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REINFORCED CONCRETE BEAMS AS A CONTRIBUTION TO THE DESIGN OF SHORT 

SPAN HIGHWAY BRIDGES IN REGIONS WHERE TRAFFIC IS NOT INTENSE 

by Sadiq Abdul Husein All MUSCAT I 

Concern about fatigue of concrete structures has recently increased 
because of new uses of concrete. The aim of this study is to 
investigate fatigue life of reinforced concrete bridges, in rural 
areas, with simply supported short spans, subjected to simulated 
single lane truck loading. 

The relationship between fatigue life, in years, and the section 
modulus of the bridge beams has been investigated. In the study five 
different span lengths have been used and the loading has been based 
upon three different intensities of traffic flow, across the bridge, 
expressed in terms of Trucks per hour. The section modulus is 
defined here as the ratio of the applied moment to the induced stress 
in the reinforcement of the beam section. 

Making use of available statistical data, the truck models have 
been simulated by the Monte Carlo method, assuming that trucks' gross 
weights and their arrival times on the bridge are normally and 
exponentially distributed respectively. The time sequence of maximum 
and minimum moments (moment spectrum) has been obtained by passing 
the truck model across the bridge. By designing the bridge section 
to resist the maximum moment with a specified design stress in the 
reinforcement, the section modulus has been defined and used to 
convert the moment spectrum into a stress spectrum. 

The 'rainflow' method has been used to perform the stress cycle 
counting. From the counted cycles, the fatigue life has been 
estimated using the Palmgren - Miner's linear rule. 

For each combination of beam span and frequency of loading, a 
single curve has been obtained to represent the relationship between 
the section modulus and Log (life in years). This curve has been 
established by a new method, developed to ensure a 'safe' result, as 
it gives an interpolated life value which does not exceed the 
corresponding real one. The curve may be used to estimate the 
section modulus required to give a specified design fatigue life to 
the bridge. 
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CHAPTER 1 

INTRODUCTION 

Current methods for designing reinforced concrete structures to 

resist fatigue damage are less advanced than those for steel 

structures. Fatigue damage control in reinforced concrete structures 

is achieved mainly by keeping reinforcement stress ranges below a 

limiting value (1, 14, 23). On the other hand, concern about fatigue 

of concrete structures has recently increased because of new uses of 

concrete. In some types of structures, occasional overloadings are to 

be expected, whilst the full design loading may be repeated for a 

large number of cycles (14). 

The aim of this study is to investigate life deterioration of 

reinforced concrete bridges, in rural areas, with simply supported 

short spans, subjected to simulated single lane truck loading. The 

relationship between the fatigue life in years and the section 

modulus has been investigated, for a set of specified bridge beams, 

of different span lengths (L), subjected to different rates of 

repeated loading (U), resulting from traffic passing across the 

bridge, defined in terms of Trucks per hour. 

The section modulus which is defined here as the ratio of the applied 

moment to the induced stress in the reinforcement, has been 

calculated by designing the bridge beams using the limit state 

theory and varying the design stress in the reinforcement. The 

section modulus is believed to have a direct relationship with the 

fatigue life (40), as it incorporates the effect of the stress in the 

reinforcement and the applied moment associated with a certain truck 

model and span length. 

By making use of the available statistical data based on previous 

traffic surveys (35), the truck models have been simulated by the 

Monte Carlo method assuming the trucks' gross weights and their 

arrival times on the bridge are normally and exponentially 

distributed respectively, as established by previous researchers (37, 

38, 39, 40, 42). 



The time sequence of maximum and minimum moment values (moment 

spectrum) has been obtained by passing the truck model across the 

bridge. By designing the bridge section to resist the absolute 

maximum moment of the spectrum, with a specified design stress in the 

reinforcement, the section modulus has been defined and Is used to 

convert the moment spectrum into a reinforcement stress spectrum. 

Fatigue parameters have been established experimentally (7,50) using 

samples tested under constant amplitude stress cycles. In order to 

use a predicted stress spectrum as a basis for the design, the 

spectrum must be reduced to a series of equivalent cycles and half 

cycles; a process which is known as cycle counting. 

In this study, the rainflow method (7,52) has been used to perform 

the stress cycle counting. From the counted cycles, the fatigue life 

has been estimated using Palmgren - Miner's linear rule, applied to 

the characteristics of the outer layer of the particular steel 

reinforcement used. It is well established that, in most cases, 

compressive stress changes in concrete do not lead to a significant 

chance of fatigue failure and it is the steel which governs the 

fatigue life of reinforced concrete structures. 

Bridges with 15 - 20 m spans are very common in highway systems. In 

this study, the fatigue lives of bridges with 15.0, 17.5 and 20.0 m 

spans have been investigated. Also the fatigue lives of two longer 

spans of 25.0 and 27.5 m have been investigated to examine the 

effect, on the fatigue life, of the higher dead load stresses, which 

then arise. 

BS5400 specifies that the number of trucks, that are assumed to 

travel along a single carriageway lane of a bridge, may be taken to 

be (1.5 X 10^) per year i ̂  170 Trucks per hour). In this study 

three rates of truck frequency (U) have been used for the analysis 

(90, 180 and 360 T/hr.) 

The calculations, which have been carried out, result in a 

relationship which can be expressed graphically in the form shown 

in Figure (1.1). Here we plot Log(life in years) against the section 

modulus of the beam as a single line for each combination of values 

of beam span (L) and frequency of loading (U). 
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Figure (1.1) : Logdife) - Section modulus curve for 
a specific value of span (L) and rate 
of loading (U) 



The Log (life) - Section modulus curves may be used to estimate the 

section modulus required to give a specified design fatigue life to a 

bridge beam. Knowing the required section modulus and the design 

moment, the resulting design stress in the reinforcement can be 

determined. The beam can therefore be dimensioned so that the actual 

maximum stress in the reinforcement does not exceed that needed to 

achieve the required fatigue life. 



CHAPTER 2 

FATIGUE OF MATERIALS UNDER REPEATED LOADING 

2.1 Fatigue In General 

Fatigue is the damage caused to structural elements by the repeated 

applications of a load which is insufficient to induce failure by a 

single application (1, 2). 

The fatigue phenomenon is a very complex one, and fatigue studies 

have shown that its damage depends on many parameters. The effect, 

of the stress spectrum parameters such as the mean stress, the stress 

peaks and the low stress amplitudes, on the fatigue life of a 

specimen has been observed by many investigators (3). 

Fatigue in metals is usually caused by stress cycles whose values are 

higher than a limiting value described as the 'fatigue endurance 

limit'. Below this stress limit, the material can sustain a very 

large, or even a nominally infinite number of loading cycles, without 

failure. 

Apparently, the material behaviour, when subjected to a large number 

of low amplitude stress cycles, is different from that under a small 

number of high amplitude stress cycles. The latter case, known as 

low cycle fatigue, is distinguished by macroscopic cyclic plastic 

straining of the material, which does not occur under low loading 

(5,6). Plasticity is non linear and history (path) dependent and it 

is this property which appears to carry over to low cycle fatigue, in 

which the stress-strain relations are cyclic dependent. 

For low cycle fatigue (which might be considered for metals to occur 
5 

in less than 10 cycles), a straight line relationship (5) between the 

strain and the number of cycles to failure on a log-log scale has been 

noted (Coffin - Manson law). It takes the form:-
Ae N™ = C 



where: 

Ae = strain range (presumably maximum principal 

direct strain range) 

N = number of cycles to failure 

ffljC = material constants 

For the case of small loads, and therefore a large number of cycles 

to failure, known as high cycle fatigue, the relationship between the 

number of cycles to failure (N) and the stress range (S) (Wohler or 

S-N curve) can be approximated in metals (7) by the equation: 

NS^ = K 

where K and q are constants which depend upon the material concerned 

and the design detail (stress concentrations, weld joint, etc.). 

Many theories have been proposed to represent fatigue cumulative 

damage in quantitative terms, but each theory has its own 

shortcomings. These result from the assumptions introduced to 

simplify the many complications associated with the fatigue process. 

Interest was shown in the fatigue of metals (4) as early as 1829 when 

Albert subjected mine hoist chains to repeated proof loadings. Even 

so, after 150 years we are still far from reaching the stage of 

having a full understanding of the process and a technique to 

evaluate the fatigue cumulative damage in an accurate and reliable 

way. In the following sections, some of the methods developed to 

estimate fatigue damage are described. 

2.1.1 Palmgren - Miner's Method (8) 

This method is the most well known and widely used in current 

engineering practice. The method is based on the assumption that 

the phenomenon of cumulative damage to a specimen under repeated 

loading is related to the net hysteresis work absorbed by the 

specimen. The number of loading cycles applied, expressed as a 

percentage of the number to failure at a given stress level, would be 

the proportion of useful life expended. When the total damage, as 



defined by this concept, reaches 100 percent, the specimen should 

fail by fatigue. The method is expressed mathematically as : 

where, n^ is the number of cycles applied at stress and is the 

average value of the number of stress cycles to cause failure at 

stress (the stress level is, of course, greater than the 

fatigue endurance limit S ) . 

It is known that this method does not give an accurate prediction of 

fatigue life. Numerous tests have shown that the average damage 

sum [D = ^ (n^/N^)] at failure may be sometimes considerably higher 

or lower than unity. Use of the minimum value of the number of 

stress cycles to failure, instead of the average value , improves 

considerably the safety of using this method (3). 

2.1.2 Inoue - Naka^awa's Method (9) 

Inoue and Nakagawa have assumed that the hysteresis loop of an 

element subjected to fully reversed straining (zero mean strain) is 

as shown in Figure (2.1). Also they have assumed that when an 

element is subjected to n cycles of constant strain amplitude e , 

the form of the hysteresis loop is constant during the life of the 

element. Consequently the total strain energy of the element (which 

is represented by the area enclosed by the hysteresis loop) is a 

function of the yield strain e^ . 

It has been assumed that fatigue failure takes place when the strain 

energy accumulated in the most defective element, having the maximum 

hysteresis loop, reaches a certain value. This value has been found 

experimentally to be constant with respect to the variation in the 

strain amplitude. 



Figure (2\ 1 ) 

Stress-strain hysteresis loop of 

an element with yifeld strain e. 



The method is expressed mathematically as 

V 

where have been defined previously and Ng^ = ^ n^ . Derivation 

of the aforementioned equation is given in Appendix A. 

The aforementioned two methods neglect many factors, amongst which 

are possible changes in the value of the fatigue endurance limit, the 

stress amplitudes below the initial fatigue endurance limit and the 

loading sequence, all of which appear to have an effect (3, 10). 

The fatigue endurance limit for a virgin specimen is normally higher 

than that for a similar specimen with a prior loading history. 

However, in some strain-aging materials, an appropriate sequence of 

loading may raise the fatigue endurance limit. Stress amplitudes 

below the initial fatigue endurance limit, in most cases, add to the 

damage and should be accounted for (10). 

Change of the loading sequence (without changing other loading 

parameters) affects the damage sums. These are mostly larger than 

unity in the tests performed by applying low stress amplitudes 

followed by high stress amplitudes. They are usually smaller than 

unity in the tests performed by applying high stress amplitudes 

followed by low stress amplitudes. However there are some cases where 

a reversed sequence of effects has been observed (3). 

Palmgren - Miner's method is the only cumulative damage method 

presently used in the design of structures. Numerous attempts have 

been made to develop more comprehensive methods which account for 

other effects, but these methods have had little real success in 

practical component design (3). However, for completeness, some of 

these methods are described briefly here. 
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2.1.3 The Double Linear Damage Method (10) 

In this method, originally developed by Manson et al (10), the damage 

sum [D = % (nu/N^)] is applied separately for the crack initiation 

and crack propagation stages. Failure is assumed to occur when the 

sum is equal to unity for both stages. 

The number of cycles, required for the crack propagation stage, N is 
S 

expressed, in terms of the number of cycles to failure N, by the 

relation: 

N_ = g 
s 

where g and a are constants. Consequently, the number of cycles, 

required for the crack initiation stage, N is given by : 

Ng = N - Ng = N - g 

Failure occurs when, 

Y "o 

I = 1 for the initiation stage 

and 

^ ̂  = 1 for the propagation stage 
g 

where n and n are the number of cycles applied under the initiation 
O g 

and propagation stages respectively. 

Manson et al (10) have suggested that, at a certain high stress level 

corresponding to a value of N smaller than a specified value , the 

effective crack is assumed to exist from the first cycle, 

(i.e. for N < N , N ~ 0). 
s o 
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In the light of some experimental results,the constants a and g for 

metals have been assumed to be equal to (0.6) and (14) respectively. 

Consequently : 

1 
1-0.6 

Ng = (14) ~ 730 cycles 

It follows that for any high stress for which the number of cycles to 

failure (N) Is less than (730) cycles, the effective crack is assumed 

to exist from the first cycle. 

An extension of this method has been made by Bui - Quoc and 

Biron (11), to predict the cumulative damage effect under strain 

controlled fatigue at high temperatures. 

2.1.4 Henry's Method (12) 

In order to evaluate the decrease in the fatigue endurance limit 

resulting from repeated loading, Henry (12) has assumed that the S - N 

curve for a steel specimen can be represented for moderate stress 

values by : 

S - ^eo 

where K is a material constant, K is its value for the virgin 

material and S is the endurance limit for the virgin material. 

He has assumed also that, when fatigue damage accumulates, the new K 

value is proportional to the new endurance limit value, S . Also, at 

failure the endurance limit is assumed to be zero. Consequently the 

damage ratio D (a dimensionless parameter whose value is (0) for the 

virgin material and (1) at failure) may be defined by : 

D = ̂ 2° " 

eo 
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Making use of the aforementioned assumptions, D can be expressed as 

D = --- n/M 
S (1-n/N) 

1 + . so 
S - Seo 

2.1.5 Gatt's Methods (13) 

Gatt's method (13) is similar to Henry's method. Instead of assuming 

that the endurance limit (S ) is zero at failure, Gatt's has assumed 

that its value at any stage is a constant fraction of the material 

strength. At failure, the material strength is equivalent to the 

stress S which causes the failure. Hence, the endurance limit at 

failure can be given by : 

s = c.s 
e 

where C is a material constant, whose value can be found by assuming 

that the stress causing failure in the first cycle is equivalent to 

the ultimate tensile strength (i.e.; C = S /S ). 

Also, he has assumed that the energy associated with a stress above 

the endurance limit, and with a strain in excess of the strain 

corresponding to the endurance limit, is proportional to the damage 

caused by the nth cycle. This energy has been assumed to represent 

the decrease rate of the strength with respect to time. By 

representing the stress-strain curve, from the endurance limit to the 

maximum stress of the cycle, by a straight line, it has been found 

that the endurance limit S is given by : 

= S [1 ^ ^ S (1 - n/N) 

1-C s - s 
eo 
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In this method, a damage ratio D (whose value is (0) for the virgin 

material and (1) at failure) may be defined by ; 

D 
- GS 

2.2 Fatlgjue of Concrete 

2.2.1 Fatigue of Plain Concrete 

Investigations have shown that the fatigue life of concrete, tested in 

compression under a constant amplitude loading, with the stress f 

varying from the same minimum to different maxima, may be considered 

to vary linearly with the maximum stress of the cycle (14). 

Apparently there is no endurance limit below which, the plain concrete 

will sustain an infinite number of load cycles (4, 14, 15, 16, 17,18). 

For concrete in compression, the relation between the maximum and 

minimum stress, f and f . respectively, and the corresponding 
zD&x nixn 

number of cycles to failure N, is given (14) for design purposes as : 

1 

- W W ' -

where f^ is the compressive strength, and the constant q is 

approximately equal to (0.0685). 

Another design equation for the fatigue of concrete in compression is 

recommended by the Japan Society of Civil Engineers (14) as follows; 

W - 'min -- '0-9 " ''o ' '"mln' " " 
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where k is a coefficient taken equal to (0.85) to cover the 

differences in strength between standard cylinders and in-place 

concrete. 

For cyclic tension, it has been shown (14) that the fatigue strength 

under loadings producing tension is about the same as for compression. 

Cyclic loading from compression to tension has been reported to be 

more damaging than zero - to - tension loadings (14). 

Material parameters such as cement content, water/cement ratio, 

curing conditions, and age at loading, have been found (14) to affect 

fatigue strength in a proportionate manner to the static strength of 

the concrete. 

For concrete submerged in salt water, it has been reported that the 

fatigue strength of concrete is reduced (14). 

2.2.2 Fatigue of Reinforced Concrete 

Fatigue of reinforcing bars occurs as a result of the initiation and 

propagation of a crack under cyclic loading. It has been found that 

the reinforcing elements will be more likely to limit the life of the 

member than the concrete itself (4, 14, 19, 20, 22). This is 

particularly true in the case of members subjected to predominantly 
3 7 

flexural high-cycle, low-amplitude loadings between (10 ) and (10 ) 

cycles (14). Laboratory data, from tests on bars in air and on bars 

embedded in concrete beams, have shown that most test results on bars 

in air are generally a little lower than on bars from the same lot 

embedded in a concrete beam (14). 

It has been found, from numerous tests which Incorporated variations 

of the effects of the stress range, minimum stress, bar diameter, 

size of beam and grade of bar, that the stress range is the 

predominant factor in determining the fatigue life of the reinforcing 

bars (14, 16, 20, 21). The minimum stress level is also significant 

(14, 21). 
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For design purposes, It has been concluded that there Is a limiting 

stress range which may be taken as a fatigue endurance limit. At 

stress ranges above this limit, a reinforcing bar will have a finite 

life, while below this limit the bar will have a very long life and 

may be able to resist an unlimited number of cycles. The transition 

from the finite life to the long life region occurs in the range of 

one to two million cycles (14, 21). 

Other variables that are important, from a design viewpoint, are the 

geometry of deformations on the bar, radius of bends, welding and 

corrosion. Other factors such as bar size, type and orientation, 

yield strength and chemical composition, have been reported to have 

only minor effects (14, 19, 21). 

Also the fatigue strength, of the main reinforcement in straight 

reinforced concrete beams of sound normal weight concrete, has been 

found not to be affected by the beam dimensions or the concrete 

strength and modulus, except as they affect the reinforcement 

stresses (20, 21). 

Because of its effect in reducing the fatigue strength of bars, it is 

advisable to avoid welding in construction that will be subjected to 

repetitive loads (14). Where welding cannot be avoided, reference 

should be made to fatigue design criteria for comparable welded 

details in structural steel (1, 14). 

Based on a study of deformed bars, made by four different U.S. 

manufacturers, which has included tests on (353) concrete beams, each 

containing a single straight test bar as the main reinforcement, the 

following equation has been developed to determine the limiting 

service load stress range in the long life region, below which 

fatigue damage is unlikely to occur in straight hot rolled bars with 

no welds: 

= [145 - 0.33 + 55 (r/h)] in N/nmf ....(2.1) 
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In this equation, is the limiting stress range, is the 

minimum stress level (positive when tensile). (r/h) is the ratio of 

base radius to height of rolled on transverse deformations (0.3 to be 

used when the actual value is not known). This equation includes an 

adjustment to represent approximatley a 95 percent probability that 

95 out of a hundred test results will exceed. 

Although the above mentioned equation is a lower limit for bars, made 

by U.S. manufacturers, conforming to ASTM designation A615, it is 

believed to be reasonably applicable to other reinforcing bars, whose 

surface geometry has not been controlled in a manner that assures 

higher fatigue strength (14). This equation has been adopted, in 

U.S. design specifications, to define the maximum allowable range 

between a maximum tension stress and a minimum stress, in straight 

reinforcement bars, caused by live service load plus impact (14). 

It is recommended that no bends in primary reinforcement shall be 

allowed at locations where the stress range is near the above limit 

4 • 

An equation has been also developed for a safe fatigue life (14, 21), 

for all stress ranges above the endurance limit represented by 

Equation (2.1). This equation is given as : 

log N = 6.1044 - 591 (10) ^ _ 200 (10) ^ f ^ 

+103 (10)"5 f _ 8.77 (10)"5 A + 0.0127 d(r/h) 
s (2.2) 

2 
where f is the stress range in N/mm , f is the ultimate strength of 

^ 2 ^ 2 
the steel bar in N/mm , A is the area of the bar in mm and d is 

the nominal diameter of the bar in mm. Other terms have been 

defined previously. 

Equation (2.2) may be used to design a reinforcing bar for a safe 

fatigue life resulting from stress ranges above the endurance limit. 

However, such design must be cautious because of the potential for 

brittle fracture due to a sudden overload, after a fatigue crack has 

been initiated (21). Moreover, Eq.(2.2) has been developed, as a 

result of an extensive testing programme (14, 21), to give a safe 
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fatigue life. Even though, because of the wide scatter associated 

usually with fatigue tests, it is unrealistic to assume that it will 

necessarily give absolute safe results for other testing programmes 

carried out under different or even similar conditions. 

Equations (2.1) and (2.2) should be used cautiously in circumstances 

where time-dependent effects (like severe salt water corrosion and 

extreme temperature conditions) may change the reinforcing bars 

properties. 

Equations (2.1) and (2.2) are adopted in this study and have been 

used, with Palmgren - Miner's rule, to predict the fatigue lives of 

32 and 25 mm straight hot rolled reinforcing bars whose yield stress 
2 2 

is, fy = 425 N/mm . For such bars, an average value of 730 N/mm has 

been used (20, 21) for the ultimate strength (f^^. 

This study deals with simply supported bridges, and if we neglect the 

beneficial negative stresses (compressive) caused by the trucks' dynamic 

effects, then the value of F used becomes the positive stress 

(tensile) caused by the bridge dead load. Assigning the above 

values for the parameters in Equations (2.1) and (2.2), with 

(r/h =0.3), gives the following two equations : 

f. = 161.5 - 0.33 (2.3) 
I m m 

log N = A - 200 (10"5) f , - 591 (ICT^) f (2.4) 
iM Dj 1 ii 

where, A^ = 6.9077 for 32 mm bars and 6.9085 for 25 mm bars. 

2.2.2.1 Low Cycle Fatigue of Reinforced Concrete 

Most of the previous research has been directed toward high cycle-

low amplitude fatigue loading in the range of (1000 - 10 ) cycles 

(14). Low cycle - high amplitude fatigue loading of less than (1000) 

cycles may occur as a result of earthquakes or other events that 

cause a.loading of the structure beyond its normal service load. 

Under a low cycle - high amplitude loading, the influence of the time 

dependent conditions should be expected to remain inelastic with 

Increasing residual deformations. 



A recent study has been carried out at the University of 

Southampton (24). This involved testing seven beams, reinforced with 

one straight unwelded hot-rolled 16 mm deformed bar. From these 

tests, which have been performed under about (85 - 95) percent of the 

collapse load; whose value has been determined experimentally by 

testing a proto-type beam, the following has been concluded: 

1- The applied repeated load has to be higher than the yield load, 

if the beam is to fail in about (100) cycles. This means that beams 

are reasonably safe for up to (100) cycles,provided that the repeated 

loads cause steel stress which are lower than the yield stress. 

2- Reinforced concrete beams can withstand safely a (100) cycles of 

about 92 percent of the collapse load. 

3- Cracks are formed in the concrete when the load is about 25 

percent of the collapse load. Once they are formed, the cracks widen 

very slowly until the beam is about to collapse. Also, cracks are 

formed initially with a considerable length, but their propogation is 

very slow. Significant inclined cracks are also formed in both shear 

spans. 

4- All beams have exhibited an under-reinforced form of failure. 

2.2.3 Fatigue of Prestressed Concrete 

Fatigue of prestresslng tendons is similar to that of bars in that it 

occurs as a result of the initiation and propagation of a crack under 

cyclic loading. But it is generally accepted that a sufficient level 

of prestressing prevents or limits the extent of flexural cracking, 

and adherence to static limitations is believed to preclude the 

possibility of fatigue failure (14). This is mainly because, in 

prestressed concrete, the steel stress fluctuations under load are 

proportionally very much less than those experienced by reinforcing 

steel in reinforced concrete structures. 
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CHAPTER 3 

SIMULATION 

Simulation is the imitation of a real situation by some form of 

model. The principal advantage of the simulation is to determine the 

effects of the changes in the system variables on a specific 

parameter, where analytical formulation is not available and 

experimental procedure is not possible or expensive and time 

consuming (27). To investigate the fatigue life of bridges under 

truck loading, the Monte Carlo method can be used to simulate trucks' 

weights and arrival times. This can be achieved by defining 

probability distributions which represent adequately these system 

random variables, as demonstrated in the following sections. 

3.1 Probability and Probability Functions 

If we suppose that in a sequence of n trials of a certain 

experiment, the event E occurs n^ times, then the probability of 

occurrence of E is given (25) by: 

p(E) = lim (n^/n) 
n-* CO 

For a random variable X, (X^ $ X $ X^), we define: 

P(a 3 X $ b) = 
b 
f(x) dx 

where the function (f), denoted as the probability density 

function (p.d.f.), satisfies the following conditions (26); 

(a) f(x) 50 for all X^ $x ^X^ and 

(b) 
fXjj 

f(x) dx = 1 
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The distribution function or cumulative distribution function (as it 

is sometimes called) of the random variable X, (which is the 

probability of getting a value of X smaller than or equal to a 

certain value), is denoted as F and defined by; 

F(x) = P (X $ x) for all Xĵ $ x $ Xy , then (26) 

F(x) = 
X 

f(x) dx 0 $ F(x) $ 1 

3.2 The Monte Carlo Simulation 

The Monte Carlo method is a new numerical procedure which takes 

advantage of the high speed of the digital computer in solving 

complex science and engineering problems. The Monte Carlo method 

predicts the final outcome by substituting for a random variable a 

set of actual values having the statistical properties of the random 

variable. The substituted values are called random numbers, on the 

grounds that they could have been produced by chance by a suitable 

random process (28). 

3.3 Generation of Random Numbers 

In practice, a sequence of uniformly distributed random numbers is 

usually required. The cumulative distribution function for the 

uniform distribution is defined as; 

0, xSO 
F(x) = X, 0 <X < 1 

1, x%1 

The following methods have been used by practitioners to generate 

sequences of random numbers 

1. Manual methods 

2. Library tables 

3. Computer methods 
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Manual methods are the simplest but the least practicable of the 

methods because they are too slow for general use. They include 

mechanical and electronic devices, coin flipping, dice rolling, card 

shuffling and roulette wheels. These methods have the disadvantage 

that it is impossible to reproduce a sequence of random numbers 

generated by such devices. 

A number of library tables of random numbers have been published. 

These numbers must first be generated by one of the aforementioned 

methods. This method is slow and has the disadvantage that some 

problems require more random numbers than have been published. Also, 

using the same random data for every problem might sometimes be 

unacceptable. 

Computers are capable of generating random numbers with repeatable or 

unrepeatable sequences. Congruential methods are widely used to 

generate random numbers. They are based on a fundamental congruence 

relationship which may be expressed as the recursive formula given by 

Equation (3.1), [Two integers a and b are congruent modulo m if their 

difference is an integral multiple of m. The congruence relation is 

expressed by the notation, a = b (mod m)]. 

nu ^ ^ = a + c (mod m) ... (3.1 

where n^, a, c and m are all non-negative integers. Three basic 

methods have been developed by using different versions of Equ.{3.1). 

These methods are the additive congruential method, the 

multiplicative congruential method, and the mixed congruential 

method. 

The additive congruential method assumes k starting values, where 

k is a positive integer and computes a sequence of numbers using 

the following relation: 

"i+l = "l + "l-k m) 

This is the only method that gives periods larger than m. 
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The multiplicative congruential method computes a sequence [nu] of 

non-negative integers, each less than m, using the relation: 

= a n^ (mod m) 

The multiplicative method has been found to behave quite well 

statistically. That is, frequency tests and serial tests, as well as 

other tests for randomness, when applied to sequences generated by 

this method indicate that the random numbers are uncorrelated and 

uniformly distributed. It is possible to impose conditions on the 

multiplier (a) and the starting value (n ) to insure a maximum period 

for sequences generated by this method. From the integers in the 

sequence [nu], rational numbers in the unit interval (0,1) can be 

obtained by forming the sequence [r\] = [nu/m] 

Numbers obtained using Equation (3.1) with a and c both greater 

than zero are said to be generated by the mixed congruential method. 

This method has some small advantages over the multiplicative method 

in terms of increased computational speeds (29, 30, 31, 32, 33). 

In this study the built-in routine G05CBF of the ICL 2976 computer at 

the University of Southampton has been used. This routine generates 

numbers between (0) and (1) with repeatable sequence by the 

multiplicative congruential method. Procedures with repeatable 

sequence have the advantage of allowing checking process to be 

performed, if desired. 

GOCBF sets the internal variable N used by another routine 

G05CAF to a value calculated from any integer I: 

N = 2 I + 1 

It then calls G05CAF to shuffle N. 
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GOSCIF computes random real numbers taken from a uniform 

distribution between (0) and (1). The routine uses a multiplicative 

congruentlal method: 

N = 13^3 N (mod 2^9) 

C05CBF will give different subsequent sequences of random numbers 

If called with different values of I, but the sequences will be 

repeatable In different runs of the calling program (34). The 
57 

standard cycle length of this routine (31) Is (2 ). 

3.4 Generation of Random Variates 

Two methods have been used in this study to generate random variates. 

3.4.1 The Inverse Transformation Method 

If we wish to generate random variates (x^s) from some particular 

statistical population whose density function is given by f(x) and 

distribution function is given by F(x), since: 

0 $ F(x) 3 1 

then, we can generate uniformly distributed random numbers (0 < r < 1) 

and put: 

F(x) = r 

which gives: x = F~''(r) 

— 1 
where F~ (r) is the inverse transformation (31). 

For many probability distributions, it is impossible to express x 

in terms of F "'(r). In such case, we may use the rejection method. 
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3.4.2 The Rejection Method 

If f(x) is a (p.d.f.) and if x is bounded and has a finite range 

say: a $ x $ b. The rejection method requires the following steps: 

(a) Normalize the range of f(x) by a scale factor m such that: 

m.f(x) g 1 a $ X $ b 

(b) Define x as a linear function of r, where 0 $ r $ 1 : 

X = a + (b-a) r ... (3.2) 

(c) Generate pairs of random numbers (ry, r^). 

If rg $ m. f(a+ (b-a) r^), then the pairs are accepted and 

(x = a + (b-a)r^) is the required random variate. This is because 

the probability of r^ being less than or equal to m. f(x) is: 

PfPg ^ m.f(x)) = m.f(x) 

Consequently if x is chosen at random from the range (a,b) 

according to Equation (3.2) and then rejected if r^ > (m.f(x)), the 

(p.d.f.) of the accepted (x's) is exactly f(x) (31, 32). 

3.5 Traffic Simulation 

Bridges are generally designed to carry a static vertical load caused 

by a design truck plus a given increase to include the dynamic 

effects (1, 35, 36). Even when passenger cars are constituting the 

major part (42, 45) of traffic (in number), they are usually-

disregarded because of their insignificant contribution to the 

induced stresses (1, 37). 
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To simulate the traffic, the variation of the following factors 

should be investigated (37, 38, 39): 

1. Multiple presence of trucks 

2. Truck gross weight 

3. Truck type with the axle spacings and axle load fractions 

It has been found (37, 38, 40) that a wide variety of truck types 

could be combined into a limited number of truck types with specified 

axle load fractions and axle spacings. 

3.5.1 Truck Classification 

Heins (35) has concluded that trucks in the U.S.A. could be 

classified as shown in Figure (3.1). His work has been based on 

numerous field surveys. For each truck type, the following 

parameters have been specified: 

1. Average gross weight 

2. Standard deviation of the gross weight 

3. Range of the gross weight 

The average frequency of these truck types relative to the location 

of the road system (Metropolitan, Urban, Rural) is shown in 

Table (3.1). 

Heins' study (35) has been based on data collected in the U.S.A. in 

and before 1972. An extensive literature survey has been undertaken 

by the author to get some more updated related data. For the same 

purpose, the specialised authorities in the U.K. have been 

approached. Unfortunately, it seems that such data are unavailable. 

Comparing Figure (3.1) and Table (3.1) with vehicles of 5, 4, 3 and 

2 axles given by Table (11) of BS5400: Part 10: 1980, given here at 

Fig. (3.2), reveals that there is a reasonable agreement between the 

data given by BS5400 and those given by Figure (3.1) and 

classified in Table (3.1) as the metropolitan traffic. Vehicles with 

more than five axles are given by BS5400 : Part 10:1980 
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Truck Type Metropolitan Urban Rural 

2D 35.0 13.0 21.0 

3D 23.0 3.0 6.0 

2S-1 6.0 10.0 7.0 

2S-2 11.0 30.0 25.0 

3S-2 25.0 44.0 41.0 

Table 3.1 Average Distribution of Trucks by Type 
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m i l l i o n 
c o m m e r c i a l 
vehic le* 

80 160 160 2 4 0 (6 no,) 

80 160 160 60 (6 noJ 

240 (6 no,) 

60 (6 no,) 

80 160 160 
80 160 160 

70 140 140 210 210 210 2 1 0 210 2 1 0 

50 110 110 80 80 80 80 80 80 

7 0 

60 

140 140 

130 130 

2 4 0 2 4 0 

90 90 

2 4 0 240 

90 90 

70 100 100 130 130 130 130 

70 130 130 ISO 150 

60 70 70 

40 45 45 

80 80 
60 60 

55 100 

45 ^ 
35 50 

90 90 

65 65 

3 0 3 0 

50 50 

4 0 40 

20 M 

90 90 

80 M 
40 40 

4 5 8 5 

30 M 

20 35 

85 
55 
35 

60 90 90 

55 7 0 70 

40 40 40 

50 

30 
15 

85 

35 

15 

10 

30 

20 

40 

30 

70 

20 

280 

14 500 

15 000 

90 0 0 0 

90 0 0 0 

9 0 0 0 0 

15 000 

15 000 

15 000 

30000 
30 0 0 0 

30 0 0 0 

15 000 

15 000 
15 000 

1 7 0 0 0 0 

170 0 0 0 

180 000 

Key, ® Standard axle, 4 tyre, 1,8 m track Steering axle, 2 tyre. 2,0 m track O Special axle, 2 to 8 tyres, up to 3,4 m outer track 

Vehic le 
designat ion 

1 8 G T - H 

1 8 G T - M 

9TT-H 

9 T T - M 

7 G T - H 

7 G T - M 

7 A - H 

5 A - H 

5 A - M 

5 A - L 

4 A - H 

4 A - M 

4 A - L 

4 R - H 

4 R - M 

4 R - L 

3 A - H 

3 A - M 

3 A - L 

3 R - H 

3R-W1 

3 R - L 

2 R - H 

2 R - M 

2 R - L 

m 
CD 
CJl 
o 
o 

CD 
00 
o 

ro 
00 
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to constitute 0.022 percent of the total truck traffic. Consequently, 

truck data for rural traffic given by Figure (3.1) and Table (3.1) 

have been adopted. In this study, only bridges in rural areas have 

been considered, because it is possible to assume that rural traffic 

is reasonably smooth and without jams. Traffic smoothness makes it 

reasonable to assume that the probability density of headway time 

(time lapse between trucks passing a point) may be represented by 

a negative distribution as demonstrated in the following section. 

3.5.2 Multiple Presence of Trucks 

Multiple presence is controlled by headway distances between trucks, 

and it is primarily dependent upon the length of the bridge and truck 

traffic volume (38, 39). It is almost independent of other 

parameters, like truck speed and time of day. Based on observations 

of truck traffic moving on several highways, it is assumed (39,40) 

that the probability density of headway time may be represented by 

a negative distribution which is shown in Figure (3.3): 

f(t) = Ue 0 3 t < ™ 

where f(t) is the probability distribution function and U is the 

average number of trucks per unit of time. 

Obviously, due to the physical nature of the situation, t cannot be 

less than a certain minimum value. Harman and Davenport (39) have 

assumed a distance of 7.30 m to account for a minimum clearance 

between the trucks and to account for the projections of the trucks 

beyond their rear and front axles. Since truck speed is not 

a significant factor in determining the probability of multiple 

presence (38), a constant speed of 50 km/hr has been assumed in this 

study. This means that the minimum headway time, for the front axle 

of a certain truck, is dependent on the length of the truck preceding 

it, as shown in Table (3.2). 
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probability distribution of t 

headway time (t) 

Figure (3.3] 

The form of the probability distribution 
function of the headway time (t) 
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Truck Type t ^ for the following truck (sec) 

2D 0.855 

3D 0.899 

2S-1 1.371 

2S-2 1.392 

3S-2 1.436 

Table 3.2 Minimum Headway Time (Front Axle) 
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A truncation factor, , should be introduced to account for the 

minimum headway time, and to make the total area under the truncated 

curve = 1.0, making the probability distribution function as below: 

f(t) = U e -Ut 
^min ^ ^ 

where 

+ 00 

-ut T U e dt = 1.0 

then Tf [ -e-"t ] 
+ 00 

t . 
m m 

-U t . 
e = 1.0 

= 1 .0 

so = e 
" tmin 

therefore f(t) = Ue 
'mln ^ ' 

The cumulative distribution function F(t) is obtained as below 

{F{t) is the probability that the time between successive trucks is 

less than or equal to t) 

F(t) U e dt 
t . 
m m 

U(t . -t) t 
F(t) = [ - e m m 

^min 

F(t) = 1 - e 
U(t ,„-t) 

m m 
^min * t 
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Since F(t) exists in explicit form, the inverse transformation 

technique provides a straight forward method to generate the random 

variate t. Because of the symmetry of the uniform distribution, 

F(t) and [1- F(t)] are interchangeable (31). Therefore : 

1 - F(t) = t . St 
m m 

Consequently 

' = tmln - ̂  0 J r s 1 

To avoid the situation of getting infinite time resulting from 

(r = 0), the computer has been instructed to consider all values of r 

less than (1.2 x 10"^^) to be equal to (1.2 x 10"^^) rather than 

zero (in the ICL 2900 series, all values in the range, - 1.2 x 10"^^ 

to + 1.2 X 10" approximately, are held as zero (41)). This 
—77 

involves an error in the order of (1.2 x 10 ) which is negligible 

by all practical measures. By doing so, the maximum time simulated by 

the computer is : 
t 1 . 
max U m m 

(for U = 360 Trucks/hr., t - J hr) 
max 

3.5.3 Truck Gross Weight (GW) 

Truncated bimodal composite normal and normal distributions have been 

suggested by researchers to represent the gross weight (37, 38, 39, 

42). In this study a normal distribution with the truncation of the 

upper and lower tails has been adopted. The following distribution 

(shown in Figure 3.4) represents the probability density function of 

the gross weight for each truck type: 

(w - M)' 
T 2S" 

f(w) = e W ^ w $ W., (3.3) 
S V 2tt " 
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Figure (3.4] The truncated normal probability 
distribution curve of trucks' 
gross weights (w), compared to 
the histogram values generated 
by the rejection method 

represents histogram generated 
values 

probability distribution of w 

gross weight 
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where T is a truncation factor introduced to make the total area 
w 

under the truncated curve = 1.0 . 

Because F{w) cannot be expressed explicitly as a function of w and 

since w varies within a finite range, then the rejection method has 

been used to generate the random variate w. If m is the scale 

factor required to normalize the range of f(w) (Section 3.4.2), then: 

m f(w) ^ 1 3 Wy 

but f(w) max 

then m 

S \/2̂  

S V2Tr 

and m f(w) = e " sf 

In Figure (3.4), the curve is for the truncated normal equation 

representing the gross weight of Truck type (3S-2), while the plotted 

circles represent a histogram obtained by analysing truck weights 

(5970 values) generated by the rejection method. As can be seen, the 

agreement seems to be very good. Values of the truncation factors 

for the truck types are not needed in the simulation, even so, their 

values are given here in Table (3.3). These values have been 

calculated from Eq. (3.3), using the statistics tables for the normal 

curve (43). 

3.5.4 Dynamic Factor 

When a truck crosses a simply supported bridge, the maximum 

deflection is increased by about 12 percent above the static value, 

due to the dynamic effects. When two closely spaced similar trucks 

cross the bridge, the maximum response is 70 percent larger than the 

static response due to one of the vehicles alone (40). The dynamic 

factors depend on vehicle speed and the dynamic characteristics of 

both bridge and vehicle (40). For design purposes, an Impact factor 
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is used to allow for the dynamic effects of the traffic loading. In 

Japan, the Impact fraction I of the live load is given by: 

I = 20 
50 + L 

where L is the span length (42). 

In this study, impact factor is determined by the following equation 

used in the U.S.A.: 

50 
L +125 

where I is the impact fraction and L is the length in feet. The 

impact value is limited (44) to a maximum value of 30 percent. 
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Truck Type T^ (for the gross weight distribution) 

2D 1.0716 

3D 1.0116 

2S-1 1.0153 

2S-2 1.0087 

3S-2 1.0233 

Table 3.3 Truncation Factors for The Gross Weight Distribution 
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3.5.5 Truck Type Selection 

From Table (3.1), trucks type (2D) represent 21 percent of the total 

truck rural traffic. This means that ; 

the probability of getting trucks longer than 2D =0.79 

similarly : 

the probability of getting trucks longer than 3D =0.73 

the probability of getting trucks longer than 2S-1 = 0.66 

the probability of getting trucks longer than 2S-2 = 0.41 

the probability of getting trucks longer than 3S-2 = 0.00 

If uniformly distributed random numbers are generated such that 

(0 g r $ 1), then the probability of getting r̂  < r ^rg is 

simply equal to (r^ - r^). 

By this, it is possible to make the following assumption (for rural 

traffic): 

if 0.00 r g 0.41 then truck type is 3S. -2 

if 0.41 < r $ 0.66 then truck type is 2S--2 

if 0.66 < r $ 0.73 then truck type Is 2S--1 

if 0.73 < r $ 0.79 then truck type is 3D 

if 0.79 < r $ 1.00 then truck type is 2D 

3.6 Simulation of The Moment Spectrum 

As mentioned in Chapter (1), the simulated bridge has been assumed to 

be a single lane simply supported bridge. The span has been varied 

to investigate its effect on the fatigue life of the bridge (7). 

Fatigue life has been investigated for bridges with five different 

span lengths (L), subjected to three different rates of repeated 

loading (U) resulting from traffic passing across the bridge and 

defined in terms of Trucks per hour. The simulated truck models 

generated by the Monte Carlo method have been assumed repeating 

itself every week (40). 
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As shown in the preceding sections, the types of trucks, their 

weights and arrival times have been simulated by the Monte Carlo 

simulation method. This method requires the generation of random 

numbers and in this case, these have been obtained using a routine, 

G05CBF (I), which exists in the University ICL computer. When running 

this routine, the set of random numbers produced by it depends upon 

specifying a positive integer I. The set produced lies between 

(0.0) and (1.0) and each set is repeatable by specifying the same 

integer I, when the program is run. 

For our purposes four different sets of random numbers have been 

required. The first specifies the types of trucks. The second 

specifies the arrival times, whilst the third and fourth are used to 

provide random values of the gross weights of the trucks. The need 

for two sets of numbers is explained in Section (3.4.2). 

In order to produce entirely unrelated sets of random numbers, the 

routine itself has been used to generate the specifying integers I. 

This has been done by starting with (I = 0) and taking the first four 

random numbers produced, as the integers for the four working sets 

(infact multiplied by 1000 and rounded). These four I values have 

been kept constant regardless of the U value. This makes each 

single set of the four working sets for a specific value of the 

loading frequency (U), a part of a larger set for the U value 

exceeding it. This similarity is believed to be acceptable because 

it does not affect the randomness of the trucks data for a specific 

value of U, while on the other hand, it helps to reduce the number 

of maximum design moments for a specific value of the span (L), as 

will be shown later. 

3.6.1 Time Interval (Dt) 

A computer program has been written, which generates a truck model 

for one week and passes it across the bridge to simulate the moment 

spectrum for one week. The program examines the bridge at a time 

interval Dt. If the bridge is loaded, then it calculates the mid 

span moment and the maximum shears. If the bridge is found unloaded, 

the program moves the trucks stream and places the front axle of the 
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next truck on the bridge support. Now, the program starts again to 

examine the bridge every Dt and so on. A flow chart is given in 

Figure (3.5). 

In order to include as many events as possible, Dt should be taken 

as small as possible. On the other hand, a very small value of Dt 

would result in very long computer runs. It is important to find 

a suitable value of Dt which gives a reasonably accurate moment 

spectrum without wasting computer time. To choose such value, 

several trial runs have been made using different values of Dt. 

Some of the results are given in Tables (3.4), (3.5) and (3.6). In 

these tables, the moment (M) and shear (V) values represent the total 

maximum live load moment and shear (including impact), on the bridge. 

Dt^ values in Table (3.6) represent the time required for each 

single axle to move a distance of L/48. Since trucks' speed has 

been assumed previously to be 50 km/hr (13.889 m/sec), then Dt^ 

in seconds is: 

~ 48" ^ 13.889 " x L 

where L is the span of the bridge in metres. With such a value of 

Dt, the duration of the longest computer run is just under the 

maximum available to the author in the University computer centre. If 

we establish that this value of Dt gives a reasonably accurate 

moment spectrum, then we may adopt it as the required Dt value. 

Separate runs have been made using a decreased value of (Dt = 0.001 x L) 

to examine the effect of such decrease on the values of the 

maximum live load moment and shear, and the number of peaks, N^, for 

a simulation period of one week (Tables 3.6 and 3.7). 

From Table (3.6), it seems that the shear values are more sensitive 

to such decrease than the moment values. This is because of the 

nature of their influence lines (Figure 3.6). For example if two 

equal loads pass across the bridge, there is an infinite number of 

positions (from X = L/2 - S to X = L/2), which give the same value of 

the maximum moment, while maximum shears can be obtained by two 
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Generate 4 sets of random numbers 

Simulate gross weights of the trucks 

Examine the bridge after Dt seconds } 

No 

Yes 

No Does the moment value represent a maximum or 
a minimum? 

Yes 

Simulation time exceeded? No — 

Yes 

End 

Input data 

Output results 

Any truck on the bridge? 

Put the front axle of truck K on the bridge 
support 

Compare shear values with the maximum values 
stored so far. Replace if necessary-

Calculate mid span moment and shear values at 
the two supports 

Store the moment value. If maximum, compare 
it with the absolute maximum stored so far. 
Replace if necessary 

Simulate truck arrival times. Adjust the 
arrival time of the last truck to ensure 
that there is no truck on the bridge at the 
end of the simulation time 

Figure 3.5 - Flow chart of the computer program 
for the moment spectrum simulation 
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Influence line - shear at R.H. support 

Figure (3.6) - Moment and shear influence lines 
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positions only. Bearing in mind that the moment values and the 

spectrum are the governing factors in this study and since there are 

no appreciable differences between the values resulting from 

Dt = 0.001 X L, and those resulting from Dt = 0.0015 x L, as can 

be seen from Tables (3.6) and (3.7), then it is believed that the 

last Dt value is proper and adequate for the purpose of this study. 

Moreover, other separate runs have been made to define the type, 

weight, location and sequence of the truck(s) causing the maximum 

live load moment (M) and shear (V), for each combination of L and 

U. This has been done by storing, at every Dt, those particulars 

related to the truck(s) causing the maximum live load moment. From 

this information, given in Figures (3.7), (3.8) and (3.9), the real 

maximum live load moment and shear in one week, can be calculated 

from their influence lines. In Table (3.9) the real values of M 

are compared with the values obtained by specifying Dt = 0.0015 x L. 

The fact that the deviations between these two values are very 

small, gives more justification for adopting Dt = 0.0015 x L. 
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Span 

(m) 

Loading 
frequency 
(T/hr.) 

Dt^ 

(sec.) (KN.M) 

Dtg 

(sec.) 

^2 

(KN.M) 

15.0 360 0.800 1170.378 0.100 1170.378 1.0000 

15.0 90 0.105 1122.506 0.100 1135.472 1.0116 

15.0 90 0.100 1135.472 0.095 1114.985 0.9820 

15.0 90 0.095 1114.985 0.090 1126.547 1.0104 

15.0 90 0.090 1126.547 0.085 1117.883 0.9923 

15.0 90 0.085 1117.883 0.080 1135.472 1.0157 

15.0 90 0.080 1135.472 0.070 1122.506 0.9886 

27.5 90 0.150 2947.274 0.100 2938.528 0.9970 

(3.4) 

The effect of the time interval (Dt) 
on the maximum live load moment (M) 

- and are the moment values 

corresponding to Dt^ and Dt^ respectively 
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Span Loading Dt^ 
frequency 

(m) (T/hr.) (sec.) (KN.M) 

Dtg 

(sec. 

"2 

(KN.M) 

Mg/M^ 

15.0 0.105 1122.506 0.02250 1137.964 1.0138 

15.0 360 0.105 1195.116 0.02250 1200.302 1.0043 

17.5 
all 
values 0.125 1447.969 0.02625 1473.371 1.0175 

20.0 
all 
values 

0.140 1802.223 0.03000 1845.783 1.0042 

25.0 
all 
values 0.175 2585.956 0.03750 2596.718 1.0042 

27.5 
all 
values 0.190 2964.165 0.04125 2955.619 0.9971 

Table (3.5) 

The effect of the time interval (Dt) 
on the maximum live load moment (M) 

- and are the moment values 

corresponding to Dt^ and Dtg respectively 
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(m) 

Loading 
frequency 
(T/hr.) (sec.) (KN.M) 

1̂ 

(KN) 

Dtg 

(sec.) 

^2 

(KN.M) 

^2 

(KN) 

Mg/M^ Vg/Vi 

15.0 90 
180 

0.02250 1137.964 370.526 0.01500 1139.934 374.989 1.0017 1.0120 

15.0 360 0.02250 1200.302 370.526 0.01500 1204.955 374.989 1.0039 1.0120 

17.5 all 
values 

0.02625 1473.371 407.183 0.01750 1467.637 402.765 0.9961 0.9891 

20.0 all 
values 

0.03000 1845.783 426.847 0.02000 1854.537 431.224 1.0047 1.0103 

25.0 all 
values 

0.03750 2596.718 457.251 0.02500 2590.464 461.556 0.9976 1.0094 

27.5 all 
values 

0.04125 2955.619 465.041 0.02750 2955.619 469.314 1.0000 1.0092 

Table (3.6) The effect of the time interval (Dt) on 
the maximum live load moment (M) and 
shear (V) 

(M^, ) and (M^, V^) are the moment and shear values 

corresponding to Dt^ and Dtg respectively 
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Span 

(m) 

Loading 
frequency 
(T/hr.) 

Dt^ 

(sec.) 

"pi Dtg 

(sec.) 

Np2 " p / V 

15.0 
15.0 
15.0 

360 
180 
90 

0.02250 
0.02250 
0.02250 

92338 
48778 
25227 

0.01500 
0.01500 
0.01500 

92356 
48786 
25229 

1 .00019 
1.00016 
1.00008 

17.5 
17.5 
17.5 

360 
180 
90 

0.02625 
0.02625 
0.02625 

53581 
28258 
14583 

0.01750 
0.01750 
0.01750 

53664 
28287 
14589 

1.00155 
1.00103 
1.00041 

20.0 
20.0 
20.0 

360 
180 
90 

0.03000 
0.03000 
0.03000 

54018 
28360 
14610 

0.02000 
0.02000 
0.02000 

54074 
28372 
14613 

1.00104 
1.00042 
1.00021 

25.0 
25.0 
25.0 

360 
180 
90 

0.03750 
0.03750 
0.03750 

53611 
28275 
14584 

0.02500 
0.02500 
0.02500 

53718 
28298 
14588 

1.00200 
1.00081 
1.00027 

27.5 
27.5 
27.5 

360 
180 
90 

0.04125 
0.04125 
0.04125 

53636 
28279 
14597 

0.02750 
0.02750 
0.02750 

53744 
28302 
14600 

1.00201 
1.00081 
1.00021 

Table (3.7) The effect of the time interval (Dt) on the number of peak 
points (Np) of the moment spectrum in one week 

- Np^ and N ^ correspond to Dt^ and Dtg 

Loading Total number of 
frequency simulated trucks 
(T/hr.) 

360 53398 
180 28209 
90 14578 

Table (3.8) The total number of trucks in one week 
Simulation time = 1 week 



Span 

(m) 

Loading 
frequency 
(T/hr.) 

Ml 

(KN.M) (KN) 

^2 

(KN.M) 

^2 

(KN) 

Mg/M, Vg/Vi 

15.0 90 + 
180 

1137.964 370.526 1142.286 377.532 1.0038 1.0189 

15.0 360 1200.302 370.526 1205.373 377.532 1.0042 1.0189 

17.5 all 
values 

1473.371 407.183 1474.356 411.233 1.0007 1.0099 

20.0 all 
values 

1845.783 426.847 1854.625 435.282 1.0048 1.0198 

25.0 all 
values 

2596.718 457.251 2598.948 466.469 1.0009 1.0202 

27.5 all 
values 

2955.619 465.041 2964.238 476.855 1.0029 1.0254 

Table (3.9) Real maximum moment and shear values in one week 
compared to the values associated with Dt = 0.0015 x L 

and are the maximum live load moment and shear, 

including impact, associated with Dt = 0.0015 x L 

- and are the real maxii 

in one week. Including impact 

and are the real maximum live load moment and shear 

00 
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Notes Regarding The Following Figures (3.7, 3.8 and 3.9) 

1. Direction of motion is from the left to the right. 

2. K represents the sequence of each truck in the truck stream 

generated for one week. 

