic gscattering at large
momentum transfers, have also been studied [1,2]. Amplitudes for different
processes may be related to each other by perturbation theory and the non-
perturbative physics 1s contained in universal 'quark distribution
amplitudes'. Unfortunately, only indirect information about the
distribution amplitudes may be obtained from hard exclusive scattering
experiments. Measurements do not enable us to extract the distribution
amplitudes themselves. This is in contrast to the case of hard inclusive
processes [3] such as deep inelastic lepton hadron scattering, the Drell-
Yan process or the inclusive production of particles or jets with large
transverse momenta, where the universal quark and gluon distribution and
fragmentation functions which describe the non-perturbative physics are

directly measureable in deep inelastic scattering experiments.

Several years ago, however, Shifman, Vainshtein and Zakharov (SVZ) [4]
introduced the technique of QCD sum rules,which allows long distance
effects to be incorporated in QCD calculations in a quantitative way. More
recently, Chernyak and Zhitnitsky (CZ) have used this method to determine
distribution amplitudes for both mesons [5] and nucleons [6]. We now

explain the basic principles of the QCD sum rule technique.

The operator product expansion (OPE) due to Wilson [7] is assumed
to hold in the physical wvacuum. Both short and long distance effects
are included in the OPE of a current correlator. The coefficient
functions contain the short distance effects and are calculated in
perturbation theory while the long range non-perturbative effects are
incorporated in the vacuum expectation values of the corresponding
operators. It is hoped that the OPE gives a correct description of
physics at distances greater than those of the region of asymptotic

freedom.



Dispersion relations are then written down for the invariant
functions arising from the current correlators. The low energy
behaviour of the spectral density is saturated by one or two lowest-—
lying resonances, while continuum states approximate the high energy
region. It is usual then to apply a Borel transformation to these
relations. This suppresses the contributions from the high dimension
operators in the OPE, as well as increasing the effect of the lowest-
lying resonance. Thus we arrive at the QCD sum rules, which are then
treated to relate hadronic properties to the parameters of the QCD

lagrangian and vacuum expectation values.

In recent years extensive use of QCD sum rules has led to a
number of satisfactory results on the hadronic spectrum. Properties
such as meson and baryon masses and couplings [8,9], electromagnetic
form factors [10], magnetic moments [11] and partial hadronic widths
[12] have been calculated, and in general the results are in good

agreement with experiment [13].

In this chapter we apply the QCD sum rule technique to correlators
containing currents with the quantum numbers of the proton. In principle
this should lead to values of the first few moments of the proton
distribution amplitudes, thus enabling us to deduce the distribution
amplitudes (or wavefunctions) themselves at the typical hadronic mass scale

Pﬁd,GeV.

Such a calculation has been performed in Ref. 6 for the case of the
nucleon., There, CZ obtain a wavefunction in which the total proton
momentum is mnot distributed equally among the constituent quarks. About
2/3 of the proton's longitudinal momentum (in the infinite momentum frame)
is carried by one u-quark with the same helicity as the proton. In this
respect the new distribution amplitude differs significantly from the
symmetric asymptotic form, which is exactly calculable in QCD [1]. In this
chapter we re-examine the calculation of the proton's distribution
amplitude. Our results differfrom CZ for the correlators used in the sum
rules but the values obtained for the moments of the distribution amplitude
are similar. We also outline how SU(3) symmetry may be used to derive sum
rules for the moments of distribution amplitudes for other baryons in the

JP = %+ octet. However, the required OPE's are not computed.



Using their wavefunction, CZ argue that for the first time a
calculation of nucleon electromagnetic form factors results in signs
and magnitudes which are in agreement with experiment. Further
impressive predictions are obtained for Jﬁyr—éﬁp and J/¢ -» fn decay
widths and for the behaviour of the ep and en deep inelastic
structure functions FE(X) and Fg(x) in the threshold region x =% 1.
Such asymmetric distribution amplitudes may also lead to interesting
predictions for polarised hard scattering experiments and it would be
interesting to see if they can explain any of the puzzling
experimental results. (See for example the recent discussion in Ref.

14 and references therein).

We shall use the CZ wavefunction as input for the proton decay
calculation of Chapter 2. However, a cautionary note is appropriate
here. Only the lowest twist behaviour of the OPE's for the current
correlators is calculated. Therefore the QCD sum rule analysis
provides information about the proton wavefunction at light-like

2~$O. As a result the distribution amplitude obtained

separation x
should be applicable to studies of high momentum transfer processes
such as the QCD calculation of nucleon form factors and the J/yf_aﬁp
decay rate. In contrast to these light—-cone dominated processes an
estimate of nucleon decay matrix elements should be sensitive to
physics as xFM-»0. Thus the two classes of process involve different
aspects of the distribution amplitude., Thisg is associated with the
fact that lowest twist operators are relevant to light—cone dominated
processes whereas baryon decay operators are of higher twist. 1In
principle a proton distribution amplitude more sensitive to short
distance physics could be extracted from a QCD sum rule analysis.
This could be achieved by calculating the comé@te Wilson OPE rather
than just the contributions of lowest twist. Unfortunately, the
computations involved would undoubtedly be lengthy. In the absence of
such a proton wavefunction we must be content to apply the information

gleaned from the lowest twist contributions to the OPE in our

estimation of nucleon decay matrix elements.



1.1 THE OPERATOR PRODUCT EXPANSION FOR QCD SUM RULES

In this section we introduce a practical method for calculating
the coefficient functions of the OPE. This will simplify the
computations of the subsequent sections. This background field method
has been used in QCD sum rule applications by other authors [15], and
has been developed by Govaerts et al [16]. Here, we will be relying

heavily on this last work.

We begin by writing the lagrangian density of QCD:

— -a.L o n.,.») A [r— J—
L= —% Fos F tz %[‘\Ki‘- ¥'D -(D,,«y;)x"y@]

- ; M_; .{IFZF ‘\}V; + Ga.u.3e -'-":hdns term (1.1.1)

+ Faddeeyv — Pspov 3%05&2 term )

where the sum is over quark flavours. The gluon field strength tensor
Fﬁqis defined by
B ¢

a o S
F';s) ;:ar:ﬁj "'g‘\ﬁ‘; "‘3';Q‘QHP R.; (1.1.2)

and the gauge covariant derivatives in the fundamental and adjoint

representations of the SU(3) colour group by

D, = 3 —4ig T Ay (1.1.3a)
ab ob b &
Dy = 3,8 -9+ a, . (1.1.3b)

f represents a quark field and A? a gluon field.

The quarks transform according to the fundamental representation of
SU(3) and the gluons according to the adjoint representation. g and
me are the strong coupling constant and the quark mass respectively.

The T's are generators in the fundamental representation of SU(3), and

satisfy the relations

[T, T%] = L§>bT° (1.1.4a)

ok

Tr T>T®> = 4 87 | (1.1.4b)

where gabe are the SU(3) structure constants.



The Wilson OPE is a short distance expansion of the form

P
O, vu Oz o X7° z Cy %) O o) (1.1.5)
0

where 04 and 02 are local operators. To any finite order in x only a
finite number of operators On contribute and they are ordered by
dimension. The corresponding coefficient functions C, may be singular
as x2—50. The expression (l.1.5) is valid only when sandwiched

between initial and final states.

Consider a correlator containing the time-ordered product of two
currents JA, JB, which contain only light quarks (u, d or s). As
indicated before, an assumption of the QCD sum rule method is that the
OPE is valid for external momenta q very much larger than the quark

masses; i.e.

J(,Sdf"x e_&q"x<0! T Tﬁ(x) TB(,MI <>$,_-§iw E Czalﬁ,} <O¥ Onl O>}
n (1.1.6)

where CﬁB are the Wilson coefficient functions and On are local

Lorentz scalar and gauge invariant operators containing light quark or

2—a—eocorresponds to the short distance

CAB

gluon fields. The limit g
limit of Wilson's OPE. The coefficient functions will diminish by
the corresponding powers of gq. The leading terms in the expansion
should then give the largest contributions to the current correlator.
We assume that the OPE remains valid when we neglect the contributions
of operators with dimension D2 6. An additional reason for truncating
the OPE is given by SVZ [4]. They argue that the OPE breaks down for

operators of higher dimension due to instanton effects in the vacuum.

Since the magnitude of the non-perturbative interactions falls
off quickly at short distances the leading contributions to the
asymptotic behaviour of the coefficient functions CaB may be
obtained, by using perburbation theory, as the leading terms in series
in us=:§;x. The vacuum expectation values <O[ODJ®» » with O, not the
identity operator I, parametrise our ignorance of the non-perturbative

effects.

The quarks and gluons may be pictured as propagating through the
physical wvacuum, interacting with long distance fluctuations of the

condensates. The basic idea of the background field approach is to

10



expand the quark and gluon fields as quantum fluctuations around
classical background fields representing the vacuum fluctuations. If
we then make a short distance expansion of the current correlators in
the background fields we derive the OPE as a series in.<0]0n|0> with
the operators On as gauge—invariant functionals of those background
fields only. (By definition the quantum fluctuations average to zero

in the physical vacuum).

Explicitly, we set

’\V; Gy e ¥ Mg o (1.1.7a)
H:m) — A ea o+ ¢:‘ W), (1.1.7b)

where Y; and A% are the quark and gluon background fields satisfying

the QCD equations of motion

LITD Y = ompyg (1.1.8a)

L(Dpye) ¥ = —m (1.1.8b)

3 o —
(D G’Pq> = 3 Z'\y‘; ¥ T“’\)UF. (1.1.8¢)

Gag is the background gluon field strength and D, and Dab are
2 5 3 P

. . . o
background covariant derivatives. and represent the quantum
s p TEP

fluctuations.

The colour singlet operators with zero Lorentz spin (only such
operators give rise to non~zero vacuum expectation values) and

dimension D not greater than six are [4]

I (D = 0) (1.1.92)
0, = yMy (D = 4) (1.1.9b)
S A e ) (1.1.9¢)
0 =YWhwvyhwy (=56 (1.1.9d)

11



0, =Y T MY G, (D = 6) (1.1.9)
abe .oup . BY . eA
05 =F 6, 6y 65 (D =06) (1.1.9£)
where
WA
y = (c&) (1.1.10)
s
v
and g% =& [¥P, Y7 (1.1.11)

M; and M, are mass matrices in flavour space while the matrices f1 and
f;}wve colour, flavour and spinor indices. All other operators with
D& 6 may be reduced to these, together with total derivatives, by
using the equations of motion. The corresponding (physical) vacuum
expectation values <O|On|0> , n =1,2,3 parametrise the leading non-
perturbative corrections,while <O|04]O> and <0105[O> are estimated to
lead to comparatively small adjustments in the OPE[4]. Thus in our
computations we will neglect the effect of these last two matrix

elements.

In our calculation of the coefficient functions we will require
expressions for quark and gluon propagators. Thus we must use this
formalism to develop short distance expansions for these propagators.
These will describe propagation in background, or external, quark and
gluon fields. Performing the substitutions (l.1.7) in the lagrangian

(1.1.1) we find

I - z(ﬂ,‘\y.;,'\?;.) + o (Ghost) + ;FL&“LD/_M&)"Li'
£3 2% [P (B, DM = (1-%) (0P D) +29 $°° 6" ] 85
YO DTy T+ ¥R T+ YA T )
5

- S'). _;_Q.bc. ;mé.’} ﬁ:: ¢: ¢c\p ¢f-é

~ 3 5T (™) By ¢y
— _t.; 31 ;ch. ;0.&'5' ¢: ¢: ¢&p ¢5‘3 ) (1.1.12)

where the equations of motion (1.1.8) have been used to arrive at this

12



-k

.o ' 2
form. The gauge—-fixing term 5;_{(Df¢”fﬁ has been added to the
lagrangian. In what follows we choose the Feynman gauge &=1) for

the quantum fluctuations.

The quark and gluon propagators, Sf(x,y) and P2P (x,vy)

respectively, satisfy the defining equations

(L B “"f"‘;) Spony = Lsmc.wg; (1.1.13a)

abe LN .
[ar (0, oM™ + 29 £ 6] S oyn = 4 m 8% 5%
(1.1.13b)

We now exploit the residual gauge freedom in the background field A?.
Short distance expansions are easiest in the commonly used Schwinger

gauge [17], defined by
(x—xo)‘JAi(x) = 0, (1.1.14)

where X, is an arbitrary reference point which plays the role of a

gauge parameter. This constraint breaks translation invariance but

the parameter X, should cancel in the current correlators since the

latter are gauge invariant. Thus, from the beginning, we may set X,

equal to zero. The condition
xFAS(x) = 0 (1.1.15)

may be solved to give [18]

|
0.
Ry oa = Lam x G:,; Coae)
=0 ‘) ~
p— i oy iy
— — ™ xR (D,... D, G to)
> e (Du: - Dy G
k=e (1.1.16)

Use of this form will result in gauge covariant expressions for the
current correlators. Solving equations (l.1.13) for the free quark
and gluon propagators and adapting the results to perturbative

expansions in the background fields by iteration we find

13



5 27*  (e*-ie) wRE bA-i
-3
Fary L o8 ot T XY
8 7 E*-ie 167 bi-Le
N
3 6% e T XK
et (e2-le)
+ L oom GS 0 TS Py
—, &3 Wy A 3N
g7t E*- it
-~ Mg 9 ™ o P9 L 2 2)
a P oy T o v ("/\ b
327
) N o o 2
P (DT @ T YT e (SANEY)
+ N) ( De& G'.:P)ui\"? ..To. xé BP 1 Rat® 3“) X
i
2% (e2-ie)?
-3 o a |
Lt 702 (Do Gop)eo T NN
'{QZx“-»g‘) THE YT = odeayd) P v
—26%eP Y w3 xe g ¥ ¥t e Ry E]
v
+ 3 GS,,WT&GBFJ(«:)T" [oey-x2y?] _K
a2 w> (e2*-r1e)*
+ terms of higher order in me
+ higher dimensional operators (1.1.17)
peb oL M 8 L9 et AR
pé (’niﬁ} - L‘»'Rl &1_L£ 8,7:?. P")
- 9 ake < il \j"'
g T T Ore ™ G
+ higher dimensional operators ) (1.1.18)

where t = x—-y and A is an ultra-violet cut-off. The quark propagator
has been written as a perturbative expansion in the quark mass Mo We
may make use of (1.1.17) since we will be calculating OPE's for
correlators of currents containing only light quarks, i.e. Mg 44 P o

where F is the characteristic hadronic mass scale.

14



The terms in the iterative expansion of Sf(x,y) containing two
factors of G";l,,., have been simplified by isolating the piece singlet in
Lorentz indices. Just this piece will contribute to the coefficient

function associated with the vacuum expectation value &} G-:I.) G** o),

In general, calculations of the coefficient functions tend to be
simpler when carried out in configuration space. However, we will
find that some diagrams determining the corrections proportional to
the matrix element {elg Ny W Lwlod are more readily computed by
working in momentum space. For future reference we thus give the

short distance expansions for the quark and gluon propagators in

momentum space :

Speuw = [a% e“‘"’“"““"{ LR, imy

preie pr+it

. a
(pr+ie) tp?+ el

. o K} x?’
+ iia,ﬂ G‘y*) oy T™ x f;z*i’:;z

3
-k L G2yt T> _oP
k 3 B (p*+ 1 e)*

. a
+ Amgg GI‘" oy T x? pY
(pzi»i..'é‘.}z

5 L (Dy 6yp) e T % yP
3 ~3 & Gap) oY Giaio®

- ; > o o 4
Ly (P Gop) e T Graier

L2 %p? o 2 p2pd P w3 Py @ y?]

L
3

a
Cletad T " T L
(p2+ie)?

L2x?pry + g g Pl

&8

+ terms of higher order in me

+ higher dimensional operators} (1.1.19)
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b "‘:b - —x Gub
P oo ©0,9) .-:j&'*p ORta 3’{ L Mpe

p+ic

. be 4 i

+ 2 B A S T S
&3 §' P ‘Pz'i':\.&)z'

st& ﬁ o
3 57 s GRpw XTPT
(p*+ie)

+ higher dimensional operators } (1.1.20)
The Bianchi identity

(Da Gw)& + (D, G'm)a + ( Dy GM,)“ = 0 (1.1.21)

has been used to express the quark propagator in this form.



1.2 PROTON DISTRIBUTION AMPLITUDES

In this section we define distribution amplitudes for the proton

and derive some of their properties.

We start by writing the gauge invariant matrix element of the
tri-local operator for the proton:
ik . (s i
£™3 <°!Ee>¢p(a.3jll A, Lo alc-?')u-,,‘k%,)] (1.2.1)
' % . 2.
Cexplia [  Ayem ) wpza]® dy @nlpd,
where the exponentials are to be understood as being path ordered.
Here lp) represents the proton state with momentum p, u and d are
quark fields, i, j and k are colour indices and o, B and Yy are spinor
indices. It has been verified [19] that the anomalous dimensions of
(1.2.1), which were originally calculated graphically [1], correspond
to the anomalous dimensions of the lowest twist three—quark operators.
In the light-cone gauge used in Ref 1, for which the separations

between z;, z, and z3 are all light-like [20], the lowest twist part

of (1.2.1) reduces to
£%3% ol ut 2 wizn a% e lpd (1.2.2)

so that in this gauge we are only interested in the three quark
component of the proton's wavefunction. Using the transformation
properties of the fields under proper Lorentz transformations and
parity, (l.2.1) may be rewritten in terms of three invariant functions

V, A and T [21] (in the infinite momentum frame pz—guﬂ:
— ¥
Vo2 b
(h-2-0) . { (P’C)«ﬁ (¥sN)y Vizep

v 4 (o p? c.)“ﬁ (¥F¥s Ny T{L:-p)}
(1.2.3)

Here C is the charge conjugation matrix, N is the proton spinor and
the constant fy is a measure of the value of the proton wavefunction
at the origin. The normalisation condition used to define fy is given

below.

17



The three scalar wavefunctions V, A and T determine the complete
wavefunction of the proton. The purpose of the ensuing QCD sum rule
analysis is to calculate the lowest twist behaviour of these
functions. It is convenient to define the function V in momentum

space as follows:

e
Vﬁx.,ﬂz,x?) = fV(E;'P,QQ'P,EgtP) JT --§':_'=‘-fl exp (A3 (2iep)
‘ o
= (1.2.4)
Translation invariance then implies that X;*txo+xq=1 and we deduce

the inverse relation

§
3
V(?\‘Pliz-P y Ry P) == SE&'&} vw&‘,xz,n;) exp {wi, Ex& (2.-plp, (1.2.52a)
o

L=
where

5: Cax] = :Ed.x‘ _g:d.)%.,‘ E: dxng S(1 - 23:7(_;,) . (1.2.5b)

PR

Similar relations may be written for the A and T functions. The V, A
and T functions provide information on the longitudinal momentum
fractions x; (OS'xi$ 1; 1 =1,2,3) of the quarks within the proton

and are called distribution amplitudes.

Determination of wavefunction moments, defined as

L T i " n "
Vo = L Laxd Vi x,, ) 20 2t 1g° (1.2.6)

(n1,n2,n3) (n1,n2,n3)

and T , will allow

with similar definitions for A
us to deduce expressions for the distribution amplitudes V(Xi), A(xi)
and T(xiL We hope that an estimate of the lowest moments
(specifically, those with nj+n,+n3g 2) will suffice to extract

approximate distribution amplitudes for the proton.

The distribution amplitudes are slowly varying functions of at
least one renormalisation scale. For our purposes it is sufficient to
have one such scale, Pi say, which is a measure of the separation

between the quarks:
2 2
(2~ 2,) ~ (Z3-%3) ~(3,-2)" ~ /a

The dependence on pz is found by performing a renormalisation group
calculation (See [6] and references therein). In the asymptotic limit
p*—>eo the proton distribution amplitude,?ﬁs(xi) say, 1s exactly

calculable in perturbative QCD and has the totally symmetric form
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120 x;x,%4 [1]. Using explicit forms for the (massless) spinors,
together with (1.2.2), the lowest twist part of (1.2.3) may be

rewritten in the form

i
| P»r> = K L L] { ji EV(:&L}-ﬂwa;,}] Pugpoes wy e i?msa}

i
+ 3z [Vixi+n eyl iu‘bm.) Uptxa) datng))

= T Tugon) ugg) %m;;)} ) (1.2.7)
where the arrows denote spin projections onto the z—axis and kK is a
constant. In the asymptotic limit the flavour-spin structure is known

to reduce to that of the SU(6)-symmetric quark model. Thus we deduce

V""“){ = Tixy)
N — . s y = 1.2.8
P2 00 L oo > éﬁswﬁ.ﬂ 1209¢,%¢ 3¢, ( a)
Ry . -5 0. (1.2.8b)
P o (0,0,0)
(The normalisation constant k& is chosen so that = 1.) The

As
evolution to the asymptotic form is only logarithmic so that the

asymptotic result will never be useful phenomenologically. Typical

results of QCD sum rule calculations of resonance properties are
estimated to have an accuracy of only 10-15% [4]. Thus we feel
justified in calculating the distribution amplitudes at pzsz 1 GeV2
and neglecting the relatively small corrections resulting from the

inclusion of renormalisation effects.

The identity of two u—-quarks in the proton implies

.. . ) Dk . . K
€% ol ud ey whtey dfy v ipd = €72 <ol w12 wlim) dp iz )ipd

(1.2.9)
By using the symmetry of the matrices XPC and GPJC, and the

antisymmetry of XV'XSC, we deduce from (1.2.2) and (1.2.3) the

symmetry properties

Vi, %, ,%3) = Vixa,x,, %) (1.2.10a)
Ry, %a,xs) = =0 g, %,,%,) (1.2.10b)
T""*u"z;"s) = T‘.?ﬁg‘x“xs} (1.2.10¢)
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which in turn imply the relations

V(“i)ﬁg)ﬂg) — v‘ﬂisnl‘; ﬂ3) (1-2-113)

H(ﬂ\)‘ﬂm,ﬁ‘s} - R(ﬁz)ﬂ‘iﬂ‘s} (1.2.1“3)

T W, M, ) T Wi, B, ng) (1.2.11¢)
The proton has isospin I = 1. We must ensure that the matrix element

of the orthogonal I = 3/2 combination vanishes; i.e. that

£ % o) ula) Wiz, d ey wh iz g aLii. @ Wiy,
+djeopudiepuaanly) — o, (1.2.12)

Again using (1.2.2) and (1.2.3) this leads to the constraint

ZT(X.,&MKB} o= %(‘&ngaxz) 4+ % g ,203,74,) (1.2.13a)
where
%"’"';"&;"3) = Ve, mg,33) = Ax,, %, %, . (1.2.13b)

We conclude that there is only one independent proton distribution
amplitude. CZ choose this to be the (dimensionless) function é(x1,x2,x3) .
The constraint (l1.2.13) may also be translated into a relation between

the moments of the proton's distribution amplitudes:

I - M Y: S (1.2.14)

Equation (l.2. 11b) implies that A(O’O’O) = 0, and then from (1.2.14)
we obtain V(O’O’O) = T(O’O’O). The decay constant fN is normalised by

the choice

(o,0,%} 48,0, ¢}
VR = T =y (1.2.15)

From this ik follows that é(O’O’O) = ], which will ease comparison

between %(Xi) and the asymptotic form éﬁs <Xi)‘

Thus far we have considered the case of the proton. The analysis
for the neutron is similar. However, since the SU(6) flavour-spin
wavefunction for the neutron is obtained from that of the proton by
making the substitutions u-3d d-» —u, it follows that XK. —3% -—i in the

1imit of exact isospin symmetry. It is clear that the assumption of
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exact isospin symmetry implies that the neutron's V, A and T functions
coincide with those of the proton,thus enabling us to define a single

nucleon distribution amplitude §(Xi).

An alternative definition of the proton distribution amplitude

has been given by Brodsky and Lepage [l]. The most general form is

. % ]
qu. Ri,90) = {ﬁ; [d,‘.m W 020 Upt3) + Ut Utz dgtd)

s
~2u,t A wan] o, )

4. o
B {;d.,rc\)ud’ia) Wat3) = Ll w itz dawa] q; oc.;_,z,})}

+(16d2) + (2633 (1.2.16)
h h nee nf Farmi Fatriarica 5," ,.2\ (1ar _25 o fean
where, because of Fermi statistics, $(x;,97) (¢7(x;,9q )) are symmetric

(antisymmetric) under the interchange x;4$x4. The combinations in
squared brackets arise from the SU(3) mixed symmetry representations
for the octet states of two u—quarks and a d-quark. By isolating the
terms with the d-quark in position 3 and comparing with (1.2.7) we
find the relations

o

"i EVQL;) - ﬁ(’:&:,‘s_] = [.“ﬁ? (#S(K"gr.,_’u‘;) - :fi‘ C{D (xunhn:gﬂ (1.2.17a)

—

hIVews te] =e [& P ima s s) - Yo P ape#a3)(1.2.17b)

N 2, $
Tog)y = o }-:3- P ey, xy 50,3 (1.2.17¢)
where ¢ is a constant. The constraints (1.2.10) and (1.2.13) are seen

to be consistent with equations (1.2.17). This equivalent formulation
proves to be useful in the proton decay analysis of Chapter 2. 1In the
appendix at the end of this chapter both formalisms are used to deduce
constraints on the V, A and T functions for the z° and A hyperons,

where the quarks are of three different flavours.,
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1.3 THE CURRENT CORRELATORS

This section contains a discussion of the current correlators to
be used in the QCD sum rule analysis. We study correlators of the

form
i fat e ¥ ot T{ F oo (‘J‘f"xmf} o> (), (1.3.1)

where F(n) are operators whose matrix elements <0[F§n)(0)lp> may be
expressed in terms of the moments V<n), A(n) and T(n) of the
distribution amplitudes and J‘gn are auxiliary operators or currents
chosen with the aim of making the proton's contribution to (1.3.1 )

large.

First we turn to the problem of choosing suitable proton
currents. Unlike the meson case unique quark currents (with no
derivatives) do not exist. There are three independent quark currents
J(ﬁo with quantum numbers of the proton, and no derivatives, which
give non—-zero matrix elements <O|J(I)IP>. The current that is chosen
should satisfy two conditions [22]. In the OPE of the current

correlator it is desirable that

(i) the lowest lying baryon resonance give a greater contribution

than the continuum states;

(ii)the neglected non—-perturbative corrections be small

compared to the contributions of the retained terms.

