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A THEORETICAL STUDY OF THE FATIGUE CUMULATIVE DAMAGE ANALYSIS OF
REINFORCED CONCRETE BEAMS AS A CONTRIBUTION TO THE DESIGN OF SHORT
SPAN HIGHWAY BRIDGES IN REGIONS WHERE TRAFFIC IS NOT INTENSE

by Sadiq Abdul Husein Ali MUSCATI

Concern about fatigue of concrete structures has recently increased
because of new uses of concrete. The aim of this study is to
investigate Cfatigue 1life of reinforced concrete bridges, in rural
areas, with simply supported short spans, subjected to simulated
single lane truck loading.

The relationship between fatigue life, in years, and the section
modulus of the bridge beams has been investigated. In the study five
different span lengths have been used and the loading has been based
upon three different intensities of traffic flow, across the bridge,
expressed in terms of Trucks per hour. The section modulus 1is
defined here as the ratio of the applied moment to the induced stress
in the reinforcement of the beam section.

Making wuse of available statistical data, the truck models have
been simulated by the Monte Carlo method, assuming that trucks' gross
weights and their arrival times on the bridge are normally and
exponentially distributed respectively. The time sequence of maximum
and minimum moments (moment spectrum) has been obtained by passing
the truck model across the bridge. By designing the bridge section
to resist the maximum moment with a specified design stress in the
reinforcement, the section modulus has been defined and used to
convert the moment spectrum into a stress spectrum.

The 'rainflow' method has been used to perform the stress cycle
counting. From the counted cycles, the fatigue 1life has been
estimated using the Palmgren - Miner's linear rule.

For each combination of beam span and frequency of 1loading, a
single curve has been obtained to represent the relationship between
the section modulus and Log (life in years). This curve has been
established by a new method, developed to ensure a ‘'safe' result, as
it gives an interpolated 1life value which does not exceed the
corresponding real one. The curve may be used to estimate the
section modulus required to give a specified design fatigue 1life to
the bridge.
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CHAPTER 1

INTRODUCTION

Current methods for designing reinforced concrete structures to
resist fatigue damage are less advanced than those for steel
structures. Fatigue damage control in reinforced concrete structures
is achieved mainly by keeping reinforcement stress ranges below a
limitihg value (1, 14, 23). On the other hand, concern about fatigue
of concrete structures has recently increased because of new uses of
concrete. In some types of structures, occasional overloadings are to
be expected, whilst the full design loading may be repeated for a

large number of cycles (14).

The aim of this study is to investigate 1life deterioration of
reinforced concrete bridges, in rural areas, with simply supported
short spans, subjected to simulated single lane truck loading. The
relationship between the fatigue 1life in years and the section
modulus has been investigated, for a set of specified bridge beams,
of different span lengths (L), subjected to different rates of
repeated loading (U), resulting from traffic passing across the

bridge, defined in terms of Trucks per hour.

The section modulus which is defined here as the ratio of the applied
moment to the induced stress in the reinforcement, has been
calculated by designing the bridge beams using the 1limit state
theory and varying the design stress in the reinforcement. The
section modulus is believed to have a direct relationship with the
fatigue life (40), as it incorporates the effect of the stress in the
reinforcement and the applied moment associated with a certain truck

model and span length.

By making use of the available statistical data based on previous
traffic surveys (35), the truck models have been simulated by the
Monte Carlo method assuming the trucks' gross weights and their
arrival times on the bridge are normally and exponentially

distributed respectively, as established by previous researchers (37,

38, 39, 40, 42).



The time sequence of maximum and minimum moment values (moment
spectrum) has been obtained by passing the truck model across the
bridge. By designing the bridge section to resist the absolute
maximum moment of the spectrum, with a specified design stress in the
reinforcement, the section modulus has been defined and is used to

convert the moment spectrum into a reinforcement stress spectrum.

Fatigue parameters have been established experimentally (7,50) using
samples tested under constant amplitude stress cycles. In order to
use a predicted stress spectrum as a basis for the design, the
spectrum must be reduced to a series of equivalent cycles and half

cycles; a process which is known as cycle counting.

In this study, the rainflow method (7,52) has been used to perform
the stress cycle counting. From the counted cycles, the fatigue 1life
has been estimated using Palmgren -~ Miner's linear rule, applied to
the characteristics of the outer layer of the particular steel
reinforcement used. It 1s well established that, in most cases,
compressive stress changes in concrete do not lead to a significant
chance of fatigue failure and it is the steel which governs the

fatigue 1life of reinforced concrete structures.

Bridges with 15 - 20 m spans are very common in highway systems. In
this study, the fatigue lives of bridges with 15.0, 17.5 and 20.0 m
spans have been investigated. Also the fatigue lives of two longer
spans of 25.0 and 27.5 m have been investigated to examine the
effect, on the fatigue life, of the higher dead load stresses, which

then arise.

BS5400 specifies that the number of trucks, that are assumed to
travel along a single carriageway lane of a bridge, may be taken to
be (1.5 x 106) per year ( a 170 Trucks per hour). In this study
three rates of truck frequency (U) have been used for the analysis

(90, 180 and 360 T/hr.)

The calculations, which have been carried out, result in a
relationship which can be expressed graphically in the form shown
in Figure (1.1). Here we plot Log(life in years) against the section
modulus of the beam as a single line for each combination of values

of beam span (L) and frequency of loading (U).



Log (life in years)

Figure (1.1) :

Section modulus

Log(life) - Section modulus curve for
a specific value of span (L) and rate
of loading (U)



The Log (life) - Section modulus curves may be used to estimate the
section modulus required to give a specified design fatigue life to a
bridge beamn. Knowing the required section modulus and the design
moment, the resulting design stress in the reinforcement can be
determined. The beam can therefore be dimensioned so that the actual

maximum stress 1n the reinforcement does not exceed that needed to

achieve the required fatigue life.



CHAPTER 2

FATIGUE OF MATERIALS UNDER REPEATED LOADING

2.1 Fatigue in General

Fatigue 1s the damage caused to structural elements by the repeated
applications of a load which is insufficient to induce failure by a

single application (1, 2).

The fatigue phenomenon is a very complex one, and fatigue studies
have shown that its damage depends on many parameters. The effect,
of the stress spectrum parameters such as the mean stress, the stress
peaks and the low stress amplitudes, on the fatigue l1life of a

specimen has been observed by many investigators (3).

Fatigue in metals is usually caused by stress cycles whose values are
higher than a limiting value described as the 'fatigue endurance
limit!'. Below this stress limit, the material can sustain a very
large, or even a nominally infinite number of loading cycles, without

failure.

Apparently, the material behaviour, when subjected to a large number
of low amplitude stress cycles, is different from that under a small
number of high amplitude stress cycles. The latter case, known as
low cycle fatigue, is distinguished by macroscopic cyclic plastic
straining of the material, which does not occur under low loading
(5,6). Plasticity is non linear and history (path) dependent and it
is this property which appears to carry over to low cycle fatigue, in

which the stress-strain relations are cyclic dependent.

For low cycle fatigue (which might be considered for metals to occur
in less than 105 cycles), a straight line relationship (5) between the
strain and the number of cycles to failure on a log-log scale has been

noted (Coffin - Manson law). It takes the form:-

re N = C



Where:

strain range (presumably maximum principal
direct strain range)

[
[¢)
]

N = number of cycles to failure

material constants

m,C

For the case of small loads, and therefore a large number of cycles
to failure, known as high cycle fatigue, the relationship between the
number of cycles to failure (N) and the stress range (S) (Wohler or

S-N curve) can be approximated in metals (7) by the equation:
Ns? = K

where K and g are constants which depend upon the material concerned

and the design detail (stress concentrations, weld joint, etc.).

Many theories have been proposed to represent fatigue cumulative
damage 1in quantitative terms, but each theory has its own
shortcomings. These result from the assumptions introduced to

simplify the many complications associated with the fatigue process.

Interest was shown in the fatigue of metals (4) as early as 1829 when
Albert subjected mine hoist chains to repeated proof loadings. Even
so, after 150 years we are still far from reaching the stage of
having a full understanding of the process and a technique to
evaluate the fatigue cumulative damage in an accurate and reliable
way. In the following sections, some of the methods developed to

estimate fatigue damage are described.

2.1.1 Palmgren - Miner's Method (8)

This method 1is the most well known and widely used in current
engineering practice. The method is based on the assumption that

the phenomenon of cumulative damage to a specimen under repeated
loading - is related to the net hysteresis work absorbed by the
specimen. The number of loading cycles applied, expressed as a
percentage of the number to failure at a given stress level, would be

the preoportion of useful life expended. When the total damage, as



defined by this concept, reaches 100 percent, the specimen should

fail by fatigue. The method is expressed mathematically as :
ny
ZT\I—_.:‘]
i

where, n; is the number of cycles applied at stress Si and N.l is the
average value of the number of stress cycles to cause failure at
stress Si (the stress level Si is, of course, greater than the

fatigue endurance limit Se) .

It 1is known that this method does not give an accurate prediction of
fatigue life. Numerous tests have shown that the average damage

sum [D = 2 (ni/Ni)] at failure may be sometimes considerably higher
or lower than unity. Use of the minimum value of the number of
stress cycles to failure, instead of the average value Ni , limproves

considerably the safety of using this method (3).

2.1.2 Inoue - Nakagawa's Method (9)

Inoue and Nakagawa have assumed that the hysteresis loop of an
element subjected to fully reversed straining (zero mean strain) is
as shown in Figure (2.1). Also they have assumed that when an
element 1is subjected to n cycles of constant strain amplitude e,
the form of the hysteresis loop is constant during the life of the
element. Consequently the total strain energy of the element (which
is represented by the area enclosed by the hysteresis loop) is a

function of the yield strain & -

It has been assumed that fatigue failure takes place when the strain
energy accumulated in the most defective element, having the maximum
hysteresis loop, reaches a certain value. This value has been found
experimentally to be constant with respect to the variation in the

strain amplitude.



Figure (2.1)

Stress-strain hysteresis loop of
an element with yield strain ei



The method is expressed mathematically as :

where n; Ni have been defined previously and NSC = 2 ny - Derivation

of the aforementioned equation is given in Appendix A.

The aforementioned two methods neglect many factors, amongst which
are possible changes in the value of the fatigue endurance 1limit, the
stress amplitudes below the initial fatigue endurance limit and the

loading sequence, all of which appear to have an effect (3, 10).

The fatigue endurance limit for a virgin specimen is normally higher
than that for a similar specimen with a prior 1loading history.
However, 1n some strain-aging materials, an appropriate sequence of
loading may raise the fatigue endurance 1limit. Stress amplitudes
below the initial fatigue endurance limit, in most cases, add to the

damage and should be accounted for (10).

Change of the loading sequence (without changing other loading
parameters) affects the damage sums. These are mostly larger than
unity 1n the tests performed by applying low stress amplitudes
follewed by high stress amplitudes. They are usually smaller than
unity in the tests performed by applying high stress amplitudes
followed by low stress amplitudes. However there are some cases where

a reversed sequence of effects has been observed (3).

Palmgren - Miner's method 1s the only cumulative damage method
presently wused in the design of structures. Numerous attempts have
been made to develop more comprehensive methods which account for
other effects, but these methods have had little real success 1in
practical component design (3). However, for completeness, some of

these methods are described briefly here.



2.1.3 The Double Linear Damage Method (10)

In this method, originally developed by Manson et al (10), the damage
sum [D = 2 (ni/Ni)] is applied separately for the crack initiation
and crack propagation stages. Fallure is assumed to occur when the

sum is equal to unity for both stages.

The number of cycles, required for the crack propagation stage, Ng is
expressed, 1in terms of the number of cycles to failure N, by the

relation:

a
N = N
g g

where g and a are constants. Consequently, the number of cycles,

required for the crack initiation stage, NO is given by :

N =N-N_=N-ghi®

. n
) ﬁg'z 1 for the initiation stage
e}
and
. n
z ﬁg = 1 for the propagation stage
g

where n, and ng are the number of cycles applied under the initiation

and propagation stages respectively.

Manson et al (10) have suggested that, at a certain high stress level
corresponding to a value of N smaller than a specified value NS , the
effective crack is assumed to exist from the first cycle,

(i.e. for N < NS , NO z 0).

10
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In the light of some experimental results,the constants a and g for

metals have been assumed to be equal to (0.6) and (14) respectively.

Consequently :

1-0.6

N, = (14) = 730 cycles

It follows that for any high stress for which the number of cycles to
failure (N) is less than (730) cycles, the effective crack is assumed

to exist from the first cycle.
An extension of this method has been made by Bui - Quoc and
Biron (11), to predict the cumulative damage effect under strain

controlled fatigue at high temperatures.

2.1.4 Henry's Method (12)

In order to evaluate the decrease in the fatigue endurance limit
resulting from repeated loading, Henry (12) has assumed that the S - N

curve for a steel specimen can be represented for moderate stress

values by :

where K is a material constant, Ko is its wvalue for the virgin

material and SeO is the endurance limit for the virgin material.

He has assumed also that, when fatigue damage accumulates, the new K
value is proportional to the new endurance limit value, Se . Also, at
failure the endurance 1imit is assumed to be zero. Consequently the
damage ratio D (a dimensionless parameter whose value is (0) for the

virgin material and (1) at failure) may be defined by :
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Making use of the aforementioned assumptions, D can be expressed as :

D n/N
- S {1-n/N)
1T + €0
S - Seo

2.1.5 Gatt's Methods (13)

Gatt's method (13) is similar to Henry's method. Instead of assuming
that the endurance limit (Se) is zero at failure, Gatt's has assumed
that 1its value at any stage is a constant fraction of the material
strength. At failure, the material strength is equivalent to the
stress S which causes the failure. Hence, the endurance limit at

failure can be given by :

Se = C.S

where C 1is a material constant, whose value can be found by assuming
that the stress causing failure in the first cycle is equivalent to

the ultimate tensile strength Su (i.e.; C = Seo/Su).

Also, he has assumed that the energy associated with a stress above
the endurance 1limit, and with a strain in excess of the strain
corresponding to the endurance limit, is proportional to the damage
caused by the nth cycle. This energy has been assumed to represent
the decrease rate of the strength with respect to time. By
representing the stress-strain curve, from the endurance limit to the
maximum stress of the cycle, by a straight line, it has been found

that the endurance limit Se is given by :

) 1
Se = S 11 -y LS - /T

1-C S ~ 3
€0
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In this method, a damage ratio D (whose value is (0) for the virgin

material and (1) at failure) may be defined by :

seo - Se

SeO - CS

D =

2.2 Fatigue of Concrete

2.2.1 Fatigue of Plain Concrete

Investigations have shown that the fatigue life of concrete, tested in
compression under a constant amplitude loading, with the stress f
varying from the same minimum to different maxima, may be considered
to vary linearly with the maximum stress of the cycle (14).
Apparently there is no endurance limit below which, the plain concrete

will sustain an infinite number of load cycles (4, 14, 15, 16, 17,18).

For concrete in compression, the relation between the maximum and

minimum stress, fmax and fmin respectively, and the corresponding
number of cycles to failure N, is given (14) for design purposes as

- 1
1 fmaX/fC

lOgN = - 109
al1 - fmin/fmax)

where fé is the compressive strength, and the constant q 1is

approximately equal to (0.0685).

Another design equation for the fatigue of concrete in compression is
recommended by the Japan Society of Civil Engineers (14) as follows:
logN

fmax - f‘min = (0.9 k fé - fmin) (1 - 15)




where k is a coefficient taken equal to (0.85) to cover the

differences 1in strength between standard c¢ylinders and in-place

concrete.

For cyclic tension, it has been shown (14) that the fatigue strength
under loadings producing tension 1is about the same as for compression.
Cyclic loading from compression to tension has been reported tc be

more damaging than zero - to - tension loadings (14).

Material parameters such as cement content, water/cement ratio,
curing conditions, and age at loading, have been found (14) to affect

fatigue strength in a proportionate manner to the static strength of

the concrete.

For concrete submerged in salt water, it has been reported that the

fatigue strength of concrete is reduced (14).

2.2.2 Fatigue of Reinforced Concrete

Fatigue of reinforcing bars occurs as a result of the initiation and
propagation of a crack under cyclic loading. It has been found that
the reinforcing elements will be more likely to limit the life of the
member than the concrete itself (4, 14, 19, 20, 22). This 1is
particularly true in the case of members subjected to predominantly
flexural high-cycle, low-amplitude loadings between (103) and (107)
cycles (14). Laboratory data, from tests on bars in air and on bars
embedded in concrete beams, have shown that most test results on bars
in air are generally a little lower than on bars from the same lot

embedded in a concrete beam (14).

It has been found, from numerous tests which incorporated variations
of the effects of the stress range, minimum stress, bar diameter,
size of beam and grade of bar, that the stress range is the
predominant factor in determining the fatigue life of the reinforcing
bars (14, 16, 20, 21). The minimum stress level is also significant

(14, 21).
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For design purposes, it has been concluded that there is a limiting
stress range which may be taken as a fatigue endurance limit. At
stress ranges above this limit, a reinforcing bar will have a finite
life, while below this limit the bar will have a very long 1life and
may be able to resist an unlimited number of cycles. The transition
from the finite life to the long life region occurs in the range of

one to two million cycles (14, 21).

Other variables that are important, from a design viewpoint, are the
geometry of deformations on the bar, radius of bends, welding and
corrosion. Other factors such as bar size, type and orientation,
yield strength and chemical composition, have been reported to have

only minor effects (14, 19, 21).

Also the fatigue strength, of the main reinforcement in straight

reinforced concrete beams of sound normal weight concrete, has been

found not to be affected by the beam dimensions or the concrete
strength and modulus, except as they affect the reinforcement

stresses (20, 21).

Because of its effect in reducing the fatigue strength of bars, it is
advisable to avoid welding in construction that will be subjected to
repetitive loads (14). Where welding cannot be avoided, reference
should be made to fatigue design criteria for comparable welded

details in structural steel (1, 14).

Based on a study of deformed bars, made by four different U.S.
manufacturers, which has included tests on (353) concrete beams, each
containing a single straight test bar as the main reinforcement, the
following equation has been developed to determine the limiting
service 1load stress range in the long 1life region, below which
fatigue damage is unlikely to occur in straight hot rolled bars with

no welds:

- . 2
ff = [145 - 0.33 fmin + 55 (r/h)] . in N/mm ceea(207)

15



In this -equation, f is the limiting stress range, f is the

minimum stress level féositive when tensile). (r/h) is tﬁ;nratio of
base radius to height of rolled on transverse deformations (0.3 to be
used when the actual value is not known). This equation includes an
adjustment to represent approximatley a 95 percent probability that

95 out of a hundred test results will exceed.

Although the above mentioned equation is a lower limit for bars, made
by U.S. manufacturers, conforming to ASIM designation A615, it is
believed to be reasonably applicable to other reinforcing bars, whose
surface geometry has not been controlled in a manner that assures
higher fatigue strength (14). This equation has been adopted, in
U.S. design specifications, to define the maximum allowable range
between a maximum tension stress and a minimum stress, in straight

reinforcement bars, caused by live service load plus impact (14).

It 1is recommended that no bends in primary reinforcement shall be
allowed at locations where the stress range is near the above 1limit

ff .

An equation has been also developed for a safe fatigue life (14, 21),
for all stress ranges above the endurance 1limit represented by

Equation (2.1). This equation is given as :

log N = 6.1044 - 591 (10)™ £_ - 200 (10)7° f

5 5 min
+103 (10)° £, - 8.77 (10)~

As + 0.0127 d(r/h)
cee. (2.2)

where fp is the stress range in N/mm2 , fu is the ultimate strength of
the steel bar in N/mm2 , AS is the area of the bar in mm2 and d is
the nominal diameter of the bar in mm. Other terms have been

defined previously.

Equation (2.2) may be used to design a reinforcing bar for a safe
fatigue 1life resulting from stress ranges above the endurance 1limit.
However, such design must be cautious because of the potential for
brittle fracture due to a sudden overload, after a fatigue crack has
been initiated (21). Moreover, Eq.(2.2) has been developed, as a

result of an extensive testing programme (14, 21), to give a safe

16



fatigue 1life. Even though, because of the wide scatter associated
usually with fatigue tests, it is unrealistic to assume that it will
necessarily give absolute safe results for other testing programmes

carried out under different or even similar conditions.

Equations (2.1) and (2.2) should be used cautiously in circumstances
where time-dependent effects (like severe salt water corrosion and
extreme temperature conditions) may change the vreinforcing bars

properties.

Equations (2.1) and (2.2) are adopted in this study and have been
used, with Palmgren - Miner's rule, to predict the fatigue 1lives of
32 and 25 mm straight hot rolled reinforcing bars whose yield stress
is, fy = 425 N/mmz. For such bars, an average value of 730 N/mm2 has

been used (20, 21) for the ultimate strength (fu).

This study deals with simply supported bridges, and if we neglect the

17

beneficial negative stresses (compressive) caused by the trucks' dynamic

effects, then the value of fmin used becomes the positive stress
(tensile) caused by the bridge dead load. Assigning the above
values for the parameters in Equations (2.1) and (2.2), with

{r/h =0.3), gives the following two equations :

ff = 161.5 - 0.33 fmin vee. (2.3)

_ -5 -5
log N = AN - 200 (107 7) fmin - 591 (10 7) fr veee (2.4)
where, AN = 6.9077 for 32 mm bars and 6.9085 for 25 mm bars.

2.2.2.1 Low Cycle Fatigue of Reinforced Concrete

Most of the previous research has been directed toward high cycle-
low amplitude fatigue loading in the range of (1000 - 107) cycles
(14). Low cycle - high amplitude fatigue loading of less than (1000)
cycles may occur as a result of earthquakes or other events that

cause a . loading of the structure beyond its normal service load.

Under a low cycle - high amplitude loading, the influence of the time
dependent conditions should be expected to remain inelastic with

increasing residual deformations.



A recent study has been carried out at the University of

Southampton (24). This involved testing seven beams, reinforced with
one straight unwelded hot-rolled 16 mm deformed bar. From these
tests, which have been performed under about (85 - 95) percent of the
collapse load; whose value has been determined experimentally by

testing a proto-type beam, the following has been concluded:

1- The applied repeated load has to be higher than the yield 1load,
if the beam is to fail in about (100) cycles. This means that beams
are reasonably safe for up to (100} cycles,provided that the repeated

loads cause steel stress which are lower than the yield stress.

2- Reinforced concrete beams can withstand safely a (100) cycles of

about 92 percent of the collapse load.

3- Cracks are formed in the concrete when the load 1s about 25
percent of the collapse load. Once they are formed, the cracks widen
very slowly until the beam is about to collapse. Also, cracks are
formed initially with a considerable length, but their propogation 1is

very slow. Significant inclined cracks are also formed in both shear

spans.

4~ All beams have exhibited an under-reinforced form of failure.

2.2.3 Fatigue of Prestressed Concrete

Fatigue of prestressing tendons is similar to that of bars in that it
occurs as a result of the initiation and propagation of a crack under
cyclic loading. But it is generally accepted that a sufficient level
of prestressing prevents or limits the extent of flexural cracking,
and adherence to static limitations is believed to preclude the
possibility of fatigue failure (14). This is mainly because, in
prestressed concrete, the steel stress fluctuations under load are
proportionally very much less than those experienced by reinforcing

steel in reinforced concrete structures.
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CHAPTER 3

SIMULATION

Simulation is the imitation of a real situation by some form of
model. The principal advantage of the simulation is to determine the
effects of the changes in the system variables on a specific
parameter, where analytical formulation is not available and
experimental procedure 1is not  possible or expensive and time
consuming (27). To investigate the fatigue life of bridges under
truck loading, the Monte Carlo method can be used to simulate trucks!
weights and arrival times. This can be achieved by defining
probability distributions which represent adequately these system

random variables, as demonstrated in the following sections.

3.1 Probability and Probability Functions

If we suppose that in a sequence of n trials of a certain
experiment, the event E occurs Np times, then the probability of

occurrence of E is given (25) by:

p(E) = 1lim (nE/n)

n—co
For a random variable X, (XL £X g XU), we define:

b
Pla <X €£b) = aj fx) dx

where the function (f), denoted as the probability density

function (p.d.f.), satisfies the following conditions (26):

(a) f(x) =20 for all XL £x SXU and

XU .
(b) : X J f(x) dx = 1
L
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The distribution function or cumulative distribution function (as it
is sometimes called) of the random variable X, (which 1is the
probability of getting a value of X smaller than or equal to a

certain value), is denoted as F and defined by:
F(x) = P (X g<x) for all XLs X € Xy , then (26) :

F(x) <1

=
s
u
>4
o
4
L]
<
(o))
»4
o
)

3.2 The Monte Carlo Simulation

The Monte Carlo method is a new numerical procedure which takes
advantage of the high speed of the digital computer in solving
complex science and engineering problems. The Monte Carlo method
predicts the final outcome by substituting for a random variable a
set of actual values having the statistical properties of the random
variable. The substituted values are called random numbers, on the
grounds that they could have been produced by chance by a suitable

random process (28).

3.3 Generation of Random Numbers

In practice, a sequence of uniformly distributed random numbers is
usually required. The cumulative distribution function for the

uniform distribution is defined as:

0, x<0
F(x) = x, 0<x<1

1, x>1

The following methods have been used by practitioners to generate

sequences of random numbers

7. Manual methods
2. Library tables

3. Computer methods



Manual methods are the simplest but the least practicable of the
methods because they are too slow for general use. They include
mechanical and electronic devices, coin flipping, dice rclling, card
shuffling and roulette wheels. These methods have the disadvantage

that it 1is impossible to reproduce a sequence of random numbers

generated by such devices.

A number of library tables of random numbers have been published.
These numbers must first be generated by one of the aforementioned
methods. This method is slow and has the disadvantage that some
problems require more random numbers than have been published. Also,
using the same random data for every problem might sometimes be

unacceptable.

Computers are capable of generating random numbers with repeatable or
unrepeatable sequences. Congruential methods are widely used to
generate random numbers. They are based on a fundamental congruence
relationship which may be expressed as the recursive formula given by
Equation (3.1), [Two integers a and b are congruent modulc m if their
difference 1is an integral multiple of m. The congruence relation is

expressed by the notation, a = b (mod m)].

n, 1 £ an;+c {mod m) eee (3.1)

where ng, a, ¢ and m are all non-negative integers. Three basic
methods have been developed by using different versions of Equ.{3.1).
These  methods are the additive  congruential method, the
multiplicative congruential method, and the mixed congruential

method.

The additive congruential method assumes k starting values, where
k 1is a positive integer and computes a sequence of numbers using
the following relation:

n, (mod m)

i+1

i
3
+
5

i i-k

This is the only method that gives periods larger than m.
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The multiplicative congruential method computes a sequence [ni] of

non-negative integers,‘each less than m, using the relation:

= an, (mod m)

n,
i+l = i

The multiplicative method has been found to behave quite well
statistically. That is, frequency tests and serial tests, as well as
other tests for randomness, when applied to sequences generated by
this method indicate that the random numbers are uncorrelated and
uniformly distributed. It is possible to impose conditions on the
multiplier (a) and the starting value (no) to insure a maximum period
for sequences generated by this method. From the integers in the
sequence [ni], rational numbers in the unit interval (0,1) can be

obtained by forming the sequence [ri] = [ni/m]

Numbers obtained using Equation (3.1) with a and ¢ both greater
than zero are said to be generated by the mixed congruential method.
This method has some small advantages over the multiplicative method

in terms of increased computational speeds (29, 30, 31, 32, 33).

In this study the built-in routine GO5CBF of the ICL 2976 computer at
the University of Southampton has been used. This routine generates
numbers between (0) and (1) with repeatable sequence by the
multiplicative congruential method. Procedures with repeatable
sequence have the advantage of allowing checking process to be

performed, if desired.

GOCBF sets the internal variable N used by another routine

GOSCAF to a value calculated from any integer I:
N=21I+1

It then calls GO5SCAF to shuffle N.

22
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GOSCAF computes random real numbers taken from a uniform
distribution between (0) and (1). The routine uses a multiplicative

congruential method:

13 59)

N =13 N (mod 2
CO5CBF will give different subsequent sequences of random numbers
if called with different values of I, but the sequences will be
repeatable in different runs of the calling program (34). The

standard cycle length of this routine (31) is (2 57).

3.4 Generation of Random Variates

Two methods have been used in this study to generate random variates.

3.4.1 The Inverse Transformation Method

If we wish to generate random variates (xis) from some particular
statistical population whose density function is given by f(x) and

distribution function is given by F(x), since:
0 < F(x) <1

then, we can generate uniformly distributed random numbers (0 ¢ r < 1)

and put:
which gives: x=F (r)
where F-1(r) is the inverse transformation (31).

For many probability distributions, it is impossible to eXpress X

in terms of F-1(r). In such case, we may use the rejection method.
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3.4.2 The Rejection Method

If f(x) is a (p.d.f.) and if x is bounded and has a finite range

say: a < X £ b. The rejection method requires the following steps:

< -~

{a) Normalize the range of f(x) by a scale factor m such that:

A
e

A
o

m.f(x) < 1 a

{b) Define x as a linear function of r, where 0 £ r < 1
x = a+ (b-a) r ... (3.2)

(c) Generate pairs of random numbers (r1, r2).

If r2

(x = a + (b-a)r,) is the required random variate. This is because

the probability of r, being less than or equal to m. f(x) is:

< m. fla+ (b-a) r1), then the pairs are accepted and

< m.f(x)) = m.f(x)
Consequently if x is chosen at random from +the range (a,b)
according to Equation (3.2) and then rejected if r, > (m.f(x)), the

(p.d.f.) of the accepted (x's) is exactly f(x) (31, 32).

3.5 Traffic Simulation

Bridges are generally designed to carry a static vertical load caused
by a design ¢truck plus a given increase to include the dynamic
effects (1, 35, 36). Even when passenger cars are constituting the
major part (42, 45) of traffic (in number), they are usually
disregarded because of their insignificant contribution to the

induced stresses (1, 37).



To simulate the traffic, the variation of the following factors

should be investigated (37, 38, 39):

1. Multiple presence of ftrucks

2. Truck gross weight
3. Truck type with the axle spacings and axle load fractions

It has been found (37, 38, 40) that a wide variety of truck types
could be combined intc a limited number of truck types with specified

axle load fractions and axle spacings.

3.5.1 Truck Classification

Heins (35) has concluded that trucks in the U.S.A. could be
classified as shown in Figure (3.1). His work has been based on
numerous field surveys. For each truck type, the following

parameters have been specified:

1. Average gross weight
2. Standard deviation of the gross weight

3. Range of the gross weight

The average frequency of these truck types relative to the location

of the road system (Metropolitan, Urban, Rural) is shown in

Table (3.1).

Heins' study (35) has been based on data collected in the U.S.A. in
and before 1972. An extensive literature survey has been undertaken
by the author to get some more updated related data. For the same
purpose, the specialised authorities in the U.K. have been

approached. Unfortunately, it seems that such data are unavailable.

Comparing Figure (3.1) and Table (3.1) with vehicles of 5, 4, 3 and
2 axles given by Table (11) of BS5400: Part 10: 1980, given here at
Fig. (3.2), reveals that there is a reasonable agreement between the
data given by BS5400 and those given by Figure (3.1) and
classified in Table (3.1) as the metropolitan traffic. Vehicles with

more than five axles are given by BS5400 : Part 10 : 1980



S= 26
M= 62
22.24
5= 48
M=155
44 .48

= 53
M=160
44 .48
g= 57
M=182
44.48
S= 71
M=231
88.96

2 0nQ

5 5
~ ~ e Direction of
Motion
.688 l 2D
272
| 4.572 X
i g
$G.W. £222.40
o0 o0
o° L(': 0N
N e~ ~
N ™ (a8}
P | | ~
. 680 | 3.962 Ll.Zl%
r T i
£G.W. § 355.84
g o o0
N 8 g
376 J, 2s-1
-128 I 3.505 N 8.230 |
I ™ ™
< G.W.< 400.32
a0 0P 90 50
@]
S S Q Q
.824 1 25-2
368 i1
F 3.505 4_ 7.315 _Ll.Zl%
| g
< G.W. g 444.80
a0 P o0 90 g0
Q IS Q Q &
.168 | J l . } 3s-2
.296
3.505 1.219 6.706 1.219
R e o
i » |
< G.W. g B33.76

.W. = The gross weight (KN)

= The standard deviation of G.W.
= The mean G.W. (KN)

(KN)

Figure (3.1)
Typical truck tvpes
(all dimensions in metres)

26



Truck Type

2D

3D

25-1

25-2

38-2

Table 3.1

Metropolitan

35.0

23.0

6.0

11.0

25.0

Average Distribution of Trucks by Type

Urban

13.0

10.0

30.0

44,0

Rural

21.0

6.0

7.0

25.0

41.0
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Table 11. Typical commercial vehicle groups

Total Chassis Average axle spacings, m Loading} Total Axle loads, kN No. in each | Vehicle
axles type Group weight, group per |designation
kN million
commercial
vehicles
Girder
18 | Trailer and v0T--o50boy  gosbov--sow | |y 3680 |80 160 160 240 (6 no.) 240 (6 no.) 80 160 160 10 |18GT-H
451540 775 13.5 7.5 40 4515
2 tractors M 1520 |80 160 160 60 (6 no.) 60 (6 no.) 80 160 160 30 |18GT-M
Tray
9 Trailer and - H 1610 70 140 140 210 210 210 210 210 210 20 | 9TT-H
45 15 40 1515151515
tractor M 750 50 110 110 80 80 80 80 80 80 40 | 9TT-M
Girder
7 | Trailer and OAS 019—4_0—0200 100 0206 H 1310 70 140 140 240 240 240 240 30 | 7GT-H
tractor N ’ ' M 680 60 130 130 90 90 90 90 70 | 7GT-M
Articulated O0—O00 OCO00 |H 790 70 100 100 130 130 130 130 20 | 7A-H
3.0 15 9.5 15 15 15
0—00 ‘00 |H 630 70 130 130 150 150 280 | 5A-H
30 15 13.5 15
5 Articulated ®@@® | M 360 60 70 70 80 80 14500 5A-M
3015 50 a8 )y 250 40 45 45 60 60 | 15000 | BA-L
1H 335 55 100 90 90 | 90000 [ 4A-H
Articulated —1® @® |M 260 45 85 65 65 | 90000 | 4A-M
3085 s 145 35 50 30 30 | 90000 | 4A-L
4
H 280 50 50 90 90 15000 | 4R-H
Rigid CICICI R Y 240 40 40 80 80 | 15000 | 4R-M
L 120 20 20 40 40 15000 | 4R-L
- H 215 45 85 85 30000 | 3A-H
Articulated @0 . ®m 140 30 55 55 | 30000 | 3A-M
L 90 20 35 35 30000 | 3A-L
3
H 240 60 90 90 15000 | 3R-H
Rigid © 4.0 '14' M 195 55 70 70 15000 | 3R-M
L 120 40 40 40 15000 | 3R-L
H 135 50 85 (170000 | 2R-H
2 | Rigid M 65 30 35 |170000 | 2R-M
' L 30 15 15 |180000 | 2R-L
Xey. ® Standard axle. 4 tyre, 1.8 m track © steering axle, 2 tyre, 2.0 m track O special axle, 2 to 8 tyres, up to 3.4 m outer track

0861 :01 HBed : 00§ S8

8¢



to constitute 0.022 percent of the total truck traffic. Consequently,
truck data for rural traffic given by Figure (3.1) and Table (3.1)
have been adopted. In this study, only bridges in rural areas have
been considered, because it is possible to assume that rural traffic
is reasonably smooth and without jams. Traffic smcothness makes it
reasonable to assume that the probability density of headway time
(time lapse between trucks passing a point) may be represented by

a negative distribution as demonstrated in the following section.

3.5.2 Multiple Presence of Trucks

Multiple presence is controlled by headway distances between trucks,
and it is primarily dependent upon the length of the bridge and truck
traffic volume (38, 39). It is almost independent of other
parameters, like truck speed and time of day. Based on observations
of truck traffic moving on several highways, it is assumed (39,40)
that the probability density of headway time may be represented by

a negative distribution which is shown in Figure (3.3):

£(t) = Ue Yt 0

< ©

2
o+

where f(t) is the probability distribution function and U is the

average number of trucks per unit of time.

Obviously, due to the physical nature of the situation, t cannot be
less than a certain minimum value. Harman and Davenport (39) have
assumed a distance of 7.30 m to account for a minimum clearance
between the trucks and to account for the projections of the trucks
beyond their rear and front axles. Since truck speed is not

a significant factor in determining the probability of multiple
presence (38), a constant speed of 50 km/hr has been assumed in this
study. This means that the minimum headway time, for the front axle
of a certain truck, is dependent on the length of the truck preceding

it, as shown in Table (3.2).
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probability distribution of t

headway time (t)

Figure (3.3)

The form of the probability distribution
function of the headway time (t)
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Truck Type

2D

3D

25~1

25-2

3S-2

Table 3.2

tmin for the following truck (sec)

0.855

0.899

1.371

1.392

1.436

Minimum Headway Time {(Front Axle)
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A  truncation factor, Tf , should be introduced to account for the
minimum headway time, and to make the total area under the truncated

curve = 1.0, making the probability distribution function as below:

-Ut
£(t) = T, Ue toin €t
+/oc
where [ T, U eUtar = 1.0
tJ
min
, oo
then Tf [ —e_Ut 1 = 1.0
t .
min
-U tmin
Tf e = 1.0
U t_.
SO Tf = e min
U(t_. -~t)
min
therefore. f(t) = Ue tmin <t

The cumulative distribution function F(t) is obtained as below
(F(t) is the probability that the time between successive trucks is

less than or equal to t)

F(t) = dt
t .
min
Ult . -t) ¢
F(t) = [ -e ™0 1
t .
min
Ult . -t)
F(t) = 1 - 0 t <t
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Since F(t) exists in explicit form, the inverse transformation
technique provides a straight forward method to generate the random
variate t. Because of the symmetry of the uniform distribution,

F(t) and [1~ F{t)] are interchangeable (31). Therefore :

U(tmin -t)
r=1- F(t) = e Chin St
min
Consequently
_ in(r)
t= tmin T U O srs1

To avoid the situation of getting infinite time resulting from
(r = 0), the computer has been instructed to consider all values of r
less than (1.2 x 10_77) to be equal to (1.2 x 10"77) rather than

zero (in the ICL 2900 series, all values in the range, - 1.2 x 10_77

1 0—77

to + 1.2 X approximately, are held as =zero (41)). This

involves an error in the order of (1.2 x 10_77) which 1is negligible
by all practical measures. By doing so, the maximum time simulated by

the computer is :

t :-H-Z+t.
max U min
- = 1
(for U = 360 Trucks/hr., tmax 1 hr)

3.5.3 Truck Gross Weight (GW)

Truncated bimodal composite normal and normal distributions have been
suggested by researchers to represent the gross weight (37, 38, 39,
42). In this study a normal distribution with the truncation of the
upper and lower tails has been adopted. The following distribution
(shown 1in Figure 3.4) represents the probability density function of

the gross weight for each truck type:

(w - M)?
T - 257
f(w) = —— ¢ | WL £w < WU eese (3.3)
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Figure (3.4) - The truncated normal probability
. distribution curve of trucks'
gross weights (w), compared to
the histogram values generated
by the rejection method

Z 0 represents histogram generated
values

10

probability distribution of w

0 l i L 1

128 200 30 100

gross weight (w)



where Tw is a truncation factor introduced to make the total area

under the truncated curve = 1.0 .

Because F(w) cannot be expressed explicitly as a function of w and
since w varies within a finite range, then the rejection method has
been used to generate the random variate w. If m is the scale

factor required to normalize the range of f(w) (Section 3.4.2), then:

but f(w) max =

——
then m = fi%%&ﬂ;_
W
2 2
and mflw) = e~ (w-M)7"/2 3

In Figure (3.4), the curve is for the truncated normal equation
representing the gross weight of Truck type (3S-2), while the plotted
circles represent a histogram obtained by analysing truck weights
(5970 values) generated by the rejection method. As can be seen, the
agreement seems to be very good. Values of the truncation factors
for the truck types are not needed in the simulation, even so, their
values are given here in Table (3.3). These values have been

calculated from Eq. (3.3), using the statistics tables for the normal

curve (43).

3.5.4 Dynamic Factor

When a truck crosses a simply supported bridge, the maximum
deflection is increased by about 12 percent above the static value,
due to the dynamic effects. When two closely spaced similar trucks
cross the bridge, the maximum response is 70 percent larger than the
static response due to one of the vehicles alone (40). The dynamic
factors depend on vehicle speed and the dynamic characteristics of

both bridge and vehicle (40Q). For design purposes, an impact factor
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is used to allow for the dynamic effects of the traffic loading. In

Japan, the impact fraction I of the live load is given by:

20

I = 5o

where L i1s the span length (42).

In this study, impact factor is determined by the following equation

used in the U.S.A.:

50
L+ 125

where I is the impact fraction and L is the length in feet. The

impact value is limited (44) to a maximum value of 30 percent.



Truck Type Tf (for the gross weight distribution)

2D 1.0716
3D 1.0116
25-1 1.0153
25-2 1.0087
38-2 1.0233

Table 3.3 Truncation Factors for The Gross Weight Distribution



3.5.5 Truck Type Selection

From Table (3.1), trucks type (2D) represent 21 percent of the total

truck rural traffic. This means that :

the probability of getting trucks longer than 2D = 0.79

similarly :

the probability of getting trucks longer than 3D = 0.73

the probability of getting trucks longer than 2S-1 = 0.66

the probability of getting trucks longer than 2S-2 = 0.41
= 0.00

the probability of getting trucks longer than 3S-2

If uniformly distributed random numbers are generated such that
(0O ¢r <1), then the probability of getting ry <r sr, is
simply equal to (r2 - PT)'

By this, it is possible to make the following assumption (for rural

traffic):

N
N

0.41 then truck type is 3S-2
0.66 then truck type is 2S-2
0.73 then truck type is 2S-1
0.79 then truck type is 3D
1.00 then truck type is 2D

if 0.00
if 0.41 <
if 0.66 <
if 0.73 <
if 0.79 <

3 s 3 s s
ININ N

A

3.6 Simulation of The Moment Spectrum

As mentioned in Chapter (1), the simulated bridge has been assumed to
be a single lane simply supported bridge. The span has been varied
to investigate 1its effect on the fatigue life of the bridge (7).
Fatigue 1ife has been Investigated for bridges with five different
span lengths (L), subjected to three different rates of repeated
loading (U) resulting from traffic passing across the bridge and
definedv in terms of Trucks per hour. The simulated truck models
generated by the Monte Carlo method have been assumed repeating

itself every week (40).



As shown 1in the preceding sectlons, the types of trucks, their
weights and arrival 'times have been simulated by the Monte Carlo
simulation method. This method requires the generation of random
numbers and in this case, these have been obtained using a routine,
G@5CBF (I), which exists in the University ICL computer. When running
this routine, the set of random numbers produced by it depends upon
specifying a positive integer I. The set produced lies between
{0.0) and (1.0) and each set is repeatable by specifying the same

integer I, when the program is run.

For our purposes four different sets of random numbers have been
required. The first specifies the types of trucks. The second
specifies the arrival times, whilst the third and fourth are used to
provide random values of the gross weights of the trucks. The need

for two sets of numbers is explained in Section (3.4.2).

In order to produce entirely unrelated sets of random numbers, the
routine itself has been used to generate the specifying integers I.
This has been done by starting with (I = 0) and taking the first four
random numbers produced, as the integers for the four working sets
(infact multiplied by 1000 and rounded). These four I values have
been kept constant regardless of the U value. This makes each
single set of the four working sets for a specific value of the
loading frequency (U), a part of a larger set for the U value
exceeding it. This similarity is believed to be acceptable because
it does not affect the randomness of the trucks data for a specific
value of U, while on the other hand, it helps to reduce the number
of maximum design moments for a specific value of the span (L), as

will be shown later.

3.6.1 Time Interval (Dt)

A computer program has been written, which generates a truck model
for one week and passes it across the bridge to simulate the moment
spectrum for one week. The program examines the bridge at a time
interval Dt. If the bridge is loaded, then it calculates the mid

span moment and the maximum shears. If the bridge is found unloaded,

the program moves the trucks stream and places the front axle of the
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next truck on the bridge support. Now, the program starts again to

examine the bridge every Dt and so on. A flow chart is given in

Figure (3.5).

In order to include as many events as possible, Dt should be taken
as small as possible. On the other hand, a very small value of Dt
would vresult in very long computer runs. It is important to find
a suitable value of Dt which gives a reasonably accurate moment
spectrum without wasting computer time. To choose such value,
several trial runs have been made using different values of Dt.
Some of the results are given in Tables (3.4), (3.5) and (3.6). 1In
these tables, the moment (M) and shear (V) values represent the total

maximum live load moment and shear (including impact), on the bridge.

Dt1 values in Table (3.6) represent the time required for each
single axle to move a distance of L/48. Since trucks' speed has
been assumed previously to be 50 km/hr (13.889 m/sec), then Dt1

in seconds is:

L 1 -
Dt1 = 75 X {3889 - 0.0015 x L

where L is the span of the bridge in metres. With such a value of
Dt, the duration of the longest computer run is just under the
maximum available to the author in the University computer centre. If
we establish that this value of Dt gives a reasonably accurate

moment spectrum, then we may adopt it as the required Dt value.

Separate runs have been made using a decreased value of (Dt = 0.001 x L)
to examine the effect of such decrease on the values of the
maximum live load moment and shear, and the number of peaks, Np, for

a simulation period of one week (Tables 3.6 and 3.7).

From Table (3.6), it seems that the shear values are more sensitive
to suchb decrease than the moment values. This is because of the
nature of their influence lines (Figure 3.6). For example if two
equal 1loads pass across the bridge, there is an infinite number of
positions (from X = L/2 - S to X = L/2), which give the same value of

the maximum moment, while maximum shears can be obtained by two



Input data
2

i
‘ Generate 4 sets of random numbers !
¥

Simulate truck arrival times. Adjust the
arrival time of the last truck to ensure
that there is no truck on the bridge at the
end of the simulation time

T
LﬁSimulate gross weights of the trucks

L

| K=0 |

J
%

| K=K+1 |

Y.
Put the front axle of truck K on the bridge
support

i

¥
20 > Examine the bridge after Dt seconds |

H
L

1

No

i Any truck on the bridge?

’Yes

AYA

Calculate mid span moment and shear values at
the two supports

v
Compare shear values with the maximum values
stored so far. Replace if necessary

!

s

No

Does the moment value represent a maximum or

a minimum?

Yes

Y

Store the moment value. If maximum, compare
it with the absolute maximum stored so far.
Replace if necessary

Figure 3.5 ~ Flow chart of the computer program
for the moment spectrum simulation

Yes
Output results

End

Simulation time exceeded? +——>——No —
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0.25L

l 23 l

Influence line - mid span moment

1.00‘“4

Influence line - shear at L.H. support

1.00

Influence line - shear at R.H. support

Figure (3.6) - Moment and shear influence lines
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positions only. Bearing in mind that the moment values and the
spectrum are the govefning factors in this study and since there are
no appreciable differences between the values resulting from

Dt = 0.001 x L, and those resulting from Dt = 0.0015 x L, as can

be seen from Tables (3.6) and (3.7), then it is believed that the

last Dt value is proper and adequate for the purpose of this study.

Moreover, other separate runs have been made to define the type,
weight, location and sequence of the truck(s) causing the maximum
live load moment (M) and shear (V), for each combination of L and

u. This has been done by storing, at every Dt, those particulars
related to the truck(s) causing the maximum live load moment. From
this information, given in Figures (3.7), (3.8) and (3.9), the real
maximum live load moment and shear in one week, can be calculated
from their influence lines. In Table (3.9) the real values of M
are compared with the values obtained by specifying Dt = 0.0015 x L.
The fact that the deviations between these two values are very

small, gives more justification for adopting Dt = 0.0015 x L.
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Span Loading Dt1 M1 Dt2 M2 MZ/M1

frequency

(m) (T/hr.) (sec.)  (KN.M) (sec.)  (KN.M)

15.0 360 0.800 1170.378 0.100 1170.378 1.0000
15.0 90 0.105 1122.506 0.100 1135.472 1.0116
15.0 90 0.100 1135.472 0.095 1114.985  0.9820
15.0 90 0.095 1114.985 0.090 1126.547 1.0104
15.0 90 0.090 1126.547 0.085 1117.883 0.9923
15.0 90 0.085 1117.883 0.080 1135.472  1.0157
15.0 90 0.080 1135.472 0.070 1122.506 0.9886
27.5 90 0.150 2947.274 0.100 2938.528  0.,9970

Table (3.4)

The effect of the time interval (Dt)
on the maximum live load moment (M)

- M1 and M2 are the moment values

corresponding to Dt1 and Dt2 respectively



Span Loading Dt1 M1 Dt2 M2 M2/M1
frequency

(m) (T/hr.) {sec.) (KN.M) (sec.) (KN.M)

15.0 138 + 0.105  1122.506 0.02250 1137.964 1.0138

15.0 360 0.105  1195.116 0.02250 1200.302  1.0043
all

17.5 A es  0-125  1447.969 0.02625 1473.371 1.0175

20.0 all 0.140  1802.223 0.03000 1845.783  1.0042
values
all

25.0 B s 0-175  2585.956 0.03750 2596.718  1.0042
all

27.5 B o 0.190  2964.165 0.04125 2955.619  0.9971

Table (3.5)

The effect of the time interval (Dt)
on the maximum live load moment (M)

- M1 and M2 are the moment values

corresponding to Dt1 and Dt2 respectively
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Span ?oading Dt1 M1 V1 Dt2 M2 V2 M2/M1 V2/V1
requency
{m) {T/hr.) (sec.) (KN.M) (KN) {sec.) (KN.M) (KN)
15.0 90+ 0.02250 1137.964 370.526 0.01500 1139.934 374.989 1.0017 1.0120
180
15.0 360 0.02250 1200.302 370.526 0.01500 1204.955 374,989 1.0039 1.0120
17.5 all 0.02625 1473.371 407.183 0.01750 1467.637 402.765 0.9961 0.9891
values
20.0 all 0.03000 1845.783 426 .847 0.02000 1854.537 431.224 1.0047 1.0103
values
25.0 all 0.03750 2596.718 457.251 0.02500 2590.464 461.556 0.9976 1.0094
‘values
27.5 all 0.04125 2955.619 465.041 0.02750 2955.619 469.314 1.0000 1.0092
values
Table (3.6) The effect of the time interval (Dt) on
the maximum live load moment (M) and
shear (V)
- (M1, V1) and (Mz, VZ) are the moment and shear values

corresponding to Dt1 and Dt2 respectively
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Span Loading Dt N Dt N N ./N
frequency 1 P 2 p2 pT" "p2
(m) (T/hr.) (sec.) (sec.)
15.0 360 0.02250 92338 0.01500 92356 1.00019
15.0 180 0.02250 48778 0.01500 48786 1.00016
15.0 90 0.02250 25227 0.01500 25229 1.00008
17.5 360 0.02625 53581 0.01750 53664 1.00155
17.5 180 0.02625 28258 0.01750 28287 1.00103
17.5 90 0.02625 14583 0.01750 14589 1.00041
20.0 360 0.03000 54018 0.02000 54074 1.00104
20.0 180 0.03000 28360 0.02000 28372 1.00042
20.0 90 0.03000 14610 0.02000 14613 1.00021
25.0 360 0.03750 53611 0.02500 53718 1.00200
25.0 180 0.03750 28275 0.02500 28298 1.00081
25.0 90 0.03750 14584 0.02500 14588 1.00027
27.5 360 0.04125 53636 0.02750 53744 1.00201
27.5 180 0.04125 28279 0.02750 28302 1.00081
27.5 90 0.04125 14597 0.02750 14600 1.00021
Table (3.7) The effect of the time interval (Dt) on the number of peak
points (Np) of the moment spectrum in one week
- Np1 and sz correspond to Dt1 and Dt2
Loading Total number of
frequency simulated trucks
(T/hr.)
360 53398
180 28209
90 14578
Table (3.8) The total number of trucks in one week

Simulation time =

1 week



Span Loading M v M v M,/M V,/V
frequency 1 1 2 2 2" 2" 1
(m) (T/hr.) (KN.M) (KN) (KN.M) (KN)
15.0 90 + 1137.964 370.526 1142.286 377.532 1.0038 1.0189
180
15.0 360 1200.302 370.526 1205.373 377.532 1.0042 1.0189
17.5 all 1473.371 407.183 1474.356 411.233 1.0007 1.0099
values
20.0 all 1845.783 426.847 1854.625 435,282 1.0048 1.0198
values
25.0 all 2596.718 457,251 2598.948 466.469 1.0009 1.0202
values
27.5 all 2955.619 465.041 2964.238 476.855 1.0029 1.0254
values
Table (3.9) Real maximum moment and shear values in one week
compared to the values associated with Dt = 0.0015 x L

- M1 and V1 are the maximum 1live

load moment and

including impact, associated with Dt = 0.0015 x L

shear,

- M2 and V2 are the real maximum live load moment and shear

in one week, including impact
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Notes Regarding The Following Figures (3.7, 3.8 and 3.9)

1. Direction of motion is from the left to the right.

2. K represents the sequence of each truck in the truck stream

generated for one week.