3. X is the distance between the front wheel and the left hand 

support. defines the position which gives the maximum 

simulated live load moment or shear , with Dt = 0.0015 x L. 

Xg defines the position which gives the real maximum moment 

(Mg) or shear (V^), in one week. 

4. G.W. is the gross weight of the truck. 

50 5. I.F. represents the impact factor = 
125 + 3.281 X L 



50 

L 

U 

Truck type 

G.W. 

K 

I.F. 

Dt 

^1 

1 
M 

15.0 m 

90+180 T/hr. 

3S-2 

499.30 KN 

10113 

0.287 

0.02250 sec. 

10.938 m 

1137.964 KN.M 

T 
L 

U 

Truck type 

G.W. 

K 

I.F. 

Dt 

1 
V 

15.0 m 

90+180 T/hr. 

3S-2 

499.30 KN 

10113 

0.287 

0.02250 sec. 

12.813 m 

370.526 KN 

X. 11.005 m 

1142.286 KN.M 

12.649 m 

377.532 KN 

L = 15.0 m L = 15.0 m 

U 360 T/hr. U 360 T/hr. 

Truck type = 3D Truck type = 3S-2 

G.W. 309.49 KN G.W, = 499.30 KN 

K = 28281 K 10113 

I.F. = 0.287 I.F. 0.287 

Dt = 0.02250 sec. Dt = 0.02250 sec 

11.563 m X, 12.813 m 

1200.302 KN.M 370.526 KN 

^2 
11.462 m Xj 12.649 m 

Mg = 1205.373 KN.M 377.532 KN 

Figure (3.7) Details of the maximum moment and shear for L = 15.0 m 
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Y V _ _ — i 1 - i — 

L 17.5 m L 

4 

17.5 m 

U = all values U = all values 

Truck type = 3S-2 Truck type = 3S-2 

G.W, = 499.30 KN G .W. = 499.30 KN 

K = 10113 K = 10113 

I.F. = 0.274 I .F. = 0.274 

Dt = 0.02625 sec. Dt = 0.02625 sec. 

^1 
= 13.490 m 

^1 = 12/n^ m 

^1 
= 1473.371 KN.M = 407.183 KM 

^2 
— 13.474 m 

^2 = 12.649 m 

^2 - 1474.356 KN.M 
^2 = 411.233 KN 

' ; 1 1 ! 1 i : 4-

L 20.0 m L = 20.0 m 

U = all values U = all values 

Truck type = 3S-2 Truck type = 3S-2 

G.W. z 499.30 KN G. W. 499.30 KN 

K = 10113 K = 10113 

I.F. = 0.262 I. F. = 0.262 

Dt z 0.03000 sec. Dt = 0.03000 sec. 

^1 
= 14.583 m 

^1 12.917 m 

"l 
= 1845.783 KN.M = 426.847 EN 

^2 
z 14.724 m 

^2 = 12.649 m 

^2 1854.625 KN.M 
^2 435.282 KN 

Figure (3.8) Details of the maximum moment and shear for 
L = 17.5 and 20.0 m 
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1 
y V y / 

L 25.0 m L = 25.0 m 

U = all values U = all values 

Truck type = 3S-2 Truck type 3S-2 

G.W. = 499.30 KN G. W. 499.30 KN 

K — 10113 K 10113 

I.F. = 0.242 I. F. = 0.242 

Dt = 0.03750 sec. Dt 0.03750 sec. 

= 17.188 m 1̂ 
= 13.021 m 

2596.718 KN.M 1̂ 457.251 KN 

- 17.224 m = 12.649 m 

^2 2598.948 KN.M ^2 
= 466.469 KN 

r r i ' 1 

L 27.5 m L 27.5 m 

U = all values U : all values 

Truck type = 3S-2 Truck type 3S-2 

G.W. 499.30 KN G. W. : 499.30 KN 

K - 10113 K 10113 

I.F. - 0.232 I. F. 0.232 

Dt - 0.04125 sec. Dt 0.04125 sec. 

= 18.333 m 
^1 i3.rnm 

2955.619 KN.M VI 465.041 KN 

^2 r 18.474 m 12.649 m 

^2 
= 2964.238 KN.M 

^2 476.855 KN 

Figure (3.9) Details of the maximum moment and shear for 
L = 25.0 and 27.5 m 
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3.7 Maximum Probable Moment 

As mentioned earlier, the truck model has been assumed repeating 

itself every week. This assumption is necessary to cope with the 

available computer resources. Consequently each design moment is the 

maximum moment, taken from a moment spectrum simulated for one week. 

This means that the design moment is not necessarily equal to the 

maximum probable moment which might occur during the bridge life. For 

sections with highly stressed reinforcement, there is not enough 

margin to cater for moments larger than the design moment. This 

implies that we have to check the behaviour of these sections, if 

subjected to moments higher than the design moment. To do so, we 

have to estimate for each span length, the amount of the maximum 

moment which might result from the worst combination of the heaviest 

trucks shown in Figure (3.1). Table (3.10) shows the details of 

these combinations. 

It should be made clear that checking the effect of the maximum 

probable moments on some sections, does not reflect the belief in 

their occurance during the fatigue life of the bridge. On the 

contrary, it is believed, in fact, that the probability of getting 

such high moment values is quite low for the shorter spans and very 

low for the longer spans. This is because for the longer spans, this 

high moment is caused by the presence of several trucks, each one of 

which has the maximum gross weight of its type, and all are spaced by 

the minimum amount of 7.30 m. The joint probability of all these 

events happening at the same time is very low, indeed. 
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Notes Regarding Table (3.10) 

= the serial number of each truck combination. 

_ the sequence number of each truck on the bridge. = 1, 

represents the nearest truck to the downstream support. 

X _ the distance between the front axle and the downstream 

support. 

G.W. = the gross weight of the truck. 

M _ the mid span live load moment caused by the truck, including 

Impact. 

- Truck details are given in Figure (3.1). 

50 - Impact factor 
125 + 3.281 X L 

The minimum distance from the rear axle of a truck to the front 

axle of the truck following it, has been assumed to be 7.30 m, as 

mentioned in Section (3.5.2). 
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Span SJ Truck X G.W, M 
(m) type (m) (KN) (KN.M) 

15.0 1 1 3D 11.462 355.84 1385.893 

17.5 1 1 3S-2 13.474 533.76 1576.111 

2 1 3S-2 0.231 533.76 15.708 
2 3D 12.712 355.84 1655.230 

20.0 1 1 3S-2 14.724 533.76 1982.625 

2 1 3S-2 1.481 533.76 99.761 
2 3D 13.962 355.84 1920.308 

25.0 1 1 3S-2 17.224 533.76 2778.319 
2 2D 29.096 222.40 49.305 

2 1 3S-2 3.981 533.76 295.468 
2 3D 16.462 355.84 2442.317 
3 3D 28.943 355.84 104.163 

3 1 3S-2 3.981 533.76 295.468 
2 3D 16.462 355.84 2442.317 
3 2D 28.334 222.40 128.236 

4 1 2S-1 3.981 400.32 245.268 
2 3D 16.462 355.84 2442.317 
3 3D 28.943 355.84 104.163 

5 1 2S-1 3.981 400.32 245.268 
2 3D 16.462 355.84 2442.317 
3 2D 28.334 222.40 128.236 

Table (3.10a) 

The worst loading combinations for 15.0, 17.5, 20.0 and 25.0 m spans 
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Span 
(m) 

Truck 
type 

X 
(m) 

G.W. 
(KN) 

M 
(KN.M) 

27.5 1 1 
2 

3S-2 
2D 

18.474 
30.346 

533.76 
222.40 

3168.820 
177.344 

2 1 
2 

3S-2 
3D 

18.474 
30.955 

533.76 
355.84 

3168.820 
183.550 

3 1 
2 
3 

3S-2 
3D 
3D 

5.231 
17.712 
30.193 

533.76 
355.84 
355.84 

490.827 
2696.649 
308.822 

4 1 
2 
3 

2S-1 
3D 
3D 

5.231 
17.712 
30.193 

400.32 
355.84 
355.84 

428.241 
2696.649 
308.822 

5 1 
2 
3 

3D 
3D 
3D 

5.231 
17.712 
30.193 

355.84 
355.84 
355.84 

395.076 
2696.649 
308.822 

6 1 
2 
3 

3S-2 
3D 
2D 

5.231 
17.712 
29.584 

533.76 
355.84 
222.40 

490.827 
2696.649 
255.639 

7 1 
2 
3 

2S-1 
3D 
2D 

5.231 
17.712 
29.584 

400.32 
355.84 
222.40 

428.241 
2696.649 
255.639 

8 1 
2 
3 

3D 
3D 
2D 

5.231 
17.712 
29.584 

355.84 
355.84 
222.40 

395.076 
2696.649 
255.639 

Table (3.10 b) 

The worst loading combinations for 27.5 m span 
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CHAPTER 4 

DESIGN OF THE BRIDGE BEAMS 

As mentioned in Chapter (1), the aim of this study is to find a 

relationship, between the fatigue life in years and the section 

modulus, for a set of specified bridge beams under loads due to rural 

traffic. The section modulus Z is defined as: 

where is the total applied moment and f^ is the stress in the 

reinforcement resulting from . For design purposes, the stress f^ 

can be estimated using the equations relevant to the adopted design 

method, for the reinforced concrete beams, as is shown in the 

following sections. 

4.1 The Modular-Ratio Theory 

In the modular-ratio (i.e. elastic-stress) theory, the forces on 

a structure are calculated from the real values of the loads, but the 

allowable stresses in the reinforcement and the concrete are limited 

to chosen fractions of their actual strengths, in order to give an 

adequate factor of safety. To ensure that failure (if it occurs) 

would be due to the reinforcement yielding, which gives advance 

warning of failure rather than the explosive concrete crushing, 

a greater safety factor is used to calculate the allowable concrete 

stress than that used for the allowable stress in the reinforcement. 

In this method the strain distribution across the beam section is 

assumed to be linear and the concrete strength in tension is usually 

neglected. Also, steel and concrete are assumed to behave perfectly 

elastically (46). 
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From the strain diagram in Figure (4.1), it is clear that: 

d-x 
. (4.1) 

Since steel and concrete are both assumed to behave elastically then: 

=0 = fc/Bc 

= fs/Bs 

"A = fs As (d -

C = bx 

where and are the moduli of elasticity for concrete and 

steel respectively, is the moment and C is the total 

compressive force. Substituting e and e into Equation (4.1) 

gives: 

fc : SEfs a;; 

E 
c 

where " E~ 
s 

From the equality between the tensile and the compressive forces, we 

get: 

C = bx = fg 

then f = — = R^f 
c bx E s d-x 

and Rgbx^ + - ZA^d = 0 ....(4.2) 
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Figure (4.1) The strain and stress diagrams for 
singly reinforced concrete section 
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Equation (4.2) implies that the depth of the neutral axis (x) does not 

depend on the loading stage (i.e. the amount of the external applied 

moment). Since: 

X 
Z = fA = A (d (4.3) 

ig s j 

then Z also does not depend on the loading stage. This results 

directly from the assumption that both the steel and the concrete 

behave perfectly elastically. This assumption is not acceptable for 

high stresses (46) and by using this method, it is impossible to 

estimate accurately the real safety factor (i.e. the ratio between 

collapse load and service load). To overcome this and other 

shortcomings, the limit state theory can be used Instead. 

4.2 The Limit-State Theory 

Structures must be designed to sustain safely the loads and 

deformations which may occur during construction and in use. 

A structure as a whole or as a part is unfit for use when it reaches 

a limit state. There are two categories of limit states: 

1. The ultimate limit state, which is reached when the structure as 

a whole or as a part collapses. 

2. The serviceability limit states resulting from excessive 

deflection, cracking, vibration, etc. 

In design, the ultimate limit state and the serviceability limit 

states of excessive deflection and cracking under service loads are 

normally considered. The structure is usually designed for the 

ultimate limit state and checked for the serviceability limit states. 

Under normal loading, the probability of reaching the ultimate limit 

state is made very low, say 10"^, while a much higher probability oi 

reaching a serviceability limit state is acceptable (47). 

Limit state design is based on the application of statistics to the 

variations in the loads and the material strengths (47). 



61 

4.2.1 Characteristic Strengths and Loads 

The compressive strength of concrete specimens, made as identically as 

possible, may have (47) a coefficient of variation of as high as 

+ 10 percent. Therefore, it is not practicable to specify that the 

concrete or the steel should have a particular precise strength. The 

characteristic strength (f^) is that value of the compressive 

strength of concrete or the yield stress of reinforcement, below 

which not more than a specified percentage (usually 5 percent) of the 

test results should fall. Since the strengths of concrete and steel 

are currently assumed to be normally distributed, then: 

f, = f - 1.64 S 
k m 

where f^ is the mean strength, and S is the standard deviation (47). 

The characteristic load is that value which has an accepted 

probability of not being exceeded during the life of the structure. 

Because of a lack of statistical data, it is not possible at present 

to define loads in truly statistical terms, and currently the 

characteristic loads are simply loads accepted by widespread 

agreement (47). 

4.2.2 Partial Safety Factors 

The load used for each limit state is called the design load for that 

limit state. The design load is given as: 

design load = x characteristic load 

Where is the partial safety factor for loads. This factor is 

introduced to cover the probable loading variations in design and 

construction. It depends on the nature of the limit state under 

consideration. 
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Similarly design strength is given as: 

design strength = x characteristic strength 
m 

where is the partial safety factor for strength appropriate to 

the material and the limit state (47). 

4.3 Beam Section Design for Moment 

In this study, the analysis is somewhat different from the classical 

beam design problem in that the design stress in the reinforcing 

steel is a parameter which can be varied to affect the fatigue life 

of the beam. The actual design procedure suggested and used, is 

based on the limit state theory and the requirements, of 

BS 5400 ; Part 4 : 1984 and CP 110 : Part 1 : 1972, and is as follows. 

We start by choosing an initial design steel stress (f^^) with 

a chosen diameter of the reinforcing bars, and a chosen combination 

of beam span (L) and loading frequency (U). The maximum live load 

moment. Including impact, leads to the basic section design. We 

note, in passing, that in order to obtain a low dead weight beam, the 

narrowest and deepest rectangular beam cross section is chosen. 

The basic section has to be modified to produce a realistic actual 

section in which acceptable dimensions (rounded to say 50 mm) are used 

and the appropriate number of reinforcing bars is chosen. 

The dead weight and live load stresses are then computed for the 

actual beam section, and it is these values which are used for the 

analytical study. 

4.3.1 Design Assumptions 

1 - Each bridge is assumed to be a single lane carriageway, the slab 

of which is supported by two beams. The dead load of the slab, 

finishes, etc., is estimated to be (25 KN/M) per beam. 



63 

The live load moment caused by the traffic has been calculated from 

a stream of truck axles passing centrally on the slab across the 

bridge and hence multiplied by (5) to give the moment supported by 

each beam. 

2 - Material's strength; The following values have been chosen in 

accordance with common practice: 

= 425 N/mm^ (23) 
y 

f y = 50 N/mm^ (23) 

3 - Partial safety factors have been chosen as follows: 

= 1.3 for concrete (49 
= 1.0 for steel (49) 

1.0 for dead load (49) 
1.0 for live load (49) 

(material factor) = 1.3 for concrete (49) 

(load factor) = 1.0 for dead load (49) 

4 - The beam is rectangular and reinforced in tension only. For such 

a beam, the depth of the concrete in compression is limited by 

a reasonable percentage of reinforcement to not more than half the 

effective depth of the beam (48). 

5 - The distribution of the strain across any section is assumed to be 

linear, i.e. plain sections before bending remain plane after bending, 

and the strain at any point is proportional to its distance from the 

neutral axis (46). 

6 - The stress - strain relationships of the reinforcing steel and of 

the concrete are as shown in Figures (4.2) and (4.3) (BS 5400). 

7 - The maximum strain in the concrete is (0.0035) and the tensile 

strength of the concrete is ignored (46). 

8 - The reinforcement cover has been chosen to be 20 mm which 

corresponds to conditions of moderate exposure (46). 
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(%) 

Figure (4.2) . Stress - strain curve of the reinforcement 
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Figure (4.3) : Stress - strain curve of the concrete 
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4.3.2 Dimensions of The Beam Section 

In order to calculate the dimensions of the beam, we shall use the 

following parameters; 

3 
w = unit weight of the concrete = 24 KN/M 

= the maximum mid span moment caused by the live load, 

including impact. 

Mjg = mid span moment caused by the bridge dead load other 

than the beam self weight. 

b = the width of the beam. 

d = the effective depth of the beam. 

h = the height of the beam. 

d' = the lever arm of the beam. 

X = the depth of the neutral axis. 

C = the resultant compressive force in the concrete. 

J' = (d - d')/x 

h' = the distance from the tension face to the centroid 

of the reinforcement = h - d 

Then: 

+ h') L ^ c.d' (4.4) 

To solve Equation (4.4) for d, both C and d' have to be represented 

in terms of b and d only. To minimize the beam weight, b, the width, 

should be taken as small as possible, which leads to d, the depth, 

being as large as possible. Since BS 5400 : part 4 - clause 5.3.1.3 

specifies that the width to span ratio is limited, to avoid lateral 

instability, so that ; 
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Thus, the initial value chosen for b is defined by the above 

requirement. h' is assumed to be 100 mm as an initial value, 

which has to be checked after calculating reinforcement area and 

finding the required number of bars. 

After calculating d from Equation (4.4), the following two criteria 

have to be checked and if necessary, d or / and b values have 

to be revised accordingly : 

250 
1 - L $ 60b or — 3 whichever is the lesser. 

(BS 5400 : Part 4 - clause 5.3.1.3) 

2 - For a reasonably proportional beam, we will restrict the beam 

depth to the range: 

L/10 5 h 5 L/17 

The variation of the compressive force (C) and the lever arm (d'), 

with the beam width (b) and the effective depth (d), depends on the 

amount of the concrete strain (e ) and the corresponding strain in 

the steel (e^). e^ and e are related (as can be seen from Figure 

4.4) : 

- 1) = - 1) 

where the neutral axis depth ratio; R = x/d < 

Hence : 

®s 1 
- " p - l ^ l ....(4.5) 

c 



point of vertical tangent 

j'x 

R = x/d 

Figure (4.4) Stress and strain diagrams for beam section with 
maximum concrete strain not less than the initial 
plastic strain (e^ ) 

G\ 
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Case (1); steel strain larger than allowable maximum concrete 

strain. 

Equation (4.5) indicates that if the steel stress value (f ) is not 

less than a value f^^ which corresponds to a strain e = 0.0035, 

then the outer fibre concrete strain (e ) can be assumed to attain 

its maximum value of (0.0035) and the neutral axis depth ratio (R) 

is defined by Equation (4.5). 

Consequently for case (1) the following relations are valid ; 

Bg % 0.0035 

e = 0.0035 
c 

Rd = d 
*s + Sc 

f 
f 

2 cu 
c " 3 G 

m 

Go 

e 0.0035 

where e is the initial plastic strain in the concrete. 

The compressive force (C) and the lever arm (d') can be calculated by 

making use of the geometric properties (46) of the parabola (as shown 

in Figure 4.5): 

C = f (x - kx)b + — f kbx 
^ 3 ^ 

Hence : 

C = bx (4.6) 

and : 
(x-kx) 2 5 

C j'x = f^ 2 b + -J f^ (x - -g kx) kbx 
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y 
(stress) 

point of horizontal tangent 

b' , h') 

C.K. of A' 

X (strain) 

A' = the area of the shaded part 

r = b'/b 

A' = — 3 - r b' h' 
3(2 - r) 

(for r = 1 , A = — bh) 

4(3 - r) 
(for r = 1, X' = — b) 

8 

Figure (4.5) - Geometric properties of the parabola 
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Substituting C and simplifying leads to the factor, for the depth of 

the centre of force on the concrete: 

-jt _ - 4k + 6 , V 
J - 4(3 _ k) 14./; 

Since j' is defined to be 

_ d - d' 
J - X 

then the lever arm is: 

= d - J'x .... (4.8) 

For case (1), if the design value of the stress f^^ is known, then 

the steel strain (e^) can be found. Since e is determined, then 

X, C and d' can be represented in terms of b and d only, and 

Equation (4.4) can be solved for d. 

Cases (2) and (3); steel strain less than the maximum allowable 

concrete strain. 

If f^. is less than f , where f is the stress corresponding SI sc SC 1- o 
to e = 0.0035, then Equation (4.5) : 

®s 1 

— = -p - 1 :> 1 (4.5) 

indicates that e cannot be assumed to attain its maximum value 
c 

of (0.0035), because such an assumption leads to a value of R more 

than (g). Accordingly, R is assumed to have its limiting value of 

a half, R = 5 , and hence, e = e 
s c 

From Figure (4.3), it is clear that the concrete stress (f ) is 

constant if the strain e is greater than the initial minimum plastic 

strain (e^). Case (2) deals with e^ values greater than e , while 

case (3) deals with e values less than e 
c o 
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Case (2) 

For case (2) the following relations are valid : 

e = e where e < e < 0.0035 
c s o c 

r _ 2 feu 

®c 

X = " 2 d 

since C and d' are defined by Equations (4.6) and (4,8), then d, 

the effective depth, can be calculated as in case (1). 

Case (3) 

For this case, e is less than e . This means that the concrete 

stress value (f^) is not constant, and f has to be defined by the 

parabolic relationship : 

fc = 5500 6; _ 4125 

m 

If we imagine that the beam strain diagram (Figure 4.6) is extended, 

above the beam top surface, to the point where the concrete strain 

reaches the initial plastic value, then from the properties of 

a parabola (Figure 4.5), we conclude that the compressive force is : 

f Rbd (4.9) 3(2-r) "c 

where r = — <1.0 and the lever arm is: 
®o 

d' = (1-R)d + Rd 
4(3-r) 

hence: d' = (1 - ) d (4.10) 



point of vertical tangent 

j'x 

r n 

e < e 
c o 

R = x/d 

Figure (4.6) Stress and strain diagrams for beam section with 
maximum concrete strain less than the initial 
plastic strain (e^ ) 

no 
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Knowing, for this case, that R =1/2, Equations (4.9) and (4.10) can 

be substituted into Equation (4.4), which then can be solved to 

determine the value of the depth d. 

4.3.3 Reinforcement Area 

After determining b and h, their values are revised (if necessary) 

and rounded to 50 mm. The next step is to determine the actual 

value of R which results from the real rounded dimensions of the 

section. If R is known, A can be calculated as follows: 

Case (R1) 

First we assume that, e % , then as shown earlier: 

^ . e 
C = f Rd b , k = — 

c 3 e 
c 

f - 2 feu 
c - 3 

Ss = ({ - 1) 

d' = d - j'x = d (1 - R k - 4k + 6 
4(3 - k) 

since: 

z + Mp = Cd' 

then: 

"T = # Rd ^5^ b d (1 - * ^'473'- ) ....(4.11) 

Go e 
However, since : k = — and ec = 

1 _ 1 
R 

Q 

then: k = — (-̂  - 1 ) ....(4.12) 
^8 " 
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Now let us introduce the parameters : 

q = and g = iSM^G^/f^ybd^ 
s 

Combining Equations (4.11) and (4.12) gives : 

g + 4 q + q ^ = R { 1 2 + 8 q + 2q^) - (6 + 4q + q^) .... (4.13] 

For a specific value of the initial design steel stress (f^^), q is 

readily calculated and Equation (4.13) can be solved directly for R. 

Thus it will be expected to be not more than (1/2). Knowing R and 

e , the concrete strain (e^) can be determined and compared with the 

initial plastic value (e ). 

Case (R2) 

If we find from the above that, e < e , that is we are on the 

parabolic part of the stress - strain curve of the concrete, then as 

shown earlier the stress is given by : 

fc = 5500 _ 4125 

so that the compressive force will be : 

3-r 
C = Rbd where r = — < 1.0 3(2-r) c 

Also, lever arm is given by 

% 
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Since the concrete strain is less than the initial plastic value by 

the factor r : 

e = r e 
c o 

then we can express the steel strain as : 

It follows therefore that the neutral axis depth ratio is given by 

R = — .... (4.14) 
s 

— + r 
®o 

and the maximum stress in the concrete is given by 

fc = 5500 
m 

and the moment is : = Cd' 

Substituting the compressive force (C) and the lever arm (d'), gives 

the following equation for the moment : 

"t = 5500 r e ^ ( / ^ - ^ r a ^ ) 3 ^ 1 ^ B b d d - )d .. (4.15) 

Now let us Introduce the parameters ; 

Gg 12 M 
q. = — and g 

1 - g - p 
5500 e bd o 

a =/q^ and p = e 
2 o 
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Combining Equations (4.14) and (4.15) gives ; 

g^(2q^ + 4q^r + 2r^ - q^r - Eq^r^ -

12aq^r^ + 8ar^ - 4aq^r^ - 12pq^r^ 

-3ar^ - 8pr^ + 4pq^r^ + 3pr^ .... (4.16) 

Equation (4.16) can be solved now for r, which Is the ratio of the 

concrete strain (e^) to the Initial plastic value (r = e^/e^), by 

the Newton-Raphson Method (starting with r = 1/2 ). Knowing r, the 

neutral axis depth ratio (R) can be determined from Equation (4.14). 

All the parameters required to calculate the compressive force (C) 

can now be calculated using the appropriate equations for case R1 or 

case R2. The required reinforcement area, A , can be obtained 

simply from the compressive force (C) and the initial design stress 

in the reinforcement (f^^) : = C/f^^ . From the required 

reinforcement area (A ) the correct number of bars can be calculated 
sr 

and the actual reinforcement area, A , can be found. 
sp 

4.3.4 Determination of The Actual Stresses in The Reinforcing Bars 

The actual stresses which correspond to the real dimensions and 

reinforcement area are calculated as follows. 

Case (SI), corresponding to case (R1) 

First, we assume that the maximum concrete strain (e ) is not less 

than the initial plastic value (e ) : 

^ ®0 

In this case Equation (4.13) is applicable : 

+ 4q + q^ = R(12 + 8q + 2q^) - R^ (6 + 4q + q^) ....(4.131 

where the parameters q and g have been defined previously by: 

®o ^T^m 
q = — and g = 

feu bd" 
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By replacing e^/e by q in Equation (4.12), we get : 

e , . 
k = —— ( — — 1 ) = q (— — 1 ) 

By equating the compressive force (C) with the tensile force (T) we 

get : 

C = Rbd ̂  = T = A fg (4.17) 

where, the maximum concrete stress (f^) is constant since the 

strain is in the plastic range ; 
f 

- 2 ^cu 

If we represent the reinforcement strain (e ) in terms of its 

stress (f ): e = a f + b (see Figure 4.3), where a and b are s s o s o o o 
material constants, then the stress f^ is given by: 

e 
Since q has been defined by : q = — , then: 

s 

. = end f = . 
s q s a q 1 

where: 

K "O 
a, = — and b, = -g-

Substituting k and f in Equation (4.17) gives ; 

I ^ Rbd 3 - 4';/* - = As'-P^- - b,) 
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and by simplifying, we get : 

3R - q + qR - (—— - b^)gg 

where g^ is a parameter 

9 's 

>2 - 2 f^^bd Sn — 

Solving for R gives : 

where: 

(a - b.q)g_ + q C _ C_q + q 
R = — : = — 5 .... (4.18) 

3q + q 3q + q 

gg and Cg = gg 

Substituting Equation (4.18) in Equation (4.13) gives 

Aq + A^q + A^q + A^q + A ^ q = 0 .... (4.19) 

where : 

"o = c / 

z -4 + 12 Cg + 36 

Ag = -9g - + 24C^ - 36C2 + 8C^ Cg -

A] = -6g + 6C^ - ZACg + 20^ Cg -

A^ = -g - 3 - GCg - Cg 

Equation (4.19) can now be solved for the parameter q = e /e by the 

Newton-Raphson Method. The initial value of q is determined as 

follows; 
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1 - For the maximum design moment (M^ = + M^), we take, 

ŝl = ^sl ®sr ' "sp "here : 

f , = the first estimate of the actual maximum stress f 
SI sa 

f . = the design value of the stress. 
S I 

A = the required reinforcement area. 
sr 

A = the provided reinforcement area. 
sp 

2 - For any lesser value of the moment, , we take the first 

estimate of the reinforcement stress as : = f^^ M^/M^ 

From fg^, the corresponding strain e and the initial value of 

q = e /e can be obtained. 

Solving Equation (A.19) gives the actual value of q, from which the 

actual reinforcement strain e^ = e^/q , and hence stress, can be 

found. The neutral axis depth ratio (R) is determined from 

Equation (4.18). Finally, the maximum concrete strain (e ) is to be 

found and compared with the initial plastic value (e ) : 

Go Go 
e = 

Case (S2), corresponding to case (R2) 

If we find from the above analysis that the actual concrete strain is 

less than the initial plastic value, i.e. e^ < e , then 

Equation (4.16) is applicable, whence: 

(2q2 + 4q^r + 2r2 - q^r - 2q^ - r^) 

12 a q^r^ + 8a r^ - 4aq^r^ - 12pq^r^ - 3ar^ 

- 8pr^ + 4pq^r^ + 3pr^ .... (4.16) 
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where the following parameters have been defined previously by : 

Gg Gg 12 My 
^ ^ = %- ' Si = P 

o SSOOe^bd 

Since the neutral axis depth ratio (R) is given by: 

R = - — - — and the maximum concrete stress is: 
+ r 

fg = 5500 re^ (a - pr) 

then by equating the compressive force (C) and the tensile force (T) 

and substituting for f and R, we get: 

3(2 Z r) Bbd = T = 

and 

3 - r r 

3(2_r) 5500 re^ (a - pr) ^ bd = .... (4.20) 

If we assume the reinforcement strain (e ) to be ; 

^8 " * bg , then the stress Is given by: 

s - "o "iSo 
f 

s 

- bn - b_ 
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Substituting in Equation (4.20) gives : 

3 r 5500 re^ (a - pr) - — b d = ° ° 
3(2-r) o ^ + r s â  

The above equation cannot be simplified to give r, which is the ratio 

of the concrete strain (e ) to the initial plastic value (e ), as an 

explicit function of q^. Instead, the following procedure has to be 

applied to determine the stress in the reinforcement, f : 

1 - Take an initial value, r^ = 1.0, when Equation (4.15) can be 

solved for q^. From this, the reinforcement strain (e = q̂  e ) and 

stress f^ can be found. 

2 - Calculate the left and right hand sides of Equation (4.20) and 

compare them. If the difference is not within a specified limit 

(say 1 percent), then: 

3 - Take a new value for r (r^ ̂  ^ = r^ - 0.001) and repeat the 

procedure until it converges to give an acceptable value for the 

approximate actual stress. 

As a final step in the design, the maximum reinforcement ratio and 

shear stress are to be calculated and compared with their allowable 

values (CP110 and BS5400). 

4.4 - Design Moments and Shears 

Design live load moments (M^) and shears (Vĵ ), including impact, for 

each of the two bridge beams are given in Table (4.1). These are 

based on a computational time interval, Dt = 0.0015 x L, as mentioned 

in Chapter (3). 



82 

Span 

(m) 

Loading 
frequency 
(T/hr.) 

"L 

(KN.M) (KN) 

15.0 360 600.151 185.26 

15.0 
90 + 
180 568.982 185.263 

17.5 
all 
values 736.686 203.592 

20.0 
all 
values 922.892 213.424 

25.0 
all 
values 1298.359 228.626 

27.5 
all 
values 1477.810 232.521 

Table (4.1) - Design values for the maximum live load moment (M^) 

and shear (V^), based on a computational time 

interval, Dt(in sec.) = 0.0015 x Span 
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4.5 Computer Program for The Design of The Bridge Beams 

The proposed design procedure has been programmed to design the 

bridge beams. Two sets of bridge sections have been obtained from 

these calculations. For the first set, the reinforcing bar diameter 

is 32 mm, while for the second set it is 25 mm. 

The program starts by assuming an initial design value of the stress 

in the reinforcement (f^^) as below: 

fgl = 450 - Dfg X I in N/mmf 

where I is an increasing integer with a starting value, 1 = 0 , and: 

Df =17.5 N/mm^ for 32 mm bars 
® 2 

Df =10.0 N/mm for 25 mm bars 
s 

The procedure is repeated by reducing f^^ value until the stress 

range,in the outer layer of bars, is slightly higher or lower than 

the endurance limit (S ), given in Chapter (2) by; 

Sg = 161.5 - 0.33 fjjĵĵ  here f^^^ is the dead load stress. 

A flow chart for the program is given in Figure (4.7). The details 

of the beams designed by the aforementioned procedure are given at 

the end of this chapter. 
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Input data, I = -1 

1 = 1 + 1 

fgl = 450 - Dfg X I 

Calculate beam d 
to 50 mm 

imensions rounded 

Calculate requir ed number of bars 

Calculate stress values in outer 

layer of reinforcement : 

fgj caused by dead load moment (M^) 

f caused by, Mp, + Mj (the maximum D " "L 
live load moment including impact) 

^she caused by, 

yes Is f more than f = 425 N/mm ? 
saG y 

No 

Is (f - f . ) 
sae sde 

< the specified limit? No 

Yes 

End 

Figure (4.7) 
Flow chart of the computer program for the beam design 
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4.6 Discussion of The Design Results 

In the design tables (p 113) at the end of this chapter, it is 

interesting to note that the required effective depth (d^g^ljfor high 

values of the initial steel stress (f^^), decreases with decreasing 

steel stress. For lower values of f^^ , the reverse is found to be 

the case. As shown in Section (4.3.2), design case (1) deals with 

initial steel stress values (f^^), which are not less than that 

producing a strain of (0.0035). This steel stress value is, 
2 ? 

^sc ~403.1 N/mm , for a yield stress f^ = 425 N/mm as can be seen in 

Figure (4.3). The following is an explanation of this effect . 

The design equation which has to be solved for the effective 

depth (d) is given as : 

Agd «3 y : a) 

where , Ag and are positive constants. 

For design case (1), the parameter y 

can be defined by : y = R - 0.435 R^, 

where R is the neutral axis depth 

ratio. This means that y increases 

with increasing R, for all R values 

less than (1.15). This is true 

for all design cases, since the 

neutral axis must lie within the beam. 

practical range 

R = 1.15 

For design case (1), R is related to the reinforcement strain (e 

by : 

R z 0.0035 
0.0035 + e 

:b) 

Equation (b) implies that R, and hence y, increase with 

decreasing values of e^ and thus the initial design stress (f ^). 

This requires the effective depth (d) to decrease to keep the two 

sides of Equation (a) equal. 
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Another explanation is that, decreasing within the range, 

f $ f . $425, increases the neutral axis depth ratio (R). Since for 
SC SI 

case (1) the maximum concrete strain is constant (e = 0.0035), then 

the compressive force increases. In order to produce the same 

moment, the lever arm and the required depth will correspondingly 

decrease. 

For design cases (2) and (3), where the initial design steel stress 

(f .) is less than the limiting value, f^^ , the neutral axis depth 

ratio (R) is fixed, R = 1/2. Consequently the maximum concrete 

strain (e ) and the steel strain (e^) are equal. Decreasing f^^ 

would therefore result in a decrease in e . This means that the 

effective depth (d) has to increase to cause an increase in the 

compressive force and the lever arm. Both are necessary to maintain 

the resulting moment. Alternatively, for design case (2), the 

parameter y can be defined by : 

y = (1 - 0.5 j') (3 - k ) 

where, k = e^/e 

(e is the initial plastic strain = 0.0015 in this study) 

., - 4k + 6 
J = 4(3-k) 

From Table (a), it is clear that the parameter y decreases with 

decreasing f^^ , which confirms that the effective depth (d) has to 

increase to keep the equality between the two sides of Equation (a). 

fsi 

(N/mm*) 

(e^ = e^) x 10^ k J' y = (1 - 0.5j)(3-k) 

397.5 3.34 0.449 0.432 2.000 

380.0 2.84 0.528 0.421 1.952 

362.5 2.34 0.641 0.408 1.878 

345.0 1.84 0.815 0.389 1.760 

Table (a) - y values for design case (2) 
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A similar mathematical proof can be established for design case (3). 

The maximum reinforcement ratio obtained is 3.24 percent which is 

less than the specified limiting 4 percent value (48). The maximum 
2 

shear stress value is 1.94 N/mm which is also less than the 

allowable value of 4.75 N/mm^ (48). 

4.7 Section Modulus 

The section modulus, Z, is defined as : 

where is the moment and f^ is the resulting stress in the 

reinforcement. 

If the modulus Z has a fixed value which does not depend on the 

moment , then the simulated stress spectrum could be established 

easily from the moment spectrum. However, this is not the case 

because the modulus Z varies with the moment, due to non linear 

behaviour of the section. 

Perhaps, it would be ideal to use the aforementioned design procedure 

to calculate the stress value which corresponds to every single 

maximum or minimum point in the moment spectrum and use it as a point 

in the stress spectrum. Unfortunately, such operation is very 

expensive and time consuming (for the computer). By ruling out such 

a possibility, we are left with two options: 

1 - The first is to calculate the modulus value using Equations (4.2) 

and (4.3). These two equations define the modulus regardless of the 

moment value. They are based on the modular - ratio theory. As 

mentioned in Section (4.1), some of the assumptions underlying this 

theory are not acceptable for high stresses (46). 



88 

2 - The second option, is to use the proposed procedure (Sec. 4.3) to 

calculate the modulus values resulting from the two extreme moments 

(the dead load moment and the total live plus dead load moment) and 

from some intermediate value (say the half live plus dead load 

moment; which we may call the "average" total moment). If the 

relative differences between the resulting three values of the 

modulus are small enough, then we may adopt some chosen value of the 

modulus and consider it representing each section regardless of the 

loading stage. 

The second option has been adopted, because it is believed to be more 

reasonable. Two sets of section moduli have been calculated. The 

first set consists of three values of what we may call the "combined" 

load modulus: 

- Mc/fgd 

where: 

M, 
T : is the moment caused by the total dead load and the maximum live 

load (including impact). 

: is the total dead load moment. 

: is the average total moment = 0.5 (M^ + M^). 

^sa ' ̂ sd ' ̂ sh ' stresses in the reinforcement caused by the 

moments and respectively. 

The second set consists of two values of what we may call the "live" 

load modulus: 

z 
L " ^sa - ^sd 

0.5 M, 
Z ^ 
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where : 

: is the maximum live load moment, including impact, and 

f , f , , f . ; have been defined previously. 
sa sd sh 

First, all moduli values were calculated taking the centre of gravity 

of the steel area as the centre of the resultant tensile force (T). 

Since this is not precisely the centre of action of the effective 

steel tensile force (T), due to the strain gradient from the top to 

the bottom of the group of bars, a second run has been made using the 

actual centre of T. This has been located by trial and error to 

an adequate accuracy. This has helped in decreasing the relative 

differences, in the modulus values, by about 20 percent. 

Two groups of the modulus values have been calculated. The first one 

is based on the steel stress in the outer bar. This group is denoted 

by Z' in the design tables, at the end of this chapter. The second 

group is based on the steel stress, corresponding to the strain at 

the centre of the tensile force, (which we may call the centroidal 

stress). The second group is denoted in the tables by Z. 

Let us, now consider the live load moduli based on the outer bar 

stress (i.e. Z^ and Z^) and their relative difference . We can 

see from the design tables (part c), that the value of , the 

relative difference, is quite high for any section whose outer bar 

stresses caused by the total live load moment and the half live load 

moment are on different lines of the stress - strain curve. The 

relative differences are as high as 13.7 percent for 32 mm bars 

and 19.2 percent for 25 mm bars. On the other hand it appears that 

the live load moduli based on the centroidal stress (i.e. Z^ and Z^) 

are appreciably less sensitive to the double linearity of the stress 

- strain curve. In this case the maximum relative difference is only 

5.5 percent. 
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The combined load modulus based on the centroidal stress can be seen 

as: 

Ag fg d' 
Z = = A d' 

where is the moment, is the resulting centroidal stress, 

is the reinforcement area and d' is the lever arm. Similarly the 

combined load modulus based on the outer bar stress f^^ can be seen 

as : 

"A Ag fg d' ^ ^ fs 

f f f 
se se se 

Apparently, the ratio (f /f ) has a significant effect in getting 

high values for the relative difference in the live load moduli, 

based on the outer bar stress. 

Based on the aforementioned behaviour, it is believed more convenient 

to investigate the use of the modulus based on the centroidal stress, 

as the required modulus for design to represent the section through 

all loading stages. 

Then, to simulate the stress in the outer bar, the variation of the 

strain factor, , with the applied moment at different loading 

stages, has been examined (S^ is the ratio of the outer bar strain 

to the strain at the centre of the tensile force, which we may call 

the centroidal strain). 

The maximum relative difference of the strain factor, , has been 

found to be about 1.0 percent for 32 mm bars and 1.4 percent for 

25 mm bars, which seem to be adequately small, especially if we 

notice that for some sections, the stress values are calculated by 

trial and error, to a chosen degree of accuracy. As a result of the 

strain factor (S_) being almost constant, it is interesting to note 
2 

that if the centroidal stresses are higher than (340 N/mm =0.8 f ), 



i.e. they fall on the second line of the stress - strain curve, then 

the stress range in the outer bar, , is smaller than the 

centroidal stress range f . This results from the strain factor 

being almost constant, and from the double linearity of the stress -

strain curve, as Is shown below. 
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stress(f^ ) 

co 

sae 

Tension 

Eg = 0.175Ei 

strain (e<, ) 

The stress - strain curve of the reinforcement 

Since the dead load stresses, in this study, are in all cases less 
P 

than (340.0 N/mm = 0.8 f̂ J , then the centroidal stress and the y 
outer bar stress f , caused by the dead load moment, are given by; 

^sd = Ggj ^sde 

where e^^ and e^^g are the corresponding strains. By definition, the 

strain factor corresponding to the dead load, , Is given by: 

'sde 
"FD " e sd 

®sde = ®FD ®sd 

Consequently, the dead load outer bar stress can be found by: 

^sde - Ggjg = SpQ Ggj = fgj SpQ 
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The slope of the second part of the stress - strain curve, , can 

be defined by : 

" sa _ E = 0.175 E 
*8ae - Sga ^ 1 

where; f , f are the outer bar stress and the centroidal 
S3G So. 

stress, caused by the total moment; e^^^ , e are the corresponding 

strains. 

By definition, the strain factor corresponding to the total load, 

, is given by : 

e 
= e sad = Spp 

sa 

Substituting for e gives the following equation for the slope 

E2 : 

S3G sa : E ^ 0.175 
SpT Ssa - Csa % ^ 

Simplifying the last equation gives : 

fsae - E, (3,, - 1) 

Hence the outer bar stress is : 

^sae = fsa- >=1 'SFI"'' =sa 

But the outer bar stress range is the stress due to the total moment 

less that due to the dead load moment, i.e. 

^sre = fsae " ^sde = '̂sa ̂  E, (Spx - D 

Now, since : f ^ = f^^ S^^ then this stress range is : 

fsre = fsa + E, - 11 
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which can also be written: 

fsre = 'sa " fgd * E, - 1) - (S^ - 1) 

Since the strain factor is almost constant, both S and can be 

replaced by an average value which we will denote by Sp 

Consequently in the above equation, we can substitute for Sp^ and 

when we obtain the following expression for the outer bar stress 

range : 

^sre = Csa ' + '"'"S E, (Sj,- 1) 

In fact, the expression (f^^ - f^^) in this equation represents the 

centroidal stress range (f^^J, and we can therefore write it as : 

fare = ^sr " '^F " '̂ 'sd " "'"S E, ' 

If we let : r = e /e ^ , the ratio of the total strain to dead 

load strain, then, e = r e , , and: 
sa sd ' 

^sre = " ISp- D (fgd - 0.175 E, r 

Since the dead load stress is given by: f^^ e ^ , then, the 

outer bar stress range is: 

fsre = fsr " " 1 ' ̂ sd " " ''' 

The definition of the strain factor (S^) implies that its value is 

always greater than unity, i.e. S^>1.0. From the last equation, it 

is clear that for all r values smaller than (1/0.175 = 5.714), the 

outer bar stress range (fgrg) is less than the corresponding 

centroidal stress range (f ). In reality the r value will be well 

below (5.714). 

Table (4.2) shows, the maximum values of the relative differences of 

the strain factor (D^^J, the live load modulus based on the 

centroidal stress (D^g) and the live load modulus based on the outer 

bar stress (D^^), for the various combinations of the span (L) and 

loading frequency (U). 
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Span 

(m) 

Loading 
frequency 
(T/hr.) 

Maximum 
Dgf (%) 

Maximum 

Dz3 (%) 

Maximum 

D%2 (%) 

15.0 360 1.01 4.30 12.53 

15.0 
180 
+90 

1.03 3.80 11.59 

17.5 
all 
values 0.70 2.93 12.35 

20.0 
all 
values 0.34 3.10 11.63 

25.0 
all 
values 0.15 3.61 12.76 

27.5 
all 
values 0.15 4.21 13.71 

Table (4.2 a) 

The maximum relative differences of strain factor and moduli, for 
the various span and loading frequency combinations. Bar dia = 32 mm 

Strain factor relative difference : 

the maximum of (Sp^ , Spy , S^^j 
D 
Sf the minimum of (S^^ , Spy , S^^) 

Relative difference of live load section modulus based on 

centroidal stresses : 

P l%L, - ^ L H I 

Z3 ~ the minimum of (Z^ , Z^) 

Relative difference of live load section modulus based on outer 

bar stresses : 

D' I'L -
Z3 the minimum of (Z^ , Z ^ ) 
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Span 

(m) 

Loading 
frequency 
(T/hr.) 

Maximum Maximum 

DZ3 (%) 

Maximum 
D'] (%) 

15.0 360 1.37 4.95 16.56 

15.0 
180 
+90 1.43 4.63 15.65 

17.5 
all 
values 1.03 4.24 16.05 

20.0 
all 
values 0.50 2.60 16.00 

25.0 
all 
values 0.18 5.48 16.88 

27.5 
all 
values 

0.18 5.17 19.15 

Table (4.2 b) 

The maximum relative differences of strain factor and moduli for the 
various span and loading frequency combinations. Bar dia = 25 mm 

For the definitions of the terms, see Table (4.2 a) 
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Based on the aforementioned observations, it is suggested that we may 

simulate the stress range spectrum in the outer bar, from the moment 

spectrum, using the modulus values based on the centroidal stress, Z. 

This can be done by simulating the centroidal stress in the steel 

(fg), and calculating the corresponding strain (e^). The strain in 

the outer bar is given by : e^^ = e^ where is the strain 

factor, and thus the corresponding stress, f , can be calculated. 

Hence, the stress range is : 

fsre = ^86 - fsde "here fg^g is the dead load stress. 

This means that we have to define some proper values for the modulus 

(Z) and the strain factor (Sp), which could be considered as 

representing each section adequately through all stages of loading. 

But before doing so, let us examine the way by which the modulus (Z) 

varies from one loading stage to another. To help us in that, values 

of the neutral axis depth ratio (R) and the lever arm effective depth 

ratio (J) have been calculated, and given in part (d) of each design 

table (p 113). 

The lever arm effective depth ratio (J) value, for spans L = 15.0 and 

17.5 m, increases consistently as the moment, we consider, decreases 

below the design moment. This behaviour is expected and may be 

explained by examining Figure (4.7) which represents the stress block 

for the concrete. 

In this figure, the position of the centre of the area, x' , of the 

stress block is given by: 

, _ 6a^ + 8ba + 3b^ 

^ ~ A(3a + 2b) 

Whence the rate of change of x' with respect to a is : 

9x' _ 1 18af + 24ab + 7b2 
3a 4 (3a + 2b) 

Hence, it will be seen from above, that x' increases as the portion 

of concrete which has become plastic, a, gets deeper in the section, 

i.e. the bending strains increase. 
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X (depth) 

hL 

y (stress) 

j = d'/d 

R = (a + b)/d 

Figure (4.7) - The concrete stress block in 
a highly stressed section 
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As the moment decreases, the plastic region, a, decreases and 

consequently x' also decreases. Hence, the lever arm effective depth 

ratio (j) increases. 

For all beams of 25.0 m span and over and for some of 20.0 m span, 

deflection will control the design, and hence the section depth will 

have to be increased beyond the minimum based upon stress conditions. 

In these cases, the lever arm effective depth ratio (J) seems to have 

two patterns of behaviour. The first behaviour is associated with 

sections for which, the steel and concrete stresses are low. This 

behaviour of increasing the lever arm effective depth ratio (j) with 

decreasing moment, is exactly similar to the aforementioned. 

In the second kind of behaviour, which is associated with sections for 

which the steel and concrete stresses are high, the lever arm 

effective depth ratio (j) seems to fluctuate with the moment values. 

This may be explained by examining the following relation which is 

based on the strain diagram {Fig 4.4 and 4.6): 

e = .... Equation (c) 

R - T 

In Eq. (c), e^ is the maximum concrete strain, e is the steel 

centroldal strain and R is the neutral axis depth ratio. 

If the effective depth (d), used to satisfy the deflection 

limitation, is considerably larger than the value required to satisfy 

the stress limits. Then the lever arm (d') is large, and the 

compression area (and hence R) for the sections, with high stresses 

in the concrete, tends to be small. If the moment decreases below 

the design moment, then the stresses will decrease, and both e and 

e^ will be less. 

However from Equation (c), we see that since R is small, the rate of 

change of e^ with respect to e is also small. Hence the change in 

the compressive force (C) will itself be small. Thus in order to 

balance the reduced moment, the lever arm will have to reduce. Whence 
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the neutral axis will drop in the section, and the R value will 

increase. Consequently the rate of change of e^ with respect to 

starts to increase, and the corresponding rate of change of the 

compressive force (C) is larger. 

If the moment decreases further, it seems that the resulting decrease 

in the compressive force (C) is large enough to cause the lever arm to 

increase to balance the new moment. 

Since the modulus Z can be seen as : 

Z = = A jd 

then the modulus behaviour could be considered similar to the 

behaviour of the lever arm effective depth ratio (J). 

4.7.1 Choosing a Section Modulus Suitable for All Loading Stages 

Let us now consider the combined load section moduli , Z ^ , . 

The section modulus based on the dead load moment (Z^) could not be 

used as the required modulus, because for about 85 percent of the 

cases the simulated values, for the stresses caused by the maximum 

total moment (M^) and the average total moment (M^ = 0.5 , 

would be lower than the corresponding actual values. 

If the section modulus based on the maximum total moment (Z^) is used 

as the required modulus, then the simulated values of the stresses, 

caused by the maximum total moment (M^), would be exactly equal to 

the corresponding actual values, but the simulated values of the 

stress ranges S^^ , caused by the average total moment would 

deviate appreciably from the corresponding actual values f , as 

can be seen from Table (4.3). 

This means that an intermediate value of the section modulus, between 

the value based on the maximum total moment (Z^) and that caused by 

the dead load moment (Z^) is more appropriate. 
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F = Zy 

KN.M/fN/mmf) 

Srh (a) 

(N/mm^) 

fsrh (b) 

(N/mm^) 

la - b 1 

Minimum of (a,b) 

1 3.719 85.54 82.80 3.31 

3.903 85.60 77.89 9.90 

4.395 75.83 69.24 9.52 

O 
" o 

4.735 68.62 64.34 6.65 
m vo 
r- n 
II II 

5.038 64.10 60.45 6.04 

^ tD 5.596 56.74 53.44 6.18 

5.956 52.40 50.50 3.76 

11.106 55.77 59.15 6.06 

5 
CM 

11.951 53.55 55.32 3.31 

O 

G S 12.745 51.68 51.81 0.25 
O 3 
• —1 
in (0 
(M > 

13.539 50.19 48.70 3.06 

" M 
J CO 

14.398 47.84 46.61 2.64 

15.248 45.77 43.48 5.27 1 

Table (4.3a) 

Comparison of the actual stress ranges f^^^ caused by the 

average total moment (M^), to their simulated values (S^^) 

using a combined section modulus equivalent to that caused 

by the maximum total moment, (Z^). Bar dia = 32 mm 
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1 
F = Zy Srh ( a ) a - b 

1 
(KN.M/fN/mm^) (N/mm^) Minimum of a,b) 

1 

5.420 73.93 69.64 6.17 

5.734 70.92 64.82 9.41 

D 

t n 

6.081 66.45 62.39 6.50 

O 

E CO 
tu 

6.467 61.13 57.25 6.78 

t n 3 
« r H 

CO 
r - > 

6.808 58.32 54.86 6.30 

II i H 

J c d 
7.148 56.14 52.62 6.69 

7.584 51.65 49.41 4.53 

7.958 49.17 47.15 4.29 

6.991 67.69 67.73 0.06 

7.380 65.19 64.09 1.72 

D 
7.725 64.28 60.45 6.34 

o ! 8.129 60.93 57.77 5.47 

o i l 
# M 1 

8.527 58.01 55.45 4.62 
O 0 ) f 
O J > 1 

I I M 1 
8.902 56.37 53.25 5.86 1 

J 1 9.285 54.00 51.06 5.76 j 

1 
9.683 51.69 48.98 5.M 1 

10.068 49.14 46.89 4.80 j 

Table (4.3b) 

Comparison of the actual stress ranges f caused by the 

average total moment (M^), to their simulated values (S 

using a combined section modulus equivalent to that caused 

by the maximum total moment, (Z^). Bar dia = 25 mm 
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Consequently, let us assume that the combined load section modulus, 

F, which we will choose to use, is to be defined as the minimum of 

that corresponding to the average total moment (Z^^) and the average 

of that corresponding to the maximum total moment (Z^) plus that 

corresponding to the dead load (Z^). We can express this as : 

F = the minimum of and 0.5 (Z^ + Z^) 

If we consider the section moduli based on live load moment alone, 

then it is believed proper to define the section modulus, F^ , as the 

minimum of that corresponding to the maximum live load moment (Zĵ ) 

and that corresponding to the average live load moment (Z^^). We can 

express this as : 

= the minimum of and 

The section modulus as defined above (Fĵ ) is equal to Z^in about 80 

percent of the cases. In the same cases, defining the section 

modulus F^ as above would make the simulated centroidal stress ranges 

, due to the average total moment, larger than the corresponding 

actual values f , . 
srh 

In about 80 percent of the cases, the maximum value of the strain 

factor is equal to the value caused by the maximum total 

moment, . Remembering that in most cases, the section modulus Fĵ  

as defined above, would make the simulated centroidal stress ranges 

caused by the average total moment (M^) higher than the corresponding 

actual values. Consequently, if we select the strain factor caused 

by the maximum total moment to represent the section through all 

loading stages (i.e. Sp = S^^), this for most cases would increase 

further the deviation between the simulated outer bar stress ranges 

caused by the average total moment and the corresponding actual 

values. 