Following CZ we select the proton current

(a0 ik n : .
J . L = &7 {[((LZ.D)n‘mm)“Ci’-uﬁ‘”?:}wgo‘-“ma)v

- [( L4z D)a‘ u.m))& C g{ a3 m:} (¥s &ktvc})e})
(1.3.2)

where z¥ is an auxiliary light-like vector introduced to help project
out the leading twist component. In Ref. 6 it is claimed that use of
this isospin % current in the QCD sum rule analysis leads to a

distribution amplitude which gives good agreement with experimental
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data on nucleon electromagnetic form factors and other quantities.
The computations will tend to be simpler for small values of ﬁl. Thus

only the currents Jg?) and Jg,l) are included in the correlators.

As mentioned earlier we hope to construct proton distribution
amplitudes once the wavefunction moments have been determined in the
sum rule analysis. The moments are introduced via matrix elements of

suitably chosen local operators. We first consider
(nd
Col vl =
. i . :
€% [ (e m ™ weg) Co ez o ww) a0 (9s )1 1p),
(1.3.3)

where (n)= (ny, ny, n3).

This may be rewritten as

y 3
(£2%)™ (L2? )" 2™ (C o Vap (¥ dey Sc\sﬁii,-?) LE and expfis %, (2_;,-3}.?]
A=

Lwin W 2 iy ™ "
<l e™ (0 wad ez (D wy ) e (D3 dy) cap 1p),
(1.3.4)
where ﬁ,ﬁ,x and ¥ are spinor indices, and we have introduced the

compact notation
¥ Yo, — )
(i'D)ﬁ = z"'...% Dw."'Dwn = (&9)" (‘Du.) . (1.3.5)

Because % x0T ! the y-dependence may be taken outside the integrals
as a fag‘tac:r e~1p.y, Then, choosing the Schwinger gauge (1.1.14), for
which A;’(O) = 0, the covariant derivatives Dy, may be replaced by
partial derivatives ‘3,,. After integrating by parts to get rid of the

partial derivatives, we deduce

(o) V';MU:)‘ | F> — ﬁ'i-?)nﬁn“% e—-i?.ﬂ (C?-)a{s ng’}fcv

H
3
NN n ,
So Cda] =i w32 *g3 f A.EQEQ;F) exp (“* > X;'ﬁ;'?)
b
(ol %™ Whap ol e A7

Watm) Wiz a5 |p) (1.3.6)
Now we recall (1.2.2) and (1.2.3). The trace theorems for y-matrices

ensure that only the V term gives a non—-zero contribution. The final

form of the matrix element is
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<°l v::’ﬁ‘j)k?> - - }N (_2'?)*’\.4-“2*-%3-\-& Nfr v(vn e’-i,?.sﬁ’ (1.3.7)

In the same way we introduce the moments of the A(x.} T(x;)

functions:

(ol Ay

Il

e ™ aw)* Cd v (hap™ w10 20" dpwi]®ipd

= =gy )R N Rt ety (1.3.8)

Py

O i " ,
e I pm w) ™ C et oy 2t (apr™ w3 L) (37 ws aup) T  1pd

= 24, 2pMTTN N, T e ey (1.3.9)

Thus we shall evaluate the following correlators in our

investigation of wavefunction moments:

End . 4" .
I, = »b_gé,“x eV (o] T F0n T o) Fpn
— &%.%)ﬂn‘ﬁﬂg*ﬁs-\-\# I(V\\(%&} (1.3.10)

I

{nd
K7 = o e Gl T ( Bl T w)10) Fpn

= (=g (M, (1.3.11)

Here F&f) represents Vg?), A&?) or Ign) and :Y"“* = (fyi“d)*

The‘i.factor ensures that the leading twist contributions survive when

the traces of ¥~matrices are taken. We shall compute the OPE's for

I(nqu) and K(nqu) in the spacelike region q2<()and for the cases with
nytny,tng £ 2 only. We shall neglect terms proportional to the light

quark masses. Effects due to the breaking of the SU(2) isospin

symmetry are neglected. Thus we assume
LI T wled = Leld dlod = <ol qlop (1.3.12)

and compute a single nucleon OPE,
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Recalling that we wish to include only the leading non-
perturbative corrections in the OPE (i.e. those parametrised by the
vacuum expectation values <0|0n10>, n = 1,2,3) we write the asymptotic

behaviour of the invariant structures I(n)(qz) and K(n)(qz) as

follows:
Ilﬂ)( 2y = _ Lny 2 Ln 2
Y82 9 Py
+ BT L (ol JSD T a lod (1.3.13)
243 9% s 1%
ng tn)
K™Men = % g%l g2
Bo T
0\‘;’ 1 Slg o apd
+ e Sy el = GP” & 1oy
L€}
—  Sa ) - 2
L ol Jero (1.3.14)
253 7® < S A ler,

The q2 dependence of the different terms in (1.3.13) and (1.3.14) is
determined (up to logarithms) by simple dimensional arguments. The

next section is devoted to a calculation of the o and B coefficients.

25



1.4 CALCULATION OF THE COEFFICIENT FUNCTIONS OF THE OPERATOR
PRODUCT EXPANSIONS

In this section we evaluate the asymptotic behaviour of the
Wilson coefficient functions of the OPE's as defined by equations
(1.3.13) and (l.3.14). Each of the coefficient functions may be
derived as a perturbative expansion in the effective strong
interaction parameter ®gip*) . For p =1 GeV2, kg {p*) = 0.3-0.4 and
hopefully is small enough to enable us to neglect all but the leading
terms in the series. The coefficient functions will all be found to
be ultraviolet convergent. This is a consequence of the fact that the
correlators defined in Section 1.3 were constructed to extract the

leading twist behaviour.

We start by considering the I~correlators. From the definition

(1.3.2) of the proton current J(l), we find

T:-nhn = —gvik {( Iikm ‘B’s)eE Giou ¥ C ( g;,—&.b}ﬁvm)k]
= (Zrongg)e L Lem % CLanm @oalI) (1401

With the choice F(,g‘) (x) = V,g_.n) (x) in Eq.(1.3.10), it follows that

- VLAY

T gm0 = —g¥d%emn gP (Lo (L™ (Laf)" fah v
ol T LQ D u.hq)’;‘ C# (a2 u.w.))':‘* 1¢ 3);3 A w.‘;)k
’ {(Ef'(m'ﬂ)? [ "oy "# C (DP 'Ci.}“tm]

= (C&g’(e)#),t Ld™w E (D, a}“(e;j} oy, (1.4.2)

where the covariant derivatives D, coincide with the partial
w»
derivatives 3,, in the Schwinger gauge. Note that (DF¥T) (0) stands

for (D;ﬁ(x))h lx=0. Similarly,

ToMGq, = R et 2P )™ (LaN™ (L2 [a% e v
<°l T E(D:,‘ u.(.u.})i‘(', g’ ¥e & D;" utx.‘t)é } ( D;:s ci'g‘»"'”)k
'{{ o g Y L3 Z C (D, &) eoy)

*K«‘L%wsf;z).czim;ac(D,,a)"m]}m» (1.4.3)
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The constraint (1.2.14) tells us that the moments of the three
distribution amplitudes V, A and T are not independent. Indeed, it is
unnecessary for us to compute the I-correlators with Fgg)(x) = T&?)bd
since the values of the B coefficients for the corresponding OPE's may

be deduced from an evaluation of the expressions (1.4.2) and (1.4.3).

For an evaluation of the K-correlators we need
T = g¥ik g+ wd =k
o 3 T (d (x)ys-)g(umsic W)
R TSP RV T O P ?', c U\"‘tx.))}; (1.4.4)
which leads to
Tn s v L.
K e, = E3% a2 29 (o)™ (2™ (eeh)™ (g e
g L 5
T LOn2 wwa) € oy 0D we)®I0 D22 (v 1
. T4 - -
{ (&% #_)T (W E C Wheer )

- (W E), (L2 C Te)fiod (1.4.5)
when we choose F&?)(X) = T&?)(x) in (1.3.11). It may be easily checked
that the perturbative contributions (o< cx?b to the K~correlators
vanish when Fgg)(x) = A&?)(x). This leads to complicated sum rules.
Thus we shall restrict ourselves to a study of the K?(n) correlators.
Such an investigation should provide a useful check on the QCD sum
rule technique as the moments of the T function may also be determined
by studying the I-~correlators with.Fg?)Qx)= Vép)(x)and.Ag?)(x)and
using the constraint (1.2.14). In principle, use of the K-correlators

should enable us to reduce the errors on our estimates of the moments

of the distribution amplitudes.

In accordance with the discussion of Section l.1 we now make the

expansions
u(x) —ulx) + ﬂtw(x) (l.4.6a)
a(x) -y d(x) +7L£X) (1.4.6b)

in (1.4.2), (1.4.3) and (1.4.5), where u(x) and d(x) represent classical
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background fields and m ,(x) and 'Vld‘(x) their quantum fluctuations. By
considering just those terms with quantum quark fields we calculate
the coefficient functions of the identity operator I and of the
gluonic operator vacuum expectation value <o} G;,, &*P¥lod. The oy and
B, coefficient s are computed by evaluating diagrams with some

3
background quark fields annihilated in the vacuum.

Details of the evaluation of the o and B coefficients are now

presented.

(a) Calculation of ocgn) and Sgn) Coefficients

These coefficients occur in the Wilson functions associated
with the identity operator in the OPE. Thus in this subsection
we are determining the purely perturbative contributions to the
functions I(n)(qz) and K(n)(qz). We compute the asymptotic
behaviour of the coefficient functions, keeping only the terms
independent of ®g , These terms may be represented

diagrammatically as in Fig. 1.1.

We consider Iv(n)(q,z). Retaining only the quantum quark
fields after performing the substitutions (1.4.6) in (1.4.2) we
use Wick's theorem for Fermi fields to obtain

TV, a1 = =3 E0mn mP (Lak )™ (LM (4aF)"2 § a &V
é“ kad .M

<el {-T" C(D:f;\ D?, SIW-:%\) Cg( (DK_' S“(‘x,o))" # T (9;33&“’@9“‘@‘#

* T CADG DY sTunul® ¢ o (D2 Seon,e)™™ 4 (B2 5, ey

+ (m@m,n.w%)} o) (1.4.7)

Yze

where the trace (Tr) and transpose (T) refer to Dirac indices.

This form exhibits the expected symmetry

Iv (N e, nyd = TV tng N, , ng) (1.4.8)

(o, %) (9,27,

V(n)
1
terms in the expansions of the covariant derivatives and the

To evaluate the R coefficients we neglect all g-dependent

quark propagators. Thus the covariant derivatives reduce to
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. . (n) (n)
Fig.1.1. Diagram Contributing to oC, and B,

Legend for Diagrams of Chapter 1

p s P 4  Quark Propagator S () = SJ\“P e:i.p.(}v'th S(?)

x\iw.ﬁibﬁ Gluon Propagator P(X;ﬁ} :§a»P e-»«lP‘(m-'S% P‘?’

Background Quark Field

o, woseas wemeds  awooee s

Background Gluon Field

Crosses represent annihilation of the background fields in the vacuum.-
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partial derivatives and the (massless) u— and d-quark propagators

become the free propagators Sﬁ?i(x,y); i.e.
p

SE™ euy = S ey 65 = A _GA =By e 1.4
I Y = ey L

The colour factor is then identical for each term in (1.4.7) and

for each (n). It is
e«'—ik g Lmn 85"‘ ghm gkl = ( (1.4.10)

As an explicit example we compute the perturbative contribution

to IV(O’O’O)(q,z). Thus we calculate the asymptotic behaviour of

-12 =P 5&"3; ade {-Tn C(.Q‘: S:f‘&x,s)jr C‘i St’uz.,e) 2. T S:)cx.,cs #

. . . o (1.4.11)
+Te C (32 s e, u) CF ST bc.,o)# S ox,0) #}I
yzo
With the help of (1.4.9) and the relation
Cy, ¢ =Y, (1.4.12)
this becomes
. . \
st %Q, A j &.H)(. e}&@\,')u {sLzl (1.4.13)
e (2-ie)’

We have made repeated use of the fact that z¥ 1is a null vector,

z* = 0, to derive this form.

In analysing the current correlators we encounter the more

general integral [16]

- 2wy ———;7——- (n=i)

. . 2 1
S\éf’ e,4q q,..>--cn‘ grLe (1.4.14a)

3 3
(2L %2
. - % - A
LTIt (g 2&.%".;'*:. (n32)

(A=1}iingjl P‘
(1.4.14Db)

(Pz is an ultra-violet cut-off.) By taking derivatives with
respect to q, we may introduce factors of x¥ into the integrand
as required. Since we are interested only in those terms which

have a non-vanishing Borel transform (see (1.5.13)) it 1is
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unnecessary to include derivatives of the logarithm when n 2 3.
For the same reason all polynomials in q2 may be omitted. As a
result the perturbative contributions to I(n>(q2) and K(n)(qz) are

cut—off independent and proportional to q2 ln q2.

We find the perturbative contribution to IV(O’O’O)(q,z) to
be “’!{r’so‘ﬁ‘*(zﬂ)a q2 {n q2} which corresponds to a value of 1/3 for
the [Sfo"”ﬂcoefficient for the choice F(_(;,O,O) (x) = VS,E’O’O)(X)

in the proton correlator.

(n) (n)

The calculations of all the 061 and 81 coefficients are

carried out using the same method and the results are summarized

in Tables 1.1 and 1.2.

As well as possessing the required symmetry properties

&

BV n,ma, ") Y (hg n,,ng) (1.4.153a)
i - V
AN, n a ("
/5, PR TS — -'ﬁk Ag, vy, (1.4.15b)
O{Kﬁ‘fﬂ"ﬂa) e a("z,“;,ﬂg) (1.4-15C)
i [
(n) (n) . . . ]
the oc1 and 81 coefficients are seen to satisfy other relatiomns:
A Y . (1.4.162)
iy,0,0) {2;,9,0)
xl 20,00 O(‘ S, a‘i\:*;‘?l + Mt"l";” (1.4.16b)
(e,0,u to,0,2) (1.4.16¢)
i

\ - d:\,a,\) +* 0(:0"";; . o
(The Bgn)'s obey an identical set of equations.) These relations
may be proved using integration by parts and are a consequence of
momentum conservation. Consider, for example, Eq.(l.4.7). We

see that when we retain only the leading term in the perturbative

series,

V(O)\)o) V‘QJQQ‘)

IV(\JOJO
(g + L (o, %)

)
(g, %) + T
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(n)
Table 1.1 Values of ©1

(n) a{®)
(0,0,0) 1
(1,0,0) 1/3
(0,0,1) 1/3
(2,0,0) 1/7
(0,0,2) 1/7
(1,1,0) 2/21
(1,0,1) 2/21

(n)
Table 1.2 Values of B1
F = v FMy =A™
T T T T
@ |8 m |
(0,0,0) 1/3 (1,0,0) -1/42
(1,0,0) 5/42 (2,0,0) -1/56
(0,0,1) 2/21 (1,0,1) -1/168
(2,0,0) 3/56
(0,0,2) 1/28
(1,1,0) 1/28
(1,0,1) 5/168
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—3 6 =P (L™ [ a4 evv

{ T~ C (33 S:;L:t,gk)TCi (3;: S::)\:*.;o])'-# . Te S:’(K,e) ‘#
+3 obther bLarms

+ Tr C (’E)::: ??, S:_”kx,%})‘r C.‘# Stxﬁx,e) # . T S:fju;,v)#
+3 obher Lerms

L3} T

+*Te COOR ST, ) CF ST x,0) Z T (D3 5%, o)

+3 obher berms 3%
yzo

= Gz’ (iLe%) [an ety r

T ©
{Tv C(??, S(‘:‘h\,gl) C'#. St:g:t)o) 4 . T S:)czc,o;'ﬁ
+3 obhar berms }l
y=o

Vie,o,0 (1.4.17)

(o 22,

= (=92 I
which, by the definitions (1.3.10) and (1.3.13), implies the

desired result

vV iie,0) CARNIAY WA, 0,4} viv, 0,0}
3, + ) = By (1.4.18)
The constraints (1.4.16) provide a useful check on our

calculations.

The symmetries (l.4.15) obviously hold for all & and
B coefficients. The relations (l.4.16) also generalise, though not
always for the reason in the example above. Both (l.4.15) and
(1.4.16) may be rewritten as relations between the Sorresponding
(n1 STy ,n3) 0, ,0, 50,
i\ = V

moments of V, A and T; e.g. etc.
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(n)
(b) Calculation of o$™ .nq B3 Coefficients

We now turn our attention to the calculation of the non-
perturbative contributions to the OPE. Since we neglect the
effects of the u- and d-quark masses the quark condensate <OI01]O>
does not contribute. Thus in this subsection we determine the
coefficient functions of the dimension four gluon condensate <0}0210>
For this case the leading terms are linear in the strong coupling
parameter ®g. The diagrams corresponding to such terms are

displayed in Fig 1.2,

Again we consider the proton correlator with Fgg)bd =
V&?%x). The expression (l.4.7) is our starting point. We
choose the Schwinger gauge and determine the short distance
expansion of Iv(n)(q,z) using (1.1.16) and (1.1.17).
All possible terms with two factors of the background gluon field
strength tensor G%q(without derivatives) are retained. In the
diagrams of Fig. 1.2 the background gluon fields originating from
the vertices at x and 0 arise from the expansions of the

covariant derivatives acting at these points.

It is seen that diagram (d) gives a vanishing contribution
to the correlators: in the Schwinger gauge Aﬁ(O) = 0 and the
covariant derivatives acting at the origin reduce to partial

derivatives.

A study of the short distance expansion of the fermion
propagator Sf(x,y) (eq, (1.1.17)) shows that the diagrams (a) also
do not contribute. The 'GZ(OY term in the expansion vanishes as
y-»0 implying that with our choice of origin (background field
gauge) a quark interacting twice with background gluon fields

cannot propagate.

Clearly diagrams (c) will contribute only to those
correlators with at least o%e covariant derivative acting at the
vertex x; ie, those with E{ n; » 1; while dgagram (e) is non-—

L=

vanishing only for the correlators with :Z n; = 2. As an

<
illustration we sketch the evaluation of dfégrams (b), () and

(e) for 17(0,0,2) (q,2).
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(n) (n
Fig.1.2. Diagrams Contributing to oc\z and B,

(a) ; :
(:::::::::::) + Permutations
(b)
X
(:::::::::::? + Permutations
X
(c)
Q + Permutations
(d) (e)
X X




Diagrams (b) represent the three different possible ways in
which a single factor of Gi,,(o) may appear in the expansions for

two of the three quark propagators. For those propagators,
Sa,a(x7) = 52 (), (1.4.19)

where the superscript (2) denotes the dimension of the gluon

operator; i.e.

(-3 -
Su.,&- Ouy = 3 G ey T YPEYY 8 Gyt T xr k!& ¥

PR E*-Lg 2 P (e%-Lg)*
— L2 23 \e)
= S0 L vy Sea Wy, (1.4.20)

2

Thus we calculate the q“—% — & behaviour of

2 g grahgp Jass Sl
. : — wi
{o] Tr (3] ST Mey)™ 4 (S o)™ i BTN Sy ton,e0) %
* T (33 S:.n’t\3 ,n))s“ % (.S::’Uc.,a}‘mfé. . Tr (222, Sz')ssx,s})nﬁ’-g
" ; ®h
B Tv' (3: S:“q(\é‘,?b))s“'a (S&’(nio))“bm# . Tv‘ ('QA?I, S:’hu,a) #
. . Y
- T ('B?, Srmgg":n)ﬁﬁg ﬂS":‘j bc.,o))“m# (2,“3_, S::‘(:L_,e)}k a/
— T ( Y Sc(z) 2 (Swz )L‘“ (-; P 5‘2" )ki
- 3P o Lg,'&)} 'ﬂ w L, 00 % 2 Sp S 00l r'4

- Tr (33 §;°’ gm’u)a“ % ( S‘:_‘ w..,o))bmﬁ (3,\?,, S:i'}(u,m)k&y | o

Yz e
(1.4.21)

where we have defined

sS(x,y) = Cc sl(y,x) ¢!, (1.4.22)
It may be shown that

Lol
Sc(O)(\j)&} =1 hesd S ccx‘)\j) (1.4.233)
iz} — {230 L2}
) Yy S )b:,;g) -3 0,4, (1.4.23b)
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For diagrams (b) the fact that 22 = 0 implies that all the

8(2)(X,y) propagators in (l.4.21) may be replaced by
S(z)(a)(x,y). The colour factor is

gU3% gl (e ()i gkt = -k gt (1.2.24)
Performing the integration using (l.4.14b) the asymptotic limit
of the contribution of diagrams (b) to IV(O’O’Z)(q,z) ig found to

be

b
S . A o 5 o apd
4320 W 2 < }7: Gy €577 10)
where we have extracted the Lorentz and colour singlet

component by making the replacement [23]

O,
G’k’mﬁo‘t G‘:a oy —> (‘/3 Smb) 'fz (”Lla'.f 'ngc"" Mwe VL';P)

Gf,,,, (o) GopY (o) (1.4.25)

Next we consider diagrams (c). This time one factor of Gﬁéo)
must come from the expansion of the covariant derivatives.

1V(0,0,2)

Thus, for the correlator, we put

D‘)\ Dp — -)i Ao (‘akx* G—i", @ T & G-i’.'\m'?“%) (1.4.26)

In this case only the S(z)aﬂ(x,y) term of the interacting
propagator gives a non-vanishing contribution. Using (1.4.26)

and the identity

ELJ&R E—Q-Mn Sﬁ"‘ SLM g\-—rm-—rb)kk’ e gﬂub; (1.4.27)

together with the properties of the charge conjugate propagator

W
SC(X,Y>, we obtain a contribution of .=l L4 {o} ?.‘_t-‘;(;”' T A T
gLuom? %2' 7T o PY :

Lastly we must allow for the case when both factors of
G?d(o) originate in the expansions of the covariant derivatives;

i.e.

DoDp = (hig) xdan® G T 6o @ T?  (1.4.28)

for the IV(O’O’Z) correlator. This situation is represented in

diagram (e) and leads to the contribution
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Table 1.3

(n)

Contributions to %9

Contribution from Contribution from

(n) Diag. 1.2(b) Diag. 1.2(e) a;n)
(0,0,0) 1/3 0 1/3
(1,0,0) 1/6 0 1/6
(0,0,1) 0 0 0
(2,0,0) 1/10 1/30 2/15
(0,0,2) -1/30 1/30 0
(1,1,0) 1/20 -1/60 1/30
(1,0,1) 1/60 -1/60 0
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(n)

Table 1.4 Contributions to B3
(n) (n)
(a) P (x) v (x)
Contribution Contribution Contribution
V {n}
from from from 82
(n) Diag. 1.2(b) | Diag. 1.2(c) | Diag. 1.2(e)
(0,0,0) 1/12 0 0 1/12
(1,0,0) 7/240 -1/240 0 1/40
(0,0,1) 1/40 1/120 0 1/30
(2,0,0) 1/60 -1/360 1/180 7/360
(0,0,2) 1/90 1/180 1/180 1/45
(1,1,0) 1/180 -1/360 -1/360 0
(1,0,1) 1/144 1/720 -1/360 1/180
(n) _ ,(n)
(b) FT AT (%)
Contribution | Contribution | Contribution At
from from from 62
(n) Diag. 1.2(b) | Diag. 1.2(ec) | Diag. 1.2(e)
(1,0,0) ~-1/48 1/80 0 -1/120
(2,0,0) -1/60 1/120 0 -1/120
(1,0,1) -1/240 1/240 0 0
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S8buoqr? %} <ol *:;:?' G'::o c*v? o)

- 0,3 ot
We obtain a final total of 2329%3 . %Z/%a. <ol %EG‘% G*FY)od

for the asymptotic behaviour of the IV(O’O’Z) correlator due to
the condensate <0502i0>. This corresponds to a value of 1/45

Yoo 2) .
for 1:hei32 * " coefficient.

(n) (n)

2 and 82 coefficients are

displayed in Tables 1.3 and 1.4, These values have been checked

The results for all the o

by calculating the Feynman diagrams of Fig l.2 in momentum space.
It is clear that such an approach necessitates integration over
two loop momenta. For these diagrams it is simpler to assume the
short distance expansion (l.1.17) for the quark propagators and

perform the manipulations in configuration space.

It is seen that relations analogous to (l.4.16) hold also

(n)
2
for each individual diagram. For diagrams (b) the relations

for the cxén) and B coefficients. Indeed, they are satisfied
follow using the integration by parts argument of Section l.4(a).
For diagram (e), however, the fact that, for example, the

contribution to the Iv(n)(q,z) correlators satisfy

IV“)Q)W"' ivic,s,n + Iv(o,o,z) — IVCo,o,l) (1.4.29)

is a consequence of the colour factors. Specifically, the

identity

£43% g0 [ 20Tt (rhy gk 4 (Tare)in sim gxe] = ©
(1.4.30)
is required. Both types of argument are needed to prove the
relations between the contributions from diagrams (c).

(n)

n
(e¢) Calculation of Otg ) and B3n Coefficients

So far we have determined the first order perturbative
contributions to the functions I(n)(qz) and K(n)(qz) as well as
the leading contributions of the dimension four gluon

condensate.., The ugn) and B§n> coefficients occur in the Wilson
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functions associated with the four quark operator Og ((1.1.94)),
which has dimension six. In our calculations we again wish to
retain only the leading terms in the perturbative expansions of
the coefficient functions. Contributions independent of txs(i.e.
of order (o(s)" ) could be expected to enter via Fig. l1.3(a)
while the remainder of the diagrams of Fig. 1.3 represent the
possible contributions of order ®g. Again we illustrate our

arguments with reference to the Iv(n)(q,z) correlators.