3. X 1is the distance between the front wheel and the left hand
support. X1 defines the position which gives the maximum

simulated live load moment M1 or shear VT’ with Dt = 0.0015 x L.

X2 defines the position which gives the real maximum moment

(MZ) or shear (VZ)’ in one week.

4, G.W. is the gross weight of the truck.

. - 50
5. I.F. represents the impact factor = 125 1 3.287 % L
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4 P | L I |
| I T
L = 15.0 m L = 15.0 m
§) = 90+180 T/hr. §) = 90+180 T/hr.
Truck type = 33-2 Truck type = 38-2
G.W. = 499,30 KN G.W. = 499.30 KN
K = 10113 K = 10113
I.F. = 0.287 I.F. = 0.287
Dt = 0.02250 sec. Dt = 0.02250 sec.
X1 = 10.938 m X1 = 12.813 m
M1 = 1137.964 KN.M V1 = 370.526 KN
X2 = 11.005 m = 12.649 m
= 1142.286 KN.M = 377.532 KN
I | T
L = 15.0 m L = 15.0 m
U = 360 T/hr. 1) = 360 T/hr.
Truck type = 3D Truck type = 35-2
G.W. = 309.49 KN G.W. = 499.30 KN
K = 28281 K = 10113
I.F. = 0.287 I.F. = 0.287
Dt = 0.02250 sec. Dt = 0.02250 sec.
X1 = 11.563 m X1 = 12.813 m
M1 = 1200.302 KN.M V1 z 370.526 KN
X2 = 11.462 m X2 = 12.649 m
= 1205.373 KN.M V2 = 377.532 KN

Figure (3.7)

Details of the maximum moment and shear for L = 15.0 m



L = 17.5m L = 17.5 m
U = all values 8] = all values
Truck type = 38-2 Truck type = 3S-2
G.W. = 499.30 KN G.W. = 499.30 KN
K = 10113 K = 10113
I.F. = 0.274 I.F. = 0.274
Dt = 0.02625 sec. Dt = 0.02625 sec.
X1 = 13.490 m X1 = 12.7617 m
M1 = 1473.371 KN.M V1 = 407.183 KN
X2 = 13.474 m X2 = 12.649 m
M2 = 1474.356 KN.M V2 = 411,233 KN
‘ » ! L D] B
| |

L = 20.0 m L = 20.0 m
U = all values U = all values
Truck type = 3S-2 Truck type = 3S-2
G.W. = 499,30 KN G.W. = 499,30 KN
K = 10113 K = 10113
I.F. = 0.262 I.F. = 0.262
Dt = 0.03000 sec. Dt = 0.03000 sec.
X1 = 14.583 m X1 = 12.917 m
M1 = 1845.783 KN.M V1 = 426.847 KN
X2 = 14.724 m = 12.649 m

= 1854.625 KN.M = 435.282 KN
Figure (3.8) Details of the maximum moment and shear for

L =

17.5 and 20.0 m
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L = 25.0 m L = 25.0 m
U = all values U = all values
Truck type = 382 Truck type = 35-2
G.W. = 499,30 KN G.W. = 499,30 KN
K = 10113 K = 10113
I.F. = 0.242 I.F. = 0.242
Dt = 0.03750 sec. Dt = 0.03750 sec.
X1 = 17.188 m X, = 13.021 m
M1 = 2596.718 KN.M v, = 457.251 KN
X2 = 17.224 m X2 = 12.649 m

= 2598.948 KN.M V2 = 466.469 KN

I |

L = 27.5 m L = 27.5 m
U = all values U = all values
Truck type = 35-2 Truck type = 35-2.
G.W. = 499.30 KN G.W. = 499,30 KN
K = 10113 K = 10113
I.F. = 0.232 I.F. = 0.232
Dt = 0.04125 sec. Dt = 0.04125 sec.
X1 = 18.333 m Xy = 13.177T m
M1 = 2955.619 KN.M V1 = 465.041 KN
X2 = 18.474 m X5 = 12.649 m
M = 2964.238 KN.M V2 = 476.855 KN
Figure (3.9) Details of the maximum moment and shear for

L =

25.0 and 27.5 m
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3.7 Maximum Probable Moment

As mentioned earlier, the truck model has been assumed repeating
itself every week. This assumption is necessary to cope with the
available computer resources. Consequently each design moment is the
maximum moment, taken from a moment spectrum simulated for one week.
This means that the design moment is not necessarily equal to the
maximum probable moment which might occur during the bridge life. For
sections with highly stressed reinforcement, there 1is not enough
margin to cater for moments larger than the design moment. This
implies that we have to check the behaviour of these sections, if
subjected to moments higher than the design moment. To do so, we
have to estimate for each span length, the amount of the maximum
moment which might result from the worst combination of the heaviest

trucks shown in Figure (3.1). Table (3.10) shows the details of

these combinations.

It should be made clear that checking the effect of the maximum
probable moments on some sections, does not reflect the belief in
their occurance during the fatigue l1life of the bridge. On the
contrary, it is believed, in fact, that the probability of getting
such high moment values is quite low for the shorter spans and very
low for the longer spans. This is because for the longer spans, this
high moment is caused by the presence of several trucks, each one of
which has the maximum gross weight of its type, and all are spaced by
the minimum amount of 7.30 m. The joint probability of all these

events happening at the same time is very low, indeed.
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Notes Regarding Table (3.10)
C = the serial number of each truck combination.

N the sequence number of each truck on the bridge. NT =1,

represents the nearest truck to the downstream support.

X the distance between the front axle and the downstream

support.
G.W. = the gross weight of the truck.

M the mid span live load moment caused by the truck, including

impact.

— Truck details are given in Figure (3.1).

) 50
- Impact factor = me——F 70T

-~ The minimum distance from the rear axle of a truck to the front
axle of the truck following it, has been assumed to be 7.30 m, as

mentioned in Section (3.5.2).



Span NT Truck X G.W.

(m) type (m) (KN) (KN.M)

15.0 1 3D 11.462 355.84 1385.893

17.5 1 38-2 13.47T4 533.76 1576.111
1 338=-2 0.231 533.76 15.708
2 3D 12.712 355.84 1655.230

20.0 1 382 14.724 533.76 1982.625
1 38-2 1.481 533.76 99.761
2 3D 13.962 355.84 1920.308

25.0 1 38-2 17.224 533.76 2778.319
2 2D 29.096 222 .40 49,305
1 352 3.981 533.76 295.468
2 3D 16.462 355.84 2442 .317
3 3D 28.943 355.84 104.163
1 35-2 3.981 533.76 295.468
2 3D 16.462 355.84 2442 ,317
3 2D 28.334 222.40 128.236
1 25-1 3.981 400.32 245,268
2 3D 16.462 355.84 2442 ,.317
3 3D 28.943 355.84 104.163
1 25-1 3.981 400.32 245.268
2 3D 16.462 355.84 2442.317
3 2D 28.334 222.40 128.236

Table (3.10a)

The worst loading combinations for 15.0, 17.5, 20.0 and 25.0 m spans
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Span CN N Truck X G.W. M
(m) type (m) (KN) (KN.M)
27.5 1 1 38-2 18.474 533.76 3168.820
2D 30.346 222.40 177.344
2 1 35-2 18.474 533.76 3168.820
3D 30.955 355.84 183.550
3 1 3S-2 5.231 533.76 490.827
2 3D 17.712 355.84 2696.649
3 3D 30.193 355.84 308.822
4 1 2S-1 5.231 400.32 428.241
2 3D 17.712 355.84 2696.649
3 3D 30.193 355.84 308.822
5 1 3D 5.231 355.84 395.076
2 3D 17.712 355.84 2696.649
3 3D 30.193 355.84 308.822
6 1 38-2 5.231 533.76 490.827
2 3D 17.712 355.84 2696.649
3 2h 29.584 222.40 255.639
7 1 25-1 5.231 400,32 428,241
2 3D 17.712 355.84 2696.649
3 2D 29.584 222.40 255.639
8 1 3D 5.231 355.84 395.076
2 3D 17.712 355.84 2696.649
3 2D 29.584 222.40 255.639

Table (3.10 b)

The worst loading combinations for 27.5 m span
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CHAPTER 4

DESIGN OF THE BRIDGE BEAMS

As mentioned in Chapter (1), the aim of this study is to find a
relationship, between the fatigue life in years and the section
modulus, for a set of specified bridge beams under loads due to rural

traffic. The section modulus Z is defined as:

mW|QZ

where MA is the total applied moment and fs is the stress in the
reinforcement resulting from MA . For design purposes, the stress fs
can be estimated using the equations relevant to the adopted design
method, for the reinforced concrete beams, as is shown in the

following sections.

4.1 The Modular-Ratio Theory

In the modular-ratio (i.e. elastic-stress) theory, the forces on

a structure are calculated from the real valdes of the loads, but the
allowable stresses in the reinforcement and the concrete are limited
to chosen fractions of their actual strengths, in order to give an
adequate factor of safety. To ensure that failure (if it occurs)
would be due to the reinforcement yielding, which gives advance
warning of failure rather than the explosive concrete crushing,

a greater safety factor is used to calculate the allowable concrete
stress than that used for the allowable stress in the reinforcement.
In this method the strain distribution across the beam section is
assumed to be linear and the concrete strength in tension is wusually

neglected. Also, steel and concrete are assumed to behave perfectly

elastically (46).
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From the strain diagram in Figure (4.1), it is clear that:

e e

C
;{"'= E—_—}-{- cose (4.1)

Since steel and concrete are both assumed to behave elastically then:

e. = f'c/Ec
ey = fs/E
My = £ A (d-3)
C = %fc bx

where EC and Es are the moduli of elasticity for concrete and
steel respectively, MA is the moment and C is the total

compressive force. Substituting . and ey into Equation (4.1)

gives:
X
f‘c - REfs d-x
E
c
where RE = E;

From the equality between the tensile and the compressive forces, we

get:
- 1 -
C = sz bx = As fs
2Asfs X
then fo=—ox = Befs 3

o
and Rpbx”™ + ZASX - 2Asd =0 » vee. (4.2)
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Equation (4.2) implies that the depth of the neutral axis (x) does not

depend on the loading stage (i.e. the amount of the external applied

moment). Since:

__A _ X
Z = = A (d—3) eees (4.3)

[

then Z also does not depend on the loading stage. This results
directly from the assumption that both the steel and the concrete
behave perfectly elastically. This assumption is not acceptable for
high stresses (46) and by using this method, it 1s impossible to
estimate accurately the real safety factor (i.e. the ratio between
collapse load and service load). To overcome this and other

shortcomings, the limit state theory can be used instead.

4,2 The Limit-State Theory

Structures must be designed to sustain safely the loads and
deformations which may occur during construction and in use.
A structure as a whole or as a part is unfit for use when it reaches

a limit state. There are two categories of limit states:

1. The ultimate limit state, which is reached when the structure as

a whole or as a part collapses.

2. The serviceability limit states resulting from excessive

deflection, cracking, vibration, etc.

In design, the ultimate limit state and the serviceability limit
states of excessive deflection and cracking under service loads are
normally considered. The structure is usually designed for the

ultimate limit state and checked for the serviceability limit states.

Under normal loading, the probability of reaching the ultimate limit
state is made very low, say 10—6, while a much higher probability of

reaching a serviceability limit state ‘is acceptable (47).

Limit state design is based on the application of statistics to the

variations in the loads and the material strengths (47).
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4.2.1 Characteristic Strengths and lLoads

The compressive strength of concrete specimens, made as identically as
possible, may have {47) a coefficient of variation of as high as

+ 10 percent. Therefore, it is not practicable to specify that the
concrete or the steel should have a particular precise strength. The
characteristic strength (fk) is that value of the compressive
strength of concrete or the yield stress of reinforcement, below
which not more than a specified percentage (usually 5 percent) of the
test results should fall. Since the strengths of concrete and steel

are currently assumed to be normally distributed, then:

fk = fm - 1.64 8

where fm is the mean strength, and S is the standard deviation (47).

The characteristic load is that value which has an accepted
probability of not being exceeded during the 1life of the structure.
Because of a lack of statistical data, it is not possible at present
to define 1loads 1in truly statistical terms, and currently the
characteristic loads are simply loads accepted by widespread

agreement (47).

4.2.2 Partial Safety Factors

The load used for each limit state is called the design load for that

limit state. The design load is given as:
design load = Gf X characteristic load

Where Gf is the partial safety factor for loads. This factor 1is
introduced to cover the probable loading variations in design and
construction. It depends on the nature of the 1imit state under

consideration.
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Similarly design strength is given as:

design strength = 751— x characteristic strength
m

where Gm is the partial safety factor for strength appropriate to

the material and the limit state (47).

4,3 Beam Section Design for Moment

In this study, the analysis is somewhat different from the classical
beam design problem in that the design stress in the reinforcing
steel is a parameter which can be varied to affect the fatigue life
of the beam. The actual design procedure suggested and used, is
based on the limit state theory and the requirements, of

BS 5400 : Part 4 ¢ 1984 and CP 110 : Part 1 ¢ 1972, and is as follows.

We start by choosing an initial design steel stress (fsi) with

a chosen diameter of the reinforcing bars, and a chosen combination
of beam span (L) and loading frequency (U). The maximum 1live load
moment, 1including impact, 1leads to the basic section design. We
note, in passing, that in order to obtain a low dead weight beam, the

narrowest and deepest rectangular beam cross section is chosen.

The basic section has to be modified to produce a realistic actual
section in which acceptable dimensions (rounded to say 50 mm) are used

and the appropriate number of reinforcing bars is chosen.

The dead weight and live load stresses are then computed for the
actual beam section, and it is these values which are used for the

analytical study.

4.3.1 Design Assumptions

1 - Each bridge is assumed to be a single lane carriageway, the slab
of which 1is supported by two beams. "The dead load of the slab,

finishes, etc., is estimated to be (25 KN/M) per beam.
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The live load moment caused by the traffic has been calculated from
a stream of truck axles passing centrally on the slab across the
bridge and hence multiplied by (%) to give the moment supported by

each beam.

2 - Material's strength: The following values have been chosen in

accordance with common practice:

425 N/mm®  (23)

)
I

50 N/mm>  (23)

h
1

cu

3 - Partial safety factors have been chosen as follows:

Gm (material factor) = 1.3 for concrete (49)
= 1.0 for steel (49)
Gf (load factor) = 1.0 for dead load (49)
= 1.0 for live load (49)

4 - The beam is rectangular and reinforced in tension only. For such
a beam, the depth of the concrete in compression is limited by
a reasonable percentage of reinforcement to not more than half the

effective depth of the beam (48).

5 - The distribution of the strain across any section is assumed to be
linear, i.e. plain sections before bending remain plane after bending,
and the strain at any point is proportional to its distance from the

neutral axis (46).

6 - The stress - strain relationships of the reinforcing steel and of

the concrete are as shown in Figures (4.2) and (4.3) (BS 5400).

7 - The maximum strain in the concrete is (0.0035) and the tensile

strength of the concrete is ignored (46).

8 - The reinforcement cover has been chosen to be 20 mm which

corresponds to conditions of moderate exposure (46).
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4.3.2 Dimensions of The Beam Section

In order to calculate the dimensions of the beam, we shall use the

following parameters:

w = unit weight of the concrete = 24 KN/M3 .

M = the maximum mid span moment caused by the live load,

including impact.

MdS = mid span moment caused by the bridge dead load other

than the beam self weight.

b = the width of the beam.

d = the effective depth of the beam.

h = the height of the beamn.

d' = the lever arm of the beam.

x = the depth of the neutral axis.

C = the resultant compressive force in the concrete.

j' = (d -~ av)/x

h' = the distance from the tension face to the centroid

of the reinforcement = h ~ d

Then:

2
1
M o+ M. 4 wb(d + h') L

L ds 5 = C.d' ceeo (4.4)

To solve Equation (4.4) for d, both C and d' have to be represented
in terms of b and d only. To minimize the beam weight, b, the width,
should be taken as small as possible, which leads to d, the depth,
being as large as possible. Since BS 5400 : part 4 - clause 5.3.1.3
specifies that the width to span ratio is limited, to avoid 1lateral

instability, so that :

L
b2~6—o'



Thus, the initial value chosen for b is defined by the above
requirement. h' is assumed to be 100 mm as an initial value,
which has to be checked after calculating reinforcement area and

finding the required number of bars.

After calculating d from Equation (4.4), the following two criteria
have to be checked and if necessary, d or / and b values have

to be revised accordingly :

250 b2

1 - L < 60b or — whichever is the lesser.

(BS 5400 : Part 4 - clause 5.3.1.3)

2 - For a reasonably proportional beam, we will restrict the beam

depth to the range:
L/170 2 h 2= L/17

The variation of the compressive force (C) and the lever arm (d'),
with the beam width (b) and the effective depth (d), depends on the
amount of the concrete strain (ec) and the corresponding strain in
the steel (es). e. and e, are related (as can be seen from Figure

4.4)

where the neutral axis depth ratio; R = x/d ¢ %

Hence :

-1 21 eeee (4.5)
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Case (1) steel strain larger than allowable maximum concrete

strain.

Equation (4.5) indicates that if the steel stress value (fs) is not
less than a value fsc which corresponds to a strain ey = 0.0035,
then the outer fibre concrete strain (ec) can be assumed to attain
its maximum value of (0.0035) and the neutral axis depth ratio (R)

is defined by Equation (4.5).

Consequently for case (1) the following relations are valid :

eS 2 0.0035
ec = 0.0035
e
X = Rd Sl d
st %
£ _ 2 f‘c:u
c - 3 G
m
k = 0 ._o
- e. ~ 0.0035

where e, is the initial plastic strain in the concrete.

The compressive force (C) and the lever arm (d') can be calculated by
making use of the geometric properties (46) of the parabola (as shown

in Figure 4.5):

C = f (x-kob+2f kbx
(o] 3 C

Hence :

and :
{x-kx) 2 5
Cj'x=f ————b+ = fc (x -3 kx) kbx
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Figure (4.5) - Geometric properties of the parabola



Substituting C and simplifying leads to the factor, for the depth of

the centre of force on the concrete:

2
j' —k -4k+6 s e 00 (4-7)

4(3 - k)

Since j' is defined to be :

then the lever arm is:
d' -’-'d—,j'X LI A (4.8)

For case (1), if the design value of the stress fsi is known, then
the steel strain (es) can be found. Since ey is determined, then
x, C and d' can be represented in terms of b and d only, and

Equation (4.4) can be solved for d.

Cases (2) and (3); steel strain less than the maximum allowable

concrete strain.

Ir fsi is less than fsc , Where fsc is the stress corresponding

to e = 0.0035, then Equation (4.5)

s 1

«ﬁ—

S
’E_ 1 Z 1 L (4-5)

c
indicates that e, cannot be assumed to attain its maximum value
of (0.0035), because such an assumption leads to a value of R more
than (). Accordingly, R is assumed to have its limiting value of
a half, R = 3 , and hence, e, =e_ -

C

From Figure (4.3), it is clear that the concrete stress (fc) is
constant if the strain e. is greater than the initial minimum plastic
strain (eo). Case (2) deals with e. values greater than e  , while

case {(3) deals with e, values less than e,
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Case (2)
For case (2) the following relations are valid :

e. = & where e, s e, < 0.0035
Fo= 2 f‘cu
c~ 3 G
m
o
k = —
e
c
1
X=—2-d

since C and d' are defined by Equations (4.6) and (4.8), then d,

the effective depth, can be calculated as in case (1).

Case (3)
For this case, eC is less than e, - This means that the concrete

stress value (fc) is not constant, and fC has to be defined by the

parabolic relationship :

f
cu 4125
c 5500 ec ( Gm - S eC)

£

If we imagine that the beam strain diagram (Figure 4.6) is extended,
above the beam top surface, to the point where the concrete strain
reaches the initial plastic value, then from the properties of

a parabola (Figure 4.5), we conclude that the compressive force is :

3-r
C-—‘j‘(‘é:‘;} fc Rbd s s e (4-9)
ec
where r = 54 < 1.0 and the lever arm is:
o}
8-3r
L - —
d' = (1-R)d + Rd 3-r)

hence: d' = (1 -%%f%) d ceu. (4.10)
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Knowing, for this case, that R = 1/2, Equations (4.9) and (4.10) can
be substituted into Equation (4.4), which then can be solved to

determine the value of the depth d.

4.3.3 Reinforcement Area

After determining b and h, their values are revised (if necessary)
and rounded to 50 mm. The next step is to determine the actual
value of R which results from the real rounded dimensions of the

section. If R is known, AS can be calculated as follows:

Case (R1)
First we assume that, ec > e, s then as shown earlier:

e
_ 3-k _ o
C = fc Rd -5 b y k = =
c
F =2 EEE
¢~ 3 G
m
1
e, = e, Cﬁ - 1)
K2 - 4k + 6
- - vy = - -
d'=d-j'x=d (1 -R i3 - &) )
since:
MT = ML + MD = (Cd'
then:
f 2
2 cu 3-k K~ - 4k + 6
M, == =— Rd = - N
T =3 Gm d 3 b d {1 R i3 &) ) (4.11)
e, e
However, since : k = . and ec = 7 S
c — =1
R
eo 1
then: k = = (ﬁ-- 1) oo (4.12)



Now let us introduce the parameters :

e
0 - 2
q —'E; and g = 18MTGm/fcubd

Combining Equations (4.11) and (4.12) gives :
g + 4 q+q2 = R(12 + 8q + 2q2) - §° (6 + 4 + q2) vees (4.13)

For a specific value of the initial design steel stress (fsi), q is
readily calculated and Equation (4.13) can be solved directly for R.
Thus it will be expected to be not more than (1/2). Knowing R and
ey » the concrete strain (ec) can be determined and compared with the

initial plastic value (eo).

Case (R2)
If we find from the above that, e. < e, that is we are on the

parabolic part of the stress - strain curve of the concrete, then as

shown earlier the stress is given by :

f
cu 4125
f'c = 5500 e ( g - 5 ec)
m
. so that the compressive force will be :
_ 3-r e
C = 3557 f. Rbd where r=o- < 1.0

Also, 1lever arm is given by :

R(4~r)

Z(3-r) ) ¢

d' = (1 -
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Since the concrete strain is less than the initial plastic value by

the factor r :

then we can express the steel strain as :

1 - — -
eg=e  (g=-1) = re (-1

It follows therefore that the neutral axis depth ratio is given by :

R=—2=5 veee (L.18)
e

S
— + I
e

o]

and the maximum stress in the concrete is given by :

f
cu 4125 re )

fC:BSOO r’eo(\/-G;T— > o

and the moment is : MT = Cd!

Substituting the compressive force (C) and the lever arm (d'), gives

the following equation for the moment MT :

£
MT=5500r'eo(——C£—M25 e ) == Rbd (1 -

G_ 7 U %! 300 T3y 4 - (4715

Now let us introduce the parameters :

q_fi nd g_12MT
1 e ! 5500 e, bd2

by
_ [ cu 4125
a = Gm and p = - eo



Combining Equations (4.14) and (4.15) gives :

2 2 3
r - 2q.r” -~ r )

g1(2q$ + 4q1r + 2F2 - q

12aq1r2 + 8ar'3 - 4aq1r3 - 12pq1r3

—-3ar4 - 8pr'4 + 4pq1r4 + 3pr5 veee (4.16)

Equation (4.16) can be solved now for r, which is the ratio of the
concrete  strain (eC) to the initial plastic value (r = ec/eo), by
the Newton-Raphson Method (starting with r = 1/2 ). Knowing r, the

neutral axis depth ratio (R) can be determined from Equation (4.14).

A1l the parameters required to calculate the compressive force (C)
can now be calculated using the appropriate equations for case R1 or

case R2. The required reinforcement area, A can be obtained

sr ?

simply from the compressive force (C) and the initial design stress

in the reinforcement (f_.,) : A__ = C/f_. . From the required
si sr si

reinforcement area (Asr) the correct number of bars can be calculated

and the actual reinforcement area, Asp , can be found.

4.3.4 Determination of The Actual Stresses in The Reinforcing Bars

The actual stresses which correspond to the real dimensions and

reinforcement area are calculated as follows.

Case (S1), corresponding to case (R1)

First, we assume that the maximum concrete strain (ec) is not less

than the initial plastic value (eo) :

In this case Equation (4.13) is applicable :

2

g+ 4q +q° = R(12 + 89 + 29°) = R® (6 + 4q + q°)  .v..(4.13)

where the parameters g and g have been defined previocusly by:

i EQ o i 18 MTGm
q=3 g=—"">

S fcu bd
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By replacing eo/eS by q in Equation (4.12), we get :

o 1 1
k:—e‘-s‘(§—1) --Q(ﬁ

-1)

By equating the compressive force (C) with the tensile force (T) we

C=f‘C Rbd — = T:Asf cees (4.17)

where, the maximum concrete stress (fC) is constant since the

strain is in the plastic range ;

f
cu

f = T
m

C

W}

If we represent the reinforcement strain (eS) in terms of its

stress (fs): e, = aofs + bO (see Figure 4.3), where a, and bO are

material constants, then the stress fs is given by:

®s = b
f =
s a
o
. e,
Since g has been defined by : ¢ =5 then:
5
e e /q-Db a
e:—o and f = ° ° =~—l—b
s q s a a 1
o]
where:
e b
a =-—2 and b :—Cl
1 a 1 a
o o]

Substituting k and f, in Equation (4.17) gives :

a

q

1

£
Cu g 3-qgli/gr - 1) - As(

— - b,)
Gm 3 1

2
3



and by simplifying, we get :

4
3R - q+ QR = (a—-— bT)g2

where 8, is a parameter :
9 AS Gm

8 = 57 Tq
2% 2F_pd

Solving for R gives :

2 2
i (a, - bialg, +q C; -Ca+aq

R = = (4.18)
3q + q2 3q + q2
where:
C1 = a1 g2 and 02 = b1 g2
Substituting Equation (4.18) in Equation (4.13) gives :
2 3 4
AO + A1q + A2q + A3q + A4 q = 0 eee. (4.19)
where
2
Ay = -6C,
A, = -4C°24+12C. C.+ 36¢C
1 - 172 1
A, = -9g - C,° + 24C. - 36C, + 8C, C. - 6C.°2
2 1 1 2 1 Y2 2
A, = —6g + 6C. ~ 24C. + 2C. C. - 4C.°
3 g 1 2 1 72 2
A, = 3 - 6C, - C.°
4 = "B -2 - 0y =L

Equation (4.19) can now be solved for the parameter q = eo/eS by the

Newton-Raphson Method. The initial value of q 1s determined as

follows:
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1 - For the maximum design moment (Mp = M, + M), we take,

£f . =7 . A / A where :
st si "sr 3D

£ the first estimate of the actual maximum stress fsa .

s1
fsi = the design value of the stress.
Asr = the required reinforcement area.
Asp = the provided reinforcement area.
2 -— For any 1lesser value of the moment, M% , WwWe take the first
estimate of the reinforcement stress as : fs1 = fsa M%/MT

From fs1’ the corresponding strain eg and the initial value of

q = e /e  can be obtained. .

Solving Equation (4.19) gives the actual value of g, from which the
actual reinforcement strain ey = eo/q , and hence stress, can be
found. The neutral axis depth ratio (R) is determined from

Equation (4.18). Finally, the maximum concrete strain (ec) is to be

found and compared with the initial plastic value (eo) :

Case (S2), corresponding to case (R2)

If we find from the above analysis that the actual concrete strain is

less than the initial plastic value, i.e. eC < e, s then

Equation (4.16) is applicable, whence:

g (2q$ + 4q1r + 2P2 - q?r - 2q1 r2 - P3)

12 a q1r2 + 8a r3 - 4aq1r3 - 12pq1r'3 - 3ar'4

- 8pr'4 + 4pq1r'4 + 3pr'5 eees (4.16)
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where the following parameters have been defined previously by :

€. ey 12 MT
r=-— ’ q, = — ’ g, =z —
e ! e 1 5500eobd2
1 feu 4125
e Va ’ T2 o

f. = 5500 re (a - pr)

then by equating the compressive force (C) and the tensile force (T)

and substituting for fc and R, we get:

. _3-r CT-
CE3a oy foRed=T= a1

and

3 -r r
3(2—[’-_) 5500 r'eo (a - pr') EIT—-:—; bd = AS fs e (4.20)

If we assume the reinforcement strain (es) to be

e
S

aofs + bO s then the stress fs is given by:

. e - bO ) q.8, - b
s a, a,

O




Substituting fS in Equation (4.20) gives :

3-r r
-t S - [ — = A
3(2-r) 5500 ey (a - pr) qQ +r bd s a,

The above equation cannot be simplified to give r, which is the ratio
of the concrete strain (ec) to the initial plastic value (eo), as an
explicit function of qq- Instead, the following procedure has to be

applied to determine the stress in the reinforcement, fS:

1 - Take an initial value, r; = 1.0, when Equation (4.16) can be
solved for 9. From this, the reinforcement strain (eS = Q4 eo) and

stress fs can be found.

2 - Calculate the left and right hand sides of Equation (4.20) and
compare themn. If the difference is not within a specified 1limit
{say 1 percent), then:

3 - Take a new value for r (ri 41T - 0.001) and repeat the
procedure until 1t converges to give an acceptable value for the

approximate actual stress.

As a final step in the design, the maximum reinforcement ratioc and
shear stress are to be calculated and compared with their allowable

values (CP110 and BS5400).

4.4 — Design Moments and Shears

Design 1live load moments (ML) and shears (VL)’ including impact, for
each of the two bridge beams are given in Table (4.1). These are
based on a computational time interval, Dt = 0.0015 x L, as mentioned

in Chapter (3).



Span Loading ML VL
frequency
(m) (T/hr.) (KN.M) (KN)
15.0 360 600.151 185.26
15.0 20" 568.982 185.263
17.5 A e 736.686 203.592
20.0 jﬁues 922.892 213.424
25.0 A e 1298.359 228.626
27.5 iiues 1477.810 232.521

Table (4.1) - Design values for the maximum live load moment

and shear (V.)

L

, based on a computational time

interval, Dt(in sec.) = 0.0015 x Span

(M)
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4.5 Computer Program for The Design of The Bridge Beams

The proposed design procedure has been programmed to design the
bridge beams. Two sets of bridge sections have been obtained from
these calculations. For the first set, the reinforcing bar diameter

is 32 mm, while for the second set it is 25 mm.

The program starts by assuming an initial design value of the stress

in the reinforcement (fsi) as below:

_ . 2
fsi = 450 - Dfs x I in N/mm

where I 1s an increasing integer with a starting value, I = O, and:

17.5 N/mm® for 32 mm bars

Df
s

Df
s

10.0 N/mm2 for 25 mm bars

The procedure 1is repeated by reducing fsi value until the stress
range,in the outer layer of bars, is slightly higher or lower than
the endurance limit (Se)’ given in Chapter (2) by:

S_ = 161.5 - 0.33 fmi

o here fmin is the dead load stress.

n
" A flow chart for the program is given in Figure (4.7). The details
of the beams designed by the aforementioned procedure are given at

the end of this chapter.
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Input data, I = -1

yes

(fgy = 450 - DE x I

Calculate beam dimensions rounded
to 50 mm

Calculate required number of bars

Calculate stress values in outer

layer of reinforcement :

£ caused by dead load moment (Mp)

f caused by, My + M (the maximum

live load moment including impact)

f caused by, My + 3 ML

| _ 2, |
Is fsae more than fy = 425 N/mm .E

No
|
_ c s o
Is |( sae fsde) S| < the specified limit? No
|
Yes
S
* !
Endi
|
Figure (4.7)

Flow chart of the computer program for the beam design
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4.6 Discussion of The Design Results

In the design tables (p 113) at the end of this chapter, it is

interesting to note that the required effective depth (dre ),for high

q

values of the initial steel stress (f_.), decreases with decreasing

steel stress. For lower values of fsil, the reverse is found to be
the case. As shown in Section (4.3.2), design case (1) deals with
initial steel stress values (fsi), which are not 1less than that
producing a strain of (0.0035). This steel stress value is,

£ 2403.1 N/mmz, for a yield stress fy = 425 N/mm2 as can be seen in

sc
Figure (4.3). The following is an explanation of this effect .

The design equation which has to be solved for the effective

depth (d) is given as :

A1 + A2d = A3 d“ y vees (@)

where A1, A2 and A3 are positive constants.

y
For design case (1), the parameter y
. _ 2
can be defined by ¢ y = R - 0.435 R™, - - practical range
where R 1s the neutral axis depth DO .

ratio. This means that y increases /‘“ R =1.75

with increasing R, for all R values

less than (1.15). This is true

for all design cases, since the

neutral axis must lie within the beam.

For design case (1), R is related to the reinforcement strain (es)
by :
0.0035

R:—O-":—O—O—B—-B—':—e; ec e (b)

Equation (b) implies that R, and hence y, increase with

decreasing values of ey and thus the initial design stress (fsi).

This requires the effective depth (d) to decrease to keep the two

sides of Equation (a) equal.
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Another explanation is that, decreasing fsi within the range,

fsc sfsi <425, increases the neutral axis depth ratio (R). Since for
case (1) the maximum concrete strain is constant (eC = 0.0035), then
the compressive force increases. In order to produce the same

moment, the Ilever arm and the required depth will correspondingly

decrease.

For design cases (2) and (3), where the initial design steel stress
(fsi) is less than the limiting value, fsc , the neutral axis depth
ratio (R) is fixed, R = 1/2. Consequently the maximum concrete
strain (ec) and the steel strain (es) are equal. Decreasing fsi
would therefore result in a decrease in €.+ This means that the
effective depth (d) has to increase to cause an increase 1in the
compressive force and the lever arm. Both are necessary to maintain
the resulting moment. Alternatively, for design case (2), the

parameter y can be defined by :

y = (1-0.5 3 (3-k)
where, k = eO/eC
(eo is the initial plastic strain = 0.0015 in this study)
K2 — 4k + 6

3" ET=Gm

From Table (a), it is clear that the parameter y decreases with
decreasing fsi , which confirms that the effective depth (d) has to

increase to keep the equality between the two sides of Equation (a).

£y (e, = e) x 10° K 7 v = (1 = 0.5§)(3=k)
(N/mm?)
397.5 3.34 0.449 0.432 2.000
380.0 2.84 0.528  0.421 1.952
362.5 2.34 0.641 0.408 1.878
345.0 1.84 0.815 0.389 1.760

Table (a) ~ y values for design case (2)
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A similar mathematical proof can be established for design case (3).

The maximum reinforcement ratio obtained is 3.24 percent which is
less than the specified limiting 4 percent value (48). The maximum
shear stress value is 1.94 N/mm2 which is also 1less than the

allowable value of 4.75 N/mm2 (48).

4.7 Section Modulus

The section modulus, Z, is defined as :

My

:_f"
S

7 =

where MA is the moment and fS is the resulting stress in the

reinforcement.

If the modulus Z has a fixed value which does not depend on the
moment MA s then the simulated stress spectrum could be established
easily from the moment spectrum. However, this is not the case
because the modulus Z varies with the moment, due to non linear

behaviour of the section.

Perhaps, it would be ideal to use the aforementioned design procedure
to calculate the stress value which corresponds to every single
maximum or minimum point in the moment spectrum and use it as a point
in the stress spectrum. Unfortunately, such operation is very
expensive and time consuming (for the computer). By ruling out such

a possibility, we are left with two options:

1 - The first is to calculate the modulus value using Equations (4.2)
and (4.3). These two equations define the modulus regardless of the
moment value. They are based on the modular - ratio theory. As
mentioned in Section (4.1), some of the assumptions underlying this

theory are not acceptable for high stresses (46).



2 -~ The second option, is to use the proposed procedure (Sec. 4.3) to
calculate the modulus‘values resulting from the two extreme moments
(the dead load moment and the total live plus dead load moment) and
from some intermediate value (say the half 1live plus dead load
moment, which we may call the "average" total moment). If the
relative differences between the resulting three values of the
modulus are small enough, then we may adopt some chosen value of the

modulus and consider it representing each section regardless of the

loading stage.

The second coption has been adopted, because 1t is believed to be more
reasonable. Two sets of section moduli have been calculated. The

first set consists of three values of what we may call the "combined"

load modulus:

Zp = Mp/f
Zy = Mp/fyy
Zoy = My/foy
where:
M

T is the moment caused by the total dead load and the maximum live

load {including impact).
M. : is the total dead load moment.
M, : is the average total moment = 0.5 (M, + M) .

fsa ’ fsd ’ fsh : are the stresses in the reinforcement caused by the

moments MT ’ MD and MH respectively.

The second set consists of two values of what we may call the "live"

load modulus:

Z = ML
L fsa - fsd
. ) 0.5 ML
IH~F _—f .
fsn = Tsq
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where :

ML : is the maximum live load moment, including impact, and

fsa s, T

f : have been defined previously.

sd ’ “sh

First, all moduli values were calculated taking the centre of gravity

of the steel area as the centre of the resultant tensile force (T).

Since this 1is not precisely the centre of action of the effective
steel tensile force (T), due to the strain gradient from the top to
the bottom of the group of bars, a second run has been made using the
actual centre of T. This has been located by trial and error to

an adequate accuracy. This has helped in decreasing the relative

differences, in the modulus values, by about 20 percent.

Two groups of the modulus values have been calculated. The first one
is based on the steel stress in the outer bar. This group is denoted
by Z' in the design tables, at the end of this chapter. The second
group 1is based on the steel stress, corresponding to the strain at
the centre of the tensile force, (which we may call the centroidal

stress). The second group is denoted in the tables by Z.

Let us, now consider the live load moduli based on the outer bar
stress (i.e. Zi and ZiH) and their relative difference Dé3 . We can
see from the design tables (part c¢), that the value of D£3 , the
relative difference, is quite high for any section whose outer bar
stresses caused by the total live load moment and the half live load
moment are on different lines of the stress - strain curve., The
relative differences Dé3 are as high as 13.7 percent for 32 mm bars
and 19.2 percent for 25 mm bars. On the other hand it appears that
the live load moduli based on the centroidal stress (i.e. ZL and ZLH)
are appreciably less sensitive to the double linearity of the stress
- strain curve. In this case the maximum relative difference is only

5.5 percent.
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The combined load modulus based on the centroidal stress can be seen

as:

where MA is the moment, f_ is the resulting centroidal stress, AS
is the reinforcement area and d' is the lever arm. Similarly the

combined load modulus based on the outer bar stress fse can be seen

as :

Apparently, the ratio (fs/fse) has a significant effect in getting

high values for the relative difference in the live load moduli,

based on the outer bar stress.

Based on the aforementioned behaviour, it is believed more convenient
to investigate the use of the modulus based on the centroidal stress,

as the required modulus for design to represent the section through

all loading stages.

Then, to simulate the stress in the outer bar, the variation of the
strain factor, Sf , with the applied moment at different loading
stages, has been examined (Sf is the ratio of the outer bar strain
to the strain at the centre of the tensile force, which we may call

the centroidal strain).

The maximum relative difference of the strain factor, DSf , has been
found to be about 1.0 percent for 32 mm bars and 1.4 percent for

25 mm bars, which seem to be adequately small, especially if we
notice that for some sections, the stress values are calculated by
trial and error, to a chosen degree of accuracy. As a result of the
strain factor (Sf) being almost constant, it is interesting to note

that if the centroidal stresses are higher than (340 N/mm2=0.8 fy),



i.e. they fall on the second line of the stress - strain curve, then

the stress range 1in the outer bar, fsre , 1s smaller than the

centroidal stress range fsr . This results from the strain factor
being almost constant, and from the double linearity of the stress -

strain curve, as is shown below.

A
stress(f_ ) .
5 Tension
T ®sae T T T T 2 j&
I o f
®sa < |
[ — B l‘
E | i
T esdé | 2 i |
o ,
i { i
f E, = 0.175E
> €sd % . e 2 1
i I sa sae
> i ,
& 5 Fsde : f
C; : | ! i
fsd f i i .
\E ' , ; strain(eg )
3 ¥ 1 | : v, .

The stress - strain curve of the reinforcement

Since the dead load stresses, in this study, are in all cases less
than (340.0 N/mm2 = 0.8 fy), then the centroidal stress fsd and the

outer bar stress fsde , caused by the dead load moment, are given by:

e f = E, e

sd sche T 71 Tsde

where €4 and € de 2re the corresponding strains. By definition,

strain factor corresponding to the dead load, SFD , 1s given by:

s = sde
FD €4

and e =SFDeSd

Consequently, the dead load outer bar stress can be found by:

= B -
sde 1 Csde = Eq Spp ©sq = fgq
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The slope of the second part of the stress - strain curve, E2 » Can

be defined by :

fsae - fsa
—e-————:——e——'— = E2 - 0.175 E,]
sae sa

where; fsae ’ fsa are the outer bar stress and the centroidal

stress, caused by the total moment; e are the corresponding

sae ’ Ssa
strains.

By definition, the strain factor corresponding to the total load,

SFT , 1s given by :
esae
SFT = eSa and esae = SFT esa

Substituting for e e gives the following equation for the slope

sa
E2 :
f‘sae B fsa
3 o T o = E2 = 0.175 E1
FT “sa sa

Simplifying the last equation gives :

1)

£ - f = 0.175 E1 (SFT - €5a

sae sa
Hence the outer bar stress is :

- 1) e

f = f at 0.175 E1 (SFT sa

sae S

But the outer bar stress range is the stress due to the total moment

less that due to the dead load moment, i.e.

fsre = Tsae = fsde = fsa * 0175 By (Spp - 1) ®sa ~ fsde
Now, since : fsde = fsd SFD then this stress range is :
-1) e ~-f_.8S

f‘sr'e = fsa + 0.175 ET (SFT sa sd “FD
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which can also be written:

fsre ® Tea = Tsq * 0.175 E; ey, (SFT -1 - fsd (SFD -1
Since the strain factor is almost constant, both SFT and SFD can be
replaced by an average value which we will denote by SF .
Consequently in the above equation, we can substitute SF for SFT and

SFD when we obtain the following expression for the outer bar stress

range :

fsre = fsa - fsd + (0.175 E1 eqq fsd) (SF - 1)

In fact, the expression (f‘sa - fsd) in this equation represents the

centroidal stress range (fsr)’ and we can therefore write it as :

sre sr F 1) (fsd = 0.175 E, ®sa )

If we let : r = esa/esd , the ratio of the total strain to dead

load strain, then, €a = T &g and:
fope = fop = (SF - 1) (fsd - 0175 E; r esd)
Since the dead load stress is given by: fsd = E1 €sq * then, the

outer bar stress range is:

fsre = fsr - (SF - 1) fsd (1 - 0.175 r)
The definition of the strain factor (Sf) implies that its value is
always greater than unity, i.e. Sf >1.,0. From the last equation, it
is clear that for all r values smaller than (1/0.175 = 5.714), the
outer bar stress range (fsre) is less than the corresponding
centroidal stress range (fsr)‘ In reality the r value will be well

below (5.714).

Table (4.2) shows, the maximum values of the relative differences of
the strain factor (Dsf), the 1live 1load modulus based on the
centroidal stress (DZ3) and the live load modulus based on the outer
bar stress (Di3), for the various combinations of the span (L) and

loading frequency (U).
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Span Loading Maximum Maximum Maximum

) f€$3gi?§y Dgp (%) Dys (%) Dys (%)
15.0 360 1.01 4,30 12.53
15.0 128 1.03 3.80 11.59
17.5 jiiues 0.70 2.93 12.35
20.0 2 e 0.34 3.10 11.63
25.0 iiiues 0.15 3.61 12.76
27.5 3iiues 0.15 4,21 13.71

Table (4.2 a)

The maximum relative differences of strain factor and moduli, for
the various span and loading frequency combinations. Bar dia = 32 mm

- Strain factor relative difference :

-1

5 the maximum of (Spp , Spy SFD)
S

Sf T the minimum of (SFT » Sgy s Spp)

- Relative difference of live load section modulus based on

centroidal stresses :

Z. - 17
D = L LH

Z3 ~ the minimum of (ZL y ZLH)

- Relative difference of live load section modulus based on outer

bar stresses :

\ 1
D! - ZL - ZLH
= i T T
Z3 the minimum of (ZL » Z]y)




Span Loading Maximum Maximum Maximum

o) f;igg??cy Dgp (%) Doy (%) D4 (%)
15.0 360 1.37 4.95 16.56
15.0 et 1.43 4.63 15.65
17.5 A e 1.03 4.24 16.05
20.0 A s 0.50 2.60 16.00
25.0 A 0.18 5.48 16.88
27.5 32}ue5 0.18 5.17 19.15
Table (4.2 b)

The maximum relative differences of strain factor and moduli for the
various span and loading frequency combinations. Bar dia = 25 mm

- For the definitions of the terms, see Table (4.2 a)



Based on the aforementioned observations, it is suggested that we may
simulate the stress ﬁange spectrum in the outer bar, from the moment
spectrum, using the modulus values based on the centroidal stress, Z.

This c¢an be done by simulating the centroidal stress in the steel
(fs), and calculating the corresponding strain (es). The strain in
the outer bar is given by : e = &g SF where SF is the strain

se

factor, and thus the corresponding stress, f can be calculated.

se ’
Hence, the stress range is :

£ = f - f

sre se sde where fsde is the dead load stress.

This means that we have to define some proper values for the modulus

(z) and the strain factor (SF), which could be considered as
representing each section adequately through all stages of loading.
But before doing so, let us examine the way by which the modulus (Z)
varies from one loading stage to another. To help us in that, values
of the neutral axis depth ratio (R) and the lever arm effective depth
ratio (j) have been calculated, and given in part (d) of each design

table (p 113).

The lever arm effective depth ratio (j) value, for spans L = 15.0 and
17.5 m, increases consistently as the moment, we consider, decreases
below the design moment. This behaviour is expected and may be
explained by examining Figure (4.7) which represents the stress block

for the concrete.
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In this figure, the position of the centre of the area, x' , of the

stress block is given by:

_ 6a° + 8ba + 3b°

4(3a + 2b)

x!

Whence the rate of change of x' with respect to a is :

2 2
' _ 1 18a” + 24ab + 70T |

3a 4 (3a + 2b)2

Hence, it will be seen from above, that x' increases as the portion
of concrete which has become plastic, a, gets deeper in the section,

i.e. the bending strains increase.



x (depth)

C onl

H — < C i

: N H

i i

H I
| b

i

|

 d : — Y = y (stress)

Figure (4.7) - The concrete stress block in
a highly stressed section
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As the moment decreases, the plastic region, a, decreases and
consequently x' also decreases. Hence, the lever arm effective depth

ratio (j) increases.

For all beams of 25.0 m span and over and for some of 20.0 m span,
deflection will control the design, and hence the section depth will
have to be increased beyond the minimum based upon stress conditions.
In these cases, the lever arm effective depth ratio (j) seems to have
two patterns of behaviour. The first behaviour is associated with
sections for which, the steel and concrete stresses are low. This
behaviour of increasing the lever arm effective depth ratio (j) with

decreasing moment, is exactly similar to the aforementioned.

In the second kind of behaviour, which is associated with sections for
which the steel and concrete stresses are high, the lever arm
effective depth ratio (j) seems to fluctuate with the moment values.
This may be explained by examining the following relation which is

based on the strain diagram (Fig 4.4 and 4.6):

S
-1

.... Equation (c)

e =
C

1
R

In Eq. (c), eC is the maximum concrete strain, ey is the steel

centroidal strain and R is the neutral axis depth ratio.

If the effective depth (d), used to satisfy the deflection
limitation, is considerably larger than the value required to satisfy
the stress limits. Then the lever arm (d') is 1large, and the
compression area (and hence R) for the sections, with high stresses
in the concrete, tends to be small. If the moment decreases below
the design moment, then the stresses will decrease, and both e and

eS will be less.

However from Equation (c), we see that since R is small, the rate of
change of e. with respect to ey is also small. Hence the change in
the compressive force (C) will itself be small. Thus in order to

balance the reduced moment, the lever arm will have to reduce. Whence
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the neutral axis will drop in the section, and the R value will
increase. Consequently the rate of change of €. with respect to e
starts to increase, and the corresponding rate of change of the

compressive force (C) is larger.

If the moment decreases further, it seems that the resulting decrease
in the compressive force (C) is large enough to cause the lever arm to

increase to balance the new moment.

