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Abstract—Analytical methods are useful tools in the design
of rotating electric machines because the simulation times tend
to be low and they provide a good insight. However, in the
analysis of non-traditional machines, like the transverse-flux
machine (TFM), the most common approach is to use finite
element analysis (FEA). In this paper we show how to use the
complex permeance (CP) methodology to obtain the magnetic
field distribution on the air-gap of a homopolar TFM produced by
the stator windings. The properties of the CP function are based
on conformal mapping theory. Also, we propose an algorithm
to estimate the parameters of the CP function after evaluating
the function in a set of randomly generated number of points,
which reduces the computation time significantly. The proposed
methodology is applied to a single-sided TFM showing that the
results are consistent with FEA calculations.

I. INTRODUCTION

The magnetic flux-density distribution in the air-gap of
an electric machine determines the performance parameters
like the torque and the induced electromotive force. For this
reason it is essential to have accurate models to describe
the electromechanical interaction that takes place in order to
design better machines.

Transverse-flux machines (TFM) are very interesting de-
vices because they can achieve high torque densities and
therefore they are suitable for direct drive applications [1],
[2], [3]; in references [1], [2] this device is called variable-
reluctance permanent-magnet (VRPM) machine. However, the
magnetic field distribution is intrinsically three-dimensional
making the task of modelling difficult. For this reason the
current trend is to use 3D finite element analysis (FEA)
which is time consuming and does not readily provide an
insight. Other alternative is to use refined magnetic equivalent
circuits, which is a semi-numerical method and is reported to
have lower computation times than FEA [4], [5]. Therefore
analytical methods remain very useful tools for a quick first
design approach.

The complex permeance method proposed by Zarko et al.
[7], [8], [9] uses conformal mapping to obtain a complex
permeance (CP) function that modulates the magnetic field
distribution from the slotless configuration. One of the main
disadvantages of the complex permeance method proposed by
Zarko is that the computation time is relatively high because
of the necessity of evaluating the permeance function in a
great number of points to generate whole waveform [10]. This
paper presents a different approach to the complex permeance
method adapting it for a homopolar field distribution, which

is the case of the machine under study. The methodology
proposed in this paper to estimate the parameters of the
permeance function reduces the computation time significantly
because the number of points in which the function has
to be evaluated is lower. The significant reduction in the
computation time presents an improvement in the context of
the design and optimisation of electric machines.

The paper starts with a description of the single-sided TFM
under study. Section III describes the application of conformal
mapping to obtain the CP function in the air-gap showing
the two conformal transformations involved in the process.
In section IV the properties of the CP function are described.
Next, in section V the algorithm to estimate the coefficients of
the CP function using random sampling is presented. Finally,
the methodology is applied to the TFM built at the University
of Southampton [1], [2] and the results are compared with 2D
and 3D FEA for validation.

II. THE SINGLE-SIDED TFM MACHINE UNDER STUDY

Fig. 1 shows the front view and the cross-section of the
machine under study, which is an inverted surface-magnet
configuration [1], [2]. The stator is two-phase, each phase
has a circular coil that links and magnetizes 20 C-cores
producing a homopolar magnetic field distribution. The radial
flux interacts with an array of 40 permanent magnets with
alternating polarity. The dimensions of the machine studied
are shown in table I.

Fig. 1. Front view and cut of a single sided TFM under study.
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Fig. 2. Conformal transformations required to obtain the magnetic field distribution in the air-gap.

TABLE I
PARAMETERS OF THE TF MACHINE

Quantity Symbol Value
Stator radius Rs 73 mm
Rotor radius Rr 78.5 mm
Air-gap length gz 5.5 mm
Magnet thickness dm 4.51 mm
Pole pitch θλ 18o

Tooth pitch θt 7.02o

Slot pitch θs 10.98o

Number of C-cores n 20

This particular topology has the property of high torque
density. However, the path of the magnetic flux is three-
dimensional and therefore difficult to model analytically.