We start by considering diagram (a). As this diagram has
only one quark propagator we retain only one pair of quantum
quark fields after performing the substitutions (1.4.6) in the
general expression (l.4.2). Since the four background quark
fields will contribute to condensates of dimension D26 (see

later), all covariant derivatives must reduce to ordinary

derivatives. Thus we find

AT o
L7 g, = = g5 g0 gy (L™ ™ (e

Dias. (-9

ic#)uﬁ CF ey, Q) fale v

Lo iy 2, n 3. - - k
< 3{(3% W) o (a,\*u)ﬁ ) Wt (3, W) o (o2 S:“"'“’)xtc
- (3:' u.): (3%} i?,:" u.);; 13 t\i (o) ('33., TG M (3:3 SI}(x,o;)
+ (gﬂ. u) - (303&>1 tand & tol &;’ Lol (3:; Bep S::am,c))k:
+ (2 “) ) (gfé.,)’ Wl J..,.,:v.e» u. tor (Bre Bop ST (a,»))
n, "
+ (3& u.) Gty (’b\, d.)ﬁ By L et (9 u..) Lo} Q? N S‘”(x,g;):r
+ (3“\1 )‘1- ¢ N3 b (g A 13 R
a Wlo 4 (2524)) b d. ) (B T)T cer (37 S @ %, :)

- (2™ o) "y a8 A
(3R w)s e (32 )} va d e T (273 %, S TS

(14
— (e A " 3, =4 - LX)
(?'Ai“")a wo (33%4)5 wu 4 p tol u.‘:‘: ter (¢ i Fop S & a0 Be

= (radieo (3P 4)] o die 3,807 e (3G oo
“ H Vi A by o
~ (32w ou (333d)3 oo d.;' to2 (3,507 o (323 SM"‘J"’)}::} 1o,

(1.4.31)
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Fig.1.3

(a)

(b) (i)

(ii)

(iii)

(iv)

Diagrams Contributing to oc(r;)

# X
/ \
VA
\ /7
N /
x ¥
P X
/
AN
g’ —)o . Permutations
A Y
/
\\ /
% ¥
X
/} \
I/ ((m')a) \\
4 —
\ /
N /
X o
PN
/ \
\
% . Permutations
\ /
\ /
hY x/
¥ A
Vé \
XN

~ . Permutation
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(c)
/
/ \
. 000000

4 } + Permutation
\

/
\\ /
X f
(d)
X X, X X
! S7 |
i . {
| : |
\—/ + Permutation
(e)
N X X
~ _” |
| e |
| 1
+ Permutation
(1)

U + Permutation



where o ,8,y,5,r and 0 are Dirac indices. Clearly this expression

satisfies the symmetry relation

IV (ﬂ\)ﬂz)ﬂ-&) I\'ﬁnq,“;}ﬂs)

(g, 2y = (g, =) (1.4.32)

as expected.

Each of the terms of (1.4.31) contains a vacuum condensate
of four background quark fields and their derivatives. Consider

the general form
<ol (MM 5w (32 q8) o (272 55)) (3“"@%‘%@1]0)) (1.4.33)

where A,B,C and D are quark flavour indices. We saw earlier
((1.1.16)) that the background gluon field Aﬁ(x) could be
expanded in powers of covariant derivatives of the field strength
tensor G?J(O) in the Schwinger gauge. In the same way [23] the
gauge condition allows us to substitute covariant derivatives for
oridinary derivatives in Taylor expansions of the background

quark fields. Thus

%(R) = § -{Zs P Al _.}Qe‘(k D&‘w). . .Duk(o) 9,10) (1.4.34a)
k=o
&0
ﬁ,(x) = Z _\l:& 2%, ™®w E;(c) D;‘(ow .o D:“(e) (1.4.34b)
k=
where )
D; = S}, * hg TTRS (1.4.35)

Use of these equations will result in gauge covariant expressions
for products of background quark fields. It is clear that
inclusion of any terms other than the leading ones of the
expansions of any of the quark or anti-quark fields in (1.4.33)
will lead to contributions to quark condensates of dimension D
> 6. Thus the dimension six part of (1.4.33) is

e N,0 .7i,e mVigs A A Ba g
8™ 872" 87 8™ Lol M gk §

k - D4
¥ ¢ Ys to) | O,

(1.4.36)
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To estimate this four quark vacuum expectation value we follow
SVZ [4] and introduce the vacuum saturation hypothesis. In this
approximation only the vacuum intermediate state is retained in

each channel:

ai B4 —~Ck =Dl
<ol 9" Vp @ 9 @ G wle)

24

~ <o| %3 ) %ﬁj“‘”")’ {ol Epf’tm q,a;'m)30>

= <ol §5 0 450 (o <:>><°¥q,s ) 9,59 oy 10> (1.4.37)

Since only Lorentz, colour and flavour singlets may have a non-

vanishing vacuum condensate we find [23]

<°a ?{,Z {ol %; tO}}Q} ‘1 Sﬁs Se(ﬁ SLS <Q' @ﬂ(o) q’ﬁ(o)\0>. (1 -4.38)

(No sum over A). The vacuum expectation values (‘ﬂﬁ,ﬂw) q,“mh)
(A = u,d,s) have been estimated by several authors [24,25].
Recalling our assumption (1.3.12), for our purposes the

condensate (1.4.33) may finally be written

‘q‘* S ﬂ:c &ﬁzo Sﬂ,,'c <°1E %l°>7.

(835577 5,, 8.5 63 6™ — g7 882 5., 8, 870§, .

We now apply this approximation to our expression (l.4.31)
for the contribution of diagram (a). It is clear that the action
of the Kronecker delta symbols with Dirac indices is such that
each term vanishes for all (n). This is because for each term at

least two of the following pairs of indices are contracted:

(ap), (Bp), taey, (Bar, L), (A=), L¥PY, LU,

The contraction of any of these pairs in the expression (C?)eqa
. . 2 _

(#),c,g (£C)pe gives zero, either because z“ = 0 or because the

trace of an odd number of y¥-matrices vanishes. We conclude that

the leading non-zero terms in the perturbative expansions of the

coefficient functions are of order ®g . To compute these terms

we must calculate the rest of the diagrams of Fig. 1.3.
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Consider first the diagrams (b)(i). The contributions are
most readily determined by modifying each term of (1.4.31) to
allow for the gluon loop. For the sample graph shown, the first
term of (l.4.31) must be altered by making the replacement
ws o —> v (av S0 o) Y Lo (y? a)3k pioiab

o fdvo §atw (S™0, ;)aﬁ Ly YT, (T P R
(o3 wid

(s AT g a e (et W oW,

(1.4.40)

Since the Dirac index of only one quark field is altered the
contraction of these indices still ensures the vanishing of each
term of (l.4.31). A similar change occurs when the substitutions
appropriate to diagrams (b) (iii) are made while the insertion of
the gluon loop in the internal quark propagator of diagram (b)
(ii) does not interfere with the Dirac index structure of the

background quark fields at all.

For the graph illustrated in Fig. 1.3(b)(iv) the replacement

to be made in the first term of (1.4.31) is

» « ‘k .
wiou u%tm — fdve Jarw {S‘“’m,\n);x Lo (¥Plyg Croed k&?'swx

b 3 .
Pro e wr (STl g Ceipe (TR gt

This diagram too gives a vanishing contribution to the
correlators. To show this, it is simplest to transfer to

momentum space by using the definitions

Sta,yr = fa% evrve gy, (1.4.42a)
ok —h 3. lst .

Py = [atp ety peb (1.4.42b)

winy = (avp &M wip 6™, (1.4.42¢)

(The background quark fields do not carry any momentum.,)

The expression (l.4.41) becomes
u @ " o1 ab
5&“"56"“5&? P?.,g tp)
(o) T Y
(S %m)sy 43 Py (T2 uf

(s¥ep)ly dg e (TH™ ule (1.4.43)
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Recalling from Section 1.l that

fo '
S )‘P? = *F (1.4.44a)

P* s it

b _: cab
P(a}u o) SIS “LP° (1.4.44b)
) P
i 2. J
P+t

we see that (l.4.43) contains as a factor the integral

famp, 207

(PZ*LEP
which vanishes in the prescription of dimensional regularisation.

Having shown that none of the diagrams (b) contributes to
the Wilson coefficient functions we turn to diagrams (c). We
must amend each term of (1.4.31) to account for each of the four
possible Feynman graphs. Each graph corresponds to the mediation
of a gluon between a chosen quark and antiquark pair. For
example, one modification which must be made to the first term of
(1.4.31) is given by

(o) a.b

f""’ (w0

Wi o Un.‘f; )y —> j\&‘*v farw P

to) L4 . e aya% K
(s (n,w)}&ﬁ vy (YPlgy (TRRT wy o
w— . mMn N nd,
Wetwr L (fDge (TE)T (8 gw,o;),w (1.4.45)
Once the appropriate substitutions have been carried out it is
again found to be easier to complete the computations in momentum

space. The final result for the contribution of diagrams (c) to

the Iv(n)(q,z) correlators is

e Sidelc 5 1)
! Diag, tc) 7| 9" s v
{ e (mog)Matnert Navaldi M)

(nz+n3;g)é

ke Fhy o Ay gy byl
Brgo (mg) 772 $opezl: P
N, e ngeay!

Q'&_.%)ﬂ‘*ﬂ"a“‘* {: (et righ + n,t (\”\1*7.)‘-3 (1.4 L46)

+ Snac
N en, +3721
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Using this form it is readily confirmed that

I\/ (n,n,n%nyl + IV(ﬂ\)v\z-\-tJn3)

Diag. e Diag.cy

4o Ith‘)ﬂziﬂS"")

bims.&n)

= (%.9,) v (1.4.47)

Dlag.tey

(n)

which implies that the B3n coefficients satisfy a set of

relations analogous to (1l.4.16).

For reference we now give the contributions of these
diagrams to the proton I-correlators with Fgg)(x) = Agél)(x) and

to the K-correlators with F(,é})(x) = Tgl)(x):

= = —-é; <OIIR} §,9, 105

ALny
I e
Vi 7

Dia\.s. ey

. Ay Ny e ezt igl
{ Sn‘e (-9, "7 ¥ Mg v2) Ml
(Mg e ng +3)8

"Snae \3-%}“‘*“3*" (Ne2)8 ngl
L“t“'n3+3)‘.

4 Sﬂ3c (2.$}03+ﬁg*"& Cnybimgeat = (naa)l Nyt
{n,+n, +3)}

(1.4.48)
K i}
aq,,m{ _ 2 1 (ol g 5o loR
== e s o 105
Diay. Lt} Qw 9,* s ¥
{ §no Cmoga?eemavd Nal (Mawnlh
<
¢ (nz‘i"ﬂs"rl)?
+ gﬂgQ (1_%)ﬂ,+n3+3 N3t tn,enl !}
(ny+nzs2)}
L i
* 8nye (Reg) MM i dar } (1.4.49)
Q“,*ﬂa* ‘}.
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These contributions also display the required symmetries under n;¢3

n, and satisfy relations analogous to (l.4.16).

Diagrams (d), (e) and (f) differ from those already
calculated in that they possess two quark propogators (whether
free or interacting) connecting the vertices at x and o. Thus,
to determine the contributions of these diagrams to the
IV(n)(q,z) correlators, we retain two pairs of quantum quark
fields after making the substitutions (l.4.6) in the general

expression (l.4.2). We find

NASY
T (o, =)

Diogs. ¢dy,t21,($)

= 2, k)™ (aeN)™ (et gi8k e [y eto

<°3{th % (P:S&)Lun. Tr (D s(,;,a;)é"'-g (D3 D Sgtc,x.})m#
+(DFa I ¥ (DR 8% L (D2 W iy - Tr (DF Su, o™y
4+ 02 (Dot DY S‘co,n))ém'gl Do uw) ey, Te (Dod S, o)
~ 3% % (D2} DE S%epl®” % (Do Sue,e) % (DT &) 0u
+(DPE % (D ST ™2 (Prh $%co,) 2 (DR W)
—TWher % (Dot Sm,w)imfd (Dez DY S"ce,m}k“a (DR W oa

¥ (K o, v‘\‘&->n&)}§o>’ (1.4.50)

Note that these diagrams each contain a zero momentum gluon
propagator. We do not attempt to evaluate such graphs by using
conventional perturbation theory. Instead, graphs at a lower
order in perturbation theory are computed and the diagrams in
which we are interested are then produced by using the equation
of motion (l.l.8¢c) in the lower dimensional condensates to

generate the D = 6 four—quark condensates.
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First let us consider the contribution of diagrams (d).
Clearly we may replace all covariant derivatives in the general
expression (1.4.50) by ordinary derivatives and let either of the
two quark propagators of each term reduce to the free propagator
S(O). To illustrate the procedure we study the simplest case,
the IV(O)(q,z) correlator, and demonstrate the manipulations for

the first term of (1.4.50) only. Thus

NS
L

Dieg.ta)
P EP E'-bsk Eﬁ,mn Sdf‘u Q‘L%.N.

ol {‘Tv ¢ S‘“m,w}ém 7 (2F S?‘co,wu)k" 2z
FOS o)™ (B8 S5, Y ]
FRS) E & Gy
+ obher berms §lO) (1.4.51)

We wish to determine the contribution of this expression to
the D=6 quartic quark condensate. The two background quark
fields will give rise to operators of dimension D23. So we must
allow a maximum dimension of three in the terms that we retain in
the expansions (1.1.17) of the quark propagators. There are two

ways of achieving a total operator dimension of six:

(i) Let the interacting quark propagator contribute a
gluon operator of dimension two; i.e. S(x,y)-——-}S(z)(x,y)
((1.4.20)). Then the background quark fields must generate

an operator of dimension four.
(ii) Let the interacting quark propagator contribute a

gluon operator of dimension three; i.e. S(x,y)—-}S(3)(x,y),
where ((1.1.17))
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{3}
S vy = L%& (D\,G‘ap)aﬁﬂt} T>¥P La (ARY)

*‘lz't?- (D Gop)teer T xé‘:}r‘("“*ie‘)%
§
(e2-ie)

- (De G@p}awr T

Jarigqe? b%-it

‘{(270’-\-3” YUyl -~ bn"-rzg“’)‘a’*’% ¥

—2E%LP Y v 3aRey®) ¥V L y? +”“L°N¢XPM}

(1.4.52)

— - SC§3?
K:&)g).

Here the background quark fields must give rise to an

operator of dimension three.

Thus we may write
I\!(m(%)i}]
Diag.tdy
= -2z, S A ;gd.”'x. o, ban
{ol {1’; (o) u‘.g 0. T $%0qer 3 (28 S“""’(o,n;}“""i
+ S‘m(n)e} '#- (9,: Scw}{o)n))k;‘-g
+ S(mm,o; 2 (ofF S“"”(c,w})k*“ﬁ

& SVB) o, 0) .? (9;; SC(Q) t°)“'7)kb.$.1

¥ obher borms }\Q> ' (1.4.53)

For case (i) the condensates to be evaluated are of the form

- % A A .
Ly Tty 620 ) 9 0 Gu lod (1.4.54a)
(el (D, Qﬁ)i;am Cvf;'sf ) q,‘?,f vu o) (1.4.54b)

(A = u, d), where

G-,cﬁto) = J.,5 Gf.’é? oy T ™ (1.4.55)

51



Suppressing the colour indices and expanding the quark field

using (1.4.34a), we obtain

<ol 3% (o e q,g wa lop
== {o} 'i,':‘ (&3 G"ep Lo} %2 (o) 1o
4 W (0§ Z{,ﬁ“ L0} G,cfw) Do vy %2(6) [ K>3
+ condansobes wiith D27 | (1.4.56)

The first condensate on the right hand side is of dimension five
but does not contribute to the correlators because of the
assumption of massless quarks. The computation of the dimension
six vacuum expectation value has been described in detail by
Pascual and Tarrach [23]. By writing down the most general form

consistent with Lorentz covariance they find
{o} 7{,2‘ (o) G.«cftc) Do to3 %; tor l o)

.— (c’cﬁx,)m 1 %a YT 9 (a)Zﬂ, w1 ¥, T™ %Balo lod,

B=u,d,;s

%Q,
(1.4.57)

where the equation of motion (1.1.8¢c) has been used. With the

help of (1.4.37) this becomes

= (O Yy, <o1TR Fa 0> (1.4.58)

Expanding the quark field in (1.4.54b) and integrating by parts,
ry f
(ol (De 781 101 Gy (o) LR wo fod

Pt b = & A
ol Y o LOF Dd.(c) G’ft‘p';°) %ﬁ(ozlo>

+ Condensabes wibkh D37 . (1.4.59)

Pascual and Tarrach evaluate this condensate too:

Ol g% 0 Dy Gotor g8 torlod

H

T ¥alpu + 24 (npy ¥ = Moy Y dpe }

Lol i 89 le >z. (1.4.60)
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For case (ii) the vacuum condensate o} E{,‘; 01 { Dg G,,:P)(c': ov?%cn)¥°>
has to be computed. Again we Taylor expand the background quark

field:
€01 R <) (D, Grp)tor 9,8 il o>
= <o) 551 (Dg Gpdio %2 oy 1 o>

+ Condensabes wibth D337 (1.4.61)

It is found that [23]

<ol ﬁ,: w1 (Do G,,,P) (CH 05,2 (o} j oY

- A T - 2
2 Mon ¥, = Moy ¥alpa <018 Taled’ (14u62)

The expressions (1.4.58), (1.4.60) and (1.4.62) for the required
condensates may now be used to complete the computation in the
usual manner. We find the contribution of diagrams (d) to the

IV(O)(q,z) correlator to be ;2‘;-:;% S.'i.;t)“ ol Jag Q%}a)z‘

It is important to observe that the 'log' term of 8(3)(x,y)
does not contribute to the final result as a consequence of the
fact that zV 1is a light-like vector. Thus the contribution of
diagrams (d) to the IV(O)(q,z) correlator (and indeed to all the

correlators that we study) is cut-off independent.

Next we consider the evaluation of diagrams (e). Clearly
all quark propagators in the general expression (1.4.50) must be
non-interacting. One covariant derivative din each term
contributes gluon operators to the condensate while the rest
reduce to ordinary derivatives. Thus, in the Schwinger gauge,
there will be no contribution from these graphs to the
correlators IV(O)(q,z) and K(O)(q,z). The condensates to be
evaluated are of the form <{e} Bl‘lgo) ﬂi,ﬁx} %2 L led,

where

Hi‘ OO = Ag A u T (1.4.63)
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Recalling the short distance expansions for the quark and gluon

background fields, we obtain
<ol 35 o1 Ao 4.8 Galod
= 4 » T (o) EL:‘ (o) G’,t/,{oi %,g te) L O
P o TxT (ol §, 8 o) Geptor Dpter 9.5 torlod
+ly W (o] Ao (D Grpdto %2<°>5°>

+ Condensabes wibh Dw 7, (1.4.64)

The two dimension six condensates were encountered in (1.4.57)

and (1.4.62) where their values were determined.

Finally we must include the contribution of the graphs of
type (f). In this case the operator of dimension six is
generated by performing Taylor expansions of the quark fields
in the condensate <o} ﬁ,z to) %2 ey 1 0d

The term of dimension six is [23]

| ~ =R
% %P T Lo} g Dpter Dy to) Dptor q, 2 ta2) o)

T ;3"\;4 > > ('}()(5« <°l$§§.‘§%%°>&. (1.4.65)

Using this result it is straightforward to complete the

computation of these contributions to the correlators.

The contributions from diagrams (d), (e) and (f) have been

verified by repeating the calculations in momentum space.

Diagrams with three quark propagators connecting the
vertices at x and o may also give non-vanishing coefficients to
the quartic quark condensate. However, such graphs are at least
of order (ds)‘l and so represent contributions to the next—to-
leading terms of the perturbative expansions of the Wilson

functions.
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The calculations for the K-correlators and for the I-
correlators with F(,.Icl,)(x) = A(,g)(x) are carried out in a similar
way and the values of the a

Tables 1.5 and 1.6,

3 and 63 coefficients are given in

We observed earlier that the values of the o andB
coefficients for the I-correlators with F(,g)(x) = T(..?)(X) may be
deduced from those for the correlators with Fg.él)(x) = VS.S)(X) and
A(,g)(x). From (1.2.14) it follows that the sum rules for the
LA TR Y correlators must be equivalent to those for the
combination Y4 (Ii““';“%“ﬂ + I§‘“a;"3;‘“-)).

This is achieved when

T Ain,
[5 LIPLTRC FY ] = (~2) x_;i ({3§ (m)n&nt)_‘_/gﬁcni)ﬂ&)n,)} (1.4.66)

T
(See Section 1.5). The B coefficients are listed in Table 1.7.

We have now completed our calculation of the invariant functions
I(n)(qz) and K(n)(qz) for the proton. Note that the vacuum
condensates of the operators 0y and 0, ((1.1.9)) do not appear since
we have neglected the effects of the u- and d-quark masses. Apart
from the higher dimensional condensates we have also neglected the
163" condensate <O]OSIO> . Like the four-quark condensate it has
dimension six. However, the relevant diagrams for the lowest order
contributions have two loops while those for the four-quark condensate
have only one. Because of this the coefficients have a large relative
suppression factor which hopefully is sufficient to make the

contribution from the ks condensate negligible.
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Table 1.5 Contributions to uén)
(n) Diag. 1.3(c) | Diag. 1.3(d)| Diag. 1.3(e) | Diag. 1.3(£) u(n)
3
(0,0,0) 108 -36 0 36 108
(1,0,0) 45 0 0 12 57
(0,0,1) 18 -36 0 12 -6
(2,0,0) 63/2 2 4 12 99/2
(0,0,2) 9 -28 4 12 -3
(1,1,0) 9 2 -2 0 9
(1,0,1) 9/2 -4 -2 0 -3/2
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(n)

Table 1.6 Contributions to 83
@ P = W
(n) Diag. 1.3(c) | Diag. 1.3(d) | Diag. 1.3(e) | Diag. 1.3(f) Bv(n)
3
(0,0,0) 36 2 0 6 bl
(1,0,0) 63/4 1/4 1/4 3 77 /4
(0,0,1) 9/2 3/2 -1/2 0 11/2
(2,0,0) 117/10 2/5 4/5 27/10 156/10
(0,0,2) 9/5 475 2/5 3/5 18/5
(1,1,0) 27/10 -1/2 -1/10 3/5 27/10
(1,0,1) 27720 7/20 -9/20 -3/10 19/20
® FP@ = A
T T
(n) Diag. 1.3(c) | Diag. 1.3(d) | Diag. 1.3(e) | Diag. 1.3(f) BA(n)
[ o « , 3
(1,0,0) -45/4 =7/4 -3/4 -3 -67/4
(2,0,0) -99/10 -7/5 -2/5 -21/10 -138/10
(1,0,1) -27/20 -7/20 -7/20 - 9/10 -59/20
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(n)

Table 1.7 Values of BT ‘Coefficients
T(n) T(n) T(n)
(n) 61 B, 83
(0,0,0) -2/3 -1/6 -88
(1,0,0) -5/21 -1/15 -83/2
(0,0,1) -4/21 -1/30 -5
(2,0,0) -3/28 -1/20 -33
(0,0,2) -1/14 -1/45 -18/5
| (1,1,00 | -1/14 -1/90 -39/5
(1,0,1) -5/84 f1/180 - 7/10
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1.5 DERIVATION OF THE QCD SUM RULES

The OPE's calculated in Section 1.4 for the current
correlators (1.3.10) and (1.3.11) provide the basis for our analysis.
To relate the moments of the proton distribution amplitudes to the
parameters of the OPE's it is necessary to postulate alternative forms
for the invariant functions I(n>(q2) and K(n)(qz). This is done by
modelling the spectral densities as follows [6]:

nl

ini E)
*“,1:. Im I n(q}) = r™ 8{%"—"“3} + S(q}-— M) Té‘a-!“‘z; "f‘ (1.5.1a)
LoTon K a2y = k7 2 mm*) e B(a® . gty S oy 2 (1.5.1b

These expressions correspond to singling out the proton's contribution
to the spectral densities (mN is the nucleon mass) and assuming that
the remainder is well approximated by a continuum of states above some
threshold S(n). The constants r(n) and k(n) may be expressed as
functions of the moments V(n), A(n) and T(n) in the manner shown
below. In Section 1.6 we shall consider the dependence of our results

on the particular choices (l.5.1).

Dispersion relations are then written down for the invariant

functions:

]

ny
I M T
(Re) = = las —_ Tu (1.5.2)
(&Y © 2 LA
K™ K™ s

S=9

These allow us to extract information on the wavefunction moments by
using the OPE's calculated in the last section. Using the dispersion
relations it is easily checked that the forms of the continuum terms
in (1.5.1) are chosen to agree with the known perturbative results.

(See (1.3.13) and (1.3.14)).
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We now return to the derivation of the constants r(n) and k(n>.

The vacuum expectation value occurring in the I-correlators may be re-

written as

Ol T Flloa (71"

pres—
e

A % ~Lp - e P
(ar)? E d P Si?f;-m:;) 9(93)(9(:;") e P ™ L Qo) € P“x}
o

ol Flo| oy ] (T )t io) | (1.5.3)

where the sum is over all states with the quantum numbers of the
proton. Retaining the contribution of the proton resonance only

and using (1.3.7), (1.3.8) and (1.3.9) together with the matrix

element

©IT M olp) = = §, tmp? Nyt (4 %% T00)

)
(1.5.4)

we find

(8. ¥] .
I (% 3 — As l§ lz Ei"‘) Y iyo,0) ﬁi,0,0}}
R 4 + T

PROTOM (?.7{)3 N ‘ = é

Ty Ay +vig +3

"gc\qg SQ?‘— my) 9(?°7 (&-p)

z NS tpr % Nop
3

' §o\"x e % (Bixe) €F* 4 B g ~P)

(1.5.5)

where we sum over th? proton sp% 3 s =T, .L(and F(n) = V(ng )A(n)
or —ZT(n when F,f)(x) = n (x), n) (x) or T A (x)
respectively. A Gordon decomp051t10n leads to the 31mp11f1cat10n

N&I\ ig) ? N»PKP) - ﬁ&g?) g NJ-‘P} = 23-? 3 (1.5.6)
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where we have used the fact that the spinors satisfy the normalisation

condition

Nytpr Ny = E&kp} Nytp = 2wm, . (1.5.7)

Performing the x integration we now have

{n} — o
I (%,%} == "%’ i%N!z ngnl(“’z %{i,o) ;'i- T(b(’)"l)

PROTOWN

Ty iy g iy

: gcl“’p §pr-my) Oy (zop)

5§t q-p) @
| e 8% (1.5.8)

(9°-p°+ic) (a°+p°-Le)

With q°» 0 the imaginary part of this expression is

Tom IQMRC\“% _ L}-E-FN i?‘"x E(ﬂ) il‘i %U'%O;.;. T(l;°:°})

]
PRETOMN (1.5.9)

LUE A Vi b by
(2.q) "7 %" 8 (g2 -m%)
which implies
L Im ihﬁk%?‘} R O,0,°) t1,0, 03 P 3
™~ =L is ) F™ (4 & v T2 9) Eeqtamiy,
PReToN
(1.5.10)
Comparing with (l.5.1a) it now follows that
LT “;Ng'l W (3 §“;°;°7+-—3~U;°,°7) (1.5.11)
By similar reasoning we find
inl
k' = —1215,0* T (1.5.12)

Thus in order to obtain the moments of the proton distribution

amplitudes we need to determine the r(n)‘s and k(n)‘s.