Since the modulus Z can be seen as :

= Asjd

then the modulus behaviour could be considered similar to the

behaviour of the lever arm effective depth ratio (j).

4.7.1 Choosing a Section Modulus Suitable for All Loading Stages

Let us now consider the combined load section moduli ZT ’ ZTH ’ ZD .
The section modulus based on the dead load moment (ZD) could not be
used as the required modulus, because for about 85 percent of the
cases the simulated values, for the stresses caused by the maximum
total moment (MT) and the average total moment (MH = 0.5 ML + MD),

would be lower than the corresponding actual values.

If the section modulus based on the maximum total moment (ZT) is used
as the required modulus, then the simulated values of the stresses,
caused by the maximum total moment (MT), would be exactly equal to
the corresponding actual values, but the simulated values of the
stress ranges Srh , caused by the average total moment (MH), would
, as

deviate appreciably from the corresponding actual values fsrh

can be seen from Table (4.3).

This means that an intermediate value of the section modulus, between
the value based on the maximum total moment (ZT) and that caused by

the dead load moment (Zb) is more appropriate.
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F = Zp Sy (@) fopp (P la - b | -
KN.M/(N/mn2)  (N/mm®) (N/mm?) Minimum of (a,b)
3.719 85.54 82.80 3.31
3.903 85.60 77.89 9.90
¢ 4.395 75.83 69.24 9.52
g <
o 4,735 68.62 64.34 6.65
A3
- o 5.038 64,10 60.45 6.04
uon
e 5.596 56.74 53. 44 6.18
5.956 52.40 50.50 3.76
11.106 55.77 59.15 6.06
z 11.951 53.55 55.32 3.31
@]
£ 0| 12.745 51.68 51.81 0.25
o ¥
@ 13.539 50,19 48.70 3.06
[N - ~
"o 14,398 47,84 46.61 2.64
O s T
15.248 45,77 43.48 5.27
Table (4.3a)

Comparison of the actual stress ranges fsrh caused by the

average total moment (M
using a combined section modulus equivalent to

by the maximum total moment, (Z.).

their

simulated values (S

Bar dia = 32 mm

rh
that caused
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F = Zg S, (&) fopp (D) la - b | )
(KN.M/(N/mm?)  (N/mm®) (N/mm®) Minimum of (a,b)

5.420 73.93 69.64 6.17

5.734 70.92 64,82 9.41

o] 6.081 66.45 62.39 6.50
Gy
(@]

. 6.467 61.13 57.25 6.78
n 3

~ 2 6.808 58.32 54,86 6.30
— >

"o 7.148 56.14 52.62 6.69
-1 @

7.584 51.65 49.41 4.53

7.958 49,17 47.15 4,29

6.991 67.69 67.73 0.06

7.380 65.19 64,09 1.72

7.725 64,28 60.45 6.34
jen]

“ 8.129 60.93 57.77 5.47
s un

o % 8.527 58.01 55.45 4,62
S @

o= 8.902 56.37 53.25 5.86
(1]
i

= 9.285 54 .00 51.06 5.76

9.683 51.69 48,98 5.53

10.068 49,14 46,89 4,80

Table (4.3b)

Comparison of the actual stress ranges fsrh caused by the
average total moment (MH), to their simulated values (Srh)
using a combined section modulus equivalent to that caused

by the maximum total moment, (ZT). Bar dia = 25 mm



Consequently, 1let us assume that the combined load section modulus,
F, which we will choése to use, 1s to be defined as the minimum of
that corresponding to the average total moment (ZTH) and the average
of that corresponding to the maximum total moment (ZT) plus that

corresponding to the dead load (ZD). We can express this as :

F = the minimum of ZTH and 0.5 (ZT + ZD)

If we consider the section moduli based on live load moment alone,
then it is believed proper to define the section modulus, FL , as  the
minimum of that corresponding to the maximum live load moment (ZL)
and that corresponding to the average live load moment (ZLH)' We can

express this as

FL = the minimum of ZL and ZLH
The section modulus as defined above (FL) is equal to Z;in about 80
percent of the cases. In the same cases, defining the section
modulus FL as above would make the simulated centroidal stress ranges
S , due to the average total moment, larger than the corresponding

rh
actual values f

srh

In about 80 percent of the cases, the maximum value of the strain
factor Sf is equal to the value caused by the maximum total
moment, SFT . Remembering that in most cases, the section modulus FL
as defined above, would make the simulated centroidal stress ranges
caused by the average total moment (MH) higher than the corresponding
actual values. Consequently, if we select the strain factor caused
by the maximum total moment to represent the section through all
loading stages (i.e. Sp = SFT)’ this for most cases would increase
further the deviation between the simulated ocuter bar stress ranges
caused by the average total moment and the corresponding actual

values.

For this reason, an intermediate value of the strain factor (SF) is
chosen, which 1s defined as the maximum of that corresponding to the
average total moment (SFH) and the average of that corresponding to
the maximum total moment (SFT) plus that corresponding to the dead

load (S We can express this as :

FD)I
SF = the maximum of SFH and 0.5 (SFT + SFD)
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Noting that Sp as defined above, is in most cases smaller than Spp
and in most cases, the section modulus FL is equal to the value based
on the maximum live load moment (ZL)' Consequently for most cases,
the simulated outer bar stress range values Sre , based on the 1live
load modulus (FL), are slightly lower than the actual values f_.. .
The largest negative deviation is 0.65 percent for 32 mm bars and 0.7

percent for 25 mm bars, which is considered to be quite small.

As mentioned earlier, the combined load modulus (F), the 1live 1load

modulus (FL) and the strain factor (SF) are defined as below:

F = the minimum of ZTH and 0.5 (ZT + ZD)
FL = the minimum of ZL and ZLH
SF = the maximum of SFH and 0.5 (SFT + SFD)

Where (ZT ,SFT), (ZTH y SFH) and (ZD , SFD) are the combined load
modulus and the strain factor corresponding to the maximum total

moment (Mp), the average total moment (MH) and the dead load moment
(MD)
total and average live load moments respectively.

respectively. ZL and ZLH are the live load moduli based on the

We have to investigate now whether F or FL is more appropriate.

For the maximum stress ranges caused by the maximum total moment

(MT = MD + ML), the stress range values based on the live load
modulus (FL) are larger than those based on the combined load modulus

(F), in more than 95 percent of the cases.

Also, for the maximum total moment (MT), in 85 percent of the cases,
the simulated stress range values based on the live load modulus (FL)
are nearer to the actual values, than those based on the combined load

modulus (F).

However, for the average total moment (MH = MD + 0.5 ML), in all cases,
the stress range values based on the live load modulus (FL) are not

less than those based on the combined load modulus (F).

Also, for the average total moment (MH), in all cases, the stress
range values based on the combined load modulus (F) are nearer to the

actual values, than those based on the live load modulus (FL)'



Consequently it is believed that the live load modulus (FL) should be
used to represent the section modulus, since it simulates the stress
ranges caused by the maximum total moment (MT) in a more proper way.
Also, using the modulus F would make the simulated centroidal stress

ranges, caused by the maximum total moment, lower than the actual

values.

Since, in most cases, the live load modulus (FL) is equal to the
modulus ZL which corresponds to the maximum live load moment, then
the simulated stress ranges, caused by the average total moment

(MH = My o+ 0.5 ML)’ are larger than the actual values. The maximum
relative difference between the simulated and the actual values is
5.24 percent for 32 mm bars and 6.31 percent for 25 mm bars. Table
(4.4) shows the maximum relative differences. Since they are
generally less than 5.0 percent, except in few cases where they are
around 6.0 percent, then it is believed reasonable to define the
section modulus as the minimum of that corresponding to the maximum
live load moment (ZL), and that corresponding to the average 1live

load moment (ZLH).

To give more justification to this, two sets of fatigue 1lives have
been calculated for the combination of loading frequency U = 90 T/hr.
and span L = 15.0 m. The first set is based on section modulus
values defined as above, while the second set is based on section
modulus values defined as the maximum of that corresponding to the
maximum live load moment (ZL), and that corresponding to the average

live load moment (ZLH)'

From these two sets of points, two section modulus values, which give
a specified design 1life (25, 50, 100 and 200 years), have been
interpolated and their relative difference has been found to be quite

small (around 1.0 percent), as will be shown later in Chapter (6).
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Span Loading Maximum  Maximum Maximum Maximum
frequency Do (%) D. (%) + Do (%) = Doy (%)
(m)  (T/hr.) S £ fe e
15.0 360 4,87 0.00 0.0t 0.60
180
. 15.0 +90 4,52 0.00 0.00 0.65
(O]
E all
= 17.5 4,11 0.00 0.00 0.53
_ values
©
9 all
+ 20.0 3.16 + 3.10 3.43 0.47
= values
=
'E all
25.0 2.60 + 3.61 4.03 0.23
g values
all
27.5 values 1.44 + 4,21 4.71 G.17
15.0 360 2.05 + 4.30 5.24 0.00
180
. 15.0 +90 1.85 + 3.80 4,89 0.00
[0
8 11
2 a
= 17.5 values 1.57 + 2.93 3.29 0.00
«
I 11
D a
i 20.0 values 1.11 + 2.92 2.99 0.00
80
& 11
by a
E 25.0 values 0.76 + 1.56 1.59 0.00
all
27.5 values 0.38 + 2.55 2.54 0.00
Table (4.%4a)
Maximum relative differences for the various
loading frequency and span combinations
Bar dia = 32 mm
DS = the relative difference of the simulated centroidal
stress ranges based on the live load modulus (F
and the combined load modulus (F).
Df s Dpo = the relative differences of the simulated and actual

centroidal and outer bar stress ranges respectively.
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Maximum relative differences for the various
loading frequency and span combinations

Bar dia = 25 mm

- For the definitions of the terms, see Table (4.4a).

Span Loading Maximum  Maximum Maximum Maximum
frequency D, (%) D. (%) + D, (%) =D, (%)
(m)  (T/hr.) S £ fe fe
15.0 360 5.58 0.00 0.00 0.64
180
2 15.0 +90 5.33 0.00 0.00 0.66
[0)]
% all
’f 17.5 values 4,15 0.00 0.00 0.70
@
8 all
: 20.0 values 3.38 1.88 2.10 0.64
-
'ﬁ all
25.0 2.16 5.48 6.20 0.317
g values
all
27.5 values 2.03 5.17 5.97 0.24
15.0 360 2.36 4.95 6.31 0.00
15.0 180 2.18 4.63 6.23 0.00
» +90 ?
2 i
£ 11 i
o} a i
e 17.5 values 1.58 4,24 5.43 0.00
—~
S 11
;O a
i 8 20.0 values 1.19 2.60 3.16 0.00
(0]
% 11
<, a
3 25.0 values 0.60 1.80 1.80 0.00
<1}
all
27.5 values 0.41 2.24 2.24 0.00
Table (4.4b)



4,.7.2. Sections of The 15.0 m Bridge

As can be seen from Figure (3.7) and Table (4.1), for a span of
15.0 m, the maximum moments, for the loading frequency U = 90 T/hr.
and 180 T/hr., are equal and they are slightly smaller than the
corresponding value for U = 360 T/hr. This makes it necessary to
design two sets of sections, one for U = 90 T/hr. and U = 180 T/hr.

and the other for U = 360 T/hr.

However, the two sets have some common sections which have the same
dimensions and reinforcement, but have slightly different values of

the section modulus (FL) and the strain factor (SF).

For such sections, FL and SF for both are taken to be:

FL = 0.5 (FL1 + FL2

where FL1 and SF1 correspond to the first set of sections, while FL2

) ’ Sp = 0.5 (SF1 + SFZ)

and SF2 correspond to the second set of sections, as given in Table

(4.5).

For a few sections, the final rounded value of the strain factor (SF)
is very slightly lower than the ratio of the outer bar dead load

stress to the centroidal dead load stress (i.e. /fsd). For very

f

small values of the live load moment, such a vaiS: of the strain
factor (SF) would produce fictitious negative stress ranges with very
small absolute values. To avoid this, the related strain factor
values have been increased very slightly and taken to be (fsde/fsd)’

as shown in Table (4.6).
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U = 360 T/hr. U = 90 and 180 T/hr.
section FL1 SF1 section EL2 SF2 FL = SF =
number number 1(F 1(S.. 48
2 +F o) 2(Spq+Spy)
12 3.694 1.085 110 3.718 1.085 3.71 1.085
13 4.164 1.104 111 4,188 1.104 4,18 1.104
14 4.546 1.097 112 4,564 1.097 4.56 1.097
15 4.855 1,091 113 4.871 1.090 4,86 1.090
16 5.438 1.108 114 5.468 1.107 5.45 1.107
Table (4.5a)
Section modulus (FL) and strain factor (SF) values
for span = 15.0 m. Bar dia = 32 mm
- FL values in KN.M/(N/mm?)
section SF fsde/fsd
number
41 1.028 1.028034
S+ 022 022778
53 1.028 1.028082
54 1.034 1.034135

Table (4.6a)

Modified strain factor (S.) values

Bar dia = 32 mm

F
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U = 360 T/hr. . U = 90 and 180 T/hr.
sevon Sy st mp S | RS
g(FL1+FL2) %(SF1+SF2)
117 3.786 1.108 127 3.804 1.108 3.80 1.108
118 4.207 1.096 128 4,225 1.096 4,22 1.096
119 4,500 1.112 129 4,518 1.112 4,51 1.112
120 4.807 1.105 130 4,835 1.105 4,82 1.105
121 5.131 1.119 131 5.150 1.119 5.14 1.119
123 5.849 1.123 133 5.860 1.123 5.85 1.123
Table (4.5b)
Section modulus (FL) and strain factor (SF) values

for span = 15.0 m. Bar dia = 25 mm

- F. values in KN.M/(N/mm?)

L
section SF fsde/fsd
number
411 1.040 1.040100
512 1.037 1.037644
Table (4.6b)

Modified strain factor (SF) values

Bar dia = 25 mm



110

4.8 Sections with Highly Stressed Reinforcement

As demonstrated in Section (3.7), beam sections with highly stressed
reinforcement might not be capable of sustaining moments higher than

the design moment. Maximum probable moment values for the various

spans are given in Table (3.10).

The computer program, used to design the bridge sections and calculate
the stresses and moduli for the different loading stages, has been used
to analyse bridge sections under the maximum probable moments. The
results are given in Table (4.7), from which it appears that we have
to neglect sections 11, 19, 41, 116, 126, 210, 310, 410 and 511 and
disregard them, because of the probability that their reinforcement

might yield before reaching the point of fatigue failure.



stresses section relative strain maximum neutral lever
(N/mm? ) moduli differences factor concrete axis - arm -
[KN.M/(N/mm?) ] (%) strain depth effective

3 ratio depth

section (1 x 107°) ratio
number fspe fsp Zp ZLp Dp DLp SFp ecp Rp Jp dpp
(mm)
19 470.98 460.34 3.381 3.175 3.85 3.91 1.059 4,190 0.449 0.800 74.50
11 433.23 425.57 3.677 3.536 2.01 2.15 1.053 2.957 0.417 0.823 74.50

12 and
110 416.26 404.95 3.843 3.600 3.75 2.94 1.091 3.339 0.485 0.791 86.45
21 409.70 403.42 5.161 4,959 1.61 1.59 1.051 2.620 0.427 0.822 74.50
22 372.40 366.09 5.687 5.407 2.00 0.48 1.074 2.132 0.466 0.813 84.00
31 402.15 397.92 6.946 6.873 0.06 3.20 1.036 2.031 0.377 0.850 71.34
32 366.16 362.61 7.623 T.442 0.41 1.11 1.043 1.655 0.414 0.842 T4.50
41 423.19 419.51 11.089 11.285 0.83 2.82 1.026 1.801 0.312 0.879 73.91
42 391.01 387.77 11.996 12.175 0.92 3.76 1.030 1.551 0.336 0.873 76.50
52 414,24 411.10 14.554 14,940 1.17 4,48 1.024 1.643 0.306 0.883 T4.31
53 388.75 385.91 15.504 15.649 0.88 4.68 1.027 1.460 0.327 0.875 76.50
Table (4.7a) - The effect of the maximum probable moment on sections
with highly stressed reinforcement. Bar dia = 32 mm
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stresses section relative strain maximum neutral lever
(N/mm? ) moduli differences factor concrete axis - arm -
[KN.M/(N/mm?) ] (%) strain depth effective
3 ratio depth
section (1 x 1077) ratio
number fspe fsp Zp ZLp Dp DLp SFp cp Rp jp DD
{mm)
116 and
126 436.99 422 .74 3.682  3.430 4.09 3.21 1.100 3.710 0.477 0.791 87.62
117 and )
127 404.75 391.85 3.972 3.699 3.99 2.60 1.116 3.163 0.499 0.786 92.29
210 423.14 412.95 5.042 4,807 2.08 1.81 1.077 2.856 0.430 0.819 84.78
211 396.41 387.04 5.379 5.124 2.10 1.35 1.088 2.490 0.450 0.814 88.93
310 428.49 421 .40 6.559 6.427 0.32 0.91 1.050 2.326 0.366 0.851 78.22
311 403.33 396.58 6.970 6.854 0.29 0.60 1.058 2.067 0.384 0.847 82.50 |
410 426.19 421.39 11.039 11.206 0.73 2.61 1.034 1.827 0.312 0.878 77.84
411 406.38 401.70 111.580 11.710 1.06 5.03 1.039 1.676 0.326 0.875 81.35
511 422.91 418,41 14.300 14.697 0.97 2.88 1.033 1.710 0.303 0.884 80.22 |
512 405.84 401.48 14.903 15.256 1.20 4,98 1.036 1.588 0.315 0.881 83.14

Table (4.7b) - The effect of the maximum probable moment on sections with
highly stressed reinforcement. Bar dia = 25 mm
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4,9 Design Tables

Stresses and stress ranges in N/mm
A1l dimensions in mm

Moment values in KN.M

Shear values in KN

Modulus values in KN.M/(N/mm°)
Strain values in (1 x 107°)

Relative differences in %

2
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Span bgam

(m) oy " () (mm) () Fmax
15.00 250 3 10 57 46 0.424
17.50 300 4 10 57 46 0.393
20.00 350 5 10 57 46 0.371
25.00 450 6 12 57 48 0.357
27.50 500 7 12 57 48 0.356

Table I ~ Some design details for the various spans
Bar dia = 32 mm

: number of the reinforcing bars in one layer
bar diameter for the shear reinforcement
vertical spacing between reinforcement layers

the distance between the centre of the outer layer to
the tension face of the beam

the maximum value for the ratio of the average concrete

compressive stress to the concrete compressive strength (fcu)



Span beam
width n ) s c 3
(m) (mm) b (mm) (mm) (mm) mex
15.0 250 4 10 50 42.5 0.420
17.5 300 5 10 50 42 .5 0.402
20.0 350 6 10 50 42.5 0.389
25.0 450 8 12 50 44,5 0.359
27.5 500 9 12 50 44,5 0.354
Table II -~ Some design details for the various spans

- For the definitions of the terms, see Table I

Bar dia = 25 mm
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Table (1) - Beam details for 15.0 m span and
loading frequency, U = 360 T/hr.
Bar dia = 32 mm
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initial required actual total reinf. max. various centroidal various outer bar
section |steel beam beam beam  beam number  ratio  shear stresses stresses
stress  depth depth width height of bars (%) stress
number
fsi dr‘eq d b b Nb RR fsa fsh fsd f‘sae f‘she fsde
11 450.0 881.3 925.5 250 1000 6 2.09 1.81 | 395.8 312.4 229.6} 401.8 328.8 241.3
12 415.0 838.2 863.3 250 950 7 2.61 1.93 | 375.0 290.4 212.5| 383.5 314.2 229.3
13 362.5 853.6 861.3 250 950 8 2.99 1.93 | 333.0 258.1 188.9 344.9 285.0 207.9
14 345.0 883.5 908.8 250 1000 8 2.83 1.84 | 310.9 243.2 178.9| 340.3 266.7 195.7
15 310.0 914.4 958.0 250 1050 8 2.69 1.75 ) 293.8 230.7 170.2} 321.1 251.5 185.2
16 292.5 927.6 951.6 250 1050 9 3.04 1.77 | 264.5 207.6 154.2} 293.7 229.9 170.3
17 257.5 961.5 1001.1 250 1100 9 2.89 1.69 | 250.0 197.7 147.2| 275.7 217.5 161.7
18 240.0 983.5 992.5 250 1100 10 3.24 1.70 | 229.3 180.6 134.4| 257.8 202.7 150.5
Table (1a): L = 15.0m, U = 360 T/hr., dia = 32 mm

Lit



various total max. various max. various strain factors and

section -moment values shear concrete strains their relative difference
number | My My My Ut | ©®%a ®%h %da | St S S DPse | 9t dpn 9pg
1 1472,0  1172.0 871.9 | #417.8} 2.30 1.19 0,82} 1.052 1.052 1.051 0.13 | 74.50 73.54 73.60
12 1463.6 1163.5 863.4 | 415.5 ) 2.47 1.31 0.88}| 1.090 1.082 1.079 1.01} 86.68 83.41 83.60
13 1463.6 1163.5 863.4 } 415.5 | 1.87 1.27 0.86} 1.105 1.104 1.101 0.41 | 88.70 91.13 91.41
14 1472.0  1172.0  871.9 | 417.8 | 1.57 1.12  0.77 } 1.100 1.097 1.094 0.53 } 91.16 91.75 91.94
15 1480.5 1180.4 880.3 | 420.0 1.37 1.00 0.70 ) 1.093 1.090 1.088 0.42 ] 92.03 92.24 92.38
16 1480.5 1180.4 880.3 | 420.0 | 1.33 0.97 0.68 | 1.110 1,107 1.105 0.51 | 98.39 98.63 98.81
17 1488,9 1188.8 888.8 | 422.3 1.18  0.88 0.63 | 1.103 1.100  1.098 0.40 | 98.95 99,12 99.25
18 1488.9 1188.8 888.8 | 422.3 | 1.16 0.87 0.61 | 1.125 1.122 1.120 0.44 |107.50 107.80 108.01

Table (1b): L = 15.0 m, U = 360 T/hr., dia = 32 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses and

sec. their relative differences their relative differences

no. | Zp Zoy Zp Z, Zig  Dgy Dgp Dyz | Zp 2oy ) 2, Zlw Pz Pp Dy

11 3.719 3.751 3.797 3.612 3.624 2.09 0.85 0.33 3.664 3.564 3.613 3.740 3.431 2.78 2.78 9.01
12 3.903 4,007 4,064 3.694 3.853 4.10 2.65 4.30 3.817 3.703 3.765 3.893 3.537 3.06 3.06 .10.08
13 4,395 4,508 4,571 4.164 4,334 4.01 2.56 4.07 4,243 4,082 4.152 4,381 3.893 3.94 3.94 12.53
14 4,735 4,819 4.875 4.546 4.664 2.95 1.77 2.59 4,325 4,394 4.455 4,149 4.226 3.01 1.60 1.86
15 5.038 5.117 5.172 4.855 4,064 2.64 1.56 2.24 4,610 4,694 4.752 L.47 4,531 3.07 1.81 2.58
16 5.596 5.685 5.710 5.438 5.615 2.02 1.59 3.26 5.040 5.135 5.168 4,863 5.040 2.54 1.88 3.63
17 5.956 6.013 6.038 5.839 5.942 1.37 0.96 1.76 5.401 5.465 5.497 5.265 5.373 1.77 1.18 2.05
18 6.495 6.582 6.612 6.328 6.493 1.81 1.34 2.62 5.775 5.866 5.905 5.592 5.754 2.26 1.58 2.90

Table (1¢c): L = 15.0 m, U = 360 T/hr., dia = 32 mm
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neutral axis

lever arm effective

section depth ratios depth ratios

number RT H RD jT jH jD jL jLH
11 0.411 0.433 0.416 0.833 0.839 0.849 1} 0.809 .811E
12 0.478 0.474 0.453 0.803 0.821 0.83310.760 .790 |
13 0.529 0.495 0.476 0.793 0.816 0.827 { 0.751 . 784
14 0.503 0.479 0.463 0.810 0.825 0.83410.777 .798
15 0.482 0.465 0.451 0.817 0.830 0.8390.788 .806
16 0.501 0.484 0.470 0.812 0.826 0.829 ) 0.789 .815
17 0.485 0.471 0.459 0.822 0.830 0.83410.806 .820
18 0.503 0.489 0.478 0.814 0.825 0.829 | 0.793 814

Table (1d): L = 15.0m, U = 360 T/hr., dia = 32 mm
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live combined centroidal simulated centroidal simulated outer bar simulated :
section| load strain load stress ranges based and actual stress and actual stress fatigue
i modulus factor modulus on F and FL ranges ranges limit
% |
inumber FL SF F SRT SRL DS Sr fsr Df Sre f'sr*e Dfe Se
E
% 11 3.612 1.052 3.751 162.80 166.15 2.06 | 166.15 166.15 0.00 | 160.47 160,46 0.008 -81.86
% 12 3.694 1.085 3.983 | 154.93 162.47  4.87 | 162.47 162.47 0.00 | 153.63 154.14 0.34 85.82|
§ 13 4,164 1.104 4,483 | 137.58 144,13  4.76 | 144.13 144,13 0.00 | 136.92 136.99 0.05 92.88
§ 14 4.546 1.097 4,805 | 127.50 132.02 3.54 | 132.02 132.02 0.00 | 144.48 144,64 0.11 96.92
% 15 4,855 1.091 5.105 | 119.78 123.62 3.20 | 123.62 123.62 0.00 | 135.20 135.86 0.49 100.37
i 16 5.438 1.108 5.653 | 107.71 110.36  2.46 | 110.36 110.36 0,00 | 122.66 123.40 0.60 105.29
% 17 5.839 1.101 5,997 ; 101.08 102.78 1.68 | 102.78 102.78 0.00 { 113.44 113.98 0.48 108.14
18 6.328 1.122  6.553 92.79 94.85 2,22 94.85 94.85 0.00 | 106.77 107.33 0.53 111.84

Table (1e) - Actual and simulated stress ranges
U = 360 T/hr.,

L = 15.0 m,

dia =

caused by the maximum total moment

32 mm

(M)

let



section

number

centroidal simulated
stress ranges based
on F and FL

centroidal simulated
and actual stress
ranges

outer bar simulated
and actual stress
ranges

S S

RHT RHL SH

S f D

rh srh fth

Sr'he f‘srhe the

11

82.80 83.07 0.33

83.07 82.80 0.33

87.7T4 87.46  0.33

12

79.60 81.23 2.05

81.23 77.89 4.30

89.29 84.84 5.24

13

70.65 72.06  2.01

72.06  69.24  4.07

80.19 77.08 4.04

14

65.05  66.01 1.47

66.01  64.34 2.59

72.94 71.00 2.72

15

61.00 61.81 1.32

61.81 60.45 2.24

67.79 66.22 2.37

16

54,63 55.18  1.01

55.18 53.44 3.26

61.55 59.54  3.37

17

51.04 51.39 0.69

51.39 50.50 1.76

56.88 55.85 1.85

18

47.00  47.42 0.9

47.42  46.21 2.62

53.55 52.16  2.67

average total moment, M

H

Table (1f) - Actual and simulated stress ranges caused by the

= 0.5 (MT + M

D)

L=15.0m, U= 360 T/hr., dia = 32 mm

ccl



123

Table (2) - Beam details for 15.0 m span and
loading frequency, U = 180 and 90 T/hr.
Bar dia = 32 mm



linitial required actual

reinf. max. various centroidal various outer bar
section |steel beam beam  beam ratio  shear stresses stresses
stress depth  width height of bars (%) stress
number
fsi d b n RR v sa f‘sd sae fshe f‘sde
19 432.5 875.5 250 950 2.20 .90 | 414.5 242.11 422.2 340.8 255.3
110 397.5 863.3 250 950 2.61 .93 | 365.5 212.5| 373.2 309.6 229.3
111 362.5 860.7 250 950 2.99 .93 | 324.7 188.9 | 343.4 281.1 207.9
112 327.5 908.5 250 1000 2.83 .84 | 303.5 178.9 | 333.9 263.2 195.7
113 292.5 957.9 250 1050 2.69 75 | 287.0 170.2 | 313.6 248.2 185.2
114 275.0 951.6 250 1050 3.04 L7 | 258.2 154,2 | 286.6 227.5 170.3
115 257.0 1001.0 250 1100 2.89 1.69 | 244.9 147.2 | 270.0 215.0 161.7
Table (2a) L=15.0m, U = 180 and 90 T/hr., dia = 32 mm
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various total max. various max. various strain factors and

section moment values shear concrete strains their relative difference
number | My My "y Vep ®ca  %n  Ccd Spr Spy Sep DPgr | pt Bon dha
19 1432.4  1147.9  863. 415.5 {1 2.90 1.32 0.91 | 1.057 1.056 1.055 0.23 | T74.50 73.01 73.44
110 1432.4  1147.9  863. 415.5 | 2.23 1.28 0.88 | 1.091 1.082 1.079 1.03 | 86.70 83.42 83.60
111 1432.4 1147.9  863. 415.5 | 1.79 1.24 0.86 | 1.106 1.104 1.101 0.46 | 89.29 91.16 91.41
112 1440.9  1156.4  8T71. 417.8 { 1.52  1.10  0.77 | 1.100 1.096 1.094 0.54 | 91.47 91.76 91.94
113 1449.3 1164.8  880. 420.0 | 1.33 0.98 0.70{ 1.093 1.090 1.088 0.39 | 92.06 92.24 92.38
114 1449.3  1164.8  880. 420.0 | 1.29 0.96 0.68 | 1.110 1.107 1.105 0.47 | 98.42 98.65 98.81
115 1457.7 1173.2  888. 422,3 | 1,15 0.87 0.63 | 1.102 1.100 1.098 0.36 | 98.97 99.13 99.25

Table (2b): L = 15.0 m, U = 180 and 90 T/hr., dia = 32 mm
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section moduli based on centroidal stresses and section moduli based on outer bar stresses and
sec. their relative differences their relative differences

\ 1 1] ] 1] ] 1
no. | Z Z Z Z Zig DPz1 Dzp Dy T 2y Zy Z Zig DPzp Dzo Dyg

19 13.455 3.520 3.567 3.299 3.386 3.22 1.88 2.64 | 3.393 3.369 3.382 3.410 3.331 0.71 0.71 2.37

110 3.919  4.011 4,064 3.718 3.859 3.69 2.35 3.80 | 3.838 3.708 3.765 3.955 3.544 3.52 3.52 11.59

111 4,411 4.508  4.571 4,188 4,327 3.63 2.20 3.32 | 4.172 4.084 4.153 4.202 3.888 2.16 2.16 8.05

112 |14.747 4.818 4.875  4.564 4.651 2.69 1.49 1.90 | 4.315  4.394  4.455  4.117  4.216 3.24 1.82 2.41

113 |5.049 5.115  5.172  4.871 4,947 2.42 1.30 1.56 | 4.622 4.693 4.752 4.434 4.518 2.82 1.53 1.89

114 5,612 5.668 5.710 5.468 5,541 1.74 0.99 1.34 | 5.056 5.120 5.168 4.892 4.976 2.22 1.26 1.72

115 (5.952 6.004 6.038 5.823 5.899 1.44 0.86 1.30 | 5.399 5.457 5.497 5.254 5,336 1.81 1.07 1.57

Table (2¢): L = 15.0m, U = 180 and 90 T/hr., dia = 32 mm
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neutral axis lever arm effective
section depth ratios depth ratios
number T Ry Rp Jr n Jp L Iy
19 431 0,448 0.428 0.818 0.832 0.843] 0.781 0.800 |
110 479 0.472 0.453 | 0.806 0.822 0.833]0.765 0.791 .
111 .525 0.494 0.476 0.797 0.816 0.827 | 0.756 0.783
112 .500 0.478 0.463 0.812 0.824 0.834] 0.781 0.796
113 .480 0.464 0,451 0.819 0.830 0.839) 0.790 0.803
114 .499 0.483 0.470 0.815 0.823 0.829 ! 0.794 0.805
115 .483 0.470 0.459 0.821 0.829 0.834] 0.804 0.814
Table (2d): L = 15.0m, U = 180 and 90 T/hr., dia = 32 mm
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live combined centroidal simulated centroidal simulated outer bar simulated
section | load strain 1load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number FL SF F SRT SRL DS Sr fsr Df re f‘sr'e Dfe Se
19 3.299 1.056 3.511 165.89  172.47  3.96 | 172.47 172.47 0.00 } 166.72 166.88 - 0.10 T7.24
110 3.718 1.085 3.991 146,41 153.03  4.52 | 153.03 153.03 0.00 | 143.39 143.87 - 0.33 '85.82
! 111 4,188 1.104 4,491 130.06  135.86 4,46 | 135.86 135.86 0.00 | 135.31 135.42 - 0.08 92.88
112v 4.564 1.097 4.811 120.64  124.66  3.34 | 124.66 124,66 0.00 | 137.30 138.19 - 0.65 96.92
i 113 4,871 1.090 5.111 113.37 116.80 3.03 | 116.80 116.80 0.00 | 127.72 128.33 - 0.47 100.37
114 5.468 1.107 5.661 101.84 104,06 2.18 | 104.06 104.06 0.00 | 115.64 116.31 - 0.58 105.29
115 5.823 1.100 5.995 95.96 97.71 1.82 97.71 97.71 0.00 | 107.81 108.30 - 0.45 108.1%
Table (2e) - Actual and simulated stress ranges caused by the maximum total moment (MT)
L =15.0m, U =180 and 90 T/hr., dia = 32 mm
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section

number

centroidal simulated

centroidal simulated

outer bar simulated

stress ranges based and actual stress and actual stress
on F and FL ranges ranges
St SmaL Psw | Sen Tsrn Prn | Srhe Tsrhe  Drhe

19

84.87 86.23 1.61

86.23 84,02 2.64

85.84  85.41 0.49

110

75.13  76.51 1.85

76.51 73.71 3.80

84,20 80.27 4.89

111

66.72 67.93 1.82

67.93 65.75 3.32

75.57 73.16  3.29

1Mz

61.50 62.33 1.34

62.33 61.17 1.90

68.91 67.47 2.3

113

57.70 58.40 1.21

58.40 57.50 1.56

64.04 62.97 1.70

114

51.58 52.03 0.87

52,03 51.34 1.34

58.02  57.17 1.49

115

48.50 48.85 0.72

48,85 48,23 1.30

54,05 53.31 1.39

Table (2f) - Actual and simulated stress ranges caused by the

average total moment, M

L = 15.0 m,

g = 0.5 (Mg
U = 180 and 90 T/hr.,

+ MD)

dia = 32 mm
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Table (3) - Beam details for 17.5 m span, with
all values of the loading frequency
Bar dia = 32 mm



initial required actual total reinf. max. various centroidal various outer bar
section isteel beam beanm beam  beam number ratic  shear stresses stresses
stress  depth depth  width height of bars (%) stress
number
fsi dreq d b h Nb RR v f‘sa f‘sh f‘sd fsae fshe f‘sde
21 415.0 886.4 975.5 300 1050 8 2.20 1.67 | 381.2 307.9 234.9| 386.3 323.5 246.5
22 380.0 885.4 966.0 300 1050 9 2.50 1.69 | 347.2 277.7 211.6| 352.1 296.7 225.7
23 345.0 935.7 962.4 300 1050 10 2.79 1.69 | 316.3 253.2 193.6| 340.6 274.5 209.4
24 310.0 969.0 1011.6 300 1100 10 2.65 1.62 | 299.8 240.9 185.0| 324.1 259.9 199.3
25 292.5 983.3 1006.1 300 1100 11 2.93 1.63 | 275.8 221.7 169.6(301.9 242.1 185.0
26 265.0  1010.9 1055.6 300 1150 11 2.79 1.56 | 261.8 211.6 162.7 | 284.9 229.8 176.5
27 257.5  1020.1 1050.9 300 1150 12 3.06 1.57 | 242.6 196.3 150.4|266.9 215.5 164.9
Table (3a): L = 17.5 m, all values of U, dia = 32 mm

LEL



various total max. various max. various strain factors and

section moment values shear concrete strains their relative difference

number MT MH MD VT €a ech €.q SFT SFH SFD DSf dpt dph dpd
21 1983.1 1614.8 1246. 488.5 | 2.14 1.22 0.87} 1.051 1.051 1.049 0.15 | 7T74.50 73.61 73.66
22 1983.1 1614.8 1246, 488.5 { 1,73 1.19 0.85| 1.074 1.068 1.067 0.70 | 83.56 81.65 81.76
23 1983.1 1614.8 1246. 488.5 | 1.59 1.16 0.83 | 1.087 1.084 1,082 0.43 | 87.62 88.22 88.37
24 1996.9 1628.6 1260. 491.6 | 1.39 1.05 0.76 | 1.081 1.079 1.077 0.37 | 88.44 88.60 88.71
25 1996.9 1628.6 1260. 491.6 1.36 1.02 0.75 1.095 1.092 1.090 0.41 93.95 94,15 94,29
26 2010.7  1642.3 1274. 494,8 | 1,22 0.93 0.69 | 1.088 1.086 1.085 0.32 | 94.39 94.53 04.64
27 2010.7  1642.3 1274, 494.8 | 1.19 0.91 0.67 | 1.100 1.098 1.096 0.36 | 99.13 99.29 99.40

Table (3b): L = 17.5 m, all values of U, dia = 32 mm

celt



section moduli based on centroidal stresses and section moduli based on outer bar stresses and
sec. their relative differences their relative differences
no- | g Zoy Zn Z, Zig DPgr Dz Dgz | Zp 210 Zp 2, Ziw Pz Do Dy
E
121 5.203 5.244 5.305 5.038 5.048 1.97 0.80 0.20 5.134 4,991 5.056 5.272 4,785 2.86 2.86 10.17
22 5.712 5.814 5.891° 5,433 5.568 3.13 1.79 2.49 5.632 5.442 5.523 5.826 5.186 3.48 3.48 12.35
23 6.271 6.378 6.440 6.004 6.179 2.70 1.72 2.93 5.822 5.883 5.951 5.614 5.664 2.23 1.06 0.88] .
24 6.660 6.759 6.811 6.417 6.587 2.27 1.49 2.65 6.161 6.266 6.324 5.902 6.076 2.64 1.70 2.95
}25 T7.240 T.347 T.429 6.938 7.082 2.61 1.49 2.08 6.613 6.728 6.814 6.296 6.449 3.03 1.73 2.43
é26 7.680 7.763 T.831 T7.433 7.536 1.96 1.07 1.38 | 7.057 7.145 7.218 6.794 6.905 2.29 1.26 1.64
27 8.287 8.369 8.468 7.992 8.040 2.18 0.98 0.60 7.533 7.623 T7.725 7.223 7.288 2.55 1.19 0.91

Table (3c): L = 17.5 m, all values of U, dia = 32 mm
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neutral axis lever arm effective
section depth ratios depth ratiocs

E number RT H Ry Jr Jg Jp Ji, JIH

i

§ 21 0.427 0.443 0.427 0.829 0.835 0.845 1 0.803 0.804
22 0.476 0.467 0.446 0.817 0.829 0.841 | 0.777T 0.794
23 0.501 0.478 0.463 0.810 0.825 0.833 7 0.776 0.799
24 0.482 0.465 0.452 0.819 0.831 0.837 ] 0.789 0.810
25 0.497 0.480 0.468 0.813 0.826 0.835] 0.780 0.796
26 0.4817 0.468 0.457 0.822 0.831 0.839 0.796 0.807
27 0.495 0.482 0.472 0.817 0.825 0.835)0.788 0.793

Table (3d): L = 17.5 m, all values of U, dia = 32 mm
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live combined centroidal simulated centroidal simulated outer bar simulated
section| load strain load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number FL SF F SRT SRL S Sr fsr Df re fsr'e Dfe Se
21 5.038 1.051 5.244 | 143.20 146.22 11 146.22 146,22 0.00 | 139.72 139.74 - 0.016 80.14
22 5.433 1.070 5.801 130.25 135.60 .11 135.60 135,60 0.00 | 126.20 126.45 - 0.20 '87.02
23 6.004 1.084 6.355 | 118.50 122.71 55 1 122.71 122.71 0.00 | 131.08 131.21 - 0.099 92.39
24 6.417 1.079 6.736 | 111.44  114.80 .01 114,80 114,80 0.00 | 124.23 124,82 - 0.47 95.74
25 6.938 1.092 7.334 { 102.63 106.19 .46 | 106,19 106.19 0.00 | 116.38 117.00 - 0.53 100.47
26 T.433 1.087 7.756 96.56 99.11 .63 99.11 99.11 0.00 { 107.98 108.43 - 0.42 103.25
27 7.992 1.098 8.369 89.83 92.18 .62 92.18 92.18 0.00 § 101.52 101.99 - 0.47 107.08
Table (3e) - Actual and simulated stress ranges caused by the maximum total moment (MT)
L=17.5m, all values of U, dia = 32 mm
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centroidal simulated

centroidal simulated

outer bar simulated

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges

number | Spyr Spg Psy | Seh Tsen Pen | Srne Tsrhe  Prhe
21 72.96  73.11  0.20 | 73.11  72.96 0.20} T77.12 76.97 0.19
22 66.76 67.80 1.57 | 67.80 66.16 2.49 | 73.37 71.03 3.29
23 60.54 61.35 1.35| 61.35 59.61 2.93 | 66.98 65.04 2.99
24 56.76  57.40 1.13 | 57.40 55.92 2.65 | 62.30 60.62 2.77
25 52.41 53.09 1.31 | 53.09 52.01 2.08 | 58.38 57.11 2.22
26 49.07 49.55 0.98 | 49.55 48.88 1.38 1 54.13 53.34 1.48
27 45.81 46,09 0.60 | 46.09 45.81  0.60 } 50.91 50.54 0.73

Table (3f) - Actual and simulated stress ranges caused by the

average total moment, M, = 0.5 (MT + Mp)

L=17.5m,

all values of U,

dia = 32 mm

9€1L
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Table (4) - Beam details for 20.0 m span, with
all values of the loading frequency
Bar dia = 32 mm



initial required actual total reinf. max. various centroidal various outer bar
section |steel beam beam beam  beam number  ratio  shear stresses stresses
stress  depth depth width height of bars (%) stress
number
f‘si req d b h Nb RR v f'sa fsh f'sd fsae fshe fsde
31 415.0 945.5 1128.7 350 1200 9 1.83 1.43 | 384.3 319.1 249.9) 388.0 331.0 259.0
32 380.0 944.0 1125.5 350 1200 10 2.04 1.43 | 352.3 289.5 226.9| 355.4 301.9 236.5
33 345.0 998.8 1119.6 350 1200 11 2.26 1.44 | 325.7 266.3 208.8} 340.7 281.0 220.1
34 310.0 1035.4 1113.6 350 1200 12 2.48 1.45 | 301.7 246.2 193.8| 322.2 262.6 206.4
35 292.5 1050.9 1108.7 350 1200 13 2.69 1.45 | 280.5 229.4 180.9| 302.6 247.0 194.5
36 275.0  1069.4 1104.4 350 1200 14 2.91 1.46 | 262.9 215.4 168.9 | 286.2 234.0 183.1
37 257.5 1091.2 1100.7 350 1200 15 3.13 1.46 | 247.1 202.3 158.51271.2 221.5 173.3
Table (4a): L = 20.0 m, all values of U, dia = 32 mm
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various total max. various max. various strain factors and

section moment values shear concrete strains their relative difference
number My My Mp Vp Sca  %h  ©cd Spr FH Spp Dgr dog 950 dpg
31 2676.9  2215.4 1754, 564.2 { 1.8t 1.11  0.82 | 1.036 1.037 1.036 0.098] 71.30 70.77 70.79
32 2676.9  2215.4 1754, 564.2 | 1.49 1.07 0.80 1} 1.044 1.043 1.042 0.14 | T4.50 73.91 73.94
33 2676.9  2215.4 1754. 564.2 } 1.35 1.04 0.78 | 1.056 1.055 1.054 0.18 | 80.36 80.73 80.78
34 2676.9  2215.4 1754, 564.2 1.32 1.02 0.76 1.068 1.066 1.065 0.27 | 86.39 86.49 86.57
35 2676.9 2215.4 1754. 564.2 | 1.29 1.00 0.75 ¢ 1.079 1.077 1.075 0.31 | 91.32 91.44 91.53
36 2676.9  2215.4 1754, 564.2 | 1.27 0.98 0.74 | 1.088 1.086 1.085 0.34 | 95.59 95.73 95.83
37 | 2676.9  2215.4 1754, 564.2 1.25  0.97 0.73 1.097 1.095 1.093 0.36 | 99.32 99.49 99.60

Table (4b): L = 20.0 m, all values of U, dia = 32 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses

and

sec. their relative differences their relative differences

no. | Zp Zey Zp Z, Zin Dz1 Dzp Dyz | Zp 20y 5 2, 2in Pz Pz Dys
31 6.967 6.942 7.020 6.867 6.660 1.13 0.35 3.10}| 6.899 6.693 6.773 7.152 6.407 3.07 3.07 11.63
32 7.599 7.654 7.731 7.360 7.374 1.74 0.72 0.19 7.532 7.338 T.417 7.759 7.050 2.64 2.64 10.05
33 8.219 8.320 8.401 7.892 8.025 2.22 1.23 1.68 7.857 7.884 7.969 7.653 7.579 1.42 0.35 0.98
34 8.872 8.998 9.052 8.550 8.800 2.03 1.42 2.92 8.307 8.437 8.498 7.967 8.216 2.30 1.57 3.13
35 9.542 §g.658 9.697 9,262 9.513 1.62 1.21 2.71 8.847 8.970 9.01¢9 8.539 8.790 1.94 1.39 2.94
36 110.180 10.284 10.388 9.808 9.906 2.04 1.01 1.00 9.355 9.468 9.578 8.959 9.074 2.38 1.21 1.29
37 110.832 10.951 11.067 10.410 10.529 2.18 1.10 1.14 9.871 10.000 10.123 9.426 9.562 2.55 1.31 1.44

Table (4c): L = 20.0 m, all values of U, dia = 32 mm
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neutral axis lever arm effective

section depth ratios depth ratios

number RT RH RD jT jH jD jL jLH
31 0.379 0.409 0.398 0.853 0.849 0.859 0.841 0.815
32 0.421 0.424 0,413 0.840 0.845 0.8540.813 0.814
33 0.454 0.439 0.428 0.830 0.840 0.848 ! 0.797 0.810
34 0.467 0.453 0.441 0.826 0.837 0.8420.796 0.819
35 0.480 0.466 0.454 0.823 0.833 0.837}0.799 0.821
36 ! 0.491 0.477 0.466 0.819 0.827 0.836}0.789 0.797
37 0.502 0.488 0.478 0.816 0.825 0.8340.784 0.793

Table (4d): L = 20.0 m, all values of U, dia = 32 mm
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live

combined

centroidal simulated

centroidal simulated

outer bar simulated

section | load - strain load stress ranges based and actual stress and actual stress fatigue

modulus factor modulus on F and FL ranges ranges limit

number FL SF F SRT SRL DS Sr fsr Df re f‘slr*e Dfe Se
31 6.660 1.037 6.942 | 135.76 138.57 2.07 | 138.57 134.40 3.10 { 133.47 129.04 3.43 76.04
32 7.360 1.043 7.654 | 122.87 125.40 2.06 | 125.40 125,40 0.00 | 118.90 118.95 =~ 0.04 83.46
33 7.892 1.055 8.310 | 113.35 116.93 3.16 | 116.93 116.93 0.00 | 120.54 120.59 - 0.04 88.86
34 8.550 1.067 8.962 | 104.92 107.95 2.88 | 107.95 107.95 0.00 | 115.41 115.84 - 0.37 93.38
35 9.262 1.077 9.620 97.39 99.64  2.31 99.64 99.64 0,00 | 107.61 108.08 -~ 0.44 97.32
36 9.808 1.086 10.284 91.46 94.10 2.89 94.10 94.10 0,00 | 102.54 103.02 - 0.47 101.07
37 10.410 1.095  10.949 85.99 88.65 3.09 88.65 88.65 0.00 97.42 97.91 - 0.50 104.32

Table (4e) - Actual and simulated stress ranges caused by the maximum total moment (M

L =20.0m, all values of U,

dia = 32 mm
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centroidal simulated

centroidal simulated

outer bar simulated

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges

number | Spuyr Spy, Psy | Sen fsen Prn | Srhe Tsrhe  Prhe
31 69.28 69.28 0.00 | 69.28 69.28 0.00 { 72.03 72.03 0.00
32 62.58 62.70 0.19 | 62.70 62.58 0.19 | 65.57 65.45 0.19
33 57.82  58.47 1.11 | 58.47 57.50 1.68} 61.91 60.89 1.68
34 53.43 53.97 1.01 | 53.97 52.44 2.92 | 57.84 56.16 2.99
35 49.42  49.82 0.81 | 49.82 48.51  2.71 | 53.96 52.49 2.78
36 46.58  47.05 1.00 | 47.05 46.58 1.00 | 51.42 50.85 1.12
37 43.85  44.33 1.09 | 44.33  43.83 1.14 | 48.87 48,26 1.26

Table (4f) - Actual and simulated stress ranges caused by the

average total moment, My = 0.5 (MT + MD)

L = 20.0 m,

all values of U,

dia

= 32 mm

e
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Table (5) - Beam details for 25.0 m span, with
all values of the loading frequency
Bar dia = 32 mm



linitial

required actual total reinf. max. various centroidal various outer bar
section |steel beam beam beam  beam number  ratio  shear stresses stresses
stress  depth depth width height of bars (%) stress
number
f.si dreq d b b Nb RR f‘sa f'sh f'sd f.sae fshe f‘sde
41 415.0 1061.0 1426.1 450 1500 11 1.38 1.16 | 406.7 351.7 292.5| 410.1 353.7 300.7
42 380.0 1059.2 1423.5 450 1500 12 1.51 1.16 | 378.0 325.4 270.1| 380.9 335.8 278.6
43 362.5 1082.8 1416.9 450 1500 13 1.64 1.17 | 354.4 303.6 251.8| 357.4 315.6 261.6
L 345.0 1123.5 1413.0 450 1500 14 1.77 1.17 | 333.6 284.2 235.5| 341.6 297.4 246.3
45 327.5  1151.3 1407.9 450 1500 15 1.90 1.17 | 313.7 267.4 220.8| 330.6 281.5 232.3
46 310.0  1166.7 1403.8 450 1500 16 2.04 1.18 | 296.3 251.4 207.9] 313.9 266.2 220.0
47 292.5 1184.8 1400.3 450 1500 17 2.17 1.18 | 280.5 238.3 197.9| 298.8 253.6 210.5
Table (5a): L = 25.0 m, all values of U, dia = 32 mm
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various total max. various max. various strain factors and

section moment values shear concrete strains their relative difference
number | My My Mp Ve ®ca  %h  Ccd Spr SpH Sep  Dgp dpe don dq
41 4517.1 3867.9 3218.8 | 743.6 1.65 1.07 0.81 1.0265 1.0278 1.0280 0.15 73.90 73.90 73.75
42 4517.1  3867.9 3218.8  743.6 | 1.43 0.98 0.78 1} 1.030 1.032 1.031 0.15 | 76.50 76.32 76.34
43 4517.1  3867.9 3218.8 | 743.6 | 1.26 0.96 0.77 ] 1.0396 1.0395 1.0390 0.05} 83.10 82.36 82.38
L4 4517.1  3867.9 3218.8 | T43.6 | 1.14 0.93 0.75 | 1.0464 1.0465 1.0459 0.05 | 87.01 87.59 87.62
45 4517.1  3867.9 3218.8 | T743.6 | 1.12 0.92 0.73 | 1.054 1.053 1.052 0.13 | 92.13 92.17 92.20
46 4517.1  3867.9 3218.8 | 743.6 | 1.10 0.90 0.72} 1.060 1.059 1.058 0.14 | 96.16 96.21 96.24
47 4517.1  3867.9 3218.8 | 743.6 | 1.08 0.88 0.71 1.0653 1.0644 1.0636 0.16 § 99.75 99.80 99.84