III. FIELD SOLUTION IN THE AIR-GAP

The air-gap of the machine under study has a toothed
member (each C-core can be considered a tooth) and a smooth
coreback. Fig. 2 shows the z-plane, which is the real geometry,
and the transformed domains (w and χ planes), which are
described later in the paper. The magnetic field distribution is
obtained using a complex permeance (CP) function [7], [8], [9]
adapted for a homopolar field distribution. We are assuming
that the permeability of the iron is infinite and the effect of
saturation is negligible.

We present an alternative interpretation of the CP function
in order to simplify the final expression of the magnetic field
distribution. The function λ(θ, r) modulates the scalar value of
Bs(t) that is the instantaneous magnetic flux-density produced
by the stator windings in the simplified rectangular slotless
geometry defined as follows:

Bs(t) =
µ0F (t)

gz
, (1)

where F (t) is the instantaneous magneto-motive force (MMF)
produced by the stator windings and g is the effective air-gap
length. The function λ(θ, r) depends only on the geometric
properties of the air-gap that give the shape. The scalar value

of Bs(t) gives the magnitude to the function of the magnetic
field distribution ~B(t, θ, r).

The function λ(θ, r) is calculated in such a way that the real
part corresponds to the radial component and the imaginary
to the tangential one. In this paper the variable θ is expressed
in electrical radians, such that a pole pitch is 2π; to change
to mechanical radians it is necessary to divide by the number
of pairs of poles. Accordingly, the expression of the magnetic
field distribution in the air-gap expressed as a vector is:

~B(t, θ, r) = Bs(t)
[
Re
{
λ(θ, r)

}
~ur + Im

{
λ(θ, r)

}
~uθ

]
. (2)

The value of λ(θ, r) is obtained using conformal mapping
theory by transforming the original domain (z-plane) into a
new one in which we know the solution, in this case the new
domain is a rectangle (χ-plane) where the magnetic field is
constant [11]. To achieve this there are two conformal transfor-
mations to be done, a proportional-logarithmic transformation
[12] that transforms the circular geometry into a rectangular
developed model and a Schwarz-Christoffel transformation
that maps the developed model into a rectangle [11], [13],
[7], [8], [9].

A. Proportional-Logarithmic Transformation (T1)

The first conformal transformation (T1 in Fig. 2) maps the
circular geometry of the z-plane into a rectangular geometry
in the w-plane. To achieve this T1 has to be a proportional-
logarithmic transformation [12]. The proportionality constant
Rg chosen is the radius of the middle of the air-gap in
this case. The transformation to obtain the w-plane is the
following:

w = Rg log(z).

According to the theory of conformal mapping [11], [13],
[14] the relationship between the magnetic field in z and w-
planes expressed as complex numbers:

Bz = Bw

(dw
dz

)∗
= Bw

(Rg
rz
ejθz

)
(3)



The term that multiplies Bw in (3) has a term that is a scale
factor (Rgr ) and a second term (ejθz ) that transforms the real
component into radial and the imaginary one into tangential.
To obtain the magnetic field at a particular point of the z-
plane it is sufficient to know the value of the field on the
w-plane and the derivative of the transformation evaluated in
that point. If we define the relative permeance associated to
the proportional-logarithmic transformation as

λlog(r) =
Rg
r
, (4)

then, the expression of the magnetic field in the z-plane as a
vector ~Bz in radial and tangential components is as follows

~Bz =
[
Re
{
Bw
}
~ur + Im

{
Bw
}
~uθ

]
λlog(r). (5)

B. Schwarz-Christoffel Transformation (T2)

The details of Schwarz-Christoffel transformations and their
application to solve this problem are given in [11], [13], [14].
According to the literature this transformation is sometimes
called Numerical Schwarz-Christoffel Transformation because
the equation of the transformation is not explicit, in this paper
the solution is obtained with the SC Toolbox developed by
Driscoll [15].