By means of the dispersion relations (1.5.2), together with the
spectral density models (1.5.1) and the results for the invariant
functions I(n)(qz) and K(n)(qz), we may relate the moments of the

distribution amplitudes to the strong coupling parameter and the
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vacuum condensates. These are QCD sum rules. We wish to use the
relations to predict the properties of the proton. To enhance the
contribution of the proton to the right hand side of (1.5.1) we must
study low Q2(= —q2> 0) values. On the other hand the OPE's are good
approximations only for large QZ. To overcome this conflict of
interest it is conventional to apply the Borel transformation to both

sides of the sum rules. It is defined as follows [4]:

B = (-Q%) ("“‘) (1.5.13)
4 ]

M Q* 0, noe (-1t

Qj: :Mz

kg

where M2 is fixed. By making a Borel transformation of the sum rules,
the relative contribution of the lowest—lying resonance to the
dispersion integral is increased while simultaneously the effect of
the higher dimensional operators in the OPE is decreased. As the
action of the operator ﬁM is to take an infinite number of derivatives

2 give zero contribution. Neglecting the Q2

all polynomials in ¢
dependence of the strong coupling parameter and evaluating all running

quantities at the scale M2 the sum rules now take the form

Z
e {n)
éﬁ%‘ - ﬁsl

re e MU = Gre ey 787 )
oot
Ry |
+ 2 o] ¥ &%, &> lo
e Ohw G eI
(30} | 2
* 3. L (olJep § 9000 (1.5.14a)

Zw3 " M*

_mz (s LS. Y]
k“"’e r = — Rt I M"‘[ﬁ-(“—H"")@.H }
8o ™

in)
— 0(2 ds @ 0.}9’3
w8 R <ol 2 Gpe €70 N7

o{(ﬂ) a
- 3 ”‘k"‘%. {olJey §, a0, (1.5.14b)
AL R M
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where

gt
“?%i (1.5.15)

H(“\ —_
and we have used the results

(1.5.16a)

Eas \ 4 | \
BM (\Ef‘) = (p-u)} (M2)F ) P>o (1.5.16Db)

Thus from the correlators in (1.3.10) and (1.3.11) there follow sum
rules from which we hope to obtain the r(n)‘s and k‘n)‘s and hence the

corresponding moments of the distribution amplitudes.
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1.6 ANALYSIS OF THE QCD SUM RULES

In this section we attempt to use the Borel transformed sum rules
(1.5.14) to determine as much as possible about the proton
distribution amplitudes V, A and T. We hope that values of the
constants r(n) and k(n) (and of the thresholds s(n>)1nay be obtained
by fitting the two sides of equations (1.5.14) in the region of M

ol Breair thoaw wbouk (09
where the non—perturbative terms are less than about 40%,o0f the
perturbative contributions. It is in this region, where 1.0 Gevzé M2$

1.5 GeVz, that the sum rules are expected to be approximately valid.

As indicated earlier, the quantities appearing in the sum rules are
taken to be renormalised at a point P2 = GeVz. Values for the
vacuum expectation values <°l@a""°>lr and (c\_‘:’% G':\, PRI SEPS o
are required. Unfortunately, at present there is no standard
procedure to evaluate these condensates. The quark condensate may be

estimated by using PCAC arguments and SU(6) symmetry. The value

<°l?§,q,30>i =~ - (0.25 GeV)® (1.6.1)
P

has been quoted by SVZ [4]. For the coupling parameter we take [3]

il (1.6.2)

Mstyti = it b
9 A (P}A">

where A is the QCD scale parameter. With A = 0.1 GeV this formula
yields the value &g(1 GeVZ) 22 0.30. Thus we find

ol Jeg @%%Ofr ~ |8 x 107" GeV© (1.6.3)

The gluon condensate has been estimated by SVZ [4 ] using sum rules

for charmonium decays and is found to be

{o| —i:;ci Gpo &*PY10d| & 12xio"? Gev™ (1.6.4)
r

We start by studying the sum rules for the K-correlators, from
which we hope to determine the moments T(n>. For the case (n) =

(0,0,0) the sum rule (1.5.14b) becomes

64



gy, V0} — L L)
=80k o7V r . e ? (1+ k™)

M&*
= |+ 20%e . ©:136 (1.6.5)
M ™M

(M in GeV), where the required & coefficients have been extracted from
Tables 1.1, 1.3 and 1.5 and the condensate values (1.6.3) and (1.6.4)
have been used. (1.6.5) has been written so that the contributions of
the non—-perturbative corrections (second and third terms on the right
side) may be readily compared to the perturbative term (first term on

2 the corrections are of the

right). It is clear that for M2~ 1 Gev
order of 25%. Note that the O(M—l*) and O(M—6) terms are comparable
for M2 = 1 GeVz. This does not imply a breakdown of the expansion at

such values of M2. We must remember that we expect the coefficient of
6

M0 to be anomalously large. This is because the term in M ° comes

from one-~loop graphs (Fig. 1.3) while the O(M_é) contribution enters
via two—loop graphs (Fig. 1.2).
To extract the ‘'best—fit' wvalues of k(o) and H(O)

(= s(o)/Mz) from this sum rule we analyse both sides of (1.6.3) in the
region of M2 where the sum of the non—perturbative corrections lies in
the range 10%Z-40% of the perturbative contribution. (It has been
checked that the results of the ensuing analysis are largely
insensitive to the chosen M2 windéw.) It is found that M2 = 1.43 GeV2
(0.86 GeVz) when the non-perturbative corrections are 107 (40%). 1In
practice the fit is achieved by minimising the sum of squared
differences between the left and right sides of (1.6.5) over the

required range of Mz; i.e. we minimise the integral

[ B %! (o) 1CH 2
0.0kl 0196 go kYK _-md "5 At 2% } *
* + * 3o w1+ Sga)] dM
J;se.- {S (M2)? M2 (M2 € ™
’ (1.6.6)

with respect to the variable parameters k(o) and s(o). The optimal

values of these parameters (obtained numerically) are as follows:

2% GeV™ (1.6.7a)

I

{0}
- go "k

$*' = 269 GeV? (1.6.7b)
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Recalling the definition (1.5.12) and the normalisation T(O) = 1
((1.2.15)) we find

byl = G %107 gev?, (1.6.8)

in agreement with Ref 6. The error is dominated by the theoretical
contributions which have not been included rather than by the details
of the fit itself. It is of the order of 10-15% but it is not
possible to control or significantly reduce the theoretical
uncertainties without an enormous effort. While it is extremely
difficult to check that the neglected non—-perturbative corrections to
the sum rules are small (condition (ii) of Section 1.3) it is easily
confirmed that for this sum rule the contribution of the proton
resonance is greater than that of the continuum of states (condition
(i)). In fact the latter terms range from ~15% to ~70% of the

proton contribution over the range of M2 in which we are interested.

The value of s(o) in (1.6.7b) is roughly what we would expect
for the continuum threshold of the spectral density. Indeed, the
best—fit values of this threshold for all the well-behaved sum rules
(see below) are found to lie within the range 2.5 GeV2.$ s(n)-s 3.0

Gev2,

In order to investigate the dependence of our results on the
choice of model expressions for the spectral density we modify
(1.5.1b) by introducing to the right side an extra narrow resonance_

with a mass mp of about 1.5 GeV. This "effective resonance"

1

contribution corresponds to the experimental spectrum in the isospin 3

channel [6]. If we now define

| ¢ s
= T K™% = k7 §(q*=m3)

oy
+ k a Stqj"—-m;\

(€.}
-—ei ?-__Stﬁ}} o(‘ 2 1.
v e e
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the new expression corresponding to (1.6.5) is

-SO'T‘C'* ( k{ow e:-mf‘e/mz . k\z; e:-m:/Mz) + Q:H“"‘{ 1+ K1)

M
— 0.0kt S 3%
— e MiZoE 4 Brilne .
| . o (1.6.10)

We study this sum rule by varying S(O) within @s15% around the value
(1.6.7b) and obtaining optimal values for k(0> and k(‘g). The best-fit
values of k(o) {and hence lfN!'l) are found to be relatively stable
(varying only by about 4%) whereas the optimal values of k(é)) range
from about -0.9 (at s(o) = 2.3 GeVz) to about +0.9 (at s(o)
= 3,1 GeVz.) (0f course from our previous analysis we know that k%o)
must vanish when s(o) = 2.69 GeVz.) This indicates that the sum rule
is satisfied with a large contribution from the proton and is
insensitive to the contribution of the effective resonance. Clearly

this is a desirable feature for our analysis and gives us confidence

in our estimate of the decay comstant |fyl.

Similar analyses are possible for the sum rules derived from the
K-correlators with (n) = (1,0,0), (2,0,0) and (1,1,0). These sum
rules may also be satisfied with a large contribution from the proton.

For the corresponding moments we find

{y,0,9)
T = O35 — O.40 (1.6.11a)
{%,9,0)
T ~ o0.18 — 0.22 (1.6.11b)
Cyer
I == 009 et 0.0 (1.6.11¢)

Because the sum rules determine the optimal values of the parameters
k() () llez, and there is an uncertainty in our estimate of [fyl
the corresponding uncertainties in the moments are typically about

)

407% larger than that for ifNE .
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Let us now try to understand why it is possible to satisfy the

sum rules studied above. Looking again at (1.6.5) we see that the

2

right side decreases with increasing M“ while the second term on the

2. For a fit, therefore, k(o) must

left is an increasing function of M
be negative, implying a positive value of {lez, as required. When
the optimal values of the fitting parameters are inserted into (1.6.5)
the left and right sides assume almost identical values over the

2

entire range of M“ in which we are interested. This feature is

reflected in the particularly small value of the integral (1.6.6):

(1r6-6) 2 3 x}0~F (‘,evz_
52 2.9 Gav?
~go k"2 2.46 GeV®

(1.6.12)

In general, for sum rules showing similar trends when M2 is varied, it
is possible to obtain excellent fits with positive moments and
thresholds in the range 2.5 GeVZé s‘n)$ 3.0 GeVz. However, an
inspection of Tables 1.1, 1.3 and 1.5 reveals that the ¢ coefficients
with (n) = (0,0,1), (0,0,2) and (1,0,1) are such that the right sides
of the corresponding sum rules are increasing functions of Mz. In
particular it is the negative u(n)

coefficients which cause this problem. One might still expect to
obtain a reasonably good fit. Unfortunately, this is possible only
when the continuum thresholds s(n) fall below about 1 GeVz. 1f,
instead, we try to fit the sum rules by constraining the threshold
parameters s(n) to lie between 2.5 GeV2 and 3.0 GeVz, the squared
difference integrals have comparatively large values of approximately
1073 GeV2. This indicates that the curves representing the left and

2 have significantly

right sides of the sum rules as functions of M
different shapes. 1In fact, the right sides increase with Mz much
faster than the left sides.

Despite the fact that the sum rules for the moments T(O’O’l),
T(O’O’z) and T(lﬂhl) are not satisfied very well without modifying
the spectral densities we now give the results for the best fits
obtained by including only the proton resonance (together with the

continuum) and letting the parameters s(n) and k(n) assume their

optimal values. They are

68



7(0,0,1) =~ g,16 (1.6.13a)

7€0,0,2) ~ 9,07 (1.6.13b)
7(1,0,1) ~ ¢ 05, (1.6.13¢)

which approximately satisfy the momentum conservation relation (see

Section 1l.4(a))

2’_[‘(1)0)1) + T(O)O)Z) = T(O,O’]-) (1.6.14)

As we have seen, the inclusion of an effective resonance at mp s
1.5 GeV in the spectral densities generates a contribution,
proportional to e‘m;:/i“‘a , to the left side of the sum rules. This term
increases more rapidly with M2 in the range of interest and good fits
are obtained for the sum rules with (n) = (0,0,1), (0,0,2) and
(1,0,1). Not surprisingly, however, the fits are insensitive to the
proton's contribution and the values in (1.6.13) are reduced
significantly, although now it is not possible to determine these
moments very precisely. If we interpret this by concluding that the
values in (1.6.13) should be taken as upper limits for these moments

then the momentum conservation relation

Tﬁﬂ‘-i-\,ﬂg)ﬂa_)_" T(n”ﬂzu,ng + Ttm,ﬂhﬁsﬂ} — TM;,“:,“‘B’
(V-%-i5)

implies that T(l,O,O) and T(Z,O,O) + T(l’l’o) should both be increased

from the values given in (l.6.11) to the following:
T(l90>0) = 0,42 (1.6.168.)

7(2,0,0) 4 ¢(1,1,0) _ (.37 (1.6.16Db)

We now turn to the sum rules for the moments V(n) and §(n) (=

V(n) - A(n)) obtained using the current J(l) in the correlators.
Looking at Tables 1.2, 1.4 and 1.6 it is apparent that for all (n) the/&;‘m

. . . . Vini
coefficients are of the same sign as the corresponding : and (non-—

Yinj

vanishing) /32 coefficients, The same is also true for all /3§m)

coefficients except those for (n) = (0,1,1.) This means that when the
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sum rules are written in the form of (1.6.5) (so that the non-
perturbative corrections may be easily compared to the perturbative
contributions) the right sides, except for the case just mentioned,
all decrease with increasing MZ. As we saw in our study of the K-
correlators this behaviour leads to sum rules which are satisfied with
a large contribution from the proton. We obtain best-fit values for
the v(®) ang (m) (see (1.5.l4a)) and investigate their stability when

an effective resonance at about 1.5 GeV is included in the spectral

density. The results are listed in Table 1.8.

The uncertainties in the moments may be reduced by ensuring that
the momentum conservation relations are not violated. Indeed, we may
use these constraints to help us to write down definite predictions
for the moments V(n) and§§n>. These values are given in Table 1.9.
Also included are our results for the moments A(n) and T(n) obtained

/
from the V(™ and §(n) by using the relations

L} (8} [ €7Y]
AT = VM- & (1.6.17)

and (1.2.14.) The moments of the distribution amplitude T(x) are seen
to be in fairly good agreement with those obtained from our analysis
of the K-correlators. Thus the study of the K-correlators provides a

useful check on the consistency of the QCD sum rule method.
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Table 1.8 Estimates of Moments

Extracted From Sum Rules

(n) v

(0,0,0) 1 1
(1,0,0) | 0.34 - 0.42 | 0.46 — 0.59
(0,1,0) | 0.34 - 0.42 | 0.18 - 0.21
(0,0,1) | 0.22 - 0.26 | 0.22 - 0.26
(2,0,0) | 0.18 - 0.24 | 0.27 - 0.37
(0,2,0) | 0.18 - 0.24 | 0.08 - 0.09
(0,0,2) | 0.10 - 0.12 | 0.10 - 0.12
(1,1,0) | 0.08 - 0.10 | 0.08 - 0.10
(1,0,1) | 0.06 - 0.07 | 0.09 - 0.11

(0,1,1) | 0.06 - 0.07 | Unreliable
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Table 1.9

(n) y(m) o) A® ()
(0,0,0) 1 1 0 1
(1,0,0) |0.38 0.55 -0.17 | 0.395
(0,1,0) | 0.38 0.21 0.17 | 0.395
(0,0,1) | 0.24 0.24 0 0.21
(2,0,0) | o0.22 0.35 -0.13 | 0.235
(0,2,0) |0.22 0.09 0.13 |} 0.235
(0,0,2) | 0.12 0.12 0 0.09
(1,1,0) | 0.10 0.10 0 0.10
(1,0,1) | 0.06 0.10 -0.04 |} 0.06
(0,1,1) | 0.06 0.02 0.04 | 0.06
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1.7 DISCUSSION OF RESULTS

In this section we attempt to reconcile the values obtained for
some of the moments of the proton distribution amplitudes in Section
1.6 with the results of other authors. We shall mainly be concerned
with comparing our work to that of Chernyak and Zhitnitsky [6]

although other studies are also mentioned.

We start with a comparison of the conclusions of this chapter
with those of Ref. 6. By inspection of the a- and B~ coefficients we
see that different results are obtained when the OPE's are computed in
the spacelike region for the correlators (1.3.10) and (1.3.11). The

main features of the comparison may be summarised as follows:

(i) Our evaluation of the leading perturbative

contributions to the OPE's is in complete agreement with
n

Ref. 6, i.e. the same values are obtained for the a, ~ and

p(m)

coefficients.

(ii) The coefficient functions of the gluon condensate
differ. Note, however, that if we take the linear

combinations
1. Diag. 1.2(b) - 4. Diag. 1.2(c) + 4. Diag. 1.2(e)

(1.7.1)

in Tables 1.3 and 1.4 then we get the results of CZ for
(n) (n) ) (1,1,0)

the g and % (on the assumption that the gy

coefficients in Table 4 of Ref., 6 should have the opposite

sign so that the momentum conservation relations hold).

(iii) The coefficient functions of the quark condensate
are different. We cannot see a relation analogous to
(1.7.1) which would help to resolve the discrepancy.
Indeed, from our calculations we cannot understand how a
factor of 5 can appear in Ref. 6 in the denominator
for the Bgn) with nyjtnytng = 1 and the :x‘;“ with nj+ny+
ng = 2. Although we disagree with CZ about the magnitudes

73

(0,4}
2



(n)

and 63 coefficients, the signs agree.

of the uén)

The observations on signs are particularly significant. We have

(n), (n) (n) (n)
3 (83 ) Ly

seen that if o has the same sign as a ({31
then, for the sort of values which arise in these calculations, it is
possible to satisfy the sum rule (l.5.14) in the range where the non-
perturbative contribution is approximately between 107 and 407 of the
perturbative one. In particular, the fact that we obtain positive
values for all Bg(n) means that the simplest form of the sum rule
(i.e. using duality to model all the contributions, except that of the
proton, by a continuum) is satisfied. Because the signs of ﬂuaBY(n)
and Bg(n) coefficients are the same a reliable determination of the
moments V(n) is possible. This is also the case for all moments of
the function.gé(xi), except that with (n) = (0,1,1.) The moments of
Table 1.9 may be compared with those of the asymptotic form (1.2.8) of

the distribution amplitude:

(3,0,23
§ﬂs = 033 (1.7.2a)
é {2,0,0}

as s Oy (1.7.2b)
i(bbb)

As e S0 (1.7.2¢)

The asymptotic form corresponds to a completely gsymmetric distribution
of momentum, with each quark carrying one third of the total proton
longitudinal momentum. By contrast, if, following CZ, we choose:§(xi)
to be the proton distribution amplitude (see Section 1.2) we see that
the momentum is not distributed equally among the constituent quarks.
About 55% of the proton's longitudinal momentum (in the pg —pwframe)

is carried by one u-quark with the same helicity as the proton.

CZ propose the following as models for the functions V(xi) and

§(xi):

\/CQCK\;’LZ,KZ} = |20 7‘.‘712_?{3
L13s (k24 x%) + 8.82 %% - 168 x5 —2-94]

(1.7.3a)
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@C% (R, Rg,Ry) == 520:&,7&&?&3
[18.07 22 + 463 %} +8.832 XT —lG83y — 2-94)
(1.7.3b)

The moments of these functions are given in Table 3 of Ref. 6. We
note that the predicted asymmetry among the quark momenta is greater
than that implied by our results. Nevertheless, since the moments of
the functions (1.7.3) lie within or close to the ranges determined by
the sum rule analysis of this chapter (see Table 1.8) we feel
justified in using the distribution amplitude (1.7.3b) for the proton
decay calculation of Chapter 2.

Our results using J(O) as the correlator current are
also qualitatively similar (although numerically different) to those
in Ref. &.

As was the case there, we find that some of the sum rules can be
satisfied and information about the corresponding moments of the
distribution amplitude T can be obtained. The values we extracted
((1.6.11)) may be compared with those of the model wavefunction

proposed by CZ:

TCX.,K13>‘.3) = |20 303
[}3.&;-&? xErny) + 4 62 K?é +0.8% 2ty “3‘783, (1.7.4)

for which T(I’O’O), 7(2,0,0) and T(l’l’o) are 0.425, 0.26 and 0.10
respectively. We saw in Section 1.6 how the inclusion of an effective

resonance in the spectral density leads to an improved fit of the sum
rules for the moments T(O’O’l), T(O’O’2> and T(l’o’l). Assuming that
this determination of the moments is reliable, momentum conservation
then implies that T(l,O,O) and T(Z’O’O) + T(1’1’0> should both be
increased to the values given in (1.6.1%). These values are in

reasonably good agreement with the results of Ref. 6.

Despite the encouraging results obtained using a QCD sum rule
treatment of the current correlators it must be remembered that this
method of analysis involves several approximations. Among the more

obvious ones are:—
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(i) Neglect of Higher Order Perturbative Corrections.

Perturbative corrections to hard scattering processes vary
considerably, e.g. the corrections to R in ete” annihilation are
about 10%Z whereas for the Drell-~Yan process they are over 100Z.
Recently Gorskii [26] has calculated the effects of radiative
corrections to the sum rules used in determining the moments of
the pion wavefunction. He concludes that the corrections are
inessential for an evaluation of low moments. In the proton
case, although there is no reason to expect that the corrections
will be particularly large, it is possible that they will be

significant.
(ii) Neglect of Operators of Higher Dimension

It is difficult to estimate what effect the inclusion of further

condensates will have.
(iii) Vacuum Saturation of the Four Quark Condensate

Since the magnitude and sign of the coefficient of the four quark
condensate play such an important role, one might worry whether
the assumption of vacuum saturation of this condensate is

correct, and to what extent this affects the present analysis.

On the other hand it should be said that such worries about the
approximations would also apply to many other quantities for which
nevertheless the sum rules work very effectively, leading to

impressive agreement with experiment.

An independent study of the moments of the proton distribution
amplitudes has been reported by Lavelle [27]. This author analyses
light cone sum rules for vertex functions involwving baryon-meson

couplings and obtains the estimates

All,0,0) - _g 18 (1.7.5a)

2v(2,0,0) 4 y(0,0,2) _ 5,(2,0,0) = ¢ 70, (1.7.5b)
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which are to be compared with the values —0.17 and 0.82 obtained for

these quantities from Table 1.9.

Estimates of the moments are also being sought by means of
lattice calculations. However, at present, such studies are in the

embryonic stage [28] and it may be some time before accurate results

are available.

The sum rule analysis of this chapter indicates an asymmetry in
the distribution of momentum among the constituent quarks of the
proton at the typical hadronic scale p~1 GeV, although the asymmetry
may not be as great as that predicted by the wavefunction of Ref. 6.
Elsewhere in the literature [14, 29] there is increasing evidence that
an asymmetric proton wavefunction may be required to correctly

describe hard exclusive processes at available Qz.

Nebe odded s .. ) epie o s
Subsequent correspondence with Drs. Chernyak -and-Zhitnitsky has:

established agreement with" the.results presented above. We are
grateful to these authors for pointing out a mistake:-in our original
preprint.
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APPENDIX

COMMENTS ON DISTRIBUTION AMPLITUDES AND CORRELATORS FOR OTHER BARYONS

In Ref. 6 an attempt was made to derive a nucleon distribution
amplitude., In Chapter 2 of this thesis the result is used to estimate
the amplitude for the decay p*’ﬁoe+. To use the game method to
estimate the decay rates of the proton into other possible decay
products (as predicted by the SU(5) GUT for example) would require

° and A hyperons. Here we

+

+
distribution amplitudes for the I , I

define distribution amplitudes and correlators for these g = 3

baryons and derive some of their properties.

A treatment analogous to that given in Section 1.2 for the proton
is also valid for the Z+’hyperon. The d—-quark of the proton is
replaced everywhere by the s—quark of the s, However, although the
matrix element of the orthogonal SU(3) decuplet state must vanish as

in (1.2.12), this is not for reasons of isospin.