For this reason, an intermediate value of the strain factor (S^) is 

chosen, which is defined as the maximum of that corresponding to the 

average total moment (S^^) and the average of that corresponding to 

the maximum total moment (S^^) plus that corresponding to the dead 

load (Spp). We can express this as : 

Sp = the maximum of and 0.5 (Sp^ + Sp^] 
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Noting that Sp as defined above, is in most cases smaller than , 

and in most cases, the section modulus is equal to the value based 

on the maximum live load moment (Z^^. Consequently for most cases, 

the simulated outer bar stress range values S , based on the live 

load modulus (F^), are slightly lower than the actual values F 

The largest negative deviation is 0.65 percent for 32 mm bars and 0.7 

percent for 25 mm bars, which is considered to be quite small. 

As mentioned earlier, the combined load modulus (F), the live load 

modulus (F^) and the strain factor (S^) are defined as below: 

F = the minimum of and 0.5 (Z^ + Z^) 

F^ = the minimum of Zĵ  and 

Sp = the maximum of and 0.5 (Sp^ + Sp^) 

Where (Z^ ,Sp^), ( Z ^ , Spy) and (Zp , Sp^) are the combined load 

modulus and the strain factor corresponding to the maximum total 

moment (M^), the average total moment (Mg) and the dead load moment 

(Mp) respectively. Z^ and are the live load moduli based on the 

total and average live load moments respectively. 

We have to investigate now whether F or Fĵ  is more appropriate. 

For the maximum stress ranges caused by the maximum total moment 

(M^ = Mp + M^), the stress range values based on the live load 

modulus (Fĵ ) are larger than those based on the combined load modulus 

(F), in more than 95 percent of the cases. 

Also, for the maximum total moment (M^), in 85 percent of the cases, 

the simulated stress range values based on the live load modulus (F^) 

are nearer to the actual values, than those based on the combined load 

modulus (F). 

However, for the average total moment + 0.5 in all cases, 

the stress range values based on the live load modulus (Fĵ ) are not 

less than those based on the combined load modulus (F). 

Also, for the average total moment (M^), in all cases, the stress 

range values based on the combined load modulus (F) are nearer to the 

actual values, than those based on the live load modulus (F^^. 
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Consequently it is believed that the live load modulus (F^) should be 

used to represent the section modulus, since it simulates the stress 

ranges caused by the maximum total moment (M^) in a more proper way. 

Also, using the modulus F would make the simulated centroidal stress 

ranges, caused by the maximum total moment, lower than the actual 

values. 

Since, in most cases, the live load modulus (Fĵ ) is equal to the 

modulus Zĵ  which corresponds to the maximum live load moment, then 

the simulated stress ranges, caused by the average total moment 

(Mg = Mp + 0.5 M^), are larger than the actual values. The maximum 

relative difference between the simulated and the actual values is 

5.24 percent for 32 mm bars and 6.31 percent for 25 mm bars. Table 

(4.4) shows the maximum relative differences. Since they are 

generally less than 5.0 percent, except in few cases where they are 

around 6.0 percent, then it is believed reasonable to define the 

section modulus as the minimum of that corresponding to the maximum 

live load moment (Z^^, and that corresponding to the average live 

load moment (Z^). 

To give more justification to this, two sets of fatigue lives have 

been calculated for the combination of loading frequency U = 90 T/hr. 

and span L = 15.0 m. The first set is based on section modulus 

values defined as above, while the second set is based on section 

modulus values defined as the maximum of that corresponding to the 

maximum live load moment (Zĵ ), and that corresponding to the average 

live load moment (Z^). 

From these two sets of points, two section modulus values, which give 

a specified design life (25, 50, 100 and 200 years), have been 

interpolated and their relative difference has been found to be quite 

small (around 1.0 percent), as will be shown later in Chapter (6). 
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Span 

(m) 

Loading 
frequency 
(T/hr.) 

Maximum 
Dg (%) 

Maximum 
Dp (%) 

Maximum 
+ Dpg (%) 

Maximum 

- Dfe (%) 

15.0 360 4.87 0.00 0.01 0.60 

C 
0) 

i 
r-H 

15.0 
180 
+90 

4.52 0.00 0.00 0.65 
C 
0) 

i 
r-H 

17.5 
all 
values 4.11 0.00 0.00 0.53 

4̂  
o •p 20.0 

all 
values 3.16 + 3.10 3.43 0.47 

.g 

s 
25.0 

all 
values 2.60 + 3.61 4.03 0.23 

27.5 
all 
values 1.44 + 4.21 4.71 0.17 

15.0 360 2.05 + 4.30 5.24 0.00 

+3 c 
<D 

15.0 
180 
+90 

1.85 + 3.80 4.89 0.00 

S 
o 
E 
rH 
CO 

17.5 
all 
values 1.57 + 2.93 3.29 0.00 

o 
-U 
& 

20.0 
all 
values 1.11 + 2.92 2.99 0.00 

ca 
0) > 25.0 all 

values 0.76 + 1.56 1.59 0.00 

27.5 
all 
values 0.38 + 2.55 2.54 0.00 

1 

Table (4.4a) 
Maximum relative differences for the various 
loading frequency and span combinations 
Bar dia = 32 mm 

D. = the relative difference of the simulated centroidal 
stress ranges based on the live load modulus (F,) 
and the combined load modulus (F). 

the relative differences of the simulated and actual 
centroidal and outer bar stress ranges respectively. 



106 

Span 

(m) 

Loading 
frequency 
(T/hr.) 

Maximum 
Dg (%) 

Maximum 
Df (%) 

Maximum 
+ Dfe (%) 

Maximum 
- (%) 

15.0 360 5.58 0.00 0.00 0.64 

4-5 
15.0 

180 
+90 

5.33 0.00 0.00 0.66 j 
} 

0 
E 

i H 
(0 

17.5 
all 
values 4.15 0.00 0.00 0.70 j 

4-) 
o 20.0 

all 
values 3.38 1.88 2.10 0.64 1 

1 

a 
N 25.0 

all 
values 2.16 5.48 6.20 

j 

0.31 1 
1 

1 
27.5 

all 
values 2.03 5.17 5.97 0.24 j 

15.0 360 2.36 4.95 6.31 0.00 1 

4-) 
C 

15.0 
180 
+90 

2.18 4.63 6.23 0.00 ! 

(1) 
e 
E 

r H 

17.5 
all 
values 1.58 4.24 5.43 0.00 ! 

1 
4J 
CD 

20.0 
all 
values 1.19 2.60 3.16 0.00 I 

& 25.0 
all 
values 0.60 1.80 1.80 0.00 1 

j 

27.5 
all 
values 0.41 2.24 2.24 0.00 

Table (4.4b) 
Maximum relative differences for the various 
loading frequency and span combinations 
Bar dia = 25 mm 

- For the definitions of the terms, see Table (4.4a). 
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4.7.2. Sections of The 15.0 m Bridge 

As can be seen from Figure (3.7) and Table (4.1), for a span of 

15.0 m, the maximum moments, for the loading frequency U = 90 T/hr. 

and 180 T/hr., are equal and they are slightly smaller than the 

corresponding value for U = 360 T/hr. This makes it necessary to 

design two sets of sections, one for U = 90 T/hr. and U = 180 T/hr. 

and the other for U = 360 T/hr. 

However, the two sets have some common sections which have the same 

dimensions and reinforcement, but have slightly different values of 

the section modulus (F^) and the strain factor (Sp). 

For such sections, F^ and Sp for both are taken to be: 

"l = ("LI + ^L2> ' Sp = »-5 (Spi + 

where Fĵ ^ and correspond to the first set of sections, while Fĵ ^ 

and Sp2 correspond to the second set of sections, as given in Table 

(4.5). 

For a few sections, the final rounded value of the strain factor (S^) 

is very slightly lower than the ratio of the outer bar dead load 

stress to the centroidal dead load stress (i.e. f /f ). For very 
S QS SQ 

small values of the live load moment, such a value of the strain 

factor (Sp) would produce fictitious negative stress ranges with very 

small absolute values. To avoid this, the related strain factor 

values have been increased very slightly and taken to be (^gde^^sd^' 

as shown in Table (4.6). 
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u = 360 T/hr. U = 90 and 180 T/hr. 

section F,, 
number 

section 
number 

= Sp = 

12 3.694 1.085 110 3.718 1.085 3.71 1.085 

13 4.164 1.104 111 4.188 1.104 4.18 1.104 

14 4.546 1.097 112 4.564 1.097 4.56 1.097 

15 4.855 1.091 113 4.871 1.090 4.86 1.090 

16 5.438 1.108 114 5.468 1.107 5.45 1.107 

Table (4.5a) 

and strain f: 

for span = 15.0 m. Bar dla = 32 mm 

Section modulus (Fĵ ) and strain factor (S^) values 

F^ values in KN.M/(N/mm^) 

section 
number 

SF ^sde^^sd 

41 1.028 1.028034 

51 51 1.022 1 . (fu 

53 1.028 1.028082 

54 1.034 1.034135 

Table (4.6a) 

Modified strain factor (S^) values 

Bar dia = 32 mm 
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U = 360 T/hr. U = 90 and 180 T/hr. 

section F,. S^-
number 

section 
number 

Fĵ  = Sp = 

^(^L1*^L2) &(^^F1*SF2) 

117 3.786 1.108 127 3.804 1.108 3.80 1.108 

118 4.207 1.096 128 4.225 1.096 4.22 1.096 

119 4.500 1.112 129 4.518 1.112 4.51 1.112 

120 4.807 1.105 130 4.835 1.105 4.82 1.105 

121 5.131 1.119 131 5.150 1.119 5.14 1.119 

123 5.849 1.123 133 5.860 1.123 5.85 1.123 

Table (4.5b) 

and strain f; 

for span = 15.0 m. Bar dia = 25 mm 

Section modulus (F^) and strain factor (S^) values 

Fĵ  values in KN.M/(N/mm'! 

section 
number 

^F ^sde^^sd 

411 1.040 1.040100 

512 1.037 1.037644 

Table (4.6b) 

Modified strain factor (S„) values 
f 

Bar dia = 25 mm 
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4.8 Sections with Highly Stressed Reinforcement 

As demonstrated in Section (3.7), beam sections with highly stressed 

reinforcement might not be capable of sustaining moments higher than 

the design moment. Maximum probable moment values for the various 

spans are given in Table (3.10). 

The computer program, used to design the bridge sections and calculate 

the stresses and moduli for the different loading stages, has been used 

to analyse bridge sections under the maximum probable moments. The 

results are given in Table (4.7), from which it appears that we have 

to neglect sections 11, 19, 41, 116, 126, 210, 310, 410 and 511 and 

disregard them, because of the probability that their reinforcement 

might yield before reaching the point of fatigue failure. 



stresses section relative strain maximum neutral lever 
(N/mm* ) moduli differences factor concrete axis - arm -

[KN.M/(N/mm:)] ( % ) strain depth effective 

section (1 X lOT^) 
ratio depth 

ratio 

number 
^spe ^sp "p ^Lp ^Lp Spp ^cp "p Jp ^PP 

(mm) 

19 470.98 460.34 3.381 3.175 3.85 3.91 1.059 4.190 0.449 0.800 74.50 

11 433.23 425.57 3.677 3.536 2.01 2.15 1.053 2.957 0.417 0.823 74.50 

12 and 
110 416.26 404.95 3.843 3.600 3.75 2.94 1.091 3.339 0.485 0.791 86.45 

21 409.70 403.42 5.161 4.959 1.61 1.59 1.051 2.620 0.427 0.822 74.50 

22 372.40 366.09 5.687 5.407 2.00 0.48 1.074 2.132 0.466 0.813 84.00 

31 402.15 397.92 6.946 6.873 0.06 3.20 1.036 2.031 0.377 0.850 71.34 

32 366.16 362.61 7.623 7.442 0.41 1.11 1.043 1.655 0.414 0.842 74.50 

41 423.19 419.51 11.089 11.285 0.83 2.82 1.026 1.801 0.312 0.879 73.91 

42 391.01 387.77 11.996 12.175 0.92 3.76 1.030 1.551 0.336 0.873 76.50 

52 414.24 411.10 14.554 14.940 1.17 4.48 1.024 1.643 0.306 0.883 74.31 

53 388.75 385.91 15.504 15.649 0.88 4.68 1.027 1.460 0.327 0.875 76.50 

Table (4.7a) - The effect of the maximum probable moment on sections 
with highly stressed reinforcement. Bar dia = 32 ram 



section 

stresses 
(N/mm*) 

section 
moduli 

[KN.M/fN/mm*)] 

relative 
differences 

(%) 

strain 
factor 

maximum 
concrete 
strain 

(1 X 10"^) 

neutral 
axis -
depth 
ratio 

lever 
arm -
effective 
depth 
ratio 

number 
spe sp 'Lp D Lp Fp 'CP PP 

[mm) 

116 and 
126 436.99 422.74 3.682 3.430 4.09 3.21 1.100 3.710 0.477 0.791 87.62 

117 and 
127 

404.75 391.85 3.972 3.699 3.99 2 .60 1.116 3.163 0.499 0.786 92.29 

210 423.14 412.95 5.042 4.807 2.08 1.81 1.077 2.856 0.430 0.819 84.78 

211 396.41 387.04 5.379 5.124 2.10 1.35 1.088 2.490 0.450 0.814 88.93 

310 428.49 421.40 6.559 6.427 0.32 0.91 1.050 2.326 0.366 0.851 78.22 

311 403.33 396.58 6.970 6.854 0.29 0.60 1.058 2.067 0.384 0.847 82.50 

410 426.19 421.39 11.039 11.206 0.73 2.61 1.034 1.827 0.312 0.878 77.84 

411 406.38 401.70 11.580 11.710 1.06 5.03 1.039 1.676 0.326 0.875 81.35 

511 422.91 418.41 14.300 14.697 0.97 2.1 1.033 1.710 0.303 0.884 80.22 

512 405.84 401.48 14.903 15.256 1 .20 4.98 1.036 1.588 0.315 0.881 83.14 

Table (4.7b) - The effect of the maximum probable moment on sections with 
highly stressed reinforcement. Bar dia = 25 mm 

IV) 
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4.9 Design Tables 

2 
Stresses and stress ranges in N/mm 

All dimensions in mm 

Moment values in KN.M 

Shear values in KN 

Modulus values in KN.M/(N/mm^) 

Strain values in (1 x 10~^) 

Relative differences in % 
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Span 

(m) 

beam 
width 
(mm) 

"b <l> 
(mm) 

s 
(mm) 

c 
(mm) 

^max 

15.00 250 3 10 57 46 0.424 

17.50 300 4 10 57 46 0.393 

20.00 350 5 10 57 46 0.371 

25.00 450 6 12 57 48 0.357 

27.50 500 7 12 57 48 0.356 

Table I - Some design 
Bar dia = 32 

details 
mm 

for the various spans 

: number of the reinforcing bars in one layer 

<f) : bar diameter for the shear reinforcement 

s : vertical spacing between reinforcement layers 

c : the distance between the centre of the outer layer to 
the tension face of the beam 

p : the maximum value for the ratio of the average concrete 
compressive stress to the concrete compressive strength (f 
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Span 

(m) 

beam 
width 
(mm) 

"b (mm) 
s 
(mm) 

c 
(mm) 

^max 

15.0 250 4 10 50 42.5 0.420 

17.5 300 5 10 50 42.5 0.402 

20.0 350 6 10 50 42.5 0.389 

25.0 450 8 12 50 44.5 0.359 

27.5 500 9 12 50 44.5 0.354 

Table II - Some design details for the various spans 
Bar dia = 25 mm 

For the definitions of the terms, see Table I 
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Table (1) - Beam details for 15.0 m span and 
loading frequency, U = 360 T/hr. 
Bar dia = 32 mm 



section 

number 

initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. 
ratio 
(%) 

max. 
shear 
stress 

various centroldal 
stresses 

various outer bar 
stresses section 

number 

"si ^req 
d b h 

^b V "sa "sh "sd f sae f 
she 

f 
sde 

11 450.0 881.3 925.5 250 1000 6 2.09 1 .81 395.8 312.4 229.6 401.8 328.8 241.3 

12 415.0 838.2 863.3 250 950 7 2.61 1 .93 375.0 290.4 212.5 383.5 314.2 229.3 

13 362.5 853.6 861.3 250 950 8 2.99 1 .93 333.0 258.1 188.9 344.9 285.0 207.9 

14 345.0 883.5 908.8 250 1000 8 2.83 1 .84 310.9 243.2 178.9 340.3 266.7 195.7 

15 310.0 914.4 958.0 250 1050 8 2.69 1 .75 293.8 230.7 170.2 321.1 251.5 185.2 

16 292.5 927.6 951.6 250 1050 9 3.04 1 .77 264.5 207.6 154.2 293.7 229.9 170.3 

17 257.5 961.5 1001.1 250 1100 9 2.89 1 .69 250.0 197.7 147.2 275.7 217.5 161.7 

18 240.0 983.5 992.5 250 1100 10 3.24 1 .70 229.3 180.6 134.4 257.8 202.7 150.5 

Table (la): L = 15.0 m, U = 360 T/hr., dia = 32 mm 



section 
various total 
moment values 

max. 
shear 

various max. 
concrete strains 

various strain factors and 
their relative difference 

number % ^T ®ca ®ch ®cd SpT ^FH SpD ^Sf % t S h S d 

11 1472.0 1172.0 871 .9 417.8 2 . 3 0 1 .19 0 .82 1 .052 1 .052 1.051 O J ^ 74 .50 73 .54 73 .60 

12 1463.6 1163.5 863 .4 415.5 2 .47 1 .31 0 .88 1 .090 1 .082 1 .079 1 .01 86 .68 83.41 83 .60 

13 1463.6 1163.5 863 .4 415.5 1.87 1 .27 0 .86 1 .105 1.104 1 .101 0.41 88 .70 91.13 91.41 

14 1472.0 1172.0 871 .9 417 .8 1 .57 1 .12 0 .77 1 .100 1.097 1 .094 0 .53 91.16 91.75 91.94 

15 1480.5 1180.4 880 .3 420.0 1 .37 1 .00 0 . 7 0 1 .093 1 .090 1 .088 0 .42 92 .03 92.24 92 .38 

16 1480.5 1180.4 880 .3 420 .0 1 .33 0 .97 0 . 6 8 1 .110 1.107 1.105 0.51 98 .39 98.63 98.81 

17 1488.9 1188.8 888 .8 422 .3 1 .18 0 . 8 8 0 . 6 3 1 .103 1 .100 1 .098 0 .40 98.95 99 .12 99.25 

18 1488.9 1188.8 888 .8 422 .3 1.16 0 .87 0.61 1.125 1 .122 1 .120 0 .44 107.50 107.80 108.01 

Table (lb): L = 15.0m, U = 360 T/hr., dia = 32 mm 

O) 



sec. 
section moduli 
their relative 

based on centroidal stresses 
differences 

and section moduli 
their relative 

based on outer 
differences 

bar stresses and 

no. h ^TH ZL ^LH ^zi ^22 ^23 4 
7, 
TH 'L ^LH '̂ Zl ^Z2 "Z3 

11 3.719 3.751 3.797 3.612 3.624 2.09 0.85 0.33 3.664 3.564 3.613 3.740 3.431 2.78 2.78 9.01 

12 3.903 4.007 4.064 3.694 3.853 4.10 2.65 4.30 3.817 3.703 3.765 3.893 3.537 3.06 3.06 10.08 

13 4.395 4.508 4.571 4.164 4.334 4.01 2.56 4.07 4.243 4.082 4.152 4.381 3.893 3.94 3.94 12.53 

14 4.735 4.819 4.875 4.546 4.664 2.95 1.77 2.59 4.325 4.394 4.455 4.149 4.226 3.01 1 .60 1.86 

15 5.038 5.117 5.172 4.855 4.964 2.64 1.56 2.24 4.610 4.694 4.752 4.417 4.531 3.07 1.81 2.58 

16 5.596 5.685 5.710 5.438 5.615 2.02 1.59 3.26 5.040 5.135 5.168 4.863 5.040 2.54 1.88 3.63 

17 5.956 6.013 6.038 5.839 5.942 1.37 0.96 1.76 5.401 5.465 5.497 5.265 5.373 1.77 1.18 2.05 

18 6.495 6.582 6.612 6.328 6.493 1.81 1.34 2.62 5.775 5.866 5.905 5.592 5.754 2.26 1.58 2.90 

Table (1c): L = 15.0 m, U = 360 T/hr., dia = 32 mm 



120 

section 

number 

neutral axis lever arm effective 
depth ratios depth ratios section 

number Jx Jh JD JL JLH 

11 0.411 0.433 0.416 0.833 0.839 0.849 0.809 O.I^M 

12 0.478 0.474 0.453 0.803 0.821 0.833 0.760 0.790 

13 0.529 0.495 0.476 0.793 0.816 0.827 0.751 0.784 

14 0.503 0.479 0.463 0.810 0.825 0.834 0.777 0.798 

15 0.482 0.465 0.451 0.817 0.830 0.839 0.788 0.806 

16 0.501 0.484 0.470 0.812 0.826 0.829 0.789 0.815 

17 0.485 0.471 0.459 0.822 0.830 0.834 0.806 0.820 

18 0.503 0.489 0.478 0.814 0.825 0.829 0.793 0.814 

Table (Id): L = 15.0 m, U = 360 T/hr., dia = 32 mm 



live combined centroidal simulated centroidal simulated outer bar simulated 1 
section load strain load stress ranges based and actual stress and actual stress fatigue 

modulus factor modulus on F and ranges ranges limit i 
i 

number Sp F ^RT ^RL Dg Sr f'sr Sre f sre Dfe 

! 

Se 

I 11 3.612 1.052 3.751 162.80 166.15 2.06 166.15 166.15 0.00 160.47 160.46 0.008 81.86 

1 12 3.694 1.085 3.983 154.93 162.47 4.87 162.47 162.47 0.00 153.63 154.14 0.34 85.82 

1 13 4.164 1.104 4.483 137.58 144.13 4.76 144.13 144.13 0.00 136.92 136.99 0.05 92.88 

1 14 4.546 1.097 4.805 127.50 132.02 3.54 132.02 132.02 0.00 144.48 144.64 - 0.11 96.92 

15 4.855 1.091 5.105 119.78 123.62 3.20 123.62 123.62 0.00 135.20 135.86 0.49 100.37 

i 5.438 1.108 5.653 107.71 110.36 2.46 110.36 110.36 0.00 122.66 123.40 0.60 105.29 

1 1 5.839 1.101 5.997 101.08 102.78 1.68 102.78 102.78 0.00 113.44 113.98 - 0.48 108.14 

18 1 6.328 
i 

1.122 6.553 92.79 94.85 2.22 94.85 94.85 0.00 106.77 107.33 - 0.53 111.84 

Table (1e) - Actual and simulated stress ranges caused by the maximum total moment (M„) 
L = 15.0 m, U = 360 T/hr., dia = 32 mm 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and Fĵ  ranges ranges 

section 

number 
^rh ^srh ^fh 

Q f" n 
rhe srhe fhe 

11 82.80 83.07 0.33 83.07 82.80 0.33 87.74 87.46 0.33 

12 79.60 81.23 2.05 81.23 77.89 4.30 89.29 84.84 5.24 

13 70.65 72.06 2.01 72.06 69.24 4.07 80.19 77.08 4.04 

14 65.05 66.01 1.47 66.01 64.34 2.59 72.94 71.00 2.72 

15 61.00 61.81 1.32 61.81 60.45 2.24 67.79 66.22 2.37 

16 54.63 55.18 1.01 55.18 53.44 3.26 61.55 59.54 3.37 

17 51.04 51.39 0.69 51.39 50.50 1.76 56.88 55.85 1.85 

18 47.00 47.42 0.91 jn\42 46.21 2.62 53.55 52.16 2.67 

Table (If) - Actual and simulated stress ranges caused by the 

average total moment, z 0.5 + Mg) 

L = 15.0 m, U = 360 T/hr., dia = 32 mm 

IV) 
IV) 
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Table (2) - Beam details for 15.0 m span and 
loading frequency, U = 180 and 90 T/hr. 
Bar dla = 32 mm 



section 
initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. 
ratio 
(%) 

Tiax. 
shear 
stress 

various centroidal 
stresses 

various outer bar 
stresses 

number number 

^si 
d 
req d b h Nb V ^sa ^sh ^sd f sae f 

she 
f 
sde 

19 432.5 849.8 875.5 250 950 6 2.20 1.90 414.5 326.1 242.1 422.2 340.8 255.3 

110 397.5 816.4 863.3 250 950 7 2.61 1.93 365.5 286.2 212.5 373.2 309.6 229.3 

111 362.5 844.0 860.7 250 950 8 2.99 1.93 324.7 254.6 188.9 343.4 281.1 207.9 

112 327.5 893.3 908.5 250 1000 8 2.83 1.84 303.5 240.0 178.9 333.9 263.2 195.7 

113 292.5 916.9 957.9 250 1050 8 2.69 1.75 287.0 227.7 170.2 313.6 248.2 185.2 

114 275.0 932.6 951.6 250 1050 9 3.04 1.77 258.2 205.5 154.2 286.6 227.5 170.3 

115 257.0 951.3 1001.0 250 1100 9 2.89 1.69 244.9 195.4 147.2 270.0 215.0 161.7 

Table (2a) ; L = 15.0 m, U = 180 and 90 T/hr., dia = 32 mm 

nj 



section 
various total 
moment values 

max. 
shear 

various max. 
concrete strains 

various strain 
their relative 

factors and 
difference 

number V, ®ca Gch ^cd Spx ^FH ^FD ^Sf dpt dph dpd 

19 1432 .4 1147.9 863.4 415.5 2.90 1.32 0.91 1.057 1 .056 1 .055 0.23 74.50 73.01 73.44 

110 1432 .4 1147.9 863.4 415.5 2.23 1.28 0.88 1.091 1 .082 1 .079 1.03 86.70 83.42 83.60 

111 1432 .4 1147.9 863.4 415.5 1.79 1.24 0.86 1.106 1 .104 1 .101 0.46 89.29 91.16 91.41 

112 1440 .9 1156.4 871.9 417.8 1.52 1.10 0.77 1.100 1 .096 1 .094 0.54 91.47 91.76 91.94 

113 1449 .3 1164.8 880.3 420.0 1.33 0.98 0.70 1.093 1 .090 1 .088 0.39 92.06 92.24 92.38 

114 1449 .3 1164.8 880.3 420.0 1.29 0.96 0.68 1.110 1 .107 1 .105 0.47 98.42 98.65 98.81 

115 1457 .7 1173.2 888.8 422.3 1.15 0.87 0.63 1.102 1 .100 1 .098 0.36 98.97 99.13 99.25 

Table (2b): L = 15 .Cm, U = 180 and 90 T/hr., dia = 32 mm 

f\) 
U1 



sec. 
section moduli 
their relative 

based on centroidal stresses and 
differences 

section moduli 
their relative 

based on outer 
differences 

bar stresses and 

no. 
^TH %LH ^Z1 ^22 ^23 4 H % 7' 

LH ^Z1 0Z2 

19 3.455 3.520 3.567 3.299 3.386 3.22 1.88 2.64 3.393 3.369 3.382 3.410 3.331 0.71 0.71 2.37 

110 3.919 4.011 4.064 3.718 3.859 3.69 2.35 3.80 3.838 3.708 3.765 3.955 3.544 3.52 3.52 11.59 

111 4.411 4.508 4.571 4.188 4.327 3.63 2.20 3.32 4.172 4.084 4.153 4.202 3.888 2.16 2.16 8.05 

112 4.747 4.818 4.875 4.564 4.651 2.69 1.49 1.90 4.315 4.394 4.455 4.117 4.216 3.24 1.82 2.41 

113 5.049 5.115 5.172 4.871 4.947 2.42 1.30 1.56 4.622 4.693 4.752 4.434 4.518 2.82 1.53 1.89 

114 5.612 5.668 5.710 5.468 5.541 1.74 0.99 1.34 5.056 5.120 5.168 4.892 4.976 2.22 1.26 1.72 

115 5.952 6.004 6.038 5.823 5.899 1 .44 0.86 1.30 5.399 5.457 5.497 5.254 5.336 1.81 1.07 1.57 

Table (2c): L = 15.0 m, U = 180 and 90 T/hr., dia = 32 mm 

e\ 
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section 

number 

neutral axis lever arm effective 
depth ratios depth ratios section 

number J? jy jg JL JLH 

1 
0.431 0.448 0.428 0.818 0.832 0.843 0.781 0.800 

110 0.479 0.472 0.453 0.806 0.822 0.833 0.765 0.791 

111 0.525 0.494 0.476 0.797 0.816 0.827 0.756 0.783 

112 0.500 0.478 0.463 0.812 0.824 0.834 0.781 0.796 

113 0.480 0.464 0.451 0.819 0.830 0.839 0.790 0.803 

114 0.499 0.483 0.470 0.815 0.823 0.829j 0.794 0.805 

115 0.483 0.470 0.459 0.821 0.829 0.8341 0.804 0.814 

Table (2d): L = 15.0 m, U = 180 and 90 T/hr., dia = 32 mm 



section 

number 

live combined centroidal simulated centroidal simulated outer bar simulated 
load strain load stress ranges based and actual stress and actual stress fatigue 
modulus factor modulus on F and ranges ranges limit 

section 

number ^RT Dg Sr fsr Df Q f f) 
re sre fe ^e 

19 3.299 1.056 3.511 165.89 172.47 3 .96 172.47 172.47 0 .00 166.72 166.88 - 0 .10 77.24 

110 3.718 1.085 3.991 146.41 153.03 4 .52 153.03 153.03 0 .00 143.39 143.87 - 0 .33 85.82 

: 111 4.188 1.104 4.491 130.06 135.86 4 .46 135.86 135.86 0 .00 135.31 135.42 - 0 .08 92.88 

1 112 4.564 1.097 4.811 120.64 124.66 3 .34 124.66 124.66 0 .00 137.30 138.19 - 0 .65 96.92 
I 

113 4.871 1.090 5.111 113.37 116.80 3 .03 116.80 116.80 0 .00 127.72 128.33 - 0 .47 100.37 

114 5.468 1.107 5.661 101.84 104.06 2 .18 104.06 104.06 0 .00 115.64 116.31 - 0 .58 105.29 

115 5.823 1.100 5.995 95.96 97.71 1.82 97.71 97.71 0 .00 107.81 108.30 - 0 .45 108.14 

Table (2e) - Actual and simulated stress ranges caused by the maximum total moment (ML) 
L = 15.0 m, U = 180 and 90 T/hr,, dia = 32 mm 

rv) 
00 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and ranges ranges 

section 

number 
^rh ^srh ^fh ^rhe ^srhe ^fhe 

19 &K87 816.23 1.61 86 .23 84 .02 2 .64 85.84 85.41 0 .49 

110 7 5 ^ 3 76.51 1.85 76.51 73.71 3 .80 84 .20 80 .27 4 .89 

111 &^J2 ( # . 9 3 1 .82 67 .93 65.75 3 .32 75.57 73 .16 3 .29 

112 61.50 62 .33 1.34 62 .33 61 .17 1 .90 68.91 67 .47 2 .13 

113 57.70 58.40 1.21 58 .40 57 .50 1.56 64.04 ( # . 9 7 1 .70 

114 51.58 52.03 0 .87 !%\03 51.34 1.34 58 .02 57.17 1 .49 

115 48.50 48.85 0 .72 48.85 48.23 1 .30 54.05 53.31 1 .39 

Table (2f) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 (M^ + M^) 

L = 15.0 m, U = 180 and 90 T/hr., dia = 32 mm 

IV) 
VO 
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Table (3) - Beam details for 17.5 m span, with 
all values of the loading frequency 
Bar dia = 32 mm 



section 
initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. 
ratio 
(%) 

•nax. 
shear 
stress 

various centroldal 
stresses 

various outer bar 
stresses 

number number 

"si 
d 
req 

d b h 
^b V "sa "sh "sd 

f 
sae 

f 
she ^8^e 

21 415.0 886.4 975.5 300 1050 8 2.20 1.67 381.2 307.9 234.9 386.3 323.5 246.5 

22 380.0 885.4 966.0 300 1050 9 2.50 1.69 347.2 277.7 211.6 352.1 296.7 225.7 

23 345.0 935.7 962.4 300 1050 10 2.79 1.69 316.3 253.2 193.6 340.6 274.5 209.4 

24 310.0 969.0 1011.6 300 1100 10 2.65 1.62 299.8 240.9 185.0 324.1 259.9 199.3 

25 292.5 983.3 1006.1 300 1100 11 2.93 1.63 275.8 221.7 169.6 301.9 242.1 185.0 

26 265.0 1010.9 1055.6 300 1150 11 2.79 1.56 261.8 211.6 162.7 284.9 229.8 176.5 

27 257.5 1020.1 1050.9 300 1150 12 3.06 1.57 242.6 196.3 150.4 266.9 215.5 164.9 

Table (3a): L = 17.5 m, all values of U, dla = 32 mm 

w 



various total max. various max. various strain factors and 
section moment values shear concrete strains their relative difference 

number % V, ®ca ®ch ®cd SpT ^FD ^Sf dpt dph dpd 

21 1983 .1 1614.8 1246. 4 488.5 2.14 1.22 0.87 1.051 1 .051 1 .049 0.15 74.50 73.61 73.66 

22 1983 .1 1614.8 1246. 4 488.5 1.73 1.19 0.85 1.074 1 .068 1 .067 0.70 83.56 81.65 81.76 

1 23 
1 

1983 .1 1614.8 1246. 4 488.5 1.59 1.16 0.83 1.087 1 .084 1 .082 0.43 87.62 88.22 88.37 

1 
1996 .9 1628.6 1260. 2 491.6 1.39 1.05 0.76 1.081 1 .079 1 .077 0.37 88.44 88.60 88.71 

25 1996 .9 1628.6 1260. 2 491.6 1.36 1.02 0.75 1.095 1 .092 1 .090 0.41 93.95 94.15 94.29 

26 2010 .7 1642.3 1274. 0 494.8 1.22 0.93 0.69 1.088 1 .086 1 .085 0.32 94.39 94.53 94.64 

27 2010 .7 1642.3 1274. 0 494.8 1.19 0.91 0.67 1.100 1 .098 1 .096 0.36 99.13 99.29 99.40 

Table (3b): L = 17.5 m, all values of U, dia = 32 mm 

LJ 



sec. 
section moduli 
their relative 

based on centroidal stresses 
differences 

and section moduli 
their relative 

based on outer 
differences 

bar stresses and 

no. 
4 ^TH ^LH ^Zl *)z2 *)Z3 4 

71 
TH % 7' 

LH ^Zl 2̂12 DZ3 

21 5.203 5.244 5.305 5.038 5.048 1.97 0.80 0.20 5.134 4.991 5.056 5.272 4.785 2.86 2.86 10.17 

22 5.712 5.814 5.891 5.433 5.568 3.13 1.79 2.49 5.632 5.442 5.523 5.826 5.186 3.48 3.48 12.35 

23 6.271 6.378 6.440 6.004 6.179 2.70 1.72 2.93 5.822 5.883 5.951 5.614 5.664 2.23 1.06 0.88 

24 6.660 6.759 6.811 6.417 6.587 2.27 1.49 2.65 6.161 6.266 6.324 5.902 6.076 2.64 1.70 2.95 

25 7.240 7.347 7.429 6.938 7.082 2.61 1.49 2.08 6.613 6.728 6.814 6.296 6.449 3.03 1.73 2.43 

(26 7.680 7.763 7.831 7.433 7.536 1.96 1.07 1.38 7.057 7.145 7.218 6.794 6.905 2.29 1.26 1.64 

27 8.287 8.369 8.468 7.992 8.040 2.18 0.98 0.60 7.533 7.623 7.725 7.223 7.288 2.55 1.19 0.91 

Table (3c): L = 17.5 m, all values of U, dla = 32 ram 

w 
w 
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section 

number 

1 

neutral axis lever arm effective 
depth ratios depth ratios section 

number 

1 
Ry %% Rp j'x JH JD 

i 
0.427 0.443 0.427 0.829 0.835 0.845 0.803 0.804 

1 22 0.476 0.461 0.446 0.817 0.829 0.841 0.777 0.794 

23 0.501 0.478 0.463 0.810 0.825 0.833 0.776 0.799 

24 0.482 0.465 0.452 0.819 0.831 0.837 0.789 0.810 

25 0.497 0.480 0.468 0.813 0.826 0.835 0.780 0.796 

26 0.481 0.468 0.457 0.822 0.831 0.839 0.796 0.807 

27 0.495 0.482 0.472 0.817 0.825 0.835 0.788 0.793 

Table (3d): L = 17.5 m, all values of U, dla = 32 mm 



section 
live 
load 
modulus 

strain 
factor 

combined 
load 
modulus 

centroidal simulated 
stress ranges based 
on F and F^ 

centroidal simulated 
and actual stress 
ranges 

outer bar simulated 
and actual stress 
ranges 

fatigue 
limit 

number \ Sp F ^RT SpL Sr & "re f sre ^fe 

21 5.038 1.051 5.244 143.20 146.22 2.11 146.22 146.22 0.00 139.72 139.74 - 0.016 80.14 

22 5.433 1.070 5.801 130.25 135.60 4.11 135.60 135.60 0.00 126.20 126.45 0.20 '87.02 

23 6.004 1.084 6.355 118.50 122.71 3.55 122.71 122.71 0.00 131.08 131.21 0.099 92.39 

24 6.417 1.079 6.736 111.44 114.80 3.01 114.80 114.80 0.00 124.23 124.82 0.47 95.74 

25 6.938 1.092 7.334 102.63 106.19 3.46 106.19 106.19 0.00 116.38 117.00 0.53 100.47 

26 7.433 1.087 7.756 96.56 99.11 2.63 99.11 99.11 0.00 107.98 108.43 0.42 103.25 

27 7.992 1.098 8.369 89.83 92.18 2.62 92.18 92.18 0.00 101.52 101.99 - 0.47 107.08 

Table (3e) - Actual and simulated stress ranges caused by the maximum total moment (ML) 
L = 17-5 ra, all values of U, dia = 32 mm 

(jj 



section 

number 

centroidal simulated centroldal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and ranges ranges 

section 

number 
^RHT ^SH ^rh ^srh ^rhe ^srhe ^fhe 

21 72.96 73.11 0.20 73.11 72.96 0.20 77.12 76.97 0.19 

22 &^76 67.M 1.57 67.80 66.16 2.49 73.37 71.03 3.29 

23 60.54 61.35 1.35 61.35 59.61 2.93 66.98 65.04 2.99 

24 56.76 57.40 1.13 57.40 55.92 2.65 62.30 60.62 2.77 

25 52.41 53.09 1.31 53.09 52.01 2.08 58.38 57.11 2.22 

26 49.07 49.55 0.98 49.55 48.88 1.38 54.13 53.34 1.48 

27 45.81 46.09 0.60 46.09 45.81 0.60 50.91 50.54 0.73 

Table (3f) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 (M^ + M^) 

L = 17.5 m, all values of U, dia = 32 mm 

w 
o\ 
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Table (4) - Beam details for 20.0 m span, with 
all values of the loading frequency 
Bar dia = 32 mm 



section 

number 

initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. max. 
ratio shear 
(%) stress 

various centroidal 
stresses 

various outer bar 
stresses section 

number 

"si 
d 
req d b h ^b V "sa fsh "sd f sae f 

she 
f 
sde 

31 415.0 945.5 1128.7 350 1200 9 1.83 1.43 384.3 319.1 249.9 388.0 331.0 259.0 

32 380.0 944.0 1125.5 350 1200 10 2.04 1.43 352.3 289.5 226.9 355.4 301.9 236.5 

33 345.0 998.8 1119.6 350 1200 11 2.26 1.44 325.7 266.3 208.8 340.7 281.0 220.1 

34 310.0 1035.4 1113.6 350 1200 12 2.48 1.45 301.7 246.2 193.8 322.2 262.6 206.4 

35 292.5 1050.9 1108.7 350 1200 13 2.69 1.45 280.5 229.4 180.9 302.6 247.0 194.5 

36 275.0 1069.4 1104.4 350 1200 14 2.91 1.46 262.9 215.4 168.9 286.2 234.0 183.1 

37 257.5 1091.2 1100.7 350 1200 15 3.13 1.46 247.1 202.3 158.5 271.2 221.5 173.3 

Table (4a) : L = 20.0 m, all values of U, dia = 32 mm 

w 
00 



various total max. various max. various strain factors and 
section moment values shear concrete strains their relative difference 

number % "D ®ca ^ch Gcd ^FT SpH SpD Dgf "pt "pd 

31 2676 .9 2215.4 1754. 0 564.2 1.81 1,11 0.82 1.036 1.037 1.036 0.098 71.30 70.77 70.79 

32 2676 .9 2215.4 1754. 0 564.2 1.49 1.07 0.80 1.044 1.043 1.042 0.14 74.50 73.91 73.94 

33 2676 .9 2215.4 1754. 0 564.2 1.35 1.04 0.78 1.056 1.055 1.054 0.18 80.36 80.73 80.78 

34 2676 .9 2215.4 1754. 0 564.2 1.32 1.02 0.76 1.068 1.066 1.065 0.27 86.39 86.49 86.57 

35 2676 .9 2215.4 1754. 0 564.2 1.29 1.00 0.75 1.079 1.077 1.075 0.31 91.32 91.44 91.53 

36 2676 .9 2215.4 1754. 0 564.2 1.27 0.98 0.74 1.088 1.086 1.085 0.34 95.59 95.73 95.83 

37 1 2676 .9 2215.4 1754. 0 564.2 1.25 0.97 0.73 1.097 1.095 1.093 0.36 99.32 99.49 99.60 

Table ( 4b): L 20.0 m, all values of U, dla = 32 mm 

w 
vO 



sec. 
section moduli based on centroidal stresses 
their relative differences 

and section moduli based on outer 
their relative differences 

bar stresses and 

no. 
^TH ZD 2L %LH ^Zl ^22 ^23 

71 
TH % ^LH ^22 ^Z3 

31 6.967 6.942 7.020 6.867 6.660 1.13 0.35 3.10 6.899 6.693 6.773 7.152 6.407 3.07 3.07 11.63 

32 7.599 7.654 7.731 7.360 7.374 1.74 0.72 0.19 7.532 7.338 7.417 7.759 7.050 2.64 2.64 10.05 

33 8.219 8.320 8.401 7.892 8.025 2.22 1.23 1.68 7.857 7.884 7.969 7.653 7.579 1.42 0.35 0.98 

34 8.872 8.998 9.052 8.550 8.800 2.03 1.42 2.92 8.307 8.437 8.498 7.967 8.216 2.30 1.57 3.13 

35 9.542 9.658 9.697 9.262 9.513 1.62 1.21 2.71 8.847 8.970 9.019 8.539 8.790 1.94 1.39 2.94 

36 10.180 10.284 10.388 9.808 9.906 2.04 1.01 1.00 9.355 9.468 9.578 8.959 9.074 2.38 1.21 1.29 

37 10.832 10.951 11.067 10.410 10.529 2.18 1.10 1.14 9.871 10.000 10.123 9.426 9.562 2.55 1.31 1.44 

Table (4c) : L = 20.0 m, all values of U, dia = 32 mm 

O 



141 

section 

number 

neutral axis lever arm effective 
depth ratios depth ratios section 

number ^T % j? jy Jo JLH 

31 0.379 0.409 0.398 0.853 0.849 0.859 0.841 0.815 

32 0.421 0.424 0.413 0.840 0.845 0.854 0.813 0.814 

33 0.454 0.439 0.428 0.830 0.840 0.848 0.797 0.810 

34 0.467 0.453 0.441 0.826 0.837 0.842 0.796 0.819 

35 0.480 0.466 0.454 0.823 0.833 0.837 0.799 0.821 

36 j 0.491 0.477 0.466 0.819 0.827 0.836 0.789 0.797 

37 1 0.502 0.488 0.478 
1 

0.816 0.825 0.834 0.784 0.793 

Table (4d): L = 20.0 m, all values of U, dla = 32 mm 



live combined centroidal simulated centroidal simulated outer bar simulated 
section load strain load stress ranges based and actual stress and actual stress fatigue 

modulus factor modulus on F and ranges ranges limit 

number Sp F ^RT ^RL Sr fsr Of Sre ^sre Dfe ^e 

31 6.660 1.037 6.942 135.76 138.57 2.07 138.57 134.40 3.10 133.47 129.04 3.43 76.04 

32 7.360 1.043 7.654 122.87 125.40 2.06 125.40 125.40 0.00 118.90 118.95 0.04 83.46 

33 7.892 1.055 8.310 113.35 116.93 3.16 116.93 116.93 0.00 120.54 120.59 - 0.04 88.86 

34 8.550 1.067 8.962 104.92 107.95 2.88 107.95 107.95 0.00 115.41 115.84 - 0.37 93.38 

35 9.262 1.077 9.620 97.39 99.64 2.31 99.64 99.64 0.00 107.61 108.08 0.44 97.32 

36 9.808 1.086 10.284 91.46 94.10 2.89 94.10 94.10 0.00 102.54 103.02 0.47 101.07 

37 10.410 1.095 10.949 85.99 88.65 3.09 88.65 88.65 0.00 97.42 97.91 0.50 104.32 

Table (4e) - Actual and simulated stress ranges caused by the maximum total moment (ML) 
L = 20.0 m, all values of U, dia = 32 mm 

- O 
l\) 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and ranges ranges 

section 

number 
^srh ^rhe ^srhe ^fhe 

31 69.28 69.28 0.00 69.28 69.28 0.00 72.03 72.03 0.00 

32 62.58 62.70 0.19 62.70 62.58 0.19 65.57 65.45 0.19 

33 57.82 58.47 1.11 58.47 57.50 1.68 61.91 60.89 1.68 

34 53.43 53.97 1.01 53.97 52.44 2.92 57.84 56.16 2.99 

35 49.42 49.82 0.81 49.82 48.51 2.71 53.96 52.49 2.78 

36 46.58 47.05 1.00 47.05 46.58 1.00 51.42 5 0 . 1 . 1 2 

1 37 43.85 44.33 1.09 44.33 43.1% 1.14 48.^ 4 8 . 1 . 2 6 

Table (4f) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 (M^ + Mp) 

L = 20.0 m, all values of U, dia = 32 mm 

u> 
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Table (5) - Beam details for 25.0 m span, with 
all values of the loading frequency 
Bar dia = 32 mm 



section j 
I 

number | 

Initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. max. 
ratio shear 
(%) stress 

various centroldal 
stresses 

various outer bar 
stresses section j 

I 

number | 

"si 
d b h \ V 

^sa "sh "sd f sae f 
she 

f 
sde 

41 415.0 1061.0 1426.1 450 1500 11 1.38 1.16 406.7 351.7 292.5 410.1 353.7 300.7 

42 380.0 1059.2 1423.5 450 1500 12 1.51 1.16 378.0 325.4 270.1 380.9 335.8 278.6 

43 362.5 1082.8 1416.9 450 1500 13 1 .64 1.17 354.4 303.6 251.8 357.4 315.6 261.6 

44 345.0 1123.5 1413.0 450 1500 14 1.77 1.17 333.6 284.2 235.5 341.6 297.4 246.3 

45 327.5 1151.3 1407.9 450 1500 15 1.90 1.17 313.7 267.4 220.8 330.6 281.5 232.3 

46 310.0 1166.7 1403.8 450 1500 16 2.04 1.18 296.3 251.4 207.9 313.9 266.2 220.0 

47 292.5 1184.8 1400.3 450 1500 17 2.17 1.18 280.5 238.3 197.9 298.8 253.6 210.5 

Table (5a) : L = 25.0 m, all values of U, dia = 32 mm 



section 

number 

various total max. various max. various strain factors and 
moment values shear concrete strains their relative difference section 

number M, 1% "D V, ®ca ®ch ®cd ^FT ^FH ^FD ^Sf ^pt ^ph ^pd 

41 4517.1 3867.9 3218.8 743.6 1.65 1.07 0.81 1.0265 1.0278 1.0280 0.15 73.90 73.90 73.75 

42 4517.1 3867.9 3218.8 743.6 1.43 0.98 0.78 1.030 1.032 1.031 0.15 76.50 76.32 76.34 

43 4517.1 3867.9 3218.8 743.6 1.26 0.96 0.77 1.0396 1.0395 1.0390 0.05 83.10 82.36 82.38 

44 4517.1 3867.9 3218.8 743.6 1.14 0.93 0.75 1.0464 1.0465 1.0459 0.05 87.01 87.59 87.62 

45 4517.1 3867.9 3218.8 743.6 1.12 0.92 0.73 1.054 1.053 1.052 0.13 92.13 92.17 92.20 

46 4517.1 3867.9 3218.8 743.6 1.10 0.90 0.72 1.060 1.059 1.058 0.14 96.16 96.21 96.24 
• 

47 4517.1 3867.9 3218.8 743.6 1.08 0.88 0.71 1.0653 1.0644 1.0636 0.16 99.75 99.80 99.84 

Table (5b); L = 25.0 m, all values of U, dla = 32 mm 

o\ 



sec. 

no. 

section moduli based on centroldal stresses and section moduli based on outer bar stresses and 
their relative differences their relative differences sec. 

no. Dgg 71 7 1 7! 7 1 7,1 ni ni ni 
TH L LH Z1 Z2 Z3 

41 11.106 10.998 11.003 11.371 10.975 0.98 0.98 3.61 11.016 10.937 10.703 11.876 12.264 2.92 0.72 3.27 

42 11.951 11.887 11.918 12.035 11.734 0.54 0.54 2.56 11.858 11.520 11.554 12.686 11.351 2.94 2.94 11.75 

43 12.745 12.740 12.783 12.651 12.531 0.34 0.04 0.96 12.640 12.256 12.303 13.562 12.028 3.14 3.14 12.76 

44 13.539 13.611 13.669 13.226 13.331 0.96 0.54 0.79 13.223 13.007 13.069 13.622 12.707 1.66 1.66 7.20 

45 14.398 14.466 14.580 13.966 13.927 1.26 0.47 0.28 13.665 13.740 13.856 13.215 13.193 1.39 0.55 0.16 

46 15.248 15.385 15.480 14.700 14.930 1.52 0.90 1.56 14.389 14.529 14.628 13.828 14.057 1.66 0.98 1.66 

47 16.104 16.234 16.263 15.722 16.092 0.99 0.81 2.35 15.117 15.252 15.290 14.703 15.062 1.15 0.89 2.44 

Table (5c): L = 25.0 m, all values of U, dla = 32 mm 
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section 

number 

neutral axis lever arm effective 
depth ratios depth ratios section 

number ^T ^T % ^LH 

41 0.314 0.346 0.356 0.880 0.872 0.872 0.901 0.870 

42 0.340 0.375 0.367 0.870 0.865 0.867! 0.876 0.854 

^ i 0.374 0.386 0.378 0.860 0.860 0.862 j 0.854 0.845 

44 1 0.406 0.397 0.389 0.851 0.856 0.860 ! 0.831 0.838 

45 1 0.416 0.407 0.400 0.848 0.852 0.858 j 0.822 0.820 

46 i 0.425 0.417 0.410 0.844 0.852 0.857 | 0.814 0.827 

47 } 0.434 0.426 0.418 0.841 0.848 0.850 j 0.821 0.841 

Table (5d): L = 25.0 ra, all values of U, dia = 32 ram 



section 
live 
load 
modulus 

strain 
factor 

combined 
load 
modulus 

centroidal simulated 
stress ranges based 
on F and 

centroidal simulated 
and actual stress 
ranges 

outer bar simulated 
and actual stress 
ranges 

fatigue 
limit 

number 
4 

F 
^RT ^RL Os Sr ^sr "re 

f 
sre °fe S 

e 

41 10.975 1.028 10.998 118.18 118.31 0.11 118.31 114.18 3.61 113.73 109.33 4.03 62.26 