The starting point is the polygon in the w-plane that needs
to be transformed into a rectangle that is the χ-plane, shown
schematically in Fig. 2, in which the magnetic field distribution
is known. The general equation of the SC transformation is as
follows [14]:

w = f(χ) = K1

∫ N∏
k=1

(χ− χk)
αk
π −1dχ+K2, (6)

where K1 and K2 are integration constants and αk are the
interior angles of the polygon. The function f̂(w) is defined
as the inverse of f(χ):

χ = f̂(w). (7)

Even though there is not an analytical expression of f̂(w)
the derivative of the transformation of the w-plane into the
χ-plane is defined as follows (taking into account that χ is a
function of w)

dχ

dw
= f̂ ′(w). (8)

The relationship between the magnetic fields is given by

Bw = Bχ

( dχ
dw

)∗
= Bχ

{
f̂ ′(w)

}∗
. (9)

The functions f̂(w) and f̂ ′(w) can be evaluated in each
point with the SC Toolbox once the map is created.

The SC transformation is such that the domain in the χ-
plane is the rectangle shown in Fig. 2. The solution to the
Laplace equation considering an MMF F (t) is the following:

Bχ(t) =
µ0F (t)

`
, (10)

where the length ` can be calculated as the following:

` = |χA − χB |,

The SC Toolbox gives the option of obtaining χi = f̂(wi)
making the calculation of ` trivial because is just the length
of the side of the rectangle on the canonical domain. The field
in the w-plane can be expressed as

Bw = Bχ

{
f̂ ′(w)

}∗
= Bs(t)

gz
`

{
f̂ ′(w)

}∗
, (11)

the term that multiplies Bs(t) is the relative complex perme-
ance associated with the SC transformation taking into account
that w is a function of θ and r:

λSC(θ, r) =
gz
`

{
f̂ ′
(
w(θ, r)

)}∗
. (12)

For the polygon considered here there is not an explicit
expression f̂ but with the SC Toolbox [15] it can be evaluated
at any point and also the derivative can be evaluated. Con-
sequently, the function λSC(θ, r) cannot be obtained directly
but can be evaluated at every point of the domain.

IV. PROPERTIES OF THE CP FUNCTION

The function λlog(r) associated to the logarithmic transfor-
mation is a real number and the function λSC(θ, r) associated
to the SC transformation can be separated into real and
imaginary part that correspond to the radial and tangential
components respectively. The permeance function can be
expressed as the product of these two functions as follows:

λ(θ, r) = λlog(r)
[
λr(θ, r) + jλθ(θ, r)

]
, (13)

where

λSC(θ, r) = λr(θ, r) + jλθ(θ, r). (14)

The function λSC(θ, r) has the same shape as the magnetic
field distribution of the rectangular geometry (w-plane in this
paper, Fig. 2) therefore for each r the real and imaginary parts
can be expressed as Fourier series according to [13] because
of the symmetry of the boundary conditions:

λr(θ, r) = λr

[
1 +

∞∑
n=1

γn(r) cos(n θ)
]
, (15)

λθ(θ, r) =

∞∑
n=1

λθn(r) sin(n θ), (16)

with the coefficients calculated accordingly:

λr =
1

π

∫ π

0

Re
{
λSC(θ, r)

}
dθ, (17)

γn(r) =
2

πλr

∫ π

0

Re
{
λSC(θ, r)

}
cos(nθ)dθ, (18)

λθn(r) =
2

π

∫ π

0

Im
{
λSC(θ, r)

}
sin(nθ)dθ. (19)



[
X
]
K×Nc

=


1 cos(θ1) δ1 cos(θ1) . . . δ

Np
1 cos(θ1) . . . cos(Nh θ1) δ1 cos(Nh θ1) . . . δ

Np
1 cos(Nh θ1)

1 cos(θ2) δ2 cos(θ2) . . . δ
Np
2 cos(θ2) . . . cos(Nh θ2) δ2 cos(Nh θ2) . . . δ

Np
2 cos(Nh θ2)

...
...