Corresponding V, A and T functions may also be defined for the
£° and A hyperons, where the quarks are of three different flavours.
To deduce constraints on these functions we shall make use of the

formalism introduced by Brodsky and Lepage [l]. The matrix element of

the leading twist piece of the tri-local operator for 20 is written
£49k Lol ulmy A3 22 s¥ =l 2%

— fce
B f‘ { (P Clap (¥ Niedy Vo tziopd

TUpY Clg, (Ngey Agezip

F A (0 P Cyp (¥ N, To. (?.;,-p)} _

(A.1)
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As for the proton, this may be re-expressed as

on i
\ :?) - Kaz& Eo ié\xj {"‘i EVY‘&;‘: - ﬂza VKJJ} 3u¢1x.) d&(‘xg} 54.. U"3§>
]
t 7 DVgeean Age tral) iy (x,) dptxgd S t30)

- 5o 125 !M?lx,l d? LY Y 5&(’&3})} . (A.Z)

Similar equations hold for A. The requirement that the orthogonal
SU(3) decuplet and singlet states give vanishing matrix elements

leads to the conditions
E43% Lo) wd z,) Afvra s Ry v djt2a) skt Wit

+ Sy e Wl AR D] E%AY =0
(A.3a)
and

£°9% <ol uizy syen dfwma + sHen dla wen

v dy ) wd ey s;‘; | E°,A) =0
(A.3b)

Using (A.l) these reduce to

Vz?f\ (ot g, g, %) -ﬂzg)i\(xz,x3,%‘} +V, 31\(&3):&,)&2) + HE‘;AW:*’:L‘-’“*)

== 2 Tze",\ (3{*1;“23“3} (A.4a)

and

Vzo)'\(x,,m&nz) - ﬂgg},\(x;,?ta,ﬂ-a) +V. ﬁ,A("’&"’-:"" 4+ ﬁsg,\("aa"‘a:"ﬁ

=2 Tﬁa},\ Loy, o, %) (A.4Db)

respectively. To make further progress we introduce the Brodsky and

Lepage definitions of distribution amplitudes for these baryons:
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O N
¢ze il = o [Lu,rm A 82+ d 0 Wy 123) S
*Sptn wys20 i3y & Ay 120 Uat2d)
- s
2 (gt S @ date + dp i sgiaru,@)] ¢l ki)
+ L
5 L (u.,rm d iz + dytn W, 123) S, @)

= St (wyt21dga) + 4,02 uy )] ¢>°‘°g:c;_)}

+ L1 &2 + (263 3) (A.5)

1\
¢A ) = {-;- [sptmlugiardacsr —dyt2) ugia))

FlAdpt1 Ly ta) = gt dyta1) 5,037 952 R

+ 4. -
e Dspmluguidaa ~djumu,m)

= (dp o wgiz) = g dptan] 5,13
+2 (Ut 5,02) datd) = dg 03 53122 Ug t33)] ¢:‘ (x;}}
+ L1 2]+ (2633) (A.6)

By using the relevant pieces of these wavefunctions and (A.2) we find

-:EE-VZ" (S -ﬂzgtﬂ.,;,’)} == G'E“[sf_? ¢§cﬁ"‘\;"zﬁ%3} S faz ¢;Q\%.,nz‘n.3;l

(A.72)
7 [Viowg) *A oty = L S a
2 A go = Tge [ﬁ ¢ o 43%02,%,%3) *’j%j gﬁ«ga“‘*;xu"%’]
(A.7b)
) = 3
T}:&ma - Wyj‘? ¢za"‘w”~z,?‘-z7 (A.7c)

)
3 [V"\cx;) - nn‘“*’;} = g, ["3%" ¢i W, g, 3050 4 J% ¢: mnn.,_)x:;}}

\ (A.8a)
£y . — Ao AS a
2 [VA(K.;,) +A, m,,)] = O LT ¢A (a2, Rg) — %é‘ ¢A ‘-"'z;"n’%a
(A.8b)
Ty = —a, [& &
AL} = A JT Pabhatamal (A.8¢)
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From (A.4), (A.7) and (A.8) it is now clear that the functions

Vzg A ﬁ%’.",i& and TE")I\ satisfy the following constraints:
¢

\/za Or,,8q, %) == \/Z,, (g, 7%y ,%3) (A.9a)

ﬁia Guy, g ,0g) = —-ﬁzg (g, ?y,%3) (A.9b)

Tge a0 = Tge g%, %3) (A.9¢)

2 Tge o,y ) = §‘E’.° (g7, %,) + ézﬁ,mux%n&) (A.94d)
V,\ (%, 0g, g =2 "'VA Litg, b, %) (A.10a)

R, Gt ,,,%03) = A, g, %, 232 (A.10Db)

Ti\ Ouy, e, 703) = T, (g, %, ,%3) (A.10¢)

2 TA Ory, 0, Rg) == é\ Gt g, 73,70,) = %A"‘u"sz“z?- (A.10d)

ézo)hare defined by analogy with (1.2.13b) and may be chosen as the
independent distribution amplitudes of the £° and A hyperons. The
relations (A.9) and (A.10) may readily be translated to relations
among the moments of the distribution amplitudes. As a final check on
our reasoning, we note that the vanishing of the asymptotic forms of
ﬂs_a,\/,\ and Tn is confirmed by the reduction of the flavour-spin
structures of lE’;) (equation (A.2)) and !/\?> to those of the SU(6)

model.

Suitable hyperon currents to be included in the correlators may

be obtained from (1.3.2) by use of SU(3) symmetry:

A

T‘Z;" g = &Nék {[(QL%-D)“' UJ.:&.})L Cy U.aax)] (Ze Skuq)e-
4

= [ ?..D)?“ U.u;)}‘:" C¥ s% (u,}} (¥s u.kcm)s. }
(A.11)

(ﬂ(> (3 *y 4 ;
Js o o M = Jp €V {E(tL%-D}“‘umﬁ“ Co du] oy sRon),
o v .
iz p)™ duw)” CF wou] (¥s s*6u),
.«[((Lz.p}a‘\ u.w,}}‘:' 4 Séhai} (B’g dkin})@

Lol M »
=[(cim. 0™ doy)® C# Sﬂw.;j (¥s ukuu}a.}
(A.12)
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—Cny) ..

JA s 0 = 5‘% 5“3“{'— [Cimpy™ voa) Cyw 42w (¥ s* o),
“‘[((i%.k}a‘ uum);" C# s3 e} (¥e d*6u)s

‘*‘[((L'ﬁ-w?‘*&amf Cw u.f*cm] (¥e s ¥ou),
- i(&&i-b)a‘ dewn)” € % Sécnﬂ (% Wiba),

+2 [ (ciz.p)™ suu)™ Cy¥ wd eed) (¥ 4% o),
-2 [((La.p}?“ szm)‘; Cw &%(mﬂ (s LL“‘(»;)G,}.

(A.13)

3

a0
T ;

(a3
The current 3';?; {®} has isospin I=1, and I=0 for 'I: ;,u-.) , as
é

required.

The current correlators for the Z+, £°  and A hyperons may be
defined as in (1.3.10) and (1.3.11). Definitions similar to (1.3.3),
(1.3.8) and (1.3.9) are appropriate for Z‘::"n o, ﬁ;-:’.t v and
T;:},t&x; » wWith s—quarks replacing d-quarks. It is convenient to
choose V‘:")‘rgn; = V::;_. L = v;?.:; wey  (with similar relations for

the A and T functions). We define

Vc,(‘: v = E3% [iz. 0™ uoa)* ¢ ¥ Ceie-p) 2 den) ]
L4
[(L%.P)nEo i"a's S{)LI}—t]k (A-14a)

H:T:z ou = E¥3% [ D™ wowy)* Crys (tiz-p) don)®]
[eiz.p)™ spoulk (A.14b)

A} P x . A
T, e = gk (i m™uua)” C i d‘w)%" (ti= 0" dwul? ]

o
Liiamm™ (¥r¥ssoul, I%  (a.140)

and use equation (A.l) to determine the matrix elements:

¢
<ol VO::; L:‘f.}! ZQQA}> _ ”%ﬁbm} (-&‘P)n‘*ﬂ:*n&*i NEO‘A}’fz

VAN Sl (A.15a)
il ) - A, eVlg #7igde}
© I = . R 1
< k ﬁ o{f‘f (}&) iz g’\}> fzé‘l\} Q% ?) b NE“%N};"@
. a {7y e"“by“{ (A. 15b)
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Lni
<Q\Ta{t L?W&EQ‘J\}> e 2 ; ) (.&_P}ﬂﬁng-\-ﬂ3+l N}:"u\)fc
. (44 }] u,‘u?.n.
Teeny © (A.15¢)

The computation of the coefficient functions of the OPE's for the
various correlators for the hyperons is similar to that for the
proton. In principle care must be taken to account for the mass of

the strange quark by:

(i) dincluding mass terms in the background field expansion of

the strange quark propagator

(i1) 1including the condensate €010, I 0> (and possibly<e]0,10>)
in the OPE's with the corresponding coefficient functions

obtained by calculating the diagram of Fig. l.4.

In practice, however, all terms linear in mg vanish because they

involve traces of odd numbers of ¥ —matrices. If terms of order m?
are retained they will enter the Borel-transformed sum rules as

corrections of the form const. X g%; . With mg = 0.15 GeV [25] and Mzs;
1-2 GeV2 we may conclude that such terms may safely be neglected in
the QCD sum rule analysis provided that the multiplicative constants

are not anomalously large.
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Fig.1.4 Diagram Relevant to Coefficient
Function Associated with <0l 01 10>
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CHAPTER 2

A CALCULATION OF THE PROTON LIFETIME USING AN ASYMMETRIC DISTRIBUTION
OF QUARK MOMENTA

In this chapter we investigate the effect of the introduction of
an asymmetry to the distribution of quark momenta on the decay rate of
the proton. The distribution amplitudes obtained by Chernyak and
Zhitnitsky [1] are used to estimate a non—-perturbative hadronic
matrix element, leading to a determination of the rate for the decay
p 1% . The method used is that of Brodsky et al [2]. The chiral
lagrangian formalism of Claudson et al [3] is then employed to deduce

amplitudes of other decays of the proton.

We must also bear in mind the reservations expressed in Chapter 1
on the applicability of a wavefunction sensitive to light—cone physics
to a determination of nucleon decay matrix elements. Nevertheless we
have no reason to expect that the asymmetry in the proton wavefunction
implied by lowest twist contributions should not be retained when

contributions of higher twist are included.

The distribution amplitudes govern the longitudinal momentum
fractions of the quarks within the proton. As well as investigating
the effect of asymmetric longitudinal momentum components on the
proton lifetime, we briefly discuss the influence of the distribution

of transverse quark momenta on such a calculation.
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2.1 PROTON DECAY

Attempts to develop a single theory describing all non-
gravitational physics led to the proposal several years ago of a
number of candidate so called Grand Unified Theories (GUTS). (For a
review, see Langacker [4]). The simplest of these is the minimal
SU(5) GUT invented by Georgi and Glashow [5], which has the symmetry

breaking sequence

~ 15 ~ 2
SUS) eV 5 g)(3) x SUC2) x UW) 10%6eY 3y < y(3) % UG

(2.1.1)

ol> GeV the couplings for the gauge

Below the unification scale MX'\'I
groups SU(3), SU(2) and U(l) evolve differently, leading to the very

different observed interaction strengths.

One of the consequences of the SU(5) scheme is that the
superheavy gauge bosons mediate baryon number violating transitions.
This novel feature of GUTS implies that the proton is no longer
predicted to be an absolutely stable particle. There have been a
large number of attempts to estimate branching ratios and lifetimes
for nucleon decay. Calculations with the SU(5) model indicate that
the mode p %-woe+ should dominate, It is found that the proton
lifetime T (p—>woe+) is of the order of 1030:“:2 years. Despite the
fact that the decay rate is so small it is quite possible that proton
decay could be detected experimentally. Several major experiments
have been set up throughout the world in an attempt to confirm the
exciting predictions of the GUTS. (See Ref. 6 for a review.) So far,
however, no events have been recorded which can definitely be
attributed to nucleon decay. These negative results have led to the
present experimental limit Qf(p—>w°e+) ;32.5 x 1032 years [7] which
is already in conflict with the theoretical predictions of the SU(5)
model [8]. Clearly some modification in either the decay rate
calculation or the SU(5) scheme itself is required if the Georgi-
Glashow model is to be acceptable as a GUT. Here we study the former

option.

Given a model for grand unification there are several stages in
the evaluation of a 1ifetime for the proton. Since the unification

scale is so large the interactions of the superheavy gauge bosons give
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rise to effective four—-fermion interactions at low energies. Thus,
first, an effective lagrangian is deduced to describe the baryon
number violating transitions. Then the effective lagrangian must be
renormalised down from the unification mass to the typical hadronic
scale of about 1 GeV. Finally the baryon number violating
interactions at the quark level must be formulated in terms of the

hadrons and the relevant decay matrix elements evaluated.

It is this last step, together with our dignorance of the
unification mass My, which gives rise to the large uncertainty in the
proton lifetime. A variety of phenomenological techniques have been
used to determine the matrix element of the effective lagrangian
between the hadron states. (See Falkensteiner et al [9] and
references therein.) One method is to use current algebra and PCAC
techniques. When the effects of SU(3) symmetry breaking are ignored
these relate all nucleon = antilepton + pseudoscalar meson decay
amplitudes to just two three—-quark annihilation matrix elements. The
results of current algebra and PCAC calculations may be derived by
means of the elegant chiral lagrangian formalism. We follow the
approach of Claudson et al [3] who give a phenomenological lagrangian
based on chiral SU(3)L b:e SU(3)]R to describe the baryon number
violating interactions of baryons, leptons and pseudoscalar mesons.
The pseudo—Goldstone bosons associated with the spontaneous symmetry
breaking of SU(3); x SU(3)p down to the vectorial subgroup SU(3)y are
identified with the pseudoscalar mesons. The great predictive power
of the chiral lagrangian, which allows decay rates for different modes
to be related to one another, is a consequence of the small number of
parameters. The chiral lagrangian is model-dependent and we perform

our calculations for the minimal SU(5) GUT.

The determination of the decay rate into any particular channel
requires a knowledge of non-perturbative bound-state physics of
hadrons. Brodsky et al [2] express the decay rate for the mode
paw%+ in terms of the unknown proton wavefunction (which describes
the distribution of the longitudinal and transverse light-—cone
components of the quark momenta within the proton). They suggest a
trial wavefunction symmetric in the quark momenta and find a decay

rate in conflict with the experimental limit,
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In this chapter we modify the calculation of Ref.2 to allow for a

possible asymmetric distribution of quark momenta within the proton.
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2.2 THE CHIRAL LAGRANGIAN

Any candidate theory of the strong interaction must be
approximately chiral SU(3)L X SU(3)R symmetric. Phenomenological
lagrangians based on chiral symmetry have been used to reproduce
current algebra results in the soft pseudoscalar limit [10].
Predictions for low energy hadronic processes are then made by
extrapolating from this zero momentum limit to the physical region in
a systematic way [11]. Such a procedure is justified for nucleon
decay by Brodsky et al [2]. 1In this section we give the lagrangian
introduced by Claudson et al [3] to describe the strong interactions
of baryons and pseudoscalar mesons. Using power counting arguments it
may be shown that expansions in both the number of derivatives in the
interaction terms of this chiral lagrangian and in the number of loops
in the Feynman diagrams to be calculated are valid for low energy

processes.

The chiral lagrangian is an effective field theory based on a
non—linear realisation [12] of the chiral SU(3);, x SU(3)g group. The
chiral symmetry is spontaneously broken, leading to non—-vanishing

vacuum quark-antiquark condensates <0|q q|0> .

The associated octet of pseudoscalar Goldstone bosons is

introduced in the special unitary matrix § 5

g = €Xp (-@-;.ZL) ) , (2.2.1)

where the pion decay constant f, (131 MeV) sets the scale of the

chiral symmetry breaking and
Y T+ hem T+ K*
T = 7 R ] K® (2.2.2)
K~ K “JEn /.
§ transforms non—linearly under an SU(3)L x SU(3)y transformation:

§ =LYUY = USSR, (2.2.3)

where L(R) is an element of SU(3)L (SU(B)R) and the unitary 3x3 matrix

U is a function of L, R and 7{. The transformation becomes linear
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for the unbroken SU(3)y subgroup, when L=R=U.

The baryon fields are included in the matrix

! S| +
Tt Z P
B == S 5 XN n (2.2.4)
- =]
= = -EA

Under a chiral transformation
+
B-3UBU " . (2.2.5)

The chiral symmetry breaking is symmetric with respect to the diagonal

SU(S)V subgroup, so that the baryon fields transform linearly like an

octet and the baryon spectrum displays the observed SU(3) symmetry.
We now write down (using four—-component spinor notation) the

most general SU(3); x SU(3)y invariant lagrangia¢1J% describing the

strong interactions of the pseudoscalar mesons and baryons.

X = ki T(e2¥-¥2 8
+Tr BL-m)B
+54 Tr BY" (82,8 + ¥'3,%)8
+54Tr BY'B [(3,8)8 +(2, 8" ¥¢]
=54 (D-F) T BY' % B [(3,8)3% - (2,8¥]

+H4(D+F) T- BYP % (83,8 - ¥%0,8)8

+ Terms with more derivatives. (2.2.6)
Here mp represents the degénerate mass of a JY = %+ baryon in the
chiral 1limit. From measurements of semileptonic baryon decays the
values D = 0.81 and F = 0.44 are obtained.

Explicit chiral symmetry breaking terms are also included, in a
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manner consistent with the 1light quark mass terms in the QCD
lagrangian. As the quark mass terms transform according to (3L;§§) +
(_3~L,3R) under SU(3)y x SU(3)p, an SU(3)y-breaking lagrangian il with

the same transformation properties is added to &_.
X, = v Te(()'m + m 37)
+ o, Tr B(§'mE + $m¥)B
+ 0, Tr BB(§'m3E s+ 5m¥)
+ b Tr BY% (§'mBE'—¥m¥)B
+ b, TP BYB(%'mS -8, %)
+ Terms with derivatives

+ Terms with more factors of m s (2.2.7)

where the quark mass matrix

™, ©
o o Wig .

The values of al(e’tz -0.45) and az(%0.88) are fixed by the known baryon
masses. When v is chosen to be 196 MeV, the observed masses of the
pseudoscalar mesons imply the usual current quark masses: m, = 4.2
MeV, my = 7.5 MeV and mg = 150 MeV. The magnitudes of the parameters

b; and b, are not known but are thought to be small.

We now turn to the problem of writing a chiral lagrangian for
baryon number changing interactions. First we must write down an
effective lagrangian for proton decay in terms of quark and lepton
fields. The most general form of the dominant part of the AB =1
lagrangian will include all dimension six baryon number violating

operators possessing the low energy SU(3) x SU(2) x U(l) symmetry.

This is because the leading effective operators with the required
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properties are four—fermion operators. Also, the contributions from
operators of higher dimension will be suppressed by corresponding
powers of the grand unification mass My and need not be considered. A
complete list of the dimension six operators is given in Refs. 13,

The effective lagrangian for proton decay is then

A=l hd 2 : .
= tag Ly Ly e (L)
L = z z Cs Q, =+ z Coa Q. +he.
A=l dei A=l d=d (2.2.9)

where the coefficients C{d&)and ?fé“are GUT dependent and their values
must be adjusted, using renormalisation group techniques, from those
at the unification mass down to the typical hadronic mass scale of
approximately 1 GeV. The sums are over two lepton generations and the
fourteen operators relevant for nucleon decay (six of which conserve

strangeness S while the others contain one strange quark):

AS=0":

QY = eMN ek W yruk 3 (2.2.10a)
a E (&‘R U.R){ia&‘. e‘a\L) (33.}3&) e ta
¢ i L4 =

Q7 = £ (A% wi)(uX eyq) (3.,3.) (2.2.10b)
(3) s i 4

QL = grak (dl ui)(ut ear) (gv., ‘o) (2.2.10c)
) L L i

Q, = g% (dy wd)(uk e,q) (1., 8) (2.2.10d)
) A3k g d L Ay ok 5

Q& RS E (dﬁ U“R)(d‘h o&g_) (3&‘,3“) (2.2.108)
(&} LA “ .

Q, = =€ (4L ul) (&l da) (8., 1q) (2.2.106)

AS = |

QY = £ (st uduk ey (3., 3,) (2.2.11a)

~ZJ = 9% (st ud)(ul ey (3.,34q) (2.2.110)

=453 4A L A

Q = ¢ (st al)luf eq) (8, 1a) (2.2.11¢)

By = £ (shud)(uk egr) P Y (2.2.11)
~s45) ak A 3

R CPE S LN Y (3,,35) (2.2.11¢)
~ (&} LA P

L = s 4k f\oLL LL";_}(‘S% Q‘M’} le_ﬁg} (2.2.11%)
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= T} L - i M -
Q, = =€ (s uwillat ) (3.,3) (2.2.11¢g)

QY = -eMR st ud) (i) (B (22.1mm)

We use the two—component spinor notation of Abbott and Wise [14] (see
Appendix 1) and list the transformation properties of the operators

under SU(3); x SU(3)y, which are needed, together with their parity

. A i aAg=1
transformation properties, to rewrite i in terms of baryon and

pseudoscalar meson fields. The result is

oab=i 2 4}
L *—-—“uz(g e, TrO%B_ %
d=i

tay

+ C& e.d,g T?‘ O EfBR ‘§?

5 i
~C5 V4 T-O'EB. %

i U

+ Ly ey Tr 0% B, %
+ E:} €ar Tr 5 E*gg §*
~{S)

+ Cy Yar Tv 6"‘§ B, ¥
=€y Ja T~ 8'88.% )

Z
* E (¢} ey Tro¥B. &
A5 s (Ve e T 08B B
-c¥' V. Tro'eB. ¢
+C e, T-0%B %
+ E:ﬂﬁ.&g T.0 % Be §
+ T2 0 T-0"8 B, ¢

~ {8}

= Ca Yau Ir 5‘§8L§?>

+ Terms with derivatives

+ Terms with factors of m + h.c. (2.2.12)
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Inclusion of the matrices

0 0 0 0 0 0 0 0 0
0 = o 0 0}, 0'"=10 0 0},0={-1 0 0},
1 0 0 \o 1 0 0 0 O
0 0 O 0 0 0O
o= 0 -1 0 and O" = 0O 0 o0 (2.2.13)
0 0 O 0 0 1

ensures that the required components of the SU(3)L X SU(3)R
representations are projected out. Neglecting SU(3) violating
effects, the o and B coefficients are given by the three—quark

annihilation matrix elements [2]

i3k i3 _
<O‘ E: 3 EX& ¢‘3R “’A‘zg u‘kgg_i F> == o( PQL (2.2.143)

P> = 3 PeL (2.2.14b)

where v, ¢ and € are two—component spinor indices and p represents

0] €% £yg 45 wd

the two—component proton spinor. We see that the amplitudes for all
baryon number changing processes may be expressed in terms of the two
non—perturbative parameters o and B. Indeed we shall consider only
those interactions mediated by the exchange of gauge bosons. (It is
assumed that the coloured Higgs particles are heavy enough for their
effects to be ignored.) Then all dependence on B disappears and we
obtain definite predictions for the ratios of the rates for the

various nucleon decay modes.

Using the total lagrangian

L =X, +ZX .g.i‘“:’ (2.2.15)

we may evaluate the different nucleon decay rates.
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Vector and axial vector mesons have recently been incorporated
into the chiral lagrangian formalism by Kaymakcalan et al [15]. Some
vector meson decay modes of the proton are significant when the non—
relativistic quark model and the bag model are used to estimate the
hadronic matrix elements. Nevertheless, throughout our work we

neglect the effect of these possible decay products.

We now outline briefly how to obtain the decay rates from the
lagrangian I The procedure is illustrated for the process p —>noe+ .
(Decays of the proton into more than one pseudoscalar meson and an
antilepton will not be considered since the decay rates corresponding
to these modes are seen to be suppressed using phase space arguments.)
The leading contributions to the two-body decay amplitude arise from
the tree diagrams of Fig. 2.1. Only those terms in iwhich contribute

to the amplitudes at lowest order in the momenta are retained.

For the pole diagram (Fig. 2.1(a)) the ppm® vertex is found by
expanding § in the strong interaction lagrangian "zo +°\ﬁl whereas the
pe+ interaction violates baryon number and is obtained from iAB:i .

The amplitude for this diagram is (in four—component notation)

S Fon (R r OV R) Keamg) (Fd) s plpy) , (2.2.16)
2 Fx (R~ mi)

where r and s represent the spins of the positron and proton

respectively and the projection operators P and Pp are defined as

— L-7% . = 1 + ¥ (2.2.17
P = ;o Pa =3t : )

Neglecting the positron mass and using the Dirac equation for both the

proton and the positron, expression (2.2.16) reduces to

’*%L e*(k,r) {C:‘; P - C(:)PR}PQP}S} . (2.2.18)
i
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Fig. 2.1 Feynman Diagrams for p> m7°e”

(a) Pole Diagram

T
£o
e 3 . et
Proton p Proton k
(b) Direct Conversion Diagram
,n-o
p -k
£ &> et
Proton p k
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The amplitude for the direct conversion diagram (Fig. 2.1(b))
LHB=L
receives a contribution from only i . It is

- = o1 (2
J—%—gﬁ ek, (¢ P, — C, PR) pip,s)

. (2.2.19)
By averaging the total amplitude over the initial proton spins and
summing over the final positron spins the decay rate for the process

p+mOetis obtained:

o2 .
P(P-—mve.*) = _,z_’.{‘% (¢ + ™) Gsprl A, (2.2.20)
k14
where
mA *
LA, = (\g - M;) (2.2.21)

The laboratory frame (in which the proton is at rest) is the most

convenient for calculating the phase space factor.

The proton - pseudoscalar meson + antilepton decay rates are
listed in Table 2.1. We have neglected all lepton masses in the
calculations. For the m channel and some of the AS=1 channels the
rates are dependent on the symmetry breaking parameters b; and b,
ofef. Following Kaymakcalan et al [15] we choose by = b, = 0.
Allowing for a non-vanishing Cabbibo mixing angle 8., between the
first two generations [4] the coefficients C(d“ and E&“take the

following values in the minimal SU(5) model:

C‘f) LJZ gsu&m (J * COSzec}

[§)] U

C, = C, = %J2 Gsus

{2} ~ A%}

C, = ¢C = 4 J2' E‘sugs; sin B, ces O

5

(55 T

CZ = L}'J? gSU(S) Cos Sc

O
H

= -LJ7 G’suig) sin 9,;

All other C.:'}, E:’ = O (2.2.22)
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Table 2.1

Two-Body Proton Décay Rates

Intermediate i;:?ghizg
Decay Mode Bagzzni:; in Rle Decay Rate Minimal
& su(5) (7)
o
p » %" p 12’ [(c§1))2 + C(z))z](1+D+F) A 63.0
16me; T
0(,21'1’1
p > ne’ p —————g—[(c$1))2 + (ng))z](HD"SF)ZA 0.5
48TE n
il
oczm , m_(D~-F) 2
p > k%" o —2 1 @{")? (C<z>) 11+ ) 9.9
2 (4
8nf <
™
o o' m
P> TV, n 5 (C(S)>2 (1+D+7)° 24,9
8nf
m
p > K £0, A P2 ¢ [——(D F) +-—P_ “p (D+3F)]—C [1+—E (D+3F) 1}
2°2 72 Bm, 3m £
87rfTr Z A A
0.5
+ o m.
p > k%" ) Prci?y? 4 (2)) ](1+—E (D-F) A
2 1
87rf7T Z
0.2
' * (1,2 (2),2
p + %" p §[<c2 )2+ )% (e s 0.6
‘ 16wf
+ o m
P > nu P ———-3[((:(1))2 + (C(z))z] (1+D—3F)2A -0
2 2 2 n
48T f
™
— O m - ' m
p>Kwv ZO,A ————E-{lc(7)[—E(D -F) + .p(D+3F) (5)[1 + P (D+3F)]}2A
e 2 271 3m 1 3m ®
81Tf1T Z A A
0.4
Notation: 2
mi 2
Ai *—-(1—"—2— M i='ﬂ”, Ny K.
m
p
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where

G = P2
R k.3
SULS) . (2.2.23)
LJT My
g is the strong interaction coupling evaluated at the unification
mass My and A = 2.9 [2] is the renormalisation group amplitude
enhancement factor. We are thus able to deduce the branching ratios
listed in Table 2.1. The value |cos 9,_1 = 0,9737 + 0.0025 [16] is used

in the calculation.