42 11.734 1.032 11.887 109.94 110.65 0.65 110.65 107.88 2.56 105.35 102.35 2.93 69.57 

43 12.531 1.039 12.740 102.76 103.61 0.83 103.61 102.63 0.96 96.75 95.73 1.07 75.16 

44 13.226 1.046 13.604 96.57 98.17 1.66 98.17 98.17 0.00 95.32 95.31 0.001 80.23 

45 13.927 1.053 14.466 91.49 93.22 1.90 93.22 92.97 0.28 98.31 98.25 0.06 84.84 

46 14.700 1.059 15.364 86.08 88.32 2.60 88.32 88.32 0.00 93.68 93.89 - 0.23 88.89 

47 15.722 1.064 16.184 81.20 82.58 1.70 82.58 82.58 0.00 88.07 88.31 0.27 92.03 

Table (5e) - Actual and simulated stress ranges caused by the maximum total moment (M^) 
L = 25.0 m, all values of U, dia = 32 mm 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and Fĵ  ranges ranges 

section 

number 
^rh ^srh ^fh ^rhe ^srhe ^fhe 

41 59.15 59.15 0.00 59.15 59.15 0.00 52.94 52.94 0.00 

42 55.32 55.32 0.00 55.32 55.32 0.00 57.19 57.19 0.00 

43 51.81 51.81 O.M 51.81 51.81 0.00 53.97 53.97 0.00 

44 48.85 49.08 0.48 49.08 48.70 0.79 51.49 51.09 0.79 

45 46.61 46.61 0.00 46.61 46.61 0.00 49.23 49.21 0.05 

46 43.83 44.16 0.76 44.16 43.48 1.56 46.91 46.18 1.59 

47 41.09 41.29 0.49 41.29 40.34 2.35 44.12 43.10 2.36 

Table (5f) - Actual and simulated stress ranges caused by the 

average total moment, M, 
H 0.5 (My + Mo) 

L = 25.0 m, all values of U, dia = 32 mm 

U1 o 
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Table (6) - Beam details for 27.5 m span, with 
all values of the loading frequency 
Bar dia = 32 mm 



section 
initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. max. 
ratio shear 
(%) stress 

various centroidal 
stresses 

various outer bar 
stresses 

number number 

"si 
d 
req 

d b h \ V "sa "sh "sd f sae 
f 
she 

f 
sde 

52 415.0 1118.1 1575.7 500 1650 13 1.33 1.08 393.3 345.8 294.1 396.0 347.4 301.6 

53 380.0 1116.2 1573.5 500 1650 14 1.43 1.08 369 J 323.6 274.2 371.5 332.9 281.9 

54 362.5 1141.4 1567.8 500 1650 15 1.54 1.08 349.5 303.7 257.8 351.9 314 J 266.6 

55 345.0 1185.2 1563.9 500 1650 16 1.65 1.09 330.9 287^ 243.5 340.7 298.6 253.2 

56 327.5 1215.1 1559.5 500 1650 17 1.75 1.09 313.3 270.9 230.6 327.6 283.1 240.8 

57 310.0 1231.6 1555.8 500 1650 18 1.86 1.09 297.7 258.2 218.9 312.7 271.1 229.7 

Table (6a): L = 27.5 m, all values of U, dla = 32 mm 

IV) 



section 

number 

various total max. various max. various strain factors and 
moment values shear concrete strains their relative difference section 

number Mo ^T ®ca ^ch ®cd SpT SpQ SpQ Dgp ^pt ^ph ^pd 

52 5712.8 4973.9 4235.0 848.5 1 .45 1 .00 0 .79 1.0242 1.02555 1.02561 0 .14 74.30 74.30 74.25 

53 5712.8 4973.9 4235.0 848.5 1.28 0 .93 0.77 1.0273 1.0285 1.0282 0 .12 76.50 76.43 76.44 

54 5712.8 4973.9 4235.0 848.5 1.15 0.91 0 .75 1.0345 1.0344 1.0341 0 .04 82.20 81.73 81.74 

55 5712.8 4973.9 4235.0 848.5 1.07 0 .90 0 .74 1.0401 1.0399 1.0395 0 .05 86.12 86.40 86.42 

56 5712.8 4973.9 4235.0 848.5 1.05 0 .88 0 .73 1.0455 1.0450 1.0445 0 .09 90.52 90.55 90.57 

57 5712.8 4973.9 4235.0 848.5 1.03 0.87 0 .72 1.0502 1.0497 1.0492 0 .10 94.24 94.27 94.29 

Table (6b); L = 27.5 m, all values of U, dia = 32 mm 

W 



sec. 

no. 

section moduli based on centroidal stresses and section moduli based on outer bar stresses and 
their relative differences their relative differences 

sec. 

no. ZuH 71 vt 7» 71 71 nt nt nt 
TH D L LH Z1 Z2 Z3 

52 14.525 14.385 14.400 14.895 14.299 0.97 0.97 4.17 14.425 14.316 14.040 15.653 16.130 2.74 0.76 3.05 

53 15.479 15.369 15.445 15.579 14.949 0.72 0.72 4.21 15.378 14.943 15.021 16.504 14.514 2.91 2.91 13.71 

54 16.344 16.379 16.427 16.109 16.109 0.51 0.22 0.004 16.233 15.834 15.885 17.318 15.544 2.52 2.52 11.41 

55 17.263 17.325 17.390 16.909 16.959 0.74 0.36 0.29 16.766 16.660 16.729 16.874 16.275 0.64 0.64 3.68 

56 18.232 18.360 18.369 17.851 18.306 0.75 0.70 2.55 17.439 17.569 17.586 17.032 17.474 0.84 0.74 2.59 

57 19.189 19.261 19.348 18.745 18.778 0.83 0.38 0.17 18.271 18.350 18.441 17.800 17.844 0.93 0.43 0.25 

Table {6c): L = 27.5 m, all values of U, dia = 32 mm 
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section 

i number 

neutral axis lever arm effective 
depth ratios depth ratios section 

i number By By Rg 3 J jfj jg JL JLH 

52 0.310 0.347 0.350 0.882 0.873 0.874 0.904 0.868 

M 1 0.336 0.366 0.359 0.874 0.867 0.872 0.879 0.844 

54 0.368 0.376 0.369 0.864 0.866 0.868 0.852 0.851 

55 0.392 0.385 0.378 0.858 0.861 0.864 0.840 0.843 j 

56 0.400 0.394 0.387 0.855 0.861 0.862 0.837 0.859 j 

57 0.408 0.401 0.395 0.852 0.855 0.859 0.832 0.834 1 

Table (6d): L = 27.5 , all values of U, dia = 32 ram 



section 
live 
load 
modulus 

strain 
factor 

combined 
load 
modulus 

centroldal simulated 
stress ranges based 
on F and F^ 

centroldal 
and actual 
ranges 

simulated 
stress 

outer bar 
and actual 
ranges 

simulated 
stress fatigue 

limit 

number Sp F 
^RL "sr Df f sre ^fe 

S 
e 

52 14.299 1.026 14.385 103.04 103.35 0.30 103.35 99.21 4.17 98.80 94.41 4.65 61.96 

53 14.949 1.028 15.369 97.51 98.86 1.39 98.86 94.86 4.21 93.76 89.54 4.71 68.46 

54 16.109 1.034 16.379 90.98 91.74 0.83 91.74 91.74 0.00 85.33 85.33 0.00 73.52 

55 16.909 1.040 17.325 86.22 87.40 1.36 87.40 87.40 0.00 87.57 87.58 - 0.01 77.96 

56 17.851 1.045 18.300 81.61 82.79 1.44 82.79 82.79 0.00 86.62 86.76 - 0.17 82.03 

57 18.745 1.050 19.261 77.71 78.84 1.45 78.84 78.84 0.00 82.87 83.02 0.18 85.72 

Table (6e) - Actual and simulated stress ranges caused by the maximum total moment (M 
L = 27.5 m, all values of U, dia = 32 mm 

ui 
G \ 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and ranges ranges 

section 

number ^RHT ^RHL ^SH 
Q f f) 
rh srh fh ^rhe ^srhe ^fhe 

52 51.67 51.67 0.00 51.67 51.67 0.00 45.81 45.81 0.00 

53 49.43 49.43 0.00 49.43 49.43 0.00 50.91 50.91 0.00 

54 45.87 45.87 0.00 45.87 45.87 0.00 47.54 47.54 0.00 

55 43.57 43.70 0.29 43.70 43.57 0.29 45.53 45.40 0.29 

56 41.24 41.39 0.38 41.39 40.36 2.55 43.36 42.29 2.54 

57 39.35 39.42 0.17 39.42 39.35 0.17 41.49 41.41 0.20 

Table (6f) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 

L = 27.5 m, all values of U, dia = 32 mm 

U1 



158 

Table (7) - Beam details for 15.0 m span and 
loading frequency, U = 360 T/hr. 
Bar dia = 25 mm 



1 

section 

number 

Initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

relnf. max. 
ratio shear 
(%) stress 

various centroldal 
stresses 

various outer bar 
stresses 

1 

section 

number 
fsl d 

req 
d b h \ V ^sa "sh "sd f sae 

f 
she 

f 
sde 

116 410.0 831.9 862.0 250 950 11 2.51 1.93 390.9 302.4 220.7 401.8 330.1 240.3 

117 380.0 836.9 857.5 250 950 12 2.75 1.94 363.0 280.0 204.5 372.6 309.2 225^ 

118 350.0 872.7 912.3 250 1000 12 2.58 1.83 336.7 264.3 194.0 345.2 289.7 212.2 

119 340.0 896.8 905.7 250 1000 13 2.82 1.84 314.8 246.9 181.4 341.9 274.6 201.2 

120 310.0 914.6 954.4 250 1050 13 2.67 1.76 297.2 233.8 172.4 329.2 258.2 190.0 

121 290.0 929.8 949.1 250 1050 14 2.90 1.77 279.0 218.9 162.0 313.0 244.7 180.8 

122 265.0 953.4 998.4 250 1100 14 2.75 1.69 263.6 208.2 154.6 293.6 231.3 171.4 

123 260.0 959.1 993.6 250 1100 15 2.96 1 .70 248.7 196.2 146.1 280.1 220.3 163.8 

124 245.0 977.2 989.4 250 1100 16 3.18 1.71 234.9 185.9 137.3 267.3 210.9 155.5 

125 230.0 997.7 1038.6 250 1150 16 3.02 1.63 223.6 176.7 132.0 252.5 199.1 148.4 

Table (7a): L = 15.0 m, U = 360 T/hr., dia = 25 mm 

U1 



various total max. various max. various strain factors and 
section moment values shear concrete strains their relative difference 

number % V, ®ca ^ch ®cd ^FT ^FH ^FD Dgf dpt dpd 

116 1463.6 1163.5 863. 4 415.5 2.76 1.33 0.90 1.099 1.092 1 .089 0.89 87.85 84.75 84.95 

117 1463.6 1163.5 863. 4 415.5 2.32 1.30 0.88 1.116 1.104 1 .101 1.37 92.50 88.87 89.09 

118 1472.0 1172.0 871. 9 417.8 1.62 1.15 0.79 1.097 1.096 1 .094 0.32 87.69 89.35 89.50 

119 1472.0 1172.0 871. 9 417.8 1.60 1.13 0.78 1.115 1.112 1 .109 0.55 94.27 95.31 95.53 

120 1480.5 1180.4 880. 3 420.0 1.39 1.01 0.71 1.108 1.104 1 .102 0.49 95.64 95.88 96.04 

121 1480.5 1180.4 880. 3 420.0 1.37 1 .00 0.70 1.122 1JM8 1 .116 0.54 100.90 101.22 101.44 

122 1488.9 1188.8 888. 8 422.3 1.21 0.90 0.64 1.114 1.111 1 .109 0.42 101.61 101.83 101.99 

123 1488.9 1188.8 888. 8 422.3 1.19 0.89 0.63 1.126 1.123 1 .121 0.47 106.38 106.64 106.82 

124 1488.9 1188.8 888. 8 422.3 1.18 0.88 0.62 1.138 1.135 1 .132 0.49 110.59 110.89 111.11 

125 1497.3 1197.3 897. 2 424.5 1.06 0.80 0.57 1.129 1.127 1 .125 0.40 111.36 111.58 111.74 

Table (7b): L = 15.0 m, U = 360 T/hr., dia = 25 mm 

o\ 
o 



sec. 
section moduli 
their relative 

based on centroidal stresses 
differences 

and section moduli 
their relative 

based on outer 
differences 

bar stresses and 

no. 
^TH ^LH ^zi ^22 ^23 4 

7 • 
TH % 7' 

LH ^Z1 DZ2 

116 3.744 3.848 3.912 3.526 3.676 4.49 2.78 4.24 3.642 3.524 3.593 3.716 3.341 3.35 3.35 11.23 

117 4.031 4.155 4.222 3.786 3.973 4.73 3.06 4.95 3.928 3.764 3.836 4.068 3.569 4.37 4.37 13.99 

118 4.372 4.435 4.494 4.207 4.272 2.78 1.43 1.54 4.265 4.046 4.109 4.514 3.872 5.42 5.42 16.56 

119 4.676 4.746 4.806 4.500 4.581 2.77 1.50 1.80 4.305 4.268 4.333 4.264 4.090 1.52 0.86 4.25 

120 4.981 5.048 5.106 4.807 4.886 2.52 1.36 1.64 4.497 4.571 4.633 4.311 4.400 3.03 1.66 2.06 

121 5.306 5.393 5.433 5.131 5.280 2.39 1.64 2.91 4.730 4.823 4.869 4.540 4.691 2.94 1.96 3.33 

122 5.648 5.710 5.749 5.504 5.598 1.80 1.11 1.71 5.072 5.140 5.185 4.913 5.013 2.23 1.35 2.03 

123 5.986 6.060 6.081 5.849 5.999 1.60 1.25 2.56 5.316 5.396 5.426 5.160 5.308 2.08 1.51 2.87 

124 6.339 6.396 6.473 6.150 6.179 2.12 0.91 0.48 5.571 5.638 5.717 5.368 5.416 2.62 1 .20 0.89 

125 6.697 6.776 6.799 6.549 6.706 1.53 1.18 2.40 5.931 6.013 6.046 5.767 5.919 1.94 1.39 2.63 

Table (7c): L = 1 5 . 0 m , U = 360 T/hr., dia = 25 mm 
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• section 

number 

neutral axis lever arm effective 
depth ratios depth ratios • section 

number Ry Ry JT % JL ^LH 

116 0.467 0.469 0.448 0.804 0.824 0.838 0.757 0.787 

117 0.496 0.482 0.462 0.798 0.819 0.833 0.750 0.783 

118 0.490 0.465 0.449 0.814 0.827 0.838 0.783 0.796 

119 0.504 0.478 0.462 0.809 0.822 0.833 0.779 0.794 

120 0.483 0.464 0.451 0.818 0.829 0.839 0.789 0.802 

121 0.495 0.477 0.463 0.813 0.827 0.833! 0.787 0.810 j 

122 j 0.479 0.464 0.453 0.823 0.832 0.838| 0.802 0.816 

123 i 0.490 0.476 0.464 0.818 0.829 0.832| 0.799 0.820 

124 1 0.501 0.486 0.476 | 0.816 0.823 0.833 0.791 0.795 

125 j 0.486 0.475 0.465 I 0.821 0.831 0.834 0.803 0.822 

Table (7d): L = 15.0 m, U = 360 T/hr., dla = 25 mm 



section 

number 

live combined centroidal simulated centroidal simulated outer bar simulated 
load strain load stress ranges based and actual stress and actual stress fatigue 
modulus factor modulus on F and ranges ranges limit 

section 

number Sp F ^RT ^RL Sr fsr Df ^re ^sre ^e 

116 3.526 1.094 3 .828 161.63 170.21 5.31 170.21 170.21 0 .00 160.95 161.48 - 0 .33 82.19 

117 3.786 1.108 4.127 150.15 158.54 5 .58 158.54 158.54 0 .00 146.91 147.53 - 0 .43 87.23 

118 4.207 1.096 4.433 138.04 142.66 3 .35 142.66 142.66 0 .00 132.90 132.96 - 0 .05 91.48 

119 4.500 1.112 4.741 129.07 133.38 3 .34 133.38 133.38 0 .00 140.57 140.74 - 0 .12 95.10 

120 4.807 1.105 5.043 121.14 124.84 3 .06 124.84 124.84 0 .00 138.41 139.22 - 0 .58 98.79 

121 5.131 1.119 5.370 113.68 116.97 2 .90 116.97 116.97 0 .00 131.35 132.20 - 0 .64 101.84 

122 5.504 1.111 5.698 106.70 109.05 2 .20 109.05 109.05 0 .00 121.54 122.16 - 0.51 104.93 

123 5.849 1.123 6.033 100.63 102.60 1.96 102.60 102.60 0 .00 115.64 116.30 - 0 .57 107.45 

124 6.150 1.135 6.396 95.48 97.59 2.21 97.59 97.59 0 .00 111.15 111.80 - 0 .58 110.20 

125 6.549 1.127 6.748 89.94 91.64 1.89 91.64 91.64 0 .00 103.56 104.07 - 0 .49 112.53 

Table (7e) - Actual and simulated stress ranges caused by the maximum total moment (ML) 
L = 150 m, U = 360 T/hr., dia = 25 mm 

o\ 
w 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and ranges ranges 

section 

number ^RHT SpHL DgH Q f n 
rh ^srh fh ^rhe ^srhe ^fhe 

116 83.24 85.10 2.24 85.10 81.64 4.24 94.15 89.81 4.84 

117 77.44 79.27 2.36 79.27 75.53 4.95 89.39 84.08 6.31 

118 70.35 71.33 1.39 71.33 70.25 1.54 78.68 77.49 1.53 

119 65.78 66.69 1.39 66.69 65.51 1.80 74.72 73.36 1.85 

120 61.64 62.42 1.26 62.42 61.42 1.64 69.44 68.20 1.81 

121 57.79 58.48 1.19 58.48 56.83 2.91 65.92 63.97 3.06 

122 54.04 54.52 0.90 54.52 53.61 1.71 60.95 59.86 1.82 

123 50.89 51.30 0.80 51.30 50.02 2.56 58.01 56.53 2.63 

124 48.56 48.79 0.48 48.79 48.56 0.48 55.76 55.41 0.65 

125 45.47 45.82 0.77 45.82 44.75 2.40 51.93 50.70 2.43 

Table (JF) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 (M^ + Mp) 

L = 15.0 m, U = 360 T/hr., dia = 25 mm 

CA 
-P-
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Table (8) - Beam details for 15.0 m span and 
loading frequency, U = 180 and 90 T/hr. 
Bar dla = 25 mm 



section 

number 

initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. 
ratio 
(%) 

max. 
shear 
stress 

various centroidal 
stresses 

various outer bar 
stresses section 

number 

^si 
d 
req d b h \ Rp V ^sa "sh "sd f sae f 

she 

126 410.0 822.5 862.0 250 950 11 2.51 1 .93 380.8 298.4 220.7 390.7 325.8 240.3 

127 380.0 827.5 857.5 250 950 12 2.75 1 .94 354.1 276.0 204.5 362.6 304.6 225 J 

128 350.0 862.9 911.9 250 1000 12 2.58 1 .83 328.7 260.4 194.0 343.6 285.4 212.2 

129 330.0 892.1 905.3 250 1000 13 2.82 1 .85 307.3 243.1 181.4 340.5 270.2 201.2 

130 310.0 904.3 954.3 250 1050 13 2.67 1 .76 290.1 230.1 172.4 321.2 254.1 190.0 

131 290.0 919.4 949.1 250 1050 14 2.90 1 .77 272.5 216.0 162.0 305.6 241.6 180.8 

132 272.0 935.9 944.4 250 1050 15 3.12 1 .78 257.0 203.9 152.5 291.6 230.7 172.1 

133 
i 

250.0 959.9 993.6 250 1100 15 2.96 1 .70 243.2 194.0 146.1 273.8 217.9 163.8 

1 134 
1 

230.0 986.6 988.6 250 1100 16 3.18 1 .71 230.0 182.8 137.3 261.7 207.4 155.5 

Table (8a): L = 15. 0 m, U = 180 and 90 T/hr ., dia = 25 mm 

o\ 
o\ 



section 
various total 
moment values 

max. 
shear 

various max. 
concrete strains 

various strain 
their relative 

factors and 
difference 

number % ®ca ^ch ^cd SpT SpH ^FD ^Sf S t "ph dpd 

126 1432.4 1147.9 863.4 415.5 2 .49 1.31 0 .90 1.099 1 .092 1 .089 0 .89 87 .92 84 .77 84 .95 

127 1432.4 1147.9 863 .4 415.5 2 .09 1 .28 0 .88 1 / M 6 1.104 1 .101 1.43 92.50 88 .89 89 .09 

128 1440.9 1156.4 871 .9 417 .8 1 .56 1 .13 0 .79 1.097 1.096 1 .094 0 .35 88 .09 89 .36 89 .50 

129 1440.9 1156.4 871 .9 417 .8 1 .54 1.11 0 . 7 8 1.115 1JM2 1 .109 0 . 5 8 94 .70 95 .32 95 .53 

130 1449.3 1164.8 880 .3 420 .0 1 .34 0 .99 0.71 1.107 1.104 1 .102 0 .46 95.67 95.89 96.04 

131 1449.3 1164.8 880 .3 420.0 1 .32 0 .98 0 .70 1.121 1.118 1 .116 0.51 100.95 101.24 101.44 

132 1449.3 1164.8 880 .3 420.0 1.31 0 .97 0 .69 1.135 1.131 1 .128 0 .54 105.58 105.93 106.16 

133 1457.7 1173.2 888 .8 422.3 1.16 0 .88 0 .63 1.126 1.123 1 .121 0 .44 106.41 106.65 106.82 

134 1457.7 1173.2 888 .8 422 .3 1 .15 0 .86 0 .62 1 J 3 8 1.135 1 .132 0 .46 110.67 110.91 IIIJM 

Table (8b); L = 15.0 m, U = 180 and 90 T/hr., dia = 25 mm 

o\ 



sec. 
section moduli 
their relative 

based on centroidal stresses and 
differences 

section moduli 
their relative 

based on outer 
differences 

bar stresses and 

no. 
4 

7 

TH ZD ^LH ^Z1 ^̂ 22 ^Z3 ^TH % ^LH °Z1 
*̂ Z2 2̂13 

126 3.761 3.847 3.912 3.554 3.661 4.00 2.26 3.01 3.666 3.523 3.593 3.784 3.329 4.05 4.05 13.65 

127 4.045 4.159 4.222 3.804 3.980 4.37 2.82 4.63 3.950 3.768 3.836 4.136 3.576 4.82 4.82 15.65 

128 4.384 4.441 4.494 4.225 4.288 2.51 1.32 1.50 4.193 4.052 4.109 4.329 3.888 3.47 3.47 11.33 

129 4.688 4.757 4.806 4.518 4.615 2.52 1.48 2.14 4.232 4.279 4.333 4.085 4.121 2.40 1.12 0.89 

130 4.996 5.063 5.106 4.835 4.934 2.21 1.34 2.04 4.512 4.585 4.633 4.337 4.442 2.67 1.61 2.42 

131 5.318 5.392 5.433 5.150 5.268 2.16 1.39 2.31 4.742 4.822 4.869 4.558 4.682 2.68 1.68 2.70 

132 5.639 5.712 5.774 5.442 5.528 2.39 1.29 1.57 4.970 5.050 5.116 4.759 4.855 2.95 1.61 2.01 

133 5.993 6.047 6.081 5.860 5.942 1.47 0.90 1.39 5.324 5.385 5.426 5.172 5.261 1.92 1.15 1.71 

134 6.337 6.417 6.473 6.135 6.249 2.15 1.27 1.85 5.571 5.656 5.717 5.357 5.475 2.63 1.54 2.21 

Table (8c): L = 15.0 m, U = 180 and 90 T/hr., dia = 25 mm 

o\ 
00 
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neutral axis lever arm effective 
section depth ratios depth ratios 

number «T % JT JL •̂ LH 

126 0.465 0.467 0.448 0.808 0.823 0.838 0.763 0.784 

127 0.499 0.481 0.462 0.801 0.820 0.833 0.753 0.785 

128 0.487 0.464 0.449 1 0.816 0.828 0.838 0.787 0.799 

129 0.500 0.478 0.462 ! 0.811 0.824 0.833 0.782 0.799 

130 0.481 0.464 0.451 i 0.820 0.832 0.839 0.794 0.810 

131 0.493 0.476 0.463 : 0.815 0.827 0.833 0.790 0.808 

132 0.504 0.487 0.475 ; 0.811 0.822 0.831 0.783 0.795 

133 0.488 0.475 0.464 0.819 0.827 0.832 0.801 0.812 

134 0.499 0.486 0.476 j 0.816 0.826 0.833 0.790 0.804 

Table (8d): L = 15.0 m, U = 180 and 90 T/hr., dia = 25 nun 



section 

number 

live combined centroidal simulated centroidal simulated outer bar simulated 
load strain load stress ranges based and actual stress and actual stress fatigue 
modulus factor modulus on F and ranges ranges limit 

section 

number Sp F Sr fsr Df ^re ^sre °fe 

126 3.554 1.094 3.837 152.63 160.10 4.89 160.10 160.10 0.00 149.89 150.38 - 0.32 82.19 

127 3.804 1.108 4.134 142.01 149.57 5.33 149.57 149.57 0.00 137.00 137.58 - 0.42 87.23 

128 4.225 1.096 4.439 130.59 134.67 3.12 134.67 134.67 0.00 131.36 131.44 - 0.06 91.48 

129 4.518 1.112 4.747 122.12 125.93 3.13 125.93 125.93 0.00 139.12 139.30 - 0.12 95.10 

130 4.835 1.105 5.051 114.52 117.69 2.76 117.69 117.69 0.00 130.45 131.19 - 0.56 98.79 

131 5.150 1.119 5.376 107.58 110.49 2.71 110.49 110.49 0.00 124.05 124.82 - 0.62 101.84 

132 5.442 1.132 5.706 101.51 104.55 2.99 104.55 104.55 0.00 118.77 119.56 - 0.66 1 104.72 

133 1 5.860 1.123 6.037 95.32 97.09 1.86 97.09 97.09 0.00 109.42 110.01 - 0.55 107.45 

134 j 6.135 1.135 6.405 90.29 92.74 2.71 92.74 92.74 0.00 105.62 106.22 - 0.57 110.20 

Table (8e) - Actual and simulated stress ranges caused by the maximum total moment (ML) 
L = 15.0 m, U = 180 amd 90 T/hr., dia = 25 mm 

o 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and ranges ranges 

section 

number SpHT SpHL OgH ^rh ^srh ^fh ^rhe ^srhe ^fhe 

126 78.48 80.05 2.00 80.05 77.71 3.01 88.62 85.45 3.71 

127 73.19 74.79 2.18 74.79 71.48 4.63 84.51 79.55 6.23 

128 66.50 67.34 1.26 67.34 (#.34 1.50 n J 7 1.49 

129 62.18 62.97 1.26 62.97 61.65 2.14 70.61 69.03 2.29 

130 58.20 58.84 1.10 58.84 57.66 2.04 65.44 64.05 2.18 

131 54.66 55.25 1.08 55.25 54.00 2.31 62.25 60.77 2.45 

132 51.66 52.28 1.20 52.28 51.47 1.57 59.62 5 8 . 1 . 7 4 

133 48.19 48.55 0.74 48.55 Jn\88 1.39 54.89 54.09 1.49 

134 45.88 46.37 1.08 46.37 45.53 1.85 52.99 51.96 1.98 

Table {8f) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 (M^ + M^) 

L = 15.0 m, U = 180 and 90 T/hr., dia = 25 mm 
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Table (9) - Beam details for 17.5 m span, with 
all values of the loading frequency 
Bar dia = 25 ram 



section 

number 

initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. 
ratio 
(%) 

max. 
shear 
stress 

various centroldal 
stresses 

various outer bar 
stresses section 

number 

^si ^req 
d b h \ V ^sa "sh ^sd 

f 
sae ^she 

f 
sde 

210 410.0 880.3 965.2 300 1050 13 2.20 1.69 389.7 313.7 239.2 398.0 337.1 256.5 

211 380.0 885.7 961.1 300 1050 14 2.38 1.69 365.9 293.6 224.0 373.4 318.1 242.2 

212 350.0 924.7 957.5 300 1050 15 2.56 1.70 345.9 275.5 210.7 352.4 300.9 229.6 

213 340.0 950.2 956.8 300 1050 16 2.74 1.70 326.1 261.5 199.1 343.6 288.7 219.3 

214 320.0 962.5 1005.3 300 1100 16 2.60 1.63 308.8 248.0 190.7 339.7 272.1 208.9 

215 305.0 973.5 1000.7 300 1100 17 2.78 1.64 293.3 235.8 180.9 326.0 261.3 200.1 

216 1 280.0 
1 

995.7 996.0 300 1100 18 2.96 1.64 279.4 224.3 171.7 313.5 250.9 191.6 

217 j 267.0 1009.4 1046.0 300 1150 18 2.82 1.58 265.1 214.3 164.9 295.3 238.1 182.9 

218 1 260.0 
4...... 

1017.7 1042.3 300 1150 19 2.98 1.58 252.7 204.4 157.2 283.9 229.0 175.8 

219 j 250.0 1030.5 1038.9 300 1150 20 3.15 1.59 241.6 195.0 149.9 273.6 220.2 169.0 

Table (9a): L = 17.5 m, all values of U, dia = 25 mm 

w 



section 
various total 
moment values 

max. 
shear 

various max. 
concrete strains 

various strain 
their relative 

factors and 
difference 

number 
.̂ D ®ca ^ch ^cd Spx ^FD ^Sf dph dpd 

210 1983.1 1614.8 1246.4 488.5 2.32 1.25 0.89 1.076 1.074 1 .072 0.38 84.81 82.50 82.61 

211 1983.1 1614.8 1246.4 488.5 2.01 1.23 0.88 1.088 1.083 1 .081 0.64 88.93 86.29 86.41 

212 1983.1 1614.8 1246.4 488.5 1.75 1 .20 0.86 1 .101 1.092 1 .089 1.03 92.24 89.60 89.74 

213 1983.1 1614.8 1246.4 488.5 1.64 1.19 0.85 1.106 1.104 1 .101 0.43 93.19 94.54 94.73 

214 1996.9 1628.6 1260.2 491.6 1.43 1.07 0.78 1.100 1.097 1 .095 0.45 94.73 95.01 95.15 

215 1996.9 1628.6 1260.2 491.6 1.41 1.06 0.77 1.111 1.108 1 .106 0.50 99.28 99.54 99.72 

216 1996.9 1628.6 1260.2 491.6 1.40 1 .05 0.76 1.122 1.118 1 .116 0.54 103.33 103.61 103.82 

217 2010.7 1642.3 1274.0 494.8 1.24 0.95 0.70 1.114 1.111 1 .109 0.42 103.97 104.18 104.34 

218 2010.7 1642.3 1274.0 494.8 1.23 0.94 0.69 1.123 1.121 1 .118 0.45 107.70 107.94 108.12 

219 2010.7 1642.3 1274.0 494.8 1.22 0.93 0.68 1.132 1.129 1 .127 0.46 111.08 111.35 111.55 

Table (9b): L = 17.5 m, all values of U, dia = 25 mm 

-4 



sec. 
section moduli 
their relative 

based on centroidal stresses 
differences 

and section moduli based on outer 
their relative differences 

bar stresses and 

no. 
4 ^TH ^LH ^Zl ^Z2 ^23 ^TH % Zui °Z1 

^22 ^Z3 

210 5.089 5.147 5.212 4.894 4.940 2.41 1.15 0.95 4.982 4.791 4.860 5.204 4.572 3.99 3.99 13.83 

211 5.420 5.499 5.564 5.193 5.289 2.66 1.45 1.86 5.311 5.076 5.146 5.615 4.850 4.64 4.64 15.77 

212 5.734 5.860 5.915 5.451 5.682 3.16 2.21 4.24 5.627 5.367 5.429 5.996 5.166 4.84 4.84 16.05 

213 6.081 6.176 6.261 5.798 5.904 2.97 1.57 1.83 5.771 5.594 5.685 5.923 5.307 3.17 3.17 11.61 

214 6.467 6.567 6.607 6.240 6.434 2J^ 1.55 3.10 5.878 5.985 6.033 5.632 5.825 2.63 1.8 3.44 

215 6.808 6.907 6.966 6.554 6.714 2.32 1.46 2.45 6.125 6.233 6.299 5.850 6.018 2.83 1.76 2.87 

216 7.148 7.259 7.339 6.844 7.000 2.67 1.56 2.28 6.370 6.490 6.576 6.047 6.214 3.22 1.88 2.76 

217 7.584 7.664 7.727 7.349 7.456 1.89 1.06 1.45 6.808 6.897 6.966 6.553 6.670 2.31 1.30 1.79 

218 7.958 8.036 8.104 7.717 7.812 1.84 0.99 1.23 7.084 7.172 7.246 6.819 6.928 2.29 1.25 1.59 

219 8.321 8.424 8.497 8.034 8.183 2.11 1.24 1.85 7.348 7.459 7.538 7.042 7.197 2.58 1.50 2.20 

Table (9c) : L = 17.5 m, all values ofU, dia= 25 mm 

-4 
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section 

number 

neutral axis lever arm effective 
depth ratios depth ratios section 

number Rrp Ry Rp J? jy jg 

210 1 0 .427 0 .444 0 .428 | 0 .826 0 .834 0 .844 0 .795 0.800 

211 ! 0 .452 0.456 0.439 0.821 0 .830 0 .840 0.786 0.799 

212 1 0 .484 0 .466 0.450 0 .813 0.829 0 .837 { 0 .773 0.804 

213 1 0.501 0.477 0.461 j 0 .809 0 .823 0 .835 ! 0 .772 0.787 

214 0.481 0 .463 0.449 1 0 .819 0 .832 0 .837 i 0 .790 0.815 
! ! ' 

215 i 0.491 0 .473 0.460 j 0 .815 0 .827 0 .835 0 .785 0.804 

216 1 0 .500 0 .482 0.470 | 0 .812 0 .825 0 .834 0.777 0.795 

217 1 0 .484 0 .470 0.459 0.821 0 .829 0 .836 j 0 .795 0.807 

218 1 0 .493 0.479 0.468 0.819 0.827 0 .834 ; 0 .794 0.804 

219 0.501 0 .488 0.477 | 0 .816 0 .826 0 .833 | 0 .788 0.802 

Table (9d): L = 17.5 m, all values of U, dia = 25 mm 



section 
live 
load 
modulus 

strain 
factor 

combined 
load 
modulus 

centroidal simulated 
stress ranges based 
on F and Fĵ  

centroidal simulated 
and actual stress 
ranges 

outer bar simulated 
and actual stress 
ranges 

fatigue 
limit 

number \ F 
^RT SRL ^sr Df ^re 

f sre Dfe ^e 

210 4.894 1.074 5.147 146.12 150.53 3.02 150.53 150.53 . 0.00 141.34 141.56 0.16 76.86 

211 5.193 1.085 5.492 137.07 141.87 3.50 141.87 141.87 0.00 130.90 131.20 0.23 81.57 

212 5.451 1.095 5.825 129.76 135.14 4.15 135.14 135.14 0.00 122.50 122.87 0.30 85.74 

213 5.798 1.104 6.171 122.29 127.06 3.90 127.06 127.06 0.00 124.25 124.37 0.10 89.14 

214 6.240 1.098 6.537 114.74 118.05 2.89 118.05 118.05 0.00 130.05 130.81 0.59 92.57 

215 6.554 1.109 6.887 109.05 112.41 3.08 112.41 112.41 0.00 125.12 125.93 - 0.65 95.48 

216 6.844 1.119 7.244 103.96 107.64 3.54 107.64 107.64 0.00 120.98 121.82 0.70 98.26 

217 7.349 1.112 7.655 97.77 100.25 2.53 100.25 100.25 0.00 111.81 112.42 0.55 101.14 

218 7.717 1.121 8.031 93.17 95.47 2.47 95.47 95.47 0.00 107.40 108.03 - 0.59 103.48 

219 8.034 1.130 8.409 89.17 91.69 2.83 91.69 91.69 0.00 103.98 104.62 0.61 105.73 

Table (9e) - Actual and simulated stress ranges caused by the maximum total moment (M^) 
L = 17.5 m, all values of U, dia = 25 mm 

-c 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and ranges ranges 

section 

number 
^rh ^srh ^rhe ^srhe ^fhe 

210 74.56 75.27 0.95 75.27 74.56 0.95 81.35 80.57 0.97 

211 ^hOO 70.^ 1.33 70.93 69.64 1.86 77.72 75.94 2.34 

212 &x52 6,7.57 1.58 67.57 64.82 4.24 75.17 71.30 5.43 

213 &^60 63.53 1.49 63.53 62.39 1.83 70.66 69.40 1.81 

214 59.03 1.08 59.03 57.25 3.10 65.26 63.23 3.21 

215 55.56 56.20 1.16 56.20 54.86 2.45 62.81 61.21 2.61 

216 53.11 53.82 1.33 53.82 52.62 2.28 60.75 59.27 2.49 

217 49.66 50.12 0.94 50.12 49.41 1.45 56.10 55.22 1.58 

218 47.30 47.73 0.92 47.73 47.15 1.23 53.90 53.17 1.37 

219 45.37 45.85 1.05 45.85 45.(% 1.85 52J^ 51/^ 1.97 

Table (9f) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 (M^ + M, 
'T D' 

17.5 m, all values of U, dia = 25 mm 

CO 
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Table (10) - Beam details for 20.0 m span, with 
all values of the loading frequency 
Bar dia = 25 mm 



section 
initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. max. 
ratio shear 
(%} stress 

various centroidal 
stresses 

various outer bar 
stresses 

number 
"̂ req d b h "b % V "sa ^sh ^sd f sae f 

she 
f 
sde 

310 430.0 968.1 1121.8 350 1200 14 1.75 1.44 406.5 336.7 264.2 412.8 342.4 277.6 

311 400.0 930.6 1117.5 350 1200 15 1.88 1.44 382.9 316.9 249.2 388.9 335.5 263.5 

312 380.0 945.0 1113.8 350 1200 16 2.01 1.45 362.7 299^ 235.0 368.2 318.6 250.0 

313 350.0 987.2 1110.4 350 1200 17 2.15 1.45 346.5 282.9 222.5 351.5 303.2 238.1 

314 340.0 1014.9 1110.4 350 1200 18 2.27 1.45 329.3 269.4 211.6 342.6 290.2 227.7 

315 320.0 1028.5 1105.5 350 1200 19 2.41 1.46 313.9 257.2 201.8 340.3 279.3 218.8 

316 310.0 1036.4 1101.4 350 1200 20 2.55 1.46 300.7 245.7 192.5 329.8 268.9 210.3 

317 300.0 1045.1 1097.7 350 1200 21 2.68 1.47 288.3 235.7 184.6 318.5 259.8 203.1 

318 280.0 
1 

1064.8 1094.4 350 1200 22 2.82 1.47 276.5 226.1 177.1 307.6 250.9 196.2 

319 1 270.0 
! 

1076.4 1091.3 350 1200 23 2.96 1.48 265.9 217.8 170.9 297.8 243.3 190.6 

320 1260.0 1088.9 1090.8 350 1200 24 3.09 1.48 255.5 209.9 165.0 286.9 235.9 185.1 

321 250.0 1102.8 1137.9 350 1250 24 2.96 1.43 244.9 201.1 158.5 274.2 224.7 176.8 

Table (10a); L = 20.0 ra, all values of U, dia = 25 mm 

00 
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section 

number 

various total max. various max. various strain factors and 
moment values shear concrete strains their relative difference section 

number M, Mp V, ®ca ®ch ®cd ^FT ^FH ^FD ^Sf % t % h % d 

310 2676.9 2215.4 1754.0 564.2 2.07 1.14 0.85 1.0502 1.0504 1.051 0.04 78.22 76.27 77.05 

311 2676.9 2215.4 1754.0 564.2 1.84 1.12 0.84 1.058 1.059 1.058 0.11 82.50 80.97 81.02 

312 2676.9 2215.4 1754.0 564.2 1.64 1.10 0.82 1.067 1.065 1.064 0.25 86.25 84.47 84.54 

313 2676.9 2215.4 1754.0 564.2 1.47 1.08 0.81 1.075 1.071 1.070 0.50 89.56 87.59 87.66 

314 2676.9 2215.4 1754.0 564.2 1.38 1.06 0.795 1.078 1.077 1.076 0.22 89.61 90.39 90.46 

315 2676.9 2215.4 1754.0 564.2 1.37 1.05 0.786 1.088 1.086 1.084 0.34 94.54 94.80 94.90 

316 2676.9 2215.4 1754.0 564.2 1.35 1.04 0.78 1.097 1.094 1.093 0.38 98.64 98.81 98.93 

317 2676.9 2215.4 1754.0 564.2 1.34 1.03 0.77 1.105 1.102 1.100 0.40 102.28 102.47 102.61 

318 2676.9 2215.4 1754.0 564.2 1.32 1.02 0.762 1.113 1.110 1.108 0.43 105.61 105.83 105.99 

319 
t 

2676.9 2215.4 1754.0 564.2 1.31 1.01 0.756 1.120 1.117 1.115 0.46 108.67 108.92 109.10 

1 320 2676.9 2215.4 1754.0 564.2 1.29 1.00 0.75 1.123 1.124 1.122 0.21 109.24 111.77 111.96 
\ 

1 321 
1 ' 
2697.9 2236.4 1775.0 568.4 1.17 0.92 0.69 1.120 1.117 1.115 0.39 112.13 112.32 112.47 

Table (10b): L = 20.0 m, all values of U, dia = 25 mm 

00 



sec. 
section moduli based on centroldal stresses 
their relative differences 

and section moduli based on outer 
their relative differences 

bar stresses and 

no. 
^TH ^LH Dzi *)Z2 ^23 4 H % 7' 

LH 
°Z1 

^Z2 

1 

0Z3 

310 6.586 6.580 6.638 6.489 6.369 0.88 0.09 1.88 6.485 6.470 6.318 6.827 7.123 2.64 0.22 4.33 

311 6.991 6.990 7.038 6.903 6.813 0.69 0.02 1.33 6.884 6.603 6.655 7.364 6.410 4.25 4.25 14.88 

312 7.380 7.408 7.465 7.224 7.200 1.15 0.38 0.32 7.270 6.954 7.016 7.808 6.731 4.54 4.54 16.001 
1 

313 7.725 7.830 7.883 7.440 7.634 2.05 1.36 2.60 7.615 7.308 7.367 8.136 7.091 4.20 4.20 14.73| 

314 8.129 8.223 8.288 7.843 7.987 1.96 1.16 1.85 7.813 7.634 7.705 8.027 7.378 2.34 2.34 8.80 

315 8.527 8.612 8.692 8.228 8.321 1.94 1 .01 1.13 7.867 7.931 8.016 7.598 7.622 1.90 0.81 0.32 

316 8.902 9.016 9.113 8.525 8.665 2.38 1.29 1 .64 8.116 8.239 8.341 7.722 7.874 2.76 1.51 1.97 

317 9.285 9.401 9.502 8.900 9.037 2.33 1.25 1.54 8.404 8.528 8.634 7.997 8.149 2.75 1.49 1.89 

318 9.683 9.799 9.904 9.289 9.422 2.28 1.20 1.43 8.702 8.829 8.938 8.284 8.434 2.72 1.46 1.81 

319 10.068 10.172 10.263 9.717 9.842 1.93 1.03 1.28 8.987 9.105 9.204 8.603 8.748 2.41 1 .31 1.68 

320 10.476 10.557 10.631 10.194 10.284 1.48 0.77 0.88 9.330 9.390 9.476 9.065 9.076 1.56 0.64 0.13 

321 11.018 11.122 11.198 10.686 10.839 1.64 0.95 1.43 9.839 9.954 10.039 9.476 9.640 2.03 1.17 1.73 

Table (10c) : L = 20.0 m, all values of U, dla = 25 ram 

00 
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section 

number 

neutral axis lever arm effective 
depth ratios depth ratios section 

number ^T % j? jQ 

310 1 0.366 0.404 0.392 . 0.854 0.852 0.860 1 0.842 0.825 

311 0.386 0.414 0.401 0.850 0.848 0.854 i 0.839 0.827 

312 0.411 0.423 0.411 1 0.844 0.846 0.852 i 0.826 0.822 

313 0.438 0.433 0.420 | 0.834 0.843 0.849 ! 0.803 0.822 

314 0.456 0.441 0.429 j 0.829 0.839 0.845 ! 0.799 0.815 

315 0.465 0.449 0.438 { 0.827 0.835 0.843 ; 0.798 0.807 

316 0.473 0.458 0.447 j 0.823 0.834 0.843 0.788 0.802 

317 0.481 0.466 0.455 j 0.821 0.831 0.840 0.787 0.799 

318 0.488 0.474 0.463 0.819 0.829 0.838. 0.786 0.797 

319 0.496 0.481 0.469 0.817 0.826 0.833 0.789 0.799 

320 0.502 0.488 0.476 j 0.815 0.823 0.829 0.793 0.802 

321 0.489 0.477 0.467 0.822 0.830 0.836 0.797 0.809 

Table (lOd): L = 20.0 m, all values of U, dia = 25 mm 



section 
live 
load 
modulus 

strain 
factor 

combined 
load 
modulus 

centroidal simulated 
stress ranges based 
on F and Fĵ  

centroidal simulated 
and actual stress 
ranges 

outer bar simulated 
and actual stress 
ranges 

fatigue 
limit 

number & F 
^RT SpL Dg "sr ^re f 

8 re Dfe "e 

310 6.369 1.050 6.580 142.58 144.90 1.63 144.90 142.22 1.88 138.02 135.19 2.10 69.89 

311 6.813 1.059 6.990 133.75 135.46 1.28 135.46 133.69 1.33 127.25 125.33 1.53 . 74.53 

312 7.200 1.065 7.408 126.38 128.17 1.42 128.17 127.76 0.32 118.54 118.21 0.28 79.001 

313 7.440 1.073 7.804 120.52 124.04 2.92 124.04 124.04 0.00 113.26 113.44 0.16 82.93 

;314 7.843 1.077 8.208 114.48 117.67 2.79 117.67 117.67 0.00 114.92 114.97 - 0.04 86.37 

|315 8.228 1.086 8.609 109.14 112.16 2.77 112.16 112.16 0.00 121.37 1^U47 0.08 89.29 

1316 8.525 1.095 9.007 104.72 108.26 3.38 108.26 108.26 0.00 118.90 119.52 - 0.52 92.10 

1317 8.900 1.103 9.393 100.38 103.70 3.31 103.70 103.70 0.00 114.76 115.40 0.56 94.46 

|318 9.289 1.110 9.793 96.24 99.36 3.24 99.36 99.36 0.00 110.74 111.40 - 0.59 96.74 

1319 9.717 1.118 10.165 92.43 94.97 2.76 94.97 94.97 0.00 106.59 107.27 0.64 98.61 

1320 10.194 1.124 10.554 88.66 90.54 2.12 90.54 90.54 0.00 102.18 101.81 0.36 100.42 

321 10.686 1.118 11.108 84.37 86.36 2.36 86.36 86.36 0.00 96.86 97.39 - 0.55 103.15 

Table (lOe) - Actual and simulated stress ranges caused by the maximum total moment (M̂  
L = 20.0 m, all values of U, dia = 25 mm 

OD 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and Fĵ  ranges ranges 

section 

number DgH ^rh ^srh ^fh ^rhe ^srhe ^fhe 

310 72.45 72.45 0.00 72.45 72.45 0.00 64.79 64.79 0.00 

311 67.73 67.73 0.00 67.73 67.73 0.00 71.99 71.99 0.00 

312 64.09 64.09 0.00 64.09 64.09 0.00 68.58 68.56 0.03 

313 61.39 62.02 1.03 j 62.02 60.45 2.60 67.13 65.07 3.16 

314 58.27 58.84 0.98 | 58.84 57.77 1.85 63.69 62.54 1.84 

315 55.54 56.08 0.97 56.08 55.45 1.13 61.28 60.54 1.22 

316 53.49 54.13 1.19 I 54.13 53.25 1.64 
t 

59.65 58.61 1.78 

317 51.25 51.85 1.17 1 51.85 51.06 1.54 
1 

57.58 56.63 1.69 

318 49.12 49.68 1.14 j 49.68 48.98 1.43 55.58 54.71 1.59 

319 47.03 47.49 0.97 | 47.49 46.89 1.28 53.51 52.75 1.45 

320 44.94 45.27 0.74 j 45.27 44.87 0.88 51.28 50.84 0.87 

321 42.83 43.18 0.82 j 43.18 42.57 1.43 48.60 47.87 1.53 

Table (lOf) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 (M^ + 

L = 20.0 m, all values of U, dia = 25 mm 

00 
U1 
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Table (11) - Beam details for 25.0 m span, with 
all values of the loading frequency 
Bar dia = 25 ram 



section 

number 

initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. 
ratio 
(%) 

max. 
shear 
stress 

various centroidal 
stresses 

various outer bar 
stresses section 

number 

^si 
d 
req 

d b h \ V ^sa ^sh "sd 
f sae 

f 
she 

f 
sde 

410 430.0 1087.0 1422.2 450 1500 18 1.38 1.16 408.5 353.0 293.5 412.9 355.5 304.0 

411 400.0 1043.5 1418.7 450 1500 19 1.46 1.16 389.7 337.6 279.3 394.0 341.9 290.5 

412 380.0 1060.2 1415.5 450 1500 20 1.54 1.17 374.5 322.7 267.0 378.6 337.1 278.7 

413 360.0 1087.6 1412.6 450 1500 21 1 .62 1.17 359.8 308.8 255.7 363.6 323.7 267.9 

414 350.0 1109.6 1410.0 450 1500 22 1.70 1.17 346.8 295.4 244.2 350.3 310.7 256.7 

415 340.0 1141.9 1409.4 450 1500 23 1.78 1.17 333.2 283.5 235.5 342.0 299.1 248.3 

416 330.0 1149.5 1406.8 450 1500 24 1.86 1.17 320.7 273.0 225.9 339.6 288.9 238.9 

417 310.0 1166.8 1403.2 450 1500 25 1.94 1.18 309.4 263.8 217.8 329.2 280.4 231.5 

418 300.0 1177.0 1399.9 450 1500 26 2.03 1.18 299.5 254.8 211.2 320.2 272.2 225.4 

419 290.0 1188.1 1396.8 450 1500 27 2.11 1.18 289.0 246.2 203.7 310.3 264.1 218.3 

420 1285.0 1194.3 1393.9 450 1500 28 2.19 1.19 280.7 238.9 197.5 302.7 257.3 212.6 

Table (11a): L = 25.0 m, all values of U, dla = 25 mm 

CO 



section 
various total 
moment values 

max. 
shear 

various max. 
concrete strains 

various strain 
their relative 

factors and 
difference 

number 
^T & ^T ®ca ®ch ®cd ^FT ^FH ^FD Dgf dpt dph dpd 

410 4517.1 3867.9 3218 8 743.6 1.67 1.09 0.81 1.034 1.036 1 .036 0.16 77.84 77.84 77.34 

411 4517.1 3867.9 3218 8 743.6 1.53 1.00 0.80 1.039 1 .040 1 .040 0.12 81.35 80.08 80.66 

412 4517.1 3867.9 3218 8 743.6 1.42 0.98 0.79 1.043 1.0444 1 .0440 0.12 84.50 83.65 83.68 

413 4517.1 3867.9 3218 8 743.6 1 .31 0.97 0.77 1.0479 1.0482 1 .0476 0.05 87.36 86.39 86.41 

414 4517.1 3867.9 3218 8 743.6 1.21 0.95 0.76 1.053 1.052 1 .051 0.16 89.96 88.89 88.92 

415 4517.1 3867.9 3218 8 743.6 1.14 0.94 0.75 1.0551 1.0550 1 .054 0.07 90.58 91.18 91.21 

416 4517.1 3867.9 3218 8 743.6 1.13 0.93 0.74 1.059 1.0582 1 .0575 0.14 93.24 93.29 93.32 

417 4517.1 3867.9 3218 8 743.6 1.12 0.92 0.735 1.064 1.0632 1 .0625 0.15 96.82 96.86 96.90 

418 4517.1 3867.9 3218 8 743.6 1.11 
i 

0.91 0.729 1.069 1.068 1 .067 0.17 100.12 100.18 100.22 

419 4517.1 3867.9 3218 8 743.6 1.09 0.90 0.721 1.074 1.073 1 .072 0.18 103.20 103.26 103.31 

420 4517.1 3867.9 3218 8 743.6 j 1.08 0.89 0.715 1.078 1.077 1 .076 0.18 106.08 106.14 106.20 

Table (lib): L = 25.0 m, all values of U, dla = 25 mm 

00 
00 



sec. 

no. 

section moduli based on centroidal stresses and section moduli based on outer bar stresses and 
their relative differences their relative differences sec. 

no. Dgg Dgg %TH ^LH 

410 11.058 10.959 10.966 11.293 10.921 0.91 0.91 3.41 10.941 10.879 10.587 11.931 12.601 3.35 0.57 5.62 

411 11.590 11.459 11.523 11.760 11.149 1.15 1.15 5.48 11.466 11.312 11.080 12.550 12.625 3.48 1.36 0.60 

412 12.062 11.986 12.057 12.075 11.646 0.64 0.64 3.69 11.933 11.476 11.549 13.002 11.125 3.98 3.98 16.88 

413 12.556 12.524 12.588 12.477 12.216 0.51 0.26 2.14 12.425 11.948 12.016 13.569 11.623 3.99 3.99 16.73 

414 13.024 13.093 13.179 12.656 12.683 1.19 0.53 0.21 12.893 12.449 12.538 13.869 12.027 3.57 3.57 15.32 

415 13.555 13.642 13.666 13.287 13.527 0.82 0.65 1.80 13.207 12.931 12.961 13.856 12.780 2.13 2.13 8.42 

416 14.087 14.166 14.249 13.700 13.769 1.15 0.56 0.50 13.302 13.387 13.474 12.893 12.972 1.29 0.64 0.61 

417 14.600 14.664 14.776 14.181 14.133 1.21 0.44 0.34 13.719 13.792 13.906 13.277 13.251 1.36 0.53 0.20 

418 15.082 15.179 15.240 14.703 14.883 1.05 0.65 1.23 14.107 14.211 14.280 13.698 13.882 1.22 0.74 1.34 

419 15.630 15.712 15.803 15.219 15.273 1.10 0.52 0.36 14.556 14.646 14.742 14.113 14.184 1.28 0.62 0.50 

420 16.092 16.193 16.297 15.605 15.698 1.27 0.63 0.60 14.923 15.033 15.141 14.409 14.517 1.46 0.73 0.75 

Table (11c): L = 25.0 m, all values of U, dia = 25 mm 

03 
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section 
neutral axis 
depth ratios 

lever 
depth 

arm effective 
ratios 

number 
^T % % JL ^LH 

410 0.314 0.344 0.356 0.880 0.872 0.872 0.899 0.869 

411 0.330 0.371 0.364 0.876 0.865 0.870 0.889 0.842 

412 0.346 0.378 0.371 0.868 0.862 0.867 0.869 0.838 

413 0.366 0.385 0.377 0.862 0.859 0.864 i 0.857 0.838 

1 414 0.390 0.392 0.384 0.855 0.859 0.865 i 0.831 0.832 

! 415 i 0.407 0.398 0.390 0.852 0.858 0.859 0.835 0.850 

416 ! 0.413 0.404 0.397 0.850 0.855 0.860; 0.827 0.831 1 

417 i 0.419 0.410 0.403 0.848 0.852 0.858! 0.824 0.821 

418 0.425 0.416 0.408 0.844 0.850 0.853! 0.823 0.833 

419 0.431 0.422 0.415 0.844 0.849 0.854 0.822 0.825 

420 ; 0.436 0.427 0.420 0.840 0.845 0.851 ! 0.815 0.819 

Table (lid): L = 25.0 m, all values of U, dia = 25 mm 



section 
live 
load 
modulus 

strain 
factor 

combined 
load 
modulus 

centroldal simulated 
stress ranges based 
on F and F^ 

centroldal simulated 
and actual stress 
ranges 

outer bar simulated 
and actual stress 
ranges 

fatigue 
limit 

number Sp F SpT ^RL Sr ^sr Df "re f 
sre °fe Se 

410 10.921 1.036 10.959 118.68 118.89 0 .17 118.89 114.97 3.41 113.09 108.82 3 . 9 2 61 .17 

411 11.149 1.040 11.459 114.88 116.46 1.37 116.46 110.40 5 . 4 8 109.87 103.46 6 .20 65.63! 