Table (5b): L = 25.0 m, all values of U, dia = 32 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses and

sec. their relative differences their relative differences

no. | Zg Zrw I Zy, tH Dz1 Dgo Dzz | Zf 2y % 27 Ztp - Dz Py Dy3
49 111.106 10.998 11.003 11.371 10.975 0.98 0.98 3.61| 11.016 10.937 10.703 11.876 12.264 2.92 0.72 3.27
42 111.951 11.887 11.918 12.035 11.734 0.54 0.54 2.56) 11.858 11.520 11.554 12.686 11.351 2.94 2.94 11.75
43 112.745 12.740 12.783 12.651 12.531 0.34 0.04 0.96} 12.640 12.256 12.303 13.562 12.028 3.14 3.14 12.76
44 113.539 13.611 13.669 13.226 13.331 0.96 0.54 0.791 13.223 13.007 13.069 13.622 12.707 1.66 1.66 7.20
45 114.398 14,466 14.580 13.966 13.927 1.26 0.47 0.28] 13.665 13.740 13.856 13.215 13.193 1.39 0.55 0.16
46 115.248 ]5.385 15.480 14.700 14.930 1.52 0.90 1.56% 14.389 14.529 14.628 13.828 14.057 1.66 0.98 1.66
47 116.104 16.234 16.263 15.722 16.092 0.99 0.81 2.351 15.117 15.252 15.290 14,703 15.062 1.15 0.89 2.44

Table (5c): L = 25.0 my, all values of U, dia = 32 mm
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neutral axis

lever arm effective

section depth ratios depth ratios

number RT RH RD jT jH jD jL jLH
41 0.314 0.346 0.356 0.880 0.872 0.872] 0.901 0.870
42 0.340 0.375 0.367 0.870 0.865 0.867 i 0.876 0.854
43 0.374 0.386 0.378 0.860 0.860 0.862) 0.854 0.845
44 0.406 0.397 0.389 0.851 0.856 0.860 ! 0.831 0.838 |
45 é 0.416 0.407 0.400 0.848 0.852 0.858 0.822 0.820
46 f 0.425 0.417 0.410 0.844 0.852 0.857 | 0.814 0.827
47 % 0.434 0.426 0.418 0.8417 0.848 0.850! 0.821 0.841

Table (5d): L = 25.0 m,

all values of

U,

dia =

32 mm
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live combined centroidal simulated centroidal simulated outer bar simulated
section | load strain load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number FL SF F SRT SRL DS Sr fsr Df Sre fsre Dfe Se
41 10.975 1.028 10,998 | 118.18  118.31 0.1 118.31 114.18  3.61 113.73  109.33 4,03 62.26
42 11.734 1.032 11.887 | 109.94 110.65 0.65 | 110.65 107.88 2.56 | 105.35 102.35 2.93 69.57
43 12.531 1.039  12.740 { 102.76  103.61 0.83 | 103.61 102.63 0.96 96.75 95.73 1.07 75.16
44 13.226 1.046  13.604 96.57 98.17 1.66 98.17 98.17 0.00 95.32 95.31 0.001 80.23
45 13.927 1.053  14.466 91.49 93.22 1.90 93.22 92.97 0.28 98.31 98.25 0.06 84.84
46 14.700 1.059  15.364 86.08 88.32 2.60 | 88.32 88.32 0.00 93.68 93.89 - 0.23 88.89
47 15.722 1.064  16.184 81.20 82.58 1.70 82.58 82.58 0.00 88.07 88.31 - 0.27 92.03

Table (5e) - Actual and simulated stress ranges caused by the maximum total moment (M)
L =25.0m,

all values of U,

dia =

32 mm
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centroidal simulated

centroidal simulated

outer bar simulated

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges
number | Spup Spyr, Psy | Sen fsen Pen | Srne Tsrhe  Prhe
41 59.15 5%8.15 0.00 } 59.15 59.15 0.00 } 52.94 52.94 0.00
42 55.32 55.32 0.00 | 55.32 55.32 0.00 | 57.19 57.19 0.00
43 51.81 51.81 0.00 | 51.81 51.81 0.00 | 53.97 53.97 0.00
bt 48.85 49,08 0.48 | 49,08 48,70 0.79 | 51.49 51.09 0.79
45 46.61  46.61  0.00 | 46.61  46.61 0.00 | 49.23  49.21 0.05
46 43,83 44,16  0.76 | 44,16  43.48 1.56 | 46.91  46.18 1.59
47 41.09  41.29  0.49 | 41.29  40.34 2.35 | 44.12 43.10 2.36
Table (5f) - Actual and simulated stress ranges caused by the
average total moment, M = 0.5 (My + M)
L =25.0m, all values of U, dia = 32 mm
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Table (6) - Beam details for 27.5 m span, with
all values of the loading frequency
Bar dia = 32 mm



initial required actual total reinf. max. various centroidal various outer bar
section |steel beam beam beam beam number ratio shear stresses stresses
stress depth depth width height of bars (%) stress
number
f‘si dr‘eq d b h Nb RR v sa fsh f‘sd sae f‘she fsde
52 415.0 1118.1 1575.7 500 1650 13 1.33 1.08 393.3 345.8 294.11 396.0 347.4 301.6
53 380.0 1116.2 1573.5 500 1650 14 1.43 1.08 369.1 323.6 274.2| 371.5 332.9 281.9
54 362.5 1141.4 1567.8 500 1650 15 1.54 1.08 349.5 303.7 257.8] 351.9 314.1 266.6
55 345.0 1185.2 1563.9 500 1650 16 1.65 1.09 330.9 287.1 243.5) 340.7 298.6 253.2
56 327.5 1215.1 1559.5 500 1650 17 1.75 1.09 313.3 270.9 230.6 | 327.6 283.1 240.8
57 310.0 1231.6 1555.8 500 1650 18 1.86 1.09 297.7 258.2 218.9 | 312.7 271.1 229.7

Table (6a): L = 27.5 m, all values of U,

dia = 32 mm

A



various total

max. various max.

various strain factors and

section moment values shear concrete strains their relative difference
number | My, My " Vo ®ca  %hn  Ccd Spr Spy Sep Dar Aot 9 dhq
52 5712.8 4973.9 4235.0 848.5 1.45 1.00 0.79 1.0242 1.02555 1.02561 0.14 T4.30 74.30 T4.25
53 5712.8 4973.9 4235.0 848.5 1.28 0.93 0.77 1.0273 1.0285 1.0282 0.12 76.50 76.43 76.44
54 5712.8 4973.9 4235.0 848.5 1.15 0.91 0.75 1.0345 1.0344 1.03417 0.04 82.20 81.73 81.74
55 5712.8 4973.9 4235.0 848.5 1.07 0.90 0.74 1.0401 1.0399 1.0395 0.05 86.12 86.40 86.42
56 5712.8 4973.9 4235.0 848.5 1 1.05 0.88 0.73 1.0455 1.0450 1.0445 0.09 90.52 90.55 90.57
57 5712.8 4973.9 4235.0 848.5 1.03 0.87 0.72 1.0502 1.0497 1.0492 0.10 94 .24 94.27 94.29

Table (6b): L = 27.5 m, all values of U, dia = 32 mm
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sec.

no.

section moduli based on centroidal stresses and
their relative differences

section moduli based on outer bar stresses and
their relative differences

Zy

D74

Dyo

Z3

Al

1
ZTH

ZV

yAl

1
ZLH

!
DZ1

1
DZZ

]
D73

52

14.525

14,385

14.400

14.895

14.299

0.97

0.97

4,17

14.425

14.316

14.040

15

.653

16.130

2.74

0.76

3.05

53

15.479

15.369

15.445

15.579

14.949

0.72

0.72

4.21

15.378

14.943

15.021

16.

504

14.514

2.91

13.71

54

16.344

16.379

16.427

16.109

16.109

0.51

0.22

0.004

16.233

15.834

15.885

17.

318

15.544

2.52

2.52

11.41

55

17.263

17.325

17.390

16.909

16.959

0.74

0.36

0.29

16.766

16.660

16.729

16.

8T4

16.275

0.64

0.64

3.68

56

18.232

18.360

18.369

17.851

18.306

0.75

0.70

2.55

17.439

17.569

17.586

17

.032

17.474

0.84

0.74

2.59

57

19.189

19.261

19.348

18.745

18.778

0.83

0.38

0.17

18.271

18.350

18.441

17.

800

17.844

0.93

0.43

0.25

Table (6¢):

L

27.5 m,

all values

of U,

dia = 32

mm

G



E neutral axis lever arm effective

é section depth ratios depth ratios

g number Ry Ry Jr Iy Jp i, Jig

§ 52 0.310 0.347 0.350 0.882 0.873 0.874}0.904 0.868

g 53 0.336 0.366 0.359 0.874 0.867 0.8720.879 0.844

§ 54 0.368 0.376 0.369 0.864 0.866 0.868 ! 0.852 0,851

é 55 0.392 0.385 0.378 0.858 0.861 0.864 | 0.840 0.843
56 0.400 0.394 0.387 0.855 0.861 0.862 ] 0.837 0.859:
57 0.408 0.401 0.395 0.852 0.855 0.859;0.832 0.834

Table (6d): L = 27.5 , all values of U, dia = 32 mm
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live combined centroidal simulated centroidal simulated outer bar simulated
section|{ load strain load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number FL SF ¥ SRT SRL DS Sr fsr Df re fsre Dfe Se
52 14.299 1.026  14.385 | 103.04 103.35 0.30 | 103.35 99.21  4.17 98.80 94.41 4,65 61.96
53 14.949 1.028 15.369 97.51 98.86 1.39 98.86 94.86  4.21 93.76 89.54 4.71 68.46
E 54 16.109 1.034  16.379 90.98 91.74 0.83 91.74 91.74 0.00 85.33 85.33 0.00 73.52
55 16.909 1.040 17.325 86.22 87.40 1.36 87.40 87.40 0.00 87.57 87.58 - 0.01 77.96
56 17.851 1.045  18.300 81.61 82.79 1.44 82.79 82.79 - 0.00 86.62 86.76 - 0.17 82.03
| 57 18.745 1.050 19.261 T7.71 78.84  1.45 78.84 78.84  0.00 82.87 83.02 - 0.18 85.72

Table (6e) - Actual and simulated stress ranges caused by the maximum total moment (M
all values of U,

L = 27.5 m,

dia = 32 mm

)
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centroidal simulated

centroidal simulated

outer bar simulated

section| stress ranges based and actual stress and actual stress
on F and FL ranges ranges

number | Spur Sgar, Psg | Sen fsrn Pen | Srne Tsrhe  Prne
52 51.67 51.67 0.00 %} 51.67 51.67 0.00} 45.81 45.81 0.00
53 49.43  49.43  0.00 | 49.43  49.43 0.00 { 50.91 50.917 0.00
54 45.87 45,87 0.00 | 45.87 45.87 0.00 | 47.54 47.54 0.00
55 43.57  43.70 0.29 | 43.70 43,57 0.29 | 45.53 45.40 0.29
56 41.24 41,39  0.38 | 41.39 40.36 2.55 | 43,36 42.29 2.54
57 39.35 39.42 0.17 | 39.42 39.35 0.17 | 41.49 41.41  0.20

Table (6f) - Actual and simulated stress ranges caused by the

average total moment, My = 0.5 (My + M)

L=27.5nm,

all values of U,

dia = 32 mm

LS
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Table (7) - Beam details for 15.0 m span and
loading frequency, U = 360 T/hr.
Bar dia = 25 mm



initial required actual total reinf. max. various centroidal various outer bar
section |steel beam bean beam  beam number ratio  shear stresses stresses
stress depth depth width height of bars (%) stress
number
fsi dr'eq d b h Nb RR fsa f‘sh f‘sd f‘sae f‘she f‘sde
116 410.0 831.9 862.0 250 950 11 2.51 1.93 | 390.9 302.4 220.7| 401.8 330.1 240.3
17 380.0 836.9 857.5 250 950 12 2.75 1.94 | 363.0 280.0 204.5| 372.6 309.2 225.1
118 350.0 872.7 912.3 250 1000 12 2.58 1.83 | 336.7 264.3 194.0) 345.2 289.7 212.2
119 340.0 896.8 905.7 250 1000 13 2.82 1.84 | 314.8 246.9 181.4) 341.9 274.6 201.2
120 310.0 914.6 954.4 250 1050 13 2.67 1.76 | 297.2 233.8 172.4| 329.2 258.2 190.0
121 290.0 929.8 949.1 250 1050 14 2.90 1.77 | 279.0 218.9 162.0| 313.0 244.7 180.8
122 265.0 953.4 998.4 250 1100 14 2.75 1.69 | 263.6 208.2 154.6| 293.6 231.3 171.4
123 260.0 959.1 993.6 250 1100 15 2.96 1.70 | 248.7 196.2 146.1) 280.1 220.3 163.8
124 245.0 977.2 989.4 250 1100 16 3.18 1.71 | 234.9 185.9 137.3|267.3 210.9 155.5
125 230.0 997.7 1038.6 250 1150 16 3.02 1.63 | 223.6 176.7 132.0 252.5 199.1 148.4
Table (7a): L = 15.0m, U = 360 T/hr., dia = 25 mm
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various total max. various max. various strain factors and

section moment values shear  concrete strains their relative difference
number | My, My My Ve ®ca  %h  ©ca Ser Sy Sep Dge dpt don dpq
116 1463.6  1163.5 863.4 | 415.5 | 2.76 1.33 0.90 | 1.099 1.092 1.089 0.89 | 87.85 84.75 84.95
17 1463.6  1163.5 863.4 | 415.5 | 2.32 1.30 0.88 | 1.116 1.104 1.101 1.37 | 92.50 88.87 89.09
118 1472.0  1172.0 871.9 | 417.8 | 1.62 1.15 0.79 | 1.097 1.096 1.094 0.32 | 87.69 89.35 89.50
119 1472.0 1172.0 871.9 | 417.8 | 1.60 1.13 0.78 | 1.115 1.112 1.109 0.55 | 94.27 95.31 95.53
120 1480.5 1180.4 880.3 | 420.0 } 1.39 1.01 6.71 1.108 1.104 1.102  0.49 | 95.64 95.88 96.04
121 1480.5 1180.4 880.3 | 420.0 1.37 1.00 0.70 1.122  1.118  1.116  0.54 1100.90 101.22 101.44
122 1488.9 1188.8 888.8 | 422.3 1.21 0.90 0.64 1.114 1.111 1.1709  0.42 {101.61 101.83 101.99
123 1488.9 1188.8 888.8 | 422.3 ] 1.19 0.89 0.63 | 1.126 1.123 1.121 0.47 [106.38 106.64 106.82
124 1488.9 1188.8 888.8 | 422.3 | 1.18 0.88 0.62 | 1.138 1.135 1.132 0.49 {110.59 110.89 111.11
125 1497.3 1197.3 897.2 | 424.5 1.06 0.80 0.57 1.129 1.127 1.125  0.40 {111.36 111.58 111.74

Table (7b): L = 15.0 my, U = 360 T/hr., dia = 25 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses and

sec. their relative differences their relative differences

no. | Zy 2 % 2y, Zig Dz1 Pga Dyz | Zp Zrg - Ip 21, “in Pz Pz Dp3
116 | 3.744 3.848 3.912 3.526 3.676 4.49 2.78 4.24 | 3.642 3.524 3.593 3.716 3.341 3.35 3.35 11.23
117 | 4.031  4.155  4.222  3.786 3.973 4.73 3.06 4.95 | 3.928 3.764 3.836 4.068 3.569 4.37 4.37 13.99
118 1 4.372 4.435  4.494 4.207  4.272 2.78 1.43 1.54 | 4.265 4.046 4,109 4.514 3.872 5.42 5.42 16.56
119 | 4.676  4.746 4,806 4,500 4.581 2.77 1.50 1.80 | 4.305 4.268 4,333 4,264 4,090 1.52 0.86 4,25
120 | 4.981 5.048 5.106 4.807 4.886 2.52 1.36 1.64 | 4.497  4.571 4.633 4.3 4.400 3.03 1.66 2.06
121 |5.306 5.393 5.433 5.131 5.280 2.39 1.64 2.91 | 4.730 4.823 4.869 4.540 4.691 2.94 1.96 3.33
122 |5.648 5.710 5.749 5.504 5.598 1.80 1.11 1.71 | 5.072 5.140 5.185 4.913 5.013 2.23 1.35 2.03
123 1 5.986 6.060 6.081 5.849 5.999 1.60 1.25 2.56 | 5.316 5.396 5.426 5.160 5.308 2.08 1.51 2.87
124 1 6.339 6.396 6.473 6.150 6.179 2.12 0.917 0.48 | 5.571 5.638 5.717 5.368 5.416 2.62 1.20 0.89
125 |6.697 6.776 6.799 6.549 6.706 1.53 1.18 2.40 | 5.931 6.013 6.046 5.767 5.919 1.94 1.39 2.63

Table (7c): L = 15.0m, U = 360 T/hr., dia = 25 mm
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neutral axis lever arm effective

section depth ratios depth ratios

number Ry R Rp 3o g ip JL 1K
116 0.467 0.469 0.448 0.804 0.824 0.838] 0.757 O.787f
117 0.496 0,482 0.462 0.798 0.819 0.833 0.750 O.783§
118 0.490 0.465 0.449 0.814 0.827 0.838) 0.783 0.796%
119 0.504 0.478 0.462 0.809 0.822 0.8331} 0.779 O.794§
120 0.483 0.464 0.451 0.818 0.829 0.839: 0.789 0.802;
121 0.495 0.477 0.463 0.813 0.827 0.833; 0.787 0.810
122 0.479 O0.464 0.453 0.823 0.832 0.838] 0.802 0.816
123 0.490 0.476 0.464 0.818 0.829 0.832% 0.799 0.820
124 0.501 0.486 0.476 0.816 0.823 0.833} 0.791 0.795
125 0.486 0.475 0.465 0.821 0.831 0.834: 0.803 0.822

Table (7d): L = 15.0m, U = 360 T/hr., dia = 25 mm

162



-

live combined centroidal simulated centroidal simulated outer bar simulated
section | load strain load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number FL SF F SRT SRL DS SP fsr Df Sre fsre Dfe Se
116 3.526 1.094 3.828 | 161.63 170.21 5.3 170.21  170.21 0.00 | 160.95 161.48 - 0.33 82.19
117 3.786 1.108 4,127 | 150.15 158.54 5.58 | 158.54  158.54 0,00 | 146.91  147.53 0.43 87.23
118 4,207 1.096 4,433 | 138.04 142.66 3.35 | 142.66 142.66 0.00 | 132.90 132.96 0.05 91.48
119 4.500 1.112 4.741 | 129.07 133.38 3.34 | 133.38 133.38 0.00 | 140.57  140.74 0.12 95.10
120 4,807 1.105 5.043 | 121.14 124.84 3.06 | 124.84 124.84 0.00 | 138.41 139.22 0.58 98.79
121 5.131‘ 1.119 5.370 | 113.68 116.97 2.90 | 116.97 116.97 0.00 | 131.35 132.20 0.64 101.84
122 5.504 1,111 5.698 106.70 109.05 2.20 109.05 109.05 0.00 121.54 122.16 0.51 104.93
123 5.849 1.123 6.033 | 100.63 102.60 1.96 | 102.60 102.60 0.00 | 115.64 116.30 0.57 107.45
124 6.150 1.135 6.396 95.48 97.59 2.21 97.59 97.59 0.00 | 111.15 111.80 0.58 110.20
125 6.549 1.127 6.748 89.94 91.64 1.89 91.64 91.64 0.00 | 103.56 104.07 0.49 112.53

Table (7e) - Actual and simulated stress ranges caused by the maximum total moment (MT)

L = 150 m,

U = 360 T/hr.,

dia = 25 mm
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centroidal simulated

centroidal simulated

outer bar simulated

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges

number | Spar Spa DPsy | Srn Tseh Pen | Srhe fsrhe  Prne
116 83.24 85.10 2.24 | 85.10 81.64 4.24 | 94,15 89.81  4.84
17 77.44 79.27 2.36 | 79.27 75.53 4.95| 89.39 84.08 6.31
118 70.35 71.33 1.39 | 71.33 70.25 1.54 | 78.68 77.49 1.53
119 65.78 66.69 1.39 | 66.69 65.51 1.80 { 74.72 73.36 1.85
120 61.64  62.42 1.26 | 62.42 61.42 1.64 | 69.44 68,20 1.81
121 57.79 58.48 1.19 | 58.48 56.83 2.91 | 65.92 63.97 3.06
122 54.04 54,52 0.90 | 54.52 53.61 .71 | 60.95 59.86 1.82
123 50.89 51.30 0.80 | 51.30 50.02 2.56| 58.01 56.53 2.63
124 48.56  48.79 0.48 | 48.79 48.56 0.48 ] 55.76 55.41 0.65
125 45.47  45.82  0.T77 | 45.82  44.75 2.40| 51.93 50.70 2.43

Table (7f) - Actual and simulated stress ranges caused by the

average total moment, My = 0.5 (M + Mp)
U = 360 T/hr., dia = 25 mm

L = 15.0 m,

791
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Table (8) - Beam details for 15.0 m span and
loading frequency, U = 180 and 90 T/hr.
Bar dia = 25 mm



initial required actual total reinf. max. various centroidal various outer bar
section |steel beam beam beam  beam number  ratio  shear stresses stresses
stress  depth depth width height of bars (%) stress
number
f‘si dreq d b h Nb RR v fsa fsh fsd fsae f‘she f‘sde
126 410.0 822.5 862.0 250 950 11 2.51 1.93 | 380.8 298.4 220.71} 390.7 325.8 240.3
127 380.0 827.5 857.5 250 950 12 2.75 1.94 | 354.1 276.0 204.5| 362.6 304.6 225.1
128 350.0 862.9 911.9 250 1000 12 2.58 1.83 | 328.7 260.4 194.0 ) 343.6 285.4 212.2
129 330.0 892.1 905.3 250 1000 13 2.82 1.85 | 307.3 243.1 181.4 | 340.5 270.2 201.2
130 310.0 904.3 954.3 250 1050 13 2.67 1.76 | 290.1 230.1 172.4 )} 321.2 254.1 190.0
131 290.0 919.4 949.1 250 1050 14 2.90 1.77 | 272.5 216.0 162.0 | 305.6 241.6 180.8
132 272.0 935.9 944.4 250 1050 15 3.12 1.78 | 257.0 203.9 152.5|291.6 230.7 172.1
133 250.0 959.9 993.6 250 1100 15 2.96 1.70 | 243.2 194.0 146.71273.8 217.9 163.8
134 230.0 986.6 988.6 250 1100 16 3.18 1.71 | 230.0 182.8 137.3 %261.7 207.4 155.5

Table (8a): L = 15.0m, U = 180 and 90 T/hr., dia = 25 mm
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various total max. various max. various strain factors anclgvW

section moment values shear concrete strains their relative difference

number | My My My, VI 1 ®%a S%n %da | St S S Dsr | %t Y%n  Ipg
126 1432.4 1147.9  863.4 | 415.5 | 2.49 1.31 0.90 1.099 1.092 1.089 0.89 | 87.92 84.77T 84.95
127 1432.4  1147.9  863.4 | 415.5| 2.09 1.28 0.88 ] 1.116 1.104 1.101 1.43 | 92.50 88.89 89.09
128 1440.9  1156.4  871.9 | 417.8 | 1.56 1.13  0.79 | 1.097 1.096 1.094 0.35 | 88.09 89.36 89.50
129 1440.9  1156.4  871.9 | 417.8 | 1.54 1,11  0.78 { 1.115 1.112 1.109 0.58 | 94.70 95.32 95.53
130 1449.3 1164.8 880.3 | 420.0 1.34 0.99 0.7 1.107 1.104 1.102 0.46 | 95.67 95.89 96.04
131 1449.3 1164.8 880.3 | 420.0 1.32  0.98 0.70 1.121 1.118  1.116  0.51 |100.95 101.24 101.44
132 1449.3  1164.8 880.3 | 420.0 | 1.317 0.97 0.69 1} 1.135 1.131 1.128 0.54 |105.58 105.93 106.16
133 1457.7 1173.2 888.8 | 422.3 1.176  0.88 0.63 1.126 1.123 1.121 0.44 | 106.41 106.65 106.82
134 1457.7 1173.2 888.8 | 422.3 | 1.15 0.86 0.62 | 1.138 1.135 1.132 0.46 {110.67 110.91 111.11

Table (8b): L = 15.0m, U = 180 and 90 T/hr., dia = 25 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses and

sec. their relative differences their relative differences
no. | Zp Loy Zn Z, Zrg DPz1 Dzo Dy | Zp Zy 2l 2, Zig Dy Dy Dis
126 3.761 3.847 3.912 3.554 3.6617 4,00 2.26 3.01 3.666 3.523 3.593 3.784 3.329 4.05 4.05 13.65
127 4,045 4,159 4,222 3.804 3.980 4.37 2.82 4.63 3.950 3.768 3.836 4,136 3.57T6 4.82 4.82 15.65
128 4,384 4,441 4.494 4,225 4.288 2.51 1.32 1.50 4,193 4,052 4,109 4,329 3.888 3.47 3.47 11.33
129 4,688 4,757 4,806 4,518 4,615 2.52 1.48 2.14 4,232 4,279 4,333 4,085 4,121 2.40 1.12 0.89
130 4,996 5.063 5.106 4,835 4.934 2.21 1.34 2.04 4,512 4,585 4,633 4,337 4.442 2.67 1.61 2.42
131 5.318 5.392 5.433 5.150 5.268 2.16 1.39 2.31 4,742 4,822 4,869 4,558 4,682 2.68 1.68 2.70
132 5.639 5.712 5.774 5.442 5.528 2.39 1.29 1.57 4,970 5.050 5.116 4.759 4.855 2.95 1.61 2.01
133 5.993 6.047 6.081 5.860 5.942 1.47 0.90 1.39 5.324 5.385 5.426 5.172 5.261 1.92 1.15 1.71
134 6.337 6.417 6.473 6.135 6.249 2.15 1.27 1.85 5.571 5.656 5.717 5.357 5.475 2.63 1.54 2.21
Table (8c): L = 15.0m, U = 180 and 90 T/hr., dia = 25 mm
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neutral axis lever arm effective
section depth ratios depth ratios
number RT RH RD jT jH jD jL jLH
126 0.465 0.467 0.448 | 0.808 0.823 0.838|0.763 0.784
127 0.499 0.481 0.462 | 0.801 0.820 0.833 | 0.753 0.785
128 0.487 0.464 0.449 | 0.816 0.828 0.838 | 0.787 0.799
129 0.500 0.478 0.462 = 0.811 0.824 0.833§ 0.782 0.799
130 0.481 0.464 0.451 0.820 0.832 0.839 | 0.794 0.810
131 | 0.493 0.476 0.463 . 0.815 0.827 0.833] 0.790 0.808
132 § 0.504 0.487 0.475 = 0.811 0.822 0.831!0.783 0.795
133 f 0.488 0.475 0.46k ' 0.819 0.827 0.832| 0.801 0.812
134 j 0.499 0.486 0.476 } 0.816 0.826 0.833] 0.790 0.804
Table (8d): L = 15.0m, U = 180 and 90 T/hr., dia = 25 mm
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live

combined

centroidal simulated

centroidal simulated

outer bar simulated

:section | load strain load stress ranges based and actual stress and actual stress fatigue

modulus factor modulus on F and FL ranges ranges limit

number | Fy, Sp F SRT SRL Ps Sp fsr Df re  ‘sre Pre Se
126 3.554 1.094 3.837 | 152.63 160.10 4.89 | 160.10 160,10 0.00 } 149.89 150.38 0.32 82.19
127 3.804 1.108 4,134 | 142.01  149.57 5.33 | 149.57 149.57 0.00 | 137.00 137.58 - 0.42 '87.23
128 4,225 1.096 4.439 | 130.59  134.67 3.12 | 134.67 134.67 0.00 | 131.36  131.44 0.06 91.48
129 4,518 1.112 4,747 122.12 125.93 3.13 125.93 125.93 0.00 139.12 139.30 0.12 95.10
130 4.835 1.105 5.051 { 114,52  117.69 2.76} 117.69 117.69 0.00 | 130.45 131.19 0.56 98.79
131 5.150 1.119 5.376 107.58 110.49 2.71 110.49 110.49 0.00 124,05 124,82 0.62 101.84
132 5.442 1.132 5.706 | 101.51 104,55 2.99 { 104.55 104.55 0.00 | 118.77 119.56 0.66 104.72
133 5.860 1.123 6.037 95.32 97.09 1.86 97.09 97.09 0.00 { 109.42 110.01 0.55 107.45
134 6.135 1.135 6.405 90.29 92.74 2.7 92.74 92.74 0.00 | 105.62 106.22 0.57 110.20

Table (8e) - Actual and simulated stress ranges caused by the maximum total moment (MT)

L = 15.0 m,

U = 180 amd 90 T/hr.,

dia = 25 mm
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centroidal simulated

centroidal simulated

outer bar simulated

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges

number | Spyr Spa, Psu | Sen fsrh Pen | Srhe fsrhe  Drhe
126 78.48 80.05 2.00 80.05 77.71 3.01 | 88.62 85.45 3.71
127 73.19  74.79 2.18 | T4.79 T1.48 4.63 | 84.51 79.55 6.23
128 66.50 67.34 1.26 | 67.34 66.34 1.50 | 74.26 T3.17 1.49
129 62.18 62.97 1.26 | 62.97 61.65 2.14 | 70.61 69.03 2.29
130 58.20 58.84 1.10| 58.84 57.66 2.04 | 65.44 64.05 2.18
131 54.66 55.25 1.08 | 55.25 54.00 2.31 | 62.25 60.77 2.45
132 51.66 52.28 1.20 | 52.28 51.47 1.57 | 59.62 58.60 1.74
133 48.19  48.55 0.74 | 48.55 47.88 1.39 | 54.89 54.09 1.45
134 45.88  46.37 1.08 | 46.37 45.53 1.85 | 52.99 51.96 1.98

Table (8f) - Actual and simulated stress ranges caused by the

average total moment, M

L = 15.0 m,

q = 0.5 (MT
U = 180 and 90 T/hr.,

+ MD)

dia

25 mm

LA
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Table (9) - Beam details for 17.5 m span, with
all values of the loading frequency
Bar dia = 25 mm



initial required actual total reinf. max. various centroidal various outer bar
section |steel beam beam beam  Dbeam number ratio shear stresses stresses
stress  depth depth width height of bars (%) stress
number
fsi dr'eq d b h Nb RR v sa fsh fsd f‘sae f‘she fsde
210 410.0 880.3 965.2 300 1050 13 2.20 1.69 | 389.7 313.7 239.2] 398.0 337.1 256.5
211 380.0 885.7 961.1 300 1050 14 2.38 1.69 | 365.9 293.6 224.0{ 373.4 318.1 242.2
212 350.0 924.7 957.5 300 1050 15 2.56 1.70 | 345.9 275.5 210.7 | 352.4 300.9 229.6
213 340.0 950.2 956.8 300 1050 16 2.74 1.70 | 326.1 261.5 199.1 | 343.6 288.7 219.3
214 320.0 962.5 1005.3 300 1100 16 2.60 1.63 | 308.8 248.0 190.7| 339.7 272.1 208.9
215 305.0 973.5 1000.7 300 1100 17 2.78 1.64 | 293.3 235.8 180.9| 326.0 261.3 200.1
216 280.0 995.7 996.0 300 1100 18 2.96 1.64 | 279.4 224.3 171.7| 313.5 250.9 191.6
217 267.0 1009.4 1046.0 300 1150 18 2.82 1.58 | 265.1 214.3 164.9 295.3 238.1 182.9
218 260.0 1017.7 1042.3 300 1150 19 2.98 1.58 | 252.7 204.4 157.2| 283.9 229.0 175.8
219 250.0 1030.5 1038.9 300 1150 20 3.15 1.59 | 241.6 195.0 149.9] 273.6 220.2 169.0
Table (9a): L = 17.5 m, all values of U, dia = 25 mm
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various total max. various max. various strain factors and

section moment values shear concrete strains their relative difference
number | My My My Vr o 1 ®%a  S%n  %d | St S S Dsr | Yot 9don  9pd
210 1983.1  1614.8 1246.4| 488.5 | 2.32 1.25 0.89 | 1.076 1.074 1.072 0.38 | 84.81 82.50 82.61
211 1983.1 1614.8 1246.4| 488.5 | 2.01 1.23 0.88 | 1.088 1.083 1.081 0.64 ! 88.93 86.29 86.41
212 1983.1 1614.8 1246.4 | 488.5 1.75 1.20 0.86 1.101 1.092 1.089 1.03 { 92.24 89.60 89.74
213 1983.1 1614.8 1246.4) 488.5 | 1.64 1.19 0.85 | 1.106 1.104 1.101 0.43 | 93.19 94.54  94.73
214 1996.9 1628.6 1260.2} 491.6 | 1.43 1.07 0.78 | 1.100 1.097 1.095 0.45{ 94.73 95.01 95.15
215 1996.9 1628.6 1260.2 | 491.6 1.41 1.06  0.77 1.111 1.108 1.106 0.50} 99.28 99.54 99.72
216 1996.9 1628.6 1260.2 | 491.6 1.40 1.05 0.76 1.122  1.118 1.116  0.54 {103.33 103.61 103.82
217 2010.7 1642.3 1274.0 | 494.8 1.24 0.95 0.70 1.114 1.111 1.109  0.42 }103.97 104.18 104.34
218 2010.7 1642.3 1274.0| 494.8 | 1.23 0.94 0.69 | 1.123 1.121 1.118 0.45 }107.70 107.94 108.12
219 2010.7 1642.3 1274.01 494.8 | 1.22 0.93 0.68 | 1.132 1.129 1.127 0.46 {111.08 111.35 111.55

Table (9b): L = 17.5 m, all values of U, dia = 25 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses and

sec. their relative differences thelir relative differences

no. | Zy Ly Zp L i Pz1 Pz Dzz | I 2y 4 2, Ztp - Dy Dy Dy
210 5.089 5.147 5.212 4.894 940 2.41 1.15 0.95 4,982 4.791 4,860 5.204 4.572 3.99 3.99 13.83
211 5.420 5.499 5.564 5.193 .289 2.66 1.45 1.86 5.311 5.076 5.146 5.615 4.850 4.64 4.64 15.77
212 5.734 5.860 5.915 5.451 .682 3.16 2.21 4.24 5.627 5.367 5.429 5.996 5.166 4.84 4,84 16.05
213 6.081 6.176 6.261 5.798 .904 2.97 1.57 1.83 5.771 5.594 5.685 5.923 5.307 3.17 3.17 11.61
214 6.467 6.567 6.607 6.240 LA34 2,17 1.55 3.10 5.878 5.985 6.033 5.632 5.825 2.63 1.8 3.44
215 6.808 6.907 6.966 6.554 LI14 2.32 1.46 2.45 6.125 6.233 6.299 5.850 6.018 2.83 1.76 2.87
216 T7.148 7.259 7.339 6.844 000 2.67 1.56 2.28 6.370 6.490 6.576 6.047 6.214 3.22 1.88 2.76
217 7.584 7.664 T.727 7.349 456 1.89 1.06 1.45 6.808 6.897 6.966 6.553 6.670 2.31 1.30 1.79
218 7.958 8.036 8.104 T.717 812 1.84 0.99 1.23 7.084 7.172 T.246 6.819 6.928 2.29 1.25 1.59
219 8.321 8.424 8.497 8.034 183 2.11 1.24 1.85 T.348 7.459 7.538 T7.042 7.197 2.58 1.50 2.20

Table (9¢): L = 17.5 m, all values of U, dia = 25 mm
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neutral axis lever arm effective
section depth ratios depth ratios
number RT H RD jT jH jD jL jLH
210 0.427 0.444 0.428 0.826 0,834 0.844 0,795 0.800
211 0.452 0.456 0.439 0.821 0.830 0.840 %0.786 0.799
212 0.484 0.466 0.450 ; 0.813 0.829 0.837 0.773 0.804
213 0.501 0.477 0.461 § 0.809 0.823 0.8350.772 0.787;
214 0.481 0.463 0.449 i 0.819 0.832 O.837§ 0.790 O.815§
215 0.4917 0.473 0.460 0.815 0.827 0.835 1 0.785 O.804§
216 ? 0.500 0.482 0.470 § 0.8172 0.825 0.834 0.777 O.795E
217 g 0.484 0.470 0.459 0.821 0.829 0.836] 0.795 0.807
218 0.493 0.479 0,468 0.8179 0.827 0.834; 0.794 0.804
219 0.501 0.488 0,477 0.816 0.826 0.833‘ 0.788 0.802
Table (9d): L = 17.5 m, all values of U, dia = 25 mm
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live combined centroidal simulated centroidal simulated outer bar simulated
section| load strain load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number FL SF F SRT SRL DS SP fsr Df Sre fsre Dfe Se
210 4.894 1.074 5.147 | 146.12 150.53 3.02 | 150.53 150.53 . 0.00 | 141.34 141.56 - 0.16 76.86
21 5.193 1.085 5.492 137.07 141.87 3.50 141.87 141,87 .00 130.90 131.20 - 0.23 .81.57
212 5.451 1.095 5.825 | 129.76 135.14 4,15 | 135.14  135.14 .00 | 122.50 122.87 - 0.30 85.74
213 5.798 1.104 6.171 122.29 127.06  3.90 | 127.06 127.06 .00 | 124.25 124.37 - 0.10 89.14
214 6.240 1.098 6.537 | 114.74 118.05 2.89 | 118.05 118.05 .00} 130.05 130.81 - 0.59 92.57
215 6.554 1.109 6.887 | 109.05 112.41 3.08 | 112.41 112.41 00| 125.12 125.93 - 0.65 95.48
216 6.844 1.119 T.244 | 103.96 107.64 3.54 | 107.64 107.64 .00 | 120.98 121.82 - 0.70 98.26
217 7.349 1.112 7.655 97.77 100.25 2.53 | 100.25 100.25 .00 111.81 112.42 - 0.55 101.74
218 7.717 1.121 8.031 93.17 95.47  2.47 95.47 95.47 .00 { 107.40 108.03 - 0.59 103.48
219 8.034 1.130 8.409 89.17 91.69 2.83 91.69 91.69 .00 | 103.98 104.62 - 0.61 105.73

Table (9e) - Actual and simulated stress ranges caused by the maximum total moment (M

L=17.5 m,

all values of U,

dia = 25 mm

)
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centroidal simulated

centroidal simulated

outer bar simulated

average total moment, M, = 0.5 (MT + MD)

L =17.5 m,

all values of U,

dia = 25 mm

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges
| number | Spun Spar Dy | Sen fsrn Drn | Srhe  fsrhe  Drhe
210 74.56  75.27 0.95 | 75.27 T74.56 0.95| 81.35 80.57 0.97
211 70.00 70.93 1.33 | 70.93 69.64 1.86 | T77.72 75.94 2.34
212 66.52 67.57 1.58 | 67.57 64.82 4,24 | T75.17 71.30 5.43
213 62.60 63.53 1.49 | 63.53 62.39 1.83 | 70.66  69.40 1.81
214 58.39 59.03 1.08 } 59.03 57.25 3.10] 65.26 63.23 3.21
215 55.56 56.20 1.16 | 56.20 54.86 2.45| 62.81 61.21 2.61
216 53.11 53.82 1.33 | 53.82 52.62 2.28 | 60.75 59.27 2.49
217 49.66 50.12 0.94 | 50.12 49.41 1.45 | 56.10 55.22 1.58
218 47.30  47.73  0.92 | 47.73  47.15 1.23 {1 53.90 53.17 1.37
219 45.37  45.85 1.05 } 45.85 45.02 1.85 )} 52.19 51.18 1.97
Table (9f) - Actual and simulated stress ranges caused by the
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Table (10) - Beam details for 20.0 m span, with
all values of the loading frequency
Bar dia = 25 mm



initial required actual total reinf. max. various centroidal various outer bar
section [steel beam bean beam  beam number ratio  shear stresses stresses
stress  depth depth  width height of bars (%) stress
number fsi dr‘eq d b b Nb RR v f‘sa f‘sh f‘sd fsae fshe f‘sde
310 430.0 968.1 1121.8 350 1200 14 1.75 1.44 | 406.5 336.7 264.2 412.8 342.4 277.6
311 400.0 930.6 1117.5 350 1200 15 1.88 1.44 | 382.9 316.9 249.2 388.9 335.5 263.5
312 380.0 945.0 1113.8 350 1200 16 2.01 1.45 | 362.7 299.1 235.0| 368.2 318.6 250.0
313 350.0 987.2 1110.4 350 1200 17 2.15 1.45 | 346.5 282.9 222.5| 351.5 303.2 238.1
314 340.0 1014.9 1110.4 350 1200 18 2.27 1.45 | 329.3 269.4 211.6| 342.6 290.2 227.7
315 320.0 1028.5 1105.5 350 1200 19 2.41 1.46 | 313.9 257.2 201.8) 340.3 279.3 218.8
316 310.0 1036.4 1101.4 350 1200 20 2.55 1.46 | 300.7 245.7 192.5| 329.8 268.9 210.3
317 300.0  1045.1 1097.7 350 1200 21 2.68 1.47 | 288.3 235.7 184.61| 318.5 259.8 203.1
318 280.0 1064.8 1094.4 350 1200 22 2.82 1.47 | 276.5 226.1 177.1] 307.6 250.9 196.2
319 270.0  1076.4 1091.3 350 1200 23 2.96 1.48 | 265.9 217.8 170.9| 297.8 243.3 190.6
320 I260.0 1088.9 1090.8 350 1200 24 3.09 1.48 | 255.5 209.9 165.0} 286.9 235.9 185.1
321 250.0 1102.8 1137.9 350 1250 24 2.96 1.43 244.9 201,71 158.5| 274.2 224.7 176.8
Table (10a): L = 20.0 m, all values of U, dia = 25 mm
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various total max. various max. various strain factors and
section moment values shear concrete strains their relative difference
number | M, My M, Vep ®ca  %h  Ccd Spr SrH Sgp  Dgr Aot don dhq
310 2676.9  2215.4  1754.0| 564.2 | 2.07 1.14 0.85 | 1.0502 1.0504 1.051 0.04 | 78.22 76.27 77.05
311 2676.9 2215.4 1754.0| 564.2 | 1.84 1.12 - 0.84 | 1.058 1.059 1.058 0.11 | 82.50 80.97 81.02
312 2676.9  2215.4 1754.0 | 564.2 1.64 1.10 0.82 1.067 1.065 1.064 0.25 | 86.25 84.47 84.54
313 2676.9 2215.4 1754.0| 564.2 | 1.47 1.08 0.81 { 1.075 1.071 1.070 0.50 | 89.56 87.59 87.66
314 2676.9 2215.4 1754.0| 564.2 | 1.38 1.06 0.795| 1.078 1.077 1.076 0.22 | 89.61 90.39 90.46
315 2676.9  2215.4 1754.0 ) 564.2 1.37 1.05 0.786} 1.088 1.086 1.084 0.34 | 94.54 94.80 94.90
316 2676.9 2215.4 1754.0] 564.2 | 1.35 1.04 0.78 | 1.097 1.094 1.093 0.38 | 98.64 98.81 98.93
317 2676.9 2215.4 1754.0| 564.2 1.34 1.03 0.77 1.105 1.102 1.100 0.40 {102.28 102.47 102.61
318 2676.9 2215.4 1754.0) 564.2 } 1.32 1.02 0.762; 1.113 1.110 1.108 0.43 |105.61 105.83 105.99
319 iL2676.9 2215.4 1754.0 | 564.2 1.31 1.01 0.756; 1.120 1.117 1.115  0.46 |108.67 108.92 109.10
320 2676.9 2215.4 1754.0| 564.2 { 1.29 1.00 0.75 4} 1.123 1.124 1.122 0.21 {109.24 111.77 111.96
321 2697.9 2236.4 1775.0 | 568.4 1.17  0.92 0.69 1.120 1.117 1.115  0.39 [112.13 112.32 112.47
Table (10b): L = 20.0 m, all values of U, dia = 25 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses and

sec. thelr relative differences their relative differences

no. | 4y Zog I L 2t Pz1 DPza Dzz | % 2t 21, 2ln Pz Dza Dz
310 |} 6.586 6.580 6.638 6.489 6.369 0.88 0.09 1.88 1 6.485 6.470 6.318 6.827 7.123 2.64 0.22 4.33
31 6.991 6.990 7.038 6.903 6.813 0.69 0.02 1.33 6.384 6.603 6.655 7.364 6.410 4.25 4.25 14.88§
312 | 7.380 7.408 7.465 T.224 7.200 1.15 0.38 0.32 ] 7.270 6.954 7.016 7.808 6.731 4.54 4,54 16.08
313 ¢ 7.725 7.830 7.883 7.440 7.634 2.05 1.36 2.60 | 7.615 7.308 7.367 8.136 7.091 4.20 4.20 14.7;
314 | 8.129 8.223 8.288 7.843 7.987 1.96 1.16 1.85 | 7.813 7.634 7.705  8.027 7.378 2.34 2.34 8.80
315 8.527 8.612 8.692 8.228 8.321 1.94 1,01 1.13 7.867 7.931 8.016 7.598 7.622 1.90 0.81 0.32
316 | 8.902 9.016 9.113 8.525 8.665 2.38 1.29 1.64 8.116 8.239 8.341 7.722  T7.874 2.76 1.51 1.97
317 | 9.285  9.401 9.502 8.900 9.037 2.33 1.25 1.54 | 8.404 8.528 8.634 7.997 8.149 2.75 1.49 1.89
318 9.683 9.799 9.904 9.289 9.422 2.28 1.20 1.43 | 8.702 8.829 8.938 8.284 8.434 2.72 1.46 1.81
319 {10.068 10.172 10.263 9.717 9.842 1.93 1.03 1.28 | 8,987 9.105 9.204 8.603 8.748 2.41 1.31 1.68
320 {10.476 10.557 10.6317 10.194 10.284 1.48 0.77 0.88 | 9.330 9.390 9.476 9.065 9.076 1.56 0.64 0.13
321 111.018 11.122 11.198 10.686 10.839 1.64 0.95 1.43 9.839 9.954 10.039 9.476 9.640 2.03 1.17 1.73

Table (10c): L = 20.0 m, all values of U, dia = 25 mm
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neutral axis lever arm effective

section depth ratios depth ratios

number RT RD jT jH jD jL jLH
310 0.366 0.404 0.392 0.854 0.852 O.860§ 0.842 0.825
311 0.386 0.414 0.401 0.850 0.848 0.8540.839 0.827
312 0.411 0.423 0.471 0.844 0.846 O.852§ 0.826 0.822
313 0.438 0.433 0.420 0.834 0.843 O.849§ 0.803 0.822
314 0.456 0.4471 0.429 g 0.829 0.839 O.845§ 0.799 0.815
315 0.465 0.449 0,438 g 0.827 0.835 O.843f 0.798 0.807
316 0.473 0.458 0.447 § 0.823 0.834 O.843§ 0.788 0.802
317 | 0.481 0.466 0.455 = 0.821 0.831 0.840 0.787 0.799
318 ; 0.488 0.474 0.463 é 0.819 0.829 0.838; 0.786 0.797
319 : 0.496 0.481 0.469 | 0.817 0.826 0.833: 0.789 0.799
320 g 0.502 0.488 0.476 0.815 0.823 0.829; 0.793 0.802
321 f 0.489 0.477 0.467 0.822 0.830 0.836; 0.797 0.809

Table (10d): L = 20.0 m, all values of U, dia = 25 mm
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live combined centroidal simulated centroidal simulated outer bar simulated
section| load strain load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number FL SF F SRT SRL DS SP fsr Df Sre fsre Dfe Se
310 6.369 1.050 6.580 | 142.58 144.90 1.63 | 144.90 142.22 1.88 | 138.02 135.19 2.10 69.89
311 6.813 1.059 6.990 | 133.75 135.46 1.28 | 135.46 133.69 1.33 | 127.25 125.33 1.53 . T4.53
312 7.200 1.065 7.408 | 126.38 128.17 1.42 | 128.17 127.76 0.32 | 118.54 118.21 0.28 79.00
313 7.440 1.073 7.804 | 120.52 124,04 2.92 | 124.04 124.04 0.00 | 113.26 113.44 - 0.16 82.93
| 314 7.843 1.077 8.208 114.48 117.67 2.79 117.67 117.67 0.00 114.92 114.97 - 0.04 86.37
% 315 8.228 1.086 8.609 109.14 112.16 2.77 112.16 112.16 .00 121.37 121.47 - 0.08 89.29
§ 316 8.525 1.095 9.007 | 104.72 108.26 3.38 | 108.26 108.26 0.00 | 118.90 119.52 - 0.52 92.10
% 317 8.900 1.103 9.393 | 100.38 103.70 3.31 | 103.70 103.70 0.00 | 114.76 115.40 - 0.56 94.46
i 318 9.289 1.110 9.793 96.24 99.36  3.24 99.36 99.36 0.00 | 110.74 111.40 -~ 0.59 96.74
§319 9.717 1.118  10.165 92.43 94.97 2.76 94.97 94.97 0.00 } 106.59 107.27 - 0.64 98.61
%320 10.194 1.124 10.554 88.66 90.54 2.12 90.54 90.54 0.00 102.18 101.81 0.36 100.42
321 10.686 1.118 11.108 84.37 86.36 2.36 86.36 86.36 0.00 96.86 97.39 - 0.55 103.15