In passing, we note that in the derivation of the baryon number
violating terms iﬁsnof the chiral lagrangian it was assumed that all
the baryonic three—quark annihilation matrix elements of the form

<O}(qRqR) qr, |B> had the same value as the proton amplitude@!(dRuR)uL {1>
; i.e. SU(3) violating effects in the matrix elements were neglected.
Consider for example the decay rates for the channels pﬂoe+ and pKOU+
(Table (2.1)). The terms arising from the direct conversion diagramé
may be related to the same three—quark annihilation matrix element
<0 {(dRuR)uL}p> in the soft pseudoscalar limit. However, whereas the
terms contributed by the pole diagram (i.e. the D and F terms) in the
process are also related to the amplitude <O|(dRuR)uL]p> the

corresponding terms for the p.~>KOu+ decay depend on the matrix element
<0|(SRuR)uL]Z+> which could differ due to SU(3) symmetry breaking.
One’ method of accounting for such symmetry breaking effects could be
to use baryon distribution amplitudes (possibly determined from QCD
sum rule analyses) in a revised evaluation of the baryon number
violating vertices of the pole diagrams. This would lead to new

branching ratios for the various two-body proton decay modes.
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2.3 AN ESTIMATE OF THE PROTON LIFETIME

In order to determine absolute values for the proton partial
decay rates it is necessary to calculate the magnitude of the three-
quark annihilation matrix element (2.2.14a), which we write
symbolically as <O](dRuR)uL}p> . This section describes one possible
procedure for obtaining an estimate for the parameter & , and hence

for the proton lifetime.

Following Brodsky et al [2] we take as a model for the amplitude
<Ol(dRuR)uL1p> the three—quark - antilepton (qqq = % ) annihilation
following the emission of a meson. This is a natural choice in the
chiral lagrangian framework,where the magnitude of the baryon >
antilepton interaction of the pole diagram is proportional to the
coefficient do. For example, the baryon number violating vertex of
the pole diagram for the decay mode p §n°e+ may be represented as in
Fig. 2.2. From £AB=1 (2.2.12) this proton > positron vertex is found

oy )
i PL + Ci

to be i(C Pplac.
We use the light-cone formalism of Brodsky and Lepage [17] in our

evaluation of the three—quark annihilation diagram of Fig. 2.2. With

the definitions k¥ = k° + k3 the proton momentum k% may be re-

parametrised as (k+, k7, ki). The quark light—-cone momentum fractions
e

X, = k}{g , where ki (i = 1,2,3) are the quark momenta, reduce to

longitudinal momentum fractions in the frame where k3—-=>c:o , as in

Chapter 1.

Because of our lack of understanding of hadron dynamics in the
strong coupling regime of QCD we are unable to write down an exact
three quark Fock state wavefunction Va\‘(k;,%:", .} for the proton.
Here the Ai represent the quark helicities. It is possible to
perform calculationsusing an ansatz for the wavefunction, as is done
in Refs. 2 and 18, fixing the parameters of the trial wavefunction by
using experimental data. However, the valence Fock state wavefunction

is closely related to the distribution amplitude [2]:

Il

3%&;, Py j('ﬁf dk) %%%(k;,}?,%&}; (2.3.1)

where
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ron Process
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3 dk, 3 ~tuf &

TU dk = X ——=x ) e 7 S E k. ) (2.3.2)
=1 AT i=1 Ok :

(The precise relationship between 5253% and the Brodsky and Lepage

distribution amplitude (1.2.16) is given in (2.3.7).) Thus, as well

ags providing information on the quark light—cone momentum fractions

x., the distribution amplitude ¢3%may be interpreted as a probability

i’
amplitude for finding the three quark valence state in the incident
proton. The more complicated non-valence Fock states of the proton,
which are components with extra quark-antiquark pairs and gluons, are
neglected here since they do not contribute to the basic three quark
annihilation matrix element. We shall choose the proton distribution
amp1itude ?5 (Xi’“ — 1GeV)to be that obtained from the analysis of Ref.
1 by using the definition (1.2.16) together with the relations

(1.2.17).

The terms of the low energy effective lagrangian (2.2.9) relevant
to the three quark annihilation diagram of Fig. 2.2 are (in four

component spinor notation)

— L 2} (& ¥ (&3]
Q\C - Cx Q; + C, Qi

~ L cAAR [ T h o uP L3
- % £ 3 ( Wi ¥ M )

(e y,dl » P&y, 4t ). (2.3.3)

From the Feynman rules of Ref. 17 it follows that the amplitude S for

the diagram may be written as
S = j(ﬁ e\kj.j) S(k‘* -;3 kj;) g('ﬂfd@

=t
(2.3.4)

; h (A2) %% (kg,p,%;) <€+(%e}l CE“CS:“-P Ca‘z;ac.arl P{?‘i}>)

where

— (i
QY = Q (2.3.5)
v K kY kY k3

and Xp and Xe represent the proton and positron helicities

respectively. The sum is over quark helicity configurations
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3
satisfying :g A. = A and the coefficients h(j.) are given by the
L2 1 1
proton's SU(6§ flavour-spin wavefunction. The proton is assumed to be
travelling along the 3-axis. Isolating those terms which have the d-

quark in position three we may write the amplitude with A = T as
p

St = & S ﬁm)mﬂ-g@) E('mk)

{h(’f;&,ﬂ Vi (ki,F, 7T, 4,1)
{erapd| ¢ AP + ¢ @M waw i d, e
*h, ™, Yoo (ki B, 0,1,
et (ag)] ¢ Ei(‘" + t‘f’ ﬁ:zglu¢&t) U2 cl,rt3)>
'*h(?;7;¢)'#G%<kg,§>1,¢,&§
<e*ag)) ¢ @Y + P 5:?'}{ Upt) Ugt2) A&szb};
(2.3.6)
where the functions '¢@%(ki,ﬁ, Ai ) are defined by equation (2.3.1).
The colour factor Eﬁ; ensures the correct normalisation for the

flavour—spin dependence of the proton distribution amplitude (1.2.16),

from which we find

’¢3q, (x,,P, T4, T) = ¢S(’°u“z,7‘*33 ""ﬁ?ém‘“x;"m"&} (2.3.73)
Bag, (X2, F,4, 7,10 == @B tg o, %a) = IF B % Gra ) (2.3.7D)
Bao (%0, B 1, T8 = P00y, (2.3.7¢)
since
hir, o, = hW,r, 1) = ~5 hr, 0 ::'f?; . (2.3.8)

It is not yet possible to perform the integrations over the transverse
momenta k;, ~ and thus express the amplitude S5 in terms of the
distribution amplitude. We must first evaluate the matrix elements of
the baryon number violating operators Qﬁ” and Qiz’ to determine their
momentum dependence. To simplify the computation of the matrix
elements we first apply the Fierz transformation (A.1.8) to the

{2
operators Q(y and Q, }
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L1} LA e : v 7
Q; = ~% e wm YV R wi)( e ¥ Pr d* ) (2.3.92)
= g3k (@R B dd@) (& P oukiay) (2.3.9b)
L T O S S ¥ 3 =3 i
Q.‘ = T3t (T ¥Ppr wimlle ¥, P d (3))

= - ghik (L'l"z';tz) P dd@) (e Py ukw) .

We choose to evaluate the matrix elements using the helicity spinors
of Brodsky and Lepage [17] (Appendix 2). The results are listed in
Tables 2.2 and 2.3. All matrix elements include a colour factor of 6
which arises as a result of the anticommutative property of Fermi
fields. We now use these values to compute S(T,%). The operator Qtz}
does not contribute to this amplitude when the mass of the positron is

neglected. We find
: i
w
Ser,m = " [ rasd x| ()
o
{wsm(kmp: ™4t ke (3¢, k;; - x4 kI
+’\Iu3q‘, (kan}'&,?,T} M& Ky

+2\l"3q, (ki-spl'r)?l’s') Mu. MQ\ xi} } (2.3.10)

where we have used the fact that, in the frame in which we are
working, the positron does not carry any transverse momentum. The
masses M, and My are those appearing in the Dirac equation for the

quarks:
( F =M, )y = 0. (2.3.11)

Thus they are constituent quark masses and not to be confused with the
current masses of the last section. The definition (2.3.1) now allows
us to express the second and third terms as functions of the
distribution amplitude. However, we need to introduce some sort of
approximation to perform the integration over transverse momenta in
the first term. (Note that the contribution of this term vanishes for
a wavefunction ’y@&(ki,F) T,%,1 ) symmetric under the interchange ki¢»
k3.) As 1is usual in the literature we assume a symmetric transverse

momentum dependence for the proton wavefunction. This implies
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Table 2.2 Matrix Elements of the Operator 6§1)

For all momente. p, pf = p1 * ip2

=(1) _ -6 c c g
ApoAy Ay AL QT s —-——-—-————/ﬁ ¥~A1(K1)PR&>\3(K3) if}\e(K)PL%)\Z(KZ)
KK KoK,
- 6M,M
TS : +?-i
K, Ky
-6 + o+ +_+ + - +
t v 4 P (K1K3l - K3K, ) (KoK, - K'K,))
K K K K
17273
6M M
T S S +‘ 3
K1 %
- 6M
3 + - +_ =
S S S (KK, - K'K,)
273
T 0
oM, .o 4
bt o (R - KKy
K K K
172
ApoAy Ag 0 (for all A neglecting positron mass)
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=(2)

Table 2.3 Matrix Elements of the Operator Q1
Ay A, A, A 3P - 5w )ypu k)EWER
1 %2 M3 %e 1 T W W R (RIS (k)
Vi 2 3 1
1723
6M
2 4 + 4
N R T - (KK1_L—K1KL)
K K.K
172
-6M3 +_+ + +
I T S (K'K,, -K,K)
xFx K+ 1L 1714
173
¥ 4 4 ¥ 0
-6 + + + _+ + - + -
Py v b Ty KK T KERDEEK,, - KoKg))
K K,K,K
17273
6M, M
¥ 4 ¥ ¥ 12
KK
1 72
- 6M.,M
¥ ¥ 4 ¥ 13
kT x*
173
oAy Ag ot 0 (for all A;» meglecting positron mass)
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S(ﬁdk)\}@%m,;m\;,w; ki ks, :[('ﬁak}yfgatk;,fﬁ:‘h%?) ks, K

2y

= =% [ ak) Yo e, 7, 1,0, 1) ke, . (2.3.12)

This last form we approximate by
— % -
3 $kio S (TCdk) Yoo (ke ,7,1,4,T) (2.3.13)

2 o
where <kiu.> 2z 300 MeV (i =1,2,3) [19] is the root mean square
transverse quark momentum in the nucleon. Expression (2.3.10) for the

amplitude S(T,7) now becomes

i
St = ¢ L Cdsed ;_‘;":;:;;3

{*é CRE 7 Gry=xa) Pag 01, F,T,4,1)
+ Mi Ha ¢3q, (i, P,4,T,™)
+ 2 Mo My x, ¢3q’ (-;g;_,p,*r,?,.p)} . (2.3.14)

Further simplification occurs when the symmetry properties of the

expressions (2.3.7) are recalled. After some manipulation we find

W, Kg

H
— )
5(1‘)?} ---‘-Ci g‘a[o&sg:ﬁ‘ {(M::-PZMWM&) ¢s(x‘,>ca)ac3)

“ﬁ{ MZ.' +<kz'_,.>} ¢&(x.,:vc2,n3}} .
(2.3.15)
Because of the uncertainty introduced by the quantity <k'fl> we cannot
justify a treatment of SU(2) symmetry breaking effects by retaining
distinct u- and d-quark masses. Thus we write f\\ﬁ for the masses of
these quarks. However, the form (2.3.15) will be useful in the
calculations of Chapter 3. The distribution amplitudes V, A and T

obtained by Chernyak and Zhitnitsky [1] correspond to the expressions
B, ,ma, ) = A5 JT I H 1 e, 9 Ef?r‘vs’ (n? i) +4-63 x5

O B4 K, —3-73] (2.3.16a)

¢&(x"x“‘*ﬁ3) - '}SE [E A T P SN {‘rGB (%2 -x%) + ©-8% (3,-%3)].
(2.3.16b)
(Here we have made use of (1.2.17). The normalisation has been fixed
by enforcing agreement with the electromagnetic form factor
calculation of Ref.l.) The integrations over the light—cone momentum

fractions x; in (2.3.15) are performed using the formula
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i

i i %
§unz o kgt xyd = T M2 M (2.3.17)
° (N> ng s ng »2)1

valid for non-negative integers n; (i = 1,2,3). The result is

Ll

SUT,T) = w0218, C {Zﬁf"%i’«‘zmmmé}%mi +<kf;_')}}. (2.3.18)

Consider now the amplitude S{T,¢). From (2.3.4) and Tables 2,2

and 2.3 we deduce
_ !
Sru = =P fraxd = [(7wak) Kt

{ 2 My g szikg,ﬁ,?’,?,é}
* MA Ka VE% (kééplﬁ‘ié’l?}} . (2.3.19)

If we assume

j(’ﬁ‘&.k?k‘: Vaq thi, Bz = Sk >_§&7mz<’) Waq, Lk, B, A0)
(2.3.20)

then the amplitude vanishes since the mean transverse quark momentum
is zero. (Alternatively, in the literature it is common to propose an
ansatz for the proton wavefunction which is a function of the squares
of the quark transverse momenta and/or scalar products with one
another [2,18]., 1In this case, after a suitable change of variables,
if necessary, the amplitude S{(T,4) vanishes upon integration of an odd

function over all momenta).

Using similar reasoning and manipulations we find

S, = S, =0 (2.3.21)
. 12)

S,y = g@%) ST, . (2.3.22)
c"i

These results are the expected ones since, when the coefficients
multiplying the baryon number violating operators are isolated, the
amplitude for the quark annihilation diagram of Fig. 2.2 must be
unaltered when all helicities are reversed. We obtain the desired
structure for the proton-positron vertex:

L(Str,m Pk SR ) = 23T (cWp  c®p) (2.3.23)

[y
H
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Note however that while the vertex as calculated using the baryon
number violating chiral lagrangiang?m=l (2.2.12) has dimensions of
mass the above expression has dimensions of (mass)z. This is because
in the evaluation of the matrix elements leading to the amplitudes S{1,%)
and S%4,4} we have included spinors for the incoming and outgoing
particles whereas the chiral lagrangian vertex ia(C?’PL + C:“PR)
has not yet been sandwiched between proton and positron spinors.
Before using the result (2.3.23) to compute the pole diagram,
therefore, it must be normalised by the matrix elements of the

projection operators Py and Pp between proton and positron spinors.

Since
E?a,r () P Ppik) = E‘i(k) P Pytx) = m, (2.3.24)

we deduce that the appropriate normalisation factor is %;p . Thus we

conclude that

of — 2T (2.3.25)
CQHM

i F

A

With the values <k§l> = (300 MeV)2 and mp = 3M = 938 MeV we find

o = 0.0049 c;evg, (2.3.26)

The decay rates and branching ratios for the various two-body
decays of a proton into a pseudoscalar meson and an antilepton have
already been listed in Table 2.1. The value of the parameter ¢ just
found allows us to obtain a numerical estimate for the proton

l1ifetime. Choosing tswork with the decay mode p~> %e’ we find the

, . 2
rate of decay into this channel to be(ocX z== 354;ﬂ = 0.0242)
P( 5. . .0 X‘Q‘“ G “J i
p—>wiet) = ———— GeV. (M1 _in GeV) (2.3.27)
x

This corresponds to a proton lifetime of

i
T (p »ne?) = 5x10% gears x (\T%A‘E.;) (2.3.28)
=] 3 .
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With the experimental lower limit T (p - %) >2.5 x 1032 years [7]
this result leads to the inequality
My, > 1.§ x 10" GeV. (2.3.29)
These conclusions are to be compared with those of Brodsky et al
[2], who use the same method of calculation. They adopt the following

ansatz for the proton wavefunction:

'\}/3% G, ke P20 = B exp - Z (\%ﬁ%@__)] (2.3.30)
N - )

The parameters B and bz are constrained by using various pieces of
experimental information (including nucleon magnetic form factor and
J/ decay data). The proton distribution amplitude 1is a completely
symmetric function of the light-cone momentum fractions. The

parameter o is found to be

_ooamr i
% = Mg 3; L el Koy Ry J(’ﬁ: dk) ’\Vm, (S S R
= 0-022 GeV? (2.3.31)

Since the proton lifetime T varies as oc_z we see that by
performing the calculation with the distribution amplitude (2.3.16)
obtained by Chernyak and Zhitnitsky we obtain an enhancement factor
for r of about 6 when we compare with the result of Ref.2. Note that
in (2.3.15) the contribution of the antisymmetric piece (under x
«>x3) of the distribution amplitude ¢°‘(xl, X5, X3) tends to cancel
that of the symmetric function ¢s(xl, X9, X3), leading to a reduction
in the magnitude of the amplitude S(T,). We may argue that a similar
analysis will give rise to such a suppression in the decay rate of the
proton for all grand unified models consistent with the chiral
lagrangian x 4B=1 (2.2.9), i.e. for all conventional (non-

supersymmetric) GUTS.

Finally, we note that we may perform a similar evaluation of the
three quark annihilation diagram of Fig 2.2 using as a trial
wavefunction a factorisable form suggested by Isgur and Llewellyn

Smith [19]:

%%(x‘:)kﬁ. PoAL = C (X.’ﬁz’“‘z)\) Q)}(P[ (kﬁL ;ka; )J (2.3.32)
2§ '
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Here kP

a completely symmetric function of the quark transverse momenta. The

= ’%‘Ti‘(kl—kz) and k, = 24p (k;+ky—-2k3) so that the exponent is

value 6= 0.32 GeV is thought to best fit the low energy properties of
the proton. The normalisation constant C is fixed, by using
experimental data on the rate of the decay J/w -3 pP. When the
parameter V is varied in the range 1.0 - 1.5 the calculation of the

three quark annihilation matrix elements gives
-3 -
X~ |07 — 107" GeV? | (2.3.33)

implying a suppression in the decay rate of the proton by a factor of
the order of 104 when compared with the calculation of Brodsky et al.
However, this model gives very poor agreement with nucleon magnetic
form factor data and thus is unreliable for predicting non-

perturbative bound state physics.
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2.4 THE EFFECT OF AN ASYMMETRIC TRANSVERSE MOMENTUM DISTRIBUTION

In this section we briefly discuss a modification to the proton
decay calculation of Section 2.3 to allow for an asymmetric
distribution of quark transverse momenta in the proton wavefunction.
The analysis of Chapter 1 offered no information on the transverse
momentum dependence of the wavefunction. Here we postulate a form for

this dependence while ensuring that we retain the distribution

amplitude (2.3.16).

To keep the calculations as simple as possible we propose a
wavefunction which factorises into the product of two functions; the
longitudinal momentum dependence is restricted to the function Xt ,5,az)
while the transverse momentum distribution is given by the function

ks, , P} Thus we write

'\}f% Gez, ke, P, %0 = Xise, 5,40 M Wk, P (2.4.1)

We see immediately that if we impose the constraints

X oo, Fya) = By LB L) (2.4.2)

f(ﬁ dk) M (ki , F) = | (2.4.3)

then the corresponding distribution amplitude will coincide with
(2.3.16). The form of the function 710q1,P} is further restricted by
ensuring that the root mean square quark transverse momentum (kji$% is
approximately 300 MeV and that the amplitude falls off for increasing
transverse momenta. These conditions may be satisfied by choosing
appropriate decaying exponential or inverse power law functions, for

example. We opt for the former.

The question then arises as to how we should parametrise the
asymmetry in the exponent. The simplest way would appear to be to
allow only terms quadratic in the momenta and to add to the completely

symmetric quantity
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S (el + k2 k3 )+ g (ke vkay- ko, + ks, k., ) (2.4.4)
terms of the form

£

N
Q‘Q_ {k\;"’ kzL) + 0-23 (kz‘l_"'k‘sl_ )z - Q&m(\k\&“ }<3L) . (2.4.5)

It turns out that such a combination is unnecessarily complicated -
only two independent parameters are required to control the asymmetry.
If we perform the usual calculation of the three quark annihilation
diagram (Fig. 2.2) we find that for the amplitude to be invariant

under inversion of all helicities we must impose the condition

Oy = 0,3 . (2.4.6)

Thus in the exponent it is forbidden to have a non—zero coefficient of

the quantity

L8 2
(ku."‘kn) - (k’-L"kS_\,) = (ku_"'kzL"Zk's,_)-(k“_‘kﬁ_L)_ (2.4.7)

It is natural then to parametrise the asymmetric terms in the

following way:

P 2 2
3 (ki-ke )" + ?—‘g (hkop + kgy = 2ks, )" (2.4.8)

and to modify the symmetric transverse momentum distribution (2.3.32)

of Ref. 19. Therefore we choose

’YL(k-iu_zp)

= 3L s Qom0 {*ﬁnﬁ kpy + Umkiﬂ} , (2.4.9)
gt 28*

where the normalisation has been fixed by satisfying Eq. (2.4.3).

We note in passing that the matrix element involved in the
calculation of the decay rate ratio r1(37¥»~%PF)//f1(37ﬂf“?aiL)
depends only on the proton distribution amplitude [1l, 18]. Thus it is
unaffected by our choice of transverse momentum distribution. Similar
reasoning is valid for predictions of the nucleon electromagnetic form
factor [1]. (Use of the Chernyak and Zhitnitsky distribution
amplitudes (2.3.16) leads to predictions for both these quantities

which are in good agreement with experiment).
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We now turn our attention to the evaluation of the three quark
ammihilation matrix element wusing the wavefunction defined by Egs.
(2.4.1), (2.4.2) and (2.4.9). 1In contrast to the two calculations
just mentioned the parameter ¢ does depend on the asymmetry
coefficients p and A. Recalling Eq. (2.3.10) for the amplitude

S{%,T) this dependence arises through the terms with the factors

L, = &i’i’i’&k) Wi, Gs kiy , B, 7,0, K ko, (2.4.10a)

it

Iag j\ (7T dk) Wag, O ke, P, T, 4,1) k;; Ko, (2.4.10b)

Now that we have a simple mathematical form for the transverse
momentum distribution these integrals may be evaluated without the

need to revert to an approximation. We find

I, = L3 ~Uwp)] 8 (2.4.11a)
3 Gapl li+2)
~ —23?
I, = 3“5;“ _ (2.4.11b)

Eq. (2.3.15) is modified to

U)

S(1,1) = ;(za.x'} "

4
{[M&+zmur’s¢ Ua—ﬁ)(hp)] ¢ (3¢,,%0 , 2g)

- % {3y v epy) 82 o
J?[M“‘ * 3n+7\)(\+l;3 .-}¢ 03,382,735 (2.4.12)

while we still have

S(T,1) = S,1) = o, (2.4.13)

Performing the integrations over the light—cone momentum fractions in

(2.4.12) we deduce that

-t
(32_22’)\-&5’5—&[))*10 G-e.VB, (2.4.14)

ol == 0.0}
Gead Clap)

What restrictions may be placed on the values of the parameters

Pand % 7?7 Clearly we require
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jo > - , > =1 (2.4.15)

to ensure that the magnitude of the wavefunction falls off as the
transverse momenta increase. Further information may be gained from a
determination of the probability P3q for finding the valence three

quark Fock state in the proton. This quantity is defined as follows:

|
Ps% = ‘g\gé«:{} gﬁ'ﬁ‘ d.k)['\}g% (i, ki, F,L) 2 (2.4.16)

A calculation of P3q requires a knowledge of the proton wavefunction
rather than the distribution amplitude. Thus, unless we assume an
explicit form for the transverse momentum dependence, the constraint
O$I§h1$l cannot be checked for the distribution amplitude (2.3.16).

With the factorised wavefunction defined above, we find

i
2 %
P3°§r = LEA:{.}, {bﬁa [9"’5"‘-‘;"1;"3)} + "‘5_ [95"'!."&.)1{.,“:;3}3
*T 3:955"‘2:"";"3732 * "z[?“ixz,*%"saz
Z
+3’§ E‘?s(x;,'&g}x&)}l} . _35(7*7“0{"{,“44“?}{

= 2:23 Ci+p)(1+2) , (2.4.17)

which implies the inequality

(l+p)1+n) §& Ow5 | (2.4.18)

(We see that a negative probability is already excluded by the

conditions (2.4.15)).

Similarly a direct evaluation of the root mean square quark

L
Z RL .
transverse momentum <k } is possible:

T i 2\
(ki Y = ( XO Lasd [ Orta) ki, [ Wy G ks, 700 }

= |95 [3(n) +0+p]2 Mev . (2.4.19)
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Let us restrict the wvalue of (kji:;&to the interval 300 MeV < (Kflii <
400 MeV [19]. Recalling the constraints (2.4.15) and (2.4.18) we see
that if such a factorised wavefunction i1s to describe the long
distance bound state physics of the proton then the coefficients
controlling the asymmetry of the quark transverse momenta should be

confined to the regionsof (P,A) parameter space indicated in Fig. 2.3.

Note that the special case p=9% % o corresponds to a symmetric

transverse momentum distribution with an appropriate rescaling of the

parameter S.

For the physically acceptable values of the asymmetry
coefficients p and A we find that the magnitude of the parameter o is

bounded from below:

%] > ©.602 GeV?2 (2.4.20)

Thus we obtain an upper limit on the proton lifetime of

i

e & s e Pt 33 » ol
L [ s}
Tlp »Rw%e") I'o % jo Yyeors § lO'gGeV) (2.4.21)

using this model.

