A priori grid quality estimation for high-order finite
differencing

Ryu Fattah”, David Angland®*, Xin Zhang"

®Faculty of Engineering and the Environment, University of Southampton, Southampton,
UK.
b Department of Mechanical and Aerospace Engineering, The Hong Kong University of
Science and Technology, Clear Water Bar, Kowloon, Hong Kong (SAR), China.

Abstract

Structured grids using the finite differencing method contain two sources of
grid-induced truncation errors. The first is dependent on the solution field.
The second is related only to the metrics of the grid transformation. The
accuracy of the grid transformation metrics is affected by the inverse met-
rics, which are spatial derivatives of the grid in the generalised coordinates.
The truncation errors contained in the inverse metrics are generated by the
spatial schemes. Fourier analysis shows that the dispersion errors, by spa-
tial schemes, have similarities to the transfer function of spatial filters. This
similarity is exploited to define a grid quality metric that can be used to
identify areas in the mesh that are likely to generate significant grid-induced
errors. An inviscid vortex convection benchark case is used to quantify the
correlation between the grid quality metric and the solution accuracy, for
three common geometric features found in grids: abrupt changes in the grid
metrics, skewness, and grid stretching. A strong correlation is obtained, pro-
vided that the grid transformation errors are the most significant sources of
error.
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1. Introduction

There is a requirement in computational fluid dynamics (CFD) and com-
putational aeroacoustic (CAA) simulations for low dispersion and low dissi-
pation numerical methods to accurately predict the generation, propagation,
and interaction of acoustic, entropic and vortical disturbances. This require-
ment can be satisfied by using high-order finite differencing (FD) methods,
which have been applied in various CFD and CAA studies [1, 2|. Finite-
differencing schemes are derived from a Taylor series and contain truncation
errors. The amplitude of the truncation error may depend on the solution
field and on the grid coordinates. The latter is the source of error that relates
to the grid quality. Grids of higher quality generate smaller truncation er-
rors, and contribute less to the total error, thereby providing a more accurate
solution.

Abrupt changes in the grid spacing or grid line direction, for example
along block interfaces, have been identified as sources of grid-induced errors
13, 4, 5] and can lead to inaccuracies in the solution. Simple grid quality
measures based only on local geometric properties have been suggested |6,
7]. However, in these examples a monotonic and strong correlation between
the mesh quality metric and the solution accuracy was not obtained. The
lack of a strong correlation may be caused by the presence of additional
measures to ensure numerical stability. For example, Visbal and Giatonde
[5] showed that low-pass filters, which can have similar effects on a numerical
solution to artificial dissipation, can provide stable and accurate solutions
in areas of the mesh where there are abrupt changes in the grid spacing or
grid line direction. Solutions obtained under a strong influence of additional
filtering or dissipation may reduce the impact of poor grid quality. However,
stronger filters remove fine scale features from the solution field, thereby
reducing the fidelity of the solution. Some filtering is inherently required for
high-order methods to remove spurious modes. However, Colonius and Lele
[8] emphasise that the removal of spurious waves should be attempted by
improving the grid quality and enhancing the boundary condition accuracy
rather than by using stronger filters or additional dissipation.

Many body-fitted curvilinear grids are generated in a two-step procedure.
Firstly, the grid points along the block edges are mapped by a distribution
function. The parameters of the distribution function may be manually spec-
ified, which may impact geometric properties such as the local grid spacing,
and the grid stretching. In the second step the mesh enclosed by the block



edges is generated. This may be obtained by transfinite interpolation (TFI),
or by elliptic solvers. The latter method ensures a smooth grid, and therefore
smooth grid transformation metrics [9]. Elliptic solvers may be coupled with
additional control functions (which have manually tunable parameters) to
achieve desirable grid clustering properties [9, 10]. The high level of man-
ually specified parameters in the grid generation procedure, makes the grid
quality prone to human errors. Therefore, an effective grid quality metric
is required, in order to identify and resolve areas of poor grid quality effi-
ciently. This is especially useful for manually generated structured, body
fitted meshes typically used in high order finite difference CAA codes.