412 11.646 1.044 11.986 109.91 111.49 1.44 111.49 107.52 3 .69 104.11 99.85 4 .26 69.53 

413 12.216 1.048 12.524 104.98 106.29 1 .25 106.29 104.06 2 .14 98.05 95.69 2 .46 73.10 

414 12.656 1.052 13.093 100.77 102.59 1.81 102.59 102.59 0 .00 93.56 93.61 0 .06 76.78 

415 13.287 1.055 13.610 96.36 97.72 1 .41 97.72 97 .72 0 .00 93.70 93.70 - 0 .005 79.55 

416 13.700 1.058 14.166 92 .98 94.77 1 .93 94 .77 94 .77 0 .00 100.46 100.70 0 .24 82 .67 

417 14.133 1.063 14.664 90.20 91.87 1.84 91.87 91.56 0 .34 97.87 97.79 0 .08 85 .12 

418 14.703 1.068 15.161 86.74 88.31 1.81 88.31 88.31 0.00 94.52 &L78 _ 0 .28 87.11 

419 15.219 1.073 15.712 83 .82 E6.31 1 .78 85.31 85.31 0 .00 91 .72 92.00 0 .30 89.45 

420 15.605 1.077 16.193 81.44 83 .20 2 .16 83 .20 83 .20 0 .00 89 .83 90.11 0.31 91.35 

Table (lie) - Actual and simulated stress ranges caused by the maximum total moment (ML) 
L = 25.0 m, all values of U, dia = 25 mm 

vO 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and Fĵ  ranges ranges 

section 

number ^RHT ^RHL DgH ^rh ^srh ^fh ^rhe ^srhe ^fhe 

410 59.44 59.44 0.00 59.44 59.44 0.00 51.52 51.52 0.00 

All 58.23 58.23 0.00 58.23 58.23 0.00 51.42 51.42 0.00 

412 55.74 55.74 0.00 55.74 55.74 0.00 58.35 58.35 0.00 

413 53.14 53.14 0.00 53.14 53.14 0.00 55.85 55.85 0.00 

414 51.19 51.30 0.21 51.30 51.19 0.21 54.17 52.98 0.35 

415 48.66 48.86 0.41 47.99 1.80 51.71 5 0 . 1 . 8 0 

416 47.15 47.38 0.50 47.38 47.15 0.50 50.31 50.04 0.54 

417 45.93 45.93 0.00 45.93 45.93 0.00 49.02 48.99 0.06 

418 43.92 44.15 0.53 44.15 43.62 1.23 47.35 46."^ 1.26 

419 42.50 42.66 0.36 42.66 42.50 0.36 45.96 45.77 0.41 

420 41.35 41.60 0.60 41.60 41.35 0.60 45.01 44.72 0.65 

Table (11f) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 (M^ + m. 

L = 25.0 m, all values of U, dla 

D' 

25 mm 
ro 
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Table (12) - Beam details for 27.5 m span, with 
all values of the loading frequency 
Bar dia = 25 mm 



section 

number 

initial 
steel 
stress 

required 
beam 
depth 

actual 
beam 
depth 

beam 
width 

beam 
height 

total 
number 
of bars 

reinf. max. 
ratio shear 
(%) stress 

various centroidal 
stresses 

various outer bar 
stresses section 

number 

^si '̂ req d b h Nb V ^sa ^sh ^8d ^sae ^she ^sde 

511 400.0 1099.2 1569.8 500 1650 21 1.31 1 .08 399 .4 351 .2 299 .5 403 .3 353.6 309 .8 

512 390 .0 1107.4 1566.9 500 1650 22 1 .38 1 .08 384.4 337.7 286.9 388 .2 341 .8 297.7 

513 370 .0 1129.9 1564.2 500 1650 23 1 .44 1 .08 370.3 325 .0 274 .7 373 .9 338 .3 285 .9 

514 360 .0 1146.9 1561.8 500 1650 24 1.51 1.09 357 .8 312 .3 264 .2 361.1 326 .0 275.7 

515 350 .0 1170.4 1559.5 500 1650 25 1 .57 1 .09 346 .4 301 .1 255 .2 349 .5 315 .2 267 .0 

516 340 .0 1205.2 1558.8 500 1650 26 1 .64 1 .09 334 .3 290 .2 246.5 341 .9 304 .5 258.5 

517 330.0 1213.4 1556.5 500 1650 27 1 .70 1 .09 323 .7 280 .8 238 .0 340.1 295 .3 250 .2 

518 320 .0 1222.5 1553.2 500 1650 28 1.77 1.09 313.6 271 .2 230.6 331 .2 286 .3 243 .3 

519 310 .0 1232.5 1550.2 500 1650 29 1 .84 1 .09 303 .8 263.5 222 .9 322.1 279.1 236 .0 

520 300 .0 1243.4 1547.3 500 1650 30 1 .90 1 .10 294 .3 254.9 216.6 313.1 271 .0 230.1 

Table (12a); L = 27.5 m, all values of U, dia = 25 mm 



section 
various total 
moment values 

max. 
shear 

various max. 
concrete strains 

various strain 
their relative 

factors and 
difference 

number 
^T & V, ®ca ^ch ^cd SpT ^FH ^FD dpt dph dpd 

511 5712.8 4973.9 4235 .0 848.5 1.50 1.03 0 .80 1.033 1.0344 1 .0345 0 .16 80 .22 80 .22 79 .77 

512 5712.8 4973.9 4235 .0 848.5 1 .40 0 .96 0 .79 1.036 1.037 1 .038 0 J 3 83 .14 82 .03 82.57 

513 5712.8 4973.9 4235 .0 848.5 1 .30 0 .94 0 .78 1.040 1.0410 1 .0407 0 .12 85.81 85 .12 85 .14 

514 5712.8 4973.9 4235 .0 848.5 1 .22 0 .93 0 .77 1.043 1.044 1 .043 0 .04 88 .25 87 .49 87 .50 

515 5712.8 4973.9 4235 .0 848.5 1 .13 0 .92 0 .76 1.047 1.0466 1 .0462 0 .10 90.50 89 .67 89 .69 

516 5712.8 4973.9 4235 .0 848.5 1 .08 0.91 0 .75 1.049 1.049 1 .0487 0 .05 91.17 91 .70 91 .72 

517 5712.8 4973.9 4235 .0 848.5 1 .06 0 .90 0 .74 1.0522 1.0516 1 .051 0 .10 93.51 93 .58 93.60 

518 5712.8 4973.9 4235 .0 848.5 1 .05 0 .885 0 .73 1.0563 1.0557 1 .055 0.11 96.79 96 .82 96.84 

519 5712.8 4973.9 4235 .0 848.5 1 .04 0 .877 0.724 1.060 1.0595 1 .0590 0 .12 99 .82 99.85 99.88 

520 5712.8 4973.9 4235 .0 848.5 1 .03 0 .868 0 .718 1.064 1.0633 1 .0626 0 . 1 3 102.66 102.70 102.73 

Table (12b): L = 27.5 m, all values of U, dia = 25 mm 

vO 
U1 



sec. 

no. 

section moduli based on centroidal stresses and section moduli based on outer bar stresses and 
their relative differences their relative differences sec. 

no. 
^TH \h ^Z1 ^Z2 ^Z3 H ^TH % ^LH °Z1 °Z2 ^Z3 

511 14.304 14.163 14.142 14.788 14.285 1 .14 0 .99 3 . 5 2 14.165 14.066 13.671 15.803 16.856 3 . 6 2 0.71 6 .66 

512 14.862 14.727 14.761 15.158 14.532 0 .92 0 .92 4.31 14.717 14.551 14.226 16.335 16.746 3 .46 1 .14 2 .52 

513 15.426 15.304 15.415 15.456 14.696 0 .80 0 .80 5 .17 15.278 14.701 14.813 16.789 14.090 3 . 9 3 3 . 9 3 19.15 

514 15.969 15.926 16.029 15.799 15.362 0 .64 0 .27 2 .84 15.820 15.256 15.361 17.303 14.684 3 . 7 0 3 . 7 0 17.83 

515 16.491 16.517 16.592 16.208 16.099 0.61 0 .16 0 .67 16.344 15.782 15.860 17.909 15.346 3 .56 3 .56 16.70 

516 17.090 17.137 17.180 16.836 16.892 0 .53 0 .27 0 .33 16.710 16.333 16.382 17.726 16.057 2.31 2.31 10.39 

517 17.648 17.714 17.794 17.240 17.270 0 .83 0 .38 0 .17 16.797 16.844 16.929 16.432 16.378 0 . 7 8 0 .28 0 .32 

518 18.218 18.342 18.367 17.804 18.203 0 .82 0 .68 2 .24 17.247 17.375 17.408 16.804 17.190 0 .93 0 .74 2 .30 

519 18.806 18.879 19.002 18.264 18.205 1 .05 0 .39 0 .33 17.738 17.819 17.944 17.173 17.135 1 .16 0 .46 0 .22 

520 19.414 19.517 19.556 19.019 19.292 0 .73 0 .53 1 .44 18.247 18.356 18.404 17.813 18.082 0 .86 0 .59 1.51 

Table (12c ) : L = 27.5 m, all values of U, dia = 25 mm 

vO 
o\ 
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section 

number 

neutral axis lever arm effective 
depth ratios depth ratios section 

number 
^T j? jy jg ^LH 

511 0.306 0.338 0.349 0.884 0.875 0.874 0.914 0.883 

512 1 0.321 0.361 0.355 0.878 0.870 0.872 0.896 0.858 

513 1 0.337 0.367 0.361 0.874 0.866 0.873 0.875 0.832 

514 0.355 0.373 0.367 0.868 0.865 0.871 0.859 0.835 

515 0.376 0.379 0.372 0.862 0.863 0.867 0.847 0.841 
t 

: 516 0.392 0.384 0.378 0.859 0.862 0.864 0.846 0.849 

517 1 0.397 0.389 0.383 j 0.855 0.859 0.863 0.836 0.837 

518 1 0.402 0.395 0.388 i 0.853 0.859 0.860 
( 1 

0.834 0.853 

519 0.407 0.400 0.394 0.852 0.856 0.861 0.828 0.825 
i 

520 0.412 0.405 0.399 | 0.852 0.857 0.858 0.835 0.847J 

Table {12d): L = 27.5 m, all values of U, dla = 25 mm 



section 
live 
load 
modulus 

strain 
factor 

combined 
load 
modulus 

centroidal simulated 
stress ranges based 
on F and Fj^ 

centroidal 
and actual 
ranges 

simulated 
stress 

outer bar 
and actual 
ranges 

simulated 
stress fatigue 

limit 

number & F 
^RT ^RL ^sr Df ^re 

f 
sre "fe "e 

511 14.285 1 . 0 3 4 14.163 103.90 103.45 0 .43 103.90 99.94 3 .97 97.80 93.51 4 .58 59.27 

512 14.532 1 . 0 3 7 14.727 101.02 1 0 1 . 7 0 0.67 101.70 97.50 4.31 94.95 90.47 4 .95 63.26 

513 14.696 1.041 15.304 98.56 100.56 2 .03 100.56 95.61 5 .17 93 .28 88 .03 5 .97 67.15 

i 514 15.362 1 .044 15.926 94.50 96.20 1 .80 96.20 93.54 2 .84 88 .22 85.41 3 .29 70 .52 

515 16.099 1.047 16.517 90 .63 91.79 1 .28 91.79 91 .18 0 .67 83 .12 82 .52 0 .73 73 .38 

516 16.836 1.049 17.135 86.90 87 .78 1.01 87 .78 87 .78 0 .00 83.37 83.37 0 .00 76.19 

517 17.240 1.052 1 7 . 7 1 4 84.50 85 .72 1 .45 85 .72 85 .72 0 .00 89.91 89.94 0 .03 78.94 

518 17.804 1.056 18.293 81 .73 83 .00 1.56 83 .00 83 .00 0 .00 87.76 87.95 - 0.21 81 .22 

519 18.205 1.060 18.879 79.73 81 .18 1 .82 81 .18 80.91 0 .33 86.15 86.05 0.11 83 .62 

520 19.019 1.063 19.485 76.63 77 .70 1 .40 77 .70 77.70 0 .00 82.77 82.96 0 .24 85.56 

Table (12e) - Actual and simulated stress ranges caused by the maximum total moment (M )̂ 
L = 27.5 m, all values of U, dia = 25 ram 

vO 
00 



section 

number 

centroidal simulated centroidal simulated outer bar simulated 
stress ranges based and actual stress and actual stress 
on F and ranges ranges 

section 

number 
^RHT ^RHL ^SH ^rh ^srh ^rhe ^srhe ^Yhe 

511 51.73 51.73 0.00 51.73 51.73 0.00 43.84 43.84 0.00 

512 50.85 50.85 0.00 50.85 50.85 0.00 44.13 44.13 0.00 

513 50.28 50.28 0.00 50.28 50.28 0.00 52.44 52.44 0.00 

514 48.10 48.10 0.00 48.10 48.10 0.00 50.32 50.32 0.00 

515 45.90 45.90 0.00 45.90 45.90 0.00 48.18 48.18 0.06 

516 43.77 43.89 0.26 43.89 43.74 0.33 46.17 46.02 0.33 

517 42.79 42.86 0.17 42.86 42.79 0.17 45.20 45.11 0.18 

518 41.33 41.50 0.41 41.50 40.59 2.24 43.95 42.98 2.24 

519 40.59 40.59 0.00 40.59 40.59 0.00 43.14 43.12 0.05 

520 38.71 38.85 0.37 #L85 38/# 1.44 41.46 40.86 1.45 

Table (12f) - Actual and simulated stress ranges caused by the 

average total moment, = 0.5 + M^) 

L = 27.5 m, all values of U, dia = 25 mm 

kO 
VO 
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CHAPTER 5 

ANALYSIS OF FATIGUE CUMULATIVE DAMAGE 

In this study, fatigue life has been estimated by using 

Palmgren - Miner's equation (Eq. 5.1) and Inoue - Nakagawa's 

equation (Eq, 5.2) ; 

_ n. 
= 1.0 (5.1) 

"i 
= 1.0 (5.2) 

^^SC ^i 

where: 

n^ = number of cycles applied at stress range 

NsC = % "i 

= number of cycles to failure at stress range 

It has been shown, in Chapter (2), that for the fatigue of straight 

hot rolled reinforcing bars, the adopted relationship to represent 

the S- N curve has the form : 

log N = A^ - 200 (10"^)?^^^ _ 591 (lO'S)?^ (5.3) 

where, is a numerical constant which depends on the bar size and 

characteristics, f . is the stress caused by the bridge dead loads 
2 2 

in N/mm and f^ is the stress range in N/mm . Eq. (5.3) is 

applicable for all stress ranges above the bars' fatigue limit (f^) 

which is given, in Chapter (2), by ; 

= 161.5 - 0.33 fQin .... (5.4) 
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If we define a dimensionless damage ratio D, at a number of cycles j, 

such that (D = 0) for the virgin material (j = 0) and (D = 1) at 

failure, then D at any stage J can be given by : 

D 
n 

"j 

where D and D are damage ratios based on Equations (5.1) and (5.2) 

respectively. 

From the above definition of the damage ratio based on Palmgren -

Miner's relationship (D ), we see that the relationship is linear. 

This leads to the conclusion that we can form a summation of the 

damage from a series of loading, at different stress ranges, by 

simple addition. Thus if we have n̂  cycles of a stress range and 

Hg cycles of a stress range S^, etc., the damage will be obtained by 

their combination. If such a series of loading is itself repeated, 

say K times, the total damage will simply be K times the damage of 

one series. 

However, this linear relationship does not hold, if we apply the 

Inoue - Nakagawa's relationship (Eq. 5.2). If we examine the 

derivation of the Inoue - Nakagawa's relationship (given in App. A), 

we note that the damage sum at failure is derived by taking the 

square root of the following equation: 

1 [% ] = 1.0 
N 
sc 
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Let us now define the damage ratio based on Inoue - Nakagawa's 

relationship (D ) by : 

' "sc ^ ^ / E 
"1? 

J 

If we have n̂  cycles of a stress range and n^ cycles of a stress 

range S^, etc., and the series of loading is itself repeated for K 

times, then we conclude from the above form for that the total 

damage will simply be K times the damage of one series. For this 

reason, the last form of the damage ratio based on Inoue - Nakagawa's 

relationship (D^) has been adopted in this study. 

Therefore, since it has been assumed in Chapter (3) that the traffic 

model is repeatable every week, then it follows that the damage 

caused in K weeks is simply K multiplied by the damage per week. 

Consequently, the bridge life is given by : 

Life in years = ^ ^ ^ 
w w 

where is the amount of damage per week, and is the average 

number of weeks in one year, taken over a period of four years to 

include the effect of the leap years : 

= 0.25 (3 X 365 + 366)/7 = 52.179 weeks/year 

The procedure used to estimate is given in the following sections. 
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5.1 Simulation of Stress Spectrum 

As discussed in Chapter (4), the stress spectrum has been simulated as 

follows ; 

_a- The section modulus Fĵ  is taken as : 

= the minimum of and Z-^ , which are defined as : 

z, = ~ 

Z -
LH fsb - fsd 

where : 

M ̂  = the maximum live load moment (including impact) 

0.5 

^sa ' ̂ sh ' ̂ sd " stresses caused by the maximum total moment 

(M^ = + Mp , where is the dead load moment), the average total 

moment (M^ = 0.5 + M^) and the dead load moment (M^) respectively. 

These stresses correspond to the strains at the centre of the tensile 

force (T). 

(Fj rounded to two decimal places). 

_b- The strain factor is taken as : 

Sp = the maximum of and 0.5 (Sp^ + Sp^) 

where and are the ratios, of the outer bar strain to 

the strain at the centre of the tensile force, which correspond to 

the maximum total moment (M^), the average total moment ) and the 

dead load moment (M^) respectively. 

(Sp, rounded to three decimal places). 
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c- The stress range in the outer bar is simulated as 

S 
live load moment at mid span (including impact) 

section modulus 

where is the stress range resulting from the total centroidal 

stress which corresponds to the strain at the centre of the total 

tensile force. 

2 - From the total centroidal stress (f = S' + f the 
ss r sd 

corresponding strain e^^ is calculated. 

3 - From the outer bar strain (e' = e' x S_), the outer bar stress 
SS6 SS r 

f is calculated. 
sse 

4 - Finally, the stress range in the outer bar is : 

qt - ft _ f 
re ~ sse sde 

where is the total outer bar stress caused by the dead load 

moment . 

(Both fgj and f ^ values are rounded to one decimal place). 

The aforementioned procedure implies that, for each beam section, 

four parameters are needed (i.e. F^ , , f^^ and f Values of 

these parameters for the various combinations of the bridge span (L) 

and the loading frequency (U), are given at the end of this chapter. 

5.2 Cycle Counting Methods 

In order to use any complex stress spectrum, in conjunction with 

standard constant amplitude data, to estimate the fatigue life, the 

stress spectrum must be reduced to a series of equivalent cycles or 

half cycles (ranges). This process is known as cycle counting. A 

large number of counting methods have been proposed, but two are the 

most useful. The two methods are the range - mean and the rainflow 

counting methods (50, 51). 
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5.2.1 Range - Mean Method 

In this method, the range between successive turning points (local 

maximum or minimum) and the mean of their two values are recorded, 

but noting that only ranges,exceeding a specified gate level, are 

counted (Figure 5.1). This is because a small range may break the 

continuity of a much larger range and convert it to small ranges all 

of them below the fatigue limit. The introduction of a gate level 

allows the consideration of a turning value only if it is greater 

than the specified gate from the last turning value (50, 51). 

It is difficult to define an optimum value of the gate level. if, 

for example, in Figure (5.1) the gate level is greater than the range 

of B - C, the stress spectrum is divided into four ranges; , Rg , 

and R^. If a smaller gate, less than B - C, had been used then 

three small ranges A - B, B - C and C - D would have been included 

Instead of the larger range from A - D. 

For metals, the relationship between the number of cycles to 

failure N and the stress range S can be approximated (7) by ; 

NS^ = K 

where K and q are constants which depend upon the material concerned 

and the design detail. Since q ranges approximately from a value of 

3 to 10, then if an interrupted large range is broken into n smaller 

ranges, the total damage for the n ranges may be less than that for 

the single large range. This is because of the fact that stress 

range S is raised to a power q greater than unity. This means that 

decreasing the gate level may result in more events being counted but 

with less total damage resulting. Also, if we increase the gate 

level, this may result in fewer events but more damage. 

As a result, the only sensible way would seem to be to try several 

gate levels and use that value which gives the maximum predicted 

damage (50, 51). Even with such a value of the gate level, there is 

no certainty that the predicted amount of damage is absolutely 

conservative, because its value is obtained by excluding a large 

number of small cycles which none the less may be damaging. This 

suggests that the predicted damage may be non - conservative (50). 
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Figure (5.1) - Stress spectrum divided into 
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5.2.2 Rainflow Method 

This method, proposed by Endo et al (52), counts cycles and half 

cycles. In this outstanding technique, the counting is performed on 

the basis of the stress - strain behaviour of the material. 

Figure (5.2) illustrates the relationship between the stress - strain 

behaviour and the counting method. It is important to note that when 

a large range, for example A - D is interrupted by a smaller one 

B - C - B', the coordinates of B' and B are very close on the stress 

- strain curve. This indicates that the material acts as if the large 

range was uninterrupted and there is a complete cycle B - C - B'. The 

rainflow method performs the counting in the same way as the material 

reacts to loading cycles. Thus, this method is superior to all 

others because it is the only one which reflects material 

behaviour (7,50,51). 

For this method to be applied, the ordered sequence of peaks and 

troughs of the strain is the most suitable characteristic for 

the counting. However, the sequence of the stress may be used as an 

alternative without serious errors (52). The rainflow method has 

three alternative procedures, each of which gives the same results 

for the number and magnitude of counted cycles. 

In all procedures, the first point in the spectrum is effectively 

defined by the next point. If the next point is a peak, then the 

origin is a trough and vice versa. 

5.2.2.1 First Procedure - Rainflow 

This procedure, which is the most well known, uses the simulation of 

rainflow on fictive multifarious overlapped pagoda roofs (Fig. 5.3). 

For this we turn the strain (or stress) spectrum through (90° ), so 

that the time axis is vertical. The strain (or stress) spectrum 

becomes the imagined series of pagoda roofs, as in Figure 5.3. This 

figure shows part of a strain spectrum and the corresponding strain -

stress loop. Further, we imagine that each turning point 1, 2, 3, 

etc., is the origin of a flow of rain. 
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Let us consider the first rainflow beginning at the first point 

(point 1), which is considered a trough point since it is followed by 

a peak point. This flow runs down the roof, (segment 1 - 2 ) , until it 

reaches point (2), then it falls down until it meets a larger roof 

(3 - 4), when it again flows down the roof away from its origin 

(point 1). 

This flow continues to fall down to the lower roofs unless it comes 

opposite a trough more negative than the trough from which it 

started. In the present case, the flow has started from the 

trough point (1) and so it has to stop opposite the trough point (5) 

since this is more negative than the starting point. 

When a flow stops, we count one half cycle from its origin to its end 

point. Thus, as a result, one half cycle (1 - 4) has been counted. 

A second flow starts from the peak point (2) and continues down the 

roof (segment 2 - 3) until it reaches point (3), then it falls 

vertically towards the lower roofs unless it comes opposite a peak 

more positive than the peak from which it started. 

In this case, the flow has started from the peak point (2) and has to 

stop opposite the peak point (4) which is more positive than the 

starting point. This gives another half cycle (2 - 3). 

The third flow starts from the trough point (3) and continues down 

the roof (3- 4) until it meets the first flow (originating from point 

1) at point (2') where it has to stop, giving another half cycle 

(3 - 2 ' ) . 

This procedure continues with a flow from each turning point. Each 

flow continues to fall down to the lower roofs unless it meets one 

of the following two conditions : 

a - the rain is to stop when it meets another flow originating from 

a preceding point. 
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b - the rain originating from a peak is to stop, if it comes 

opposite a following peak more positive than the peak from which it 

started (or a trough more negative than the trough from which it 

started), 

By tracing the flow from each turning point, the spectrum will be 

analysed, with every part of it counted once and only once (7, 50, 51, 

52). The values of the strain (or stress) at the starting point of 

each flow and at its end point define the magnitude of the strain (or 

stress) range. 

It is worth noting that if a flow stops because of the first 

condition a (meeting a previous flow), then there is always an 

equivalent flow which stops because of the second condition b 

(larger peaks or smaller troughs). Both flows make one complete 

cycle. For example, the half cycles (3-2') and (2 - 3) make 

a complete cycle. This cycle can be compared with the corresponding 

cycle in the strain - stress loop (52). 
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5.2.2.2 Second Procedure, Maximum - Minimum 

We consider Figure 5.4, which shows part of a strain spectrum. This 

process is concerned with dividing the spectrum down into a series of 

short segments, based upon the values of the peaks and troughs, to 

evaluate the number and magnitude of cycles. The counting by the 

maximum - minimum procedure is performed as follows : 

a - We determine the absolute maximum and absolute minimum (points 

34 and 17) of the spectrum under consideration. The maximum and 

minimum points and the two end points divide the spectrum into front, 

middle and rear parts, denoted by F, M and R (see Fig. 5.4). 

b - If the end of part F is bounded by a minimal value, then we next 

look for the maximum value in that part, in this case point 14 (if 

it was bounded by a maximal value, we would look for the minimum). 

For the section of part F bounded by the starting point and the 

maximum point 14 (or minimum), we determine the minimum point 7 (or 

maximum). 

This forms the basis for a further subdivision of the section and we 

proceed towards the starting point, until the section considered has 

reduced to the first segment (0 - 1). 

c - We repeat the subdivision process as above on the rear part R 

proceeding towards the end point (39). Since part R is bounded by 

the absolute maximum (point 34), then we first determine its minimum 

point (35). 

Now section (35 - 39) is bounded by a minimum point, hence we 

determine the maximum within the segment (point 38). 

Steps a, b and c evaluate the half cycles which are marked by H in 

Fig, 5.4, noting that the middle part M constitutes one half cycle by 

itself. 
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d - To determine the full cycles, the aforementioned procedure has to 

be applied again to all sections marked by H. In the application to 

any section, the end points for that section should be disregarded in 

the process of determining the maximum and minimum internal points 

for that section. 

At the end of this process, the full cycles are determined by picking 

out ranges whose serial numbers within the section H are even (these 

are marked 0 in Fig. 5.4). All ranges with odd serial numbers 

(marked X in Fig. 5.4) are not counted. 

To illustrate this, let us consider the section H represented by the 

middle part M. If we disregard its end points (17, 34), then its 

maximum is point (26), while point (25) represents its minimum. Now 

the local front section (17 - 25) of this middle part M is bounded by 

a minimum point (25). It will be seen that point (22) represents its 

maximum and determines the next subdivision. The new section (17 -

22) is bounded by a maximum point (22) and its own minimum is now 

given by point (19), remembering that we always disregard the 

starting point. This now establishes the next subdivision, which is 

itself subdivided by the maximum internal point (18) which concludes 

the division of this front part of the middle section M. 

The local rear section (26 - 34) of the middle part M can be analysed 

now, in a similar way. Thus the first round of the full cycles of the 

middle section can be extracted by picking out ranges (18 - 19), 

(22 - 25), (26 - 27) and (28 - 33). All these ranges (marked 0 in 

Fig. 5.4) have even serial number within the middle part M. As 

mentioned earlier, odd numbered ranges (marked X in Fig. 5.4) are 

disregarded. 

e - We apply step d to all ranges marked 0 and X, for as many times 

as required, to define completely all the full cycles counted by this 

procedure. 
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5.2.2.3 Third Procedure - Pattern Classification 

This procedure is performed by considering three successive ranges 

from the complex strain (or stress) spectrum, which can then be 

compared and as a result classified into four basic shapes or 

patterns (Figure 5.5). 

Type a shows that the second range (2 - 3) of the three is smaller 

than the first range (1 - 2), whilst the third range (3 - 4) is 

larger than the second range (2 - 3). This pattern is named the 

decrease- increase type or simply D - I type. 

The names given to the other patterns follow from this idea of 

comparing the second with the first range and the third with the 

second range. 

As shown in Fig. 5.5, the decrease - increase type, D - I, 

corresponds to one closed hysteresis loop which is between (2) and 

(3) and one half cycle between (1) and (4). Accordingly, we can 

count the cycle ( 2 - 3 ) and eliminate the intermediate points (2) and 

(3) by Joining (1) and (4) by a line. We then consider in the same 

way the type of pattern produced by the then remaining points (1) and 

(4) and the next two points (5) and (6). 

In case of I - I type, that is each successive range is greater than 

its predecessor, ranges (1 - 2) and ( 2 - 3 ) always correspond to one 

half cycle irrespective of the following range (3 - 4). Accordingly, 

we can count the two half cycles (1 - 2) and ( 2 - 3 ) and eliminate 

points (1) and (2). Whence points (3, 4, 5, 6) are to be considered 

next. 

In case of the increase - decrease type, I - D, the first range (1 - 2) 

is always one half cycle. Whether range ( 2 - 3 ) is one cycle or one 

half cycle, this cannot be determined from the first pattern ( 1 - 2 -

3 - 4). Therefore the next pattern ( 2 - 3 - 4 - 5) has to be 

considered after counting the half cycle (1 - 2) and eliminating 

point (1). 
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In case of the decrease - decrease type, D - D , nothing can be 

determined without considering the next pattern ( 2 - 3 - 4 - 5 ) . 

Point (1) has to be kept aside temporarily, while considering the 

next pattern ( 2 - 3 - 4 - 5 ) . It should be noted that since the first 

pattern (1 - 2 - 3 - 4 ) is of D - D type, i.e. the range (3-4) is 

smaller than the range (2 - 3), then the next pattern ( 2 - 3 - 4 - 5 ) 

is accordingly either of D - I or D - D type. 

If the type of the pattern ( 2 - 3 - 4 - 5 ) is D - I, then as shown 

earlier, points (3) and (4) are to be eliminated after counting the 

cycle (3 - 4). Whence, point (1) has to be considered now by 

examining the pattern ( 1 - 2 - 5 - 6 ) . 

If the pattern ( 2 - 3 - 4 - 5 ) is also D - D , then point (2) has to 

be kept aside with point (1). These two points have to be 

considered. Immediately after two following points have been 

eliminated. 

If it happens that the pattern ( 3 - 4 - 5 - 6 ) is also of D - D type, 

then we will be in a situation where more than two points (1, 2, 3) 

have to be kept aside. Later, these points have to be considered, 

starting with the last point which has been kept aside (point 3). 

If this procedure is applied to the spectrum shown in Figure 5.6, 

which is exactly similar to that shown in Fig. 5.4, then the first 

pattern ( 0 - 1 - 2 - 3 ) has an I - D type. Therefore, range (0 - 1) 

is a half cycle range. After eliminating point (0), the next pattern 

(1 - 2 - 3 - 4 ) has a D - D type, so that the next point (5) has to 

be considered, keeping aside point (1). Pattern ( 2 - 3 - 4 - 5 ) has 

a D - I type which means that range ( 3 - 4 ) is a full cycle range. 

Since point (1) has been kept aside, then the next pattern to be 

considered, after eliminating points (3) and (4) and recalling point 

(1), is ( 1 - 2 - 5 - 6 ) whose type is I - D. Hence range ( 1 - 2 ) is 

a half cycle range. After eliminating point (1), the next pattern (2 

- 5 - 6 - 7 ) has a D - I type and range ( 5 - 6 ) is a full cycle 

range. After eliminating points (5) and (6), the next pattern (2 - 7 

- 8 - 9 ) has a D - D type, meaning that point (2) has to be kept 

aside when considering the next pattern ( 7 - 8 - 9 - 1 0 ) whose type 

is D - D . This means that we have now two points to be kept 
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aside (point 2 and 7). The next pattern ( 8 - 9 - 1 0 - 1 1 ) has a D - i 

type, hence range (9 - 10) is a full cycle range. After eliminating 

points (9) and (10), and recalling points (2) and (7), the next 

pattern ( 2 - 7 - 8 - 1 1 ) has a D - D type. Point (2) has to be kept 

aside again and the next pattern ( 7 - 8 - 1 1 - 12) has a D - D type. 

Whence point (7) has to be kept aside again, with point (2). The next 

pattern (8-11 - 1 2 - 1 3 ) has a D - I type, giving the range (11 

12) as a full cycle range. By eliminating points (11) and (12) and 

recalling points (2) and (7), the next pattern will be (2 - 7 - 8 

- 13) whose type is D - D. Again, point (2) has to be kept aside and 

the next pattern ( 7 - 8 - 1 3 - 1 4 ) has a D - I type. Hence the range 

(8 - 13) is a full cycle range. After eliminating points (8) and (13) 

and recalling point (2), the next pattern will be (2 - 7 - 14 - 15) 

whose type is I - D, and so on. 

In Fig. 5.6, lines marked with (=) and (-) represent the full cycle 

and half cycle ranges respectively. 

5-3 Computer Program 

The computer program which simulates the stress spectrum is similar 

to that used to simulate the moment spectrum (Section 3.6). The only 

difference is that, from the stored live load moment values the 

corresponding stress range values in the outer bar are simulated (as 

described in Section 5.1) and stored. 

In this study, the rainflow method has been adopted to perform the 

stress cycle counting. After examining an existing computer program 

constructed to perform the cycle counting, for airframe structures, 

by the first procedure (rainflow procedure - Section 5.2.2.1), the 

author has chosen to write another program, based on the third 

procedure (pattern classification procedure - Section 5.2.2.3). This 

is because it is believed that such program would be simpler in 

construction and faster in execution than the alternative one based 

on the first procedure. The flow chart of this Program is given in 

Figure 5.7 and the full listing is given in Appendix B. 

The amount of the damage per week (D ) has been computed by adding 

the damage caused by the successive counted cycles on a cycle to 

cycle base. 
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5.4 Tables of Stress Simulation Parameters 
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bar 
dia 
(mm) 

section 

number 

section 
modulus 

strain 
factor 

centroidal and 
bar dead load 

N / m m * 

outer 
stresses 

4 ^sd 
f 
sde 

12 3.71 1 . 0 8 5 2 1 2 . 5 2 2 9 . 3 

13 4 . 1 8 1 . 1 0 4 1 8 8 . 9 2 0 7 . 9 

3 2 

14 4 . 5 6 1 . 0 9 7 1 7 8 . 9 1 9 5 . 7 

3 2 

15 4 . 8 6 1 . 0 9 0 1 7 0 . 2 1 8 5 . 2 

16 5 . 4 5 1 . 1 0 7 1 5 4 . 2 1 7 0 . 3 

17 5 . 8 4 1.101 1 4 7 . 2 1 6 1 . 7 

1 
117 3 . 8 0 1 . 1 0 8 2 0 4 . 5 2 2 5 . 1 

1 
1 1 8 4 . 2 2 1 . 0 9 6 1 9 4 . 0 2 1 2 . 2 

1 1 9 4 . 5 1 1.112 1 8 1 . 4 2 0 1 . 2 

25 1 2 0 4 . 8 2 1 . 1 0 5 1 7 2 . 4 1 9 0 . 0 

121 5 . 1 4 1 . 1 1 9 1 1 6 2 . 0 1 8 0 . 8 

1 2 2 5 . 5 0 1 . 1 1 1 1 1 5 4 . 6 1 7 1 . 4 

1 2 3 

..... i 
5 . 8 5 1 . 1 2 3 i 1 4 6 . 1 1 6 3 . 8 

Table 1 - Stress simulation parameters for 
L = 15.0 m and U = 360 T/hr. 
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bar 
dia 
(mm) 

section 

number 

section 
modulus 

strain 
factor 

centroidal and 
bar dead load 

N/mm* 

outer 
stresses 

4 ^sd 
f ^ 
sde 

110 3.71 1.085 212.5 229.3 

111 4.18 1.104 188.9 207.9 

32 112 4 . 5 6 1.097 178.9 195.7 

113 4.86 1.090 170.2 185.2 

114 5.45 1.107 154.2 170.3 

127 3.80 1.108 204.5 225.1 

128 4.22 1.096 194.0 212.2 

129 4.51 1.112 j 181.4 201.2 

25 130 4.82 1.105 j 172.4 190.0 

131 5.14 1 . 1 1 9 j 162.0 180.8 

132 5.44 1.132 I 152.5 172.1 

; 
133 5.85 1.123 1 146.1 163.8 

Table 2 - Stress simulation parameters for 
L = 15.0 m and U = 180 and 90 T/hr. 
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bar 
dia 
(mm) 

section 

number 

section 
modulus 

KN.M/(N/mm*) 

strain 
factor 

centroidal and 
bar dead load 

N/mm^ 

outer 
stresses 

S p ^sd 
f 
sde 

21 5 . 0 4 1 . 0 5 1 2 3 4 . 9 2 4 6 . 5 

22 5 . 4 3 1 . 0 7 0 2 1 1 . 6 2 2 5 . 7 

1 

1 3 2 

2 3 6 . 0 0 1 . 0 8 4 1 9 3 . 6 2 0 9 . 4 

1 

1 3 2 

2 4 6 . 4 2 1 . 0 7 9 1 8 5 . 0 1 9 9 . 3 I 

1 
2 5 1 6 . 9 4 1 . 0 9 2 1 6 9 . 6 1 8 5 . 0 1 

26 j 7 . 4 3 1 . 0 8 7 1 6 2 . 7 1 7 6 . 5 i 

j 2 1 1 i 5 . 1 9 1 . 0 8 5 2 2 4 . 0 2 4 2 . 2 j 

2 1 2 1 5 . 4 5 1 . 0 9 5 2 1 0 . 7 2 2 9 . 6 j 

2 1 3 ! 5.80 1 . 1 0 4 1 9 9 . 1 2 1 9 . 3 1 

1 

1 

2 1 4 j 6 . 2 4 1 . 0 9 8 1 9 0 . 7 2 0 8 . 9 j 1 

1 
2 1 5 I 6 . 5 5 1 . 1 0 9 1 8 0 . 9 2 0 0 U ; 

2 1 6 i 6 . 8 4 1 . 1 1 9 1 7 1 . 7 1 9 1 . 6 1 

2 1 7 i 7 . 3 5 1 . 1 1 2 1 6 4 . 9 1 8 2 . 9 1 

1 

2 1 8 ; 7 . 7 2 1 . 1 2 1 1 5 7 . 2 1 7 5 . 8 j 

Table 3 - Stress simulation parameters for 
L = 17.5 m and all values of U 



2 2 5 

bar 
dla 
(mm) 

section 

number 

section 
modulus 

strain 
factor 

centroidal and 
bar dead load 

N/mm* 

outer 
stresses 

^sd 
f 
sde 

31 6.66 1 . 0 3 7 2 4 9 . 9 2 5 9 . 0 

3 2 7 . 3 6 1 . 0 4 3 2 2 6 . 9 2 3 6 . 5 

32 
33 7 . 8 9 1 . 0 5 5 2 0 8 . 8 2 2 0 . 1 

32 
34 8 . 5 5 1 . 0 6 7 1 9 3 . 8 2 0 6 . 4 

35 9 . 2 6 1 . 0 7 7 1 8 0 . 9 1 9 4 . 5 

3 6 9 . 8 1 1 . 0 8 6 1 6 8 . 9 1 8 3 . 1 

311 6 . 8 1 1 . 0 5 9 2 4 9 . 2 2 6 3 . 5 

3 1 2 7 . 2 0 1 . 0 6 5 2 3 5 . 0 2 5 0 . 0 

3 1 3 7 . 4 4 1 . 0 7 3 2 2 2 . 5 2 3 8 . 1 

3 1 4 7 . 8 4 1 . 0 7 7 2 1 1 . 6 2 2 7 . 7 

25 3 1 5 8 . 2 3 1 . 0 8 6 2 0 1 . 8 2 1 8 . 8 

3 1 6 1 8 . 5 3 1 . 0 9 5 1 9 2 . 5 2 1 0 . 3 

3 1 7 1 8 . 9 0 1 . 1 0 3 1 8 4 . 6 2 0 3 . 1 

3 1 8 9 . 2 9 1 . 1 1 0 1 7 7 . 1 1 9 6 . 2 

3 1 9 j 9 . 7 2 1.118 1 7 0 . 9 1 9 0 . 6 

Table 4 - Stress simulation parameters for 
L = 20.0 m and all values of U 
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bar section section strain centroidal and outer 
dia modulus factor bar dead load stresses 
(mm) number KN,M/(N/mm^) N/mm* 

F, s f f L F ^sd sde 

42 11.73 1.032 270.1 278.6 

43 12.53 1.039 251.8 261.6 

32 44 13.23 1.046 235.5 246.3 

45 13.93 1.053 220.8 232.3 

46 14.70 1.059 207.9 220.0 

411 11.15 1.0401 279.3 290.5 

412 11.65 1.044 267.0 278.7 

413 12.22 1.048 255.7 267.9 

414 12.66 1.052 244.2 256.7 

25 415 13.29 1.055 235.5 248.3 

416 13.70 1.058 1 225.9 238.9 

417 14.13 1.063 1 217.8 231.5 

418 14.70 1.068 211.2 225.4 

1 
419 

—I 
15.22 1.073 203.7 218.3 

Table 5 - Stress simulation parameters for 
L = 25.0 m and all values of U 
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bar 
dia 
(mm) 

section 

number 

section 
modulus 

KN.M/(N/mm') 

strain centroldal and 
factor bar dead load 

N/mm* 

outer 
stresses 

Sp ^sd f 
sde 

52 14.30 1.026 294.1 301.6 

53 14.95 1.028082 274.2 281.9 

32 54 16.11 1.034135 257.8 266.6 

55 16.91 1.040 243.5 253.2 

56 17.85 1.045 230.6 240.8 

512 14.53 1.037644 286.9 297.7 

513 14.70 1.041 274.7 285.9 1 

514 15.36 1.044 264.2 275.7 1 

25 
515 

1 
16.10 1.047 255.2 267.0 

25 
516 16.84 1.049 246.5 258.5 

i 517 i 17.24 1.052 238.0 250.2 

i 
i 

518 : 17.80 1.056 230.6 243.3 

519 ! 18.20 1.060 222.9 236.0 

Table 5 - Stress simulation parameters for 
L = 27.5 m and all values of U 
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CHAPTER 6 

RESULTS AND DISCUSSION 

6.1 The Variation of The Bridge Fatigue Life with The Section Modulus 

Fatigue lives, for the different combinations of the loading 

frequency (U) and the bridge span (L) , have been calculated and are 

given in tables and graphs at the end of this chapter. As mentioned 

in Chapter (5), fatigue life has been estimated by using two theories 

(i.e. Palmgren - Miner's theory and Inoue - Nakagawa's theory). The 

first theory i s widely accepted by designers and researchers and it 

is currently adopted and used extensively in the prediction of 

fatigue lives of general structures. Consequently in this study, the 

relationship between the fatigue life and the section modulus is 

based on values predicted by this theory. 

Fatigue lives have been predicted also by using the second theory 

(Inoue - Nakagawa's theory) only for the purpose of comparison. As 

can be seen from the fatigue life tables, the two values are very 

close and the agreement is very good. 

For 15.0, 17.5 and 20.0 m spans, Log(life) value increases 

consistently with increasing the section modulus Fĵ . But for 25.0 

and 27.5 m spans, the relationship ceases to be a smooth curve of 

single curvature and a form of 'kink' develops. 

To explain t h i s behaviour, let us examine the variation of , the 

limiting value of the live load moment, including impact, which gives 

an outer bar stress range equivalent to the endurance limit, S . To 

do this, we have to investigate first the relation between the total 

centroidal stress, , which corresponds to the strain at the 

centre of the tensile force, and the total outer bar stress, f , 
' sse ' 

as follows; 
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Case (1) 

If the centroidal stress (f^^) and the corresponding outer bar stress 

both fall on the same linear segment of the stress - strain 

curve, Fig. 6.1 (let us assume now it is the second linear segment), 

then the difference between the two stresses is : 

f 
sse ss 

- e' 
ss 

E' = E' 
ss (S_ - 1) 

Where e^^ is the centroidal strain and is the strain factor, which 

is the ratio of the outer bar strain(e' ) to the centroidal strain 
sse 

(e^g) and E' is the slope of the second linear segment of the stress 

- strain curve. Hence : 

= fsse - E'eAs 'Sp : 6 . i ) 

Equation (6.1) represents a general relationship between the 

centroidal and outer bar stresses, in terms of the centroidal 

strain(e^g),the strain factor (S^) and the slope of the stress -

strain curve for the steel. 

If we consider the limiting outer bar stress (denoted by f 
sel 

which 

gives a stress range equivalent to the endurance limit (S ), then any 

lower stress will not affect the fatigue life. The endurance 

limit (S ) is given in Chapter (2) by : 

161.5 - 0.33 f sde 

where f^j^ is the dead load outer bar stress, 

outer bar stress (f^^^) is : 

Hence the limiting 

fsel ^ Se + fsde = + 0.67 



stress 

f; = o.8fy 

or 

case (1) 

and 5 0.8f^ 

''L f^se < O-Bfy 

f = 425 N/mm' 

f = 340 N/mm* 
y 

strain 

Figure (6.1) - The 'outer bar stress - centroidal stress' 
relationship for case (1) 

rv) 
w 
o 
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Hence it follows from the general Equation (6.1) that the limiting 

centroidal stress, below which stresses are not effective,is : 

^sl = fsel - G' Ggi (Sp - 1) 

or 

f T = 161.5 + 0.67 f ^ - E' e , (S- - 1) (6.2) 
si sue si i? 

where e^^ is the centroidal strain which corresponds to the 

centroidal stress f ,. 
si 

The live load modulus (Fĵ ) is taken in Chapter (4) to represent the 

section through all loading stages. Thus the centroidal stress range 

is simulated by the following equation : 

S; = ML/FL 

where is the live load moment (including impact). Consequently 

the relation between the limiting moment value and the limiting 

centroidal stress f , can be written as : 
si 

- fsd = 

Hence 

where f ^ is the centroidal dead load stress. 

If we now substitute f^^ by the expression given in Eq. 6 . 2 , we get; 

"e = + 0-67 fgde " "si '^F " " " ^sd' 
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For all beam sections in this study,the outer bar dead load stress 

f , is less than (0,8 f ), i.e. f falls on the first linear 
sde y sde 

segment of the stress - strain curve (Fig. 6.1). Whence, the outer 

bar and centroidal dead load stresses (f^^^ and f^^) are related by : 

^sde = B Ggjg = E Sp Bgj _ Sp f g j 

where e , , e . are the dead load outer bar and centroidal strains 
sde sd 

and E is Young's modulus. 

Substituting f ^ in Eq. 6.3 gives : 

"e = 'IS'-5 * Csd - E'SsiISp - II -

or 

M = F, (161.5 - f , (1 - 0.67 S„) - E'e ^ (S„ - D ) (6.4) 
e L sd r si r 

This equation is valid when both the outer bar and centroidal 

stresses fall on the second linear segment, of the stress - strain 

curve, whose slope is E'. 

If both stresses fall on the first linear segment, whose slope is E, 

then Eq. 6.4 will still be valid if we replace E' by E. 