We see that the physically acceptable values of p and A in this

model allow further suppression of the decay rate of the proton
beyond that discovered in Section 2.3. Indeed, if we relax our
constraint on <kg&>%, so that the lower 1limit of the permittedrange
is less than 297 MeV, then the shaded regions of Fig. 2.3 merge and we
do not obtain an upper limit for the proton lifetime. However, should ,
the true value of P3q be less than ~ 0.5 then, assuming 300 MeV <*<k%;f

€ 400 MeV, we must conclude that no extra enhancement of the proton

lifetime is predicted using this model for the distribution of the

quark transverse momenta.
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Fig. 2.3 Region of Physically Acceptable Values
of The Asymmetry Coefficients p and A

A

@
= S J
S= wle

(-0.04,- 0 53)\ (0.41,-0.68) \ ~
@/ Z
/‘ B (137,-1 /?\ T

1
P3g=0-+ >/2 300 MeV
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APPENDIX 1 TWO COMPONENT SPINOR NOTATION

There are two types of two component spinor, called left—handed
and right-handed in the literature. They transform under the group
SL(2,€) (the group of 2x2 complex unimodular matrices) according to
representations which are complex conjugates. Left—handed fields are
labelled by an undotted index and right-handed fields by a dotted
index. Indices may be raised or lowered using the SL(2,C) invariant

antisymmetric tensors E“F = E“’s = g&fi = ﬁé‘fs .

The relationship with the four component spinor notation is

readily seen when the chiral representation is used for the y-matrices:

¥
¥V =[° “) (A.1.1)

or o
-1 o}
¥ = ) (A.1.2)
o 1 )
where
of =1, %) = (ol) . (A.1.32)
Fr = (1, -ct) = (Fr)sx (A.1.3b)

and the o4 (i = 1,2,3) are the Pauli spin matrices. The projection

operators (2.2.17) become

1 O o o
P .—:( ,) p =( /} .
L o o i R o 1 (A.1.4)

A four component spinor may be built using two of the two

component spinors:

\i;/ =L ) \? :(§« Za} : (A.1.5)

F(&

The charge conjugate spinor may also be constructed:

V= . r T = (L Ra) (A.1.6)

i~

For two component spinors A, B, C and D it may be shown that
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ﬂz. o ¥ BR = = Bg Fy A, (A.1.7)
(A B)lC, D) = =% (A, T D )(CL o BL) . (A.1.8)
The latter ddentity is a Fierz transformation.

As an example of how to transcribe from two component to four
component notation consider the baryon number violating operator Q:,:’
(2.2.10a). The two component form is

43 ik . ,
Qy = €72 (d7 ud)(uwX e,) . (A.1.9)

Performing the Fierz transformation (A.1.8) this becomes

(S} — o} L.sk W U . .
a = T g (AR TL e )ul or k) (4.1.10)

o Lik _ :
= Th eT7 lug grudllew oy ay) |

by (A.1.7). Using Eqs.(A.1.1), (A.l.4), (A.1.5) and (A.1.6) we deduce

the equivalent four component form:

W “a — ) P
Qe\ = =~ ghak ( uf"_*‘ ¥F uf_)(ef‘;\g ¥p 9\:) . (a.1.11)
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APPENDIX 2 DIRAC SPINORS IN THE HELICITY FORMALISM

Four component spinors for particles and antiparticles may be

constructed from eigenstates of the projection operators

N, = % (1 -x*x°) (A.2.1a)
N, = (1 +¥3x¥°) (A.2.1b)

The Dirac spinors for a particle with momentum p and mass M are

Uptpd L (g1 o m ; . ){ PGS (A.2.2a)
= e \PTL oM e iyt pryty?
Uy ) p* % (4) (A.2.2b)

while those for an antiparticle are

U} {p/ I x (L) (A.2.3a)
- ..,;: (P-rl __ng " P‘gcxl*‘PzXch)

Uy tp) %, (A.2.3b)

and X)) = L [0 are
\EX §

o
=1

where X (1) = L

i
SEA IS
H
o

eigenstates of /\+. The spinors are helicity eigenstates in the p3—§oo

frame.

With the Dirac representation for the y-matrices,

o 1 ° i o ~
Y = ) Y o= (\ v ) (A.2.4)
)

o -1 -0t o

we find the following explicit forms for the spinors:

Wotpy = Ulep = 2o P+ M
iy |4
T vap* N (A.2.5a)
L
Pr-™
N
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| - P \g
Jrz;;? PT+ M
)
-ptremM
. - Py
JIPT [ proy
Py
M
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Uptp = 05 J;é—‘;? (p*>M o0 -prem -pD)
U, ¢ = Uy p J%—;: (=pF p*sm  —pr P*-M)
ULt = A%, :J%:-? (=fF P-Mm —pF phm)
U, = W, filw;‘? (p~™M Pl  -pom -p)
The notation pi% = F‘i 4 p* has been used.

(A.2.5b)

(A.2.5¢)

(A.2.5d)

(A.2.6a)

(A.2.6b)

(A.2.60)

(A.2.6d)



CHAPTER 3

THE CHIRAL LAGRANGIAN APPROACH TO PROTON DECAY WITH A SYMMETRIC
BARYON WAVEFUNCTION

In the last chapter we estimated the proton lifetime by using a
lagrangian based on chiral SU(3)L x SU(3)p symmetry and evaluating the
three—quark annihilation diagram with an asymmetric proton
wavefunction. The computation was a refinement of that carried out by
Brodsky and co-workers [1] who performed the calculation with a
wavefunction which was symmetric in the quark momenta. Here we
consider again the work of Ref. 1 and ask to what extent it is
consistent to use a symmetric baryon wavefunction when calculating
with the chiral lagrangian of Section 2.2. To this end we evaluate,
using the wavefunction (2.3.30) and its analogues for other JP = %+
baryons, all nine baryon - antilepton annihilation amplitudes which

occur in the pole diagrams for the various two—body decay modes of the

proton. This problem is tackled in two stages:

(i) We use one wavefunction (with equal quark masses) for the

° and A hyperons and neglect quark

proton, neutron and the Z+, by
mass differences in the matrix elements of the baryon number
violating operators. We expect the baryon » antilepton
amplitudes to be in proportion to the corresponding vertices
calculated from the chiral lagrangiarquB=l. In other words,
when SU(3) symmetry breaking effects are neglected, comparison of
the two sets of amplitudes should imply a unique value for the

parameter o. This is what we mean by consistency.

(ii) We adjust both sets of calculations to allow for the
effects of explicit SU(3) symmetry breaking. Mass terms are
introduced into the baryon number violating lagrangian.efAB=1 and
we look for consistency with the calculation of the three—quark
annihilation amplitudes when we allow quark mass differences in
the operator matrix elements. An obvious difficulty must be
overcome before we may compare the results of the two sets of
calculations: the quark masses in the chiral lagrangian are
current masses whereas those occurring in the exponent of the

baryon wavefunctions are constituent masses. An application of

126



chiral perturbation theory [2], in which baryon masses are
expressed as expansions in the short—distance masses of the light
quarks, is found to be helpful in relating the two formalisms.
Once we have a consistent framework for dealing with the effects
of 8U(3) symmetry breaking it becomes possible to estimate
quantitatively the resulting corrections to the two-body decay

rates of the proton.

Note that we could not hope to extract a single value for the

parameter ¢ if we were to use asymmetric baryon distribution
and #o okher SUB) breakiag effects,

amplitudes, Asymmetries in the quark momenta could in principle arise
from derivative terms in a chiral lagrangian formulated in terms of
quark fields. However, this cannot be achieved using the chiral
lagrangian of Section 2.2. It is constructed in the hadron basis and
so any derivatives will act on the baryon as a whole, giving no

information on the distribution of momentum among the constituent

quarks.

Throughout, the calculations are based on a determination of the
baryon - antilepton annihilation amplitude. Therefore we are
interested only in the consequences of adding mass terms to the baryon
number violating piece @%B=l) of the chiral lagrangian. We do not
account for SU(3) symmetry breaking effects arising from the terms of

%((2.2.7)).

We restrict ourselves to an analysis of the minimal SU(5) GUT by

retaining just the non-zero coefficients of Eq. (2.2.22).
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3.1 INCLUSION OF LINEAR MASS TERMS IN THE CHIRAL LAGRANGIAN

In this section we introduce explicit quark mass terms into the
baryon number violating chiral lagrangian QﬁAB:l. Such terms

additonally break the chiral SU(B)L X SU(3)R symmetry.

We must ensure that when we include factors of the quark mass
matrix m we do not destroy the SU(3); x SU(3)R transformation
properties of the various terms in xAB:l. In general this implies
that powers of m must not be inserted adjacent to the matrix B of
baryon fields. This restriction arises because of the complicated
non-linear transformation (2.2.5) (o1f) B under SU(3)L X SU(3)R. To

illustrate, consider the operator Qd (2.2.10a). In the hadron basis

the corresponding term in the lagrangian L£88=1 g (see Eq, (2.2.12))

D)
o g;fcd eq, Tr O£ By £ + h.c. (3.1.1)
The combined operation of premultiplying by the matrix 0 and taking
the trace ensures that only the relevant component, in this case the
component in the first row and third column, of the SU(3); x SU(3)g
representation is projected out. The term (3.1.1) transforms

according to (BL, TE»R) since

tBE - LEBER . (3.1.2)

We may add to the chiral lagrangian the terms

2
(1) GD) N
o g;1(Kd eq, Tr OmEB & + Ly~ ey Tr mOgB £) + h.c.

(3.1.3)
since these do not alter the chiral transformation properties. K(dl)
and Lél) are model-dependent constants. Thus the term in quB:l

associated with the baryon number violating operator Q((il) becomes

2
(0
o §;1Td ey, TrOEB € + h.c., (3.1.4)

where the constant Tc(ll) is given by

T§1) _ C§1) ‘o K§1) . L§1) _ (3.1.5a)
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We observe that the inclusion of linear mass terms iniﬁB=l has the

effect of adjusting only the coefficient multiplying the operator.

A similar analysis is valid for the other operators listed in

Section 2.2. For those transforming like (31, BR) or (§L, 3R) the

modifications to the coefficients are

céz) > Téz) = céz) + o K§2> + om Léz) (3.1.5b)
CSS) > Tés) = Cés) +omy KéS) + mg LéS) (3.1.5¢)
E(g” > fé” - Eé” +om Efl” £ my fé” (3.1.5d)
Eéz) > fc(lz) = 6;2) +om Ec(12) +my ffiz) (3.1.5e)
e+ T = 8 e w € Y (3.1.56)
S N T 1 (3.1.59)

where m = %(mu+md). This last substitution deserves some comment.
The operator Qé7) is of interest since it contributes to the

0 = - i . . .
L vuand A - VU annihilation amplitudes. The relevant term in the

chiral lagrangian is

2 =(7) =(7) ’ (7) ijk , i iL, ¢
2. C Q =2 cC eHE W p e (v b a9, (3.1.6)
d d d R d L
d=1 d=1
which becomes
2 ()
~ — ¢
-a, g;1Cd VL Tr 0 ¢ BL 3 (3.1.7)

when reformulated in terms of hadron fields. A naive analysis based
on the arguments given above for the operator Qél) leads to the
substitution

O S AL (3.1.8)

=(7)
a7 S my Kg my Ly

o7

when linear mass terms are included. However, the operator Qy ’ has

no definite isospin. It may be rewritten as a linear combination of

isospin one and isospin zero components:
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R A
<(7) =(7) _ =(7) _ij iy,c
IR P e 08 2 d") + (@ e s

oo

(v PLu.i) ]

+ 1)) 0f e 4 - (dePst)(;ghPLui)]}. (3.1.9)

In a more careful treatment only the first term (which has isospin
I=1) should contribute to the 50 > GU amplitude,while the p -+ v

W
vertex should be derived from the second (I=0) term. In the hadron

basis expression (3.1.9) becomes

Ty

2
1 (7 o -
@ 3 C§ ) {[—vdL Tr OEBLa + vg Tr 0 £B €]

2 L
d=1
1 ~111
+ — —
[ vap Ir O gBLg var, Ir 0 gBLg]}} (3.1.10)
where the projection matrix 0''' is defined as
-1 0 0
tr
0 = 0O 0 o0© (3.1.11)
0 0 0

We now deduce that the introduction of linear mass terms is effected
by the replacement (3.1.5g). (A similar treatment of the operator

6§5) is unnecessary since it has no I=l component).

The modified expressions for the baryon-santilepton vertices
required for the two-body decays of the proton are displayed in Table
3.1.

We shall investigate the effects of linear mass terms only.
Terms of higher order in the current quark masses may be incorporated
by extending the above procedure - the general expression occurring in
i?B=l, corresponding to the operator Qg}), is
o é% 55 E: N(1)(n n,) e.. Trm? O0m?2EB.E + h.c., (3.1.12)

el 67=0 fy=0 d 1272 dL L e T
where the coefficients Ngl) are dependent on the non—negative integers
n; and ny. As we shall discover later, the inclusion of linear mass
terms leads to relatively small corrections and so we have reason to

believe that higher order terms may be safely neglected.
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Table 3.1

Baryon - Antilepton Vertices from the Chiral

Lagrangian When Linear Mass Terms are Included

Baryon $~Antilepton

Relevant Decay

Vertex frmniﬁB=1

Interaction in Pole Mode (s)
Diagram
+ o + + . 1 2
p ~ e > T e, p>ne 1u(T§ )PL + Tf )PR)
+ + o + (D) ~(2)
o> > Ku 1oc(T2 P+ T, PR)
n > v S MY -ia T(S)P
e e 1 L
% > 9 K'Y - %%éDPL
H H V2
N> 3 Ky _l_OLEy)PL
H H /6
57> et > k% e* ~ia TP)p
1 R
+ .
P u+ > Trou+, P~ nu o T(Z)P
: ; 2 R
70 > v > K+ v 0]
e e
A > +K+\_)' __2.._1_,0.{"5(5)13
e e 1/-6- 1 L
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Since the dinclusion of linear mass terms is accounted for by the
replacement of the 'C' coefficients by the corrésponding e
coefficients we deduce that only the overall amplitudes and decay
rates for each mode are altered. (See Table 2.1). In particular, the
relative contributions of the two tree diagrams of Fig, 2.1 to the

decay rates are not affected. 1In this respect we differ frem the work

of Campbell et al [3].

Consider the example of the decay p - Kk° u+. We find the

contributions of the direct conversion diagram and the pole diagram to
Mp

Ty

corrections due to mass terms are incorporated. Campbell and co-

the decay amplitude to be in the ratio 1 : (D-F), even when the
workers write this ratio as 1 : X (D-F) and argue that the SU(3)
symmetry breaking factor A varies when the effects of mass terms are

included. They write the mass terms associated with the operator Qél)

in the form

2
o }: N(1)(n ,I1,) e Tr m"! 0 m"2 B, + h.c. (3.1.13)
e d 1272 L

1n n dL
2
1

n:+n2>
Factors of the matrix & of pseudoscalar fields, which are required to
preserve the SU(3)L % SU(3)R transformation properties, have been
omitted. Terms such as (3.1.13) contribute to the pole diagram but
not to the direct conversion diagram and this leads to a change in the
value of A. We agree that the ratio of contributions from the two
diagrams may change as a consequence of a discrepancy between the
values of the matrix elements <Ol(dR uR) uL\p> and <O|(sRuR) uLIZ+>.
However, we believe that a treatment of mass corrections within the

chiral lagrangian framework does not provide information on SU(3)

symmetry breaking in the three—quark annihilation matrix elements.

Nevertheless the conclusionsof Ref. 3 may remain valid. The
authors were attempting to see if the inclusion of SU(3) breaking
effects in the chiral lagrangian formalism enhanced the rate for the

+
decay p > Kou relative to that for p -~ ﬂoe+. We find

m 2
(1.2 . =22 /1 +-L (D-F)

%Ot (T Y5+ (T ) m A

DK ) 2{ 2 2 2%( a ) X 1.8

F(p-*rroe+) (T§1))2 + (T1(2)) 1+D+ F Aﬂ_
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Since the coefficients fél) and fgz) are expanded in powers of the u-
and d-quark masses only we expect the corrections to be of the order

of 1%4. Although Tgl) and ng) depend on m_ the deviations from Cgl)

s

and CSZ) should not be greater than 20%. Thus it seems likely that
o +

the mode p > T e will remain dominant in the minimal SU(5) model

when the effects of SU(3) symmetry breaking are included. This

conjecture is substantiated in Section 3.5.

At first sight it appears that nothing has been gained by writing
down mass terms forJ?le. Many new unknown parameters (the 'K' and
'L' coefficients) have been introduced. Only if we are able to
determine these coefficients will any firm predictions on the effects
of SU(3) symmetry breaking be possible. In the following sections we
examine the possibility of using a refined calculation of the three-

quark annihilation diagram to resolve this problem.
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3.2 SU(3) SYMMETRY BREAKING IN THE THREE — QUARK ANNIHILATION
DIAGRAMS

Here we briefly describe the evaluation of the baryon ~» antilepton
interactions occurring in the pole diagrams of the two-body decays of

the proton. The assumptions and approximations used are discussed.

As before we follow Brodsky and co-workers in using as our model
the three—quark annihilation diagram of Fig. 2.2. We choose the
valence three—quark wavefunction for the JP = %+ baryons to take the
form of the proton wavefunction of Ref. 1. The effects of SU(3)
symmetry breaking are included by allowing differences in the
(constituent) quark masses occurring in the matrix elements of the
various baryon number violating operators. However, for ease of
computation, such differences are excluded from the baryon
wavefunctions. This also ensures a symmetric distribution of momentum

among the quarks. We write the degenerate baryon wavefunction as

B : - AN k:%fM(zl
Vaq (x5 Ky sMsA;) = By exp _bBE _x_>] (3.2.1)
imy 1 )

Mq(=:350 MeV) represents the typical constituent quark mass of a

* octet. The parameters By and by may be

baryon in the JP = 1
estimated from experimental data but this is inessential for the
forthcoming analysis. Performing the integrations over the quark

transverse momenta we find

q’?q (x50515) = Dy x;x,xy exp ['béMi (EL * xL " §1—)] . (3.2.2)
1 2 3
where
BB ﬂ2
DB = zqg;g;ﬁf;gg . (3.2.3)

The evaluation of the three—quark annihilation diagrams using
this distribution amplitude is straightforward. The procedure has

been outlined in Section 2.3. In the notation used previously,
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s _ B -
QSB (X1 9X29X3) - ¢3q (Xl’”’xl) (3-2-43)

(x1,x2,x3) 0 : : (3.2.4b)

It follows that the corresponding flavour—-spin structures are simply
those given by SU(6) symmetry. Once again we must split the operators
Qgé) and 6£7> into components of definite isospin before evaluating
the hadronic matrix elements. Tables 2.2 and 2.3 are sufficiently
general to allow the matrix elements of all the baryon number
violating operators to be readily deduced. We note that the use of a
wavefunction symmetric in quark momenta implies a cancellation of the
contributions of terms with explicit transverse momentum dependence to
the amplitudes S(+,+) and S(4+,v). Thus these quantities may be
expressed directly in terms of the baryon distribution amplitudes

without the need to use an approximation such as that in Section 2.3.

(See (2.3.13)).

The various three-quark annihilation amplitudes are listed in

Table 3.2. They are linear in Ix» where

=
Il

X 1 1

i
1 B
— T 3.2.5
L[dx} X%, ¢3q (x.,0,x.) ( )

and, when correctly normalised, inversely proportional to the masses

of the intermediate baryons of the pole diagrams.

Now let us compare the entries of Tables 3.1 and 3.2 for the
various baryon - antilepton amplitudes. When the effects of SU(3)
symmetry breaking are neglected we are able to deduce a unique value

for the magnitude of the parameter o
2

3 M I
o] = —2=2 (3.2.6)

g

thereby confirming the consistency, in this 1imit, of using a
symmetric baryon wavefunction in conjunction with the chiral

lagrangian approach to proton decay.

We now turn our attention to establishing a link between the

patterns of SU(3) symmetry breaking in the baryon > antilepton
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Table 3.2

Three—Quark Annihilation Amplitudes Calculated

Using Symmetric Baryon Wavefunctions

Baryon é-Antilepton

Interaction in Pole

Three—-Quark
Annihilation Amplitude

2 mp,

Diagram
. g (1) (2)
p ~ e I—n—p—(Mu+2MuMd) 1(c1 P c1 PR)
st oot E—‘i(M + 2 M) 1((,(1) + TP
Mgy P 2 'R
I
- B
no> vy (M + 2M M Yy i C$5) L
n
-1
- B
zo+vu ——-(MMd+MM +M’VI)1C(7)L
; V7m
>0
1
= _F B TN,
N~ Vl_l \/; - MuMdlC P
I
it T ——E—(M + M M) i (2)
Mgy R
> ot EE(M2+2MM)'C(2)P
p H mp u u d * 2 R
29 > 9 0
e
I
A >V —%——E(MM +MM)1C(5)L
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vertices predicted by the chiral lagrangian and by the light-cone
formalism calculation of the three-quark annihilation amplitudes.
Note that these latter amplitudes are proportional to products of
pairs of constituent quark masses whereas the modifications to the
chiral lagrangian are linearly dependent on current masses. A
consistent method of relating these two sets of masses will have to be
used if we are to make a meaningful comparison of SU(3) breaking in
the two formalisms. First, however, we obtain relations among the
unknown constants introduced by linear mass termshtocfAB:l by

examining a chiral lagrangian formulated in terms of quark fields [4].
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3.3 A CHIRAL LAGRANGIAN INVOLVING QUARK FIELDS

Weinberg [5] and Manohar and Georgi [6] have used the chiral
lagrangian formalism to write down an effective field theory
describing strong interactions between quarks, gluons and pseudoscalar
Goldstone bosong. This has been extended to include baryon number
violating processes by Chadha et al [4], who perform a nucleon decay
calculation for the minimal SU(5) GUT. As with the chiral lagrangian
formulated in terms of baryon fields the chiral quark theory is based
on an SU(B)._L X SU(3)R flavour symmetry which is spontaneously broken
down to an SU(3)V symmetry, introducing an octet of pseudoscalar
Goldstone bosons. The scale of the chiral symmetry breaking,AXSB,
has been estimated, using both experimental data [7] and theoretical
arguments [6], to be of the order of 1 GeV, and is larger than the
confinement scale j\QCD ~ 100 - 300 MeV. The effective lagrangian in
the intermediate region involves fundamental quark and gluon fields
together with the pseudoscalar octet. The advantages and problems of

the chiral quark approach are discussed in Ref. 6.

The nonlinear realisation of the Goldstone bosons of the
spontaneously broken SU(3)L x SU(3)R group is chosen to be that of
Section 2.2. (See Egs. (2.2.1), (2.2.2) and (2.2.3).) The quark

fields are introduced as a flavour triplet y of Dirac fermions:

u
y = (>d ) (3.3.1)
S .

Under a chiral transformation

vy > Uy - (3.3.2)

The effective lagrangian between the chiral symmetry breaking and
confining scales and invariant under SU(BHQ X SU(3)R transformations

may be written as

ICQI — . —- -
Lo~ = P EB WY g, b Ay Y -T
l 2 + U _ 1 JIY)
+ g fx Tr(BuZ )(375) - 5 Tr FyF
+ Terms with more derivatives, (3.3.3)
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where DV is the QCD covariant derivative (1l.1.3a) and

1 + +
V}J = 5-(5 BU & + & Bu £) (3.3.4a)

2
It

-i .t +
§~(£ aua - £ au £) - (3.3.4b)

The parameters g A and 7, (which represents a contribution to
constituent quark masses due to chiral symmetry breaking) take the

approximate values 0.75 and 350 MeV respectively.

A chiral symmetry breaking lagrangian with explicit current quark
mass terms may be added by analogy with the chiral lagrangian of Ref.
8. However, such terms tend not to contribute significantly to

physical processes and we neglect their effects here.

The baryon number violating operators consistent with SU(3) x
SU(2) % SU(l) symmetry, QEE) (i = 1, ..,6) and 6&3) (i = 1, ...,8),
have been listed in Section 2.2. These operators involve the quark
fields of the QCD lagrangian. They must be matched across the
boundary at the chiral symmetry breaking scale AXSBto all possible
operators in the effective theory which have the same chiral
transformation properties. Since we consider only those interactions
mediated by heavy gauge bosons we wish to construct operators
involving quarks and pseudoscalar mesons from the effective theory
which transform according to (§L, 3g) and (3, §R). Such operators

are given in Ref. 4:

= _:]._ ijk + + ci j c k
Dad 7 © €efg (€ )ab (€ )gd [we (@1+@2Y5)wf][2 PR wb](3.3.53)
-1 ik i, J1raC k
Ead 7 Cerg Bap B)gq [0, (agmanys) welle” Ppovp1,(3.3.5)

where a,b,d,e,f and g are indices in SU(3) flavour space. The parity
operation has been used to leave oy and % as the only arbitrary

parameters. Using the identity

3 N N N = (det N) € (3.3.6)

abd ae bf dg fg

which holds for any 3x3 matrix N, and the unitary property of the

matrix U we find
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D> RDLT (3.3.7a)
E> LER (3.3.7b)

under an SU(3)L X SU(3)R transformation. With the help of the
projection operators (2.2.13) the effective baryon number violating

lagrangian may be deduced from (2.2.9) via the matching conditions

QS}) > Tr(0 E) = Ej, (3.3.8a)
QSLZ) + Tr(0 D) = Dy (3.3.8b)
Qg?) + -Tr(0'E) = -Epq (3.3.8¢c)
'5&1) > T E) = -Eqp, (3.3.8d)
3&2) ~ Tr(3 D) = -Dy, (3.3.8e)
5&5) > Tr(8"E) = Egq (3.3.8£)
ai?) > Tr(3'E) = “Epy | (3.3.8¢)

We omit terms with derivatives acting on the quark fields. Such terms
are suppressed by powers of Eq/AXSB , Wwhere Eq represents the typical

energy of a constituent quark, and may thus be safely neglected.

The rates for the nucleon - pseudoscalar meson + antilepton
(N - P+ 2) decays may be calculated from the diagrams of Fig. 3.1 by

using the effective lagrangian.