The quality of the mesh is often attributed to specific geometric proper-
ties such as the grid non-orthogonality [11, 12], or the aspect ratio [7, 13].
For any structured grid, all geometric features can be expressed by the grid
point distribution function. Present grid quality measures, that depend on
this function, are based on the work by Vinokur [14], Mastin [3] and Thomp-
son et al. [15]. In these methods, the effects of the grid geometry on the
overall truncation error are evaluated by numerically approximating the lead-
ing order terms of the truncation error series. For example, Lee and Tsuei
[11] applied this method to derive an equation to estimate the truncation
errors of the convection terms in the two-dimensional Navier-Stokes equa-
tions. The equation requires the numerical evaluation of second and third
derivatives in space by additional differencing schemes and is non-trivial to
solve. Additionally, the equation can only be evaluated once a flow field
solution is obtained. The formula does however account for the additional
errors generated when applying different differencing schemes for the spatial
derivatives and the grid metrics. Deng et al. [16] showed, for governing
equations expressed in a strong conservation form, that this inconsistency of
spatial schemes can violate the surface conservation law. This violation may
generate artificial and undesirable source and sink terms in the governing
equations that result in numerical instabilities, and degrade the robustness
of high-order methods.

In the current work an alternate approach to truncation error analysis is
outlined. The truncation errors for a generic spatial scheme are expressed by
Fourier analysis, and are shown to hold similarities to the transfer function
of spatial filters. This similarity is exploited to define a grid quality metric
scalar that correlates to the truncation errors contained in the grid metrics.
The proposed grid quality metric is applied on several grids containing three
commonly found geometric features: abrupt changes in the grid metrics,



grid skewness, and grid stretching. The results from these tests are used to
determine the correlation between the grid quality metric and the solution
error.

2. Derivation of the grid quality metric

The methodology to derive the grid quality metric is described for a 1-
D case. The application to higher dimensions is analogous. The 1-D wave
equation in the generalised coordinate system is given by,
of | ;0f 9
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where f is a scalar variable, t is time, U is the convection speed in the z-
direction, and £ is the generalised coordinate. Equation 1 can be evaluated by
spatial differencing schemes, and a temporal scheme, together with accurate
boundary conditions. The term 0&/0x is the grid transformation metric
that is evaluated by the inverse metric, which in turn is evaluated along the
generalised coordinate. The first spatial derivative (D) of scalar field (f),
with respect to &, can be evaluated by a generic spatial scheme expressed by,
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where the index ¢ is the point on the grid line, — N and M define the size of
the implicit stencil, —n and m define the range of the explicit stencil, and
the coefficients  and a ensure the desired order of accuracy. Fourier analysis
[17, 18] can be applied to the spatial scheme to obtain,
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where j = v/—1, and k and k* are the original and modified wave numbers,
respectively. This expression decomposes the truncation error of the spatial
scheme into the contributions from discrete wave numbers. This approach to
truncation error analysis does not require numerical evaluations of second and
third derivative terms, that are required by other truncation error estimation
methods [15]. The truncation error defined by Equation 3 is sensitive to the
parameter kA&, which is indicative of the grid resolution. The truncation
error becomes significant as the parameter kA¢ exceeds a threshold wave
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number k., where the dispersion error exceeds 0.1 % [19]. A similar error
analysis applied to the temporal scheme [20] reveals that the truncation error
will have an insignificant impact if the temporal resolution is sufficient.

In Equation 1, a stationary grid is considered, and the total numeri-
cal error is comprised of three different terms. The first term is a tem-
poral derivative, which depends only on the solution field f. The temporal
scheme will generate a truncation error that reduces with a smaller time-step.
The remaining terms in Equation 1 are approximated by spatial differenc-
ing schemes. The first term, 0f/0¢, will generate large truncation errors if
the solution field f is resolved poorly along the curvilinear axis £&. These
errors can be reduced by performing a grid convergence study, where the
grid refinement is focused on the areas containing large variations in f. This
refinement requires prior knowledge of the solution field. Finally, the term
0&/ 0z is the metric of the grid transformation. This term will generate large
truncation errors if the grid point distribution function ¢ is poorly resolved
along the physical coordinate x. This source of error can also be reduced
by mesh refinement. However, it can be done without prior knowledge of
the solution field f. If the solution field is continuous and the time-step is
sufficiently small, then the most significant source of error is likely due to the
metrics of the grid transformation. Therefore, the focus of this work is to
define a grid quality metric that correlates to the truncation errors associated

with 9¢/0z.