Table (10e) - Actual and simulated stress ranges caused by the maximum total moment (MT)
L = 20.0m, all values of U, dia = 25 mm
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centroidal simulated

centroidal simulated

outer bar simulated

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges

number | Sppr Spyr, Psu | Sen Tsen Prn | Srhe Tsrne  Prhe
310 72.45 T72.45 0.0014 T72.45 T72.45 0.00 | 64.79 64.79 0.00
311 67.73 67.73 0.00 67.73 67.73 0.00 | 71.99 71.99 0.00
312 64.09 64.09 0.00; 64.09 64.09 0.00 | 68.58 68.56 0.03
313 61.39 62.02 1.03 | 62.02 60.45 2.60 | 67.13 65.07 3.16
314 58.27 58.84 0.98 % 58.84  57.77 1.85 | 63.69 62.54 1.84
315 55.54 56.08 0.97 | 56.08 55.45 1.13 | 61.28 60.54 1.22
316 53.49  54.13 1.19 | 54.13 53.25 1.64 | 59.65 58.61 1.78
317 51.25 51.85 1.17 | 51.85 51.06 1.54 | 57.58 56.63 1.69
318 49.12 49.68 1.14 | 49.68 48,98 1.43 | 55.58 54,71 1.59
319 47.03  47.49  0.97 | 47.49  46.89 1.28 | 53.51 52.75 1.45
320 44,94  45.27  0.74 4 45.27  44.87 0.88 1} 51.28 50.84 0.87
321 42,83  43.18 0.82 | 43.18 42.57 1.43 | 48.60 47.87 1.53

Table (10f) - Actual and simulated stress ranges caused by the

average total moment, My = 0.5 (Mp + My)
L = 20.0 m, all values of U,

dia = 25 mm
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Table (11) - Beam details for 25.0 m span, with
all values of the loading frequency
Bar dia = 25 mm



initial required actual total reinf. max. various centroidal various outer bar
section |steel beam beanm beam  beam number ratio  shear stresses stresses
stress  depth depth width height of bars (%) stress
number
fsi dreq d b h Nb RR v fsa f'sh f‘sd fsae f‘she f‘sde
410 430.0 1087.0 1422.2 450 1500 18 1.38 1.16 | 408.5 353.0 293.5] 412.9 355.5 304.0
411 400.0  1043.5 1418.7 450 1500 19 1.46 1.16 | 389.7 337.6 279.3| 394.0 341.9 290.5
412 380.0 1060.2 1415.5 450 1500 20 1.54 1.17 | 374.5 322.7 267.0 378.6 337.1 278.7
413 360.0 1087.6 1412.6 450 1500 21 1.62 1.17 | 359.8 308.8 255.7| 363.6 323.7 267.9
414 350.0 1109.6 1410.0 450 1500 22 1.70 1.17 | 346.8 295.4 244.21 350.3 310.7 256.7
415 340.0  1141.9 1409.4 450 1500 23 1.78 1.17 | 333.2 283.5 235.5{ 342.0 299.1 248.3
416 330.0 1149.5 1406.8 450 1500 24 1.86 1.17 | 320.7 273.0 225.9} 339.6 288.9 238.9
417 310.0 1166.8 1403.2 450 1500 25 1.94 1.18 | 309.4 263.8 217.8} 329.2 280.4 231.5
418 300.0 1177.0 1399.9 450 1500 26 2.03 1.18 | 299.5 254.8 211.2] 320.2 272.2 225.4
419 290.0  1188.1 1396.8 450 1500 27 2.11 1.18 | 289.0 246.2 203.7} 310.3 264.1 218.3
420 1 285.0  1194.3 1393.9 450 1500 28 2.19 1.19 | 280.7 238.9 197.51} 302.7 257.3 212.6
Table (11a): L = 25.0 m, all values of U, dia = 25 mm
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various total max. various max. various strain factors and

section moment values shear  concrete strains their relative difference
number | My My M Vep ®ca  %n Spr Sry Sep Dgr bt don dhq
410 4517 .1 3867.9 3218.81} T43.6 | 1.67 1.09 0.81 1.034 1.036 1.036  0.16 | 77.84 T77.84 7T7.34
411 45171 3867.9 3218.8) 743.6 | 1.53 1.00 0.80} 1.039 1.040 1.040 0.12 | 81.35 80.08 80.66
412 4517.1 3867.9 3218.81| T743.6 1.42  0.98 0.79 1.043 1.0444 1.0440 0.12 | 84.50 83.65 83.68
413 4517.1  3867.9 3218.8| 743.6 | 1.31 0.97 0.77 | 1.0479 1.0482 1.0476 0.05 | 87.36 86.39 86.41
414 4517.1  3867.9 3218.8) 743.6 | 1.21 0.95 0.76 | 1.053 1.052 1.051 0.16 | 89.96 88.89 88.92
415 4517.1  3867.9 3218.8| 743.6 | 1.14 0.94 0.75 | 1.0551 1.0550 1.054 0.07 | 90.58 91.18 91.21
416 4517.1  3867.9 3218.8| 743.6 | 1.13 0.93 0.74 | 1.059 1.0582 1.0575 0.14 | 93.24 93.29 93.32
417 4517.1 3867.9 3218.8] T43.6 1.12 0.92  0.735] 1.064 1.0632 1.0625 0.15 96.82 96.86 96.90
418 4517.1  3867.9 3218.81 743.6 | 1.11 0.91 0.729] 1.069 1.068 1.067 0.17 {100.12 100.18 100.22
419 4517.1 3867.9 3218.8| T43.6 1.09 0.90 0.721} 1.074 1.073 1.072 0.18 {103.20 103.26 103.31
420 4517.1  3867.9 3218.8| 743.6 : 1.08 0.89 0.715, 1.078 1.077 1.076 0.18 |106.08 106.14 106.20

Table

(1Mb): L = 25.0 m, all values of U,

dia = 25 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses and

sec. their relative differences their relative differences

no. | Zp Zjg  7p 2, i Pz1 Pz Dzz | % g4 2, “tp Py Do Dhg
410 { 11.058 10.959 10.966 11.293 10.921 0.91 0.91 3.41110.941 10.879 10.587 11.931 12.601 3.35 0.57 5.62
411 111.590 11.459 11.523 11.760 11.149 1.15 1.15 5.48| 11.466 11.312 11.080 12.550 12.625 3.48 1.36 0.60
412 | 12.062 11.986 12.057 12.075 11.646 0.64 0.64 3.69| 11.933 11.476 11.549 13.002 11.125 3.98 3.98 16.88
413 1 12.556 12.524 12.588 12.477 12.216 0.51 0.26 2.14|12.425 11.948 12.016 13.569 11.623 3.99 3.99 16.73
414 113.024 13.093 13.179 12.656 12.683 1.19 0.53 0.21|12.893 12.449 12.538 13.869 12.027 3.57 3.57 15.32
415 | 13.555 13.642 13.666 13.287 13.527 0.82 0.65 1.80| 13.207 12.931 12.961 13.856 12.780 2.13 2.13 8.42
416 1 14.087 14,166 14.249 13.700 13.769 1.15 0.56. 0.50| 13.302 13.387 13.474 12.893 12.972 1.29 0.64 0.61
417 1 14.600 14.664 14,776 14.181 14.133 1.21 0.44 0.34]13.719 13.792 13.906 13.277 13.251 1.36 0.53 0.20
418 {15.082 15.179 15.240 14.703 14.883 1.05 0.65 1.23]14.107 14.211 14.280 13.698 13.882 1.22 0.T4 1.34
419 115.630 15.712 15.803 15.219 15.273 1.10 0.52 0.36| 14.556 14.646 14.742 14.113 14.184 1.28 0.62 0.50
420 | 16.092 16.193 16.297 15.605 15.698 1.27 0.63 0.60| 14.923 15.033 15.141 14.409 14.517 1.46 0.73 0.75

Table (11c): L = 25.0 m, all values of U, dia = 25 mm
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neutral axis lever arm effective
section depth ratios depth ratios
number Ry Ry Ry NI N ip Jr, JiH
i
410 0.314 0.344 0.356 . 0.880 0.872 0.872 0.899 0.869
411 | 0.330 0.371 0.364 ' 0.876 0.865 0.870 0.889 0.842
412 | 0.346 0.378 0.371  0.868 0.862 0.867 | 0.869 0.838
413 | 0.366 0.385 0.377  0.862 0.859 0.864 0.857 0.838
414 | 0.390 0.392 0.38%  0.855 0.859 0.865 0.831 0.832
415 0.407 0.398 0.390  0.852 0.858 0.859 0.835 0.850
416 | 0.413 0.404 0.397  0.850 0.855 0.860 0.827 0.831 |
417 1 0.419 0.410 0.403  0.848 0.852 0.858 | 0.824 0.821
418 0.425 0.416 0.408 , 0.844 0.850 0.853§ 0.823 0.833
419 0.431 0.422 0.415 | 0.844 0.849 0.854§ 0.822 0.825
4520 0.436 0.427 0.420 | 0.840 0.845 0.851 0.815 0.819

i ! 1

Table (11d): L = 25.0 m, all values of U, dia = 25 mm



live combined centroidal simulated centroidal simulated outer bar simulated
section| load strain load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number L SF F SRT SRL DS Sr fsr Df re fsre Dfe S
410 10.921 1.036  10.959 | 118.68 118.89 0.17 | 118.89  114.97  3.41 113.09 108.82 3.92 61.17
411 11.149 1.040 11.459 | 114.88 116.46 1.37 | 116.46 110.40 5.48 | 109.87  103.46 6.20 65.63§
412 11.646 1.044 11.986 | 109.91  111.49  1.44 | 111.49 107.52 3.69 | 104.11 99.85 4.26 69.53
413 12.216 1.048 12.524 | 104.98 106.29 1.25 | 106.29 104.06 2.14 98.05 95.69 2.46 73.10
414 12.656 1.052 13.093 | 100.77 102.59 1.81 102.59 102.59 0.00 93.56 93.61 - 0.06 76.78
415 13.287- 1.055 13.610 96.36 97.72  1.41 97.72 g97.72 0.00 93.70 93.70 - 0.005 79.55
416 13.700 1.058 14,166 92.98 94.77 1.93 94.77 94.77 0.00 | 100.46 100.70 - 0.24 82.67
417 14,133 1.063  14.664 90.20 91.87 1.84 91.87 91.56 0.34 97.87 97.79 0.08 85.12
418 14,703 1.068 15.161 86.74 88.31 1.81 88.31 88.31 0.00 94.52 94,78 -~ 0.28 87.11
419 15.219 1.073 15.712 83.82 85.31 1.78 85.31 85.31 0.00 91.72 92.00 - 0.30 89.45
420 15.605 1.077  16.193 81.44 83.20 2.16 83.20 83.20 0.00 89.83 90.11 - 0.31 91.35

Table (11e) - Actual and simulated stress ranges caused by the maximum total moment (M

L = 25.0 m,

all values of U,

dia = 25 mm

)
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centroidal simulated

centroidal simulated

outer bar simulated

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges
number SRHT SRHL kDSH Srh fsrh fh Srhe fsr'he the
410 59.44  59.44  0.00 | 59.44 59,44 0.00 | 51.52 51.52 0.00
411 58.23 58.23 0.00 | 58.23 58.23 0.00 | 51.42 51.42 0.00
412 55.74 55.74 0.00} 55.74 55.74 0.00 | 58.35 58.35 0.00
413 53.14 53.14 0.00 | 53.14 53.14 0.00| 55.85 55.85 0.00
414 51.19  51.30 0.21 | 51.30 51.19 0.21 54.17 52.98 0.35
415 48,66  48.86  0.41 | 48.86 47.99 1.80 | 51.71 50.80 1.80
416 47.15  47.38  0.50 | 47.38 47.15 0.50 | 50.31 50.04 0.54
417 45.93 45.93 0.00 | 45.93 45.93 0.00 | 49,02 48.99 0.06
418 43.92  44.15  0.53 | 44.15 43.62 1.23 | 47.35 46.76 1.26
419 42.50  42.66  0.36 1 42.66  42.50 0.36 | 45.96 < 45.77  0.41
420 41.35  41.60 0.60 | 41.60 41.35 0.60 | 45.01 44,72 0.65
Table (11f) - Actual and simulated stress ranges caused by the

average total moment, MH = 0.5 (MT + M

L = 25.0 m,

all values of U,

D)

dia = 25 mm

cblL
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Table (12) - Beam details for 27.5 m span, with
all values of the loading frequency
Bar dia = 25 mm



initial required actual total reinf, max. various centroidal various outer bar
section |steel beam beam beam  beam number  ratio  shear stresses stresses
stress  depth depth  width height of bars (%) stress
number
fsi dreq d b h Nb R v f‘sa fsh fsd fsae f‘she f‘sde
511 400.0 1099.2 1569.8 500 1650 21 1.31 1.08 | 399.4 351.2 299.5| 403.3 353.6 309.8
512 390.0 1107.4 1566.9 500 1650 22 1.38 1.08 | 384.4 337.7 286.9388.2 341.8 297.7
513 370.0 1129.9 1564.2 500 1650 23 1.44 1.08 | 370.3 325.0 274.7|373.9 338.3 285.9
514 360.0 1146.9 1561.8 500 1650 24 1.51 1.09 | 357.8 312.3 264.2 | 361.1 326.0 275.7
515 350.0 1170.4 1559.5 500 1650 25 1.57 1.09 | 346.4 301.1 255.2| 349.5 315.2 267.0
516 340.0 1205.2 1558.8 500 1650 26 1.64 1.09 | 334.3 290.2 246.5 ) 341.9 304.5 258.5
517 330.0 1213.4 1556.5 500 1650 27 1.70 1.09 | 323.7 280.8 238.0|340.1 295.3 250.2
518 320.0 1222.5 1553.2 500 1650 28 1.77 1.09 | 313.6 271.2 230.6|331.2 286.3 243.3
519 310.0 1232.5 1550.2 500 1650 29 1.84 1.09 { 303.8 263.5 222.91{322.1 279.1 236.0
520 300.0 1243.4 1547.3 500 1650 30 1.90 1.10 | 294.3 254.9 216.6 | 313.1 271.0 230.1
Table (12a): L = 27.5 m, all values of U, dia = 25 mm
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various total max. various max. various strain factors and

section moment values shear  concrete strains their relative difference
number | My My M Vep ®a  ®%n  %d | Ser S S Dsr | 9pt dbon dpq
511 5712.8  4973.9  4235.0| 848.5 | 1.50 1.03 0.80 | 1.033 1.0344 1.0345 0.16 | 80.22 80.22 79.77
512 5712.8  4973.9  4235.0| 848.5 1.40  0.96  0.79 1.036  1.037 1.038 0.13 ] 83.14 82.03 82.57
513 5712.8  4973.9  4235.0| 848.5 | 1.30 0.94 0.78 | 1.040 1.0410 1.0407 0.12 | 85.81 85.12 85.14
514 5712.8  4973.9  4235.0 1 848.5 1.22  0.93 0.77 1.043 1.044 1.043 0.04 | 88.25 87.49 87.50
515 5712.8  4973.9  4235.0| 848.5 1.13 0.92 0.76 1.047 1.0466 1.0462 0.10 | 90.50 89.67 89.69
516 5712.8  4973.9 4235.01( 848.5 | 1.08 0.91 0.75 | 1.049 1.049 1.0487 0.05| 91.17 91.70 91.72
517 5712.8  4973.9  4235.0| 848.5 | 1.06 0.90 0.74 { 1.0522 1.0516 1.051 0.10] 93.51 93.58 93.60
518 5712.8  4973.9 4235.0| 848.5 | 1.05 0.885 0.73 | 1.0563 1.0557 1.055 0.11| 96.79 96.82 96.84
519 5712.8  4973.9 4235.0} 848.5 | 1.04 0.877 0.724/ 1.060 1.0595 1.0590 0.12| 99.82 99.85 99.88
520 5712.8  4973.9  4235.0} 848.5 1.03 0.868 0.718( 1.064 1.0633 1.0626 0.13 {102.66 102.70 102.73

Table (12b): L = 27.5 m, all values of U, dia = 25 mm
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section moduli based on centroidal stresses and

section moduli based on outer bar stresses and

sec. their relative differences their relative differences
no. | Zp Zry  Ip L Zig Pz1 Do Dyz | 74 2y % 21, Ztp - Pz Dio Di3
511 { 14.304 14.163 14.142 14.788 14.285 1.14 0.99 3.52| 14.165 14.066 13.671 15.803 16.856 3.62 0.71 6.66
512 | 14.862 14.727 14.761 15.158 14.532 0.92 0.92 4.31 | 14.717 14.551 14.226 16.335 16.746 3.46 1.14 2.52
513 | 15.426 15.304 15.415 15.456 14.696 0.80 0.80 5.17] 15.278 14.701 14.813 16.789 14.090 3.93 3.93 19.15
514 115.969 15.926 16.029 15.799 15.362 0.64 0.27 2.84| 15.820 15.256 15.361 17.303 14.684 3.70 3.70 17.83
515 | 16.491 16.517 16.592 16.208 16.099 0.61 0.16 0.67] 16.344 15.782 15.860 17.909 15.346 3.56 3.56 16.70
! 516 | 17.090 17.137 17.180 16.836 16.892 0.53 0.27 0.33}| 16.710 16.333 16.382 17.726 16.057 2.31 2.31 10.39
517 | 17.648 17.714 17.794 17.240 17.270 0.83 0.38 0.17| 16.797 16.844 16.929 16.432 16.378 0.78 0.28 0.32
518 | 18.218 18.342 18.367 17.804 18.203 0.82 0.68 2.24| 17.247 17.375 17.408 16.804 17.190 0.93 0.74 2.30
519 { 18.806 18.879 19.002 18.264 18.205 1.05 0.39 0.33] 17.738 17.819 17.944 17.173 17.135 1.16 0.46 0.22
520 | 19.414 19,517 19.556 19.019 19.292 0.73 0.53 1.44 18.247 18.356 18.404 17.813 18.082 0.86 0.59 1.51
Table (12¢): L = 27.5 m, all values of U, dia = 25 mm
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neutral axis

lever arm effective

section depth ratios depth ratios

number RT RH RD jT jH jD jL jLH
511 0.306 0.338 0.349 0.884 0.875 0.874 |0.974 0.883
512 . 0.321 0.367 0.355 0.878 0.870 0.872 0.896 0.858
513 § 0.337 0.367 0.361 0.874 0,866 0.873 {0.875 0.832
514 | 0.355 0.373 0.367 0.868 0.865 0.871 |0.859 0.835
515 0.376 0.379 0.372 0.862 0.863 0.867 |0.847 0,841
516 0.392 0.384 0,378 0.859 0.862 0.864 |0.846 0.849
517 0.397 0.389 0.383 0.855 0.859 0.863 ;0.836 0.837
518 0.402 0.395 0.388 : 0.853 0.859 0.860 {0.834 0.853
519 0.407 0,400 0.394 0.852 0.856 0.861 0.828 0.825
520 0.412 0,405 0.399 0.852 0,857 0.858 [0.835 0.847

Table (12d): L = 27.5 m, all values of U, dia = 25 mm
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live combined centroidal simulated centroidal simulated outer bar simulated
section | load strain load stress ranges based and actual stress and actual stress fatigue
modulus factor modulus on F and FL ranges ranges limit
number FL SF F SRT SRL DS Sr f‘SP Df re fsre Dfe S
511 14,285 1.034 14,163 | 103.90 103.45 0.43 | 103.90 99.94  3.97 97.80 93.51 4,58 59.27
512 14,532 1.037 14.727 | 101.02 101.70 0.67 | 101.70 97.50  4.31 94.95 90.47 4.95 63.26
{ 513 14,696 1.041 15.304 98.56 100.56 2.03 | 100.56 95.61  5.17 93.28 88.03 5.97 67.15
% 514 15.362 1.044  15.926 94.50 96.20 1.80 96.20 93.54  2.84 88.22 85.41 3.29 70.52
r515 16.099 1.047  16.517 90.63 91.79 1.28 91.79 91.18  0.67 83.12 82.52 0.73 73.38
516 16.836 1.049 17,135 86.90 87.78 1.01 87.78 87.78 0.00 83.37 83.37 0.00 76.19
| 517 17.240 1.052 17.714 84.50 85.72  1.45 85.72 85.72 0.00 89.91 89.94 - 0.03 | 78.94
518 17.804 1.056 18,293 81.73 83.00 1.56 83.00 83.00 0,00 87.76 87.95 - 0.21 § 81.22
519 18.205 1.060 18.879 79.73 81.18 1.82 81.18 80.91 0.33 86.15 86.05 0.1 5 83.62
520 19.019 1.063  19.485 76.63 77.70  1.40 77.70 77.70  0.00 82.77 82.96 - 0.24 85.56
Table (12e) -~ Actual and simulated stress ranges caused by the maximum total moment (MT)
L =27.5m, all values of U, dia = 25 mm
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centroidal simulated

centroidal simulated

outer bar simulated

section stress ranges based and actual stress and actual stress
on F and FL ranges ranges
number | Spur Spar,  Psg | Sen fsen Prn | Srhe Tsrhe  Prhe
511 51.73 51.73 0.00} 51.73 51.73 0.00 | 43.84 43.84 0.00
512 50.85 50.85 0.00 ) 50.85 50.85 0.00| 44.13 44,13 0.00
513 50.28 50.28 0.00 50.28 50.28 0.00 52.44 52.44 0.00
514 48.10  48.10 0.00 | 48.10 48.10 0.00 ] 50.32 50.32 0.00
515 45.90  45.90 0.00 | 45.90 45.90 0.00 | 48.18 48,18 0.06
516 43.77 43.89 0.26 ) 43.89 43.74 0.33 | 46.17 46.02 0.33
517 42.79  42.86  0.17 | 42.86  42.79 0.17 | 45.20 45.11  0.18
518 41.33 41.50 0.41 ) 41.50 40.59 2.24 | 43.95 42.98 2.24
519 40.59 40.59 0.00 | 40.59 40.59 0.00 | 43.14 43.12 0.05
520 38.71  38.85 0.37 | 38.85 38.30 1.44 | 41.46 40.86 1.45
Table (12f) - Actual and simulated stress ranges caused by the

average total moment, MH = 0.5 (MT + MD)

L = 27.5m, all values of U,

dia = 25 mm
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CHAPTER 5

ANALYSIS QOF FATIGUE CUMULATIVE DAMAGE

In this study, fatigue life has been estimated by using
Palmgren - Miner's equation (Eq. 5.1) and Inoue - Nakagawa's

equation (Eq. 5.2) :

Ny
Eﬁf.= 1.0 eees (5.1)
i
. n;
) ————=1.0 eees (5.2)
Vige Ny
where:
n, = number of cycles applied at stress range Si
sc= iy
i ° number of cycles to failure at stress range Si

It has been shown, in Chapter (2), that for the fatigue of straight
hot rolled reinforcing bars, the adopted relationship to represent

the S- N curve has the form :

_ =5 -5
log N = AN - 200 (10 )f‘min - 591 (10 )fr eees (5.3)
where, AN is a numerical constant which depends on the bar size and
characteristics, fmin is the stress caused by the bridge dead loads
in N/mm2 and fp is the stress range in N/mmz. Eq. (5.3) is
applicable for all stress ranges above the bars' fatigue 1limit (ff)

which is given, in Chapter (2), by :

fo = 161.5 - 0.33 fhin cese (5.4)
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If we define a dimensionless damage ratio D, at a number of cycles j,
such that (D = 0) for the virgin material (j = 0) and (D = 1) at

failure, then D at any stage j can be given by :

’nj
D, = EEJ_‘
e
D = —
n
NSCNj

where Dm and Dn are damage ratios based on Equations (5.1) and (5.2)

respectively.

From the above definition of the damage ratio based on Palmgren -
Miner's relationship (Dm), we see that the relationship is 1linear.
This leads to the conclusion that we can form a summation of the
damage from a series of loading, at different stress ranges, by
simple addition. Thus if we have n, cycles of a stress range S1 and
n, cycles of a stress range SZ’ etc., the damage will be obtained by
their combination. If such a series of loading is itself repeated,
say K times, the total damage will simply be K times the damage of

one series.

However, this 1linear relationship does not hold, if we apply the
Inoue - Nakagawa's relationship (Eq. 5.2). If we examine the
derivation of the Inoue - Nakagawa's relationship (given in App. A),
we note that the damage sum at failure is derived by taking the

square root of the following equation:

1.0

p=]
—_
[aan]
~1
-
il
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Let us now define the damage ratio based on Inoue - Nakagawa's

relationship (Dn) by :

D:-N-l—-—[z J

no fse \/I\i

If we have n, cycles of a stress range S1 and n, cycles of a stress
range 52, etc., and the series of loading is itself repeated for K
times, then we conclude from the above form for Dn that the total
damage will simply be K times the damage of one series. For this
reason, the last form of the damage ratio based on Inoue - Nakagawa's

relationship (Dn) has been adopted in this study.

Therefore, since it has been assumed in Chapter (3) that the traffic
model 1is repeatable every week, then it follows that the damage

caused in K weeks is simply K multiplied by the damage per week.
Consequently, the bridge life is given by :

L3 . -
ife in years N %D
W W

where Dw is the amount of damage per week, and Nw is the average
number of weeks in one year, taken over a period of four years to

include the effect of the leap years :

N = 0.25 (3 x 365 + 366)/7

W 52.179 weeks/year

The procedure used to estimate Dw is given in the following sections.
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5.1 Simulation of Stress Spectrum

As discussed in Chapter (4), the stress spectrum has been simulated as

follows :
a- The section modulus FL is taken as :
FL = the minimum of ZL and ZLH , Which are defined as :
Z = ML
L sa ~ Tsq
M
Z,. = LH
LH fsh - fsq
wWhere :
ML = the maximum live load moment (including impact)
MLH = 0,5 ML
£ f = the stresses caused by the maximum total moment

b f b -
sa sh sd
(MT = ML + MD , Where MD is the dead load moment), the average total

moment (MH = 0.5 M+ MD) and the dead load moment (MD) respectively.

These stresses correspond to the strains at the centre of the tensile

force (T).

(FL rounded to two decimal places).

b- The strain factor SF is taken as :

SF = the maximum of SFH and 0.5 (SFT + SFD)

where SFT ’ SFH and SFD are the ratios, of the outer bar strain to
the strain at the centre of the tensile force, which correspond to

the maximum total moment (MT), the average total moment (MH) and the

dead load moment (MD) respectively.

(SF rounded toc three decimal places).



Cc~ The stress range in the outer bar is simulated as :

live load moment at mid span {(including impact)
section modulus (FL)

1 -
1 - SP =

where S; is the stress range resulting from the total centroidal

stress which corresponds to the strain at the centre of the total

tensile force.

2 - From the total centroidal stress (fés = S} + fsd)’ the
corresponding strain eés is calculated.

- + ' - !
3 From the outer bar strain (esse eig X SF), the outer bar stress

' .
fsse is calculated.
4 - Finally, the stress range in the outer bar is :

1 - 1 -
Sre - lc.sse f.sde

where fsde is the total outer bar stress caused by the dead load

moment (MD).

(Both fs and fsde values are rounded to one decimal place).

d

The aforementioned procedure implies that, for each beam section,

four parameters are needed (i.e. FL ’ SF ’ fsd and ). Values of

sde
these parameters for the various combinations of the bridge span (L)

and the loading frequency (U), are given at the end of this chapter.

5.2 Cycle Counting Methods

In order to use any complex stress spectrum, in conjunction with
standard constant amplitude data, to estimate the fatigue 1life, the
stress spectrum must be reduced to a series of equivalent cycles or
half cycles (ranges). This process is known as c¢ycle counting. A
large number of counting methods have been proposed, but two are the
most useful. The two methods are the range - mean and the rainflow

counting methods (50, 51).
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5.2.1 Range - Mean Method

In this method, the range between successive turning points (local
maximum or minimum) and the mean of their two values are recorded,
but noting that only ranges,exceeding a specified gate 1level, are
counted (Figure 5.1). This is because a small range may break the
continuity of a much larger range and convert it to small ranges all
of them below the fatigue limit. The introduction of a gate level
allows the consideration of a turning value only if it 1is greater

than the specified gate from the last turning value (50, 51).

It 1is difficult to define an optimum value of the gate level. if,
for example, 1n Figure (5.1) the gate level 1s greater than the range
of B - C, the stress spectrum is divided into four ranges; R1 , R2 ,
R, and R

3 4°
three small ranges A - B, B~ C and C - D would have been included

If a smaller gate, less than B - C, had been wused then
instead of the larger range from A - D.

For metals, the relationship between the number of cycles to

failure N and the stress range S can be approximated (7) by ;
Nsd = K

where K and q are constants which depend upon the material concerned
and the design detail. Since q ranges approximately from a value of
3 to 10, then if an interrupted large range is broken into n smaller
ranges, the total damage for the n ranges may be less than that for
the single large range. This is because of the fact that stress
range S is raised to a power q greater than unity. This means that
decreasing the gate level may result in more events being counted but
with less total damage resulting. Also, if we 1increase the gate

level, this may result in fewer events but more damage.

As a result, the only sensible way would seem to be to try several
gate levels and use that value which gives the maximum predicted
damage (50, 51). Even with such a value of the gate level, there is
no certainty that the predicted amount of damage 1is absolutely
conservative, because its value is obtained by excluding a large
number of small cycles which none the less may be damaging. This

suggests that the predicted damage may be non - conservative (50).
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5.2.2 Rainflow Method

This method, proposed by Endo et al (52), counts cycles and half
cycles. In this outstanding technique, the counting is performed on

the basis of the stress - strain behaviour of the material.

Figure (5.2) illustrates the relationship between the stress - strain
behaviour and the counting method. It is important to note that when
a large range, for example A - D is interrupted by a smaller one

B - C - B'", the coordinates of B' and B are very close on the stress
- strain curve. This indicates that the material acts as if the large
range was uninterrupted and there is a complete cycle B - C - B'. The
rainflow method performs the counting in the same way as the material
reacts to loading cycles. Thus, this method 1is superior to all

others because it is the only one which reflects material

behaviour (7,50,51).

For this method ¢to be applied, the ordered sequence of peaks and
troughs of the strain is the most suitable characteristic for
the counting. However, the sequence of the stress may be used as an
alternative without serious errors (52). The rainflow method has
three alternative procedures, each of which gives the same results

for the number and magnitude of counted cycles.
In all procedures, the first point in the spectrum is effectively
defined by the next point. If the next point is a peak, then the

origin is a trough and vice versa.

5.2.2.1 First Procedure - Rainflow

This procedure, which is the most well known, uses the simulation of
rainflow on fictive multifarious overlapped pagoda roofs (Fig. 5.3).
For this we turn the strain (or stress) spectrum through (90° ), so
that the time axis is vertical. The strain (or stress) spectrum
becomes the imagined series of pagoda foofs, as in Figure 5.3. This
figure shows part of a strain spectrum and the corresponding strain -
stress loop. Further, we imagine that each turning point 1, 2, 3,

etc., 1s the origin of a flow of rain.
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Figure (5.2) - Strain spectrum and the corresponding
stress-strain behaviour
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Let us consider the first rainflow beginning at the first point
(point 1), which is considered a trough point since it is followed by
a peak point. This flow runs down the roof, (segment 1 - 2), until it
reaches point (2), then it falls down until it meets a larger roof

(3 - 4), when it again flows down the roof away from its origin

{point 1).

This flow continues to fall down to the lower roofs unless it comes
opposite a trough more negative than the trough from which it
started. In the present case, the flow has started from the
trough point (1) and so it has to stop opposite the trough point (5)

since this is more negative than the starting point.

When a flow stops, we count one half cycle from its origin to its end

point. Thus, as a result, one half cycle (1 - 4) has been counted.

A second flow starts from the peak point (2) and continues down the
roof (segment 2 - 3) until it reaches point (3), then it falls
vertically towards the lower roofs unless it comes opposite a peak

more positive than the peak from which it started.

In this case, the flow has started from the peak point (2) and has to
stop opposite the peak point (4) which is more positive than the

starting point. This gives another half cycle (2 - 3).

The third flow starts from the trough point (3) and continues dowun
the roof (3- 4) until it meets the first flow (originating from point
1) at point (2') where it has to stop, giving another half cycle

(3 -2").

This procedure continues with a flow from each turning point. Each
flow continues to fall down toc the lower roofs unless it meets one

of the following two conditions :

a - the rain is to stop when it meets another flow originating from

a preceding point.
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b - the rain originating from a peak is to stop, if it comes
opposite a following peak more positive than the peak from which it

started (or a trough more negative than the trough from which it

started).

By tracing the flow from each turning point, the spectrum will be
analysed, with every part of it counted once and only once (7, 50, 51,
52). The values of the strain (or stress) at the starting point of

each flow and at its end point define the magnitude of the strain (or

stress) range.

It is worth noting that if a flow =stops because of the first
condition a (meeting a previous flow), then there 1is always an
equivalent flow which stops because of the second condition b
(larger peaks or smaller troughs). Both flows make one complete
cycle. For example, the half cycles (3 - 2') and (2 - 3) make

a complete cycle. This cycle can be compared with the corresponding

cycle in the strain - stress loop (52).



5.2.2.2 Second Procedure, Maximum - Minimum

We consider Figure 5.4, which shows part of a strain spectrum. This
process is concerned with dividing the spectrum down into a series of
short segments, based upon the values of the peaks and troughs, to
evaluate the number and magnitude of cycles. The counting by the

maximum - minimum procedure is performed as follows

a - We determine the absolute maximum and absolute minimum (points
34 and 17) of the spectrum under consideration. The maximum and
minimum points and the two end points divide the spectrum into front,

middle and rear parts, denoted by F, M and R (see Fig. 5.4).

b - If the end of part F is bounded by a minimal value, then we next
look for the maximum value in that part, in this case point 14 (ir

it was bounded by a maximal value, we would look for the minimum).

For the section of part F bounded by the starting point and the

maximum point 14 (or minimum), we determine the minimum point 7 (or

maximum) .,

This forms the basis for a further subdivision of the section and we
proceed towards the starting point, until the section considered has

reduced to the first segment (0 - 1).

c - We repeat the subdivision process as above on the rear part R
proceeding towards the end point (39). Since part R is bounded by
the absolute maximum (point 34), then we first determine its minimum

point (35).

Now section (35 - 39) is bounded by a minimum point, hence we

determine the maximum within the segment (point 38).

Steps a, b and c evaluate the half cycles which are marked by H in
Fig. 5.4, noting that the middle part M constitutes one half cycle by
itself,
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d - To determine the full cycles, the aforementioned procedure has to
be applied again to ail sections marked by H. In the application to
any section, the end points for that section should be disregarded in
the process of determining the maximum and minimum internal points

for that section.

At the end of this process, the full cycles are determined by picking
out ranges whose serial numbers within the section H are even (these
are marked O in Fig. 5.4). All ranges with odd serial numbers

(marked X in Fig. 5.4) are not counted.

To illustrate this, let us consider the section H represented by the
middle part M. If we disregard its end points (17, 34), then its
maximum is point (26), while point (25) represents its minimum. Now
the local front section (17 - 25) of this middle part M is bounded by
a minimum point (25). It will be seen that point (22) represents its
maximum and determines the next subdivision. The new section (17 -
22} 1is bounded by a maximum point (22) and its own minimum is now
given by point (19), remembering that we always disregard the
starting point. This now establishes the next subdivision, which is
itself subdivided by the maximum internal point (18) which concludes

the division of this front part of the middle section M.

The local rear section (26 - 34) of the middle part M can be analysed
now, in a similar way. Thus the first round of the full cycles of the
middle section can be extracted by picking out ranges (18 - 19),

(22 - 25), (26 - 27) and (28 - 33). All these ranges (marked O in
Fig. 5.4) have even serial number within the middle part M. As
menticned earlier, odd numbered ranges (marked X in Fig. 5.4) are

disregarded.

e -~ We apply step d to all ranges marked O and X, for as many times
as required, to define completely all the full cycles counted by this

procedure.



5.2.2.3 Third Procedure - Pattern Classification

This procedure 1is performed by considering three successive ranges
from the complex strain (or stress) spectrum, which can then be

compared and as a result classified into four basic shapes or

patterns (Figure 5.5).

Type a shows that the second range (2 - 3) of the three is smaller
than the first range (1 - 2), whilst the third range (3 - 4) is
larger than the second range (2 - 3). This pattern is named the

decrease- increase type or simply D - I type.

The names given to the other patterns follow from this idea of

comparing the second with the first range and the third with the

second range.

As shown 1in Fig. 5.5, the decrease - increase type, D - I,
corresponds to one closed hysteresis loop which is between (2) and
(3) and one half cycle between (1) and (4). Accordingly, we can
count the cycle (2 - 3) and eliminate the intermediate points {2) and
(3) by joining (1) and (4) by a line. We then consider in the same
way the type of pattern produced by the then remaining points (1) and
(4) and the next two points (5) and (6).

In cése of I - I type, that is each successive range is greater than
its predecessor, ranges (1 - 2) and (2 - 3) always correspond to one
half cycle irrespective of the following range (3 -~ 4). Accordingly,
we can count the two half cycles (1 - 2) and (2 - 3) and eliminate
points (1) and (2). Whence points (3, 4, 5, 6) are to be considered

next.

In case of the increase - decrease type, I - D, the first range (1 - 2)
is always one half cycle. Whether range (2 - 3) is one cycle or one
half’ cycle, this cannot be determined from the first pattern (1 - 2 -
3 - 4). Therefore the next pattern (2 - 3 -4 -~ 5) has to be
considered after counting the half cycle (1 - 2) and eliminating

point (1).
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In case of the decrease - decrease type, D - D, nothing can be
determined without considering the next pattern (2 - 3 - 4 - 5).
Point (1) has to be kept aside temporarily, while considering the
next pattern (2 - 3 - 4 - 5). It should be noted that since the first
pattern (1 - 2 - 3 - 4) is of D - D type, i.e. the range (3 - 4) is
smaller than the range (2 - 3), then the next pattern (2 - 3 - 4 - 5)
is accordingly either of D - I or D - D type.

If the type of the pattern (2 - 3 -~ 4 - 5) is D - I, then as shown
earlier, points (3) and (4) are to be eliminated after counting the
cycle (3 - 4). Whence, point (1) has to be considered now by

examining the pattern (1 - 2 - 5 - 6).

If the pattern (2 - 3 - 4 -~ 5) is also D - D, then point (2) has to
be kept aside with point (1). These two points have to be
considered, immediately after two following points have been

eliminated.

If it happens that the pattern (3 - 4 - 5 - 6) is also of D - D type,
then we will be in a situation where more than two points (1, 2, 3)
have to be kept aside. Later, these points have to be considered,

starting with the last point which has been kept aside (point 3).

If this procedure is applied to the spectrum shown in Figure 5.6,
which 1is exactly similar to that shown in Fig. 5.4, then the first
pattern (0 - 1 - 2 - 3) has an I - D type. Therefore, range (0 - 1)
is a half cycle range. After eliminating point (0), the next pattern
(1 -2-3-4) has aD - D type, so that the next point (5) has to
be considered, keeping aside point (1). Pattern (2 - 3 - 4 - 5) has

a D - I type which means that range (3 - 4) is a full cycle range.

Since point (1) has been kept aside, then the next pattern to be
considered, after eliminating points (3) and (4) and recalling point
(1), is (1 - 2 -5 - 6) whose type is I - D. Hence range (1 - 2) is

a half cycle range. After eliminating point (1), the next pattern (2

- 5 - 6-17) has aD - I type and range (5 - 6) is a full cycle
range. After eliminating points (5) and (6), the next pattern (2 - 7
- 8 - 9) has a D - D type, meaning that point (2) has to be kept

aside when considering the next pattern (7 - 8 - 9 - 10) whose type

is D - D. This means that we have now two points to be kept
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aside (point 2 and 7). The next pattern (8 - 9 - 10 - 11) has aD - I
type, hence range (9 - 10) is a full cycle range. After eliminating

points (9) and (10), and recalling points (2) and (7), the next
pattern (2 -7 - 8 - 11) has a D - D type. Point (2) has to be kept
aside again and the next pattern (7 - 8 - 11 - 12) has a D - D type.
Whence point (7) has to be kept aside again, with point (2). The next
pattern (8 - 11 - 12 - 13) has a D - I type, giving the range (11 -
12) as a full cycle range. By eliminating points (11) and (12) and
recalling points (2) and (7), the next pattern will be (2 - 7 -~ 8
- 13) whose type is D - D. Again, point (2) has to be kept aside and
the next pattern (7 - 8 - 13 - 14) has a D - I type. Hence the range
(8 - 13) is a full cycle range. After eliminating points (8) and (13)
and recalling point {(2), the next pattern will be (2 - 7 - 14 -~ 15)

whose type is I - D, and so on.

In Fig. 5.6, lines marked with (=) and (-) represent the full cycle

and half cycle ranges respectively.

5.3 Computer Program

The computer program which simulates the stress spectrum is similar
to that used to simulate the moment spectrum (Section 3.6). The only
difference 1is that, from the stored live load moment values the
corresponding stress range values in the outer bar are simulated (as

described in Section 5.1) and stored.

In this study, the rainflow method has been adopted to perform the
stress cycle counting. After examining an existing computer program
constructed to perform the cycle counting, for airframe structures,
by the first procedure (rainflow procedure - Section 5.2.2.1), the
author has chosen to write another program, based on the third
procedure (pattern classification procedure - Section 5.2.2.3). This
is because 1t 1is believed that such program would be simpler in
construction and faster in execution than the alternative one based
on the first procedure. The flow chart of this Program is given in

Figure 5.7 and the full listing is given in Appendix B.

The amount of the damage per week (Dw) has been computed by adding
the damage caused by the successive counted cycles en a cycle to

cycle base.
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5.4 Tables of Stress Simulation Parameters



bar section section strain centroidal and outer
dia modulus factor bar dead load stresses
(mm) number KN.M/(N/mm?) N/mm?
FL SF fsd fsde
12 3.71 1.085 212.5 229.3
13 4.18 1.104 188.9 207.9
14 4,56 1.097 178.9 195.7
> 15 4.86 1.090 170.2 185.2
16 5.45 1.107 1542 170.3
17 5.84 1.101 147.2 161.7
17 | 3.80 1.108 | 204.5 225.1
118 | 4.22 1.096 | 194.0 212.2
19 | 4.51 1112 | 181.4 201.2
25 120 | 4.82 1.105 § 172.4 190.0
121 | 5.14 1.119 | 162.0 180.8
122 | 5.50 1,111 154.6 171.4
123 5.85 1.123 ! 146.1 163.8

i

Table 1 - Stress simulation parameters for
L =15.0m and U = 360 T/hr.
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bar section section strain centroidal and outer
dia modulus factor bar dead load stresses
(mm) number KN.M/(N/mm?) N/mm?
F, Sp fsa fsde
110 3.7 1.085 212.5 229.3
111 4,18 1.104 188.9 207.9
32 112 4,56 1.097 178.9 195.7
113 4,86 1.090 170.2 185.2
114 5.45 1.107 154,2 170.3
127 3.80 1.108 204.5 225.1
128 4,22 1.096 194.0 212.2
129 4,51 1.112 181.4 201.2
25 130 4,82 1.105 172.4 190.0
131 5.14 1.119 162.0 180.8
132 5.44 1.132 152.5 172.1
133 5.85 1.123 146.1 163.8

Table 2 - Stress simulation parameters for
L =15.0mand U = 180 and 90 T/hr.
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bar section section strain centroidal and outer

dia modulus factor bar dead load stresses
{mm) number KN.M/ (N/mm? ) N/mm?

FL SF fsd f‘sde

21 5. 04 1.051 234.9 246.5

22 5.43 1.070 211.6 225.7

23 6.00 1.084 193.6 209.4

. 24 6.42 1.079 185.0 199.3

| o5 | 6.94 1.002 169.6 185.0

26 % 7.43 1.087 162.7 176.5

211 | 5.19 1.085 2240 242.2

212 | 5.45 - 1.095 210.7 229.6

g 213 | 5.80 1.104 199.1 219.3

: 214 | 6.24 ©1.098 190.7 208.9

- 315 | 6.55 17,709 180.9 500.1

§ 216 . 6.8 1.119 171.7 191.6

2 7.35 1.112 164.9 182.9

f 218 7.72 1.121 157.2 175.8

Mo e S s s

i
i

Table 3 - Stress simulation parameters for
L =17.5 m and all values of U
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bar section section strain centroidal and outer
dia modulus factor bar dead load stresses
(mm) number KN.M/(N/mm?) N/mm?
fL F fsd fsde
31 6.66 1.037 249.9 259.0
32 7.36 1.043 226.9 236.5
33 7.89 1.055 208.8 220.1
> 34 8.55 1.067 193.8 206.4
35 9.26 1.077 180.9 194.5
36 9.81 1.086 168.9 183.1
311 6.81 1.059 249.2 263.5
312 7.20 1.065 235.0 250.0
313 T.44 1.073 222.5 238.1
314 7.84 1.077 211.6 227.7
25 315 8.23 1.086 201.8 218.8
316 8.53 1.095 192.5 210.3
317 8.90 1.103 184.6 203.1
318 9.29 1.110 177.1 196.2
319 9.72 1.118 170.9 190.6

Table 4 - Stress simulation parameters for
L = 20.0 m and all values of U
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bar section section strain centroidal and outer

dia medulus factor bar dead load stresses
(mm) number KN.M/ (N/mm? ) N/mm?
s Sp fsa Fsde

42 11.73 1.032 270.1 278.6

43 12.53 1.039 251.8 261.6

32 L 13.23 1.046 235.5 246.3

45 13.93 1.053 220.8 232.3

46 14.70 1.059 207.9 220.0

411 11.15 1.0401 279.3 290.5

: 412 11.65 1.044 267.0 278.7

413 12.22 1.048 255.7 267.9

414 12.66 1.052 244,2 256.7

25 415 13.29 1.055 235.5 248.3

g 416 13.70 1.058 225.9 238.9

é 417 14.13 1.063 217.8 231.5

§ 418 14.70 1.068 211.2 225.4

i 419 15.22 1.073 203.7 218.3

Table 5 - Stress simulation parameters for
L = 25.0 m and all values of U
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bar section section strain centroidal and outer
dia modulus factor bar dead load stresses
(mm) number KN.M/(N/mm?) N/mm?
L Sp fsd sde
52 14.30 1.026 294.1 301.6
53 14.95 1.028082 274.2 281.9
32 54 16.11 1.034135 257.8 266.6
55 16.91 1.040 243.5 253.2
56 17.85 1.045 230.6 240.8
512 14.53 1.037644 286.9 297.7
513 14.70 1.041 { 274.7 285.9
514 15.36 1.044 264.2 275.7
515 16.10 1.047 | 255.2 267.0
= 516 16.84 1.049 246.5 258.5
517 17.24 1.052 238.0 250.2
! 518 17.80 1.056 230.6 243.3
519 18.20 1.060 222.9 $236.0

Table 6 - Stress simulation parameters for

L = 27.5 m and all values of U
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 The Variation of The Bridge Fatigue Life with The Section Modulus

228

Fatigue lives, for the different combinations of the loading
frequency (U) and the bridge span (L) , have been calculated and are
given 1in tables and graphs at the end of this chapter. As mentioned
in Chapter (5), fatigue life has been estimated by using two theories
(i.e. Palmgren - Miner's theory and Inoue - Nakagawa's theory). The
first theory is widely accepted by designers and researchers and it
is currently adopted and used extensively in the prediction of
fatigue lives of general structures. Consequently in this study, the
relationship between the fatigue life and the section modulus is

based on values predicted by this theory.

Fatigue 1lives have been predicted also by using the second theory
(Inoue -~ Nakagawa's theory) only for the purpose of comparison. As
can be seen from the fatigue life tables, the two values are very

close and the agreement is very good.

For 15.0, 17.5 and 20.0 m spans, Log(life) wvalue increases
consistently with increasing the section modulus FL‘ But for 25.0
and 27.5 m spans, the relationship ceases to be a smooth curve of

single curvature and a form of 'kink' develops.

To explain this behaviour, let us examine the variation of Me , the
limiting value of the live load moment, including impact, which gives
an outer bar stress range equivalent to the endurance limit, Se . To
do this, we have to investigate first the relation between the total
centroidal stress, fés s which corresponds to the strain at the
centre of the tensile force, and the total outer bar stress, fése ’
as follows:
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Case (1)

If the centroidal stress (fés) and the corresponding outer bar stress

(fése) both fall on the same linear segment of the stress - strain

curve, Fig. 6.1 (let us assume now it is the second linear segment),

then the difference between the two stresses is :

f! = (S

- ] L 1 1 —
tse — Tig ) E E' el (SF 1)

e! - e!
F “ss ss

Where eés is the centroidal strain and SF is the strain factcr, which

is the ratio of the outer bar strain( ) to the centroidal strain

t
Csse
(eés) and E' is the slope of the second linear segment of the stress

- strain curve. Hence :

1 - 1 — tat -
fss = fsse E el (SF 1) e (6.1)
Equation (6.1) represents a general relationship between the
centroidal and outer bar stresses, in terms of the centroidal
strain(eés),the strain factor (SF) and the slope of the stress -

strain curve for the steel.

If we consider the limiting outer bar stress (denoted by fsel) which
gives a stress range equivalent to the endurance limit (Se), then any
lower stress will not affect the fatigue life. The endurance

limit (Se) is given in Chapter (2) by :

S = 161.5 - 0.33 fs

e de

where fsde is the dead load outer bar stress. Hence the limiting

outer bar stress (fsel) is :

£ =

sel = 161.5 + 0.67 fsde

Se + fsde



stress

case (1)

or

] 1

fss and fsse < O.8f‘y

£ = 425 N/mm?

y

f' = 340 N/mm?
y

strain
Figure (6.1) - The 'outer bar stress - centroidal stress'

relationship for case (1)
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Hence it follows from the general Equation (6.1) that the limiting

centroidal stress, below which stresses are not effective,is :

f.,=T°f - E' (S, - 1)

sl sel €s1 F

or

fsl

i

161.5 + 0.67 fsde - E! eq1 (SF - 1) ce..(6.2)

where esl is the centroidal strain which corresponds to the

centroidal stress fsl'

The 1live load modulus (FL) is taken in Chapter (4) to represent the

section through all loading stages. Thus the centroidal stress range

S; is simulated by the following equation :
t . L
Sr = ML/FL

where Mt is the live load moment (including impact). Consequently
the relation between the limiting moment value Me and the limiting

centroidal stress fsl can be written as :

fsl - f.sd

= Me/FL
Hence Me = FL (fsl - fsd)
where fsd is the centroidal dead 1load stress.