Now we address the problem of introducing explicit mass terms to
the chiral lagrangiani%B=l. The procedure is similar to that of
Section 3.1 — powers of the current quark mass matrix m are inserted
so as to preserve the chiral transformation properties of the baryon
number violating operators. Consider the example of the operator D.a-
Because of the nonlinear chiral transformation properties of the
effective quark fields, factors of m must not be inserted in such a
way that their matrix indices are contracted with the flavour indices
of the triplets ¥ and @C. For example, this excludes the term
ijk

€7 fefg (?C“—er)am(‘g)gd[d’zl (o) = °‘2Y5)wi’][§*CPR‘PE] - (3.3.9)

N —

Also, the term

Ele €

Nof —

+ + “gi, " " j.rzen k
efg (g )a1b (m& )gd[we (oc1 + oczys)wf][,%f, Py ] (3.3.10)
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Fig. 3.1 Diagrams for The Decay N— P+ T in

The Chiral Quark Formalism

5 — —a» + Permutations

(a) Pole Diagram

la

)

V. 1s

(b) Non- Pole Diagram

ot

T
—
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is disallowed since the identity (3.3.6) may not be used. The

permitted linear mass terms are

1 ijk + + ci » = iir.Cp Lk
o ¢ IR G SR T RN IV M
B . . (3.3.11)
sl et e @M w0 Gy opdete gk
) efg'® Yap gdtV e YyTYovs)vE RV,

An analogous treatment is applicable to the operator E q-

Considering each baryon number violating operator in turn we find
that the inclusion of (linear) mass terms is effected by appropriate

redefinitions of the parameters ®; and &, :

(n ,@2) _ = -
Qd s Qd Poag > Si = o+ muBi +mys (3.3.12a)
(5) ) ~ - —
Qd Py > e, = oy + mdBi + mY; (3.3.12b)
=(1) =(2) | _ = -
Q s Qd LT T muBi tomgys (3.3.12¢)
5(5) © a. > . = +mpB. +my (3.3.12d
d Yy i T %4 TMgRy T MY, +3.124)
w(7) _ A A e B
Qd R T T mBi tmoy, o i=1,2 (3.3.12e)

Once again the replacement (3.3.12e) follows from a careful treatment
of the isospin components of the operator ngl The requirement of
isospin conservation implies that the quarks in the intermediate state

of the pole diagram must have an isospin I=1 or I=0.

If we compare the above mass corrections to those appropriate to
the chiral lagrangian formulated in terms of baryon fields (Egs.
(3.1.,5)) we find linear combinations of the same current quark masses
for each operator. Moreover, we observe that in the chiral quark
formalism all linear mass corrections are expressed in terms of just
four arbitrary parameters, Ei (i=1,2) and:;i (i=1,2). This is a
manifestation of the greater predictive power of the chiral quark
lagrangian noted by Manohar and Georgi [6]. Since our aim was to
reduce the number of unknowns introducediso the chiral lagrangian
which had baryons as fundamental fields we see that progress may be
made if we demand that the mass corrections be added consistently in
the two formalisms. Before we can write down definite relations

between the wvarious 'K' and 'L' coefficients of (3.1.5) we must be
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B ¥

1 1
able to link the values of the parameters 81(5 aq? and Y1(5 aq?
to their respective partners 32 and Yo o With this in mind we
briefly consider the evaluation of the proton decay rate with the

chiral quark lagrangian.

Chadha and co-workers [4] use the nucleon wavefunction of the
non~relativistic quark model to perform their calculations. For our
purposes the choice of wavefunction and the computation of the
diagrams of Fig. 3.1 are not crucial. The important thing to note is
that, independent of the method of calculation, the decay amplitudes
are linear in the coefficientsd1 and G oe (For the moment we neglect
the effects of mass terms.) For the decay modes involving n and KO,
the contributions to the amplitudes from the pole and non-pole
diagrams are different functions of both &, and o,. (See Ref. 4.).

Hence the ratios of these contributions are dependent on the quantity

r = a1. Such a dependence does not arise in the chiral lagrangian of
Section 2.2 where the ratios of the pole and non—-pole contributions to
the amplitudes are determined by the short distance GUT dynamics [1].
We observed in Section 3.1 that when mass terms are included in this
lagrangian the relative contributions of the two tree diagrams remain
unaffected. If we now impose the same condition on the amplitudes

calculated with the chiral quark lagrangian we deduce the relations

1 1
r = e = — (3.3.13)

These equations are satisfied when

61 = By, = Kk (3.3.14a)

and

(3.3.14b)

11
I

Y9 T 7

So for the mass corrections to be added consistently in the two

formalisms, the following constraints must hold:

@D) (2) (5) =(1) =(2) =(5) =(7)
R T T S T D H
) (2) €)Y C DI &) B ¢ BT ) N
C C C C C C C
d d d d ,d d d (3.3.15a)
(1) (2) (5) =(1) =(2) =(5) =(7)
e L L L e P .
€D} &) (G Y C D I ) B ) Y ) B
Ca Cq Cq Cq C4 Ca “a
(3.3.15b)
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In this way we conclude that the effects of explicit SU(3)
symmetry breaking due to the inclusion of linear quark mass terms in
the baryon number violating effective lagrangian are controlled by
just two arbitrary parameters; k and £. 1In Table 3.3 the expressions
for the baryon ~ antilepton vertices calculated from the chiral
lagrangian are rewritten to make this dependence explicit. Note in
particular that the inclusion of mass terms ammounts to just a
redefinition of the parameter ot appropriate to the vertex in question
so that the Y¥-matrix structures of the vertices are not changed.
This result has an important consequence = it allows a direct
comparison of these values of the vertices with those obtained by

evaluating the three quark annihilation amplitudes (see Table 3.2).
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Table 3.3

Baryon - Antilepton Vertices from the Chiral

Lagrangian, Exhibiting the Linear Dependence

on Quark Masses

Baryon - Antilepton

Interaction in Pole Vertex frome.EABz1
Diagram
P et 10L(1+m k+m ) (C(D + C(Z)P )
L 1 R
+ + _ ~=(1) ~(2)
> u 10L(1+m k+m %) (C PL + 02 PR)
- . (5)
n - Vo 1oc(1+mdk+msfl,) C1 PL
5© > 3 10 mems) GO
M /3 2 L
A - v 3% (4 mikctme) c(7) P
H /6 L
: 6
Z+ - e+ -10c(1+m k+m %) C(Z) R
P u+ 1oc(1+m k+m L) C(Z) Po
% > v 0
e
AR ;e —2io (1+m k+m ,Q,) C(S) PL
/6
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3.4 CHIRAL PERTURBATION THEORY

As we remarked earlier,the main stumbling block in any attempt to
link the evaluation of the three quark annihilation amplitudes to the
corresponding vertices obtained from the chiral lagrangian is that we
require a consistent method for relating constituent(Mq, q = u,d,s)

and current (mq) quark masses.

One such procedure is provided by a simple rule of thumb [2].
The two sets of quark masses are seen to differ approximately by a

common constant:

My = mg + M, (3.4.1)
where M(= 300 MeV) is of the order of the typical scale of the strong
interaction. However, an inspection of the expressions for the
various baryon number violating vertices presented in Tables 3.2 and
3.3 shows that we require a more general set of relations. For
example, we see that the proton + positron vertex is dependent on the
current u— and s—quark masses whefeas the corresponding three quark

annihilation amplitude is a function of M, and My only.

A procedure by which hadron masses may be related to current
quark masses has been given by Gasser and Leutwyler [2]. They develop
a technique in which hadronic energy levels are expanded about the

S
is known as chiral perturbation theory. The derivation is outlined

chiral limit m,=my =mg =0. This expansion in light quark masses

below.

As the masses of the u-, d- and s—quarks are small on the scale
of the strong interactions it is to be expected that the SU(3)L x
SU(3)R symmetry of the QCD lagrangian with massless quarks should be
approximately valid in the real world. The deviations from this
chiral symmetry may be investigated by treating the quark mass terms
as perturbations of massless QCD. Gasser and Leutwyler consider the
expansion of any hadronic energy level in powers of the light quark
masses. Using the results of first order perturbation theory they

deduce the following result for the mass m, of the hadron n:
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n2 = AL tm B +mg Bo bmg B 4., (3.4.2)
where A, represents the square of the hadron mass in the unperturbed
system (massless QCD) and the Bg coefficients denote the matrix
elements of the operators aq in the chirally symmetric state; i.e.
BY = <nlqq|n>. (3.4.3)
The terms omitted in the expansion (3.4.2) are of two types.
First there are the terms in the series obtained from higher orders in
the perturbation theory. However, there are also nonanalytic terms of
order (mass)3/2 [2] to be added to the naive perturbation expansion.
These arise when massless Goldstone bosons, which cause infrared
divergences in the chiral perturbation theory, are present in the
unperturbed system. It was partly because of the complications caused
by these latter corrections that we confined our attention to the
effects of linear quark mass terms in the baryon number violating
effective lagrangian. Gasser and Leutwyler [2] study the effects of
the corrections of order (mass)3/2 and (mass)z. They conclude that
they tend to cancel one another so that the overall correction to the

first order formula (3.4.2) is small.

Four unknown coefficients have been introduced in the linear
expansion (3.4.2). This procedure may be applied to all hadrons but
will lack predictive power unless the A  and B; parameters for
different particles may be inter-related. This is achieved by using
the SU(3) flavour symmetry of the QCD lagrangian in the chiral limit.

This implies, for example, that

u__d_ _u _.d s .8

By = By = BZ+ =B _ =3B = B - (3.4.4a)

.Y -3°, -38° -8, =3¢ (3.4.4b)

B,=B, =B, =B _ =B, = B_.- .
b3 b = =

s s d u d u

B.=B_ =3B = B = B =B . (3.4.4¢)

p n Z+ Z_ EO ':‘: ;

while the constants A, must be degenerate within each multiplet of

SU(3). With the definition

BS. = Bq (3-4-5)
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the linear mass formulae for the JP = %+ baryon octet are

2

m, = A+ muBu + mdBd + msBS + .. (3.4.6a)
2 _ d u s ,

m’ A+ mB¢ + myBY + mBS + .. (3.4.6b)
w2, = A+ m3BY + m;B% + m_Bd + (3.4.6c)
nt u d s o JALbe
me_ = A+mB® 4+ m,BY + Bd + (3.4.64d)
- u d s .o A
w2, = A+mBd+ m.BS +m BY + (3.4.6e)
=° u d s . +4.6e
m2_ = A+ mBS+m,B%+m BY + (3.4.6F)
= u d s °° eTre

m?2 = A+ D(BYBS) + m B9 + (3.4.68)
570 s b 4,08
m/z\ = A+ -'sﬁl(Bu+4Bd+BS) + —'—amS(ZBu—Bd+2BS) + «. . (3.4.6h)

Since we include the effects of isospin breaking there is mixing
between the unperturbed 3% and A states. Consequently, the squared
masses of these hyperons receive extra corrections of order (mu—md)z,

which we neglect.

If we retain only linear quark mass terms, equivalent
perturbation expansions may be given for the masses of the baryons.

Since A+O, we may write

m, = a + mubu + mdbd + meS + .. (3.4.7a)
m, = a-+ mubd + mdbu + msbs + .. (3.4.7b)
moy = a+mb®+ mgdS + mbd + .. (3.4.7¢)
mo- = a+mbS + mgb! + nbd + .. (3.4.7d)
Mo = @ + mbd + mgbS + m b + .. (3.4.7e)
me_ = a -+ mubs + mdbd + msbu + .. (3.4.7£)
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m . = a + B(bU+bS) + msbd ¥ .. (3.

¥0

= e
mA a + 3

n(b%+4b%+bS) + L m_(2bU- b4 + 2b5) + .., (3.

4.7g)

4.7h)

1 ~1
with a = A? and b4 = 3A77B9. The two sets of formulae differ by terms

of order (mass)2 and so for our purposes they are equally valid.

both satisfy the Gell-Mann — Okubo relation

%(mZ + 3mA) = my + M s (3
where

my = mzo=%(m2++ mz_) , (3

my = %(mp + mn) (3

mS = im, +m;_), (3
and the Coleman—-Glashow formulae

(mymmy) + (mge - my) = (mgy - m_) (3

(mz+— mp) + (ms_-n&—) = (mE? - mn) (3

(mg- = m) + (mgo = mpe) = (m - m) (3

which are all well approximated by the physical masses.

They

.4.8)

.4.93)

.4.9b)

.4.9¢c)

.4 .102)

.4 .10b)

.4.10¢)

Before we may use these results to correlate the mass corrections

to the baryon —3 antilepton annihilation amplitudes we must be able to

express the masses of the baryons in terms of their constituent quark

masses. Such relations are given by the additive rule:

m, = M, + 2Md (3.
m o = 2M, + Mg (3.
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4.11¢c)



=
|
i

2Md + Mg (3.4.11d)

b}

mae = M, + 2M (3.4.11e)
LI = Mg + 2Mg (3.4.11F)
meo = mA = M, t My tM | (3.4.11g)

These formulae are comsistent with the perturbation expansions (3.4.7)

provided
My = g la (268 + (mgm)pS + .. ] (3.4.12a)
Mg = o la+mg(26U-bd) + (mom ObS + L] (3.4.12b)
Mg = 4 la + mg(2b"-b) + (mpmg)p® + .. (3.4.12¢)
and
b% + bS = 2pd, (3.4.13)

These results provide a direct link between constituent and current

quark masses.
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3.5 THE CONSISTENCY OF THE CHIRAL LAGRANGIAN WITH THE PROTON DECAY

CALCULATION

Having expressed the constituent light quark masses as
perturbation expansions in the current masses we are now in a position
to study the consistency of the chiral lagrangian formalism with the
calculation of the three—quark annihilation amplitudes using symmetric

baryon wavefunctions.

Using the results of Section 3.4 it is interesting to note that
the combinations of constituent quark masses in which we are
interested, namely those of Table 3.2, are simply related to the

relevant baryon masses. We find

2 1 2

Mu+ ZMuMd = gmp (3.5.1a)
2 1.2

M, t ZMUMS = FWmy4 (3.5.1h)
2 1.2

Md+ 2MuMd = zm, (3.5.1c)
MM, + MM, -+ MM R S (3.5.1d
WHa T Mg ds T 3MWyo T FW, . -5.1d)

These equations hold only when terms quadratic and of higher order in
the current masses are neglected. It now follows that the three quark
annihilatvion amplitudes are proportional to the masses of the
intermediate baryons of the pole diagrams. (But see below for a

comment on the A—>\)”and A —>\_)evertices).

An examination of the expressions for the vertices involving the
proton, neutron and £¥and 3° hyperons in Tables 3.2 and 3.3 leads to

the following conditions for consistency:

a I

o] = 3B (3.5.2)
_ "

k = = (3.5.3a)
d

0 = b (3.5.3b)
S
b

2 = 7 (3.5.3¢)

151



The same constraints are required to equate the sums of the amplitudes
for the A’*;u and A*“;e vertices. It should not surprise us that the
individual amplitudes may not be related using the conditions (3.5.2)
and (3.5.3) since only the sum depends on m, in the way that the
amplitudes for all the other vertices depend on the corresponding

baryon masses.

With the vanishing of the coefficient bd it follows from Eq.

(3.4.13) that

bu + bS = O . (3-5-4)

We now wish to determine the corrections to the branching ratios
for the decays of the proton into a pseudoscalar meson and an
antilepton which result from inclusion of linear mass terms in the
baryon number violating chiral lagrangian. To achieve this we must
obtain values for the parameters k and Elwhich in turn are determined

from the coefficients a, b" and bS.

By inspecting Eqs. (3.4.7) and (3.5.1) in the chiral limit we

deduce that
a = 3M = mg . (3.5.5)

Thus the single value of the parameter la! which implies consistency
for all vertices coincides with that obtained when the effects of SU(3)

symmetry breaking are neglected. (See Eq. (3.2.6)).

Using the baryon number conserving part of the chiral lagrangian
with fundamental baryon fields (J;+§a) it is possible to express the

baryon masses in terms of the parameters a; and a, of Qa. The results

are
m, = mp - Z(mual + msaz) + .. (3.5.6a)
mn = mB - Z(mdal + msaz) + .. (3.5.6b)
moy = mp - Z(mual + mdaz) + .. (3.5.6c)
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m = mp — 2(mga; + mea,) + .. (3.5.6d)

-
m,‘_:_:e = mg - Z(mSa}L + mda2) + .. (3.5.6e)
- = mp ~ 2(mga; + meay) + .. (3.5.6f)
m, = mp - 2m(ajtay) + .. (3.5.6g)
m = my - 2GR+ 2m)(atay) + . (3.5.6h)

As we mentioned in Section 2.1, with the values a; = -0.45 and ages
0.88, these formulae give reasonable predictions for the baryon
masses. The value mp = 1197 MeV is also required. The relations
(3.5.6) are entirely consistent with the chiral perturbation results

(3.4.7) provided

bt = -2a; (3.5.7a)
a .

b = 0 (3.5.7b)
b° = -2a, (3.5.7¢)

It is encouraging to see that the baryon number conserving chiral
lagrangian also predicts that the parameter bd should wvanish.
However, although the coefficients aj and a, have opposike signs, they
do not sum to zero. It appears that the consistency of the different
evaluations of the baryon—» antilepton vertices imposesan extra
constraint (bY = —bszzb) which is not realised when linear current
quark mass formulae are used to interpret the physical baryon masses.
However, the condition (3.5.4) has its origins in the use of the
additive rule to relate the baryon masses to the masses of the
constituent quarks. Suppose that, instead of solving Egs. (3.4.7) and
(3.4.11) to express the constituent quark masses as series expansions
in the current masses, we directly interpret the functions of
constituent masses occurring in Table 3.2 as being proportional to the
squares of the baryon masses. We then arrive at Egs. (3.5.1) without
any constraints on the unknowns bY, bd and bS. There is little
motivation for this., Nevertheless, a pattern for the constituent mass

combinations of Table 3.2 does emerge. For example, M§ + 2M My is the
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sum of the products of all constituent quark mass pairs of the proton.
If this quantity is taken as being proportional to m;, the correct
constant of proportionality follows from a study of the chiral limit.
Similar arguments are valid for the other three—quark annihilation
amplitudes although, as before, we must sum the amplitudes for theA—M_;Ll

and A » v Vvertices.
e

For the purposes of calculating corrections to the branching
ratios of the two-body decays of the proton we use the knowledge
gained from a study of the baryon number conserving chiral lagrangian.
The adjustments are then controlled by two parameters (b" and bS)
instead of one(b). With this extra freedom the coefficients may be
chosen so that the chiral perturbation expansions give baryon masses
which are in closer agreement with experimental values. From the

best—fit results

a = 1197 MeV (3.5.8a)
bY ~ 0.90 (3.5.8b)
bS ~ ~-1.76 (3.5.8¢)

we find the coefficients
- -3 -1
k re 0.8 x 107° MeV (3.5.9a)
- _ -3 -1
1 . =~ 1.5 x 10 MeV . (3.5.9b)

The above values of the bY parameters contrast with those which
may be deduced from the work of Weinberg [9]. He argues that the
value m, = 150 MeV gives a reasonable fit to the observed SU(3) mass

splittings provided that

(3.5.10a)
<= ss|=>. (3.5.10b)

<p| s slp> =~

s
<z| s

s[Z > =

In our notation these assumptions are equivalent to the constraints

b ~ 0 (3.5.11a)
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d
b® &~ b7, (3.5.11b)

When we recall that the matrix elements of the aq operators entered as
coefficients in the chiral perturbation expansion we may conclude that
the conditions (3.5.10) in some sense amount to an identification of

constituent and current quarks.

Using the values (3.5.9) together with those for the current
quark masses quoted in Section 2.2 we have performed a quantitative
investigation of the effects of explicit SU(3) symmetry breaking on
the two—body decay rates of the proton in the minimal SU(5) GUT. The

results are presented in Table 3.4.

The corrections to the amplitudes obtained in the chiral limit
are expected to be of the form 1 +-mq/p, where p(= 0.5-1.0 GeV) is of
the order of the characteristic scale of QCD [10]. With the values
(3.5.9) for the parameters k and £, the relative magnitudes of the
corrections to the decay amplitudes are in close accord with this rule
of thumb., The SU(2) x 8U(2) subgroup of the full chiral symmetry is
exact when m, = my = 0. As these masses are tiny, we exXpect the
resulting deviations from the soft pseudoscalar limit to be small.
From Table 3.4 we are able to confirm that these corrections are of
the order of 1%, while those due to SU(3) breaking are roughly 10-20%.
The fact that the adjustments to the amplitudes are significantly
smaller than the uncorrected results is a vindication of the validity

of the expansion in powers of current quark masses.

A striking feature of our results is that for all decay modes the
inclusion of SU(3) symmetry breaking effects leads to a suppression of
the decay rates. This suppression is significant only for those
channels in which there are non-vanishing coefficients of mg in the
chiral perturbation expansion. In particular we find an enhancement
factor of approximately 1.6 for the proton lifetimet (p » n%*) .
Nevertheless, the mode p + 7%t remains dominant, and relatively large
rates are still predicted for the decays p-%w+;e and p ~ %PH+ . Only

the branching ratio for the mode p - ¥9p+ is increased significantly.
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Table 3.4  Two—Body Proton Decay Rates and Branching Ratios

With SU(3) Symmetry Breaking Effects Included.

Enhancement Factor for Decay | Branching Ratio in
Decay Mode
Rate in Minimal SU(5) Minimal SU(5) (%)
o _+ 2
p>me (1 + muk + msﬁ) = 0.61 59.1
+ 2
Pp+ne (1 + muk + mS%) = 0.61 0.5
p -+ kT (1 +mk + mdz)2 = 0.98 14.9
p > TV (1 +mk +me)> = 0.61 23.3
e d s
+- ~ ~ 2
p~>kK vu (1 + mk + me) = 0.99 0.8
o + 2
p>K e (1 + muk + md,Q) = 0.98 0.3
P~ wop+ (1 + muk + msz)2 = 0.61 0.6
+ 2
p > nu (1 +mk +m &) = 0.61 -0
- u s
= 2
P>K WV (1t +mk +m )" = 0.80 0.5
e 8 s
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CHAPTER 4

SUMMARY AND CONCLUSIONS

In Chapter 1 an attempt was made to obtain values of the first
few moments of the proton distribution amplitudes by applying the
technique of QCD sum rules to the operator product expansions of
suitably chosen current correlators. Only the lowest twist
contributions to the OPE’'s were included. For most of the sum rules
good fits were found to be possible and reliable estimates of the
corresponding moments were obtained. The results are displayed in
Table 1.9. The moments clearly indicate an asymmetric distribution of
longitudinal momentum among the constituent quarks of the proton. The
largest part of the proton longitudinal momentum (in the infinite
momentum frame) is carried by a u—quark with the same helicity as the

proton.

Our results are to be compared with those of Chernyak
and Zhitnitsky [l1], who analysed the same current correlators. These
authors were also able to extract accurate moment values from almost
all of their sum rules, and hence deduce explicit expressions for the
distribution amplitudes. Their results predict a greater asymmetry in
the distribution of quark momenta than that implied by the moments of
Table 1.9. Our disagreement with Ref 1 is not one of interpretation
in the treatment of the sum rules. We differ about the results of a
well defined calculation, that of the Wilson coefficient functions of

the OPE's.

The two most obvious sources of uncertainty in our analysis are
the omission of non-leading perturbative corrections to the
coefficient functions and the neglect of the contributions of higher
dimensional operators to the OPE's., Higher order perturbative
corrections have been included by Gorskii [2] in the QCD sum rule
analysis of meson distribution amplitudes originally performed by
Chernyak and Zhitnitsky [3]. 1In Ref. 2 it is concluded that the
resulting corrections to the moments of the pion wavefunction are
small. It is to be hoped that a similar calculation for the nucleon,
as well as an estimate of the contributions of operators of higher

dimension, will be feasible.
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Perhaps lattice gauge theory offers the best hope of an accurate
determination of the moments of hadronic wavefunctions. Preliminary
results for the pion give a much larger value of the second moment [4]
than that obtained using the technique of QCD sum rules. Predictions
are not yet available for the moments of nucleon wavefunctions,
Hopefully improvements in the techniques of lattice gauge theory and
increased computational power will lead to more accurate calculations

of hadronic parameters in the near future.

Chapter 2 dealt with the application of the distribution
amplitude obtained by Chernyak and Zhitnitsky to a calculation of the
proton decay rate. While the details of the analysis of Ref. 1 may be
disputed there is increasing evidence [5] that an asymmetric
distribution of quark momenta may be required to give a correct
description of hadronic physics, particularly hard exclusive
scattering processes. It must also be remembered that only the lowest
twist contributions were included in the OPE's of the current
correlators so that the sum rules were sensitive to light—cone physics
rather than the short distance physics appropriate to a calculation of

nucleon decay matrix elements.

The rate for the decay p ~ 1°e”  was evaluated by estimating the
proton - positron three—quark annihilation amplitude and using the
chiral lagrangian formalism. The main conclusion of Chapter 2 was
that use of the Chernyak and Zhitnitsky distribution amplitude led to
an enhancement of the proton lifetime by a factor of about 6 over that
obtained using a completely symmetric wavefunction. The contribution
of the antisymmetric component of the distribution amplitude to the
decay amplitude was of opposite sign to that of the symmetric
component, indicating that a qualitatively similar result may arise
using other asymmetric wavefunctions. The result obtained (for the

minimal SU(5) GUT) was

by

T(P"’ wce*t) = 5§ x ICJ&it years X My
10'$ Gev

This implies that

M, > 1.5 x 1012 gev,
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on the basis of the experimental lower limit T (p +~noe+)> 2.5 x 1032

years established by the Irvine-Michigan—Brookhaven (IMB) group [6].

Calculation gives [7]

M, = (1 to 2) % 1015 x /\wg )
where the QCD scale parameter (in the ¥S schmne)/\pg is found from
experiments and lattice QCD calculations to 1lie in the range 100 to
400 MeV. This is clearly in conflict with the limit f\Qg Z»l GeV
inferred from (4.2) and (4.3). While the enhancement of the proton
lifetime due to the use of an asymmetric distribution amplitude is
insufficient to resolve the discrepancy with experiment it is possible

that other GUTS may not be excluded.

A model was also chosen for the distribution of the transverse
momentum of the quarks within the proton. It was found that further
suppression of the predicted decay rate was possible only when the
probability of finding the valence three—-quark Fock state in the

proton was greater than about 0.5.

In Chapter 3, explicit SU(3) symmetry breaking terms were added
to the baryon number violating chiral lagrangian,and the subsequent
corrections to the decay rates of the proton into its various decay
products were determined. Using chiral perturbation theory, by which
combinations of current quark masses may be related to constituent
quark masses, it was demonstrated that these corrections were
consistent with those obtained by including the effects of SU(3)

symmetry breaking in the baryon wavefunctions used by Brodsky et al

[81.
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