2.1. Truncation error estimation using filtering schemes

The low-dissipation properties of high-order schemes may make the so-
lution vulnerable to spurious modes. Spurious modes are typically of high
wave number and may form due to poor boundary conditions, or due to dis-
persion errors. Spatial filters can be applied, which selectively damp high
wave number modes in a solution field [17]. A generalised filtering scheme,
derived from a truncated Taylor series, can be expressed by [17],
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where ¢ and z[) are the unfiltered and filtered scalars, respectively. The order
of the filter is determined by the coefficients «; and a;, and the size of the
computational stencil is determined by the constants —my¢, ny, —M; and Ny.
The filters are applied in the generalised coordinates where the grid spacing



(A¢) is uniform. By applying the Fourier analysis [17, 18], a filter transfer
function is obtained,
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The transfer function defines the modulation to an input scalar field along dis-
crete wave numbers. Low-pass filters have a cut-off wave number threshold,
denoted by ky, beyond which the filter entirely damps the mode amplitude.
This threshold is determined by the order and the coefficients of the scheme.
Therefore, an appropriate filtering scheme may be used to identify regions
of a scalar field, which will likely generate significant truncation errors by
the spatial differencing schemes. This method would be most effective, if the
threshold values for k. and k; are similar. Additionally, the approximation
of the truncation error by filtering schemes does not require any second or
third derivatives to be evaluated.

2.2. Grid quality metric

The objective of the grid quality metric is to identify regions of the grid
that are likely to generate significant grid-induced truncation errors. These
sources of errors arise from the Jacobian (J) and the standard metrics of the
grid transformation, which are
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and are expressed in terms of d(x,y, 2)/0(&,n, (). Therefore, the truncation
error contained within the grid metrics can be approximated by applying the
spatial filtering schemes to the physical grid coordinates. A filtering operator
is defined as,

Ay = s — b, (8)



which tends to zero as the scalar ¢ contains low wave number modes, and
tends to Aw — 1 as the scalar field contains only modes that are beyond
the filter cut-off wave number k;. In the present work sixth-order explicit
[21] and sixth-order compact [22] filters are used to estimate the truncation
errors generated by the fourth-order compact schemes [1, 23]. The filtering
operator for a scalar variable v, along a grid line of varying &, and at the index
1 can be expressed as AgZJZ in Equation 8. Similarly, the filtering operators
for ¢ along grid lines of varying n and ( are expressed as ij and Ay,
respectively. By applying the filter operators to the grid points along the
generalised coordinates, the following nine terms are obtained

Aaji, A:vj, Azy,
Az, Azj, Az

The grid point distribution function for the z-coordinates along a grid line
of varying ¢ is defined by z;. The output from the filter operator, Ax;, will
provide a measure of the truncation errors generated by the spatial scheme
when evaluating dx/0¢. Larger values in the terms ij and Az, will sim-
ilarly indicate greater truncation errors when the spatial scheme is applied
along the n and ( directions, respectively. The terms in Equation 9, relate
to the accuracy of the inverse metrics defined by d(z,y,2)/9(&,n,(). Any
inaccuracies contained in the inverse metrics will affect the accuracy of the
Jacobian, and the metrics of the grid transformation.

Therefore, for an ideal grid, each of the nine terms in Equation 9 should
be zero. A non-dimensional grid quality metric ) is defined, based on these
nine terms, and is explained with the aid of Figure 1. In Figure 1, the
unfiltered grid point at (4, j) is shifted to the position (7', j) after applying
the filters along the & direction. The grid coordinate displacement is defined
by,

Ag = \/Axf +Ay? + A2 (10)

This quantity is normalised by a local length scale (A¢ in Figure 1) along
the curvilinear axis, and is taken as the average grid spacing between neigh-
bouring vertices, and defined as,



AL =\ Jaf +yi + 22, (11)

Finally, the grid quality metric for a three-dimensional case can be generalised

as,
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where larger values of () indicate larger truncation errors, due to poorly
resolved inverse grid metrics and therefore, a low quality grid . The non-
dimensional variable () is a field quantity that is defined at all grid points.