If we now substitute fsl by the expression given in Eg. 6.2, we get:

Me = F (161.5 + 0.67 fsde - E' eq1 (SF - 1) - fsd) ... (6.3)



For all beam sections in this study,the outer bar dead 1load stress
fsde is less than (0.8 fy), i.e. fsde falls on the first linear
segment of the stress - strain curve (Fig. 6.1). Whence, the outer

bar and centroidal dead load stresses (fsde and fsd) are related by :

fsde =B ®sde © E SF €sd © SF fsd
where €.de * €sq 2re the dead load outer bar and centroidal strains

and E is Young's modulus.

Substituting £ in Eq. 6.3 gives :

sde

=
"

FL (161.5 + 0.67 SF fs - E'esl(SF - 1) - fsd)

d
or

=
"

F. (161.5 - fS

o L (1 - 0.67 Sp) - E'e_ (S - 1)) ceeo(6.4)

d
This equation is valid when both the outer bar and centroidal
stresses fall on the second linear segment, of the stress - strain

curve, whose slope is E',

If both stresses fall on the first linear segment, whose slope is E,

then Eq. 6.4 will still be valid if we replace E' by E.

The strain factor (SF) is, by definition, greater than unity and all
the strain factors (Sp) in this study are smaller than
(1/0.67 = 1.5). Thus for this case, case (1), as we move from one
beam section to the next larger section (with lower stresses), the
section modulus (FL) increases. Thus both the centroidal dead load
stress fsd and the centroidal strain €1 decrease. At the same
time, the variation in the strain factor, from one section to the
next, is very small (as can be seen from the design tables at the end
of Chapter 4). Therefore, it is concluded from Eq. 6.4 that the
limiting moment value Me increases with increasing the section
modulus: (FL). This means that for case (1), as the modulus FL
increases, the limiting value Me increases. Consequently the number

of effective cycles decreases and the fatigue life increases.
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Case (2)

If the centroidal stress fés and the corresponding outer bar stress

fése are on different linear segments of the stress - strain curve

(Fig. 6.2), then the difference between the two stresses is :

1 1
£ - fSS

t/Rr _ ot 1 1 ot
ise (fy/E f'/E + e SF)E e! E

y Ss Ss

LI X ! 1 - et
fy E fy/E + €gq E SF €is B

Noting that, E = 5.71 E' , we see that:

' _ 1 = 1 f1 ' 1 - et
fsse fss = fy fy/5.71 + el E SF €3 E

— ! 1 |
= 4.71 fy/5.71 + el E? SF ~ 5.71 eés E

Hence the centroidal stress is given by :

1 -1 - ' - 1 ' 1 '
fss 'fsse 4,71 fy/5.71 els E SF + 5.71 el E ee.(6.5)
Similarly to case (1), the limiting outer bar stress fsel below

which stresses do not affect the fatigue life is :
fsel = 161.5 + 0.67 fsde

Furthermore, the limiting centroidal stress fsl below which . stresses

do not affect the fatigue life, can be obtained from Eq. 6.5 by
. . ' . .

substituting fsse by fsel and eis by eq1 - Hence it follows that the

limiting centroidal stress can be expressed as :

fsl = 161.5 + 0.67 fsde - 4.71f§/5.71 - €41 E' SF + 5.71 €41 E!



stress case (2)
\
e! S e! | f‘sse 2 O’ny
sse F %gq |
Pilotad 5 - ,
! fss < O.8f‘y
f' = o0.8r
y y
fy = 425 N/mm?
- E =5,71 E!
-
P A
rd
- /
Ve
”
e 1
P sse
//
P
g
e
o N\e _ v strain
| 1 | -

Figure (6.2) - The 'outer bar stress - centroidal stress'
relationship for case (2)

wee
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Similarly to case (1), the limiting live load moment value Me is

given by :

Also, the outer bar dead load stress (fsde) is given by, fsde = SFfsd .
By substituting for fsl and fsde we get the following equation for Me :

M = F

e L (161.5 + 0.67 S fsd - 4.71f§/5.71 - ele'SF

\
+ 5.71 eSlE - fsd)
For this case, case (2), the centroidal and outer bar stresses are
assumed to fall on different linear segments of the stress - strain
curve. It therefore follows that the 1limiting centroidal stress
(£gp)
can be evaluated by :

falls on the first linear segment whose slope is E. Hence fsl

- - 1 1
fsl = E esl = 5.71 E eq1 f‘Sl < f‘y

Substituting and rearranging, we get :

Me = FL [161.5 - fsd (1 - O.67SF) - B! eq1 (SF - 1] ees. part 1
cee. (6.6)

Part 1 of Eq. 6.6 is exactly similar to Eq. 6.4 of case (1). Hence
‘as concluded earlier, when the modulus FL increases, part 1
increases also. However for this case, the limiting centroidal stress
(fsl) falls on the first linear segment of the stress - strain curve,

sl
Consequently for case (2), as the equation contains a part with

i.e. T < f& . Thus, part 2 of Eq. 6.6 1is always negative.

positive slope and a part with negative slope, there is no certainty
that the limiting moment value Me increases consistently with the

increasing modulus F; , as it does for case (1).
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If we consider the short spans (15.0, 17.5 and 20.0 m), the dead load
stresses are low enough to keep the limiting total outer bar stress
(fsel = S, + fgqe = 161.5 + 0.67 fsde)’ in all sections, less than
the change point f& . Therefore all sections are controlled by the
equation relevant to case (1) (Eq. 6.4 and Fig. 6.1). Accordingly,
the fatigue life increases consistently with increasing the section

modulus.

However, for the longer spans (25.0 and 27.5 m), where the section
depths are increased to comply with the deflection requirement, the
dead load stress for some sections is high enough to push the
limiting total outer bar stress (fsel) over the change point

(f§ = O.8fy). If the corresponding centroidal stress (fsl) is also
over (0.8 f_) (as is the case for the highly stressed sections), then
case (1) will govern the behaviour of the limiting moment value (Me).

As a result, it increases with the increasing modulus (FL).

As we move to the sections with lower stresses, we get some sections
whose limiting outer bar stress (fsel) is still higher than (0.8 fy),
but the corresponding centroidal stress (fsl) is less than this
value. For such sections the limiting moment value (Me) is defined
by the equation relevant to case (2) (Eq. 6.6 and Fig. 6.2).
Consequently part 2 of Eq. 6.6 will decide whether the limiting

" moment value (Me) for such a section is higher or lower than its

value for the next more highly stressed section.

Table (6.1) gives the details of the sections governed by case (2)
compared with the more highly stressed sections next to them. From
this table, it appears that for the sections reinforced with 32 mm
bars and governed by case (2), the absolute value of the negative
part 2 is, relatively, not large enough to reverse the sign of the
gradient AMe/AFL , and hence ALog(life)/ AF; , but it is sufficient

to decrease its value in comparison to the other intervals. For the
gimilar sections vreinforced with 25 mm bars, the absolute value of
the negative part 2 is, relatively, large enough to reverse the sign

of the gradient ALlog{life)/ AFL.



limiting outer bar limiting live load moment, M _, in KN.M
bar dia section and centroidal stress section modulus =
{(mm) number ranges, in N/mm? (FL) case (1) case (2)
£ 1 £ KN .M/ (N/mm? ) M Part (1)  Part (2) Mo
(Eq.6.4) (Eq.6.6) (Eq.6.6) (Eq.6.6)
42 348.17 346.07 11.73 892.5 N/A N/A % N/A
43 336.76 324.12 12.53 906.6 N/A N/A W
> 53 350.36 348.45 14.95 1110.0 N/A N/A ; N/A
54 340.12 329.48 16.11 N/A 1294.1 - 139.7 X 1154.4
412 348,23 345.37 11.65 913.0 N/A N/A N/A
413 340.99 329.82 12.22 N/A 1008.6 - 102.5 906.1
= 514 346.22 343.45 15.36 1218.7 N/A N/A N/A
515 340.39 326.86 16.10 N/A 1330.2 - 174.4  1155.8

Table (6.1) - Sections for which, the limiting outer bar and

centroidal stresses (f

f ) are slightly higher

sel’ "sl

or lower than the change point (f& = 340 N/mm?)

Lee



6.2 Sections with Low Stresses in The Reinforcement

For the sections listed in Table (6.2a), it is interesting to note
that they might be capable of carrying the design load even after the
failure of their outer layer of bars. The new stresses in the
remaining bars, under full design load, which we will call the
'revised' bar stresses, will still be less than the yield value, and

therefore the section will remain intact.

The revised centroidal stress féa can be estimated approximately

from:
N
féa = fsa X N .
b~ "
where:
Nb = the total number of bars in the section.
nb = the number of bars in the outer layer.

The actual values of féa are higher than those estimated by the above
formula and shown in Table (6.2a), due to the decrease in the lever

arm which results from the failure of the outer layer of bars.

For some sections (16, 121, 131, 130, 216, 215, 317 and 419), the
revised centroidal stresses (féa) are high enough to make their
remaining reinforcement yield under the maximum probable moment Mp
{Sections 3.7 and 4.8). This can be seen by comparing these
sections, after the failure of their outer layer, with the highly
stressed sections whose behaviour under the maximum probable moments
(Mp) has been investigated in Chapter (4). Table (6.2b) shows this
comparison, and it 1s clear that these sections are not capable of

resisting the maximum probable moment (Mp).
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" total number maximum centroidal
bar dia section number of bars stresses before and
(mm) number of bars in one after the outer
layer layer failure, in N/mm?
| Nb Ty fsa féa
17 9 3 250.0 375.0
16 9 3 264.5 396.8
32 114 9 3 258.2 387.3
26 11 4 261.8 411.4
36 14 5 262.9 409.0
123 15 4 248.7 339.1
122 | 14 4 263.6 369.0
121 | 14 4 279.0 390.6
133 § 15 4 243.2 331.6
132 | 15 5oL 257.0 350.5
131 L4 4 § 272.5 381.5
- 130 | 13 4 290.1 419.0
21819 5 - 252,71 343.0
a8 5 1 265.1 367.1
o216 18 5 279.4 386.9 |
215 oy 5 | 293.3 415.5
319 % 23 6 § 265.9 359.7
318 § 22 6 . 276.5 380.2
317 | e 6 | 288.3 403.6
419 % 27 8 % 289.0 410.7

Table (6.2a) - Approximate revised centroidal stresses for
the sections with low stresses, after the
failure of their outer layer of bars
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Span serial number of revised serial number of centroidal centroidal outer bar

the section with centroidal the highly stressed stress for stress for stress for
(m) failed outer layer stress for section section (b) section (b) section (b)
section (a) under design under under
(section a) under design (section b) load (f ) M (f_) M_(f )
load (f! ) sa b b b Spe
sa (N/mm? ) (N/mm? ) (N/mm? )
(N/mm? )
15.0 16 396.8 11 395.8 425.6 433.2
15.0 121 390.6 116 390.9 422.7 437.0
15.0 131 381.5 126 380.8 422.7 437.0
15.0 130 419.0 126 380.8 422.7 437.0
17.5 216 386.9 210 389.7 413.0 423.1
17.5 215 415.5 210 389.7 413.0 423.1
20.0 317 403.6 310 406.5 421.4 428.5
25.0 419 410.7 410 408.5 421 .4 426.2

Table (6.2b)~ Comparison between the sections with failed outer
layer and the highly stressed sections

0%e
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For the remaining sections (i.e. 17, 114, 26, 36, 123, 122, 133, 132,
218, 217, 319 and 318); fatigue life after the failure of their outer
layer seems to be less than 0.5 per cent of the 1life before the
first failure. This is clearly too small to be of practical value.
This effect can be seen by comparing these sections, after the failure
of their outer layer, with other sections (12, 110, 21, 31, 118, 117,
128, 127, 212, 211, 312 and 311) in the fatigue life tables given at
the end of this chapter.

As an example, let us compare section (318) with section (311) in
Table (4c) page (297). For the latter, the fatigue life is about

5.7 years which results from a total centroidal stress of about

385 N/mm°. For section (318), the fatigue life of the outer layer of
bars 1is about 1205 years. For this section, the approximate revised
centroidal stress , after the failure of the outer layer of bars, is
given in Table (6.2a) to be about 380 N/mmz. By comparing this
revised stress with the stress for section (311), we conclude that
the fatigue 1life of section (318) after the failure of its outer
layer of bars would be only around 0.5 per cent of the life before

this failure.

Therefore, fatigue 1lives for the sections under consideration are

taken to be defined by the stage of the outer layer failure.

6.3 Curve Fitting

Two methods to fit a curve to a certain data have been used. The
first 1is the standard least squares method (Appendix C), whilst the
second one 1is derived by the author to ensure a 'safe' result, as

shown in the following section.



242

6.3.1 Safe Curve Method

The least squares method fits a curve with deviations above and below

it. Such fitting is not appropriate for design data, if a safe design

is required.

If we have n linear equations connecting a set of m unknowns, say X1,
X2,...., X with n > m, the residuals for a 'safe curve', Fig. (6.3),
with all deviations above it are always negative or 2zero

{non-positive):

This method is a process for finding the values for X1, X2’ ooy Xm

which will make the sum of the deviations as numerically small as

possible i.e.

Finding the values for XT’ X2 ge oy Xm which minimize G and satisfy
the conditions of non-positive residuals 1is a standard linear

programming problem {(53), whose solution is easily derived.

If we have to fit a pth degree polynomial to a certain data :

V= a, + a.x + a x2 + + a_xP
0 ] > ceeena D

then, the above equation is still linear in the unknown parameters aj.

In this case the constraints are :

2 : .
X+ 8%, + ceeens + 2 x2 < Y. i=1,2, «..yn

a
pTi i

+ a

0 1
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safe curve

deviation (r)

Figure (6.3) - Curve fitting by the
safe curve method
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While the objective function G is :

n
G = 2(-1‘.)
. i
i=1
i ]2 L
G = N v, - (naj + a, ) X, +a, L X, o+ + a, x:)
1 1 1 1
or simply :
n no, 3 o
G= ~(nay+a ) X; + a, ) Xy + e+ o8y x3)

1 1 1

In this study, the E04MBF subroutine (App. D) of the NAG Library has
been used to find the safe second degree polynomial curve for the
Section modulus F; - Log (life) data. This subroutine solves linear
programming problems or finds a feasible point for such problems. An
initial estimate of the solution must be supplied by the user. This
has been estimated from the relevant least squares curve
coefficients, which have been obtained by another subroutine GO2CJF

(App. C).



6.4 Log (life) - FL Safe Curves

To establish a graphical relationship, the least squares curves have
been found to provide an initial estimate for the required safe

curves (as explained in Sec. 6.3.1) and to provide a comparison

between the two sets of curves.

The first computer run has been made to find the least squares second
degree polynomials (i.e. y = Ty + Tyx + T2x2), by giving the same
weight for all points. The resulting curves for 15,0, 17.5 and 20.0 m
spans are satisfactory except for the combination of L = 15.0 m and

U = 360 T/hr. where the point related to section (17) seems to be
relatively far from the fitted curve. Examining this point, in the
fatigue 1life tables at the end of this chapter, reveals that its
corresponding fatigue life is based on one effective cycle per week
only, and therefore it is believed acceptable to disregard this
point, and find the best fit for the remaining points related to L =

15.0 m and U = 360 T/hr.

For 25.0 and 27.5 m spans, the resulting curves cannot be considered
satisfactory, which is due to the presence of some points at which,
the gradient ALog(life)/ AFL is either negative or small (Sec.6.1).
Consequently, a second run has been made for these spans, with some
points given certain weights to bring them back to the general

behaviour of the remaining points.

Weight values have been estimated visually and are given in
Table (6.3) which also gives a comparison between the first and

second run.

Since any stress range smaller than the endurance limit (Se) is
assumed not to cause any damage, there is a certain section modulus
value, beyond which the fatigue life is theoretically infinite. For

this, two other forms of curves have been tried :
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Log{life) = TO + S + ———ji——~—7§—
FLC - FL (FLC - FL)
T o
Log(life) = Ty + + 5
lnFLC - lnFL (lnFLC - lnFL)

where FLC is a critical value of the section modulus.

For each combination of U and L, three values of FLC have been tried.
They are taken around that section modulus value, shown in the design
tables (Chapter 4), which makes the maximum stress range Sre nearly
equal to the endurance limit (Se). Table (6.4) shows these three

values for the different combinations of U and L.

A third run has been made to find the least squares fit for these two
forms, using the weighted values of the points, but as can be seen
from Table (6.5), the new forms do not generally give a better fit
than the second degree polynomial which has the advantage of a

simpler form. For this, the two new forms have been disregarded.

The coefficients TO’ T1, T2 values of the least squares second degree
polynomial have been used as the initial estimate for the required

coefficients of the safe curves.

The coefficients TO, T1, T2 values for the safe curves are given in
Table (6.6), which also shows the deviation between the original
weighted Log(life) values and the corresponding values interpolated
from the safe curves. These deviations for the fatigue 1life
interval, 25 yrs € life € 400 yrs, are reasonably small for 15.0,
17.5 and 20.0 m spahs, but are not so for the two longer spans due to

the presence of the odd points, as discussed earlier.

Even with these odd points, the sums of squares of the residuals seenm
to be adequately small and consequently, it has not been thought

necessary to try polynomials with higher degrees.
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egarding Tables (6.3, 6.4, 6.5 and 6.6) :

<
"

=
]

<
1}

Flepr F

and

Logl(life), where 'life' is the fatigue life of the bridge, in

years, estimated by the Palmgren - Miner's theory.

the weight given to some odd points to improve the curve

fitting (0 < w < 1).

VXW
’ T2 = polynomial coefficients for the curve :
y=T,+T F +T, F2
0 1L 2 L
T~ + T. F.. +T F2 -y { 2 P2) is based on the
0 1T L1 2 "Li i ’ i

original 'y' values, while (2 Pi)P is based on the weighted
2 2
1 1
values V' Both (z ri) and (E Pi)P are for the least

squares fit.

1C2? FLCB = the section modulus values taken near the point,

where the outer bar stress range (Sre) is
equivalent to the endurance limit (Se). FLC is
one of these 3 values which gives the best least
squares fit for :

Yy = Tp =+ - 2 2

Fle - FL (Fre - Fr)
T

vy = TO + ! + T2 >

InF, ., - InF| (InF ~ - 1nF)



=

2 r?) resulting from the least squares fit

of Yy » using the weighted values Vg -

(E P?) resulting from the least squares fit

of MR using the weighted values Yy -

(2 ri) resulting from the safe curve polynomial

fit, using the weighted values Yy o

the largest value of (yd/ye), where y 4 is the real
value, while ye is the corresponding interpolated

value (ye = Log(life) = Tg + T,F + TZFL2)

R value taken over the interval
(1.398 ¢ Vg € 2.602) which corresponds to
(25 yrs. < fatigue life ¢ 400 yrs.)
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dia L U section y y W (Yrz)  (Vr2)
(mz) | (m) | (T/hr.)| number W 1) (il
90 42 1.627 1.464  0.90 | 0.0377 0.0207
25.0| 180 | 42  1.338 1.204 0.90 | 0.0277 0.0155
32 360 42 1.054 0.896 0.85| 0.0173 0.0067
90 53  2.114 1.903 0.90 | 0.1021 0.0242
27.5| 180 53  1.812 1.540 0.85| 0.1058 0.0132
360 53 1.514 1.211 0.80 | 0.1186 0.0109
412 1.733  1.473  0.85
90 . 0.0982 0.0386
413 1.726  1.640  0.95 |
% 412 1.439  1.151 0.80 |
' 25.0] 180 0.1086 0.0503
| 413 1.432  1.289 0.90
412 1.158 0.869 0.75 :
360 . 0.1121  0.0461 |
5 413 1.149  0.977 0.85 ’
5 |
513  2.110 1.899  0.90
90 0.3482 0.0693
514 2.636 2.241 0.85 !
| 513 1.809 1.538  0.85
' 27.51 180 . 0.3787 0.0521
| | 514 2.376  1.901  0.80
§ | 513 1.512  1.210 0.80
| 360 0.4180 0.0511
; . 514 2,093 1.570 0.75

Table {(6.3) - Weight values and their effect
in improving the curve fitting
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dia = 32 mm dia = 25 mm
Lim) U (T/hr.) | Frop Froo Fres | Frop Frop o Fres
?goand 5.85 5.80 5.75 | 6.05  6.00 5.95
15.0
360 6.30  6.20 6.10 | 6.15  6.10  6.05
17.5 | &Ll 7.90  7.75  7.60 | 7.95  7.85  7.75
i A ) ) i i ) )
20.0 | all 10.30  10.20 10.10 | 10.40 10.30  10.20
) 2 ) ) i i ) )
25.0 | 21l | 15.70  15.60  15.50 | 15.45 15.30  15.15
: values * * ° ° ° *
o7.5 | all 18.75 18.65 18.55 | 18.60 18.45  18.30
X A ) i ) . i i
Table (6.4) - Critical values of the section

modulus in KN.M/(N/mm?)
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U(T/hr.) T, T, T, () r3), Fio  (Lriy  (Ird)
90 1.1046 - 1.1799 0.2825 0.0044 5.85 0.0016 0.0015
15.0 180 2.2399 - 1.8424 0.3586 0.0022 5.85 0.0014 0.0013
360 1.6402 - 1.6838 0.3389 0.0022 6.10 0.0000 0.0000
90 6.1572 - 2.7015 0.3223 0.0035 7.90 0.0372 0.0360
17.5 180 7.2829 - 3.2026 0.3663 0.0029 7.90 0.0236 0.0226
360 7.2249 - 3.2645 0.3701 0.0062 7.90 0.0292 0.0281
90 0.8025 - 0.2920 0.0791 0.0037 10.30 0.1561 0.1533
20.0 180 0.0245 - 0.5988 0.1000 0.0045 10.30 0.1382 0.1355
360 1.8587 - 1.1633 0.1373 0.0067 10.30 0.0950 0.0927
90 15.2982 - 2.7594 0.1344 0.0207 15.50 0.0096 0.0097
25.0 180 22.5725 - 3.9455 0.1808 0.0155 15.50 0.0133 0.0134
360 26.5797 - 4.6340 0.2082 0.0067 15.50 0.0087 0.0088
90 4,3355 - 0.8372 0.0446 0.0242 18.75 0.0371 0.0369
27.5 180 10.9521 - 1.7591 0.0752 0.0132 18.75 0.0177 0.0175
360 18.8705 - 2.8230 0.1095 0.0109 18.75 0.0109 0.0108

Table {6.5a) - Least squares fits for the weighted points

Bar dia = 32 mm

Lae



L{m) | U(T/hr.) T, T, T, (3r2), Fo  (brdly (1r2),
90 1.1545 ~1.1382 0.2659 0.0062 6.05  0.1928 0.1899

15.0 | 180 2.1760 - 1.7311 0.3321 0.0064 6.05  0.1704 0.1677
360 2.4801 - 2.0230 0.3679 0.0082 6.15  0.0779 0.0755

90 3.9147 ~ 1.8594 0.2404 0.0022 7.95  0.3085 0.3046

17.5 180 5.0202 - 2.3375 0.2809 0.0016 7.95  0.2725 0.2688
360 4.9282 -~ 2.4033 0.2865 0.0053 7.95  0.2250 0.2215
90 0.0078 - 0.4966 0.0887 0.0069 10.40  0.0727 0.0708

20.0 180 1.2273 -~ 0.8979 0.1149 0.0104 10.40  0.0511 0.0494
360 3.5607 - 1.5606 0.1564 0.0025 10.40  0.0538 0.0522

90 11.1531 -~ 2.0211 0.1019 0.0386 15.45  0.3450 0.3432
25.0 180 12.9902 - 2.3804 0.1169 0.0503 15.45  0.3648 0.3630
360 16.4702 - 2.9914 0.1415 0.0461 15.45  0.2969 0.2952

90 20.7833 - 2.7876 0.1021 0.0693 18.60  0.1186 0.1182

| 27.5 180 21.8843 - 3.0018 0.1100 0.0521 18.60  0.1242 0.1236
| 360 29.5201 ~ 4.0243 0.1428 0.0511 18.60  0.0833 0.0829

Table (6.5b) - Least squares fit for the weighted points

Bar dia = 25 mm

AT



L(m)

U(T/hr.)

T, T, T, (3 ro)g R, R

90 2.5000 - 1.7926 0.3475 0.0105 1.0496 1.0496

15.0 180 2.8911 - 2.1267 0.3885 0.0036 1.0347 1.0347
360 2.4655 - 2.0450 0.3770 0.0044 1.0461 1.0461

90 4.8288 - 2.2477 0.2837 0.0136 1.0344 1.0057

17.5 180 6.6350 - 2.9907 0.3488 0.0060 1.0765 1.0000
360 5.4639 - 2.6648 0.3192 0.0225 1.1084 1.0000

90 - 1.9993 - 0.0197 0.0635 0.0110 1.1383 1.0129

20.0 180 - 0.6710 - 0.4424 0.0910 0.0101 1.1790 1.0182
360 1.5827 - 1.0971 0.1330 0.0105 1.2216 1.0000

90 27.7357 - 4.6360 0.2043 0.0770 1.0787 1.0783

25.0 180 33.9852 - 5.6695 0.2451 0.0613 1.0880 1.0880
360 34.1278 - 5.7743 0.2507 0.0268 1.0678 1.0678

90 8.5840 - 1.3956 0.0626 0.0438 1.1168 1.1168

27.5 180 T4.4727 - 2.2180 0.0899 0.0248 1.1032 1.0000
360 21.2637 - 3.1416 0.1198 0.0188 1.1244 1.0121

ATable (6.6a) -~ Safe curves for the weighted points

Bar dia = 32 m

€se



U(T/hr.)

Bar dia = 25 mm

0 T, T, (Iri)g R, R,

90 1.0767 - 1.0866 0.2574 0.0161 1.0437 1.0437

15.0 180 1.4746 - 1.4063 0.2941 0.0218 1.0395 1.0359
360 3.5328 - 2.4807 0.4149 0.0227 1.1467 1.0410

90 3.4265 - 1.6978 0.2269 0.0055 1.0175 1.0150

17.5 180 5.2571 - 2.4214 0.2877 0.0043 1.0438 1.0109
360 5.6358 - 2.6343 0.3043 0.0137 1.0943 1.0174

90 - 1.3006 - 0.1935 0.0708 0.0160 1.1403 1.0137

20.0 180 1.0858 - 0.8597 0.1119 0.0199 1.1116 1.0200
360 4.1925 - 1.7197 0.1660 0.0059 1.0579 1.0169

90 15.0023 - 2.5967 0.1227 0.1157 1.0827 1.0702

25.0 180 15.4715 - 2.7481 0.1299 0.1197 1.0939 1.0939
360 15.2588 - 2.8131 0.1346 0.1038 1.1849 1.0732

90 28.5973 - 3.8069 0.1346 0.1748 1.1857 1.1857

27.5 180 31.1899 - 4.1902 0.1473 0.1387 1.1941 1.1941
360 39.3631 - 5.2707 0.1817 0.1361 1.2411 1.0979

Table (6.6b) - Safe curves for the weighted points

7Ge
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6.5 The Centroidal Stress Range Giving a (100) Yrs. Fatigue Life

Table (6.7) gives, for each combination of U and L, the design value
(corresponding to the design maximum live load moment, including
impact) of the centroidal stress range fsr100 which 1is needed to
produce a design fatigue life of (100) years. These values have been

interpolated from the fitted curves.

For each specific loading frequency U, the stress range for the
100 yrs. fatigue life (fsr100) decreases with increasing span. This

is because dead load stresses (f ) are higher for the longer spans.

Whence the endurance limit (Sesfe161.5 - 0.33 fsde) decreases with
increasing dead load stresses (fsde)’ allowing smaller ranges to be
effective. Also, since the number of stress cycles to failure (N) is
given by Eq. (5.3) as : N = Ay - 200 (107) £, - 597 (107) ¢,
then, 1if the dead load stress (fmin) increases, N decreases and this
allows the stress cycles to be more damaging. Consequently, to get
the same design fatigue l1ife, the stress range fsr1OO tends to be

smaller.

As we move from the small spans 15.0, 17.5 and 20.0 m to the larger
ones, 25.0 and 27.5 m, there is a relatively large decrease in the
stress range fsr1OO value. This 1s because of the relatively large
dead load stresses associated with the long spans, and is caused by
the need to increase the beam section depth to meet the deflection

requirement.

For all spans, the ratio of the stress range for the (100) yrs.
fatigue 1life to the yield stress (fsr100/fy)’ ranges approximately
between (0.20) and (0.27).

Finally, the stress range fsr100 decreases as the bar diameter
decreases. This 1is also due to the 1larger dead 1load stresses

associated with small bars.
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Notes Regarding Table (6.7)

1100

1
Fl100

fsr100

the required section modulus, to give a design fatigue life
of (100) yrs., estimated from the safe 1life curve,

in KN.M/(N/mm2).

as above, but estimated from the least squares curve,

in KN.M/(N/mmZ).

ML/FL1OO s, Where ML is the maximum live load moment

including impact, in KN.M,



dia = 32 mm dia = 25 mm

L(m) | U(T/hr.) Friool@) Flioo(P) a/b f 100 fsr100/fy Fl100(@) F£100(b) a’b fr100 fsr100/fy
90 4.863 4,833 1.0062 | 117.00 0.275 4.947 4.926 1.0043 | 115.02 0.271
15.0 180 5.017 5.004 1.0026 | 113.41 0.267 5.129 5.109 1.0039 | 110.93 0.261
360 5.186 5.174  1.0023 | 115.73 0.272 5.280 5.250 1.0057 | 113.66 0.267

90 6.353 6.351 1.0003 115.96 0.273 6.519 6.511 1.0012 113.01 0.266 |
17.5 180 6.543 6.537 1.0009 | 112.59 0.265 6.736 6.722 1.0021 | 109.37 0.257
360 6.737 6.720 1.0025 | 109.35 0.257 6.933 6.909 1.0035 | 106.26 0.250
90 8.091 8.078 1.0016 | 114.06 0.268 8.333 8.319 1.0017 | 110.75 0.261
20.0 180 8.369 8.353 1.0019 | 110.28 0.259 8.629 8.597 1.0037 | 106.95 0.252
360 8.612 8.592 1.0023 | 107.16 0.252 8.868 8.851 1.0019 | 104.07 0.245
90 13.011 12.803 1.0162 99.79 0.235 13.018 12.837 1.0141 99.74 0.235
25.0 180 13.376 13.207 1.0128 97.07 0.228 13.436 13.287 1.0112 96.63 0.227
360 13.624 13.535  1.0066 95.30 0.224 13.728 13.647 1.0059 94.58 0.223
90 15.528 15.363  1.0107 95.17 0.224 15.659 15.197 1.0304 94.37 0.222
27.5 180 16.020 15.910 1.0069 92.25 0.217 16.237 15.970 1.0167 91.01 0.214
360 16.440 16.368  1.0044 89.89 0.212 16.691 16.505 1.0113 88.54 0.208

Table (6.7) - The centroidal stress

ranges giving a (100) years fatigue life

LSe
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6.6 The Effect of The Section Modulus Definition on The
Predicted Fatigue Life

As mentioned earlier, in Chapter (4), the section modulus has been defined
as : FL1 = the minimum of ZL and ZLH s, Where ZL and ZLH are the live load
moduli corresponding to the maximum live load moment (ML) and the average

live load moment (3 ML) respectively.

In order to investigate the effect of the modulus value (FL) on the
bridge fatigue life, separate runs have been made for L = 15.0 m and
U = 90 T/hr. with FL value defined as : FL2 = the maximum of ZL and

Z[_.H .

The results shown in Table (6.8) reveal that,for section (111) (as an
example), the variation in the modulus value is as small as

3.59 percent, but the difference in fatigue lives is as high as

33 percent. This is mainly because increasing the modulus value
results in decreasing the values of the simulated stress ranges. As

a result, more stress ranges would be smaller than the endurance limit

value.

The idea of excluding all stress ranges lower than a certain
endurance 1limit, in the damage sum, has been criticised by many
researchers as a major defect in the linear damage sum rule (10).
Also, 1in reality, the endurance limit value decreases with an
increasing number of cycles (3). Until now, there has been no common
practice to deal with these two points. It is 1likely that
considerably more work will need to be done before significant
progress can be made in this field for both steel in general, and for

reinforcing steel in particular.

But, let us now consider the effect of defining the modulus FL on the
interpolated section modulus value which gives a certain design

fatigue life (say 25, 50, 100 and 200 years).



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective
2 2 2 .
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?) cycles, per week Log(llf‘e)m
(life)m (life)n fss fsse SPe Se NC Nec
110 3.86 5.16 5.18 359.9 366.7 137.36 85.83 25227 2696 0.713
111 4.33 15.94 16.01 320.3 342.4 134.49 92.89 25227 902 1.202
112 4.66 47 .47 47.62 301.0 330.2 134.50 96.92 25227 313 1.676
!
113 4.96 161.81 162.09 284.9 310.6 125.36 100.38 25227 94 2.209
114 5.58 1458.93 1459.44 256.2 283.6 113.28 105.30 25227 11 3.164

Bar dia = 32 mm

L =

Table (6.8a) - Bridge fatigue lives for L = 15.0 m and U = 90 T/hr., which are
based on a modulus defined as: F, = the maximum of ZL and Z

LH
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section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective
2 2 2 .
KN M/ (N/mm? ) (N/mm?) (N/mm? ) (N/mm? ) cycles, per week Log(llf‘e)m
(life)m (life)n fss fsse Sre Se NC Nec
127 3.98 5.76 5.79 347.5 354.7 129.60 87.22 25227 2420 0.760
128 4,28 13.67 13.73 326.9 343.2 131.01 91.47 25227 1055 1.136
129 4.60 30.21 30.32 305.1 339.3 138.06 95.10 25227 488 1.480
130 4.91 96.74 96.95 288.3 318.6 128.55 98.80 25227 156 1.986
131 5.27 282.99 283.36 270.0 302.1 121.29 101.84 25227 55 2.452
132 5.53 920.78 921.42 255.4 289.1 117.00 104.71 25227 17 2.964

Table (6.8b) - Bridge fatigue lives for L = 15.0 m and U = 90 T/hr., which are
FL = the maximum of ZL and ZLH

based on a modulus defined as:

Bar dia = 25 mm

09¢
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Curve fitting has been carried out to find the least squares and safe
curves for FL2 - Log (life) data. From these curves, the section
modulus values which give a design fatigue life of 25, 50, 100 and
200 yrs. have been interpolated and compared with the corresponding
values based on FL1 data. Fortunately, the maximum deviation between
the two values (Table 6.9) is only around 1.0 percent.
Consequently, the difference between the centroidal total stresses is
expected to be less than half that. This is because, for all our
sections, the centroidal stress range is not more than 50 percent of

the total stress.

Since the deviations shown in Table (6.9) are quite small, it is
believed that it is reasonable to define the section modulus as :

FL = the minimum of ZL and ZLH ,» Which gives more conservative results.
Some calculations have been made, and given in Appendix E, to
breakdown the variation in the fatigue lives which results from an
increase in the section modulus value. This wvariation has two
components. The first is caused by the increase in the section
modulus itself, which results in reducing all the stress range
values. The second and the most important component 1is caused by
excluding more stress ranges because they become less than the

endurance limit.

These calculations reveal that, for section 111 (as an example), a
difference of 3.59 percent in the section modulus value gives

a 33 percent difference in the fatigue 1life. Out of this figure, about
28 percent difference results from the cycles excluded becauses they
become lower than the endurance limit, while about only 5 percent is due

to the change in the stress range values.

As mentioned earlier, there are some cases where stress ranges in

the outer bar are lower than the centroidal stress ranges. Even for
such cases, fatigue life is considered to be controlled by the outer
layer of bars, because the endurancé limit (Se) for this layer is
smaller than the corresponding values for the other layers

(Se = 161.5 - 0.33 f

mipn * where f . ~is the dead load stress).



dia design least squares polynomial safe life polynomial
{mm) fatigue
life . Fio Fro/Fp F Flo  Fro/fLg
(yrs.)
25 4,412 4,443 1.0070 4.446 4,489  1.0097
50 4,631 4,662 1.0067 4.665 4,712  1.0101
32
100 4,833 4.867 1.0070 4,863 4.915 1.0107
200 5.020 5.061 1.0082 5.046 5.102 1.0111
25 4,485  4.515 1.0067 4.499 4,536 1.0082
50 4,715 4.739 1.0051 4,733 4,764  1.0065
25
100 4,926  4.948 1.0045 4.947 4.976  1.0059
200 5.122  5.145 1.0045 % 5.146 5.174 1.0054
dia least squares polynomial safe life polynomial
(mm)
TO T1 T2 TO T1 T2
32 1.1046  -1.1799 0.2825 .5000 -1.7926 0.3475
F
LT 1 o5 1.1545 -1.1382  0.2659 | 1.0767 -1.0866 0.257T4
j
32 -0.4813 -0.4893 0.2053 .8391 -1.4793 0.3077
F
Y2 25 | 0.1245 -0.7269 0.2235 | 0.2461 -0.7639 0.2244
Table (6.9)
Section modulus values [in KN.M/(N/mm?)]
giving a certain design fatigue life, based on
two different criteria, with some information
about the related curve fittings
L =15.0m, U = 90 T/hr.
FL1 = min. of (ZL , ZLH)’ F 5, = max. of (ZL ZLH)
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Values of the stress range (Sre) and the endurance limit (Se), based

on the rounded parameters; FL, SF’ fsd and are given 1in the

sde ?
fatigue 1life tables at the end of this chapter. These are very
slightly different from the corresponding values, based on the

unrounded parameters, which are given in the design tables at the end

of Chapter (4).
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6.7 Recommendation for Future Work

The work reported in this thesis has attempted to provide a method of
assessing the required section properties, specifically section
modulus, of simply supported reinforced concrete bridge beams to
provide a minimum 1life when the bridge carries a statistically
specified traffic load. The basis of the analysis is the use of what
are believed to be the best available theories for the fatigue
behaviour of hot rolled steel reinforcement under high cycle-low

amplitude conditions.

In the course of the work the question of the effects of a small
number of high amplitude loadings was briefly referred to. Little

information appears tc exist of the effects of such loadings.

However, the importance of the latter type is increasing as a result
of the move toward using the materials in a more economical way,
which results in lighter and more slender structures, with a higher
risk of fatigue failure (16). Consequently, many aspects of this

type of fatigue which are unrevealed need thorough investigations.
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6.8 Fatigue Life Curves and Tables




Log(Life in years)

Log(Life in years)

A

&

0.5

"~

-—
T

1.3t

)

05

[d
v

—

Traffic Flow Rate
U =180 Trucks/hr.

R X X S S

Section Modulus
in KN,M/(N/mm?)

Traffic Flow Rate
U =360 Trucks/hr.

N L R S L S B

Section Modulus
in KN.M/(N/mm?)

Traffic Flow Rate
U = 90 Trucks/hr.

~
~ tn

T

Log(Life in years)

0.5¢
| 13 9

Section Modulus
in KN.M/(N/mm?)

Figure (1)

Section Modulus (FL) - Log(Life)

Curve for Span = 15.0 m

Bar dia = 32 mm

266



Log(Life in years)

Log(Life in years)

267

Traffic Flow Rate Traffic Flow Rate
U =180 Trucks/hr. U = 90 Trucks/hr.
. 4
o o
33;
1.5
3t
w3
o
2.5t o
a L3t
o
2 o
e
g i
1.5} &
1
1.5}
1t
1t
a5t

L 1 L 1 'Y 1 i 1 !.5‘

15 5 55 6 65 T 15 ¢ 13 § 33 § 63 1 73 f
Section Modulus Section Modulus
in KN.M/(N/mm?) in KN.M/(N/mm?)

Traffic Flow Rate
U =360 Trucks/hr.
35 °
k1
25t
2t
Figure (2)
1.3¢
Section Modulus (FL ) - Log(Life)
It Curve for Span = 17.5 m
Bar dia = 32 mm
85}

XS T S B K

Section Modulus
in KN.M/{N/mm?)



Log(Life in years)

Log(Life in years)

-
tn

[ d
T

23t

~
v

ta

03t

Traffic Flow Rate
U =180 Trucks/hr.

5t

[A]

T

0.5t

~>

1 ] (] 1

Section Modulus
in KN.M/(N/mm?)

Traffic Flow Rate

U =360 Trucks/hr

1.

3
Section Modulus
in KN.M/(N/mm?)

i

Traffic Flow Rate
U = 90 Trucks/hr.

1.5t

25¢

~>

Log(Life in years)

1.3}

L e

¢

Section Modulus
in KN.M/(N/mm?)

Figure (3)

Section Modulus (FL ) - Log(Life)
Curve for Span = 20.0 m

Bar dia = 32 mm

268



Traffic Flow Rate
U =180 Trucks/hr.

269

Traffic Flow Rate
U = 90 Trucks/hr.

33;
33f
w 3 0
: :
d ° g Y y
= e
s -
G Gy
;; i 25t
g{) [ gD [+
a2 3
%
1.5¢
[+] o
1.3t
il 13 i 123 13 135 14 i 1l 113 if lf3 ] Iil.S 1) 113 5
Section Modulus Section Modulus
in KN.M/(N/mm?) in KN.M/{(N/mm?)
Traffic Flow Rate
U =360 Trucks/hr.
3t
3
)
Ss
o
(0]
> 25
et
-
it Figure (4)
«
A 2
&
= o Section Modulus (FL ) - Log(Life)
151 Curve for Span = 25.0 m
Bar dia = 32 mm
' [+]
0 represents original points
A represents weighted points

1

1 1 L

Section Modulus
in KN.M/(N/mm?)



Log(Life in years)

Log(Life in years)

Traffic Flow Rate
U =180 Trucks/hr.

15t
3
2.5t
%
[+]
19b 4
i
(O S S |
Section Modulus
in KN.M/(N/mm?)
Traffic Flow Rate
U =360 Trucks/hr.
15t
3
2.5t
2
1.5} o
A
it

S S S
Section Modulus
in KN.M/(N/mm?)

r

270

Traffic Flow Rate
U = 90 Trucks/hr.

35t
w3
<
o
[0
>
5
23t
(0]
s
ol
=
&0 o
S
A
1.5}

[ S S BN B
Section Modulus
in KN.M/(N/mm?)
Figure (5)

Section Modulus (FL ) - Log(Life)

Curve for Span = 27.5 m

Bar dia = 32 mm

o represents original points
represents weighted points

A



Log(Life in years)

Log(Life in years)

Traffic Flow Rate
U =180 Trucks/hr.

271

Traffic Flow Rate
U = 90 Trucks/hr.

3-5' o [+]
3.5
i
3
“n
2.5t %
Sy 2-5'
2t 5
S o
"
=
‘ls' go
15t
it
i}
15t
'3 | N 1 1 1 1 ‘e 'j. - F - i 1 | 1 |
3 ¢+ 45 5 55 6 63 39 ¢t 15 9 55 6§ 63
Section Modulus Section Modulus
in KN.M/{N/mm?) in KN.M/{(N/mm?)
Traffic Flow Rate
U =360 Trucks/hr.
3l
2.5¢
2t
Figure (6)
1.3¢
Section Modulus (FL ) - Log(Life)
It Curve for Span = 15.0 m
Bar dia = 25 mm
[ 13

B T T 3

Section Modulus
in KN.M/(N/mm?)



Log(Life in years)

Log(Life in years)

5

13¢

5t

3t

13

t

03¢

~>
T

Traffic Flow Rate
U =180 Trucks/hr.

Syt s

Section Modulus
in KN.M/(N/mm?)

Traffic Flow Rate
U =360 Trucks/hr.

1

STt s
Section Modulus
in KN.M/(N/mm?)

272

Traffic Flow Rate
U = 90 Trucks/hr.

~ & w [

Log(Life in years)

&

'%‘7_3"—33 'E : ' : i
Section Modulus
in KN.M/(N/mm?)

Figure (7)

Section Modulus (F. ) - Log(Life)

L
Curve for Span = 17.5 m

Bar dia = 25 mm



Log(Life in years)

Log(Life in years)

Traffic Flow Rate
U =180 Trucks/hr.

135}

~
v

i

03¢

EREME R

Section Modulus
in KN.M/(N/mm?)

Traffic Flow Rate
U =360 Trucks/hr.

&

~
Y

i

——

03t

G

Section Modulus
in KN.M/(N/mm?)

273

Traffic Flow Rate
U = 90 Trucks/hr.

23t

Log(Life in years)
[d

S sy
Section Modulus
in KN.M/(N/mm?)

Figure (8)

Section Modulus (FL ) - Log(Life)
Curve for Span = 20.0 m

Bar dia = 25 mm



Log(Life in years)

Log(Life in years)

v

~

tn

Traffic Flow Rate
U =180 Trucks/hr.

135t

15t

t

~
T

I O
Section Modulus
in KN.M/(N/mm?)

Traffic Flow Rate
U =360 Trucks/hr.

05

T

Section Modulus
in KN.M/(N/mm?)

i

274

Traffic Flow Rate
U = 90 Trucks/hr.

L5t

Log(Life in years)

15}

| B N TR |
Section Modulus
in KN.M/(N/mm?)

Figure (9)

Section Modulus (FL ) - Log(Life)
Curve for Span = 25.0 m

Bar dia = 25 mm

o represents original points
A represents weighted points



Log(Life in years)

Log(Life in years)

275

Traffic Flow Rate

Traffic Flow Rate
U = 90 Trucks/hr.

U =180 Trucks/hr.

4
15
15t
)
3 3
2
el ¥
o
L3t &
a
o Wt
3
%
2
15}
4 '-s'x 2
N TN S B TR | S| SR | E
Section Modulus Section Modulus
in KN.M/(N/mm?) in KN.M/(N/mm?)
Traffic Flow Rate
U =360 Trucks/hr.
15+
3
15}
Figure (10)
)|
Section Modulus (FL ) ~ Log(Life)
Curve for Span = 27.5 m
13 Bar dia = 25 mm
i o represents original points
A represents weighted points

W —

Section Modulus
in KN.M/{N/mm?)