...
. . .

...
. . .

...
...

. . .
...

1 cos(θK) δK cos(θK) . . . δ
Np
K cos(θK) . . . cos(Nh θK) δK cos(Nh θK) . . . δ

Np
K cos(Nh θK)



The total flux crossing the air-gap has to be constant and
therefore λr is constant and does not depend on r. On the
other hand the functions γn(r) and λθn(r) have an unknown
shape but they can be approximated as polynomials. For the
polynomial approximation, instead of using the variable r the
distance to the coreback δ is used:

δ = Rg +
g

2
− r. (20)

The functions of the Fourier coefficients expressed as poly-
nomials of δ are as follows

γn(δ) = γ0n + γ1nδ + γ2nδ
2 + · · · , (21)

λθn(δ) = λ1θnδ + λ2θnδ
2 + λ3θnδ

3 + · · · , (22)

where γ0n, γ1n, γ2n, . . . , are the Taylor coefficients for the radial
component and λ1θn, λ2θn, λ3θn, . . . , the corresponding ones for
the tangential component1.

V. ESTIMATION OF THE COEFFICIENTS OF THE CP
FUNCTION

One of the main disadvantages of the CP method imple-
mented in [7], [8], [9] is that the computation time is high
because the CP function needs to be evaluated at each point
to obtain the waveform [10]. However, with the proposed
methodology for an arbitrary geometry the machine designer
can decide the harmonic order, Nh, and the order of the
polynomial of the Taylor series, Np, and after that estimate
the number of points that have to be evaluated in order to
obtain the coefficients. For the radial component of there are
Nc coefficients (λr, γ0n, γ1n, γ2n, . . . ) and for the tangential
component of there are Ncθ < Nc coefficients ( λ1θn, λ2θn, λ3θn,
. . . ). Under these conditions the model can be fully defined
by evaluating at least Nc independent points. If Nh is the
higher order harmonic and Np the power of the last term of
the Fourier series, Nc is calculated as follows:

Nc = Nh(Np + 1) + 1. (23)

To describe the following algorithm to identify the param-
eters of the permeance function instead of directly calculating

1The tangential component does not have the λ0θn term because there is
not tangential component at δ = 0 in this geometry.

γn(δ) we will first calculate an(δ) that is the harmonic
amplitude before normalisation:

an(δ) = λrγn(δ). (24)

For an arbitrary point (θi, ri) the value of the permeance
function:

Re
{
λSC(θi, ri)

}
= λr +

Nh∑
n=1

Np∑
m=0

amn δ
m
i cos(n θi), (25)

where λSC(θi, ri) is calculated as follows:

λSC(θi, ri) = λ(θi, ri)
ri
Rg

. (26)

If we consider K independent points, with K > Nc, we
have an over determined linear system with K equations and
Nc unknowns that are the coefficients. (26) can be written in
a matrix form as follows:

XC = Λ, (27)

where [X]K×Nc is the matrix with the points in which the
permeance function is evaluated, organised to be consistent
with (26); the full matrix is shown at the top of the page. C
is the matrix with the coefficients that we want to estimate:

[
C
]
Nc×1

=



λr
a01
a11
...

a
Np
1

a02
...

a
Np
Nh


. (28)

Λ is the solution vector

[
Λ
]
K×1

=


Re
{
λSC(θ1, r1)

}
Re
{
λSC(θ2, r2)

}
...

Re
{
λSC(θK , rK)

}

 . (29)

The coefficients can be estimated using the following linear
least squares algorithm:

C =
[(

XtX
)−1

Xt
]
Λ, (30)



where t denotes the transposed matrix.
Once the vector C is known the real part of the complex

permeance function is fully defined. The procedure for the
imaginary part is completely analogous. Once the real and the
imaginary part are obtained the magnetic field distribution is
known as a vector in all the air-gap.