3. Correlation between grid quality metric and solution error

An important property of a grid quality metric is a strong correlation
between the grid quality metric and the solution error for problems where
the grid induced error is dominant. To demonstrate and quantify this for
the grid quality metric defined in the previous section, a simplified case is
used to provide a systematic approach to measure the correlation between

Figure 1: Generalisation of the changes to the grid coordinates induced by spatial filters,
on to a two-dimensional curvilinear mesh. Original grid points are highlighted by B, and
the modified coordinate due to the filtering is highlighted by 4.



the grid quality metric and the solution accuracy. An inviscid vortex core
convection problem [24] is used to determine the effectiveness of the grid
quality metric (@) as an indicator of the solution accuracy. The analytical
solution to this problem is known and allows the solution errors due to the
grid to be calculated.

Initial baseline values of the grid quality metric and solution error are
obtained for a uniform grid. Subsequently, different grids with similar grid
resolutions are tested to determine the influence of three types of grid features
commonly found; abrupt changes in the grid metrics, skewed grids, and grid
stretching. Finally, the results from these test cases are used to determine
the correlation between the grid quality metric, and the solution accuracy.
A strong correlation reflects the effectiveness of the grid quality metric in
identifying areas of the grid that are likely to generate large grid-induced
errors.

The vortex convection problem is governed by the two-dimensional com-
pressible Euler equations expressed in full conservation form as,

P gu pU
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where p, @ = (u,v), and p are the non-dimensional density, velocity, and the
static pressure respectively. The free-stream density and speed of sound, are
used to normalise these variables. The dimensions of space are normalised
by a unit length. The total energy e; per unit mass, is defined by,
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where 7 = ¢,/c, is the ratio of specific heats. An initialised flow consisting
of an inviscid vortex core is marched in time by a fourth-order Runge-Kutta
scheme [20], using a Courant number of CFL < 0.45. The flux terms are
evaluated by fourth-order accurate spatial schemes [1, 23] and the solution
is filtered by sixth-order implicit filters [22] at the end of each time-step.
The solution is bounded along the edges of the computational domain by a
far-field pressure condition, which is evaluated using the Riemann invariants
for a one-dimensional flow normal to the boundary. Along multi-block edges
with neighbouring block information, central spatial schemes are applied,



otherwise, biased spatial schemes are applied. The inviscid vortex [23] is
defined by,

B 1/(-1)
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The size and strength of the vortex are controlled by the variables R and e,
respectively. For the present study R = 1 m and € = 0.05. The propagation
speed of the vortex is set by the free-stream Mach number (M) of 0.5. As
shown in Figure 2(a), the initial position of the vortex is set to (z,y)—0 =
(—3,0) and the final solution is obtained at t = 12. The error field is defined
at every grid point by,
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Figure 2: Four block uniform grid. (a) Pressure disturbance field over-set with every fifth
grid line, (b) Density error field at ¢ = tgpal-
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where p and peyacy are the numerical and analytical solutions, respectively,
of the density field at ¢t = 12. The grid quality metric is defined by a scalar
field @, which is obtained by sixth order explicit [21] and implicit filters [22].
The filters employ central schemes along all block edges where neighbouring
block information is available, otherwise, a biased scheme is applied. The
integrated values of the solution error and the grid quality are obtained for
each case, and are defined by

Er = //S|E\ de dy, (17)
Q= //SQ dz dy, (18)

where S determines the size of a square integration region. A value of S =
6m x 6m was used for all test cases, except for the uniformly skewed grid.
For uniformly skewed cases, a smaller value of S = 3m x 3m was required to
ensure that the integration region is confined to the computational domain.
For each test the inviscid vortex is convected through the area of poorest
grid quality.

3.1. Uniform mesh

The uniform mesh illustrated in Figure 2(a) consists of four square do-
mains. Each domain consists of 101 x 101 grid points with a uniform grid
resolution of 0.1 m x 0.1 m. The half width of the vortex is R = 1 m, and the
entire width of the vortex is resolved along 20 grid points. The grid quality
metric is uniform, and of the order of Q(x,y) = O(107'*). The error in the
density field, illustrated in Figure 2(b), is of the order of |E(z,y)| = O(107°).
The integrated values of grid quality and solution error are Q; = O(107Y),
and E; = O(107°), respectively. The uniform test case provides baseline
measures for the solution error, and verifies that the ideal grid quality metric
is extremely small.