The strain factor (S^) is, by definition, greater than unity and all 

the strain factors (S^) in this study are smaller than 

(1/0.67 = 1.5). Thus for this case, case (1), as we move from one 

beam section to the next larger section (with lower stresses), the 

section modulus (F̂ )̂ increases. Thus both the centroidal dead load 

stress fgj and the centroidal strain e^^ decrease. At the same 

time, the variation in the strain factor, from one section to the 

next, is very small (as can be seen from the design tables at the end 

of Chapter 4). Therefore, it is concluded from Eq. 6.4 that the 

limiting moment value increases with increasing the section 

modulus (F^^. This means that for case (1), as the modulus Fĵ  

increases, the limiting value increases. Consequently the number 

of effective cycles decreases and the fatigue life increases. 
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Case (2) 

If the centroidal stress f^^ and the corresponding outer bar stress 

^sse on different linear segments of the stress - strain curve 

(Fig. 6.2), then the difference between the two stresses is : 

spiG' - E 

- f ' - E' + e'3 E'Sp - E 

Noting that, E = 5.71 E' , we see that: 

f^se - = fy - + =^8 G' Sp - E 

4.71 f^/5.71 + E' Sp _ 5.71 E' 

Hence the centroidal stress is given by : 

- 4.71 f ^ S . T l - e^3 E' Sj, + 5.71 E' . . . ( 6 . 5 ) 

Similarly to case (1), the limiting outer bar stress f^^^ below 

which stresses do not affect the fatigue life is : 

fsel = 1'51.5 4. 0.67 fade 

Furthermore, the limiting centroidal stress f^^ below which . stresses 

do not affect the fatigue life, can be obtained from Eq. 6.5 by 

substituting fggg by f^^^ and e^^ by e^^. Hence it follows that the 

limiting centroidal stress can be expressed as : 

fgl = 161-5 - »•" fgde - 4.71f;/5.71 - E- Sp + 5.71 E' 



stress case (2) 

% 0'8fy 

fAs < O'Sfy 

fy = 425 N/mm* 

E = 5 . 7 1 E ' 

strain 

0.8F /E' 
l0.8fy/E 

Figure (6.2) - The 'outer bar stress - centroidal stress' 
relationship for case (2) 

i\) 
CO 
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Similarly to case (1), the limiting live load moment value is 

given by : 

"e = "L 'fsl - fsd' 

Also, the outer bar dead load stress is given by, f ^ = Spf^^ , 

By substituting for f^^ and f we get the following equation for : 

Mg = (161.5 + 0.67 Sp - 4.71f^/5.71 - Gg^E'Sp 

+ 5-T1 esiE' -

For this case, case (2), the centroidal and outer bar stresses are 

assumed to fall on different linear segments of the stress - strain 

curve. It therefore follows that the limiting centroidal stress 

(fg^) falls on the first linear segment whose slope is E. Hence f^^ 

can be evaluated by : 

f s l = G = 5.71 E. f g i < f ; 

Substituting and rearranging, we get : 

M = F^ [161.5 - f j (1 - 0.67Sp) - E' e ^ (Sp - 1 ) ] part 1 

+ 4.71 F^ [ f g i - f^J/5.71 part 2 
. . . . (6.6) 

Part 1 of Eq. 6,6 is exactly similar to Eq. 6.4 of case (1). Hence 

as concluded earlier, when the modulus F^ Increases, part 1 

increases also. However for this case, the limiting centroidal stress 

(fg^) falls on the first linear segment of the stress - strain curve, 

i.e. fg^ < f^ . Thus, part 2 of Eq. 6.6 is always negative. 

Consequently for case (2), as the equation contains a part with 

positive slope and a part with negative slope, there is no certainty 

that the limiting moment value increases consistently with the 

increasing modulus F^ , as it does for case (1), 
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If we consider the short spans (15.0, 17.5 and 20.0 m), the dead load 

stresses are low enough to keep the limiting total outer bar stress 

(f = S + f , = 161.5 + 0.67 f^,^), in all sections, less than 
sel e sde sde ' ' 

the change point f^ . Therefore all sections are controlled by the 

equation relevant to case (1) (Eq. 6.4 and Fig. 6.1). Accordingly, 

the fatigue life increases consistently with increasing the section 

modulus. 

However, for the longer spans (25.0 and 27.5 m), where the section 

depths are increased to comply with the deflection requirement, the 

dead load stress for some sections is high enough to push the 

limiting total outer bar stress (f^^^) over the change point 

(fy = 0.8fy). If the corresponding centroidal stress (f^^) Is also 

over (0.8 fy) (as is the case for the highly stressed sections), then 

case (1) will govern the behaviour of the limiting moment value (M^). 

As a result, it increases with the increasing modulus (F^^. 

As we move to the sections with lower stresses, we get some sections 

whose limiting outer bar stress (f^^^) is still higher than (0.8 f ) , 

but the corresponding centroidal stress (f^^) is less than this 

value. For such sections the limiting moment value (M^) is defined 

by the equation relevant to case (2) (Eq. 6.6 and Fig. 6.2). 

Consequently part 2 of Eq. 6.6 will decide whether the limiting 

moment value (M^) for such a section is higher or lower than its 

value for the next more highly stressed section. 

Table (6.1) gives the details of the sections governed by case (2) 

compared with the more highly stressed sections next to them. From 

this table, it appears that for the sections reinforced with 32 mm 

bars and governed by case (2), the absolute value of the negative 

part 2 i s , relatively, not large enough to reverse the sign of the 

gradient AM^/AF^ , and hence ALog(life)/ AFĵ  , but it is sufficient 

to decrease its value in comparison to the other intervals. For the 

similar sections reinforced with 25 mm bars, the absolute value of 

the negative part 2 is, relatively, large enough to reverse the sign 

of the gradient ALog(life)/ AF.. 



bar dia 
(mm) 

section 
number 

limiting outer bar 
and centroidal stress 
ranges, in N/mm^ 

section modulus 
limiting live load moment, M , in KN.M 

bar dia 
(mm) 

section 
number 

limiting outer bar 
and centroidal stress 
ranges, in N/mm^ 

section modulus 
case (1) case (2) 

^sel ^sl 
KN.M/tN/mm*) ^e 

(Eq.6.4) 

Part (1) 

(Eq.6.6) 

Part (2) 

(Eq.6.6) (Eq.6.6) 

42 348.17 346.07 11.73 892.5 N/A N/A N/A 

32 
43 336.76 324.12 12.53 906.6 N/A N/A N/A 

32 
53 350.36 348.45 14.95 1110.0 N/A N/A N/A 

54 340.12 329.48 16.11 N/A 1294.1 - 139.7 1154.4 

412 348.23 345.37 11.65 913.0 N/A N/A N/A 

25 
413 340.99 329.82 12.22 N/A 1008.6 - 102.5 906 J 

25 
514 346.22 343.45 15.36 1218.7 N/A N/A N/A 

515 340.39 326.86 16.10 N/A 
1 

1330.2 - 1 7 4 . 4 1155.8 

Table ( 6 . 1 ) - Sections for which, the limiting outer bar and 

centroidal stresses ( f are slightly higher 

or lower than the change point (f^ = 340 N/mm') 

rv> 
w 
-<l 
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6.2 Sections with Low Stresses in The Reinforcement 

For the sections listed in Table (6.2a), it is interesting to note 

that they might be capable of carrying the design load even after the 

failure of their outer layer of bars. The new stresses in the 

remaining bars, under full design load, which we will call the 

'revised' bar stresses, will still be less than the yield value, and 

therefore the section will remain intact. 

The revised centroldal stress f^^ can be estimated approximately 

from: 

f = f X 
' sa sa - n. 

where: 

= the total number of bars in the section. 

= the number of bars in the outer layer. 

The actual values of f^^ are higher than those estimated by the above 

formula and shown in Table (6.2a), due to the decrease in the lever 

arm which results from the failure of the outer layer of bars. 

For some sections (16, 121, 131, 130, 216, 215, 317 and 419), the 

revised centroidal stresses (f^^^ are high enough to make their 

remaining reinforcement yield under the maximum probable moment M 

(Sections 3.7 and 4.8). This can be seen by comparing these 

sections, after the failure of their outer layer, with the highly 

stressed sections whose behaviour under the maximum probable moments 

(Mp) has been Investigated in Chapter (4). Table (6.2b) shows this 

comparison, and it is clear that these sections are not capable of 

resisting the maximum probable moment (M ). 



2 3 9 

bar dia 
(mm) 

section 
number 

total 
number 
of bars 

number 
of bars 
in one 
layer 

maximum centroidal 
stresses before and 
after the outer 
layer failure, in N/mm^ 

\ "b ^ s a 

17 9 3 2 5 0 . 0 3 7 5 . 0 

16 9 3 2 6 4 . 5 3 9 6 . 8 

3 2 114 9 3 2 5 8 . 2 3 8 7 . 3 

2 6 11 4 2 6 1 . 8 4 1 1 . 4 

3 6 14 5 2 6 2 . 9 4 0 9 . 0 

1 2 3 15 4 2 4 8 . 7 3 3 9 . 1 

1 2 2 14 4 2 6 3 . 6 3 6 9 . 0 

1 2 1 14 4 2 7 9 . 0 3 9 0 . 6 

1 3 3 15 4 2 4 3 . 2 3 3 1 . 6 

1 3 2 i 15 4 i 2 5 7 . 0 3 5 0 . 5 

1 3 1 1 14 4 1 2 7 2 . 5 3 8 1 . 5 

2 5 
1 3 0 I 13 4 j 2 9 0 . 1 4 1 9 . 0 1 

2 1 8 i 19 5 1 2 5 2 . 7 3 4 3 . 0 1 

1 2 1 7 i 18 5 2 6 5 . 1 3 6 7 . 1 

1 2 1 6 1 18 5 2 7 9 . 4 3 8 6 . 9 

j 2 1 5 ! 17 5 I 2 9 3 . 3 4 1 5 . 5 1 

1 3 1 9 ! 23 6 I 2 6 5 . 9 3 5 9 . 7 i 

1 3 1 8 ' 2 2 6 ! 2 7 6 . 5 3 8 0 . 2 

3 1 7 j 2 1 6 i 
2 8 8 . 3 4 0 3 . 6 

4 1 9 j 2 7 8 1 2 8 9 . 0 4 1 0 . 7 

Table (6.2a) - Approximate revised centroidal stresses for 
the sections with low stresses, after the 
failure of their outer layer of bars 



Span serial number of revised serial number of centroidal centroidal outer bar 
the section with centroidal the highly stressed stress for stress for stress for 

( I D ) failed outer layer stress for section section (b) section (b) section (b) 
section (a) under design under under 

(section a) under design (section b) load ( f M ( f _) M (f ) 
load 

sa 
(N/ram̂ ) 

P sp 
(N/mm^) 

p spe 
(N/mm^) 

(N/mm*) 

15 .0 16 396 .8 11 395 .8 425.6 433 .2 

15 .0 121 390.6 116 390 .9 422.7 437 .0 

15 .0 131 381.5 126 380 .8 422.7 437 .0 

15 .0 130 419.0 126 380 .8 422.7 437 .0 

17.5 216 386 .9 210 389.7 413 .0 423.1 

17 .5 215 415.5 210 389.7 413 .0 423.1 

20 .0 317 403.6 310 406.5 421 .4 428.5 

25 .0 419 410.7 410 408 .5 421.4 426 .2 

Table (6.2b)- Comparison between the sections with failed outer 
layer and the highly stressed sections 

i\) 
o 
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For the remaining sections (i.e. 17, 114, 26, 36, 123, 122, 133, 132, 

218, 217, 319 and 318), fatigue life after the failure of their outer 

layer seems to be less than 0.5 per cent of the life before the 

first failure. This is clearly too small to be of practical value. 

This effect can be seen by comparing these sections, after the failure 

of their outer layer, with other sections (12, 110, 21, 31, 118, 117, 

128, 127, 212, 211, 312 and 311) in the fatigue life tables given at 

the end of this chapter. 

As an example, let us compare section (318) with section (311) in 

Table (4c) page (297). For the latter, the fatigue life is about 

5.7 years which results from a total centroidal stress of about 
2 

385 N/mm . For section (318), the fatigue life of the outer layer of 

bars is about 1205 years. For this section, the approximate revised 

centroidal stress , after the failure of the outer layer of bars, is 
2 

given in Table (6.2a) to be about 380 N/mm . By comparing this 

revised stress with the stress for section (311), we conclude that 

the fatigue life of section (318) after the failure of its outer 

layer of bars would be only around 0.5 per cent of the life before 

this failure. 

Therefore, fatigue lives for the sections under consideration are 

taken to be defined by the stage of the outer layer failure. 

6.3 Curve Fitting 

Two methods to fit a curve to a certain data have been used. The 

first is the standard least squares method (Appendix C), whilst the 

second one is derived by the author to ensure a 'safe' result, as 

shown in the following section. 
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6.3.1 Safe Curve Method 

The least squares method fits a curve with deviations above and below 

it. Such fitting is not appropriate for design data, if a safe design 

is required. 

If we have n linear equations connecting a set of m unknowns, say , 

Xg,...., X^ with n > m, the residuals for a 'safe curve'. Fig. (6.3), 

with all deviations above it are always negative or zero 

(non-positive): 

m 
r = 1 a.. X. - b. $ 0 i = 1, 2, ..., n 
1 J = 1 J J 

This method is a process for finding the values for X^, Xg, ..., X^ 

which will make the sum of the deviations as numerically small as 

possible i.e. 

q 
I (-r,) 

1 = 1 

Finding the values for X^, Xg X^ which minimize G and satisfy 

the conditions of non-positive residuals is a standard linear 

programming problem (53), whose solution is easily derived. 

If we have to fit a pth degree polynomial to a certain data : 

y = a^ + a^x + agX^ + + ax^ 

then, the above equation is still linear in the unknown parameters a^. 

In this case the constraints are : 

Sq + + a xP $ y^ i = 1, 2, ...,n 
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deviation (r) 

+ 

safe curve 

Figure (6,3) - Curve fitting by the 
safe curve method 
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While the objective function G is : 

9 
G = I {- r.) 

i = 1 ^ 

f 9 9 2 9 D 
G = 1 Yi - (nag + 1 + ag % + ... + a 1 x% P) 

or simply : 

G : 

p i 
1 1 1 1 

(nag + % x^ + ag I x^ + ... + a ^ x^) 

1 1 1 

In this study, the E04MBF subroutine (App. D) of the NAG Library has 

been used to find the safe second degree polynomial curve for the 

Section modulus Fĵ  - Log (life) data. This subroutine solves linear 

programming problems or finds a feasible point for such problems. An 

initial estimate of the solution must be supplied by the user. This 

has been estimated from the relevant least squares curve 

coefficients, which have been obtained by another subroutine G02CJF 

(App. C). 
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6.4 Log (life) - Safe Curves 

To establish a graphical relationship, the least squares curves have 

been found to provide an initial estimate for the required safe 

curves (as explained in Sec. 6.3.1) and to provide a comparison 

between the two sets of curves. 

The first computer run has been made to find the least squares second 

degree polynomials (i.e. y = T^ + T^x + T^x ), by giving the same 

weight for all points. The resulting curves for 15.0, 17.5 and 20.0 m 

spans are satisfactory except for the combination of L = 15.0 m and 

U = 360 T/hr. where the point related to section (17) seems to be 

relatively far from the fitted curve. Examining this point, in the 

fatigue life tables at the end of this chapter, reveals that its 

corresponding fatigue life is based on one effective cycle per week 

only, and therefore it is believed acceptable to disregard this 

point, and find the best fit for the remaining points related to L = 

15.0 m and U = 360 T/hr. 

For 25.0 and 27.5 m spans, the resulting curves cannot be considered 

satisfactory, which is due to the presence of some points at which, 

the gradient ALog(life)/ AF^ is either negative or small (Sec.6.1). 

Consequently, a second run has been made for these spans, with some 

points given certain weights to bring them back to the general 

behaviour of the remaining points. 

Weight values have been estimated visually and are given in 

Table (6.3) which also gives a comparison between the first and 

second run. 

Since any stress range smaller than the endurance limit (S ) is 

assumed not to cause any damage, there is a certain section modulus 

value, beyond which the fatigue life is theoretically infinite. For 

this, two other forms of curves have been tried : 
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Log(life) = T 
T, T, 

° ^LC - "L I^LC - "L'" 

Log(life) = T 
Tl T2 

° InF^^ - InF^ (InFLC " 

where is a critical value of the section modulus. 

For each combination of U and L, three values of have been tried. 

They are taken around that section modulus value, shown in the design 

tables (Chapter 4), which makes the maximum stress range S nearly-

equal to the endurance limit (S^). Table (6.4) shows these three 

values for the different combinations of U and L. 

A third run has been made to find the least squares fit for these two 

forms, using the weighted values of the points, but as can be seen 

from Table (6.5), the new forms do not generally give a better fit 

than the second degree polynomial which has the advantage of a 

simpler form. For this, the two new forms have been disregarded. 

The coefficients Tq, T^, T^ values of the least squares second degree 

polynomial have been used as the initial estimate for the required 

coefficients of the safe curves. 

The coefficients T^, T^, T^ values for the safe curves are given in 

Table (6.6), which also shows the deviation between the original 

weighted Log(life) values and the corresponding values interpolated 

from the safe curves. These deviations for the fatigue life 

interval, 25 yrs ^ life $ 400 yrs, are reasonably small for 15.0, 

17.5 and 20.0 m spans, but are not so for the two longer spans due to 

the presence of the odd points, as discussed earlier. 

Even with these odd points, the sums of squares of the residuals seem 

to be adequately small and consequently, it has not been thought 

necessary to try polynomials with higher degrees. 
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Notes Regarding Tables (6.3, 6.4, 6.5 and 6.6) ; 

y = Log(llfe), where 'life' is the fatigue life of the bridge, in 

years, estimated by the Palmgren - Miner's theory. 

w = the weight given to some odd points to improve the curve 

fitting (0 < w < 1), 

y„ = y X w 

Tg , , Tg = polynomial coefficients for the curve : 

y = To + T, + I; Fg 

r^ = Tq + + Tg - y^ , { ̂  rf) is based on the 

original 'y' values, while r?)p is based on the weighted 

values 'y Both iS r?) and (V r?)n are for the least 
W ^ 1 Jr 

squares fit. 

^LCI' ^LC2' ^LC3 " the section modulus values taken near the point, 

where the outer bar stress range (Ŝ , ) is 

equivalent to the endurance limit (S ). is 

one of these 3 values which gives the best least 

squares fit for : 

^2 
~ ^0 " 2 

PLC - (PLC - Fb) 

and 

^2 
~ '̂ 0 ? 



248 

( ^ resulting from the least squares fit 

of Yy , using the weighted values y . 

( I r?)ĵ  = (^r\) resulting from the least squares fit 

of y^ , using the weighted values y^ . 

2 . 2 
( % r. )g = ( 2^^) resulting from the safe curve polynomial 

fit, using the weighted values y^ . 

Ry = the largest value of (y^/yg), where y^ is the real 

value, while y^ is the corresponding interpolated 

value (y = Log(life) = Tq + + TgF^^) 

Ry = Ry value taken over the interval 

(1.398 $ y $ 2.602) which corresponds to 

(25 yrs. $ fatigue life $ 400 yrs.) 
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! ~ 

dia 
(mm) 

L 
(m) 

1 U 
1 (T/hr.) 

section 
number 

y w (%ri)p 

90 42 1.627 1.464 0 .90 0.0377 0.0207 

25.0 180 42 1.338 1.204 0.90 0.0277 0.0155 

32 360 42 1.054 0.896 0.85 0.0173 0.0067 

90 53 2.114 1.903 0.90 0.1021 0.0242 

27.5 180 53 1.812 1.540 0.85 0.1058 0.0132 

360 53 1 .514 1.211 0 .80 0.1186 0.0109 

! 

90 
412 1.733 1.473 0.85 

0.0982 0.0386 
1 

90 
413 1.726 1.640 0.95 

0.0982 0.0386 

25.0 180 
412 1.439 1.151 0.80 

0.1086 0.0503 25.0 180 
413 1.432 1.289 0.90 

0.1086 0.0503 

360 
412 1.158 0.869 0.75 1 

0.1121 0.0461 1 

25 

360 
413 1.149 0.977 0.85 i 

0.1121 0.0461 1 

90 
513 2.110 1.899 0 . 9 0 } 

0.3482 0.0693 1 
1 i 

90 
514 2.636 2.241 0 . 8 5 ! 

0.3482 0.0693 1 
1 

j 
27.5 180 

513 1.809 1.538 0.85 1 
0.3787 0.0521 

! 

27.5 180 
514 2.376 1.901 0.80 1 

1 

0.3787 0.0521 

360 
: 

513 1.512 1.210 0.80 1 
0.4180 0.0511 

i 
360 

: 514 2.093 1.570 0.75 
0.4180 0.0511 

Table (6.3) - Weight values and their effect 
in improving the curve fitting 
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dia = 32 mm dia = 25 mm 

L(m) U (T/hr.) F F F 
'LCI fLC2 'LC3 

F F F 
LCI *LC2 *LC3 

15.0 

90 and 
180 5.85 5.80 5.75 6.05 6.00 5.95 

15.0 

360 6.30 6.20 6.10 6.15 6.10 6.05 

17.5 
all 
values 7.90 7.75 7.60 i 7.95 7.85 7.75 

! 

20.0 
all 
values 10.30 10.20 10.10 10.40 10.30 10.20 

25.0 
I 1 

values i 15-70 15.60 15.50 | 15.45 15.30 15.15 
1 1 

27.5 
all 
values 

f 
18.75 18.65 18.55 | 18.60 18.45 18.30 

Table (6.4) - Critical values of the section 
modulus in KN.M/(N/mm^) 



L(m) U(T/hr.) 
"o ^2 fUV, ^LC 

90 1.1046 - 1.1799 0.2825 0.0044 5.85 0.0016 0.0015 

15.0 180 2.2399 — 1.8424 0.3586 0.0022 5.85 0.0014 0.0013 

360 1.6402 - 1.6838 0.3389 0.0022 6.10 0.0000 0.0000 

90 6.1572 - 2.7015 0.3223 0.0035 7.90 0.0372 0.0360 

17.5 180 7.2829 - 3.2026 0.3663 0.0029 7.90 0.0236 0.0226 

360 7.2249 - 3.2645 0.3701 0.0062 7.90 0.0292 0.0281 

90 - 0.8025 - 0.2920 0.0791 0.0037 10.30 0.1561 0.1533 

20.0 180 0.0245 — 0.5988 0.1000 0.0045 10.30 0.1382 0.1355 

360 1.8587 - 1.1633 0.1373 0.0067 10.30 0.0950 0.0927 

90 15.2982 - 2.7594 0.1344 0.0207 15.50 0.0096 0.0097 

25.0 180 22.5725 - 3.9455 0.1808 0.0155 15.50 0.0133 0.0134 

360 26.5797 - 4.6340 0.2082 0.0067 15.50 0.0087 0.0088 

90 4.3355 - 0.8372 0.0446 0.0242 18.75 0.0371 0.0369 

27.5 180 10.9521 - 1.7591 0.0752 0.0132 18.75 0.0177 0.0175 

360 18.8705 - 2.8230 0.1095 0.0109 18.75 0.0109 0.0108 

Table (6.5a) - Least squares fits 
Bar dia = 32 mm 

for the weighted points 

i\) 
Ul 



L(m) U(T/hr.) TQ ^2 (Jr -Pp ( I r l ) v 

90 1.1545 - 1 .1382 0.2659 0.0062 6.05 0.1928 0.1899 

15.0 180 2.1760 - 1.7311 0.3321 0.0064 6.05 0.1704 0.1677 

360 2.4801 - 2.0230 0.3679 0.0082 6 J ^ 0.0779 0.0755 

90 3.9147 — 1.8594 0.2404 0.0022 7.95 0.3085 0.3046 

17.5 180 5.0202 — 2.3375 0.2809 0.0016 7.95 0.2725 0.2688 

360 4.9282 — 2.4033 0.2865 0.0053 7.95 0.2250 0.2215 

90 - 0.0078 — 0.4966 0.0887 0.0069 10.40 0.0727 0.0708 

20.0 180 1.2273 0.8979 0.1149 0.0104 1 0 . 4 0 0.0511 0.0494 

360 3.5607 • " 1.5606 0.1564 0.0025 10.40 0.0538 0.0522 

90 11.1531 - 2.0211 0.1019 0.0386 15.45 0.3450 0.3432 

25.0 180 12.9902 2.3804 0.1169 0.0503 15.45 0.3648 0.3630 

360 16.4702 - 2.9914 0.1415 0.0461 15.45 0.2969 0.2952 

1 
90 20.7833 — 2.7876 0.1021 0.0693 18.60 0.1186 0.1182 

j 27.5 180 21.8843 3.0018 0.1100 0.0521 18.60 0.1242 0.1236 

i ! 360 29.5201 — 4.0243 0.1428 0.0511 18.60 0.0833 0.0829 

Table (6.5b) - Least squares fit for the weighted points 
Bar dia = 25 mm 

[\j 
ui 
IV) 



L(m) U(T/hr.) TQ 1̂ ^2 (I "y 

90 2.5000 - 1.7926 0.3475 0.0105 1.0496 1.0496 

15.0 180 2.8911 — 2.1267 0.3885 0.0036 1.0347 1.0347 

360 2.4655 - 2.0450 0.3770 0.0044 1.0461 1.0461 

90 4.8288 - 2.2477 0.2837 0.0136 1.0344 1.0057 

17.5 180 6.6350 - 2.9907 0.3488 0.0060 1.0765 1.0000 

360 5.4639 — 2.6648 0.3192 0.0225 1.1084 1.0000 

90 - 1.99^ — 0.0197 0.0635 0.0110 1.1383 1.0129 

20.0 180 - o.&no — 0.4424 0.0910 0.0101 1.1790 1.0182 

360 1.5827 — 1.0971 0.1330 0.0105 1.2216 1.0000 

90 27.7357 - 4.6360 0.2043 0.0770 1.0787 1.0783 

25.0 180 33.9852 - 5.6695 0.2451 0.0613 1.0880 1.0880 

360 34.1278 - 5.7743 0.2507 0.0268 1.0678 1.0678 

90 8.5840 - 1.3956 0.0626 0.0438 1/n68 1.1168 

27.5 180 14.4727 — 2.2180 0.0899 0.0248 1.1032 1.0000 

360 21.2637 - 3.1416 0/M98 0.0188 1.1244 1.0121 

Table (6.6a) Safe curves for the 
Bar dia = 32 m 

weighted points 

IV) 
ui 
OJ 



L(m) U(T/hr.) To "2 

90 1.0767 - 1.0866 0.2574 0.0161 1.0437 1.0437 

15.0 180 1.4746 - 1.4063 0.2941 0.0218 1.0395 1.0359 

360 3.5328 - 2.4807 0.4149 0.0227 1.1467 1.0410 

90 3.4265 — 1.6978 0.2269 0.0055 1.0175 1.0150 

17.5 180 5.2571 - 2.4214 0.2877 0.0043 1.0438 1.0109 

360 5.6358 — 2.6343 0.3043 0.0137 1.0943 1.0174 

90 - 1.3006 - 0.1935 0.0708 0.0160 1.1403 1.0137 

20.0 180 1.0858 - 0.8597 0.1119 0.0199 1.1116 1.0200 

360 4.1925 - 1.7197 0.1660 0.0059 1.0579 1.0169 

90 15.0023 — 2.5967 0.1227 0.1157 1.0827 1.0702 

25.0 180 15.4715 - 2.7481 0.1299 0J197 1.0939 1.0939 

360 15.2588 - 2.8131 0.1346 0.1038 1.1849 1.0732 

j 90 28.5973 — 3.8069 0.1346 0.1748 1.1857 1.1857 

1 27.5 180 31.1899 — 4.1902 0.1473 0.1387 1.1941 1.1941 

1 

! 
360 39.3631 - 5.2707 0.1817 0.1361 1.2411 1.0979 

Table (6.6b) - Safe curves for the weighted points 
Bar dla = 25 mm 

U1 
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6.5 The Centroldal Stress Range Giving a (100) Yrs. Fatigue Life 

Table (5.7) gives, for each combination of U and L, the design value 

(corresponding to the design maximum live load moment, including 

impact) of the centroidal stress range fgpiQo which is needed to 

produce a design fatigue life of (100) years. These values have been 

interpolated from the fitted curves. 

For each specific loading frequency U, the stress range for the 

100 yrs. fatigue life (fgp-jQÔ  decreases with increasing span. This 

is because dead load stresses (f^^^) are higher for the longer spans. 

Whence the endurance limit (S = 161.5 - 0.33 f , ) decreases with 
e sde 

increasing dead load stresses allowing smaller ranges to be 

effective. Also, since the number of stress cycles to failure (N) is 

given by Eq. (5.3) as : N = - 200 (10"^) _ 591 (icT^) 

then, if the dead load stress increases, N decreases and this 

allows the stress cycles to be more damaging. Consequently, to get 

the same design fatigue life, the stress range fg^ioo tends to be 

smaller. 

As we move from the small spans 15.0, 17.5 and 20.0 m to the larger 

ones, 25.0 and 27.5 m, there is a relatively large decrease in the 

stress range value. This is because of the relatively large 

dead load stresses associated with the long spans, and is caused by 

the need to increase the beam section depth to meet the deflection 

requirement. 

For all spans, the ratio of the stress range for the (100) yrs. 

fatigue life to the yield stress (fg^ioo^^y^' ranges approximately 

between (0.20) and (0.27). 

Finally, the stress range f'gpioo decreases as the bar diameter 

decreases. This is also due to the larger dead load stresses 

associated with small bars. 
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Notes Regarding Table (6.7) 

^LIOO " required section modulus, to give a design fatigue life 

of (100) yrs., estimated from the safe life curve, 

in KN.M/{N/mm^). 

^LlOO " ^ above, but estimated from the least squares curve, 

In KN.M/(N/mm2). 

^srlOO " ^L^^LIOO ' where is the maximum live load moment 

including impact, in KN.M. 



dia = 3 2 mm dia = 2 5 mm 

L(ra) U(T/hr.) ^LIOO^*) ^LIOO^^^ 
a/b ^srl00 

f /f 
srlOO'iy ^LIOO(^) ^LlOO^b) a/b 

^srl00 
f /f 
^srlOO ' i y 

90 4 . 8 6 3 4 . 8 3 3 1 . 0 0 6 2 1 1 7 . 0 0 0 . 2 7 5 4 . 9 4 7 4 . 9 2 6 1 . 0 0 4 3 1 1 5 . 0 2 0 . 2 7 1 

1 5 . 0 1 8 0 5 . 0 1 7 5 . 0 0 4 1 . 0 0 2 6 1 1 3 . 4 1 0 . 2 6 7 5 . 1 2 9 5 . 1 0 9 1 . 0 0 3 9 1 1 0 . 9 3 0 . 2 6 1 

3 6 0 5 . 1 8 6 5 . 1 7 4 1 . 0 0 2 3 1 1 5 . 7 3 0 . 2 7 2 5 . 2 8 0 5 . 2 5 0 1 . 0 0 5 7 113.66 0 . 2 6 7 

90 6 . 3 5 3 6 . 3 5 1 1 . 0 0 0 3 1 1 5 . 9 6 0 . 2 7 3 6 . 5 1 9 6 . 5 1 1 1 . 0 0 1 2 1 1 3 . 0 1 0 . 2 6 6 , 

1 7 . 5 1 8 0 6 . 5 4 3 6 . 5 3 7 1 . 0 0 0 9 1 1 2 . 5 9 0 . 2 6 5 6 . 7 3 6 6 . 7 2 2 1 . 0 0 2 1 1 0 9 . 3 7 0 . 2 5 7 

3 6 0 6 . 7 3 7 6 . 7 2 0 1 . 0 0 2 5 1 0 9 . 3 5 0 . 2 5 7 6 . 9 3 3 6 . 9 0 9 1 . 0 0 3 5 1 0 6 . 2 6 0 . 2 5 0 

90 8 . 0 9 1 8 . 0 7 8 1 . 0 0 1 6 1 1 4 . 0 6 0 . 2 6 8 8 . 3 3 3 8 . 3 1 9 1.0017 1 1 0 . 7 5 0 . 2 6 1 

2 0 . 0 1 8 0 8 . 3 6 9 8 . 3 5 3 1 . 0 0 1 9 1 1 0 . 2 8 0 . 2 5 9 8 . 6 2 9 8 . 5 9 7 1 . 0 0 3 7 1 0 6 . 9 5 0 . 2 5 2 

3 6 0 8 . 6 1 2 8 . 5 9 2 1 . 0 0 2 3 1 0 7 . 1 6 0 . 2 5 2 8 . 8 6 8 8 . 8 5 1 1 . 0 0 1 9 1 0 4 . 0 7 0 . 2 4 5 

9 0 1 3 . 0 1 1 1 2 . 8 0 3 1 . 0 1 6 2 9 9 . 7 9 0 . 2 3 5 1 3 . 0 1 8 1 2 . 8 3 7 1 . 0 1 4 1 9 9 . 7 4 0 . 2 3 5 

2 5 . 0 1 8 0 1 3 . 3 7 6 1 3 . 2 0 7 1 . 0 1 2 8 9 7 . 0 7 0 . 2 2 8 1 3 . 4 3 6 1 3 . 2 8 7 1 . 0 1 1 2 9 6 . 6 3 0 . 2 2 7 

3 6 0 1 3 . 6 2 4 1 3 . 5 3 5 1 . 0 0 6 6 9 5 . 3 0 0 . 2 2 4 1 3 . 7 2 8 1 3 . 6 4 7 1 . 0 0 5 9 9 4 . 5 8 0 . 2 2 3 

9 0 1 5 . 5 2 8 1 5 . 3 6 3 1.0107 9 5 . 1 7 0 . 2 2 4 1 5 . 6 5 9 1 5 . 1 9 7 1 . 0 3 0 4 9 4 . 3 7 0 . 2 2 2 

1 2 7 . 5 1 8 0 1 6 . 0 2 0 1 5 . 9 1 0 1 . 0 0 6 9 9 2 . 2 5 0 . 2 1 7 1 1 6 . 2 3 7 1 5 . 9 7 0 1 . 0 1 6 7 9 1 . 0 1 0 . 2 1 4 

1 

1 
3 6 0 I 1 6 . 4 4 0 1 6 . 3 6 8 1 . 0 0 4 4 8 9 . 8 9 0 . 2 1 2 j 1 6 . 6 9 1 1 6 . 5 0 5 1 . 0 1 1 3 8 8 . 5 4 0 . 2 0 8 

Table (6.7) - The centroidal stress ranges giving a (100) years fatigue life 
IV) 

—Q 



258 

6.6 The Effect of The Section Modulus Def in i t ion on The 
Predicted Fatigue Life 

As mentioned earlier, in Chapter (4), the section modulus has been defined 

as : = the minimum of and , where and Zj^ are the live load 

moduli corresponding to the maximum live load moment and the average 

live load moment (J M^) respectively. 

In order to investigate the effect of the modulus value (F^) on the 

bridge fatigue life, separate runs have been made for L = 15.0 m and 

U = 90 T/hr. with F^ value defined as : F^^ = the maximum of Z^ and 

^LH ' 

The results shown in Table (6.8) reveal that,for section (111) (as an 

example), the variation in the modulus value is as small as 

3.59 percent, but the difference in fatigue lives is as high as 

33 percent. This is mainly because increasing the modulus value 

results in decreasing the values of the simulated stress ranges. As 

a result, more stress ranges would be smaller than the endurance limit 

value. 

The idea of excluding all stress ranges lower than a certain 

endurance limit, in the damage sum, has been criticised by many 

researchers as a major defect in the linear damage sum rule (10). 

Also, in reality, the endurance limit value decreases with an 

increasing number of cycles (3). Until now, there has been no common 

practice to deal with these two points. It is likely that 

considerably more work will need to be done before significant 

progress can be made in this field for both steel in general, and for 

reinforcing steel in particular. 

But, let us now consider the effect of defining the modulus F^ on the 

interpolated section modulus value which gives a certain design 

fatigue life (say 25, 50, 100 and 200 years). 



section section fatigue life centroidal and outer bar 
modulus in years outer bar stress fatigue total number of 

number FL simulated stresses range limit cycles and effective 

KN.M/tN/mm*) (N/mm (N/mm^) (N/mm*) cycles , per week Log(life)^ 

( l i f e ) (life) f f S S N N ra n ss sse re e c ec 

110 3.86 5.16 5.18 359.9 366.7 137.36 85.83 25227 2696 0.713 

111 4.33 15.94 16.01 320.3 342.4 134.49 92.89 25227 902 1.202 

112 4 . 6 6 47.47 47.62 301.0 330.2 134.50 96.92 25227 313 1.676 

113 4.96 161.81 162.09 284.9 310.6 125.36 100.38 25227 94 2.209 

114 5.58 1458.93 1459.44 256.2 283.6 113.28 105.30 25227 11 1 3.164 

Table (6.8a) - Bridge fatigue lives for L = 15.0 m and U = 90 T/hr., which are 
based on a modulus defined as: = the maximum of Z. and Z,„ 
Bar dia = 32 mm ^ 

w 
Ul 
vD 



section 

number 

section 
modulus 

KN.M/(N/min:) 

fatigue life 
in years 

centroidal 
outer bar 
simulated 

(N/mra 

and 

stresses 
n 

outer bar 
stress 
range 
(N/mm*) 

fatigue 
limit 
(N/mm*) 

total number of 
cycles and effective 
cycles, per week Log(life)^ 

(lire)n ^ss f sse Sre Se ^c Nec 

127 3.98 5.76 5.79 347.5 354.7 129.60 87.22 25227 2420 0.760 

128 4.28 13.67 13.73 326.9 343.2 131.01 91.47 25227 1055 1.136 

129 4.60 30.21 30.32 305.1 339.3 138.06 95.10 25227 488 1.480 

130 4.91 96.74 96.95 288.3 318.6 128.55 98.80 25227 156 1.986 

131 5.27 282.99 283.36 270.0 302.1 121.29 101.84 25227 55 2.452 

132 5.53 920.78 921.42 255.4 289.1 117.00 104.71 25227 17 2.964 

Table (6.8b) - Bridge fatigue lives for L = 15.0 m and U = 90 T/hr., which are 
based on a modulus defined as; F. = the maximum of Z, and Z,» 
Bar dia = 25 mm 

[\) 
cr> 
O 
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Curve fitting has been carried out to find the least squares and safe 

curves for - Log (life) data. From these curves, the section 

modulus values which give a design fatigue life of 25, 50, 100 and 

200 yrs. have been Interpolated and compared with the corresponding 

values based on Fĵ ^ data. Fortunately, the maximum deviation between 

the two values (Table 6.9) is only around 1.0 percent. 

Consequently, the difference between the centroidal total stresses is 

expected to be less than half that. This is because, for all our 

sections, the centroidal stress range is not more than 50 percent of 

the total stress. 

Since the deviations shown in Table (6.9) are quite small, it is 

believed that it is reasonable to define the section modulus as : 

Fĵ  = the minimum of Zĵ  and , which gives more conservative results. 

Some calculations have been made, and given in Appendix E, to 

breakdown the variation in the fatigue lives which results from an 

increase in the section modulus value. This variation has two 

components. The first is caused by the increase in the section 

modulus itself, which results in reducing all the stress range 

values. The second and the most important component is caused by 

excluding more stress ranges because they become less than the 

endurance limit. 

These calculations reveal that, for section 111 (as an example), a 

difference of 3.59 percent in the section modulus value gives 

a 33 percent difference in the fatigue life. Out of this figure, about 

28 percent difference results from the cycles excluded becauses they 

become lower than the endurance limit, while about only 5 percent is due 

to the change in the stress range values. 

As mentioned earlier, there are some cases where stress ranges in 

the outer bar are lower than the centroidal stress ranges. Even for 

such cases, fatigue life is considered to be controlled by the outer 

layer of bars, because the endurance limit (S ) for this layer is 

smaller than the corresponding values for the other layers 

(S = 161.5 - 0.33 f . , where f„. is the dead load stress), e m m m m 
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dia 
(mm) 

design 
fatigue 
life 
(yrs.) 

least squares 

FL2 

polynomial 

^L2^^L1 

safe life polynomial 

\ l ^L2 L̂2'̂ L̂1 

25 4.412 4.443 1.0070 4.446 4.489 1.0097 

32 
50 4.631 4.662 1.0067 4.665 4.712 1.0101 

32 
100 4.833 4.867 1.0070 4.863 4.915 1.0107 

200 5.020 5.061 1,0082 5.046 5.102 1.0111 

25 4.485 4.515 1.0067 4.499 4.536 1.0082 

25 
50 4.715 4.739 1.0051 4.733 4.764 1.0065 

25 
100 4.926 4.948 1.0045 4.947 4.976 1.0059 

200 5.122 5.145 1.0045 5.146 5.174 1.0054 

dia 
(mm) 

least squares polynomial safe life polynomial dia 
(mm) 

To Tl 72 To Tl 72 

L̂1 

32 1.1046 -1.1799 0.2825 2.5000 -1.7926 0.3475 

L̂1 25 1.1545 -1.1382 0.2659 1.0767 -1.0866 0.2574 

^L2 

32 -0.4813 -0.4893 0.2053 1.8391 -1.4793 0.3077 

^L2 25 0.1245 -0.7269 0.2235 0.2461 -0.7639 0.2244 

Table (6.9) 

Section modulus values [in KN.M/(N/mm*)] 
giving a certain design fatigue life, based on 
two different criteria, with some information 
about the related curve fittings 
L = 15.0 m, U = 90 T/hr. 

= min. of (Z^ , Z^^), = max. of (Zĵ  , Z 
LH' 
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Values of the stress range (S^^) and the endurance limit (S ), based 

on the rounded parameters; Fĵ , Sp, and , are given in the 

fatigue life tables at the end of this chapter. These are very 

slightly different from the corresponding values, based on the 

unrounded parameters, which are given in the design tables at the end 

of Chapter (4). 
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6.7 Recommendation for Future Work 

The work reported In this thesis has attempted to provide a method of 

assessing the required section properties, specifically section 

modulus, of simply supported reinforced concrete bridge beams to 

provide a minimum life when the bridge carries a statistically 

specified traffic load. The basis of the analysis is the use of what 

are believed to be the best available theories for the fatigue 

behaviour of hot rolled steel reinforcement under high cycle-low 

amplitude conditions. 

In the course of the work the question of the effects of a small 

number of high amplitude loadings was briefly referred to. Little 

information appears to exist of the effects of such loadings. 

However, the importance of the latter type is Increasing as a result 

of the move toward using the materials in a more economical way, 

which results in lighter and more slender structures, with a higher 

risk of fatigue failure (16). Consequently, many aspects of this 

type of fatigue which are unrevealed need thorough investigations. 
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6.8 Fatigue Life Curves and Tables 
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Table (1) - Bridge fatigue lives for loading 
frequency, U = 90 T/hr. 
Bar dia = 32 mm 



section section 
modulus 

number 

KN.M/(N/mm:) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm^) (N/mm^) cycles, per week 

Logtllfe)^ 

section section 
modulus 

number 

KN.M/(N/mm:) 

(life) (life). 
m n 

f f 
ss sse 

S S 
re e He 

Logtllfe)^ 

110 3.71 4.29 4.31 365.9 373.1 143.83 85.83 25227 3198 0.632 

111 4.18 11.98 12.04 325.0 343.3 135.40 92.89 25227 1191 1.078 

112 4.56 37.82 37.95 303.7 333.1 137.43 96.92 25227 391 1.578 

113 4.86 124.11 124.36 287.3 313.1 127.93 100.38 25227 122 2.094 

114 5.45 1124.85 1125.46 258.6 286.3 115.97 105.30 25227 14 3.051 

Table (la) - Bridge fatigue lives 
L = 15.0m, U = 9 0 T/hr., dia = 32 mm 

IV) 
-4 



section section 
modulus 

number 

KN.M/(N/mm:) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm') (N/mm^) (N/mm'') cycles, per week 

LogClife)^ 

section section 
modulus 

number 

KN.M/(N/mm:) 

f f 
ss sse Sre Se "c Mec 

LogClife)^ 

21 5.04 5.09 5.10 381U 386.2 139.70 80.16 14583 2831 0.707 

22 5.43 10.54 10.58 347.3 352.0 126.25 87.02 14583 1369 1.023 

23 6.00 36.01 36.11 316.4 340.5 131.12 92.40 14583 416 1.556 

24 6.42 126.96 127.18 299.7 323.4 124.13 95.73 14583 121 2.104 

25 6.94 783.60 784.28 275.8 301.1 116.12 100.45 14583 20 2.894 

26 7.43 7962.14 7962.30 261.9 284.6 108.13 103.26 14583 2 3.901 

Table (lb) - Bridge fatigue lives 
L = 17.5 ra, U = 90 T/hr., dla = 32 mm 

rv) 
a> 



section section 
modulus 

number 

KN.M/tN/mm*) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm^) (N/mm*) cycles, per week 

Logtllfe)^ 

section section 
modulus 

number 

KN.M/tN/mm*) 

(life) (life) 
m n 

f f 
ss sse Sre Sg He Wee 

Logtllfe)^ 

31 6.66 6.06 6.07 388.5 392.5 133.47 76.03 14610 2472 0.782 

32 7.36 19.80 19.84 352.3 355.4 118.88 83.46 14610 752 1.297 

33 7.89 63.06 63.19 325.8 340.7 120.55 88.87 14610 242 1 .800 

34 8.55 321.82 322.24 301.7 322.0 115.56 93.39 14610 48 2.508 

35 9.26 1980.40 1981.51 280.6 302.2 107.67 97.32 14610 8 3.297 

36 9.81 8335.86 8336.01 263.0 285.60 102.49 101.08 14610 2 3.921 

Table (1c) - Bridge fatigue lives 
L = 20.0 ra, U = 90 T/hr,, dia = 32 mm 

IV) 
vO 



section section 
modulus 

number 

KN.M/(N/mm') 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/ram̂ ) (N/mm^) (N/mm^) cycles, per week 

Log(life)Q 

section section 
modulus 

number 

KN.M/(N/mm') 

(llfe)^ (llfe)n f f 
ss sse Sre Se Mc Mac 

Log(life)Q 

42 11.73 42.36 42.45 380.8 384.0 105.40 69.56 14584 357 1.627 

43 12.53 52.53 52.55 355.4 358.4 96.75 75.17 14584 303 1.720 

44 13.23 212.98 213.16 333.6 341.6 95.28 80.22 14584 73 2.328 

45 13.93 1039.78 1040.51 314.0 330.7 98.35 84.84 14584 15 3.017 

46 14.70 5380.01 5381.03 296.2 313.7 93.70 88.90 14584 3 3.731 

Table (Id) - Bridge fatigue lives 
L = 25.0 m, U = 90 T/hr., dia = 32 mm 

ro 
CO 
o 



section section 
modulus 

number 

KN.M/(N/ram') 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm*) (N/mm^) cycles, per week 

Log(life)^ 

section section 
modulus 

number 

KN.M/(N/ram') 

( l l f e ) ^ ( l l f e ) n f f 
ss sse S r e S e H e H e c 

Log(life)^ 

52 14.30 26.42 26.47 397.4 400.5 98.89 61.97 14597 571 1.422 

Sa 14.95 129.98 130.15 3n.1 375.7 93.75 68.47 14597 118 2.114 

54 16.11 218.61 218.65 349.5 351.9 85.29 73.52 14597 75 2.340 

55 16.91 877.44 877.84 330.9 340.7 87.52 77.94 14597 18 2.943 

56 17.85 4063.07 4063.84 313.4 327.5 86.69 82.04 14597 4 3.609 

Table (1e) - Bridge fatigue lives 
L = 27.5 m, U = 90 T/hr., dia = 32 mm 

iv> 
03 
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Table (2) - Bridge fatigue lives for loading 
frequency, U = 180 T/hr. 
Bar dia = 32 mm 



section section 
modulus 

number Fĵ  

KN.M/(N/mm:) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm*) (N/mm^) (N/mm^) cycles, per week 

Log(life)^ 

section section 
modulus 

number Fĵ  

KN.M/(N/mm:) 

( l l f e ) ^ ( l l f e ) n f f ss sse Sre Sg Mc Mac 

Log(life)^ 

110 3.71 2.23 2.24 365.9 373.1 143.83 85.83 48778 6140 0.348 

111 4.18 6.18 6.21 325.0 343.3 135.40 92.89 48778 2300 0.791 

112 4.56 18.66 18.72 303.7 333.1 137.43 96.92 48778 794 1.271 

113 4.86 61.82 61.93 287.3 313.1 127.93 100.38 48778 247 1.791 

114 5.45 689.92 690.29 258.6 286.3 115.97 105.30 48778 23 2.839 

Table (2a) - Bridge fatigue lives 
L = 15.0 m, U = 180 T/hr., dia = 32 mm 

iv> 
CO 
w 



section section 
modulus 

number 

KN.M/fN/mm*) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm*) (N/mm^) (N/mm^) cycles, per week 

Log(life)^ 

section section 
modulus 

number 

KN.M/fN/mm*) 

(llfe)n f f 
ss sse Sre S, He "ec 

Log(life)^ 

21 5.04 2.64 2.65 3&K1 386.2 139.70 80.16 28258 5449 0.422 

22 5.43 5.40 5.42 347.3 352.0 126.25 87.02 28258 2669 0.732 

23 6.00 18.13 18.18 316.4 340.5 131.12 92.40 28258 827 1.258 

24 6.42 64.74 64.83 299.7 323.4 124.13 95.73 28258 239 1.811 

25 6.94 477.22 477.61 275.8 301.1 116.12 100.45 28258 33 2.679 

26 7.43 5319.50 5319.59 261.9 284.6 108.13 103.26 28258 3 3.726 

Table (2b) - Bridge fatigue lives 
L = 17.5 ra, U = 180 T/hr., dia = 32 mm 

IV) 
00 



section section 
modulus 

number 

KN.M/{N/ram') 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm*) (N/mm^) (N/mm^) cycles, per week 

Log(life)^ 

section section 
modulus 

number 

KN.M/{N/ram') 

( l l f e ) ^ ( l l f e ) n f f 
ss sse S S re e 

N N 
c ec 

Log(life)^ 

31 6.66 3.12 3.12 388.5 392.5 133.47 76.03 28360 4803 0.494 

32 7.36 10.04 10.07 352.3 355.4 118.88 83.46 2#360 1482 1.002 

33 7.89 31.86 31.91 325.8 340.7 120.55 88.87 28360 480 1.503 

34 8.55 172.88 173.08 301.7 322.0 115.56 93.39 28360 90 2.238 

35 9.26 1224.34 1224.97 280.6 302.2 107.67 97.32 28360 13 3.088 

36 9.81 5568.56 5568.64 263.0 285.6 102.49 101.08 28360 3 3.746 

Table (2c) - Bridge fatigue lives 
L = 20.0 m, U = 180 T/hr., dla = 32 mm 

[V) 
03 
vn 



section section 
modulus 

number 

KN.M/(N/mm:) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm*) (N/mm^) (N/mm^) cycles, per week 

Logdife)^ 

section section 
modulus 

number 

KN.M/(N/mm:) 

( l l f e ) ^ ( l l f e ) n f f 
ss sse S r e S e 

Logdife)^ 

42 11.73 21.76 21.80 380.8 384.0 105.40 69.56 28275 695 1.338 

43 12.53 26.59 26.60 355.4 358.4 96.75 75.17 28275 599 1.425 

44 13.23 110.00 110.08 333.6 341.6 95.28 80.22 :#275 142 2.041 

45 13.93 563.07 563.45 314.0 330.7 98.35 84.84 28275 28 2.751 

46 14.70 4021.85 4022.45 296.2 313.7 93.70 88.90 28275 4 3.604 

Table (2d) - Bridge fatigue lives 
L = 25.0 m, U = 180 T/hr., dia = 32 mm 

ro 
00 
o\ 



section section 
modulus 

number 

KN.M/(N/mm*) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm*) (N/mm^) (N/mm') cycles, per week 

Log(life)^ 

section section 
modulus 

number 

KN.M/(N/mm*) 

( l l f e ) ^ ( l i f e ) n f f ss sse Sre Se He Kec 

Log(life)^ 

52 14.30 13.45 13.48 397.4 400.5 98.89 61.97 28279 1122 1.129 

53 14.95 64.81 64.89 373.1 375.7 93.75 68.47 28279 238 1.812 

54 16.11 114.86 114.88 349.5 351 .9 85.29 73 .52 28279 143 2 .060 

55 16.91 527.52 527.74 330.9 340.7 87 .52 77.94 28279 30 2 .722 

56 17.85 3236.48 3237.03 313.4 327.5 86.69 82.04 28279 5 3 .510 

Table (2e) - Bridge fatigue lives 
L = 27 .5 m, U = 180 T / h r . , d ia = 32 mm 

(V) 
00 
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Table (3) - Bridge fatigue lives for loading 
frequency, U = 360 T/hr. 
Bar dia = 32 mm 



section section 
modulus 

number 

KN.M/(N/mmM 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm*) (N/mm') (N/mm^) cycles, per week 

Log (life 

section section 
modulus 

number 

KN.M/(N/mmM 

( l l f e ) n f f 
ss sse Sre Sg He Mac 

Log (life 

12 3.71 1.17 1 .18 374 .3 382 .2 152.94 85 .83 92338 11669 0 .068 

13 4 . 1 8 3 .20 3.21 332.5 344.7 136.84 92.89 92338 4439 0 .505 

14 4 .56 9 .78 9.81 310.5 340.1 144.41 96 .92 gi2338 1510 0 .990 

15 4 .86 31 .47 31 .53 293.7 320.1 134.92 100.38 92338 484 1.498 

16 5 .45 330.44 330.66 264.3 292.6 122.30 105.30 92338 48 2 .519 

#17 5 .84 15701.6 15701.6 250.0 275 .2 113.51 108.14 92338 1 4 .196 

*deleted point 

Table (3a) - Bridge fatigue lives 
L = 15.0 ra, U = 350 T/hr., dia = 32 mm 

IV) 
•00 



section section 
modulus 

number 

KN.M/fN/mm*) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm*) (N/mm^) (N/mm^) cycles, per week 

Log(life)^ 

section section 
modulus 

number 

KN.M/fN/mm*) 

f f ss sse Sre Se He Kec 

Log(life)^ 

21 5.04 1.386 1.390 381.1 386.2 139.70 80.16 53581 10362 0.142 

22 5.43 2.82 2.83 347.3 352.0 126.25 87.02 53581 5105 0.450 

23 6.00 9.55 9.57 316.4 340.5 131.12 92.40 53581 1566 0.980 

24 6.42 32.55 32.59 299.7 323.4 124.13 95.73 53581 475 1.513 

25 6.94 221.28 221.44 275.8 301.1 116.12 100.45 53581 72 2.345 

26 7.43 2690.95 2691.11 261.9 284.6 108.13 103.26 5381 6 3.430 

Table (3b) - Bridge fatigue lives 
L = 17.5 m, U = 360 T/hr., dla = 32 mm 

rv> 
o 



section section 
modulus 

number 

KN.M/(N/mm") 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm') (N/mm") cycles, per week 