276

Table (1) - Bridge fatigue lives for loading
frequency, U = 90 T/hr.
Bar dia = 32 mm



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
2 2 2
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm®) cycles, per week
(lif‘e)m (lif‘e)n fSS sse re Se NC Nec
110 3.7 4,29 4.31 365.9 3731 143.83 85.83 25227 3198 0.632
111 4,18 11.98 12.04 325.0 343.3 135.40 92.89 25227 1191 1.078
112 4.56 37.82 37.95 303.7 333.1 137.43 96.92 25227 391 1.578
113 4,86 124.11 124,36 287.3 313.1 127.93 100.38 25227 122 2.094
114 5.45 1124.85 1125.46 258.6 286.3 115.97 105.30 25227 14 3.051
Table (1a) - Bridge fatigue lives
L =15.0m, U=90 T/hr., dia = 32 mm

LLe



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
KN.M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm®) cycles, per week
(1ife) (life) £ iy S S N N
m n ss sse re e c ec
21 5.04 5.09 5.10 381.1 386.2 139.70 80.16 14583 2831 0.707
22 5.43 10.54 10.58 347.3 352.0 126.25 87.02 14583 1369 1.023
23 6.00 36.01 36.11 316.4 340.5 131.12 92.40 14583 416 1.556
24 6.42 126.96 127.18 299.7 323.4 124.13 95.73 14583 121 2.104
25 6.94 783.60 784.28 275.8 301.1 116.12 100.45 14583 20 2.894
26 T.43 7962.14 7962.30 261.9 284.6 108.13 103.26 14583 2 3.901

Table (1b) -~ Bridge fatigue lives

L=17.5m,

U =90 T/hr.,

dia = 32 mm

8l¢c



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
KN .M/ (N/mm? ) (N/mm?) {(N/mm?) (N/mm?)  cycles, per week
(life) ~ (life) fos fose re Se N, o
31 6.66 6.06 6.07 388.5 392.5 133.47 76.03 14610 2472 0.782
32 7.36 19.80 19.84 352.3 355.4 118.88 83.46 14610 752 1.297
33 7.89 63,06 63.19 325.8 340.7 120.55 88.87 14610 242 1.800
34 8.55 321.82 322.24 301.7 322.0 115.56 93.39 14610 48 2.508
35 9.26 1980.40 1981.51 280.6 302.2 107.67 97.32 14610 8 3.297
36 9.81 8335.86  8336.01 263.0 285.60 102.49 101.08 14610 2 3.921
Table (1¢) - Bridge fatigue lives

L = 20.0 m,

U = 90 T/hr.,

dia = 32 mm

6L2



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
2 2 2
KN.M/ (N/mm? ) (N/mm? ) (N/mm? ) (N/mm?®)  cycles, per week
(llfe)m (lif‘e)n fss fsse re Se Nc NeC
42 11.73 42.36 42.45 380.8 384.0 105.40 69.56 14584 357 1.627
43 12.53 52.53 52.55 355.4 358.4 96.75 T5.17 14584 303 1.720
44 13.23 212.98 213.16 333.6 341.6 95.28 80.22 14584 73 2.328
45 13.93 1039.78  1040.51 314.0 330.7 98.35 84,84 14584 15 3.017
46 14.70 5380.01 5381.03 296.2 313.7 93.70 88.90 14584 3 3.731
Table (1d) - Bridge fatigue lives
L=250m, U= 90 T/hr., dia = 32 mm

08



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
2 2 2
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?®) cycles, per week
(life)m (lif‘e)n fss sse re Se NC NeC
52 14,30 26.42 26.47 397.4 400.5 98.89 61.97 14597 571 1.422
53 14.95 129.98 130.15 373.1 375.7 93.75 68.47 14597 118 2.114
54 16.11 218.61 218.65 349.5 351.9 85.29 73.52 14597 75 2.340
55 16.91 877.44 877.84 330.9 340.7 87.52 T7.94 14597 18 2.943
56 17.85 4063.07 4063.84 313.4 327.5 86.69 82.04 14597 4 3.609

Table (1e) ~ Bridge fatigue lives

L = 27.5 m,

U= 90 T/hr.,

dia = 32 mm

t8e
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Table (2) - Bridge fatigue lives for loading
frequency, U = 180 T/hr.
Bar dia = 32 mm



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
KN.M/ (N/mm? ) (N/mm? ) (N/mm?) (N/mm®) cycles, per week
(life)m (lif‘e)n fss fsse Sre Se NC NeC
110 3.7 2.23 2.24 365.9 373.1 143.83 85.83 48778 6140 0.348
111 4,18 6.18 6.21 325.0 343.3 135.40 92.89 48778 2300 0.791
112 4.56 18.66 18.72 303.7 333.1 137.43 96.92 48778 794 1.271
113 4,86 61.82 61.93 287.3 313.1 127.93 100.38 48778 247 1.791
114 5.45 689.92 690.29 258.6 286.3 115.97 105.30 48778 23 2.839

Table (2a) - Bridge fatigue lives
L=15.0m, U= 180 T/hr., dia = 32 mm

£8c



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue  total number of
number FL simulated stresses range limit cycles and effective Log(life)m
2 2 2
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?) cycles, per week
(life)m (lif‘e)n fss fsse Sre Se NC NeC
21 5.04 2.64 2.65 381.1 386.2 139.70 80.16 28258 5449 0.422
22 5.43 5.40 5.42 347.3 352.0 126.25 87.02 28258 2669 0.732
23 6.00 18.13 18.18 316.4 340.5 131,12 92.40 28258 827 1.258
24 6.42 64.74 64.83 299.7 323.4 124.13 95.73 28258 239 1.811
25 6.94 477.22 477.61 275.8 301.1 116.12 100.45 28258 33 2.679
26 T.43 5319.50 5319.59 261.9 284.6 108.13 103.26 28258 3 3.726

Table (2b) - Bridge fatigue lives

L =17.5 m,

U = 180 T/hr.,

dia = 32 mm

782



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
2 2 2
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?) cycles, per week
(lif‘e)m (lif‘e)n fss sse re Se NC NeC
3 6.66 3.12 3.12 388.5 392.5 133.47 76.03 28360 4803 0.494
32 7.36 10.04 10.07 352.3 355.4 118.88 83.46 28360 1482 1.002
33 7.89 31.86 31.91 325.8 340.7 120,55 88.87 28360 480 1.503
34 8.55 172.88 173.08 301.7 322.0 115.56 93.39 28360 90 2.238
35 9.26 1224 .34 1224.97 280.6 302.2 107.67 97.32 28360 13 3.088
36 9.81 5568.56 5568.64 263.0 285.6 102.49 101.08 28360 3 3.746

Table (2c) - Bridge fatigue lives

L = 20.0 m,

U = 180 T/hr.,

dia = 32 mm

48c



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
2 2 2
KN .M/ (N/mm? ) (N/mm?) {N/mm?) {N/mm?) cycles, per week
(lif‘e)m (lif‘e)rl fss fsse Sre Se NC NeC
42 11.73 21.76 21.80 380.8 384.0 105.40 69.56 28275 695 1.338
43 12.53 26.59 26.60 355.4 358.4 96.75 75.17 28275 599 1.425
44 13.23 110.00 110.08 333.6 341.6 95.28 80.22 28275 142 2.041
45 13.93 563.07 563.45 314.0 330.7 98.35 84.84 28275 28 2.751
46 14.70 4021.85  4022.45 296.2 313.7 93.70 88.90 28275 4 3.604

Table (2d) - Bridge fatigue lives

L =25.0 m,

U =180 T/hr.,

dia = 32 mm

98¢



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
KN.M/ (N/mm? ) (N/mm? ) (N/mm?) (N/mm?®) cycles, per week
(lif‘e)m (life)n fos fise Sre S, N, N,
52 14,30 13.45 13.48 397.4 400.5 98.89 61.97 28279 1122 1.129
53 14.95 64,81 64,89 373.1 375.7 93.75 68.47 28279 238 1.812
54 16.11 114.86 114,88 349.5 351.9 85.29 73.52 28279 143 2.060
55 16.91 527.52 527.7T4 330.9 340.7 87.52 T7.94 28279 30 2.722
56 17.85 3236.48  3237.03 313.4 327.5 86.69 82.04 28279 5 3.510

Table (2e) - Bridge fatigue lives
L=27.5m, U= 180 T/hr., dia = 32 mm

L8c
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Table (3) - Bridge fatigue lives for loading
frequency, U = 360 T/hr.
Bar dia = 32 mm



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
KN .M/ (N/mm? ) (N/mm?) (N/mm? ) (N/mm?) cycles, per week
(life)m (1if‘e)rl fss fsse Sre Se NC Nec
12 3.7 1.7 1.18 374.3 382.2 152.94 85.83 92338 11669 0.068
13 4.18 3.20 3.21 332.5 344.,7 136.84 92.89 92338 4439 0.505
14 4.56 9.78 9.81 310.5 340.1 144,41 96,92 92338 1510 0.990
15 4.86 31.47 31.53 293.7 320.1 134.92 100.38 92338 484 1.498
16 5.45 330.44  330.66 264.3 292.6 122.30 105.30 92338 48 2.519
17 5.84 15701.6 15701.6 250.0 275.2 113.51 108.14 92338 1 4,196

Table (3a) - Bridge fatigue lives
L=15.0m, U= 360 T/hr., dia = 32 mm

*deleted point

682



section

section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number B simulated stresses range limit cycles and effective Log(life)m
KN.M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?) cycles, per week
(1if‘e)m (life)n fss fsse Sre Se Nc NeC
21 5.04 1.386 1.390) 381.1 386.2 139.70 80.16 53581 10362 0.142
22 5.43 2.82 2.83 347.3 352.0 126.25 87.02 53581 5105 0.450
23 6.00 9.55 9.57 316.4 340.5 131.12 ‘92.40 53581 1566 0.980
24 6.42 32.55 32.59 299.7 323.4 124,13 95.73 53581 475 1.513
25 6.94 221.28 221.44 275.8 301.1 116.12 100.45 53581 12 2.345
26 T.43 2690.95  2691.11 261.9 284.6 108.13 103.26 5381 6 3.430
Table (3b) - Bridge fatigue lives
L=17.5m, U = 360 T/hr., dia = 32

06e



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
KN .M/ (N/mm? ) (N/mm? ) (N/mm?) (N/mm?®)  cycles, per week
(1ife)m (lif‘e)rl fss fsse re Se NC Nec
31 6.66 1.64 1.64 388.5 392.5 133.47 76.03 54018 9147 0.215
32 7.36 5.18 5.19 352.3 355.4 118.88 83.46 54018 2875 0.714
33 7.89 16.65 16.68 325.8 340.7 120.55 88.87 54018 916 1.221
34 8.55 84,56 84,64 301.7 322.0 115.56 93.39 54018 185 1.927
35 9.26 839.12 839.54 280.6 302.2 107.67 97.32 54018 19 2.924
36 9.81 4184.38  4184.43 263.0 285.6 102.49 101.08 54018 4 3.622

Table (3c¢c) - Bridge fatigue lives

L = 20.0 m,

U = 360 T/hr.,

dia = 32 mm

L6e



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
2 2 2
KN.M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?)  cycles, per week
(l1ife) =~ (life) fog foce She Se N, Noo
42 11.73 11.32 11.34 380.8 384.0 105.40 69.56 53611 1336 1.054
43 12.53 13.91 13.92 355.4 358.4 96.75 75.17 53611 1145 1.743
44 13.23 54.01 54.05 333.6 341.6 95.28 80.22 53611 290 1.732
45 13.93 294.47 294,63 314.0 330.7 98.35 84,84 53611 54 2.469
46 14.70 2686.89 2687.20 296.2 313.7 93.70 88.90 53611 6 3.429
Table (3d) - Bridge fatigue lives

L = 25.0 m,

U = 360 T/hr.,

dia = 32 mm

cbe



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue  total number of
number FL simulated stresses range limit cycles and effective Log(life)m
2 2 2
KN .M/ (N/mm? ) (N/mm?) (N/mm? ) (N/mm?)  cycles, per week
(life) (life) fog fose re S, N, Neo
52 14.30 6.94 6.96 397.4 400.5 98.89 61.97 53636 2174 0.841
53 14,95 32.64 32.67 373.1 375.7 93.75 68.47 53636 473 1.514
54 16.11 56.17 56.18 349.5 351.9 85.29 73.52 53636 293 1.750
55 16.91 270.08 270.17 330.9 340.7 87.52 77.94 53636 59 2.431
56 17.85 2310.33  2310.63 313.4 327.5 86.69 82.04 53636 7 3.364
Table (3e) - Bridge fatigue lives
L=275m, U= 360 T/hr., dia = 32 mm

£6e
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Table (4) - Bridge fatigue lives for loading
frequency, U = 90 T/hr.
Bar dia = 25 mm



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number F simulated stresses range limit cycles and effective | Log(life)
L (N/mm?) (N/mm?) (N/mm*)  cycles, per week n
KN .M/ (N/mm? ) ’
(life) (life) f S S N N
m n Ss sSse re e c ec
127 3.80 4.61 4,63 354.1 362.1 137.11 87.22 25227 2976 0.664
128 4,22 12.33 12.39 328.7 343.6 131.38 91.47 25227 1164 1.091
129 4.51 25.74 25.84 307.3 340.3 139.15 95.10 25227 568 1.411
130 4,82 78.98 79.18 290.1 320.5 130.94 98.80 25227 190 1.898
131 5.14 210.39 210.71 272.5 304.9 124,35 101.84 25227 73 2.323
132 5.44 605.37 605.94 257.1 290.9 118.93 104.71 25227 26 2.782
133 5.85 4163.92 4163.98 243.2 273.2 109.50 107.45 25227 4 3.620

Table (4a) - Bridge fatigue lives
L=15.0m, U= 90 T/hr.,

dia = 25 mm

g6¢



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number F simulated stresses range limit cycles and effective Log(life)m
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?) cycles, per week
(life) =~ (life) fos fose Spe Se N, Neo
211 5.19 5.32 5.33 365.9 373.1 131.01 81.57 14583 2704 0.726
212 5.45 8.41 8.43 345.8 352.1 122.49 85.73 14583 1704 0.925
213 5.80 16.71 . 16.76 326.2 343.6 124.21 89.13 14583 877 1.223
214 6.24 49.04 49.16 308.8 339.0 130.12 92.56 14583 308 1.691
215 6.55 111.74 111.94 293.3 325.2 125.25 95.47 14583 137 2.048
216 6.84 267.75 268.12 279.3 312.6 121.05 98.27 14583 58 2.428
2117 7.35 1598.96 1599.86 | 265.2 294.7 111.92 101.14 14583 10 3.204
218 7.72 8082.95 8083.11 | 252.7 283.2 107.39 103.49 14583 2 3.908

Table (4b) - Bridge fatigue lives
L=17.5m, U =90 T/hr., dia = 25 mm

962



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
KN.M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm®) cycles, per week
(life)m (lif‘e)rl ss fsse Sre Se NC Nec
311 6.81 5.70 5.7 384.7 390.8 127.37 T4.55 14610 2728 0.756
312 7.20 9.84 9.86 363.2 368.5 118.56 79.00 14610 1522 0.993
313 T.44 15.01 15.04 346.5 351.4 113.27 82.93 14610 995 1.176
314 7.84 35.63 35.70 329.3 342.6 114.87 86.36 14610 423 1.552
315 8.23 79.19 79.35 314.0 340.2 121.36 . 89.30 14610 193 1.899
316 8.53 162.53 162.79 300.8 329.2 118.96 92.10 14610 95 2.211
317 8.90 409.18 409.68 288.3 317.9 114.89 94.48 14610 38 2.612
318 9.29 1205.07 1206.08 276.5 306.9 110.65 96.75 14610 13 3.081
319 9.72 3186.92 3188.02 265.9 297.2 106,62 98.60 14610 5 3.503

Table (4c) - Bridge fatigue lives

L = 20.0 m,

U = 90 T/hr.,

dia = 25 mm

L62



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?®)  cycles, per week
(life) (life) f S S N N
m n ss sse re e C ec
411 11.15 20.38 20.44 395.8 400.4 - 109.87 65,64 14584 730 1.309
432 11.65 54.09 54,20 378.5 382.8 104.06 69.53 14584 281 1.733
413 12.22 53.23 53.26 362.0 366.0 97.96 73.09 14584 305 1.726
414 12.66 63.21 63.23 346.8 350.3 93.51 76.79 14584 249 1.801
415 13.29 171.58 171.71 333.2 342.0 93.72 79.56 14584 91 2.234
416 13.70 434,89 435.31 320.7 339.4 100,37 82.66 14584 36 2.638
417 14.13 1124.80 1125.56 309.7 329.4 97.70 85.11 14584 14 3.051
418 14,70 3183.80 3184.67 299.5 319.9 94.49 87.12 14584 5 3.503
419 15.22 ’8206.29 8206.41 289.0 310.1 91.80 89.46 14584 2 3.914

Table (4d) - Bridge fatigue lives

L = 25.0 m,

U = 90 T/hr.,

dia = 25 mm

862



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?®)  cycles, per week
(life)m (life)n fss fsse Sre S Nc NeC
512 14.53 51.19 51.28 388.6 392.7 94.98 63.26 14597 299 1.709
513 14.70 128.77 128.95 375.3 379.2 93.22 67.15 14597 119 2.110
514 15.36 432.98 433.40 360.4 363.9 88.23 70.52 14597 36 2.636
515 16.10 219.56 219.59 347.0 350.1 83.12 73.39 14597 75 2.342
516 16.84 469.81 469.91 334.3 341.9 83.36 76.20 14597 34 2.672
517 17.24 1131.76  1132.39 323.7 340.1 89.90 78.93 14597 14 3.054
518 17.80 3197.26  3198.01 313.6 331.1 87.89 81.21 14597 5 3.505
519 18.20 8143.54 8143.65 304.1 322.2 86.34 83.62 14597 2 3.911

Table (4e) - Bridge
L =27.5 m,

fatigue lives

U = 90 T/hr.,

dia = 25 mm

662
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Table (5) - Bridge fatigue lives for loading
frequency, U = 180 T/hr.
Bar dia = 25 mm



section

section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
2 2 2
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?) cycles, per week
(life) (1ife) f f S S N N
m n ss sse re e c ec
127 3.80 2.39 2.40 354.1 362.1 137.11 87.22 48778 5731 0.378
128 4,22 6.38 6.40 328.7 343.6 131.38 91.47 48778 2242 0.805
129 4,51 13.04 13.09 307.3 340.3 139.15 95.10 48778 1119 1.115
130 4,82 38.47 38.56 290.1 320.5 130.94 98.80 48778 393 1.585
131 5.14 111.24 111.39 272.5 304.9 124.35 101.84 48778 139 2.046
132 5.44 337.80 338.07 257.1 290.9 118.93 104.71 48778 47 2.529
133 5.85 2783.25 2783.28 243.2 273.2 109.50 107.45 L8778 6 3.445

Table (5a) - Bridge fatigue lives

L = 15.0 m,

U= 180 T/hr.,

dia = 25 mm

log



section section . fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
KN .M/ (N/mm? ) (N/mm? ) (N/mm?) (N/mm?®) - cycles, per week
(life)m (life)n fss fsse Sre Se NC Nec
211 5.19 2.75 2.76 365.9 373.1 131.01 81.57 28258 5223 0.439
212 5.45 4.27 4.28 345.8 352.1 122.49 85.73 28258 3359 0.630
213 5.80 8.52 8.55 326.2 343.6 124.21 89.13 28258 1717 0.930
214 6;24 24.29 24.34 308.8 339.0 130.12 92.56 28258 624 1.385
215 6.55 57.24 57.33 293.3 325.2 125.25 95.47 28258 269 1.758
216 6.84 142.44 142.61 279.3 312.6 121.05 98,27 28258 110 2.154
217 7.35 1003.44  1003.97 265.2 294.7 111.92 101.14 28258 16 3.001
218 T.72 5400.13  5400.22 252.7 283.2 107.39 103.49 28258 3 3.732

Table (5b) -~ Bridge fatigue lives
L=17.5m, U =180 T/hr., dia = 25 mm

403



section

section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
KN.M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?)  cycles, per week
(1ife) (life) £ f S S N N
m n ss sse re e c ec
311 6.81 2.94 2.94 384.7 390.8 127.37 T4.55 28360 5295 0.468
312 7.20 4.98 4,98 363.2 368.5 118.56 79.00 28360 3014 0.697
313 T.44 7.78 7.79 346.5 351.4 113.27 82.93 28360 1915 0.891
314 7.84 17.87 17.90 329.3 342.6 114.87 86.36 28360 845 1.252
315 8.23 38.92 38.98 314.0 340.2 121.36 89.30 28360 395 1.590
316 8.53 84.44 84.56 300.8 329.2 118.96 92.10 28360 184 1.927
317 8.90 220.87 221.12 288.3 317.9 114.89 94,48 28360 A 2.344
318 9.29 747.91 T48.47 276.5 306.9 110.65 96.75 28360 21 2.874
319 9.72 2005.42  2006.02 265.9 297.2 106.62 98.60 28360 8 3.302
Table (5c) - Bridge fatigue lives
L=20.0m, U =180 T/hr., dia = 25 mm

£0g



section

section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses  range limit cycles and effective Log(lif‘e)m
KN .M/ (N/mm? ) (N/mm? ) (N/mm?) (N/mm?)  cycles, per week
(lif‘e)m (lif‘e)n fss fsse SPe Se NC NeC
411 11.15 10.53 10.56 395.8 400.4 109.87 65.64 28275 1411 1.022
412 11.65 27.47 27.52 378.5 382.8 104,06 69.53 28275 554 1.439
413 12.22 27.01 27.03 362.0 366.0 97.96 73.09 28275 602 1.432
414 12.66 31.79 31.80 346.8 350.3 93.51 76.79 28275 495 1.502
415 13.29 86.23 86.29 333.2 342.0 93.72 79.56 28275 182 1.936
416 13.70 238.72 238.93 320.7 339.4 100.37 82.66 28275 66 2.378
417 14.13 659.99 660.40 309.7 329.4 97.70 85.11 28275 24 2.820
418 14.70 2003.42  2004.06 299.5 319.9 94.49 87.12 28275 8 3.302
419 15.22 5480.84 5480.90 289.0 3101 91.80 89.46 28275 3 3.739

Table (5d) - Bridge fatigue lives

L = 25.0 m,

U =180 T/hr.,

dia = 25 mm

70€



section section - fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number F simulated stresses range limit cycles and effective Log(lif‘e)m
KN .M/ (N/mm? ) (N/mm?) {(N/mm?) (N/mm?) cycles, per week
(life)m (life)n fos fise Spe Se N, N,
512 14.53 25.92 25.96 388.6 392.7 94.98 63.26 28279 591 1.414
513 14.70 64.47 64.55 375.3 379.2 93.22 67.15 28279 239 1.809
514 15.36 237.66 237.87 360.4 363.9 88.23 70.52 28279 66 2.376
515 16.10 114.53 114.54 347.0 350.1 83.12 73.39 28279 144 2.059
516 16.84 258.49 258.55 334.3 341.9 83.36 76.20 28279 62 2.412
517 17.24 720.45 720.81 323.7 340.1 89.90 78.93 28279 22 2.858
518 17.80 2009.64  2010.17 313.6 331.1 87.89 81.21 28279 8 3.303
519 18.20 5438.34  5438.40 304.1 322.2 86.34 83.62 28279 3 3.735

Table (5e) - Bridge fatigue lives
L=27.5m U-=180 T/hr., dia = 25 mm

S0¢
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Table (6) - Bridge fatigue lives for loading
frequency, U = 360 T/hr.
Bar dia = 25 mm



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?)  cycles, per week
(life)m (lif‘e)n fss fsse Sre Se NC Nec
117 3.80 1.25 1.26 363.0 372.0 146.19 87.22 92338 10900 0.097
118 4,22 3.30 3.32 336.7 345.1 132.79 91.47 92338 4323 0.519
119 4,51 6.68 6.70 314.8 341.8 140.50 95.10 92338 2187 0.825
120 4,82 19.75 19.79 297.2 328.4 138.09 98.80 92338 764 1.296
121 5.14 55.36 55.44 279.0 312.2 131.13 101.84 92338 279 1.743
122 5.50 345.85 346.06 263.7 292.9 121.59 104.94 92338 46 2.539
123 5.85 1657.24 1657.64 248.7 279.4 115.48 107.45 92338 10 3.219

Table (6a) - Bridge fatigue lives

L =15.0m, U = 360 T/hr.,

dia = 25 mm

Log



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(life)m
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?®)  cycles, per week
(life)m (lif‘e)n fss fsse Sre Se NC NeC
211 5.19 1.45 1.45 365.9 373.1 131.01 81.57 53581 9924 0.161
212 5.45 2.23 2.24 345.8 352.1 122.49 85.73 53581 6413 0.348
213 5.80 4,41 4.42 326.2 343.6 124.21 89.13 53581 3316 0.644
214 6.24 12.80 12.83 308.8 339.0 130.12 92.56 53581 1180 1.107
215 6.55 28.96 29.00 293.3 325.2 125.25 95.47 53581 531 1.462
216 6.84 71.54 71.62 279.3 312.6 121.05 98.27 53581 219 1.855
217 7.35 619.19 619.52 265.2 294.7 111.92 101.14 53581 26 2.792
218 7.72 2731.50 2731.66 252.7 283.2 107.39 103.49 53581 6 3.436

Table (6b) - Bridge fatigue lives
L=17.5m, U= 360 T/hr., dia = 25 mm

30¢



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
KN .M/ (N/mm? ) (N/mm?) (N/mm? ) (N/mm®)  cycles, per week
(1ife)m (life) fos fose re Sq N, cc
3N 6.81 1.55 1.55 384.7 390.8 127.37 T4.55 54018 10059 0.190
312 7.20 2.62 2.62 363.2 368.5 118.56 79.060 54018 5730 0.418
- 313 T.44 4,07 4,07 346.5 351.4 113.27 82.93 54018 3659 0.610
314 T7.84 9.31 9.33 329.3 342.6 114.87 86.36 54018 1620 0.969
315 8.23 20.28 20.31 314.0 340.2 121.36 89.30 54018 756 1.307
316 8.53 41,63 41,68 300.8 329.2 118.96 92.10 54018 374 1.619
317 8.90 109.51 109.61 288.3 317.9 114.89 94,48 54018 144 2.039
318 9.29 387.93 388.19 276.5 306.9 110.65 96.75 54018 41 2.589
319 9.72 1457.45 1457.98 265.9 297.2 106.62 98.60 54018 11 3.164
Table (6¢) -~ Bridge fatigue lives
L =20.0m, U= 360 T/hr., dia = 25 mm
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section

section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number FL simulated stresses range limit cycles and effective Log(lif‘e)m
KN .M/ (N/mm? ) (N/mm? ) (N/mm?) (N/mm?)  cycles, per week
(1ife)m (lif‘e)n fss fsse re Se NC Nec
411 11.15 5.46 5.47 395.8 400.4 109.87 65.64 53611 2724 0.737
412 11.65 14.38 14,40 378.5 382.8 104.06 69.53 53611 1057 1.158
413 12.22 14.09 14,10 362.0 366.0 97.96 73.09 53611 1154 1.149
414 12.66 16.56 16.56 346.8 350.3 93.51 76.79 53611 950 1.219
415 13.29 43,70 43,73 333.2 342.0 93.72 79.56 53611 359 1.640
416 13.70 124 .43 124.52 320.7 339.4 100.37 82.66 53611 127 2,095
417 14,13 355.06 355.25 309.7 329.4 97.70 85.11 53611 45 2.550
418 14,70 1455.75 1456.18 299.5 319.9 94,49 87.12 53611 11 3.163
419 15.22 4117.64 4117.69 289.0 310.1 91.80 89.46 53611 4 3.615
Table (6d) - Bridge fatigue lives
L=25.0m, U= 360 T/hr., dia = 25 mm

0Lg



section section fatigue life centroidal and outer bar
modulus in years outer bar stress fatigue total number of
number F simulated stresses range limit cycles and effective Log(life)m
KN .M/ (N/mm? ) (N/mm?) (N/mm?) (N/mm?®)  cycles, per week
(lif‘e)m (lif‘e)n g fose Spe S N, Nee
512 14.53 13.58 13.60 388.6 392.7 94.98 63.26 53636 1127 1.133
513 14.70 32.53 32.57 375.3 379.2 93.22 67.15 53636 474 1.512
514 15.36 123.88 123.97 360.4 363.9 88.23 70.52 53636 127 2.093
515 16.10 56.17 56.17 347.0 350.1 83.12 73.39 53636 294 1.750
516 16.84 132.51 132.54 334.3 341.9 83.36 76.20 53636 121 2.122
517 17.24 389.90 390.07 323.7 340.1 89.90 78.93 53636 41 2.591
518 17.80 1461.25  1461.63 313.6 331.1 87.89 81.21 53636 11 3.165
519 18.20 4085.30  4085.34 304.1 322.2 86.34 83.62 53636 4 3.611

Table (6e) - Bridge fatigue lives

L = 27.5 m,

U = 360 T/hr.,

dia = 25 mm

Lig
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APPENDIX A

A. Derivation of Inoue-Nakagawa's Equation

If we assume that the hysteresis loop of an element subjected to
fully reversed straining (zero mean strain), is as shown in

Figure (A.1), then the strain energy accumulated in a cycle, Awi is

AWi = 4(E-H) (ea—ei) ey
where e, is the maximum applied strain, e is the yield strain, E and
H are the slopes of the elastic and plastic parts of the 1idealized

stress-strain curve of the material.

Also, if we assume that the form of the hysteresis loop is constant

during the life, then the total strain energy of an element is:

W:.L =n AWi = 4n (E-H) (ea—ei) ei ceea(ALT)

The yield strain value €im which maximises Wi can be obtained from

—= =0 which leads to e, = % e

de, im a

Then the maximum value of Wi is:

W = n (B-H) e
m a

Fatigue failure 1is assumed to occur when the accumulated strain

energy, at an element where hysteresis energy is maximum Wm , reaches

a certain value Wmc, then:

_ 2
W__ = N(E-H) e

mc at failure
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Figure (A.1)

Stress-strain hysteresis loop of
an element with yield strain ei



Inoue and Nakagawa have demonstrated that, it has been verified
experimentally that wmc is almost constant with respect to the

variation in the imposed strain amplitude.

Then, at failure:

2 wﬁc -C

E~H

ceeo (AL2)

where C is a material constant.

If an element with yield strain (ei) is subjected to a variable
strain amplitude test; 4 for n, cycles, e, for Ny 5 eees® for n,

then from Equation (A.71), the total strain energy is:

W= 4 (E-H) [n1 (eT-ei)ei + 1, (ez—ei)ei + ===+ N (en-ei)ei].Whence
av 4(E-H) [n, (e, - 2e,) +n, (e, - 2e,) + === + n_ (e - 2e.,)]
dei 1 1 i 2 2 i n n i

The value of the yield strain which gives maximum W is:

and the corresponding maximum value of W is:

e, + N, e, + ————— +n_ e)

(E-H) (n1 1 5 5 S

As assumed above, failure occurs when wm reaches the critical

value wmc , then at failure:
W (n, e, + n, e, + =—=——m +n_ e )2
mc 171 2 2 n _n =C (A.3)
E-H ~ n, + N, + —=——— +n - e '
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From Equation (A.2), thg following relations can be estabished:

2 _ V/C
N1 ey = C or e, = -ﬁq
2 . /Cc
N2 e2 = C or e2 = Ng
2 _ V/ C
Nn e, = C or e, = '
n
Substituting e, , e, , ----- » e, in Equation (A.3) gives 1
n n n 2
( 1 2 n
—_— 4 +  m—e—— + )
% N1 Vv N2 V Nn
= 1
n, + N, + —=—-- +n
n, n, n,
or ——— ———— e +  — = 1
/ Nl Vgl VNgeN,
where NSC SRR P e + nn

Reference:

K. Inoue and K. Nakagawa, "Energy criteria for low cycle fatigue on

the basis of distributed element model". Journal of the Society of

Materials and Science, Japan, Vol. 24, No. 266, November 1975.
pp 1038 - 1043 (in Japanese).
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APPENDIX B

B. The Rainflow Computer Program

PROGRAM RAIN FLOW
REAL, ST(200)

ST: THE ACTUAL STRESS VALUE WHICH CORRESPONDS TO A TURNING POINT
IN THE STRESS SPECTRUM.

INTEGER IES,K,NC,IS(80)
IES: THE SERTAL NUMBER OF THE LAST POINT IN THE STRESS SPECTRUM.

K: THE TOTAL NUMBER OF THE POINTS STORED BECAUSE OF THE PRESENCE
OF DECREASE-DECREASE PATTERNS. '

NC: THE NUMBER OF THE COUNTED CYCLES.

IS: THE SERIAL NUMBER OF THE POINTS STORED BECAUSE OF THE PRESENCE
OF DECREASE-DECREASE PATTERNS.

eReNoNeNsNoNoNoNoNoNoNoNoNe No RO RO RS

DIMENSION ST(200),1S(80)

@)

READ*, IES
READ(5,*) (ST(I),I=1,IES)

K=0
NC=0

[ B B o
(VSN S
Wl o
WP

—
o>
B

1003 DST1=8T(I2)-ST(I1)
2003 DST2=ST(I3)-ST(12)
3003 DST3=ST(I4)-ST(I3)

c
D1=ABS(DST1)
D2=ABS(DST2)
D3=ABS(DST3)

cC
IF(D3.LE.D2) GO TO 4003
IF(D2.LE.D1) GO TO 203
GO TO 303

c

4003 IF(D2.GT.D1) GO TO 403

C

C DECREASE-DECREASE PATTERN

C
K=K+1
IS(K)=I1

c

C THE FOLLOWING IF STATEMENT IS REQUIRED TO DEAL WITH END POINTS

C
IF(I4.EQ.IES) GO TO 1250



I1=12
12=13
I3=14
14=14+1

DST1=DST2
DST2=DST3
GO TO 3003

1250 1G=1I2
Do 1300 J=1,K
STR=ST(IG)-ST(IS(K-J+1))

C NEGATIVE VALUE OF STR REPRESENTS UNLOADING WHILE POSITIVE
C REPRESENTS LOADING.

WRITE(6,1715) IS(K-J+1),IG,STR
1300 IG=IS(K-J+1)
C
GO TO 1600

THE ABOVE DO STATEMENT COUNTS ALL RANGES AND CYCLES FROM I2
BACKWARDS. RANGES I2-I3 AND I3-I4 WILL BE DEALT WITH BY LINE

LABEL (1600).

DECREASE-INCREASE PATTERN

Qoo

203 IC=12
IR=MOD(IC,2)
IF(IR.EQ.0) IC=I3

C 1IN THIS PROGRAM THE COUNTED CYCLE SEQUENCE IS CONSIDERED TO BE
C CONTROLLED BY ITS TROUGH POINT WHOSE INDEX IC IS GIVEN AS AN
C ODD NUMBER.

C
NC=NC+1
ICM=(IC+1)/2
STRC=DZ2
WRITE(6,1720) ICM,I2,I3,STRC
1720 FORMAT('STRC(',I6,')',' FROM ',I16,' TO ',16,' = ',F6.2)
C
IF(K.GT.0) GO TO 1450
C
IF(I4.EQ.IES) GO TO 1400
C
I12=14
I3=T4+1
T4=14+2
C
IF(I4.GT.IES) GO TO 1800
C
GO TO 1003
C

1450 IF(K.GT.1) GO TO 1500

327



Q00

[eNeNe)]

1350

1400

1500

303

403

IF(I4.EQ.IES) GO TO 1350
I2=11

I1=18(1)

I3=14

T4=14+1

K=0

GO TO 1003

STR=ST(I11)-ST(IS(1))
WRITE(6,1715) IS(1),I1,STR

STR=ST(I4)-ST(Il)
WRITE(6,1715) I1,I4,STR

GO TO 5000
I3=11
I2=IS(K)
T1=IS(K-1)

K=K-2
GO TO 1003

INCREASE-INCREASE PATTERN

STR=DST1
WRITE(6,1715) 11,I2,STR

STR=DST2
WRITE(6,1715) 12,13,STR

IF(T4.EQ.IES) GO TO 1550
I1=I3

I12=14

I13=I4+1

T14=T4+2

IF(I4.GT.IES) GO TO 1800

DST1=DST3
GO TO 2003

INCREASE-DECREASE PATTERN

STR=DST1
WRITE(6,1715) 11,I2,S8TR

IF(I4.EQ.IES) GO TO 1600

I1=12
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QOO0

C

THE FOLLOWING SECTION DEALS WITH POINTS NEAR THE END POINT OF

12=13
13=14
I4=14+1

DST1=DST2
DST2=DST3

GC TO 3003

THE SPECTRUM

1800

1600

1550
1715

5000
1750

STR=ST(I2)-ST(I1)
WRITE(6,1715) I1,I2,STR

STR=ST(I3)-ST(I2)
WRITE(6,1715) 12,I3,STR

GO TO 5000

STR=DST?2

WRITE(6,1715) I2,13,8TR

STR=DST3

WRITE(6,1715) 13,14,STR

FORMAT('STR', 16, TO ',16,°7 = ',F8.2)

WRITE(6,1750) NC

FORMAT('END OF COUNTING , NO. OF CYCLES =
STOP

END

r

I6)
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APPENDIX C

C. Least Squares Method and Its Computer Program

If we have n linear equations connecting a set of m unknowns, say

X, » X5 oeee s X, n>m

i J i

Cae
H]

Since the number of equations n exceeds the number of unknowns m,
the system does not yield an exact solution, i.e. there is no set of

values for X, , X, , ..., X for which each equation is satisfied.
1 2 m

if we consider the residuals:

The method of least squares is simply a process for finding the values

of X1 , X2 s ey Xm which will make:

as small as possible. To minimize E, we must equate to zero each of

its first partial derivatives :

oE oFE oFE
Y Y Ry 2 TTTT s Ry
8X1 8X2 BXm



Thus, we have obtained a system of m linear equations in the m

unknowns X1 s X2 s ....,Xm , whose solution is a routine matter.
If we have to fit a pth degree polynomial to a certain data:

4

The above equation is still linear, in that it is linear in the

+ a,X + a X2 + ceee + A Xp
1 2 p

unknown parameters aj. Thus the a\j may be calculated by the

aforementioned technique.

References:
1 - C. Wylie, "Advanced Engineering Mathematics",
McGraw-Hill 1966.

2 -~ W. Hines and D. Montgomery, "Probability and Statistics".
Ronald, 1972.
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C.1 GO2CJF Subroutine

GO2CJF subroutine of the NAG Library, has been used in this study to
find the least squares second degree polynominal for the Section
modulus FL - Log (1ife) data. This subroutine performs the fitting
for one or more dependent variables separately on the same set of
independent Vvariables. The data consists of values of g dependent
variables (Y1 R Y2 s seaes Yq) and m independent variables (X1 , X2 s

...,Xm), each being observed n times. For each Yq , GO2CJF fits

linear model:

Y =a X, + a X+ evee + &
m

2q 2 Xm

q
The 'a' parameters are estimated from the data to minimize the sum of

squares of the residuals.

There is no explicit provision in the routine for a constant term in
the equation(s). However, the addition of a dummy variable whose
value is always (1.0) will produce a corresponding coefficient 'a'

equal to the constant term.

. o 2 .
In our case, to fit Log(life) = ay + a, FL + a2FL , we take:

q=1
Y = Log(life)
j=1 .
X, = (Fp )Y j=1,2,3

The listing of the program used in this study, to find the least

squares curve, is given here.

Reference

NAG Fortran Library manual, "Correlation and regression analysis",
GO2.



Start
Input data
X = FL
Y = Logl(life)

Call GO2CJF
to calculate
the coefficients

TO ’ T1 and T2

End

Figure (C.1)

Flow chart of the program which
calculates the coefficients for
the 2nd degree least squares
polynomial
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C.2 Computer Program

cNeoNeoNeNoNoNoNoNoNoNONS)

oNeNoNoNoRoNeoNoNo NN

C

PROGRAM LEAST SQUARES CURVE

THIS PROGRAM FITS A LEAST SQUARES POLYNOMIAIL, TO A CERTAIN
X-Y DATA:

Y=A+CI*X+C2*X** 2+, .. ... +CNN*X**NN
IN THIS STUDY:

X=FL
Y=ALOGLO(LIFE)

REAL X(300,10),Y(300,1),THETA(10,1),SIGSQ(1),C(300,10),
* WK1(10,4) ,WK2(300),YE(300) ,R(300),XD(300),YD(300)

IX=300

M=10

IY=300

IR=1

IT=10

IC=300

N=300

FOR INSTRUCTIONS OF USE AND DEFINITIONS OF THE AFOREMENTIONED
TERMS REFER TO NAG LIBRARY MANUAL, SUBROUTINE GO2CJF.

INTEGER IPIV(10)
READ(5,*) N

N: NUMBER OF OBSERVATICHS.

READ(5,*) (XD(1),YD(I),T=1,N)

1000 READ(5,*) NN

C

NN: THE LARGEST POWER OF X.

M=NN+1
IF(NN.EQ.O) STOP

Do 10 J=1,N

Do 10 JJ3=1,M

X{J,JJ)=XD(J)**(JJ~1)
10 CONTINUE

DO 20 J=1,N
Y(J,1)=YD(J)
20 CONTINUE

WRITE(6,998) (Y(I,1),X(I,1),X(1,2),I=1,N)

998 FORMAT(' DATA VALUES'/' Y X1l X2'/300(1X,F5.3,

* 2(3X,F6.3)/)/)
IFAIL=0

CALL G02CJF(X,300,Y,300,N,M,1,THETA, 10,SIGSQ,C,300,IPIV,
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* WK1,WK2,IFAIL)

Do 30 J=1,M

WRITE(6,997) J,THETA(J,1)
997 FORMAT(' THETA',I2,' = '",F10.4)
30 CONTINUE

WRITE(6,97) SIGSQ(1)

97 FORMAT(' VARIANCE OF RESIDUALS= ' ,F10.4)
88=0.0
J=1

75 8§=0.0

DO 50 JJ=1,M

A=THETA(JJ,1)

S=S5+A*X(J,JJ)
50 CONTINUE

YE(J)=S
R(J)=8-¥YD(J)
SS=SS+R(J) *R(.J)
J=J+1

IF{J.GT.N) GO TO 70
GO TO 75

70 WRITE(6,91)
91 FORMAT(//' YD YE R ')
WRITE(6,92) (YD(J) ,YE(J),R(J),J=1,N)
92 TFORMAT(3F15.3)
WRITE(6,89) SS,IFAIL
89 FORMAT(' SUM OF R*R= ', F9.6,'

!
ry
il
H
98}

FATL

GO TO 1000

END
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APPENDIX D

D. The Safe Curve Computer Program

D.1 EO4MBF Subroutine

EO4MBF subroutine of the NAG Library, has been used in this study to

find the safe second degree polynomial curve for the Section modulus

FL - Log (life) data.

This subroutine solves linear programming problems or finds a feasible

point for such problems. EQ4MBF solves problems of the form:

minimize E = a, X1 +a, X2 + oo+ A Xm

subject to the bounds lsIXj <u jJ=1,2y eeoy m
and the general constraints: '

1l <b,, X, +bs;, X+ .0 +b . X <u i=1,2, ey k

11 71 2i 72 mi " m

There are m variables and k general linear constraints. Kk may be zero
in which case the problem is subject only to bounds on the variables.
Upper and 1lower bounds are specified for all the variables and
constraints. This form allows full generality in specifying other
types of constraints. For example the ith constraint may be specified
as equality by setting, li = ui . If certain bounds are not present,
the associated elements of 1 or u can be set to special values that

will be treated as (-« ) or (+« ). An initial estimate of the

solution must be supplied by the user.

In this study, we have to fit a safe second degree polynomial curve

(Log(life) =z a. + a FL + a, FLZ) through n points. Therefore E 1is

0 1

given by :
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The bounds and the initial solution are estimated from the relevant

least squares curve coefficients, while constraints are given by:

2 .
a, + a, FLi +a, FLi < Yi i=1,2, veey n

where Y = Log(life).

The listing of the program used in this study, to find the safe curve,

is given here.

Reference:

NAG Fortran Library Manual, "Minimizing or maximizing a function".

EO4.
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———
Start
Y
Input data
X:FL
Y = Log(life)
A
Calculate

B, X2, Qv

Construct the
matrix of the
upper and
lower bounds

Call EOQO4MBF
to calculate
the coefficients

Ty » Ty and T,

End

Figure (D.1)

Flow chart of the program which
calculates the coefficients for
the 2nd degree safe curve polynomial
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Computer Program

PROGRAM SAFE CURVE

THIS PROGRAM FITS A SAFE CURVE SECOND DEGREE POLYNOMIAL,
SECTION 6.3.1, TO A CERTAIN X-Y DATA :

Y=T+T1*X+T2*X*X
IN THIS STUDY :

X=XD=FL
Y=ALOGL0(LIFE)

REAL OBJLP
INTEGER I,IFAIL,ITMAX,J,LIWORK,LWORK,MSGLVL,N,NCLIN,
* NCTOTL, NROWA
LOGICAL LINOBJ
REAL A(12,3),BL(15),BU(15),CLAMDA(15) ,CVEC(3),
* WORK(200),X(3),¥(15),YE(15),XD(15)
INTEGER ISTATE(15),IWORK(50)
DATA NRCOWA /12/ , LIWORK /50/ , LWORK /200/

FOR INSTRUCTIONS OF USE AND DEFINITIONS OF THE AFOREMENTIONED
TERMS REFER TO NAG LIBRARY MANUAL, SUBROUTINE EQ4MBF.

CALL X04ABF(1,6)
N=3

THE FOLLOWING SIX LINES SPECIFY THE UPPER AND LOWER BOUNDS FOR
T,T1 AND T2

TL=-10.0
TU=100.0
T1L=-25.0
T1U=5.0
T2L=-5.0
T20=5.0

READ(5,*) NP
NP: NUMBER OF OBSERVATIONS.

NCLIN=NP

READ(5, *) (XD(I),Y(I),I=1,NP)
READ(5,*) (X(J) ,J=1,N)
NCTOTL=N+NCLIN

ITMAX=50

MSGLVL=1

LINOBJ=.TRUE.

5X=0.0
SXX=0.0
5Y=0.0

DO 10 J=1,NP
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SX=8X+XD(J)
SXX=SXX+XD(.J)*XD(J)
SY=8Y+Y(J)

10 CONTINUE

C
CVEC(1)=-1.0*NP
CVEC(2)=-1.0*SX
CVEC(3)=-1.0*SXX
cC

DO 20 I=1,NCLIN

Do 20 J=1,N

A(I,J)=XD(I)**(J-1)
20 CONTINUE

BL(1)=TL
BL{2)=TlL
BL(3)=T2L
BU(1)=TU
BU(2)=T1U
BU(3)=T2U0

DO 30 J=4,NCTOTL
BL(J)=0.0
BU(J) =Y (J-N)
30 CONTINUE
IFATL=1
CALL EO04MBF(ITMAX,MSGLVL,N,NCLIN,NCTOTL ,NRCWA,A,BL,

* BU,CVEC,LINCBJ,X,ISTATE,OBJLP,CLAMDA, IWORK, LIWORK,
* WORK,LWORK, IFAIL)

2

SP=0BJLP
RESS=8P+SY

TR=X(1)
TR1=X(2)
TR2=X(3)

WRITE(6,111) RESS
111 FORMAT(' RESS= ',F9.6)
WRITE(6,222) TR,TR1,TR2
222 FORMAT(' = ',F9.6,' , TR1= ',F9.6," , TR2= ',F9.6)
C
SRS=0.0
DO 40 I=1,NP
YE(I)=TR+TR1*XD(I)+TR2*XD(I)*XD(I)
SRS=SRS+(YE(L)=Y(I))**2
WRITE(6,333) I,XD(I),¥(I),YE(TI)
333 FORMAT(' NP=',I3," , X= ',F9.3," , ¥= ",F9.3,' , YE= ',F10.5)
40 CONTINUE
C
WRITE(6,444) SRS
444 FORMAT(' SRS= ', F9.6)
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THE FOLLOWING SECTION CACULATES THE SECTION MODULUS VALUE WHICH
CCRRESPONDS TO A DESIGN FATIGUE LIFE OF (100) YEARS.

555

BLF=100.0

YL=ALOG10(BLF)

AP=TR2

BP=TR1

CP=TR-YL

DP=SQRT (BP*BP-4.0*AP*CP)
FL1=0.5*%(-BP+DP) /AP
FL2=0.5*(-BP~DP) /AP
WRITE(6,555) BLF,FL1,FL2
FORMAT(' BLF= ',F6.1,' , FLi= ',F%.3,' , FL2= ',F9.3)
STOP

END



APPENDIX E

E. The Effect of an Increased Value of The Section Modulus
on The Fatigue Life

The following calculations have been made to breakdown the variation
in the fatigue 1lives, resulting from an increase in the section
modulus value (FL)’ to its two components. The first component is
caused by the change in FL itself, while the second and the most
important component 1is caused by excluding more stress ranges,
because they become less than the endurance limit. The calculations
given below is for section (111) which, for sections reinforced with

32 mm bars, has the maximum deviation in the fatigue life (Sec. 6.6) ;

let:
FL1 = the minimum of ZL and ZLH .
FL2 = the maximum of ZL and ZLH .
(life)1 , (lif‘e)2 = fatigue lives in years.
D1, D2 = the damage sums in one week.
. . . 2

Spe1’ Sre2 = the maximum stress ranges in the outer bar, in N/mm .
Se = the endurance limit in N/mmz.
N s N = the numbers of the effective stress cycles in one week
ecl ec2 .

(with value > Se)
(llf‘e)1 » Dy 5 8.4 and N_.q correspond to F, , while (llfe)2 » D5y
Sre2 and Nec2 correspond to FL2 .

Now, for section (111) :

D1/D2 = (life)z/(life)1 = 1.331
F ,/F, = 1.0359
ANec = Nec1 - Nec2 = 289
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Since Se = 92.893 N/mmz, then by increasing FL from FL1 to FLZ , all
stress ranges, below Sro = 92.893 x FLZ/FL1 = 92.893 x 1.0359 = 96.228
and above Se = 92,893, would be excluded from the damage sum.

An average value for these lost stress ranges is; Sra = 0.5 (Se -+

Sro) = 94,561 N/mm2 , With a corresponding N = 857126 (N is the
required number of cycles to failure, given by ;

logN = 6.9077 - 0.002 fsde - 0.00591 Sre)'

Whence the difference in the damage sum 1s approximated by :

289
D = ANeC/N = 857128 = 0.0337 percent
and
D/D2 ~ 28 percent

This means that a difference of 3.59 percent in FL value gilves
a 33 percent difference in the damage sum and life values. Out of
this figure, about 28 percent difference results from the cycles
excluded because they become lower than the endurance 1limit, while

about only 5 percent is due to the change in the stress range values.

Similar calculations have been made for the remaining sections which

are reinforced with 32 mm bars. All results are given in Table (E.1).



sec.

L1 L2 Sre1 Sre2 Se ecl Nec2 D1 D2 (life)1 (life)2 FLZ/FL1 (life'2 ra N D/DZ
Nno. [} 0

(%) (%) (yrs.) (yrs.) (%)

(1ife) ’
110 3.717 3.86 143.83 137.36 85.83 3198 2696 0.447 0.372 4,289 5.155 1.0404 1.2020 87.57 854262 15.80
111 4.18 4.33 135.40 134.49 92.89 1191 902 0.160 0.120 11.98 15.94 1.0359 1.3310 94,56 857126 28,10
112 4.5%6 4.66 137.43 134.50 96.92 391 313 0.051 0.040 37.82 47,47 1.0219 1.2550 97.98 865442 22,53
113 4.86 4.96 127.93 125.36 100.38 122 94 0.015 0.012 124.1 161.8 1.0206 1.3038 101.42 866813 26.92
114 5,45 5.58 115.97 113.28 105.30 14 11 0.0017 0.0013 1125.0 1458.,0 1.0239 1.2970 106.56 865626 26,69

Table (E.1) - The effect of the variation in the section modulus (F,)

on the damage sum and the fatigue life

Stresses are given in N/mm2

Section moduli are given in KN.M/(N/mm

2

)

- For definitions of the terms, see pages (342 ,343 )

L

A



F.

OOOOOOOOOOOOOOOOOOOOOOOO(’)OOOOOQOOOOOOOQOOOOOODOOOOOOO

APPENDIX F

Computer Program for The Fatigue Life Prediction

PROGRAM LIFE

THIS PROGRAM SIMULATES THE MOMENT AND STRESS SPECTRA

FOR A SINGLE LANE SIMPLY SUPPORTED BRIDGE UNDER TRUCK
LOADING. ALSO IT PERFORMS CYCLE COUNTING BY THE PATTERN
CALSSTFICATION PROCEDURE (RAIN FLOW METHOD) AND CALCULATES
THE FATIGUE LIFE OF THE BRIDGE. BEFORE RUNNING THIS PROGRAM,
THE BRIDGE HAS TO BE DESIGNED TO SUSTAIN THE MAXIMUM LIVE
1LoAD MOMENT, INCLUDING IMPACT, WHICH CAN BE OBTAINED BY
RUNNING A PROGRAM SIMILAR TO THE FIRST PART OF THIS PROGRAM,
WITH THE MODIFICATION THAT IT STORES THE ABSOLUTE MAXIMUM
MOMENT AT ANY STAGE (SECTIONS 5.3 AND 3.6).

REAL AT,BL,BIM,BILN,BM1,BMZ,BMS(2K) ,D(M,K2),DAT(I),DM,DN,
DY,FL,FMIN, FMINE, FN,P(M,K2) ,RC(I) ,RT(I) ,RWL{(J) ,RW2(J),
SEOQ, SF,SP,SS(2K),ST,STC(K) ,STCX, T, TMIN, TOT,U,W(I),
WL(K2) , WM, WP, WS, WW,X(K2) .

INTEGER :
ibb,1bI1,1ES,1ID,I11,IL1,IL2,IS(K1) ,KL,KS,MAX,MM, N,
NCC,ND,NI ,NR,NRC,NS.

REAL QUANTITIES:

AT: THE TOTAL ARRIVAL TIME OF TRUCK I.

BL: THE BRIDGE SPAN IN METRES.

BIM,BLN: THE FATIGUE LIVES IN YEARS BASED ON PAIMGREN-MINER'S
THEORY AND INOUE-NAKAGAWA'S THEORY RESPECTIVELY.

BM1: THE LOCAL MAXIMUM OR MINIMUM MOMENT OBTAINED SO FAR.