3.2. Abrupt changes in the grid metrics

Abrupt changes in the grid metrics can be found in complex structured
grids, such as a landing gear model [2]. Along multi-block interfaces, a stan-
dard central differencing scheme may result in strong grid-induced errors [25].
A generalised Characteristic Boundary Condition (CBC) [25] can overcome
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these numerical issues. In this section, two types of abrupt changes in the
grid metrics are tested. The first is an abrupt change in the grid spacing,
and the second is an abrupt change in the grid line direction. For these tests
the grid quality is measured using central filtering schemes along the block
interfaces. However, measures of the numerical accuracy are evaluated from
separate solutions obtained using standard central differencing schemes, and
by using a CBCs.

3.2.1. Abrupt change in the grid spacing

An abrupt change in the grid spacing is imposed by applying the following
function to the grid coordinates of the uniform mesh, described in Section
3.1

ZE*<§,77) :$(§,77)Aa:H($)a (19>

where (z,y) and (z*,y*) are the original, and modified grid coordinates re-
spectively, and H(x) is the Heaviside function. The constant A, specifies the
grid spacing size for all grid points along x > 0, relative to the original grid
spacing of Az = 0.1 m. Figure 3 illustrates the grid quality metric field for
two examples for A, = 1.25 and 2. As shown in Figure 3, the grid quality
metric correctly highlights the origin of the grid spacing discontinuity indi-
cated by larger values of the scalar (). As the constant A, is increased, the
grid spacing discontinuity is enlarged. Therefore, larger values in the scalar
() are obtained, which signifies a lower grid quality due to truncation errors
in the calculation of the grid metrics.

Figure 4 illustrates the numerical errors generated when a standard cen-
tral differencing scheme is applied across the grid metric discontinuity. These
errors act as a non-physical acoustic source. The integrated values of the grid
quality ()7, and the solution error E; are plotted from seven test cases in Fig-
ure 5. In Figure 5, the grid quality measured using explicit and implicit filters
are included and show a similar trend with increasing A,. The relationship
to the solution accuracy is plotted for a grid quality metric calculated by the
implicit filters only.

The general trend in Figure 5 indicates that as the grid spacing discon-
tinuity is increased, the grid quality is reduced. This leads to an increase
in the truncation errors of the metrics of the grid transformation. When a
CBC is used at the grid metric discontinuity, significantly lower errors are
generated. However, a strong correlation between the grid quality metric and
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the numerical error is still obtained. The solution error is also contributed
to by the reduction in grid resolution of the vortex in the downstream region
with larger A,. The abrupt change in the grid spacing with A, = 2, yields
an integrated grid quality of Q; = O(10°%), and generates an integrated error
that is two orders of magnitude greater than the baseline uniform case.

Q: 10E-03 1.7E-02 33E-02 48E-02 6.4E-02 8.0E-02
0.5 0.5
E o E o
) )
-0.5 0.5
1
05 0 05 05 0 05
x [m] x [m]
(a) (b)

Figure 3: The effect of an abrupt change in the grid spacing at x = 0 on the grid quality
evaluated by implicit and central filters. (a) A, = 1.25, (b) A, = 2.
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Figure 4: The effect of an abrupt change in the grid spacing at x = 0 on the solution error
at t = tana1, without a characteristic boundary condition. (a) 4, = 1.25, (b) A, = 2.
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Figure 5: Effect of an abrupt change in the grid spacing at x = 0 on the grid quality
and on the solution error. (a) The effect of A, on the grid quality measured by explicit [J
and implicit 2 filters, (b) the effect of grid quality on the solution error at ¢ = tgya1, for a
calculation with 4 and without 2 CBC.
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3.2.2. Abrupt change in the grid line direction

Abrupt changes to the grid line direction are imposed by applying the
following function to the grid coordinates of the uniform mesh, described in
Section 3.1

vy (&) =y(&n) + H(x)Ayz(&,n), (20)

where (z,y) and (z*,y*) are respectively the original, and modified grid co-
ordinates, and H(x) is the Heaviside function. The constant A, specifies the
grid line gradient for x > 0. Figures 6 and 7 respectively show the effect that
changes in the grid line direction may have on the local grid quality, and the
solution accuracy, for two examples of A,. The trends illustrated in Figure
8 show that as A, increases, larger truncation errors are contained in the
inverse metrics of the grid transformation. Therefore, the solution accuracy
is reduced. An abrupt change in the grid line direction with A, = 0.875 that
yields an integrated grid quality of Q; = O(10"), generates an integrated
error value that is one order of magnitude larger than the baseline uniform
grid.