Log(llfe)^ 

section section 
modulus 

number 

KN.M/(N/mm") 

( l i f e ) ^ ( l i f e ) n f f ss sse Sre Se Mc *ec 

Log(llfe)^ 

31 5.66 1.64 1.64 388.5 392.5 133.47 76.03 54018 9147 0.215 

32 7.36 5.18 5.19 352.3 355.4 118.88 83.46 54018 2875 0.714 

33 7.89 16.65 16.68 325.8 340.7 120.55 88.87 54018 916 1.221 

34 8.55 84.56 84.64 301.7 322.0 115.56 93.39 54018 185 1.927 

35 9.26 839.12 839.54 280.6 302.2 107.67 97.32 54018 19 2.924 

36 9.81 4184.38 4184.43 263.0 285.6 102.49 101.08 54018 4 3.622 

Table (3c) - Bridge fatigue lives 
L = 20.0 m, U = 360 T/hr., dia = 32 mm 

i\) 



section section 
modulus 

number 

KN.M/(N/mm=) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mmM (N/mm^) (N/mm^) cycles, per week 

Log(llfe)^ 

section section 
modulus 

number 

KN.M/(N/mm=) 

f f ss sse Sre Se He Wee 

Log(llfe)^ 

42 n . 7 3 11.32 11.34 380 .8 384.0 105.40 69.56 5 3 6 n 1336 1.054 

43 12.53 13.91 13.92 355.4 358.4 96.75 75.17 53611 n 4 5 1.143 

44 13.23 54.01 54.05 333.6 341.6 95.28 80 .22 53611 290 1.732 

45 13.93 294.47 294.63 314.0 330.7 98.35 84.84 53611 54 2 .469 

46 14.70 2686.89 2687.20 296.2 313.7 93.70 88 .90 53611 6 3.429 

Table (3d) - Bridge fatigue lives 
L = 25.0 m, U = 360 T/hr., dia = 32 mm 

rv> 
VD 
rv) 



section section 
modulus 

number 

KN.M/tN/mm*) 

fatigue life centroldal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm*) (N/mmM (N/mm') cycles, per week 

Logflife)^ 

section section 
modulus 

number 

KN.M/tN/mm*) 

f f 
ss sse Sre Se He 

Logflife)^ 

52 14.30 6.94 6.96 397.4 400.5 98.89 61.97 53636 2174 0.841 

53 14.95 32.64 32.67 373^ 375.7 93.75 68.47 53636 473 1.514 

54 16.11 56.17 56.18 349.5 351.9 85.29 73.52 53636 293 1.750 

55 16.91 270.08 270.17 330.9 340.7 87.52 77.94 53636 59 2.431 

56 17.85 2310.33 2310.63 313.4 327.5 86.69 82.04 53636 7 3.364 

Table (3e) - Bridge fatigue lives 
L = 27.5 m, U = 360 T/hr., dla = 32 nun 

IV) 
vO 
(jJ 
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Table (4) - Bridge fatigue lives for loading 
frequency, U = 90 T/hr. 
Bar dia = 25 mm 



section section 
modulus 

number 

KN.M/tN/mm*) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm*) (N/mm*) cycles, per week 

Log(life)^ 

section section 
modulus 

number 

KN.M/tN/mm*) 

f f 
ss sse 

S S 
re e 

N N 
c ec 

Log(life)^ 

127 3.80 4.61 4.63 354.1 362.1 137.11 87.22 25227 2976 0.664 

128 4.22 12.33 12.39 328.7 343.6 131.38 91.47 25227 1164 1.091 
' 

129 4.51 25.74 25.84 307.3 340.3 139.15 95.10 25227 568 1.411 

130 4.82 78.98 79.18 290.1 320.5 130.94 98.80 25227 190 1.898 

131 5.14 210.39 210.71 272.5 304.9 124.35 101.84 25227 73 2.323 

132 5.44 605.37 605.94 257.1 290.9 118.93 104.71 25227 26 2.782 

133 5.85 4163.92 4163.98 243.2 273.2 109.50 107.45 25227 4 3.620 

Table (4a) - Bridge fatigue lives 
L = 15.0 m, U = 90 T/hr., dia = 25 mm 

i\) 
vo 



section 

number 

section 
modulus 

fatigue life 
in years 

centroidal 
outer bar 
simulated 

(N/mm 

and 

stresses 

outer bar 
stress 
range 
(N/mm') 

fatigue 
limit 
(N/mm^) 

total number of 
cycles and effective 
cycles, per week 

Log (life 

(life) 
m 

(life)^ 
"ss f sse ^re 

S 
e "c ^ec 

211 5.19 5.32 5.33 365.9 373.1 131.01 81.57 14583 2704 0.726 

212 5.45 8.41 8.43 345.8 352^ 122.49 85.73 14583 1704 0.925 

213 5.80 16.71 • 16.76 326.2 343.6 124.21 89.13 14583 877 1.223 

214 6.24 49.04 49.16 308.8 339.0 130.12 92.56 14583 308 1.691 

215 6.55 111.74 111.94 293.3 325.2 125.25 95.47 14583 137 2.048 

216 6.84 267.75 268.12 279.3 312.6 121.05 98.27 14583 58 2.428 

217 7.35 1598.96 1599.86 265.2 294.7 111.92 101.14 14583 10 3.204 

218 7.72 1 8082.95 
1 

8083.11 252.7 283.2 107.39 103.49 14583 2 3.908 

Table (4b) - Bridge fatigue lives 
L = 17.5 m, U = 90 T/hr., dia = 25 ram 

rv) 
vO 
o\ 



section 

number 

section 
modulus 

KN.M/(N/mm') 

fatigue life 
in years 

centroidal 
outer bar 
simulated 

(N/mm 

and 

stresses 

outer bar 
stress 
range 
(N/mm^) 

fatigue 
limit 
(N/mm') 

total number of 
cycles and effective 
cycles, per week 

Log(life)^ 

(life) 
m 

(llfe)^ 
^ss f 

sse Sre ^e ^ec 

311 6.81 5.70 5.71 384.7 390.8 127.37 74.55 14610 2728 0.756 

312 7.20 9.84 9 .86 363.2 368.5 118.56 79.00 14610 1522 0.993 

313 7.44 15.01 15.04 346.5 351.4 113.27 82.93 14610 995 1.176 

314 7.84 35.63 35.70 329.3 342.6 114.87 86.36 14610 423 1.552 

315 8.23 79.19 79.35 314.0 340.2 121.36 89.30 14610 193 1.899 

316 8.53 162.53 162.79 300.8 329.2 118.96 92.10 14610 95 2.211 

317 8 .90 409.18 409.68 288.3 317.9 114.89 94.48 14610 38 2.612 

318 9.29 1205.07 1206.08 276.5 306.9 110.65 96.75 14610 13 3.081 

319 9.72 3186.92 3188.02 265.9 297.2 106.62 98.60 14610 5 3.503 

Table (4c) - Bridge fatigue lives 
L = 20.0 m, U = 90 T/hr., dia = 25 mm 

rv) 
kO 
-J 



section section 
modulus 

number 

KN.M/{N/mmM 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm') (N/mrâ ) (N/mm^) cycles, per week 

LogClife)^ 

section section 
modulus 

number 

KN.M/{N/mmM 

(llfe)^ (life)n f f 
ss sse Sre Se "c Kec 

LogClife)^ 

411 11.15 20.38 20.44 395.8 400.4 109.87 65.64 14584 730 1.309 

412 11.65 54.09 54.20 378.5 382.8 104.06 69.53 14584 281 1.733 

413 12.22 53.23 53.26 362.0 366.0 97.96 73.09 14584 305 1.726 

414 12.66 63.21 63.23 346.8 350.3 93.51 76.79 14584 249 1.801 

415 13.29 171.58 171.71 333.2 342.0 93.72 79.56 14584 91 2.234 

416 13.70 434.89 435.31 320.7 339.4 100.37 82.66 14584 36 2.638 

417 14.13 1124.80 1125.56 309.7 329.4 97.70 85.11 14584 14 3.051 

418 14.70 3183.80 3184.67 299.5 319.9 94.49 87.12 14584 5 3.503 

419 15.22 8206.29 8206.41 289.0 310.1 91.80 89.46 14584 2 3.914 

Table (4d) - Bridge fatigue lives 
L = 25.0 m, U = 90 T/hr., dla = 25 mm 

vD 
00 



section section 
modulus 

number 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm^) (N/mm^) cycles, per week 

Log(llfe) 

section section 
modulus 

number 

(life)^ (llfe)n f f ss sse Sre Sg "c Wee 

Log(llfe) 

512 14.53 51.19 51.28 388.6 392.7 94.98 63.26 14597 299 1.709 

513 14.70 128.77 128.95 375.3 379.2 93.22 67.15 14597 119 2.110 

514 15.36 432.98 433.40 360.4 363.9 88.23 70.52 14597 36 2.636 

515 16.10 219.56 219.59 347.0 350.1 83.12 73.39 14597 75 2.342 

516 16.84 469.81 469.91 334.3 341.9 83.36 76.20 14597 34 2.672 

517 17.24 1131.76 1132.39 323.7 340.1 89.90 78.93 14597 14 3.054 

518 17.80 3197.26 3198.01 313.6 331.1 87.89 81.21 14597 5 3.505 

519 18.20 
1 

8143.54 8143.65 304^ 322.2 86.34 83.62 14597 2 3.911 

Table (Ae) - Bridge fatigue lives 
L = 27.5 in, U = 90 T/hr., dia = 25 mm 

i\) 
vO 
vO 
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Table (5) - Bridge fatigue lives for loading 
frequency, U = 180 T/hr. 
Bar dia = 25 mm 



section 

number 

section 
modulus 

fatigue life 
in years 

centroidal 
outer bar 
simulated 

(N/mm 

and 

stresses 
n 

outer bar 
stress 
range 
(N/mrâ ) 

fatigue total number of 
limit cycles and effective 
(N/mm*) cycles, per week 

Log (life )jjj 

"ss f 
sse Sre S 

e «c "ec 

127 3.80 2.39 2.40 354.1 362.1 137.11 87.22 48778 5731 0.378 

128 4.22 6.38 6.40 328.7 343.6 131.38 91.47 48778 2242 0.805 

129 4.51 13.04 13.09 307.3 340.3 139.15 95.10 48778 1119 1.115 

130 4.82 38.47 38.56 290.1 320.5 130.94 98.80 48778 393 1.585 

131 5.14 111.24 111.39 272.5 304.9 124.35 101.84 48778 139 2.046 

132 5.44 337.80 338.07 257.1 290.9 118.93 104.71 48778 47 2.529 

133 5.85 2783.25 2783.28 243.2 273.2 109.50 107.45 48778 6 3.445 

Table (5a) - Bridge fatigue lives 
L = 15.0 m, U = 180 T/hr., dia = 25 mm 

w 
o 



section 

number 

section 
modulus 

KN.M/{N/ramM 

fatigue life 
in years 

centroidal 
outer bar 
simulated 

(N/mm 

and 

stresses 

outer bar 
stress 
range 
(N/mm^) 

fatigue 
limit 
(N/mm^) 

total number of 
cycles and effective 
cycles, per week 

Log(life)^ 

^ss f sse Sre ^e Nec 

211 5.19 2.75 2.76 365.9 373.1 131.01 81.57 28258 5223 0.439 

212 5.45 4.27 4.28 345.8 352.1 122.49 85.73 28258 3359 0.630 

213 5.80 8.52 8.55 326.2 3143.6 124.21 89.13 28258 1717 0.930 

214 6.24 24.29 24.34 308.8 339.0 130.12 92.56 28258 624 1.385 

215 6.55 57.24 57.33 293.3 325.2 125.25 95.47 28258 269 1.758 

216 6.84 142.44 142.61 279.3 312.6 121.05 98.27 28258 110 2.154 

217 7.35 1003.44 1003.97 265.2 294.7 111.92 101.14 28258 16 3.001 

218 7.72 5400.13 5400.22 252.7 283.2 107.39 103.49 28258 3 3.732 

Table (5b) - Bridge fatigue lives 
L = 17.5 ra, U = 180 T/hr., dla = 25 mm 

(jO 
o 
i\) 



section section 
modulus 

number 

KN.M/(N/mra') 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
( N / m m ' ) (N/mm^) (N/mm^) cycles, per week 

Log(life)^ 

section section 
modulus 

number 

KN.M/(N/mra') 

( l l f e ) ^ f f 
ss sse S r e S e H e Wee 

Log(life)^ 

3 1 1 6 . 8 1 2 . 9 4 2 . 9 4 3 8 4 . 7 3 9 0 . 8 1 2 7 . 3 7 7 4 . 5 5 2 8 3 6 0 5 2 9 5 0 . 4 6 8 

3 1 2 7 . 2 0 4 . 9 8 4 . 9 8 3 6 3 . 2 3 6 8 . 5 1 1 8 . 5 6 7 9 . 0 0 2 8 3 6 0 3 0 1 4 0 . 6 9 7 

3 1 3 7 . 4 4 7 . 7 8 7 . 7 9 3 4 6 . 5 3 5 1 . 4 1 1 3 . 2 7 8 2 . 9 3 ; # 3 6 0 1 9 1 5 0 . 8 9 1 

3 1 4 7 . 8 4 1 7 . 8 7 1 7 . 9 0 3 2 9 . 3 3 4 2 . 6 1 1 4 . 8 7 8 6 . 3 6 2 8 3 6 0 8 4 5 1 . 2 5 2 

i 3 1 5 8 . 2 3 3 8 . 9 2 3 8 . 9 8 3 1 4 . 0 3 4 0 . 2 1 2 1 . 3 6 8 9 . 3 0 2 8 3 6 0 3 9 5 1 . 5 9 0 

1 3 1 6 8 . 5 3 8 4 . 4 4 8 4 . 5 6 3 0 0 . 8 3 2 9 . 2 1 1 8 . 9 6 9 2 . 1 0 2 8 3 6 0 1 8 4 1 . 9 2 7 

j 3 1 7 8 . 9 0 2 2 0 . 8 7 2 2 1 . 1 2 2 8 8 . 3 3 1 7 . 9 1 1 4 . 8 9 9 4 . 4 8 2 8 3 6 0 7 1 2 . 3 4 4 

3 1 8 9 . 2 9 7 4 7 . 9 1 7 4 8 . 4 7 2 7 6 . 5 3 0 6 . 9 1 1 0 . 6 5 9 6 . 7 5 2 8 3 6 0 2 1 2 . 8 7 4 

j 3 1 9 9 . 7 2 2 0 0 5 . 4 2 2 0 0 6 . 0 2 2 6 5 . 9 2 9 7 . 2 1 0 6 . 6 2 9 8 . 6 0 2 8 3 6 0 8 3 . 3 0 2 

Table (5c) - Bridge fatigue lives 
L = 20.0 m, U = 180 T/hr., dia = 25 mm 

U) 
o 
w 



section section 
modulus 

number 

KN.M/(N/mm') 

fatigue life centroldal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm^) (N/mm^) cycles, per week 

Log(life)^ 

1 

section section 
modulus 

number 

KN.M/(N/mm') 

(life)^ (llfe)^ f f ss sse Sre Se He Gee 

Log(life)^ 

1 

411 n.i5 10.53 10.56 395.8 400.4 109.87 65.64 ;#I275 1411 1.022 

412 11.65 27.47 27.52 378.5 382.8 104.06 69.53 28275 554 1.439 

413 12.22 27.01 27.03 362.0 366.0 97.96 73.09 28275 602 1.432 

414 12.66 31.79 31.80 346.8 350.3 93.51 76.79 28275 495 1.502 

415 13.29 86.23 86.29 333.2 342.0 93.72 79.56 282^ 182 1.936 

416 13.70 238.72 238.93 320.7 339.4 100.37 82.66 28275 66 2.378 

417 14.13 659.99 660.40 309.7 329.4 97.70 85.11 28275 24 
-

2.820 

418 14.70 2003.42 2004.06 299.5 319.9 94.49 87.12 28275 8 3.302 

419 15.22 5480.84 5480.90 289.0 310.1 91.80 89.46 28275 3 3.739 

Table (5d) - Bridge fatigue lives 
L = 25.0 m, U = 180 T/hr., dla = 25 mm 

u> 
o 



section section 
modulus 

number 

KN.M/(N/mm^) 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm*) (N/mm') cycles, per week 

Logtl i fe)^ 

section section 
modulus 

number 

KN.M/(N/mm^) 

( l l f e ) ^ ( l l f e ) n f f 
ss sse Sre Se He Wee 

Logtl i fe)^ 

512 14.53 25.92 25.96 388.6 392.7 94.98 63.26 28279 591 1.414 

513 14.70 64.47 64.55 375.3 379.2 93.22 67.15 28279 239 1.809 

514 15.36 237.66 237.87 360.4 363.9 88.23 70.52 28279 66 2.376 

515 16.10 114.53 114.54 347.0 350.1 83.12 73.39 :%#79 144 2.059 

516 16.84 258.49 258.55 334.3 341.9 83.36 76.20 28279 62 2.412 

517 17.24 720.45 720.81 323.7 340.1 89.90 78.93 28279 22 2.858 

518 17.80 2009.64 2010.17 313.6 331.1 87.89 81.21 28279 8 3.303 

519 18.20 5438.34 5438.40 304^ 322.2 86.34 83.62 28279 3 3.735 

Table (5e) - Bridge fatigue lives 
L = 27.5 in, U = 180 T/hr., dla = 25 mm 

u> 
o 
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Table (6) - Bridge fatigue lives for loading 
frequency, U = 360 T/hr. 
Bar dia = 25 mm 



section 

number 

section 
modulus 

fatigue life 
in years 

centroidal 
outer bar 
simulated 

(N/mm 

and 

stresses 
n 

outer bar 
stress 
range 
(N/mm^) 

fatigue 
limit 
(N/mm^) 

total number of 
cycles and effective 
cycles, per week 

Log(life)^ 

(life)^ 
^ss 

f 
sse Sre ^e ^c Mec 

117 3.80 1.25 1.26 363.0 372.0 146.19 87.22 92338 10900 0.097 

118 4.22 3.30 3.32 336.7 345.1 132.79 91.47 92338 4323 0.519 

119 4.51 6.68 6.70 314.8 341.8 140.50 95.10 92338 2187 0.825 

120 4.82 19.75 19.79 297.2 328.4 138.09 98.80 92338 764 1.296 

121 5.14 55.36 55.44 279.0 312.2 131.13 101.84 92338 279 1.743 

122 5.50 345.85 346.06 263.7 292.9 121.59 104.94 92338 46 2.539 

123 5.85 1657.24 1657.64 248.7 279.4 115.48 107.45 92338 10 3.219 

Table (6a) - Bridge fatigue lives 
L = 15.0 m, U = 360 T/hr., dia = 25 mm 

u> 
o 
-c 



section section 
modulus 

number Fĵ  

KN.M/(N/mmM 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm^) (N/mm^) (N/ram̂ ) cycles, per week 

Log(life)^ 

section section 
modulus 

number Fĵ  

KN.M/(N/mmM 

( l i f e ) ^ ( l l f e ) n f f 
ss sse 

Log(life)^ 

211 5.19 1.^ 1.45 365.9 373.1 131.01 81.57 53%M 9924 0.161 

212 5.45 2.^ 2.24 345.8 352.1 122.49 85.73 53%H 6,413 0.348 

213 5.80 4.41 4.42 326.2 343.6 124.21 89.13 53M1 :#16 0.644 

214 6.24 12.80 12.83 308.8 339.0 130.12 92.56 53581 1180 1.107 

215 6.55 28.96 29.00 293.3 325.2 125.25 95.47 53581 531 1.462 

216 6.84 71.54 n.62 279.3 312.6 121.05 98.27 52581 219 1.855 

217 7.35 619.19 619.52 265.2 294.7 111.92 101.14 53581 26 2.792 

218 7.72 2731.50 2731.66 252.7 283.2 107.39 103.49 53581 6 3.436 

Table (6b) - Bridge fatigue lives 
L = 17.5 m, U = 360 T/hr., dla = 25 ram 

w 
o 
CO 



section 

number 

section 
modulus 

fatigue life 
In years 

centroldal 
outer bar 
simulated 

(N/mm 

and 

stresses 
n 

outer bar 
stress 
range 
(N/mm^) 

fatigue 
limit 
(N/mm') 

total number of 
cycles and effective 
cycles, per week 

Log(llfe)^ 

(life) 
m 

(life)^ 
"ss 

f 
886 ^re "e «c Nec 

311 6.81 1.55 1.55 384.7 390.8 127.37 74.55 54018 10059 0.190 

312 7.20 2.62 2.62 363.2 368.5 118.56 79.00 54018 5730 0.418 

313 7.44 4.07 4.07 346.5 351.4 113.27 82.93 54018 3659 0.610 

314 7.84 9.31 9.33 329.3 342.6 114.87 86.36 54018 1620 0.969 

315 8.23 20.28 20.31 314.0 340.2 121.36 89.30 54018 756 1.307 

316 8.53 41.63 41.68 300.8 329.2 118.96 92.10 54018 374 1.619 

317 8.90 109.51 109.61 288.3 317.9 114.89 94.48 54018 144 2.039 

318 9.29 387.93 388.19 276.5 306.9 110.65 96.75 54018 41 2.589 

319 9.72 1457.45 1457.98 . 265.9 297.2 106.62 98.60 54018 11 3.164 

Table (6c) - Bridge fatigue lives 
L = 20.0 m, U = 360 T/hr., dia = 25 mm 

w 
o 
vO 



section 

number 

section 
modulus 

KN.M/fN/mm*) 

fatigue life 
in years 

centroidal 
outer bar 
simulated 

(N/ram 

and 

stresses 
n 

outer bar 
stress 
range 
(N/ram̂ ) 

fatigue 
limit 
(N/mm^) 

total number of 
cycles and effective 
cycles, per week 

Logtllfe)^ 

f'ss f 
sse 

S 
re Se ^ec 

411 11.15 5.46 5.47 395.8 400.4 109.87 65.64 53611 2724 0.737 

412 11.65 14.38 14.40 378.5 382.8 104.06 69.53 53611 1057 1.158 

413 12.22 14.09 14.10 362.0 366.0 97.96 73.09 53611 1154 1.149 

414 12.66 16.56 16.56 346.8 350.3 93.51 76.79 53611 950 1.219 

415 13.29 43.70 43.73 333.2 342.0 93.72 79.56 53611 359 1.640 

416 13.70 124.43 124.52 320.7 339.4 100.37 82.66 53611 127 2.095 

417 14.13 355.06 355.25 309.7 329.4 97.70 85.11 53611 45 2.550 

418 14.70 1455.75 1456.18 299.5 319.9 94.49 87.12 53611 11 3.163 

419 15.22 4117.64 4117.69 289.0 310.1 91.80 89.46 53611 4 3.615 

Table (6d) - Bridge fatigue lives 
L = 25.0 m, U = 360 T/hr., dia = 25 ram 

u 
o 



section section 
modulus 

number 

fatigue life centroidal and outer bar 
in years outer bar stress fatigue total number of 

simulated stresses range limit cycles and effective 
(N/mm') (N/mm^) (N/mm^) cycles, per week 

Log (life 

section section 
modulus 

number 

( l l f e ) ^ ( l l f e ) n f f 
ss sse Sre Sg He 

Log (life 

512 14.53 13.58 13.60 388.6 392.7 94.98 63.26 53636 1127 1.133 

513 14.70 32.53 32.57 375.3 379.2 93.22 67.15 53636 474 1.512 

514 15.36 123.88 123.97 360.4 363.9 88.23 70.52 53636 127 2.093 

515 16 JO 56.17 56.17 347.0 350.1 83.12 73.39 53636 294 1.750 

516 16.84 132.51 132.54 334.3 341.9 83.36 76.20 5a636 121 2.122 

517 17.24 389.90 390.07 323.7 340.1 89.90 78.93 53636 41 2.591 

518 17.80 1461.25 1461.63 313.6 331.1 87.89 81.21 53636 11 3.165 

519 18.20 4085.30 4085.34 304.1 322.2 86.34 83.62 53636 4 3.611 

Table (6e) - Bridge fatigue lives 
L = 27.5 m, U = 360 T/hr., dia = 25 mm 

u> 
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APPENDIX A 

A. Derivation of Inoue-Nakagawa's Equation 

If we assume that the hysteresis loop of an element subjected to 

fully reversed straining (zero mean strain), Is as shown In 

Figure (A.I), then the strain energy accumulated In a cycle, AW^ Is 

AW, = 4(E-H) (e, - e , ) e , 

where e^ is the maximum applied strain, e^ is the yield strain, E and 

H are the slopes of the elastic and plastic parts of the Idealized 

stress-strain curve of the material. 

Also, if we assume that the form of the hysteresis loop is constant 

during the life, then the total strain energy of an element is; 

= n AW^ = 4n (E-H) (e^-e^) e^ ....(A.I) 

The yield strain value which maximises can be obtained from 

"3— = 0 which leads to e. = i e de^ im ^ a 

Then the maximum value of is: 

W = n (E-H) e^ 
m a 

Fatigue failure is assumed to occur when the accumulated strain 

energy, at an element where hysteresis energy is maximum W , reaches 

a certain value then: 

"mc = el failure 
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- e 

Figure (A.l) 

Stress-strain hysteresis loop of 
an element with yield strain e . 
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Inoue and Nakagawa have demonstrated that, It has been verified 

experimentally that W is almost constant with respect to the 

variation in the imposed strain amplitude. 

Then, at failure: 

W 
Ne^ = = C (A.2) 

a E-H 

where C is a material constant. 

If an element with yield strain (e^) is subjected to a variable 

strain amplitude test; ê  for n̂  cycles, for , ...,e^ for n^ , 

then from Equation (A.I), the total strain energy is: 

W = 4 (E-H) [n. (e.-e.)e. + n„ (e„-e.)e. + + n (e -e.)e.].Whence 
I I 1 '—I 3. n n 2. 1 

-3^ = 4(E-H) [n (e - 2e.) + n (e„ - 2e.) + + n (e - 2e.)] 
de^ I I 1 2 2 1 n n i 

The value of the yield strain which gives maximum W is: 

e _ + "2 ^2 + + "n ^0 
im ~ 2(n^ + n^ + + n^) 

and the corresponding maximum value of W is: 

(E-H) (n. e. + n_ e„ + + n e )^ 
y I 1 2 2 n n 
m n. + n„ + + n 

1 2 n 

As assumed above, failure occurs when W reaches the critical 
m 

value , then at failure: 

"-C '"1 =1 + "2 ^2 + " "n _ ,, 3, 

E-H " ny + ng + + n^ " ^ 
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From Equation (A.2), the following relations can be establshed: 

"l = C or e, = 1/1-

"2 ^2 = c "z --

"n = V r 
n 

Substituting ê  , e^ , , e^ in Equation (A.3) gives : 

+ ._22_ + +--^9--) 

"l + Hg + + ^ 

"l "2 "n 
or —' ' + — z n z n + + = 1 

where Ng^ = n^ + + + n 

Thus, the damage sum at failure is: 

=1 

x/WggN^ 

Reference; 

K. Inoue and K. Nakagawa, "Energy criteria for low cycle fatigue on 

the basis of distributed element model". Journal of the Society of 

Materials and Science, Japan, Vol. 24, No. 266, November 1975. 

pp 1038 - 1043 (in Japanese). 
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APPENDIX B 

B. The Ralnflow Computer Program 

PROGRAM RAIN FLOW 
C 
C REAL ST(200) 
C 
C ST: THE ACTUAL STRESS VALUE WHICH CORRESPONDS TO A TURNING PODfT 
C IN THE STRESS SPECTRUM. 
C 
C INTEGER IES,K,NC,IS(80) 
C 
C lES: THE SERIAL NUMBER OF THE LAST POINT IN THE STRESS SPECTRUM. 
C 
C K: THETCKAL NUMBER OF THE POINTS STORED BECAUSE OF THE PRESQWOE 
C OF DECREASE-DECREASE PATTERNS. 
C 
C NC: THE NUMBER OF THE COUNTED CYCLES. 
C 
C IS: THE SERIAL NUMBER OF THE POINTS STORED BECAUSE OF THE PRESENCE 
C OF DECREASE-DECREASE PATTERNS. 
C 

c 
DIMENSION ST(200),IS(80) 

READ*,IES 
READ(5,*) (ST(I),I=1,IES) 

C 
K^O 
NC=0 

C 
11=1 
12=2 
13=3 
14=4 

C 
1003 DST1=ST(I2)-ST(I1) 
2003 DST2=ST(I3)-ST(I2) 
3003 DST3=ST(I4)-ST(I3) 

C 
D1=ABS(DST1) 
D2=ABS(DST2) 
D3=ABG(DST3) 

C 
IF(D3.LE.D2) GO TO 4003 
IF(D2.LE.D1) GO TO 203 
GO TO 303 

C 
4003 IF(D2.GT.D1) GO TO 403 

C 
C DECREASE-DECREASE PATTERN 
C 

K=K+1 
IS(K)=I1 

C 
C THE FOLLOWING IF STATEMENT IS REQUIRED TO DEAL WITH END PCKNTS 
C 

IF(I4.EQ.IES) GO TO 1250 
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11=12 
12=13 
13=14 
14=14+1 

C 
DST1=DST2 
DST2=DST3 
GO TO 3003 

C 
1250 IG=I2 

DO 1300 J=lrK 
STR=ST(IG)-ST(IS(K-J+1)) 

C 
C NEGATIVE VALUE OF STR REPRESENTS UNLOADING WHILE POSITIVE 
C REPRESENTS LOADING. 
C 

WRITE(6,1715) IS(K-J+1),IG,STR 
1300 IG=IS(K-J+1) 
C 

GO TO 1600 
C 
C THE ABOVE DO STATEMENT COUNTS ALL RANGES ,AND CYCLES FROM 12 
C BACKWARDS. RANGES I2-I3 AND I3-I4 WILL BE DEALT WITH BY LINE 
C LABEL (1600). 
C 
C DECREASE-INCREASE PATTERN 
C 

203 IC=I2 
IR=M0D(IC,2) 
IF(IR.EQ.O) IC=I3 

C 
C IN THIS PROGRAM THE COUNTED CYCLE SEQUENCE IS CONSIDERED TO BE 
C CONTROLLED BY ITS TROUGH POINT WHOSE INDEX IC IS GIVEN AS AN 
C ODD NUMBER. 
C 

NC=NC+1 
ICM=(IC+l)/2 
STRC=D2 
WRITE(6,1720) ICM,I2,I3,STRC 

1720 FORMAT;'STRC(',16,')',' FROM ' , 1 6 , ' TO ' , 1 6 , ' = ' ,F6 .2) 
C 

IF(K.GT.O) GO TO 1450 
C 

IF(I4.EQ.IES) GO TO 1400 
C 

12=14 
13=14+1 
14=14+2 

IF(I4.GT.IES) GO TO 1800 

GO TO 1003 

1450 IF(K.GT.l) GO TO 1500 
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C 
IF(I4.EQ.IES) GO TO 1350 

C 
12=11 
I1=IS(1) 
13=14 
14=14+1 

C 
K=0 

C 
GO TO 1003 

C 
1350 STR=ST(I1)-ST(IS(1)) 

WRITE(6,1715) IS(1),I1,STR 
C 

1400 STR=ST(I4)-ST(I1) 
WRITE(6,1715) I1,I4,STR 

C 
GO TO 5000 

C 
1500 13=11 

I2=IS(K) 
I1=IS(K-1) 

C 
K=K-2 
GO TO 1003 

C 
G INCREASE-INCREASE PATTERN 
C 

303 STR=DST1 
WRITE(6,1715) I1,I2,STR 

C 
STR=DST2 
WRITE(6,1715) I2,I3,STR 

C 

C 

c 

c 

IF(I4.EQ.IES) GO TO 1550 

11=13 
12=14 
13=14+1 
14=14+2 

IF(I4.GT.IES) GO TO 1800 

DST1=DST3 
GO TO 2003 

C 
C INCREASE-DECREASE PATTERN 
C 

403 STR=DST1 
HRITE(6,1715) I1,I2,STR 

C 

c 
IF(I4.EQ.IES) GO TO 1600 

11=12 
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12=13 
13=14 
14=14+1 

C 
DST1=DST2 
DST2=DST3 

C 

00 TO 3003 
c 
C THE FOLLOWING SECTION DEALS WITH POINTS NEAR TBE EKD POINT OF 
C THE SPECTRUM 
C 

1800 STR=ST(I2)-ST(I1) 
WRJTE(6,1715) I1,I2,STR 

C 
STR=ST(I3)-ST(I2) 
WRITE(6,1715) I2,I3,STR 

C 

GO TO 5000 
C 

1600 STR=DST2 
WRITE(6,1715) I2,I3,STR 

C 
1550 STR=DST3 

WRITE(6,1715) I3,I4,STR 
1715 F0RMAT('STR',I6,' TO ' , I 6 , ' = 'rF8.2) 

C 

5000 WRITE(6rl750) NC 
1750 FORMAT('END OF COUNTING , NO. OF CYCLES = ' , 16) 

STOP 
END 
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APPENDIX C 

C. Least Squares Method and I t s Computer Program 

If we have n linear equations connecting a set of m unknowns, say 

.... , , n > ID : 

L ^ii i = 1 , 2 , . . . , n 
j=1 J J 

Since the number of equations n exceeds the number of unknowns m, 

the system does not yield an exact solution, i.e. there is no set of 

values for X^ , X^ , ...., X^ for which each equation is satisfied. 

if we consider the residuals: 

m 
r. = I a X - b. ^ 0 i = 1, 2, ..., n 

j = 1 J J 

The method of least squares is simply a process for finding the values 

of X^ , Xg , ..., X which will make: 

E = I rf 
1=1 

as small as possible. To minimize E, we must equate to zero each of 

its first partial derivatives : 

3E 3E 9E 
ax. ' 9X_ ' ' 9X 

I 2 m 
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Thus, we have obtained a system of m linear equations in the m 

unknowns , Xg , ....,X^ , whose solution is a routine matter. 

If we have to fit a pth degree polynomial to a certain data: 

a„ + â  X + a_X + .««. + a X^ 
0 1 2 p 

The above equation is still linear, in that it is linear in the 

unknown parameters . Tl 

aforementioned technique. 

unknown parameters . Thus the a^ may be calculated by the 

References: 

1 - C. Wylie, "Advanced Engineering Mathematics". 
McGraw-Hill 1966. 

2 - W. Hines and D. Montgomery, "Probability and Statistics". 
Ronald, 1972. 
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C.I G02CJF Subroutine 

G02CJF subroutine of the NAG Library, has been used in this study to 

find the least squares second degree polynominal for the Section 

modulus Fĵ  - Log (life) data. This subroutine performs the fitting 

for one or more dependent variables separately on the same set of 

independent variables. The data consists of values of q dependent 

variables (Ŷ  , , ...., Y^) and m independent variables (X̂  , Xg , 

...,X^), each being observed n times. For each Y , G02CJF fits 

linear model: 

Yq = + agq Xg + .... + a^gX^ 

The 'a' parameters are estimated from the data to minimize the sum of 

squares of the residuals. 

There is no explicit provision in the routine for a constant term in 

the equation(s). However, the addition of a dummy variable whose 

value is always (1.0) will produce a corresponding coefficient 'a' 

equal to the constant term. 

In our case, to fit Log(life) = F^ + a^F^ , we take; 

q = 1 

Y = Logdife) 

Xj = j = 1, 2, 3 

The listing of the program used in this study, to find the least 

squares curve, is given here. 

Reference 

NAG Fortran Library manual, "Correlation and regression analysis". 
G02. 
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End 

Start 

Y = Log(life) 

Input data 

Call G02CJF 
to calculate 
the coefficients 

Figure (C.I) 

Flow chart of the program which 
calculates the coefficients for 

the 2nd degree least squares 
polynomial 



334 

C.2 Computer Program 

C PROGRAM LEAST SQUARES CURVE 
C 

C THIS PROGRAM FITS A LEAST SQUARES POLYNOMIAL I D A 
C X-Y DATA: 
C 
C Y=A+C1*X+C2*X**2+ +CNN*X**NN 
C 
C IN THIS STUDY: 
C 
C X=FL 
G Y=ALOG10(LIFE) 
C 

REAL X(300,10),Y(300,1),THETA(10,1),SIGSQ(1),0(300,10), 
* WKl(10,4),WK2(300),YE(300)rR(300),XD(300),YD(300) 

C IX=300 
G M=10 
C IY=300 
C IR=1 
C IT=10 
C IC=300 
C N=300 
c 

C FOR INSTRUCTIONS OF USE AND DEFINITIONS OF THE AFOREMENTIONED 
C TERMS REFER TO NAG LIBRARY MANUAL, SUBROUTINE G02CJF. 
C 

INTEGER IPIV(IO) 
READ(5r*) N 

C 
C N: NUMBER OF OBSERVATIONS. 
C 

READ(5,*)(XD(I),YD(I),I-1,N) 
1000 READ(5,*) NN 

C 

C NN: THE LARGEST POWER OF X. 
C 

M=NN+1 
IF(NN.EQ.O) STOP 

C 
DO 10 J=1,N 
DO 10 JJ=1,M 
X(J,JJ)=XD(J)**(JJ-1) 

10 GCWTINUE 
C 

DO 20 J=1,N 
Y(J,1)=YD(J) 

20 CONTINUE 
C 

WRITE(6r998)(Y(I,l),X(I,l),X(I,2),I-l,N) 
998 FORMATC DATA VALUES'/' Y Xl X2'/300(1X,F5.3, 

* 2(3X,F6.3)/)/) 
C 

IFAIL=0 
C 

CALL G02CJF(X,300,Y,300,N,M,1,THETA,10,SIGSQ,C,300,IPIV, 
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C 

* WK1,WK2,IFAIL) 
C 

DO 30 J=1,M 
NRITE(6r997) J,THETA(J,1) 

997 FORMAT(' THETA',I2,' = ',F10.4) 
30 CONTINUE 

C 
WRITE(6,97) SIGSQ(l) 

97 FORMATf' VARIANCE OF RESIDUALS= ',F10.4) 
SS=0.0 
J=1 

75 S=0.0 
C 

DO 50 JJ=1,M 
A=THETA(JJ,1) 
S=S+A*X(JrJJ) 

50 CONTINUE 
C 

YE(J)=S 
R(J)=S-YD(J) 
SS=SS+R(J)*R(J) 
J=J+1 
IF(J.GT.N) GO TO 70 
GO TO 75 

C 

70 WRITE(6,91) 
91 PORMAT(//' YD YE R ') 

WRITE(6,92) (YD(J)rYE(J),R(J),J=l,N) 
92 FORMAT(3Fl5.3) 

W R I T E ( 6 r 8 9 ) S S f l F A I L 
89 FORMAT(' SUM OF R*R= F9.6,' IFAIL = ',13) 

C 

GO TO 1000 
c 

END 
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APPENDIX D 

D. The Safe Curve Computer Program 

D.I E04MBF Subroutine 

E04MBF subroutine of the NAG Library, has been used in this study to 

find the safe second degree polynomial curve for the Section modulus 

- Log (life) data. 

This subroutine solves linear programming problems or finds a feasible 

point for such problems. E04MBF solves problems of the form: 

minimize E = a. X. + a„ X„ + ... + a X 
1 1 2 2 m m 

subject to the bounds I g X j ^ u j = 1,2,...,m 

and the general constraints: 

1 ^ b̂  ̂  X^ + ^2± ^2 '̂ mi ̂ m ^ ̂  i = 1 , 2, ..., k 

There are m variables and k general linear constraints, k may be zero 

in which case the problem is subject only to bounds on the variables. 

Upper and lower bounds are specified for all the variables and 

constraints. This form allows full generality in specifying other 

types of constraints. For example the ith constraint may be specified 

as equality by setting, 1_ = u^ . If certain bounds are not present, 

the associated elements of 1 or u can be set to special values that 

will be treated as (-<» ) or ( + °° ). An initial estimate of the 

solution must be supplied by the user. 

(Log(life) = a^ + â  ^L ^2 ^L^^ through n points. Therefore E is 

In this study, we have to fit a safe second degree polynomial curve 

(Log(life) 

given by : 

E = - nag -a^ % F^^ - Sg % F^^ " .2 

X J = sy _ ^ j - 1 ) 2 , 3 
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The bounds and the initial solution are estimated from the relevant 

least squares curve coefficients, while constraints are given by; 

2 

Sq 3"! ^2 ^Li ^ ^i ^ ) 2j •••,n 

where Y = Log(life). 

The listing of the program used in this study, to find the safe curve, 

is given here. 

Reference; 

NAG Fortran Library Manual, "Minimizing or maximizing a function". 

E04. 
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Input data 

^ \ 

Y = Logdlfe I 

Calculate 

2%, %X2 , 

Construct the 
matrix of the 
upper and 
lower bounds 

Call E04MBF 
to calculate 
the coefficients 
Tg , ?! and Tg 

End 

Figure (D.I) 

Flow chart of the program which 
calculates the coefficients for 

the 2nd degree safe curve polynomial 
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D.2 Computer Program 

C PROGRAM SAFE CURVE 
C 
C THIS PROGRAM FITS A SAFE CURVE SECOND DEGREE 
C SECTION 6 .3 .1 , TO A CERTAIN X-Y DATA : 
C 
C Y=T+T1*X+T2*X*X 
C 

C IN THIS STUDY : 
C 
C X=XD=FL 
C Y=ALOG10(LIFE) 
C 

REAL OBJLP 
INTEGER IrIFAIL,IIMAx,J,LIW3RK,LW0RK,MSGLVL,N,NCLIN, 

* NCTOTLfNROMA 
LOGICAL LINOBJ 
REAL A(12,3) ,BL(15) rBU(15) ,CLAMDA(15),CVEC(3), 

* MORK(200)fX(3)/Y(15),YE(15),XD(15) 
INTEGER ISTATE(15),IMORK(50) 
[A3ANR0MA /12/ , LIWORK /50/ , LMORK /200/ 

C 
C FOR INSTRUCTIONS OF USE AND DEFINITIONS OF APtKK&mBmiWED 
C TERMS REFER TO NAG LIBRARY MANUAL, SUBROUTINE E04MBF. 
C 

CALL X04ABF(1,6) 
N=3 

C 
C THE FOLLOWING SIX LINES SPECIFY THE UPPER AND If%#REO[mEG FCR 
C TfTl AND T2 
C 

TL=-10.0 
TU=iOO.O 
TlL=-25.0 
T1U=5.0 
T2L=-5.0 
T2U=5.0 

C 

READ(5r*) NP 
C 

C NP: NUMBER OF OBSERVATIONS. 
C 

NCLIN=NP 
READ(5,*)(XD(I)fY(I),I=l,NP) 
READ(5,*)(X(J),J=1,N) 
NCTOTL=N+NCLIN 
ITMAX=50 
MSGLVL=1 
LINOBJ .̂TRUE. 

C 
SX=0.0 
SXX=0.0 
SY=0.0 

c 
DO 10 J=1,NP 
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C 

c 

c 

c 

c 

c 

SX=SX+XD(J) 
SXX=SXX+XD(J)*XD(J) 
SY:=SY+Y(J) 

10 CONTINUE 

CVEC(1)^-1.0*NP 
CVEC(2)=-1.0*SX 
CVEC(3)=:-1.0*SXX 

DO 20 I-1,NCLIN 
DO 20 J=1,N 
A(I,J)=XD(I)**(J-1) 

20 CONTINUE 

BL(1)=TL 
BL(2)=T1L 
BL(3)=T2L 
BU(1)=TU 
BU(2)=T1U 
BU(3)=T2U 

DO 30 J=4,NCT0TL 
BL(J)=0.0 
BU(J)=Y(J-N) 

30 CONTINUE 

IFAIL=1 

CALL E04MBF(ITMAX,MSGLVL,NrNCLINrNCTOTL,NROWA,A,BL, 

* BU, CVEC r LINOBJ ^ X, ISTATE, OBJLP, CLAMDA, IWORK, L I W R K , 
* [VORK,LtVORK,IFAIL) 

SP=OBJLP 
RESS=SP+SY 

TR=X(1) 
TR1=X(2) 
TR2-X(3) 

m i T E ( 6 , l l l ) RESS 
111 FORMATC RESS= \ F 9 . 6 ) 

miTE(6,222) TR,TR1,TR2 
222 FORMATC TR= ' ,F9 .6 , ' ^ TRl= \ F 9 . 6 / , TR2= \ F 9 . 6 ) 

C 

SRS=0.0 
DO 40 1^1,NP 
YE(I)=TR+TR1*XD(I)+TR2*XD(I)*XD(I) 
SRS=SRS+(YE(I)-Y(I))**2 
MRITE(6,333) I,XD(I),Y(I),YE(I) 

333 FORMATC NP=' , I3 / , X= ' , F 9 . 3 / , Y= \ F 9 . 3 / , YE= \ F 1 0 . 5 ) 
40 CONTINUE 

C 

WRITE(6r444) SRS 
444 FORMATC SRS= % F9.6) 
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C 

C THE FOLLOWING SECTION CACULATES THE SECTION MODULUS VALUE WHICH 
C CORRESPONDS TO A DESIGN FATIGUE LIFE OF (100) YEARS. 
C 

BLF=100.0 
YL=ALOG10(BLF) 
AP=TR2 
BP=TR1 
CP=TR-YL 
DP=SQRT(BP*BP-4.0*AP*CP) 
FLl=d.5*(-BP+DP)/AP 
FL2=0.5*(-BP-DP)/AP 
MRITE(6,555) BLF,FL1,FL2 

555 FORMAT(' BLF= ',F6.1,' , FL1= 'rF9.3,' , ',F9.3) 
STOP 
END 
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APPENDIX E 

E. The Effect of an Increased Value of The Sect ion Modulus 
on The Fatigue Life 

The following calculations have been made to breakdown the variation 

in the fatigue lives, resulting from an Increase in the section 

modulus value (F^), to its two components. The first component is 

caused by the change in F^ itself, while the second and the most 

Important component is caused by excluding more stress ranges, 

because they become less than the endurance limit. The calculations 

given below is for section (111) which, for sections reinforced with 

32 mm bars, has the maximum deviation in the fatigue life (Sec. 6 .6 ) ; 

let: 

F̂ ^ = the minimum of and . 

Fj „ = the maximum of Z, and Z.„ . 
L2 L LH 

(llfe)^ , (life)2 = fatigue lives In years. 

D^, Dg = the damage sums in one week. 

2 
^rel' Sp 2 - the maximum stress ranges in the outer bar, in N/mm . 

2 
S = the endurance limit in N/mm . 

N . , N „ = the numbers of the effective stress cycles in one week 
® (with value > S^) 

(life)^ , and N ^ correspond to , while (llfe)^ , , 

Spg2 snd correspond to 

Now, for section (111) : 

D^/Dg = ( l l f e ) 2 / ( l i f e ) ^ = 1.331 

^ L 2 ^ ^ L 1 ~ 1 . 0 3 5 9 

= "eel - "802 = 285 



343 

Since = 92.893 N/mm^, then by increasing from to , all 

stress ranges, below S = 92.893 x = 92.893 x 1.0359 = 96.228 

and above S = 92.893, would be excluded from the damage sum. 

An average value for these lost stress ranges is; S = 0.5 (S^ + 

Sp ) = 94.561 N/mm^ , with a corresponding N = 857126 (N is the 

required number of cycles to failure, given by ; 

logN = 6.9077 - 0.002 f - 0.00591 ). 

Whence the difference in the damage sum is approximated by : 

289 

D = AN^^/N = q^y-^26 - 0 .0337 percent 

and 
D/Dg ~ 28 percent 

This means that a difference of 3.59 percent in F^ value gives 

a 33 percent difference in the damage sum and life values. Out of 

this figure, about 28 percent difference results from the cycles 

excluded because they become lower than the endurance limit, while 

about only 5 percent is due to the change in the stress range values. 

Similar calculations have been made for the remaining sections which 

are reinforced with 32 mm bars. All results are given in Table (E.I). 



sec. 

no. 
^L1 ^L2 ^rel ^re2 "e \c1 Dl 

(%) 
^2 
(%) 

(life)^ 

(yrs.) 

(llfeig 

(yrs.) 
^L2/^L1 (lifelg "ra N D/Dg Dl 

(%) 
^2 
(%) 

(life)^ 

(yrs.) 