BM2: THE TOTAL INSTANTANEOUS MOMENT PRODUCED BY THE TRUCKS

PRESENT ON THE BRIDGE WHOLLY OR PARTLY.
BMS(ZK): THE VALUE OF THE TURNING POINT IN THE MOMENT SPECTRCUM

WHICH REPRESENTS THE TOTAL LIVE LOAD MOMENT, EXCLUDING

IMPACT, WHICH IS TO BE SHARED BETWEEN THE BRIDGE
TWO BEAMS.
D(M,K2): THE SPACING OF ANY AXLE TO THE FRONT ONE, FOR ANY
TRUCK K2 WHICH EXISTS WHOLLY OR PARTLY ON THE BRIDGE.
M=1, REPRESENTS THE REAR AXLE AND M=5, REPRESENTS
THE FRONT AXLE.
DAT(I): THE ARRIVAL TIME OF TRUCK I.
DM,DN: THE DAMAGE SUMS IN ONE WEEK BASED ON PALMGREN-MINER'S
THEORY AND INOUE-NAKAGAWA'S THEORY RESPECTIVELY.
DY: IMPACT FACICR + 1.0
FL: THE SECTION MODULUS IN KN.M/(N/MM*MM)} BASED ON THE LIVE
LOAD MOMENT (SECTION 4.7.1).
FMIN,FMINE: THE CENTROIDAL DEAD LOAD STRESS AND THE DEAD LOAD
STRESS IN THE QUTER BAR IN N/ {(MM*MM) .
FN: THE NUMBER OF CYCLES TO FAILURE CORRESPONDING TO THE
STRESS RANGE STC(K).
P(M,K2): THE AXLE FRACTION OF WEIGHT FOR ANY TRUCK K2 WHICH
EXISTS WHOLLY OR PARTLY ON THE BRIDGE.
RC(I),RT(I): THE RANDOM NUMBERS REQUIRED TO SIMULATE THE
TYPE AND ARRIVAL TIME OF TRUCK I RESPECTIVELY.
RWL(J) ,RW2(J): THE RANDOM NUMBERS REQUIRED TO SIMULATE THE
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GROSS WEIGHT OF TRUCK I BY THE REJECTION
METHOD (SECTION 3.4.2).
SEQ: THE FATIGUE ENDURANCE LIMIT.
SF: THE RATIO BETWEEN THE OUTER BAR STRAIN AND THE
CENTROIDAL STRAIN (SECTION 4.7.1).

SP: THE TRUCK SPEED IN METRES PER SECOND EQUIVALENT TO 50 KM/HR.

SS(2K): THE ACTUAL STRESS VALUE, WHICH CORRESPONDS TO
A TURNING POINT IN THE STRESS SPECTRUM, IN N/ (MM*MM).

ST: THE TOTAL SIMULATION TIME IN SECONDS, EQUIVALENT TO

ONE WEEK IN THIS STUDY.

STC(K): THE STRESS RANGE VALUE OF A COUNTED CYCLE.

STC¥: THE MAXIMUM STRESS RANGE VALUE.

T: THE INSTANTANEOUS TOTAL TIME USED FOR THE TRUCK

MODEL SIMULATION.
TMIN: THE MINIMUM ARRIVAL TIME OF A TRUCK.
TOT: THE INSTANTANECUS TOTAL TIME USED FOR THE MOMENT
SPECTRUM SIMULATION.

U: THE RATE OF TRUCK LOADING IN TRUCKS PER SECOND.

W(I): THE GROSS WEIGHT OF TRUCK I, IN KN.

WL(K2): THE GROSS WEIGHT OF TRUCK K2 WHICH EXISTS ON THE
BRIDGE WHOLLY OR PARTLY.

WM, WP, WS, lWW: THE AVERAGE VALUE, THE UPPER BOUND VALUE,

THE STANDARD DEVIATION AND THE LOWER BOUND VALUE
OF THE GROSS WEIGHT (SECTION 3.5.1).

X(K2): THE LOCATION OF THE FRONT AXLE OF TRUCK K2, WHICH
EXISTS WHOLLY OR PARTLY ON THE BRIDGE, WITH RESPECT
TO THE DOWNSTREAM SUPPCRT.

INTEGERS:

IDD,IDI: THE NUMBER OF PATTERNS CILASSIFIED AS
DECREASE-DECREASE PATTERNS (DD) AND
DECREASE-INCREASE PATTERNS (DI) RESPECTIVELY.

IES: THE SERIAL NUMBER OF THE LAST POINT IN THE MOMENT OR

STRESS SPECTRUM.

IID,IIT: THE NUMBER OF PATTERNS CALSSIFIED AS
INCREASE-DECREASE PATTERNS (ID) AND
INCREASE-INCREASE PATTERNS (II) RESPECTIVELY.

IL1,ILZ: THE SERIAL NUMBERS OF THE TURNING POINTS OF
A COMPLETE CYCLE.

IS(K1): THE SERIAL NUMBER OF THE POINTS STORED BECAUSE OF

THE PRESENCE OF DECREASE-DECREASE PATTERNS.
KL: THE TOTAIL NUMBER OF THE RANDOM NUMBERS RW1l AND RW2.
KS: THE TOTAL NUMBER OF THE RANDOM NUMBERS RC AND RT.
KS=INT(ST*U)
KL=NK*KS
KL, SHOULD BE APPRECIABLY LARGER THAN KS. THIS IS
BECAUSE OF THE NATURE OF THE REJECTION METHOD. FROM
SEVERAL, TRIALS IT SEEMS THAT, NK=3, IS ADEQUATE
FOR THIS STUDY.

MAX: A PARAMETER TO DEFINE THE NATURE OF THE LAST TURNING POINT.
MAX=1, MEANS THAT IT IS A MAXIMUM. MAX=0, MEANS THAT 1T IS

A MINIMUM.
MM: THE SERIAL NUMBER OF A PAIR CONSISTING OF ONE MINIMIM

AND THE NEXT MAXIMUM POINT.
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40

N:

THE LOCAL SERIAL NUMBER OF THE TROUCKS WHICH ARE ON THE
BRIDGE WHOLLY OR PARTLY. N=1, REPRESENTS THE NEAREST
TRUCK TO THE DOWNSTREAM SUPPORT.

NCC: THE NUMBER OF COUNTED CYCLES EXTRACTED FROM FULL CYCLES.

ND:

NI:
NR:

A PARAMETER TO INDICATE WHETHER A NEW TRUCK HAS ENTERED
THE BRIDGE. ND=1, MEANS THAT THERE IS A NEW TRUCK CN
THE BRIDGE. ND=0, MEANS UNCHANGED SITUATION.

THE TOTAL NUMBER OF EFFECTIVE CYCLES.

THE NUMBER OF COUNTED RANGES (HALF CYCLES).

NRC: THE NUMBER OF COUNTED CYCLES EXTRACTED FROM TWO EQUAL

NS:

GOSCBF GENERATES RANDOM NUMBERS, WITH REPEATABLE SEQUENCE, BY THE

HALF CYCLES.
THE NUMBER OF SECTIONS WHICH HAVE TO BE ANALYZED.

COMMON DAT(54000) ,W(54000)

COMMON RC(54000),RT(54000) ,RW1(148000) ,RW2(148000)
COMMON STC(S97000),8S5(194000) ,15(1000),BMS(194000)
DIMENSION WL(15),X(15),D(5,15),P(5,15)

ST=604800.0
READ(5,*) BL,NS,U
DT=0.0015*BL

+ THE TIME INCREMENT IN SECONDS.

THIS VALUE OF DT IS EQUIVALENT TC THE TIME REQUIRED FCR AN
AXLE TO MOVE A DISTANCE OF SPAN/48 WITH A SPEED OF 50 KM/HR.

KS=INT(ST*U)
KL=3*KS
DY=1.0+50.0/(125.0+3.281*BL)

MULTIPLICATIVE CONGRUENTIAL METHOD (SECTION 3.3)

CALL GO5CBF(795)
DO 10 I=1i,KS
Y=GO5CAF(Y)
RC(I)=Y

CALL GO5CBF(226)
DO 20 1=1,KS
Y=GO5CAF(Y)
RT(I)=Y

CALL GO5CBF(371)
DO 30 I=1,KL
Y=GO5CAF(Y)
RWL(I)=Y

CALL GUO5CBF(225)
DO 40 I=1,KL
Y=GOS5CAF (Y)
RW2(I1)=Y

WRITE(6,43)
WRITE(6,41) KS,KL,U
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41 FORMAT(' KS=

',18,° KL=

',18,7 U= ',F6.3)

43 FORMAT (33H END OF RANDOM NUMBERS GENERATION)

WRITE(6,431)

C
I.=0
K=0

C

C

C

C
DAT(1)=0.00
TOT=0.00

45 K=K+1

C
IF(RC(K) .GT.
IF(RC(K).GT.
IF(RC(K).GT.
IF(RC(K) .GT.

C

C TRUCK TYPE 382
TMIN=1.436
WP=533.760
WW=88.960
WM=231.296
wWs=71.168
GO TO 90

C

C TRUCK TYPE 282

49  TMIN=1.392
Wp=444.800
WW=44.480
WM=182.368
ws=57.824
GO TO 90

C

C TRUCK TYPE 281

60 TMIN=1.371
WP=400.320
Ww=44.480
WM=160.128
Ws=53.376
GO TO 90

C

C TRUCK TYPE 3D

70  TMIN=0.899
WP=355.840
Ww=44.480
WM=155.680
WsS=48.923
GO TC 90

C

C TRUCK TYPE 2D

80 TMIN=0.855
Wp=222.400
Ww=22.240

0.79) GO TO 80
0.73) GO TO 70
0.66) GO TO 60
0.41) GO TO 49

I IS THE SERIAL NUMBER OF RW1 AND RW2.
K IS THE SERIAL NUMBER OF RC AND RT.
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WM=62.272
WS=26.688

THE FOLLOWING FIVE LINES GENERATE TRUCK WEIGHTS BY THE

C REJECTION METHOD

cC
90

0 PRORON! oEONONY!

Q000

91

98

96

97

(@]

QOO

L=L+1

W=+ (WP *RWL (L)

FW=EXP (-0.5% ( (WI'-WM) /WS ) **2)
IF(RW2(L).GT.FW) GO TO 90
W(K)=WT

THE FOLLOWING STATEMENT IS REQUIRED TO AVOID INFINITE VALUES
FOR THE ARRIVAL TIME

IF(RT(K).EQ.0.00) RT(K)=1.2E-77

THE FOLLOWING LINE GENERATES TRUCK ARRIVAL TIMES BY THE INVERSE
TRANSFORMATION METHOD (SECTION 3.4.1)

DAT (K+1) =TMIN-ALOG(RT(K) ) /U

TOT=TOT+DAT (K)
SP=13.889

THE FOLLOWING ELEVEN LINES ARE REQUIRED TO ENSURE THAT THERE
IS5 NO TRUCK ON THE BRIDGE AT THE END OF THE SIMULATION

IF(TOT-(ST-(BL+12.649)/8P)) 45,92,93
KF=K

DATK=DAT (KF)
DAT(KE+1)=ST-TOT

DAT(KF+2) =DAT(KF+1)

GG TOC 91

KF=K-1

DATK=DAT{KF+1)
DAT(KF+1)=ABS{ST-~TOT) +DATK
DAT (KF+2) =DAT (KF+1)

LE=L

WRITE(6,98) K,KF,LF
FORMAT(' K= ',117,° KF= ',117,° Le= ',11I7)
WRITE(6,96) TOT,DATK,DAT(KF+1)

FORMAT(' TOT= ',F14.3,' DATK= ',F7.3,' DATKFPl=',F7.3)
WRITE(6,97)

FORMAT(' END OF TRAFFIC SIMUIATION')

WRITE(6,431)

K=1

K: THE GENERAL SERIAL NUMBER OF THE TRUCKS.

MM=1
AT=DAT(1)
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C THE FRONT AXLE OF THE FIRST TRUCK IS PLACED ON THE BRIDGE
C DOWNSTREAM SUPPORT.
C
1

C

C I IS THE SERIAL NUMBER OF THE MINIMUM POINT AND THE NEXT
C MAXIMUM POINT.
c

BMS(TI)=0.000
BM1=0.000
MAX=0

ND=1

N=1

X(1)=0.000
AT=AT+DAT(K+1)

SN ]

00 T=T+DT
IF(T.GT.ST)GO TO 199
IF(AT.GE.T) GO TO 1000

THE FOLLOWING TWO DO STATEMENTS RENUMBER EACH TRUCK PARAMETERS.
THIS IS5 REQUIRED WHEN A NEW TRUCK ENTERS THE BRIDGE BECAUSE THE
RECENT TRUCK ALWAYS HAS N=1

Qa0

Do 50 J=1,N

WLN+2-J) =WL(N+1-J)
50 X(N+2-J)=X(N+1-J)

X{(1)=(T-AT-DT)*SP

C

Do 125 J=1,N

DO 125 M=1,5

D(M,N+2-3)=D(M,N+1-J)
125 P(M,N+2-J)=P{M,N+1~7J)
C

K=K+1

ND=ND+1

N=N+1

AT=AT+DAT(K+1)
1000 IF(ND.EQ.O) GO TO 1200

cC
C THE FOLLCOWING SECTION DEFINES THE PARAMETERS FOR THE RECENT TRUCK

C FOR WHICH N=1

C
D(5,1)=0.000
WL(1) =W(K)
C :
IF(RC(K).LE.0.41) GO TO 52
IF(RC(K).LE.0.66) GO TO 42
IF(RC(K).LE.0.73) GO TO 32
IF(RC(K).LE.0.79) GO TO 22
C

D(1,1)=4.572
D(2,1)=0.000



LGe

LdxdS+ (L) X=(L)X

N‘T=L 00 OQ

00Z°0=(1'6)d
00Z°0=(T"¥)d
00Z°0=(T'¢)d
002 0=(T’'C)d
00Z°0=(T'T)d
GG e=(T1"%)a
PZLF=(T'E)a
0P TT=(T"2)Q
679°ZT=(1'T)a

00CT GL OO
000°0=(T'G)d
00T 0=(T'%)d
00F° 0=(T'E)d
0GZ2°06=(T'2)d
06 0=(T'T)d
000 0=(T"¥)d
Gocte=(T'e)a

028 0T=(T"2)d
0F0 TT=(T'T)Q

00CT OL 02
000°0=(1'9)d
000°0=(T'P)d
00z 0=(1"¢)d
00%°0=(T"T)d
00F°0=(T'T)d
000°0=(T"%)d
000°0=(1T"C)Q
Soste=(1'2)a

GELTT=(T'T)a

00Z1T OL 0D
000°0=(1"9)d
000°0=(T"¥)d
062 0=(T“¢)d
GLET0=(T'C)d
GLET0=(T'T)d
000°0=(1T"%)a
gooto=(1'e)a
296 €=(1"20)a
Z81-c=(1"'1a

00CT oL 0D
po0*0=(T'g)d
000°0=(T'F)d
000°0=(1°'¢)d
DS o={1*'T)d
0GL0=(T"'T)d
000°0=(T'¥)Q
000°0=(T¢)Q

a0

00c

4

ol
L

o
omM

™
O™

€
T

S



352

C THE FOLLOWING IF STATEMENT CHECKS WHETHER THE TRUCK NFAREST TO
C THE UPSTREAM SUPPCRT IS STILL ON THE BRIDGE WHOLLY OR PARTLY
C
IF((X(N)-D(1,N})).LT.BL)GO TO 400
C
N=N-1
IF(N.GT.0)G0 TO 400
K=K+1
C
C THE FOLLOWING IF STATEMENT IS INTRODUCED TO DEAIL WITH LARGE
C VALUES COF DT. IF THE NEXT POINT I5 A MAXIMUM, THEN IT ENSURES THAT
C IT WILL BE STORED, EVEN IF THE BRIDGE IS SUDDENLY UNLOADED
C
IF(MAX.EQ.0) GO TO 875
C
GO TO 150
C
400 BM2=0.000
IF(N-2)550,600,650
C
C THE FOLLOWING DO STATEMENTS CALCULATE THE MID SPAN MOMENT,
C FOR ANY CONCENTRATED LOAD P LOCATED AT A DISTANCE 'A°
C FROM THE SUPPORT OF A SIMPLY SUPPORTED BEAM WHOSE SPAN
C I8 L, USING THE GENERAL FORMULA:
C
C M=0.5*P*AMINI (A, (L-A))
C
C  ALSO THEY DEAIL WITH THE TRUCKS WHICH EXIST PARTLY ON THE BRIDGE
C
650 DO 500 J=2,N-1
DO 500 M=1,5
Z0=¥{(J)-D(M,J)
500 BM2=BM2+0.5*P (M, J) *WL(J )} *AMIN1(Z0, (BL~-Z0))

@]

600 DO 700 M=1,5

Z1=X(N)-D(M,N)
Z2=BL~-7Z1
Z3=AMIN1(Z1,AMAX1(Z2,0.0))

700  BM2=BM2+0.50*P(M,N)*WL(N)*Z3

550 DO 800 M=1,5

Z1=X(1)-D(M, 1)
Z2=BL~-Z1
Z3=AMIN1 (AMAX1(Z1,0.0) ,AMAX1(Z2,0.0))

800  BMZ=BM2+0.50*P(M,1)*WL(1)*Z3

ND=0

THE FOLLOWING LINES CHECK WHETHER THE CALCULATED MOMENT IS
A MAXIMUM OR MINTMUM

IF(MAX.EQ.1) GO TO 590
IF((BMI-BMZ).LE.0.1) GO TO 580

875 I=2*MM

BMS(I)=BM1
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580

590

595

199
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C THE FOLLOWING DO STATEMENT CONVERTS THE MOMENT SPECTRUM INTO

MM=MM+1
IF(N.EQ.0) GO TO 150

MAX=1
BM1=BM2
GO TO 200

BM1=BM2
GO TO 200

IF((BM2-BM1).GT.0.1) GO TO 595
BM1=BM2
GO TO 200

I=2*MM-1
BMS(I)=pMl
MAX=0
BM1=BM2
GO TO 200

WRITE(6,802) ST,T,AT
WRITE(6,805) BL,DT,DY
MME=MM

TES=2*MMF-1
WRITE(6,803) MMF,IES

THE FOLLOWING DO STATEMENT SIMULATES THE STRESS SPECTRUM,
PERFORMS THE CYCLE COUNTING AND ESTIMATES THE FATIGUE LIFE
FOR EACH BRIDGE SECTION

DO 2345 II=1,K8

READ(S,*) FL,SF,FMIN,FMINE
DYFL=0.5*DY/FL

FOF=FMINE/FMIN

SF=AMAX1 (SF,FOF)

WRITE(6,1333) FL,SF,FMIN, FMINE
WRITE(6,431)

C OUTER BAR STRESS SPECTRUM (SECTION 5.1)

1234

805
802

DO 1234 I=1,IES

SS(I)=DYFL*BMS(I)

IF(Ss(1).LE.0.0001) GO TO 1234

FSS=S8S(I)+FMIN

ESE=SF*(5.0E-06*FSS+23.5294E-06*AMAXT ((FSS-340.0),0.0))
FSE=200000.0*ESE-164948,45*AMAX1 ( (ESE~0.0017) ,0.0)
SSE=FSE-FMINE

SS(I)=SSE

CONTINUE

FORMAT(' BL= ',F12.,3,' DT= ',F9.6,' DY= ',F9.3)
FORMAT(' ST=',F10.3,' T=',F10.3," AT=',F10.3)
WRITE(6,1111) SS(IES),SS(1)
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1111 FORMAT(' SSF= 'L,F9.3,' , 881= ',1F9.3)
803 TFORMAT('END CF MOMENT SIMULATION','MMF=',1I7,'IES= ',1I6)
WRITE(6,431)

CYCLE COUNTING IS PERFORMED BY THE PATTERN CLASSIFICATION
PROCEDURE (SECTICN 5.2.2.3)

Q00

STCX=0,00

@]

K=0
KX=0

K IS THE SERJIAL NUMBER OF THE POINTS STORED BECAUSE OF THE
PRESENCE OF DECREASE-DECREASE PATTERNS.
KX IS THE MAXIMUOM VALUE OF K.

[eHoNONONe!

Nee=4Q
NRC=0
NR=0

IDD=0
IDI=0
I11=0
IID=0

1003 DST1=8S(I12)-SS(11)
2003 DST2=8S(I3)-SS(12)
3003 DST3=SS(I4)-SS(13)

D1=ABS(DST1)
D2=ABS(DST2)
D3=ABS(DST3)
IF(D3.1E.D2} GO TO 4003
IF(D2.LE.D1) GO TO 203
GO TO 303

4003 IF(D2.GT.D1) GO TO 403

DECREASE-DECREASE PATTERN

e NeoNe!

IDD=IDD+1

K=K+1
IF(K.GT.KX) KX=K
IS(K)=I1

THE FOLLOWING IF STATEMENT IS REQUIRED TO DEAL WITH END POINTS

PEORS]

IF(I4.EQ.IES) GO TO 1250

9
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1250
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TO

Q20000

1255

@

1275

IN
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1300

I1=12
I2=13
I3=14
T4=T4+]1

DST1=D3T2
DST2=DST3
GO TO 3003

1G=12

DO 1300 J=1,K
ISL=IS(K~J+1)
STR=8S(IG)-SS(ISL)

NEGATIVE VALUE OF STR REPRESENTS UNLOADING WHILE POSITIVE
REPRESENTS LOADING.

NR=NR+1

IF(MOD(J,2).EQ.0) GO TO 1255
STRL=5TR

IG=ISL

GO TO 1300

THE FOLLOWING II' STATEMENT COMPARES EVERY TWO SUCCESSIVE RANGES

CHECK WHETHER THEY COULD BE CONSIDERED EQUAL
IF(ABS(STR+STRL) .LE.0.1) GO TO 1275

IG=ISL

GO TO 1300

IC=IG

THIS PROGRAM THE COUNTED CYCLES SEQUENCE IS CONSIDERED TO BE

CONTROLLED BY ITS TROUGH POINT WHOSE INDEX (IC) IS GIVEN AS AN
ODD NUMBER.

IR=MOD(IC,2)

IF(IR.EQ.0) IC=ISL

ICM=(IC+1)/2

STC{ICM)=ABS(STR)

IF(STC(ICM) .GT.STCX) STCX=STC(ICM)
NR=NR-2

NRC=NRC+1

IG=ISL

CONTINUE

GO TO 1600

C THE ABOVE DO STATEMENT COUNTED ALL RANGES AND CYCLES FROM I2

C BACKWARDS. RANGES I2-I3 AND I3-I4 WILL BE DEALT WITH BY LINE
C LABEL (1600).

C
C

203

DECREASE~-INCREASE PATTERN

IC=12
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Cc
C

1450

1350

IN THIS STUDY, VALUES OF ALL THE TROUGH POINTS ARE NOT LESS

IDI=IDI+1
STRL=0.000

TR=MOD(IC,2)

IF(IR.EQ.0) 1C=I3

NCC=NCC+1

ICM=(IC+1)/2

STC(ICM)=D2

IF(STC(ICM) .GT.STCK) STCX=STC(ICM)

IF(K.GT.0) GO TO 1450
IF(I4.EQ.IES) GO TO 1400
12=14

I3=I4+1

I4=14+2

IF(I4.GT.IES) GO TO 1800
GO TO 1003

IF(K.GT.1) GO TO 1500
IF(I4.E8Q.IES) GO TO 1350
I2=11

I1=I8(1)

I3=14

I4=T4+1

K=0

GO TO 1063
STR=SS(I1)-8S5(IS(1))
STRL=STR

NR=NR+1

IL1=IS(1)
IL2=11

STR=SS(I4)-SS(11)
NR=NR+1

IF(ABS(STR+STRL).LE.0.1) GO TO 1560
GG TO 5000

I3=T1

T2=1S(K)

I1=IS(K-1)

K=K-2
GO TO 1003
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THAN THE VALUE OF THE STARTING POINT. CONSEQUENTLY NO
INCREASE-INCREASE OR INCREASE-DECREASE PATTERNS ARE EXPECTED.
HENCE, THE FOLLOWING TWO RELATED SECTIONS OF THE PROGRAM COULD

BE DELETED.

INCREASE-INCREASE PATTERN

STR=DST1
IIT=I1I+1
STRL=0.000
STR=DST2
NR=NR+2

IF(I4.EQ.IES) GO TO 1550
11=I3

I2=I4

I3=T4+1

I4=14+2

IF(I4.GT.IES) GO TO 1800

DST1=DST3
GO TO 2003

INCREASE-DECREASE PATTERN
STR=DST1

IID=ITID+1

NR=NR+1

IF(I4.EQ.IES) GO TO 1600
I1=12

I2=13

I13=14

I4=T4+1

DST1=DST2
DST2=DST3

GO TO 3003

THE FOLLOWING SECTION DEALS WITH POINTS NEAR THE END POINT OF
THE SPECTRUM

1800 STR=SS(I2)-8S(I1)

STRL=STR
NR=NR+1

IL1=11
IL2=12

STR=S5(13)-SS(12)
NR=NR+1
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C
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QOO

1600

431

IF(ABS{STR+STRL) .LE.0.1) GO TO 1560
GO TO 5000

STR=DST2
STRL=STR
NR=NR+1

IL1=12
IL2=13

STR=DST3
NR=NR+1

IF(ABS(STR+STRL) .LE.0.1) GO TO 1560
GG TO 5000

IC=11L2
IR=MOD(IC,2)
IF(IR.EQ.O0) IC=IL1
ICM=(IC+1)/2
STC(ICM)=ABS(STR)

IF(STC(ICM) .GT.STCX) STCX=STC{(ICM)

NR=NR-2

NRC=NRC+1

WRITE(6,1750) NR,K

FORMAT('" END OF CYCLE COUNTING , NR ="', I6,' K= ',1I6)
WRITE(6,1751) NRC,NCC,KX

FORMAT(' NRC= ',117,' NCC= 7,117,' KX=',1I% )
WRITE(6,1752) IDD,IDI,III,IID

FORMAT(' IDD=',116,' 1IDI=',k1I6,' 1III=',b1I6,' IID=',6116)

NC=NCC+NRC

WRITE(6,431)

THE FOLLOWING SECTION ESTIMATES THE FATIGUE LIFE USING THE
PALMGREN-MINER'S THEORY AND INOUE-NAKAGAWA'S THEORY (CHAPTER 5)

5001

NI=0
SEC=161.5-0.33*FMINE

WRITE(6,5001) STCX,STC(1),SEQ

FORMAT (' STCX= 7,F9.3,' STC(l)= ',F9.3,' SEO= ',FS9.3)
WRITE(6,431)

DM=0.0

DN=0.0

PDN=0.0
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PEN=0.002*EMINE
DO 1399 J=1,NC
IF(STC(J) .LE.SE0)EO TO 1399

NI=NI+1
AFN=6.9085

THIS VALUE OF AFN IS FOR 25 MM DIAMETER. FOR 32 MM DIAMETER,
AFN=6.93077.

1399

4444

5007
1333
799

4321

2345

FN=10.00** (AFN-PEN-0.00591*STC(J))
DM=DM+1.00/FN
PDN=PDN+1.00/SQRT(FN)

CONTINUE

SN=NI

DN=PDN*PDN/SN

WRITE(6,4444) NI,PDN

FORMAT(' NI= ', 1I9,' , PDN= ',1F12.6 )

WRITE(6,9999)

WRITE(6,5007) DM,DN

FORMAT( ' DM= *,EL2.6,' , DN= ' ,E12.6)

FORMAT(' FL=',F6.3,',5F=',r8.6,",FMIN=',76.2,",FMINE=",F6.2)
FORMAT(' END OF CUMULATIVE DAM CALC, NS= ',117,' , NC=',1IT7)
WRITE(6,431)

CL=1.9165E-02

BIM=CL/DM

BLN=CL/DN
WRITE(6,4321) BLM,BLN
FCRMAT(' BIM= ',F12.3,' , BLN= ',F12.3,' : IN YEARS')

WRITE(6,799) II,NC
WRITE(6,431)
CONTINUE

STOP

END
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APPENDIX G

Computer Program for The Design of Beam Sections

PROGRAM DESIGN

THIS PROGRAM DESIGNS THE BRIDGE SECTION USING PROCEDURE
PROPOSED IN CHAPTER 4. IT CALCULATES THE REQUIRED

SECTION DIMENSIONS, CHECKS THE DEFLECTION AND SLENDERNESS
REQUIREMENTS, ROUNDS OFF THE DIMENSIONS TO THE

NEAREST 50 MM, CALCULATES THE REQUIRED REINFORCEMENT

AREA AND CALCULATES THE ACTUAL STRESS IN THE REIFORCEMENT.

DIMENSICON SS(20),3N(20)

SS(I),SN(I): THE STRESS AND STRAIN IN REINFORCEMENT
LAYER T.

PRINT*, 'SPECIFY BM IN KN.M, BL AND BC IN M,BV IN KN'
READ(5,*) BM,BL,BC,BV

BM,BV: THE TOTAL LIVE LOAD MOMENT AND SHEAR TO BE SHARED
BETWEEN THE BRIDGE TWO BEAMS.
BC,BL: THE BEAM WIDTH AND SPAN.

WRITE(6,10) BM,BL,BC,BV

FORMAT('BM= ',1F9.3,' BL= ',1F6.3,' BC= ',1F6.3,
*! BV=',F9.3)

WRITE(6,30)

TC=10000.0
IF(BL.GT.22.0) TC=15000.0

TC: THE DISCREPANCY IN THE TENSILE FORCE WHICH IS
CONSIDERED ACCEPTABLE WHEN CALCULATING ACTUAL
STRESS IN THE REINFORCEMENT.

DIS=10.0
IF(BL.GT.22.0) DIS=12.0

DIS: THE DIAMETER OF THE SHEAR REINFORCEMENT.
PRINT*,'TC= ',TC,' , DIS= ',DIS,' MM'
BM=BM*1.0E06
BL=BL*1.0E03
BC=BC*1.0E03
BMDS=3,125*BL*BL
BMDS: THE MOMENT CAUSED BY THE BRIDGE DEAD LOAD OTHER
THAN THE BEAM SELF WEIGHT (ASSUMED TO BE 25 KN/M
FOR EACH BEAM).

BMU=BMDS+0.5*BM
READ(5,*) DI

DI: THE RINFORCEMENT DIAMETER IN MM.



361

Do 1000 J=1,20

PRINT*,' SPECIFY FST IN N/(MM*MM), DPT 1IN MM, N '
READ*, FSI,DPT,N
WRITE(6,40) FSI,DPT

40 FORMAT ( 'CALC., DB, FSI= ',1F9.3,', DPT= '",1F9.3)

@]

RD=50.0

FSI: THE INITIAL DESIGN STRESS IN THE REINFORCEMENT.
DPT: OVERALL DEPTH - EFFECTIVE DEPTH.

N: NUMBER OF BARS IN ONE LAYER.

DB: THE BEAM EFFECTIVE DEPTH.

RD: ROUNDING OFF PARAMETER.

oRoNoNoNeNONY!

NC1=0
NC2=0
NC3=0

HP=DPT
444 FS=FSI

NC3=NC3+1
BMD=DPT

(@)

ES=FS/200000.0+AMAX1 ( (FS-340.0),0.0)/42500.0

ES,FF5: THE CENTROIDAL STRAIN AND STRESS IN THE
REINFORCEMENT.

Q000

IF(FS.LE.340.0) GO TO 300
CALCULATION OF THE SECTION DIMENSIONS (SECTION 4.3.2)

CASE 1 (FS.GT.0.8*FY=340 N/MM*MM)

Q00

XOD=122.680/(FS-157.732)

X0OD: THE RATIO OF THE NEUTRAL AXIS DEPTH TC THE
EFFECTIVE DEPTH.

QOO0

IF(XOD.GE.0.50) GO TO 100

CASE 1A (XOD.LT.0.50)

e ReoNe!

R=XOD
CR=21.978*R
AR=1.0-0.4345*R

@)

GO TO 200

CASE 1B OR 2A (EC.GE.0.0015)

QOO

EC: THE MAXIMUM CONCRETE STRAIN. (0.0015) REPRESENTS



C THE VALUE OF THE INITIAL PLASTIC STRAIN.
C
100 R=0.5
EC=ES
C

150 SK=0.0015/EC
CR=4.2735*(3.0-SK)
SL=0.25* (SK*SK-4.0*SK+6.0) / (3.0-SK)
AR=1.0-0.5*SL

C
GO TO 200
C
C CASE 2 (FS.LE.0.8*FY)
C
300 EC=ES
R=0.5
IF (EC.GE.0.0015) GO TO 150
cC
C CASE 2B (EC.LT.0.0015)
C

FC=5500.0*BC*(6.202-2062.5*EQ)
C
C FC: THE MAXIMUM CONCRETE STRESS.
C

RP=666.667*EC
CR=0.1667*FC*(3.0-RP)/(2.0-RP)
AR=0.125*%(20.0-7.0*RP) /(3.0-RP)

C

C CALCULATION OF THE BEAM DEPTH

C

200 A=CR*BC*2AR

B=3.0E-06*BC*BL*BL
C=BMU+HMD*B
D=SORT (B*B+4,0*A*C)
DBI=0.5*(B+D)/A

C
C DBI: THE REQUIRED EFFECTIVE DEPTH COF THE BEAM.
C
DB=INT ( (DBI+HMD) /RD) *RD+RD-HMD
RI=R
C

C CHECK DEFLECTION AND SLENDERNESS REQUIREMENTS

IF({DB+HMD) .GE. (0.0588*BL)) GO TO 450
DB=INT(0.0588*BL/RD) *RD+RD-HMD
450 BIM1=60.0*BC

C
BIM2=250.0*BC*BC/DB
IF(BIM2.GE.BIMl) GO TO 550
BCI=SQRT(0.004*BL*DB)

C

C BCI: THE INITIAL REVISED WIDTH.

C

BC=INT(BCI/RD)*RD+RD

362
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550 BMD=3.0E-06*BC*BL*BL* (DB+HMD)
BMT=BMU+BMD
BMDT=BMD+BMDS

BMD: THE MOMENT CAUSED BY THE BEAM SELF WEIGHT.
BMT: THE TOTAL MOMENT.
BMDT: THE TOTAL DEAD LOAD MOMENT.

CALCULATION OF THE REVISED NEUTRAL AXIS EFFECTIVE
DEPTH RATIO ;R (SECTION 4.3.3)

CASE 1 (EC.GE.0.0015)

eNeNONONONONoNO NGNS

RM=0.468*BMT/ (BC*DB*DB)

(@

EOS=0.0015/ES
COF=EOS*(EOS+4.0)
A=COF+6.0

B=2.0*A

C=COF+RM
D=SQRT(B*B-4.0*A*C)
R=0.5*(B-D) /A

EC=ES*R/(1.0-R)
RV=R

ECV=EC

=1

TF(EC.LT.0.0015) GO TO 430

FSI=FS
CR=8.347*R*(3.0~-0.0015/EC)

@]

GO TO 400

CASE 2 (EC.LT.0.0015)

[PHeNe!

430 RM=3.108*RM

C
DA=1.0/EOS
A0=-2.0*DA*RM*DA
Al=(DA-4.0)*RM*DA
A2=2.0*RM*(DA-1.0)+74.421*DA
A3=RM+49.614-61.932*DA
A4=12.375*DA-43.355
A5=9.281
X=0.5

650  YT=A0+X* (Al+X* (A2+X* (A3+X* (A4+X*A5))))
YB=AL+X* (2.0*A2+X* (3. 0*A3+X* (4. 0*A4+X*5,0%A5)))
X1=X-YT/YB
IF(ABS(X~X1).1LE.0.0001) GO TO 750
X=X1

GO TO 650
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C
750 RP=X
R=X/(DA+X)
C
EC=0.0015*RP
FSI=FS
RV=R
ECV=EC
V=2
FC=5500.0*EC* (6.202-2062.5*EC)
CR=0.,3333*R*FC*(3.0-RP)/(2.0-RP)
C
C CALCULATION OF THE REINFORCEMENT ARFA (SECTION 4.3.3)
C
400 CF=CR*BC*DB
TF=CF
ASR=TF/FSI
NOB=INT(1.27324*ASR/(DI*DI))+1

NOB: NUMBER OF THE REINFORCING BARS.

[cHeNe!

ASP=0.7853982*NOB*DI*DI
RR=100.0*ASP/(BC*DB)

: THE REINFORCEMENT RATIO.

200
3

FSA=FSI*ASR/ASP
HT=DB+HMD
BMC=BMT

FS1=FSA
DP1=HMD

IC=1

IC=1,REPRESENTS FULL MOMENT (BMT).
IC=2,REPRESENTS HALF MAX L.L. + D.L. MOMENT (BMTH).
IC=3,REPRESENTS DEAD LOAD MOMENT ONLY (BMDT).

CALCULATION OF THE ACTUAL STRESSES DUE TO BMT, BMTH
AND BMDT (FSA,FSH AND FMIN (SECTION 4.3.4))

CASE 1 (EC.GE.(0.0015)

eHeNoNoNoNoNoNoNeNe!

920 DBA=HT-DP1
NC2=NC2+1
BET=0.117*ASP/(BC*DRBA)
RM=0.468*BMC/ (BC*DBA*DBA)

c
890  ES=FS1/200000.0+AMAX1 ((FS1-340.0),0.0)/42500.0
IB=0
IF(FS1.GT.340.0) IB=1
Cc

C1=(300.0-247.423*IB)*BET
C2=-280.412*BET*IB
A0=-6.0*Cl*C1
Al=C1*(36.0-4.0*C1+12.0*C2)
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[eNeNe!

@]

875

880
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A2=-9,0*RM+C1*(24.0-C1+8.0*C2)-6.0*C2*(C2+6.0)
A3=-6,.0*RM+6,0*C1L-C2*(24.0-2.0*C1+4.0*C2)
A4=-RM-3.0-C2*(6.0+C2)

X=0.0015/ES

YT=A0+X* (AL+X* (AZ2+X* (A3+X*Ad) ))
YB=A1+X*(2.0*A2+X*(3.0*A3+X*4.0*A4))
X1=X-YT/YB

IF(ABS(X1-X).LE.1.0E-04) GO TO 880
X=X1

GO TO 875

ES=0.0015/X
R=(C1/X-C2+X)/{3.0+X)

IB1=0

IF(ES.GT.0.0017) IBl=1

FS1=200000.0*ES-AMAX1( (ES-0.0017),0.0)*164948.45
IF(IB1.NE.IB) GO TO 890

FS2=FS1

EC=ES*R/(1.0~R)

IA=1

IF(EC.LT.0.0015) GO TO 420

TCR=1.0

RP=1.0
IF(IC.EQ.1) RT=R
GO TO 9060

CASE 2 (EC.LT.0.0015)

420

610

X=1.0

RM=3.108*RM

A=2,0*RM-X*RM
B=X*(4.0*RM-X*(2.0*RM+74.421~-X*(61.932-X*12.375)))
C=X* (X* (2. 0*RM-X* (RM+49.614~X* (43.355-X*9,281))))
D=SQRT (B*B-4.0*A*C)

DAl1=0.5*(D-B) /A

ES=0.0015*DAl
FS1=200000.0*ES-AMAX1 ( (ES-0.0017),0.0)*164948.45
R=X/(DA1+X)

RP=X
CF=2.75*RP*(3.0-RP)*(6.202-3.094*RP) *R*BC*DBA/ (2.0-RP)
TF=FS1*ASP

IF(ABS(CF-TF) .LE.TC) GO TO 610

X=X-0.001

GO TO 421

FS2=FS1
TCR=TF/CF
EC=0.0015*RP
IF(IC.EQ.1) RT=R
1A=2
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THE FOLLOWING SECTICON IS REQUIRED TO CHECK WHETHER
THE ASSUMED VALUE OF DPT IS ADEQUATELY NEAR TO ITS
ACTUAL VALUE, CACULATED AS THE LOCATION OF THE TOTAL

TENSILE FORCE

CRONONSNON!

900 SP=DI+25.0
Cv=30.0+0.5*DT
IF(BL.GT.22000.0) Cv=Cv+2.0

SP: THE VERTICAL SPACING BETWEEN BARS.
CV: THE COVER MEASURED TO THE CENTRE OF THE OUTER LAYER.

a0

DP=DP1
ASB=0.7853982*DI*DI

ASB: THE REINFORCING BAR AREA.

Q00

NOL={NOB-1) /N+1

NOL: NUMBER OF LAYERS.

Q00

111 TF=0.0
™=0.0
DBA=RT-DP
NC1=NCl+1

2

DO 333 I=1,NOL

I=1, REPRESENTS THE OUTER BAR

Q0

BI=I-1
SN(I)=(1.0+(DP-CV~BI*SP)/((1.0-R)*DBA))*ES
SS(I)=200000.0*SN(I)~-AMAX1((SN(I)-0.0017),0.0)*164948.45
NP=N
IF(I.EQ.NOL) NP=NOB-(NOL-1)*N
TEF=TF+NP*ASB*SS(I)
C

333 TM=TM+NP*ASB*SS(I)*(CV+BI*SP)

TMA=ASP*FS2*DP

c

C TM: THE MOMENT SUMMATION OF THE TENSILE FORCES IN

C THE VARIOUS LAYERS.

C TMA: THE TOTAL TENSILE FORCE MOMENT.

C
IF({(ABS(TMA-TM) /TM) .LE.0.01) GO TO 222
DP=DP-0.01
GO TO 111

C

222 IF((ABS(DP-DP1)/DP).LE.0.01) GO TO 666

DP1=DP
GO TO 920

C

666 ESE=SN(1)
FSE=8S(1)
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C
555

902
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ESE,FSE: THE STRAIN AND STRESS IN THE OUTER LAVYER.

SF=ESE/ES

IF(IC.NE.1) GO TO 555

DPT=DP

IF((ABS(DPT-HMD) /DPT) .GT.0.01) GO TO 444
PRINT*,' N= ',N,' , NOL= ',NOL,' , SpP= ',SP
PRINT*,' RI= ',RI,' , DBI= ',DBI,' , DB= ',DB
PRINT*,' RV= ',RV,' , ECV= ',ECV,' , IV= ',IV
WRITE(G,35)

PRINT*,' ASR= ',ASR,’' , ASP= ',ASP,' , CV= ',V
PRINT*,' NOB= ',NOB,' , RR= '",RR,' , DI= *',DI
PRINT*,' BC= ',BC,' , HI= ',HT

WRITE(6,35)

PRINT*,' NCl1= ',NC1,' , NC2= ',NCZ," , NC3= ',NC3,’

*, IA= ',IA

pRINT*,' TCR= '!TCRI' . RP= 'rRPI, ; R= 'IR
PRINT*,' ES= ',ES,' , ESE= ',ESE,' , EC= ',EC

GO TO (902,905,910) , IC
FSA=FSE

FSA1=FS2
SET=8F

C FSA,FS5A1,SFT: THE OUTER BAR STRESS, THE CENTROIDAL STRESS

905

AND THE STRAIN FACTOR, CORRESPONDING TO BMT.

PRINT*,' FSAl= ',FSAl,' , SFT= *,SFT,°' , DPT= ',DPT
WRITE(6,50) FSA
WRITE(6,35)

BMC=PMT-0.25*BM
IC=2
FS1=FSA1*BMC/BMT
DP1=HP

NC1=0

NC2=0

GO TO 920

FSH=FSE
FSH1=FS2
SFH=SF

C FSH,FSH1,SFH: THE OUTER BAR STRESS, THE CENTROIDAL, STRESS

AND THE STRAIN FACTOR, CORRESPONDING TO BMTH.

PRINT*,' FSH1= ',FSH1,' , SFH= ',SFH,’' , DPH= ',DP
PRINT*, 'FSH= ',FSH
WRITE(6,35)

BMC=BMDT
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50

Q00

Q0

QOO

0

IC=3
FS1=FSA1*BMC/BMT
DP1=HP

NC1=0
NC2=0
GO TO 920

FMIN=FSE
FMIN1=FS2
SFD=SF

FMIN,FMIN],SFD: THE OUTER BAR STRESS, THE CENTROIDAL STRESS

AND THE STRAIN FACTOR, CCRRESPONDING TO BMDT.

PRINT*,' FMINl1= ',FMIN1,' , SFD= ',SFD,' , DPD= ',DP
PRINT*,'FMIN= ', FMIN,' N/(M*MM)'

FORMAT('FSa= ',1F9.3,' N/(MPMM)'")

WRITE(6,35)

PRINT*,'FSI= ',FSI,' , FSA= ',FSA,' N/(MM*MM)}'
PRINT*,'FSH= ',FSH,' , FMIN= ',FMIN,' N/(MM*MM)'’
WRITE(6,35)

PRINT*,' FSI= ',FSI,' , FSAl= ',FSAl
PRINT*,' FSH1= ',FSH1,' FMIN1= ',FMIN1
WRITE(6,35)

BVT=0.5*BL* (24 .0E-06*BC*HT+25.0) +500.0*BV

BVT: THE TOTAL SHEAR FORCE.

VM:

DBT=HT-DPT
VM=BVT/ (BC*DBT)
PRINT*,'VM= ', VM,' N/ (MM*MM) !

THE MAXIMUM SHEAR STRESS.

BMT=BMT*1.0E-06

BMTH=BMTI-(0.25*BM) *1.0E-06
BMDT=BMDT*1.0E-06

BVT=BVT*1.0E-03

PRINT*, 'DEAD LOAD MOMENT= ',BMDT,' KN.M'
PRINT*, 'INT. MOMENT = ',BMTH,' KN.M'
PRINT*, 'TOTAL MAX MOMENT= ',BMT,' KN.M'
PRINT*, 'TOTAL MAX SHEAR= ',BVT,' KN'
WRITE(6,35)

THE FOLLOWING SECTION CALCULATES THE SECTION MODULI

AND THEIR RELATIVE DIFFERENCES

ZT=BMT/FSA

ZTH=BMTH/FSH
ZD=BMDT/FMIN
ZL={BMT-BMDT) / { FSA-FMIN)

368
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ZLH= (BMTH-BMDT) / { FSH-FMIN)

PRINT*,'ZT= ',2T,', ZTH= ',ZTH,', ZD= ',ZD
PRINT*, 'ZL= ',ZL,', ZLH= ',ZLH

WRITE(6,35)

ZT1=BMT/FSAl

ZTH1=BMTH/FSH1

ZD1=BMDT/FMINL

ZL1=(BMT-BMDT) /(FSA]1-FMINL)
ZLH1=(BMTH-BMDT) / {FSH1-FMIN1)

PRINT*,' ZT1= *,ZT1,' , ZTHl= ',ZTH1,' , ZDl= ',2Dl
PRINT*,' zL1= ',ZL1l,' , ZLH1= ',ZLH1

WRITE(6,35)

ZXT1=AMAX1(ZT1, (AMAX1(ZTH1,ZD1)))
ZNT1=AMIN1(ZT1, (AMIN1 (ZTH1,ZD1)))
DZT1=(ZXT1-ZNT1)}/ZNT1
DZA1=(ABS(ZT1-ZTH1))/(AMIN1(ZT1,ZTH1))
DZL1=(ABS(ZL1-ZLH1))/(AMIN1(ZL1,ZLH1))
DCA=2.0-2.0E06*ZT1/ (ASP*DBT)
RA=0,02*FSA1*ASP/ (BC*DCA*DBT)
ALPH=DCA*RA/RT

ALPH: THE RATIO OF THE AVERAGE CONCRETE COMPRESSIVE
STRESS TO THE CONCRETE COMPRESSIVE STRENGTH ;FCU.

ZXT=AMAX1(ZT,AMAX1 (ZTH,ZD))
ZNT=AMIN1(ZT,AMIN1 (ZTH, ZD))
DZT=(ZXT-ZNT) /ZNT
DZA=(ABS(ZT-ZTH) )} /(AMINL(ZT,ZTH))
DZL=(ABS(ZL~-ZLH) )/ (AMIN1(ZL, ZLH))

PRINT*, 'ALPH= ',ALPH,' , DZT= ',DZT
PRINT*,'DZA = ',DZA ,' , DZL= ',DZL
WRITE(6,35)

THE FOLLOWING SECTION CALCULATES AND COMPARES THE
ACTUAL AND THE SIMULATED STRESS AND STRESS RANGE
VALUES

F=AMIN1 (ZTH1,(0.5*(ZT1+ZD1)))
FL=AMIN1(ZL1,ZLH1)
SF=AMAX1 (SFH, (0.5* (SFT+SFD) ))
SXT=AMAX1(SFT, (AMAX1 (SFH, SFD)))
SNT=AMIN1 (SFT, (AMINI (SFH, SFD) ) )
DSF=(SXT-SNT) /SNT

PRINT*,' DSF= ',DSF,' , DZTl= ',D7ZT1
PRINT*,' DZal= ',DZAl,' , DzLl= ',DZLL
WRITE(6,35)

PRINT*,' FL= ',FL,' , F= ',F,' , SPF= ',SF
PRINT*,' SFT= ',SFT,' , SFH= ',SFH,' , SFD= ',SFD
WRITE(6,35)

SEO0=161.5-0.33*FMIN
FSR=FSA1-FMIN1
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30
35

1000
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STT=BMI/F-FMIN1

BMP=BM*1.0E-06

STL=0.5*BMP/FL
DST=(ABS(STT-STL) ) / (AMIN1 (STT, STL))
SHT=BMTH/F~-FMINL

SHL=0.25*BMP/FL

DSH= (ABS (SHT-SHL) ) / (AMIN]1 (SHT, SHL) )
STCX=AMAX1 (STT,STL)
DFRX=(STCX-FSR) / (AMIN1 (STCX,FSR) )
STCH=AMAX1 (SHT, SHL)

FSRH=FSH1-FMIN1
DFRH=(STCH-FSRH) / (AMIN1 (STCH, FSRH) )
PRINT*, 'FSR= ',FSR,', STCX= ',STCX
PRINT*, 'DFRX= ',DFRX,' , DST= ',DST
PRINT*,'STT= ',STT,' , STL= ',STL
WRITE(6,35)

FSCX=STCX+FMIN1

ESXE=SF* (FSCX/200000.0+AMAX1 ( (FSCX-340.0),0.0)/42500.0)

FSXE=200000.0*ESXE-AMAX1 ((ESXE-0.0017),0.0)*164948.45

STXE=FSXE-FMIN
FSRE=FSA-FMIN

PRINT*,' FSRE= ',FSRE,' , STXE= ',5TXE

DFXE=(STXE-FSRE) / {AMIN1 (STXE,FSRE))
PRINT*,' DFXE= ',DFXE,' , SEO= ',SE
WRITE(6,35)
PRINT*, 'FSRH=',FSRH, ',STCH=",STCH, '
PRINT*,'SHT= ',SHT,' , SHL= ',SHL,'
WRITE(6,35)

FSCH=STCH+FMIN1

ESHE=SF* (FSCH/200000.0+AMAX1 ( (FSCH-340.0),0.0) /42500.0)

FSHE=200000.0*ESHE-AMAX1 ( (ESHE-0.00
STHE=FSHE-FMIN

FSHE=FSH-FMIN
DFHE=(STHE-FSHE) / (AMIN]1 (STHE, FSHE) )
PRINT*, 'FSHE=',FSHE, ', STHE=",STHE,"
PRINT*,' DPT= ',DPT

WRITE(6,30)

CONTINUE

WRITE(6,60)

- FORMAT(' END OF THE BRIDGE DESIGN'

STOP
END

0

,DFRH=",DFRH
, DSH= ',DsH

17),0.0)*164948.45

(DFHE=" ,DFHE
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