Q.‘ 1.0E-03 1.7E-02 3.3E-02 4.8E-02 6.4E-02 8.0E-02
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-

I
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LW O W W W W W W W W W W W W
L W W W W W W

L o
L — )
-0.5 | . -0.5
-0.5 0.5 -0.5 0.5

X [l'(l?l]
(a) (b)

Figure 6: The effect of an abrupt change in the grid spacing at x = 0 on the grid quality
evaluated by implicit and central filters. (a) A, = 0.25, (b) 4, = 0.875.
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Figure 7: The effect of an abrupt change in the grid spacing at = 0 on the solution error
at t = tanal. (a) Ay =0.25, (b) A, = 0.875.
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Figure 8: Effect of abrupt changes in the grid line direction at z = 0 on the grid quality
and the solution error. (a) The effect of A, on the grid quality measured by explicit [J
and implicit 2 filters, (b) the effect of grid quality on the solution error at ¢ = tgya1, for a
calculation with 4 and without 2 CBC.
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3.8. Skewed grid features

In this section uniform and non-uniformly skewed grids are tested. Uni-
formly skewed grids have been applied to numerical studies [26, 27], but is a
geometric feature that is not often found. Non-uniform grids are much more
common for body-fitted structured grids. For this study no discontinuities in
the grid metric are present. Therefore, a CBC is not applied in these studies.

3.3.1. Uniformly skewed grids
Uniform grid skew is introduced by applying the following function to the
grid coordinates of the uniform mesh, described in Section 3.1

z*(&m) = z(&n) + Asy(&,m), (21)

where (z,y) and (z*,y*) are the original, and modified grid coordinates,
respectively, and A, is a constant that specifies grid line gradient across the
entire domain. The angles between grid lines of constant £ and 7 are specified
by arctan(Ag). The effect of uniformly skewed grids on the solution accuracy,
is shown in Figure 9, for two examples of A;. The integrated values of the grid
quality and the solution error are illustrated in Figure 10, and are composed
from several grids containing varying degrees of the skew angle.

Uniformly skewed grids do not induce any high wave number geometric
features. Therefore, it does not affect the dispersion errors in the metrics
of the grid transformation. This explains the consistently low levels of the
integrated quality metric @; = O(107'!). The solution error is unaffected
by the skew angle, and the integrated value of numerical error is of the same
order of magnitude as the baseline uniform grid.

3.3.2. Non-uniformly skewed grids
Non-uniform skew is imposed by applying a trigonometric function to the
grid coordinates of the uniform mesh, described in Section 3.1

(€)= () + s (D).
2mx(

Y (&) = y(E,1) + Asin ( (
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Figure 9: The effect of uniform cell skew in the grid on the solution error at t = tgpa.
Block edges for A; = 0.25 and As = 1 are shown in thick and thin black lines, respectively.
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Figure 10: The effect of uniform skew on the grid quality metric and the solution error,
as measured by explicit [J and implicit & filters. (a) The effect of As on the grid quality,
(b) the effect of the grid quality on the solution error at t = tgya.
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where (x,y) and (z*,y*) are respectively the original and modified grid co-
ordinates. The variables A; and L specify the amplitude and wavelength,
along which the local skew angle will vary. For the following test cases, the
wavelength was set to L = 10 m, and the amplitude A; was varied between
different grids.