(llfeig 

(yrs.) (%) 

110 3.71 3.86 143.83 137.36 85.83 3198 2696 0.447 0.372 4.289 5.155 1.0404 1.2020 87.57 854262 15.80 

111 4.18 4.33 135.40 134.49 92.89 1191 902 0.160 0.120 11.98 15.94 1.0359 1.3310 94.56 857126 28.10 

112 4.56 4.66 137.43 134.50 96.92 391 313 0.051 0.040 37.82 47.47 1.0219 1.2550 97.98 865442 22.53 

113 4.86 4.96 127.93 125.36 100.38 122 94 0.015 0.012 124.1 161.8 1.0206 1.3038 101.42 866813 26.92 

114 5.45 5.58 115.97 113.28 105.30 14 11 0.0017 0.0013 1125.0 1459.0 1.0239 1.2970 106.56 865626 26.69 

Table (E.l) - The effect of the variation in the section modulus (F^) 
on the damage sum and the fatigue life 

- For definitions of the terms, see pages (342 ,343 
2 

Stresses are given in N/mm 
2 

Section moduli are given in KN.M/(N/ram ) 

u> 
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APPENDIX F 

F. Computer Program for The Fatigue Life Predlc tion 

PROGRAM LIFE 
C 

C THIS PROGRAM SIMULATES THE MOMENT AND STRESS SPECTRA 
C FOR A SINGLE LANE SIMPLY SUPPORTED BRIDGE UNDER TTKKK 
C LOADING. ALSO IT PERFORMS CYCLE COUNTING BY THE 
C CAL8SIFICATI0N PROCEDURE (RAIN FLOWI%ETBOD) .AND CALCULATES 
C THE FATIGUE LIFE OF THE BRIDGE. BEFORE RUNNING ESKKBAM, 
C THE BRIDGE HAS TO BE DESIGNED TO SUSTAIN THE 
C LOAD MCMENT, INCLUDING IMPACT, WHICH CAN BE OBTAJREDEW 
C RUNNING A PROGRAM SIMILAR TO THE FIRST PART OF EROGRAM, 
C WITH THE MODIFICATION THAT IT STORES THE ABSOLinENPOaWEM 
C MOMENT AT ANY STAGE (SECTIONS 5.3 AND 3.6). 
C 

C REAL AT,BLrBIM,Bm,BMlrBM2,BMS(2K),D(M,K2),DAT(I),DM,m, 
C DY,FL,EMIN,EMINE,m,P(M,K2),RC(I),RT(I) ,RWl(J),RW2(J), 
C SE0,SF,SP,SS(2K) ,ST,STC(K) ,STCX,T,1MIN,T0T,U,W(I), 
C ML(K2),MXI,WP,WS,WW,X(K2). 
C 

C INTEGER 
C IDD,IDI,IES,IID,III,ILl,IL2rIS(Kl) ,KL,KS,MAX,MM,N, 
C NGC,ND,NI,NR,NRC,NS. 
C 

C REAL QUANTITIES: 
C 

C AT: THE TOTAL ARRIVAL TIME OF T^UCK I. 
C BL: THE BRIDGE SPAN IN METRES. 
C Bm,BLN: THE FATIGUE LIVES IN YEARS BASED ON PAUXIGREN-MINER'S 
C THEORY AND INOUE-NAKAGAMA'S THEORY RESPECTIVELY. 
C BMl: THE LOCAL MAXIMUM OR MINIMUM MOMENT OBTAINED SO FAR. 
C BM2: THE TOTAL INSTANTANEOUS MCMENT PRODUCED BY THE TRUCKS 
C PRESENT ON THE BRIDGE WHOLLY OR PARTLY. 
C ByiS(2K): THE VALUE OF THE TURNING POINT IN THE MOMENT SPECTRUM 
C WHICH REPRESENTS THE TOTAL LIVE LOAD MOMENT, EXCLUDING 
C IMPACT, WHICH IS TO BE SHARED BETWEEN THE BRIDGE 
C TWO BEAMS. 
C D(M,K2): THE SPACING OF ANY AXLE TO THE FRONT ONE, FOR ANY 
C TRUCK K2 WHICH EXISTS WHOLLY OR PARTLY m THE BRIDGE. 
C M=l, REPRESENTS THE REAR AXLE AND M=5, REPRESENTS 
C THE FRCMT AXLE. 
C DAT(I): THE ARRIVAL TIME OF TRUCK I. 
C [M,DN: THE DAMAGE SUMS IN ONE WEEK BASED ON PAU^iGREN-MINER'S 
C THECâ Y AND INOUE-NAKAGAWA'S THEORY RESPECTIVELY. 
C DY: IMPACT FACTOR +1.0 
C FL: THE SECTION MCBULUS IN KN.M/(N/I%M*MM) BASED CM THE LIVE 
C LOAD MOMENT (SECTION 4.7.1). 
C EMIN,FMINE: THE CENTROIDAL DEAD LOAD STRESS AND THE DEAD LOAD 
C STRESS IN THE OUTER BAR IN N/(MM*iyM). 
C FN: THE NUMBER OF CYCLES TO FAILURE CORRESPONDING TO THE 
C STRESS RANGE STC(K). 
C P(M,K2) : THE AXLE FRACTION OF WEIGHT FOR ANY TRUCK K2 WHICH 
C EXISTS WHOLLY OR PARTLY ON THE BRIDGE. 
C RC(I),RT(I): THE RANDOM NUMBERS REQUIRED TO SIMULATE THE 
C TYPE AND ARRIVAL TIME OF TRUCK I RESPECTIVEI.Y. 
C RW1(J),RW2(J): THE RANDOM NUMBERS REQUIRED TO SIMULATE THE 
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C GROSS WEIGHT OF TRUCK I BY THE REJECTION 
C METHOD (SECTION 3.4.2). 
C SEO: THE FATIGUE ENDURANCE LIMIT. 
C SF: THE RATIO BETWEEN THE OUTER BAR STRAIN AND THE 
C CENTROIDAL STRAIN (SECTION 4.7.1). 
C SP: THE TRUCK SPEED IN METRES PER SECOND EQUIVALENT TO 50 KM/HR. 
C SS(2K): THE ACTUAL STRESS VALUE, WHICH CORRESPONCG TO 
C A TURNING POINT IN THE STRESS SPECTRUM, IN N/(MM*MM). 
C ST: THE TOTAL SIMULATION TIME IN SECONDS, EQUIVALENT TO 
C ONE WEEK IN THIS STUDY. 
C STC(K): THE STRESS RANGE VALUE OF A COUNTED CYCLE. 
C STCX: THE MAXIMUM STRESS RANGE VALUE. 
C T: THE INSTANTANEOUS TOTAL TIME USED FOR THE TRUCK 
C MODEL SIMULATION. 
C TMIN: THE MINIMUM ARRIVAL TIME OF A TRUCK. 
C TOT: THE INSTANTANEOUS TOTAL TIME USED FOR THE 
C SPECTRUM SIMULATION. 
C U: THE RATE OF TRUCK LOADING IN TRUCKS PER SECOND. 
C W(I): THE GROSS WEIGHT OF TRUCK I, IN KN. 
C WL(K2): THE GROSS WEIGHT OF TRUCK K2 WHICH EXISTS CMTtE 
C BRIDGE WHOLLY OR PARTLY. 
C WM,WP,WS,WW: THE AVERAGE VALUE, THE UPPER BOUND VALME, 
C THE STANDARD DEVIATION AND THE LOWER BOUND VALUE 
C OF THE GROSS WEIGHT (SECTION 3.5.1). 
C X(K2): THE LOCATION OF THE FRONT AXLE OF TRUCK K2, REECH 
C EXISTS WHOLLY OR PARTLY ON THE BRIDGE, WITH RESPECT 
C TO THE DOWNSTREAM SUPPORT. 
G 
C INTEGERS: 
C 

C IDD,IDI: THE NUMBER OF PATTERNS CLASSIFIED AS 
C DECREASE-DECREASE PATTERNS (DD) AND 
C DECREASE-INCREASE PATTERNS (DI) RESPECTIVEIA\ 
C lES: THE SERIAL NUMBER OF THE LAST POINT IN THE MOMENT CR 
C STRESS SPECTRUM. 
C IID,III: THE NUMBER OF PATTERNS CALSSIFIED AS 
C INCREASE-DECREASE PATTERNS (ID) AND 
C INCREASE-INCREASE PATTERNS (II) RESPECTIVELY. 
C IL1,IL2: THE SERIAL NUMBERS OF THE TURNING POINTS 
C A COMPLETE CYCLE. 
C IS(Kl): THE SERIAL NUMBER OF THE POINTS STORED BECAUSE OF 
C THE PRESENCE OF DECREASE-DECREASE PATTERNS. 
C KL: THE TOTAL NUMBER OF THE RANDOM NUMBERS RWl AND RWG. 
C KS: THE TOTAL NUMBER OF THE RANDOM NUMBERS RC ANDRT. 
C KS=INT(ST*U) 
C KL=NK*KS 
C KL SHOULD BE APPRECIABLY LARGER THAN KS. THIS IS 
C BECAUSE OF THE NATURE OF THE REJECTION METHOD. ETKM 
C SEVERAL TRIALS IT SEEMS THAT, NK=3, IS ADEQUATE 
C FOR THIS STUDY. 
C MAX: A PARAMETER TO DEFINE THE NATURE OF THE LAST TURNING POINT. 
C MAX=1, MEANS THAT IT IS A MAXIMUM. MAX=0, MEANS THAT IT IS 
C A MINIMUM. 
C MM: THE SERIAL NUMBER OF A PAIR CONSISTING OF ONE MINIMUM 
C AND THE NEXT MAXIMUM POINT. 
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C N: THE LOCAL SERIAL NUMBER OF THE TRUCKS WHICH CM TIE 
C BRIDGE WHOLLY OR PARTLY. N=l, REPRESENTS 
C TRUCK TO THE DOWNSTREAM SUPPORT. 
C NCC: THE NUMBER OF COUNTED CYCLES EXTRACTED FRCM CSdfS. 
C ND: A PARAMETER TO INDICATE WHETHER A NEW TRUC% I&niOaD 
C THE BRIDGE. ND=1, MEANS THAT THERE IS A CM 
C THE BRIDGE. ND=0, MEANS UNCHANGED SITUATION. 
C NI: THE TOTAL NUMBER OF EFFECTIVE CYCLES. 
C NR: THE NUMBER OF COUNTED RANGES (HALF CYCLES). 
C NRC: THE NUMBER OF COUNTED CYCLES EXTRACTED FRCM 
C HALF CYCLES. 
C NS: THE NUMBER OF SECTIONS WHICH HAVE TO BE .ANALYZED. 
C 

COMMON DAT(54000),W(54000) 
cnWKM RC(54000) ,RT(54000) ,RW1(148000) ,RW2(148000) 
CCMMCN STC(97000),SS(194000),IS(1000),aMS(194000) 
DIMENSION WL(15),X(15),D(5,15),P(5rl5) 

C 
ST=604800.0 
READ(5,*) BL,NS,U 
DT=0.0015*BL 

C 

C DT: THE TIME INCREMENT IN SECONDS. 
C THIS VALUE OF DT IS EQUIVALENT TO THE TIME ECR AN 
C AXLE TO MOVE A DISTANCE OF SPAN/48 WITH A SPEED OF 50 KM/HR. 
C 

KS=INT(ST*U) 
KL=3*KS 
DY=1.0+50.0/(125.0+3.281*BL) 

C 

C G05CBF GENERATES RANDOM NUMBERS ̂  WITH REPEATABLE SEQUENCZE, BY THE 
C MULTIPLICATIVE CONGRUENTIAL METHOD (SECTION 3.3) 
C 

CALL G05CBF(795) 
DO 10 1=1,KS 
Y=G05CAF(Y) 

10 RC(I)=Y 

CALL G05CBF(226) 
DO 20 1=1,KS 
Y=G05CAF(Y) 

20 RT(I)=Y 

C 

c 
CALL G05CBF(371) 
DO 30 1=1,KL 
Y=G05CAF(Y) 

30 RW1(I)=Y 
C 

CALL G05CBF(225) 
DO 40 1=1,KL 
Y=G05CAF(Y) 

40 RW2(I)=Y 

WRITE(6,43) 
WRITE(6,41) KS,KL,U 

C 
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41 FORMAT;' KS= ',18,' KL= ',I8,' U= ',F6.3) 
43 F0RMAT(33H END OF RANDOM NUMBERS GENERATION) 

WRITE(6,431) 
C 

L=0 
K=0 

C 

C L IS THE SERIAL NUMBER OF RMl AND RW2. 
C K IS THE SERIAL NUMBER OF RC AND RT. 
C 

DAT(1)=0.00 
TOT=0.00 

45 K=K+1 
C 

IF(RC(K) .GT. 0 .79) GO TO 80 
IF(RC(K) .GT. 0 .73) GO TO 70 
IF(RC(K) .GT. 0 .66) GO TO 60 
IF(RC(K) .GT. 0 .41) GO TO 49 

c 
C TRUCK TYPE 3S2 

TMIN=1.436 
WP=533.760 
MW=88.960 
NM=231.296 
WS=71.168 
GO TO 90 

C 

C TRUCK TYPE 2S2 
49 TMIN=1.392 

WP=444.800 
WW=44.480 
WM=^82.368 
WS=57.824 
GO TO 90 

C 

C TRUCK TYPE 2S1 
60 TMIN=1.371 

WP=400.320 
WW=44.480 
hM=160.128 
WS=53.376 
GO TO 90 

C 

C TRUCK TYPE 3D 
70 TMIN=0.899 

WP=355.840 
MW=44.480 
WM=155.680 
WS=48.928 
GO TO 90 

C 
C TRUCK TYPE 2D 
80 TMIN=0.855 

WP=222.400 
WW=22.240 
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WM=62.272 
WS=26.688 

C 

C THE FOLLOWING FIVE LINES GENERATE TRUCK WEIGHTS BY 
C REJECTION METHOD 
C 
90 L=L+1 

WT=WW+(WP-WW)*RW1(L) 
FW=EXP(-0.5*((WT-WM)/WS)**2) 
IF(RW2(L).GT.FW) GO TO 90 
w(K)=wr 

c 
C THE FOLLOWING STATEMENT IS REQUIRED TO AVOID INFINITE VALUES 
C FOR THE ARRIVAL TIME 
C 

IF(RT(K).EQ.O.OO) RT(K)=1.2E-77 
C 

C THE FOLLOWING LINE GENERATES TRUCK ARRIVAL TIMES BY THE INVERSE 
C TRANSFORMATION METHOD (SECTION 3.4.1) 
C 

DAT(K+1)=TMIN-AL0G(RT(K))/U 
C 

T0T=T0T+DAT(K) 
SP=13.889 

C 
C THE FOLLOWING ELEVEN LINES ARE REQUIRED TO ENSURE TTB^ 
C IS NO TRUCK ON THE BRIDGE AT THE END OF THE SIMULATION 
C 

IF(T0T-(ST-(BL+12.649)/SP)) 45,92,93 
92 KF=K 

DATK=DAT(KF) 
DAT(KF+1)=ST-T0T 
DAT(KF+2)=DAT(KF+1) 
GO TO 91 

93 KF=K-1 
DATK=DAT(KF+1) 
DAT(KF+1)=ABS(ST-TOT)+DATK 
DAT(KF+2)=DAT(KF+1) 

91 L F ^ 
C 

WRITE(6,98) K,KF,LF 
98 FORMAT;' K= ',117,' KF= ',1I7,' LF= ',117) 

WRITE(6,96) T0T,DATK,DAT(KF+1) 
96 FORMAT(' TOT= ',F14.3,' DATK= ',F7.3,' DATKFPl=',F7.3) 

MRITE(6,97) 
97 FORMAT(' END OF TRAFFIC SIMULATION') 

WRITE(6,431) 
C 

K=1 
C 

C K: THE GENERAL SERIAL NUMBER OF THE TRUCKS. 
C 

MM=:1 
AT=DAT(1) 

C 
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C THE FRONT AXLE OF THE FIRST TRUCK IS PLACED ON TTE EGUICE 
C DOWNSTREAM SUPPORT. 
C 
150 T=AT 

I=2*MM-1 
C 

C I IS THE SERIAL NUMBER OF THE MINIMUM POINT A&D TKHD 
C MAXIMUM POINT. 
C 

BMS(I)=0.000 
EM1=0.000 
MAX=0 
ND=1 
N=1 

C 
X(1)=0.000 
AT=AT+DAT(K+1) 

C 

200 T=T+DT 
IF(T.GT.ST)GO TO 199 
IF(AT.GE.T) GO TO 1000 

C 

C THE FOLLOWING TWO DO STATEMENTS RENUMBER EACH TRUCK PARAMETERS. 
C THIS IS REQUIRED WHEN A NEW TRUCK ENTERS THE BRIDGE BECAUSE THE 
C RECENT TRUCK ALWAYS HAS N=1 
C 

DO 50 J=1,N 
WL(N+2-J)=WL(N+l-J) 

50 X(N+2-J)=X(N+l-J) 
X(1)=(T-AT-DT)*SP 

C 

DO 125 J=1,N 
DO 125 M=l,5 
D(M,N+2-J)=D(M,N+l-J) 

125 P(M,N+2-J)=P(M,N+l-J) 
C 

K=K+1 
ND=ND+1 
N=N+1 
AT=AT+DAT(K+1) 

1000 IF(ND.EQ.O) GO TO 1200 
C 

C THE FOLLOWING SECTION DEFINES THE PARAMETERS FOR THE RECENT TRUCK 
C FOR WHICH N=1 
C 

D(5,l)=0.000 
WL(1)=W(K) 

C 

IF(RC(K).LE.0.41) GO TO 52 
IF(RC(K).LE.0.66) GO TO 42 
IF(RC(K).LE.0.73) GO TO 32 
IF(RC(K).LE.0.79) GO TO 22 

D(l,l)=4.572 
D(2,l)=0.000 
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C THE FC&ICWENG IF STATEMENT CHECKS WHETHER THE TRUCK NEAREST TO 
C THE UPSTREAM SUPPORT IS STILL ON THE BRIDGE WHCKJJf CM 
C 

IF((X(N)-D(1,N)).LT.BL)G0 TO 400 
C 

N=N-1 
IF(N.GT.O)QO TO 400 
K=K+1 

C 
C THE FOLLOWING IF STATEMENT IS INTRODUCED TO IDEAL WITH LARGE 
C VALUES OF DT. IF THE NEXT POINT IS A MAXIMUM, ItBM IT ENSURES THAT 
C IT MILL BE STORED, EVEN IF THE BRIDGE IS SUDDEN!^ 
C 

IF(MAX.EQ.O) GO TO 875 
C 

GO TO 150 
C 
400 BM2=0.000 

IF(N-2)550,600,650 
C 

C THE FOLLOWING DO STATEMENTS CALCULATE THE MID SPANMGMENT, 
C FOR ANY CONCENTRATED LOAD P LOCATED AT A DISTANCE 'A' 
C FROM THE SUPPORT OF A SIMPLY SUPPORTED BEAM WHGGE 
C IS L, USING THE GENERAL FORMULA: 
C 

C M=0.5*P*AMIN1(A,(L-A)) 
C 

C ALSO THEY DEAL WITH THE TRUCKS WHICH EXIST PARITY CMIHE BRIDGE 
C 
650 DO 500 J=2,N-1 

DO 500 M=l,5 
ZO=X(J)-D(M,J) 

500 mi2=BM2+0.5*P(M,J)*WL(J)*AMINl(Z0, (BL-ZO) ) 
C 
600 DO 700 M=l,5 

Z1=X(N)-D(M,N) 
Z2=BL-Z1 
Z3=AMIN1(Z1,AMAX1(Z2,0.0)) 

700 BM2=BM2+0.50*P(M,N)*WL(N)*Z3 
C 

550 DO 800 M=l,5 
Z1=X(1)-D(M,1) 
Z2=BL-Z1 
Z3=AMIN1(AMAX1(Z1,0.0),AMAX1(Z2,0.0)) 

800 BM2=BM2+0.50*P(M,1)*WL(1)*Z3 
C 

ND^O 
C 

C THE FOLLOWING LINES C3iECK WHETHER THE CALCULATED MOMENT IS 
C A MAXIMUM OR MINIMUM 
C 

IF(MAX.EQ.l) GO TO 590 
IF((BM1-BM2).LE.0.1) GO TO 580 

875 I=2*m 
BMS(I)=BM1 
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C 

IF(N.EQ.O) GO TO 150 
C 

MAX=1 
BMl=g42 
GO TO 200 

C 

580 BM1=BM2 
GO TO 200 

C 

590 IF((BM2-BM1).GT.0.1) GO TO 595 
BM1=BM2 
GO TO 200 

C 

595 I=2*MM-1 

MAX=0 
BM1=BM2 
GO TO 200 

C 

199 WRITE(6,802) STfT,AT 
WRITE(6,805) BL,DT,DY 
MMF=MM 

IES=2*MMF-1 
WRITE(6,803) MMFrlES 

C 

C THE FDllONING DO STATEMENT SIMULATES THE STRESS SPECTRUM, 
C PERFORMS THE CYCLE COUNTING AND ESTIMATES THE FATIGUE LIFE 
C FOR EACH BRIDGE SECTION 
C 

DO 2345 11=1,NS 
READ(5,*) FL ,SF ,FMIN,FMINE 
DYFL=0.5*DY/FL 
FOF=FMINE/FMIN 
SF=AMAX1(SF,F0F) 
MRITE(6,1333) FL,SF,FMIN,FMINE 
WRITE(6,431) 

C 

C THE FC&LOWING DO STATEMENT CONVERTS THE MOMENT SPECTRUM INTO 
C OUTER BAR STRESS SPECTRUM (SECTION 5.1) 
C 

DO 1234 1=1,lES 
SS(I)=DYFL*BMS(I) 
IF(SS(I).LE.0.0001) GO TO 1234 
FSS=SS(I)+FMIN 
ESE=SF*(5.0E-06*FSS+23.5294E-06*AMAX1((FSS-340.0),0.0)) 
FSE=200000.0*ESE-164948.45*AMAXl((ESE-0.0017),0.0) 
SSE=FSE-FMINE 
SS(I)=SSE 

1234 CONTINUE 
C 

805 FORMAT!' BL= ',F12.3,' DT= ',F9.6,' DY= ',F9.3) 
802 FORMAT(' ST=',F10.3,' T=',F10.3,' AT=',F10.3) 

WRITE(6,1111) SS(IES),SS(1) 
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1111 FORMAT(' SSF= ',F9.3,' , SSl= ',1F9.3) 
803 FORMATt'END OF MOMENT SIMULATION','MMF=',117,'IES= ',1I6) 

WRITE(6,431) 
C 

C CYCLE COUNTING I S PERFORMED BY THE PATTERN CLASSIFICATION 
C PROCEDURE (SECTION 5.2.2.3) 
C 

STCX=0.00 
c 

K=0 
KX=0 

C 
C K IS THE SERIAL NUMBER OF THE POINTS STORED BECAUSE OF THE 
C PRESENCE OF DECREASE-DECREASE PATTERNS. 
C KX IS THE MAXIMUM VALUE OF K. 
C 

NCC=0 
NRC^O 
NR=0 

C 
IDD=0 
IDI=0 
111=0 
IID=0 

C 

11=1 
12=2 
13=3 
14=4 

C 

1003 DST1=SS(I2)-SS(I1) 
2003 DST2=SS(I3)-SS(I2) 
3003 DST3=SS(I4)-SS(I3) 

C 
D 1 = A B S ( D S T 1 ) 
D2=ABS(DST2) 
D3=ABS(DST3) 

C 

IF(D3.LE.D2) GO TO 4003 
IF(D2.LE.D1) GO TO 203 
GO TO 303 

C 

4003 IF(D2.GT.D1) GO TO 403 
C 

C DECREASE-DECREASE PATTERN 
C 

IDD=IDD+1 
K=K+1 
IF(K.GT.KX) KX=K 
IS(K)=I1 

C 

C THE FOLLOWING I F STATEMENT I S REQUIRED TO DEAL W%TH END POINTS 
C 

IF(I4.EQ.IES) GO TO 1250 
C 



355 

11=12 
12=13 
13=14 
14=14+1 

C 

DSTl=DST2 
DST2=DST3 
GO TO 3003 

C 
1250 IG=I2 

DO 1300 J=lrK 
ISL=IS(K-J+1) 
STR=SS(IG)-SS(ISL) 

C 

C NEGATIVE VALUE OF STR REPRESENTS UNLOADING WHILE POSITIVE 
C REPRESENTS LOADING. 
C 

NR=NR+1 
IF(MOD(J,2).EQ.O) GO TO 1255 
STRL=STR 
IG=ISL 
GO TO 1300 

C 

C THE FOLLOWING IF STATEMENT COMPARES EVERY TWO SUCCESSIVE RANGES 
C TO CHECK WHETHER THEY COULD BE CONSIDERED EQUAL 
C 
1255 IF(ABS(STR+STRL).LE.0.1) GO TO 1275 

IG=ISL 
GO TO 1300 

C 

1275 IC=IG 
C 

C IN THIS PROGRAM THE COUNTED CYCLES SEQUENCE IS CONSIDERED TO BE 
C CCMTROLLED BY ITS TROUGH POINT WHOSE INDEX (IC) IS GIVEN AS AN 
C ODD NUMBER. 
C 

IR=M0D(IC,2) 
IF(IR.EQ.O) IC=ISL 
ICM=(IC+l)/2 
STC(ICM)=ABS(STR) 
IF(STC(ICM).GT.STCX) STCX=STC(ICM) 
NR=NR-2 
NRC=NRC+1 
IG=ISL 

1300 CONTINUE 
C 

GO TO 1600 
C 

C THE ABOVE DO STATEMENT COUNTED ALL RANGES AND CYCLES FROM I2 
C BACKWARDS. RANGES I2-I3 AND I3-I4 WILL BE DEALT WITH BY LINE 
C lABEL (1600). 
C 
C DECREASE-INCREASE PATTERN 
C 
203 IC=I2 
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C 

c 

c 

c 

c 

c 

c 

IDI=IDI+1 
STRL^O.OOO 
IR=M0D(IC,2) 
IF(IR.EQ.O) IC=I3 
NGC=NCC+1 
IGM=(IC+l)/2 
STC(ICM)=D2 

IF(STC(iaM).GT.STCX) STCX=STC(ICM) 

IF(K.GT.O) GO TO 1450 

IF(I4.EQ.IES) GO TO 1400 

12=14 
13=14+1 
14=14+2 

IF(I4.GT.IES) GO TO 1800 

GO TO 1003 

1450 IF(K.GT.l) GO TO 1500 

IF(I4.EQ.IES) GO TO 1350 

C 
12=11 
I1=IS(1) 
13=14 
14=14+1 

C 
I\=0 
GO TO 1003 

C 
1350 STR=SS(ID-SS(IS(1)) 

STRL=STR 
NR=NR+1 

C 
IL1=IS(1) 
IL2=I1 

C 
1400 STR=SS(I4)-SS(I1) 

NR=NR+1 
C 

IF(ABS(STR+STRL).LE.0.1) GO TO 1560 
C 

GO TO 5000 
C 
1500 13=11 

I2=IS(K) 
I1=IS(K-1) 

C 
K=K-2 
GO TO 1003 

C 
C IN THIS STUDY, VALUES OF ALL THE TROUGH POINTS ARE NOT LESS 
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G THAN THE VALUE OF THE STARTING POINT. CONSEQUERnT#KD 
C INCREASE-INCREASE OR INCREASE-DECREASE PATTERNS EXPECTED. 
C HENCE, THE FOLLOWING TWO RELATED SECTIONS OF THE I%KX3MMCD€ID 
C BE DELETED. 
C 

C INCREASE-INCREASE PATTERN 
C 
303 STR=DST1 

111=111+1 
STRL=0.000 
STR=DST2 
NR=NR+2 

C 

C 

c 

c 

IF(I4.EQ.IES) GO TO 1550 

11=13 
12=14 
13=14+1 
14=14+2 

IF(I4.GT.IES) GO TO 1800 

DST1=DST3 
GO TO 2003 

C 

C INCREASE-DECREASE PATTERN 
C 
403 STR=DST1 

IID=IID+1 
NR=NR+1 

C 

C 

c 

IF(I4.EQ.IES) GO TO 1600 

11=12 
12=13 
13=14 
14=14+1 

DST1=DST2 
DST2=DST3 

GO TO 3003 
C 

C THE FOLLOWING SECTION DEALS WITH POINTS NEAR THE EKD POINT OF 
C THE SPECTRUM 
C 
1800 STR=SS(I2)-SS(I1) 

STRL=STR 
NR=NR+1 

C 
IL1=I1 
IL2=I2 

C 
STR=SS(I3)-SS(I2) 
NR=NR+1 



358 

C 

IF(ABS(STR+STRL).LE.0.1) GO TO 1560 
C 

GO TO 5000 
C 

1600 STR=DST2 
STK[,=STR 
NR=NR+1 

C 

IL1=I2 
IL2=I3 

C 

1550 STR=DST3 
NR=NR+1 

C 

IF(ABS(STR+STRL).LE.0.1) GO TO 1560 
C 

GO TO 5000 
c 
1560 IC-IL2 

IR=WD(IC,2) 
IF(IR.EQ.O) IC=IL1 
i a y i - ( i c + i ) / 2 

STC(ICM)=ABS(STR) 
c 

IF(STC(ICM).GT.STCX) STCX=STC(ICM) 
NR=NR-2 
]SiRC=NRC+l 

5000 MRITE(6,1750) NR,K 
1750 FORMATC END OF CYCLE COUNTING , NR = ' , 16/ \1I6) 

WRITE(6,1751) NRC,NCC,KX 
1751 FORMATC NRC= 'rll7,' NCC= \1I7/ KX=\1I5 ) 

WRITE(6,1752) IDD,IDI,III,IID 
1752 FORMATC 100=',116/ IDI=\1I6/ III=\1I6/ IID=\ll6) 

C 
NC=NCC+NRC 

C 

tvRITE(6,431) 
431 FORMAT(' ===============^===^==========:======z:=========' ) 
9999 FORMATC ' ) 

C 

C THE FOLLOWING SECTION ESTIMATES THE FATIGUE LIFE USING THE 
C PALMGREN-MINER'S THEORY AND INOUE-NAKAGAWA'S THEORY (CHAPTER 5) 
C 

NI=0 
SE0=161.5-0.33*FMINE 

C 
WRITE(6,5001) STCX,STC(1),SE0 

5001 FORMATC STCX= \F9.3/ STC(1)= ',F9.3/ SEO= ',F9.3) 
miTE(6,431) 

C 
DM=0.0 
DN=0.0 

C 
PDN=0.0 
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c 

c 

PFN=0.002*FMINE 

DO 1399 J=1,NC 

I F ( S T C ( J ) . L E . S E O ) G O TO 1399 
N I = N I + 1 
AFN=6.9085 

C 

C THIS VALUE OF AFN IS FOR 25 MM DIAMETER. FOR 32 MM DIAMETER, 
C AEN=6.9077. 
C 

FN=10.00**(AFN-PFN-0.00591*STC(J)) 
DM=DM+1.00/FN 
PDN=PDN+1.00/SQRT(FN) 

1399 CONTINUE 
C 

SN=NI 
DN=PDN*PDN/SN 
WRITE(6,4444) NI,PDN 

4444 FORMAT(' NI= 119,' , PDN= ',1F12.6 ) 
WRITE(6,9999) 
WRITE(6,5007) DM,DN 

5007 FORMAT( ' DM= ',E12.6,' , DN= ',E12.6) 
1333 FORMATC FL=',F6.3,',SF=',F8.6,',FMIN=',F6.2,',EMINE=',F6.2) 
799 FORMAT(' END OF CUMULATIVE DAM CALC, NS= ',117,' , NC=',1I7) 

MRITE(6,431) 
CL=1.9165E-02 
BLM=CL/DM 
BLN=CL/DN 
WRITE(6,4321) BLM,BLN 

4321 FORMAT(' BLM= ',F12.3,' , BLN= ',F12.3,' : IN YEARS') 
WRITE(6,799) II,NC 
WRITE(6,431) 

2345 CONTINUE 
STOP 
END 
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APPENDIX G 

G. Computer Program for The Design of Beam Sections 

PROGRAM DESIGN 
C 

C THIS PROGRAM DESIGNS THE BRIDGE SECTION USING ETKXOIKBE 
C PROPOSED IN CHAPTER 4. IT CALCULATES THE REGtmom 
C SECTION DIMENSIONS, CHECKS THE DEFLECTION AND 
C REQUIREMENTS, ROUNDS OFF THE DIMENSIONS TO TBE 
C NEAREST 50 MM, CALCULATES THE REQUIRED REINFCfK%3G&^ 
C AREA AND CALCULATES THE ACTUAL STRESS IN THE REIFORCEMENT. 
C 

DIMENSION SS(20),SN(20) 
C 

C SS(I),SN(I): THE STRESS AND STRAIN IN REINFQfK%&QO^ 
C LAYER I. 
C 

PRINT*,'SPECIFY BM IN KN.M, BL AND BC IN M,EU IN KN' 
READ(5,*) BM,BL,BC,BV 

C 

C BM,BV: THE TOTAL LIVE LOAD MOMENT AND SHEAR TO BE SHARED 
C BETWEEN THE BRIDGE TWO BEAMB. 
C BC,BL: THE BEAM WIDTH AND SPAN. 
C 

MRITE(6,10) BM,BL,BC,BV 
10 FORMAT('BM= ',1F9.3,' BL= ',1F6.3,' BC= ',1F6.3, 

*' BV=',F9.3) 
WRITE(6,30) 

C 

TC ÎOOOO.O 
IF(BL.GT.22.0) TC=15000.0 

C 

C TC: THE DISCREPANCY IN THE TENSILE FORCE WHICH IS 
C CONSIDERED ACCEPTABLE WHEN CALCULATING ACTUAL 
C STRESS IN THE REINFORCEMENT. 
C 

DIS=10.0 
IF(BL.GT.22.0) DIS=12.0 

C 

C DIS: THE DIAMETER OF THE SHEAR REINFORCEMENT. 
C 

P R I N T * , ' T C = ' , T C , ' , DIS= ' , D I S , ' MM' 
C 

BM=BM*1.0E06 
BL=BL*1.0E03 
BC=BC*1.0E03 

C 

BMDS=3.125*BL*BL 
C 

C BMDS: THE MOMENT CAUSED BY THE BRIDGE DEAD LOADCRtER 
C THAN THE BEAM SELF WEIGHT (ASSUMED TO BE 25 KN/M 
C FOR EACH BEAM). 
C 

BMD=BMDS+0.5*BM 
READ(5,*) DI 

C 

C D I : THE RINFORCEMENT DIAMETER I N 
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C 

DO 1000 J=l,20 
c 

PRINT*,' SPECIFY FSI IN N/(MM*MM), DPT IN &M, N ' 
READ*, FSI,DPT,N 
WRITE(6,40) FSI,DPT 

40 FORMAT('CALC. DB, FSI= ',1F9.3,', DPT= ',1F9.3) 
C 

RD=50.0 
c 
C F S I : THE I N I T I A L DESIGN STRESS I N THE REINFOFK%&aan\ 
C DPT: OVERALL DEPTH - EFFECTIVE DEPTH. 
C N: NUMBER OF BARS I N ONE LAYER. 

C DB: THE BEAM EFFECTIVE DEPTH. 
C RD: ROUNDING OFF PARAMETER. 
C 

NC1=0 
NC2=0 
NC3=0 

C 

HP=DPT 
444 FS=FSI 

C 
NC3=NC3+1 
HMD=DPT 

C 
ES=FS/200000.0+AMAX1((FS-340.0),0.0)/42500.0 

c 

C E S f F S : THE CENTROIDAL STRAIN AND STRESS I N T t E 
C REINFORCEMENT. 
C 

IF(FS.LE.340.0) GO TO 300 

C CALCULATION OF THE SECTION DIMENSIONS (SECTION 4.3.2) 
C 

C CASE 1 (FS.GT.0.8*FY=340 N/MM*MM) 
C 

XOD=122.680/(FS-157.732) 
C 

C XOD: THE RATIO OF THE NEUTRAL AXIS DEPTH TO THE 
C EFFECTIVE DEPTH. 
C 

IF(XOD.GE.0.50) GO TO 100 
C 

C CASE lA (XOD.LT.0.50) 
C 

R=XOD 

CR=21.978*R 
AR=1.0-0.4345*R 

C 

GO TO 200 
C 

C CASE IB OR 2A (EC.GE.0.0015) 
C 

C EC: THE MAXIMUM CONCRETE STRAIN. (0.0015) REPRESENTS 
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C THE VALUE OF THE I N I T I A L PLASTIC STRAIN. 
C 

100 R=0.5 
EC=ES 

c 
150 SK=0.0015/EC 

CR=4.2735*(3.0-SK) 
SL=0.25*(SK*SK-4.0*SK+6.0)/(3.0-SK) 
AR=1.0-0.5*SL 

C 

GO TO 200 
C 

C CASE 2 (FS.LE.0.8*FY) 
C 

300 EC=ES 
R=0.5 

IF (EC.GE.0.0015) GO TO 150 
C 

C CASE 2B (EC.LT.0.0015) 
C 

FC=5500.0*EC*(6.202-2062.5*EC) 
C 

C FC: THE MAXIMUM CONCRETE STRESS. 
C 

RP=666.667*EC 
CR=0.1667*FC*(3.0-RP)/(2.0-RP) 
AR=0.125*(20.0-7.0*RP)/(3.0-RP) 

C 
C CALCULATION OF THE BEAM DEPTH 
C 

200 A=CR*BC*AR 
B=3.0E-06*BC*BL*BL 
C=BMU+HMD*B 
D=SQRT(B*B+4.0*A*C) 
DBI=0.5*(B+D)/A 

C 

C D B I : THE REQUIRED EFFECTIVE DEPTH OF THE BEAM. 
C 

DB=INT((DBI+HMD)/RD)*RD+RD-HMD 
RI=R 

C 

C CHECK DEFLECTION AND SLENDERNESS REQUIREMENTS 
C 

IF((DB+HMD).GE.(0.0588*BL)) GO TO 450 
DB=INT(0.0588*BL/RD)*RD+RD-HMD 

450 BLM1=60.0*BC 
C 

BIM2=:250.0*BC*BC/DB 
IF(BLM2.GE.BLM1) GO TO 550 
BCI=SQRT(0.004*BL*DB) 

C 

C B C I : THE I N I T I A L REVISED WIDTH. 
C 

BC=INT(BCI/RD)*RD+RD 
C 
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550 BMD=3.0E-06*BC*BL*BL*(DB+HMD) 
BMr=BMU+BMD 
BMDT=BMD+BMDS 

C 

C BMD: THE M̂ YIENT CAUSED BY THE BEAM SELF WEIGHT. 
C BIXTT: THE TOTAL MOMENT. 
C BMDT: THE TOTAL DEAD LOAD MOMENT. 
C 

C CALCULATION OF THE REVISED NEUTE^AL AXIS EFFECTIVE 
C DEPTH RATIO ;R (SECTION 4.3.3) 
C 

C CASE 1 (EC.GE.0.0015) 
C 

RM=0.468*BMr/(BC*DB*DB) 
C 

EOS=0.0015/ES 
COF=EOS*(EOS+4.0) 
A=OOF+6.0 
B=2.0*A 
C=COF+RM 
D=SQRT(B*B-4.0*A*C) 
R=0.5*(B-D)/A 

EC=ES*R/(1.0-R) 
RV=R 
ECV=EC 
IV=1 

IFXEC.LT.0.0015) GO TO 430 

FSI=FS 
CR=8.547*R*(3.0-0.0015/EC) 

C 

c 

c 

c 
GO TO 400 

c 
C CASE 2 (EC.LT.0.0015) 
C 

430 RM=3.108*RM 
C 

DA=1.0/EOS 
A0=-2.0*DA*RM*DA 
A1=(DA-4.0)*RM*DA 
A2=2.0*RM*(DA-1.0)+74.421*DA 
A3=RM+49.614-61.932*DA 
A4=12.375*DA-43.355 
A5=9.281 
X=0.5 

C 

650 YT=A0+X*(A1+X*(A2+X*(A3+X*(A4+X*A5)))) 
YB=A1+X*(2.0*A2+X*(3.0*A3+X*(4.0*A4+X*5.0*A5))) 
Xl=X-YT/YB 
IF(ABS(X-X1).LE.0.0001) GO TO 750 
X=X1 

C 

GO TO 650 
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C 
750 RP=X 

R=X/(DA+X) 
C 

EC=0.0015*RP 
FSI=FS 
RV=R 
ECV=EG 
IV=2 
FC=5500.0*EC*(6.202-2062.5*EC) 
CR=0.3333*R*FC*(3.0-RP)/(2.0-RP) 

C 

C CALCULATION OF THE REINFORCEMENT AREA (SECTION 4.3.3) 
C 

400 CF=CR*BC*DB 
TF=CF 
ASR<rF/FSI 
N0B=INT(1.27324*ASR/(DI*DI))+l 

C 

C NOB: NUMBER OF THE REINFORCING BARS. 
C 

ASP=0.7853982*N0B*DI*DI 
RR=100.0*ASP/(BG*DB) 

C 

C RR: THE REINFORCEMENT RATIO. 
C 

FSA=FSI*ASR/ASP 
HT=DB+HMD 
BMC=BMr 
FS1=FSA 
DP1=HMD 
IC=1 

C 

C IC=1,REPRESENTS FULL MOMENT (BMT). 
C IC=2,REPRESENTS HALF MAX L.L. + D.L. MCMENT (H^H). 
C IC=3,REPRESENTS DEAD LOAD MOMENT ONLY (BMDT) . 
C 

C CALCULATION OF THE ACTUAL STRESSES DUE TO BMT, BMTH 
C AND BMDT (FSA,FSH AND FMIN (SECTICM 4.3.4)) 
C 

C CASE 1 (EC.GE.0.0015) 
C 
920 DBA=HT-DP1 

NC2=NC2+1 
BET=0.117*ASP/(BC*DBA) 
RM=0.468*BMC/ (BC*DBA*DE1A) 

C 
890 ES=FS1/200000.0+AMAX1((FS1-340.0),0.0)/42500.0 

IBz:0 
IF(FSl.GT.340.0) IB=1 

C 

Cl=(300.0-247.423*IB)*BET 
C2=-280.412*BErr*IB 
A0:=-6.0*C1*C1 
A1=:C1* (36.0-4. 0*C1+12. 0*C2) 
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A2=-9.0*RM+Cl*(24.0-Cl+8.0*C2)-6.0*C2*(C2+6.0) 
A3=-6.0*RM+6.0*C1-C2*(24.0-2.0*C1+4.0*C2) 
A4=-RM-3.0-C2*(6.0+C2) 
X=0.0015/ES 

C 
875 YT=A0+X*(A1+X*(A2+X*(A3+X*A4))) 

YB=A1+X*(2.0*A2+X*(3.0*A3+X*4.0*A4)) 
X1=X-YT/YB 
IF(ABS(Xl-X).LE.1.0E-04) GO TO 880 
X=X1 
GO TO 875 

C 
880 ES=0.0015/X 

R=(Cl/X-C2+X)/(3.0+X) 
c 

IB1=0 
IF(ES.GT.0.0017) IBl=l 
FS1=200000.0*ES-AMAX1((ES-0.0017),0.0)*164948.45 
IF(IBl.NE.IB) GO TO 890 

C 
FS2=FS1 
EC=ES*R/(1.0-R) 
IA=1 
IF(EC.LT.0.0015) GO TO 420 

C 
TCR=1.0 
RP=1.0 
IF(IC.EQ.l) RT=R 
GO TO 900 

C 

C CASE 2 (EC.LT.0.0015) 
C 
420 X=1.0 

C 

RM=3.108*RM 
421 A=2.0*RM-X*RM 

B=X*(4.0*RM-X*(2.0*RM+74.421-X*(61.932-X*12.375))) 
C=X*(X*(2.0*RM-X*(RM+49.614-X*(43.355-X*9.281)))) 
D=SQRT(B*B-4.0*A*C) 
CA1=0.5*(D-B)/A 
ES=0.0015*DA1 
FS1=200000.0*ES-AMAX1((ES-0.0017),0.0)*164948.45 
R=X/(DA1+X) 
RP=X 
CF=2.75*RP* (3.0-RP) * (6.202-3.094*RP) *R*BC*DBA/ (2.0-RP) 
TF=FS1*ASP 
IF(ABS(CF-TF).LE.TC) GO TO 610 
X=X-0.001 
GO TO 421 

C 
610 FS2=FS1 

TCR=TF/CF 
EC=0.0015*RP 
IF(IC.EQ.l) RT=R 
IA^2 
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C 

C THE FOLLOWING SECTION IS REQUIRED TO CHECK 
G THE ASSUMED VALUE OF DPT IS ADEQUATELY NEaR TX) ITKS 
C ACTUAL VALUE, CACULATED AS THE LOCATION OF TIEC TKMSMj 
C TENSILE FORCE 
C 

900 SP=DI+25.0 
CV=30.0+0.5*DI 
IFXBL.GT.22000.0) CV=CV+2.0 

c 
C SP: THE VERTICAL SPACING BETWEEN BARS. 
C CV: THE COVER MEASURED TO THE CENTRE OF THE [%%%# 
C 

DP=DP1 
ASB=0.7853982*DI*DI 

C 

C ASB: THE REINFORCING BAR AREA. 
C 

NQLr(NOB-l)/N+l 
C 

C NOL: NUMBER OF LAYERS. 
C 

111 TF=0.0 
TM=0.0 
DBA=HT-DP 
NC1=NC1+1 

C 
DO 333 1=1,NOL 

C 

C 1=1, REPRESENTS THE OUTER BAR 
C 

BI=I-1 
SN(I)=(1.0+(DP-CV-BI*SP)/((1.0-R)*DBA))*ES 
SS(I)=200000.0*SN(I)-AMAX1((SN(I)-0.0017) ,0.0)*164948.45 
NP=N 
IF(I.EQ.NOL) NP=N0B-(N0L-1)*N 
TF=TF+NP*ASB*SS(I) 

C 
333 TM=TM+NP*ASB*SS(I)*(CV+BI*SP) 

TMA=ASP*FS2*DP 
C 

C TM; THE MOMENT SUMMATION OF THE TENSILE FORCES IN 
C THE VARIOUS LAYERS. 
C TMA: THE TOTAL TENSILE FORCE MOMENT. 
C 

IF((ABS(TMA-TM)/TM).LE.0.01) GO TO 222 
DP=DP-0.01 
GO TO 111 

C 

222 IF((ABS(DP-DP1)/DP).LE.0.01) GO TO 666 
DP1=DP 
GO TO 920 

C 
666 ESE=SN(1) 

FSE=SS(1) 
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C 

G ESE.FSE: THE STE^N AND STRESS IN THE OUTER LAYER. 
C 

SF=ESE/ES 
IF(IC.NE.l) GO TO 555 
DPT=DP 
IF((ABS(DPT-HMD)/DPT).GT.0.01) GO TO 444 
PRINT*/ \ N / , NOL= \ N O L / , SP= %SP 
PRINT*/ RI= ' , R I / , DBI= \ D B I / , DB= %DB 
PRINT*/ RV= \ R V / ; ECV= \ E C V / , IV- ' , IV 
MRITE(6,35) 

C 
PRINT*/ ASR= ' , A S R / , ASP= \ A S P / , CV= \CV 
PRINT*/ NOB- \ N O B / , RR= \ R R / , DI= \ D I 
PRINT*/ BC= ' , B C / , m": 'fHT 
MRITE(6,35) 

C 
555 PRINT*/ NC1= \ N C 1 / , NC2- ' , N C 2 / , NC3= ' ,NC3/ 

*, IA= ' , IA 
PRINT*/ TCR= \ T C R / , RP= \ R P / , R= ' ,R 
PRINT*,' ES= ' , E S , ' , ESE= ' ,ESE,' , EC= ',EC 

C 

GO TO (902,905,910) , IC 
C 
902 FSA=FSE 

FSA1=FS2 
SFT=SF 

C 
C FSA,FSA1,SFT: THE OUl'ER BAR STRESS, THE CENTROIDAL STRESS 
C AND THE STRAIN FACTOR, CORRESPONDING TO BMT. 
C 

PRINT*,' FSA1= ',FSA1,' , SFT- ',SFT, ' , DPT- ',DPT 
WRITE(6,50) FSA 
WRITE(6,35) 

C 

ay]G=BMr-0.25*BM 
IC-2 
FSl=FSAl*BMC/BMr 
DP1=HP 
NCl-0 
NC2=0 
GO TO 920 

C 

905 FSH-FSE 
FSH1=FS2 
SFH=SF 

C 

C FSH,FSH1,SFH: THE OUTEÎ  BAR STRESS, THE CENTROIDAL STRESS 
C AND THE STRAIN FACTOR, CORRESPONDING TO BMTH. 
C 

PRINT*,' FSH1= ',FSH1,' , SFH= ',SFH,' , DPH- ',DP 
PRINT*,'FSH- ',FSH 
WRITE(6,35) 

C 

BMC-BMDT 
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IC=3 
FS1=FSA1*BMC/BMT 
DP1=HP 

C 
NC1=0 
NC2=0 
GO TO 920 

C 
910 FMIN=FSE 

FMIN1=FS2 
SFD=SF 

C 

C FMIN,FMIN1,SFD: THE OUTER BAR STRESS, THE CENTRCOZAL STRESS 
C AND THE STRAIN FACTOR, 03RRESP0NDING TOiaMKT. 
C 

PRINT*,' FMIN1= ',FMIN1,' , SFD= ',SFD,' , ',DP 
PRINT*,'FMIN= ',EMIN,' N/(MM*MM)' 

50 FORMAT('FSA= ',1F9.3,' N/(MM*MM)') 
WRITE(6,35) 

C 

PRINT*,'FSI= ',FSI,' , FSA= ',FSA,' N/fMMTKM)' 
PRINT*,'FSH= ',FSH,' , FMIN= ',FMIN,' N/fMMTMM)' 
WRITE(6,35) 

C 
PRINT*,' FSI= ',FSI,' , FSA1= ',FSA1 
PRINT*,' FSH1= ',FSH1,' FMIN1= ',FMIN1 
WRITE(6,35) 

C 
BVT=0.5*BL*(24.0E-06*BC*HT+25.0)+500.0*BV 

C 

C BVT: THE TOTAL SHEAR FORCE. 
C 

DBT=HT-DPT 
VM=BVT/(BC*DBT) 
PRINT*,'VM= ', VM,' N/(MM*MM)' 

C 

C VM: THE MAXIMUM SHEAR STRESS. 
C 

BMT=BMT*1.0E-06 
BMTH=BMT-(0.25*BM)*1.0E-06 
BMDT=BMDT*1.0E-06 
BVT=BVT*1.0E-03 
PRINT*,'DEAD LOAD MQMENT= ',BMDT,' KN.M' 
PRINT*,'INT. MOMENT = ',BMTH,' KN.M' 
PRINT*,'TOTAL MAX MOMENT= ',BMT,' KN.M' 
PRINT*,'TOTAL MAX SHEAR= ',BVT,' KN' 
MRITE(6,35) 

C 

C THE FOLLOWING SECTION CALCULATES THE SECTION ftXHJLI 
C AND THEIR RELATIVE DIFFERENCES 
C 

ZT=BMT/FSA 
ZTH=BMTH/FSH 
ZD=BMDT/FMIN 
ZL= (BMT-BMDT) / (FSA-FMIN) 
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c 

ZLH= (BMTH-BMDT) / (FSH-FMIN) 
PRINT*,'ZT= 'rZT, ' , ZTH= ' ,ZTH,' , ZD= '^ZD 
PRINT*,'ZL= ' , Z L , ' , ZLH= ',ZLH 
WRITE(6,35) 

ZT1=BMT/FSA1 
ZTH1=BMTH/FSH1 
ZD1=BMDT/FMIN1 
ZL1=(BMT-BMDT)/(FSA1-FMIN1) 
ZLH1=(BMTH-BMDT)/(FSH1-FMIN1) 
PRINT*,' ZT1= ',ZT1,' , ZTH1= ',ZTH1,' , ZD1= ',ZD1 
P R I N T * , ' ZL1= ' f Z I l , ' , ZLH1= ' , Z L H 1 
MRITE(6,35) 

C 

ZXTl=AMaXl(ZTl,(AMAXl(ZTHl,ZDl))) 
ZNT1=AMIN1(ZT1,(AMIN1(ZTH1,ZD1))) 
DZT1=(ZXT1-ZNT1)/ZNT1 
DZA1=(ABS(ZT1-ZTH1))/(AMIN1(ZT1,ZTH1)) 
DZL1=(ABS(ZL1-ZLH1))/(AMIN1(ZL1,ZLH1)) 
DCA=2.0-2.0E06*ZT1/(ASP*DBT) 
RA=0.02*FSA1*ASP/(BC*DCA*DBT) 
ALPH=DCA*RA/RT 

C 

C ALPH: THE RATIO OF THE AVERAGE (XBKSWCnE (3a%PRESSIVE 
C STRESS TO THE CONCRETE COMPRESSIVE STRENGTH ;FCU. 
C 

ZXT:=AMAX1(ZT,AMAX1(ZTH,ZD) ) 
ZNT=AMIN1(ZT,AMIN1(ZTH,ZD)) 
DZT=(ZXT-ZNT)/ZNT 
DZA=(ABS(ZT-ZTH))/(AMIN1(ZT,ZTH)) 
DZL=(ABS(ZL-ZLH))/(AMIN1(ZL,ZLH)) 
PRINT*,'ALPH= 'fALPH,' , DZT= ',DZT 
PRINT*,'DZA = ',DZA , ' , DZL= ',DZL 
WRITE(6,35) 

C 

C THE FOLLOWING SECTION CALCULATES AND OOMPARES THE 
C ACTUAL AND THE SIMULATED STRESS AND STRESS RANGE 
C VALUES 
C 

F=AMIN1(ZTH1,(0.5*(ZT1+ZD1))) 
FL=AMIN1(ZL1,ZLH1) 
SF=AMAX1(SFH,(0.5*(SFT+SFD))) 
SXT=AMAX1(SFT,(AMAX1(SFH,SFD))) 
SNT=AMIN1(SFT,(AMIN1(SFH,SFD))) 
DSF=(SXT-SNT)/SNT 
PRINT*,' DSF= ',DSF,' , DZT1= ',DZTl 
PRINT*,' DZA1= ',DZA1,' , DZLl= ',DZL1 
MRITE(6,35) 

C 

PRINT*,' FL= ',FL,' , F= ',F,' , SF= ',SF 
PRINT*,' SFT= ',SFT,' , SFH= ',SFH,' , SFD= ',SFD 
WRITE(6,35) 

SE0=161.5-0.33*FMIN 
FSR=FSA1-FMIN1 
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STT=BMr/F-EMINl 
BMP=BM*1.0E-06 
STL=0.5*mP/FL 
DST=(ABS(STT-STL))/(AMINl(STT,STL)) 
SHT=BMm/F-FMINl 
SHL=0.25*BMP/FL 
DSH=(ABS(SHT-SHL))/(AMINl(SHT,SHL)) 
STCX=AMAX1(STT,STL) 
DFRX=(STCX-FSR)/(AMINl(STCX,FSR)) 
STCH=AMAX1(SHT,SHL) 
FSRH^FSHl-EMINl 
DFRH=(STCH-FSRH)/(AMINl(STCH ̂  FSRH)) 
PRINT*,'FSR= ',FSR,', STCX= ',STCX 
PRINT*,'DFRX= 'rDFRX,' , DST= ',DST 
PRINT*/STT= %STT/ , STL= \STL 
WRITE(6,35) 

C 
FSCX=STCX+BMIN1 
ESXE=SF* (FSCX/200000.0+AMAXl ( (FSCX-340.0) , 0.0) /42500.0) 
FSXE=200000. 0*ESXE-AMAX1 ((ESXE-0.0017) , 0.0) *164948.45 
STXE=FSXE-EMIN 
FSRE=FSA-FMIN 
PRINT*/ FSRE= \FSRE/ , STXE= ',STXE 
DFXE=(STXE-FSRE)/(AMIN1(STXE,FSRE)) 
PRINT*/ DFXE= %DFXE/ , SEO= ',SEO 
WRITE(6r35) 

C 

PRINT*/FSRH=' ,FSRH,' ,STCH=%STCH, ' ,DFRH=:' ,DFRH 
PRINT*/SHT= \SHT/ , SHL= \SHL/ , DSH:= \DSH 
WRITE(6,35) 

C 

FSCH=:STCH+FMIN1 
ESHE^SF*(FSCH/200000.0+AMAXl((FSCH-340.0),0.0)/42500.0) 
FSHE=200000.0*ESHE-AMAX1((ESHE-0.0017),0.0)*164948.45 
STHE=FSHE-EMIN 
FSHE=FSH-EMIN 
DFHE=(STHE-FSHE)/(AMINl(STHE,FSHE)) 
PRINT*/FSHE=' ,FSHE,' ,STHE=' ,STHE,' ,DFHE=' ̂ OFHE 
PRINT*/ DPT= \DPT 
MRITE(6,30) 

C 
30 FORMAT('====^^=====================================') 
35 FQRMATC ' ) 

C 

1000 CONTINUE 
C 

MRITE(6,60) 
60 FORMAT(' END OF THE BRIDGE DESIGN' ) 

C 

STOP 
END 