A. Random Sampling

To improve the reliability of this algorithm we want to make
sure that we avoid having any problem in inverting the the
matrix [XtX], or what is the same: that we have at least Nc
independent points. To achieve this we propose to generate
a set of random points. It was observed that if we have a
given number of points distributed uniformly as a grid and we
are trying to detect a high frequency space harmonic whose
period is of a similar order of magnitude as the separation of
the points; then the matrix [XtX] may produce problems in
the inversion. Because of the nature of random sampling this
problem does not appear because the points are not equally
spaced. Each point is calculated as follows:

δi = dm ·R(0, 1), (31)

θi = 2π ·R(0, 1), (32)

where R(0, 1) denotes a random variable between 0 and 1
with constant probability density function.

50 55 60 65 70 75

x [mm]

0

5

10

15

20

y
[m

m
]

C-core

C-core

Fig. 3. The set of random points, S. In this case it consists 250 random
points..

Fig. 3 shows the set of points S, which consists in 250
points generated randomly. The improvement in the stability
of the algorithm is due to the fact that the points are not
equally spaced and therefore the high frequency harmonics
can be detected.

VI. RESULTS

This section illustrates the proposed methodology by its ap-
plication to the transverse-flux (or VRPM) machine described
in section II. This machine was built at the University of

Southampton and has been studied in detail with FEA [1], [2]
making it suitable for validation of the proposed methodology.

The windings of the machine have Nt = 230 turns in the
configuration analysed in this paper and the rated current I is
10 A. The MMF in each C-core head is calculated as follows

F =
1

2
NtI = 1150A, (33)

therefore the magnetic field of the slotless configuration is

Bs =
µ0F

g
=

4π · 10−7 · 1150
4.5 · 10−3

≈ 0.263T. (34)

If the current was a sinusoidal the value of Bs would not
be constant but a sinusoidal function as well, the analysis
here considering a constant current is the case of a square
waveform.
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Fig. 4. λr(θ, r) in the middle of the air-gap, r = Rg .

Fig. 4 shows the real part of the permeance function at
the middle of the air-gap (r = Rg). The green triangles were
obtained using 2D FEA with a scalar potential formulation, the
orange squares were obtained using 3D magnetostatic FEA,
the red crosses are the value of λr(θi, ri) evaluated using
the SC Toolbox and the blue line is the approximated model
considering 500 random points, the harmonic order Nh = 11
and the polynomial order Np = 5. The value of λr obtained
by evaluating the function, 2D FEA and the proposed model
has a less than 0.01 % error in this case.

To study the accuracy of the method in the entire domain
and not only in the air-gap Fig. 5 shows the harmonic
amplitude of the first four harmonics obtained by evaluating
the permeance function, 2D FEA and the proposed method.
The coefficients of the Fourier series for the comparison were
calculated by evaluating (17) and (18) after obtaining the
waveform with FEA or by evaluating points with the SC
Toolbox.
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Fig. 5. The amplitude of the first four harmonics of the radial component of the magnetic field Nh = 11 and Np = 5, with a set of 500 random points.

VII. CONCLUSION

The paper illustrates how to obtain the magnetic field
distribution in the air-gap of electric machines using the CP
method combined with random sampling. The case study is
a TFM but it can be applied to other machines that have a
slotted topology. The results obtained with the methodology
presented here are consistent with FEA and with the traditional
CP method.

Random sampling can effectively improve the computation
time by reducing the number of points at which the CP
function has to be evaluated. To generate the whole waveform
of the CP function at a particular radius, r, it is necessary to
evaluate a large number of points depending on the accuracy
required. With a small set of randomly generated points we
can accurately estimate the CP function coefficients in all the
air-gap. Random sampling was preferred to uniform sampling
because of the improvement of the stability of the algorithm.

The formulation of the problem is such that the shape of the
CP function is deduced from conformal mapping theory and
we only have to calculate the coefficients of the polynomials.
This allows us to directly estimate the amplitude of the har-
monics, which facilitates subsequent analysis of performance.
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