Figure 11 illustrates the grid quality metric field @, for two examples of
A;. In these figures the region of lowest grid quality is focused on the areas
where the variations in the grid line direction are greatest, instead of the
areas where the local skew angle is greatest. The effect of varying A; on the
integrated values of the grid quality, and the solution error are illustrated in
Figure 12. The integrated grid quality Q; is of the order of 107° and 1078
for grid qualities evaluated by the explicit and implicit filters, respectively.
Both measure of grid quality indicate that the quality of the tested grids
are consistently of high quality. This is due to the high resolution of the
sinusoidal grid feature illustrated in Figure 11. The resolution of this grid
feature is equivalent to 100 grid points per wavelength. Compared to the
baseline uniform case, a grid with A; = 1.5 generates an integrated solution
error that is of the same order of magnitude.

In Figure 12, there is a significant reduction in the correlation, between
the grid quality and the solution error, in the region where Q; < 7 x 1075.
This indicates the threshold where the grid-induced errors do not dominate.
Examples of other sources of error may include the truncation errors in the
temporal scheme, or possibly by acoustic reflections due to poor boundary
conditions.
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3.4. Grid stretching

Grid stretching is typically applied to focus the maximum grid resolution
to a desired region. Such features are desirable for example in boundary layer
regions. Several grid stretching functions have been proposed [14, 15]. A grid
with the same uniform transverse spacing (Ay = 0.1 m), and distributed
stream-wise spacing is defined by the following procedure. In the range
where > 0 the following grid stretching function, defined in the generalised
coordinates, is applied,

_ ¢
Epr — 1
~ tanh(a (1 — s(¢
He) 1 tanhle (1= 5(9)
tanh(«)

where gy, is the number of grid points in the stretched region, z is the nor-
malised grid point distribution function, « affects the level of grid stretching,
and s is a uniformly distributed grid of secondary importance. This stretch-
ing function is used to define a uniform and stretched region,

s(¢)

1 <& <&, (23)

1<E<&BL

§ — max() (#(&pr) — #(Ep — 1)) £ > &ai,

l'*(f‘) — Ah 1+ gBL 7

(24)
where Ay specifies the range 0 < x < Aj, in which the grid is stretched.
Outside this region, the stream-wise grid spacing becomes uniform. For this
test case the parameters A, = 1.5 m, {g;, = 20 and max(§) = 101 are set as
constants, and the parameter « is varied between different cases. Since the
initialised vortex is located at © = —3 m, the mesh is mirrored along =z = 0.

In Figure 13, the effect of grid stretching on the solution accuracy is
illustrated for two examples. Figure 14 shows that stronger gradients in
the trigonometric stretching function will result in a lower integrated grid
quality values. Additionally, grids with lower grid quality tend to generate
larger numerical errors. Compared to the baseline uniform case, a grid with
a = 3.5 generates an integrated solution error that is one order of magnitude
larger.
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3.5. The effectiveness of the grid quality metric

From the test case results, where grid errors dominate, it was shown
that the grid quality metric is a monotonic function of the solution error.
The correlation coeflicient (Cgg), between the integral measures of the grid
quality metric (@) and the solution error (Ey), is calculated as follows [28],

(@R

where () denotes the variance. In Table 1 the correlation coefficient is listed,
for the test cases containing particular grid features. This is a measure of the
ability of the grid quality scalar ) to identify areas of the grid that are likely
to generate significant grid-induced errors. In Table 1 the correlation is listed
for four cases. The first and third columns corresponds to grid qualities mea-
sured by explicit and implicit sixth-order filters. The grid quality measures
are obtained without biased boundary schemes along the grid metric discon-
tinuities. The second and fourth column measure the correlation between the
two types of filters tested and a numerical solution obtained with the use of a
Characteristic Boundary Condition (CBC) along grid metric discontinuities.
Geometric grid features commonly found in structured grids are; grid metric
discontinuities, skewness, and stretching.

Table 1: Correlation coefficient between the grid quality metric and the solution error.

Grid features Explicit Explicit filter Implicit Implicit filter
filter w/ CBC filter w/ CBC
Grid spacing discontinuity 0.971 0.963 0.970 0.962
Grid direction discontinuity 0.955 0.969 0.954 0.968
Uniform skewness 0.472 N/A 0.128 N/A
Non-uniform skewness 0.921 N/A 0.921 N/A
Grid stretching 0.932 N/A 0.913 N/A

From Table 1 the following observations are found. The grid-induced grid
metric truncation errors by uniformly skewed grids is insignificant, and also
uncommon in applications. Grid stretching, non-uniformly skewness, and
grid metric discontinuities are more common in practice, and consistently
show a high correlation coefficient. This shows that the proposed grid quality
metric is effective in identifying a priori regions of the grid that may generate
large grid-induced errors.
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The most significant grid-induced errors are generated by an abrupt
change in the grid spacing. This can be a result of an incorrect parame-
ter definition in the grid point distribution function applied along a block
edge, and caused by human error. Using the proposed grid quality met-
ric, these regions can be identified easily. If these regions cannot be easily
resolved, they may be treated by a characteristic boundary condition.

Another significant source of grid-induced errors is excessive grid stretch-
ing in Table 1. The grid quality metric highlights the regions of the grid
that are most likely to be the source of significant grid metric errors in the
solution. The grid quality metric also correlates strongly to the solution error
for these cases. In these test cases, the parameters that control the ampli-
tude of the grid stretching are spread across a range from very low to very
large, values. As a result, the solution error asymptotes as the extent of grid
stretching tends towards a uniformly spaced grid. At this limit, the sources
of grid metric errors become less significant, compared to other sources of
numerical errors.

An effective grid quality metric should correlate to the solution accuracy,
and additionally be invariant to the grid scale and the grid orientation. These
additional desirable properties are demonstrated in Figure 15. Baseline levels
of the desirable grid quality can be established for different solvers by a series
of test cases. These levels can be applied to any grid, regardless of its scale or
orientation. The threshold between a grid of satisfactory and unsatisfactory
quality will vary between solvers, and depend primarily on the resolution
characteristics of the spatial schemes employed. Factors such as the order of

the scheme, and the amount of artificial dissipation, will additionally affect
this threshold.

4. Conclusion

Body-fitted, curvilinear grids that are manually generated may contain
regions of large grid-induced errors. These regions are typically removed by
an iterative process where solution fields are analysed, followed by some grid
modifications. This procedure may be lengthy until a satisfactory grid is
obtained. Larger grid-induced errors may be suppressed by the use stronger
spatial filters, or artificial dissipation. However, stronger filters will damp
fine scale features in the solution field, and therefore degrade the fidelity of
the solution. A high quality grid may be generated much more efficiently if
an effective grid quality metric is defined to aid the user in creating a grid.
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For time-invariant structured grids employing finite differencing schemes,
the grid-induced errors are due to two sources. The first is related to the grid
resolution of the solution field, and resolved by a grid convergence study. The
second source of error is independent of the solution field and is affected by
the accuracy of the grid transformation metrics.

The accuracy of the grid transformation metrics is affected by the inverse
metrics, which are measures of the spatial derivatives on the grid along the
generalised coordinates. The truncation errors contained in the inverse met-
rics are generated by the spatial schemes. Fourier analysis shows that the
dispersion errors, by spatial schemes, have similarities to the transfer func-
tion of spatial filters. This similarity is exploited to define a grid quality
metric that can be used to identify areas in the mesh that are likely to gener-
ate significant grid-induced errors. These areas can be identified clearly and
remedied.

Several test cases on different grids show that the proposed grid quality
metric is strongly correlated to the solution accuracy, under the condition
that the grid-induced errors are the most significant sources of error. There-
fore, improvements to the grid quality metric are very likely to result in an
improved solution accuracy. This method improves the fidelity of high-order
solvers by minimising the application of additional artificial dissipation that
is required to ensure numerical stability, and reduces the amount of com-
putational resources, and time, required for the iterative grid generation
procedure to obtaining a satisfactory grid.

The grid quality metric proposed is also normalised, which makes the
scalar field independent of grid scale or grid orientation. Therefore guide-
lines on the desired levels of the scalar can be evaluated and applied to any
grid. These guidelines will vary between solvers due to the differences in the
resolution characteristics of the numerical methods employed. If low-order
filtering schemes are used to assess the grid quality, areas of the grid that
may not necessarily induce significant grid-induced errors, will be addition-
ally highlighted. Therefore, the transfer function of the filters, should closely
match the dispersion relation of the spatial differencing scheme in the solver.
With these guidelines defined, areas of the grid likely to generate significant
truncation errors in the metrics of the grid transformation can be identified
and resolved, all without any knowledge of the solution field.
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