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Abstract We address the Virtual Network Embedding problem (VNE) which,
given a physical (substrate) network and a collection of virtual networks (VNs),
calls for an embedding of the most profitable subset of VNs onto the physi-
cal substrate, subject to capacity constraints. In practical applications, node
and link demands of the different VNs are, typically, uncertain and difficult to
know a priori. To face this issue, we first model VNE as a chance-constrained
Mixed-Integer Linear Program (MILP) where the uncertain demands are as-
sumed to be random variables. We then propose a Γ -robust optimization ap-
proach to approximate the original chance-constrained formulation, capable of
yielding solutions with a large profit that are feasible for almost all the possi-
ble realizations of the uncertain demands. To solve larger scale instances, for
which the exact approach is computationally too demanding, we propose two
MILP-based heuristics: a parametric one, which relies on a parameter setting
chosen a priori, and an adaptive one, which does not. We conclude by report-
ing on extensive computational experiments where the different methods and
approaches are compared.
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Fig. 1: (a) Two VN requests, R1 and R2, embedded into the substrate G0, while R3 is
rejected. (b) A (forbidden) one-to-many mapping of a virtual node.

1 Introduction

In the context of large scale networks, the paradigm of network virtualization
has garnered a large attention, being advocated as one of the key technologies
of the future of networking [2,3]. In its general form, the paradigm allows to
decouple the physical (low level) management aspects of a networking envi-
ronment from those (of higher level) involving service provisioning. This way,
it benefits the two main actors of a networking context: the owner of the phys-
ical or substrate network, the so-called infrastructure provider—who, this way,
can solely concentrate on the management aspects of the substrate—and the
service provider—who, this way, can only focus on the provisioning aspects of
his services. A prominent application scenario is that of the Internet which,
due to only allowing for small and incremental updates to its structure as a
consequence of its inherently plural nature, can largely benefit from virtualiza-
tion techniques as a noninvasive way of upgrading itself, preventing ossification
phenomena. For a more detailed treatment of the topic, we refer the reader to
the surveys [2,3,4].

1.1 The VNE problem and previous work

When considering the infrastructure provider’s perspective, we are faced with
the so-called Virtual Network Embedding problem (VNE). It is the problem
of, in the first place, deciding whether to accept or reject a subset of Virtual
Network (VN) requests issued by the customers (the admission control aspect)
and, then, of embedding the accepted VNs onto the substrate network, subject
to capacity constraints. In this paper, we will focus on the offline version of
VNE in which the set of VN requests is known beforehand. This suits the case
where the VN requests are issued ahead of the time when their service will be
activated, thus allowing for sufficient time for offline planning. Such requests
are, typically, quite large in terms of resource requirements and, if accepted,
sufficiently long lasting to assume that they will be embedded indefinitely.

In this work, we assume that each VN is composed of a set of virtual nodes,
each of which endowed with an estimate of the node resources it requires
(computing power), which we refer to as node demands, as well as a set of
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traffic or link demands between pairs of virtual nodes. An embedding thus
consists of virtual-to-physical node-to-node and link-to-path mappings which
do not exceed the node and link capacities of the substrate network. Note that,
while we allow for the mapping of any number of virtual nodes belonging to the
same VN request to the same physical node (so-called co-location), we forbid
the mapping of a single virtual node to more than a single physical node1. As
customary for VNE, see [3] and the references therein, we also consider locality
constraints which restrict the set of physical nodes onto which a virtual node
can be mapped. This allows for the encoding of technical specifications which
are only met by certain physical nodes, as well as geographical restrictions (to
prevent, for instance, the mapping of data intensive services too far away from
the corresponding data centers). Throughout the paper, we will assume a single
path unsplittable routing scheme, which is often preferred to a splittable one so
to avoid packet reordering issues (see, e.g., [5]). Nevertheless, the generalization
of the techniques that we will propose to the splittable case is straightforward,
as we will better point out in the following. For an example of a VNE instance,
together with a feasible solution, see Figure 1 (a).

As it is easy to observe, VNE is weakly NP-hard by reduction from the
0-1 knapsack problem (KP) [3]. Strong NP-hardness is established in [6] by
reduction from the maximum stable set problem. The result also implies that
VNE cannot be approximated in polynomial time within a factor of |V 0| 12−ε
for any ε > 0, unless P = NP [6].

Most of the literature on VNE employs heuristics in which node and link
mappings are carried out sequentially, usually in an online setting where the
virtual network requests arrive over time. Examples can be found in, e.g., [7],
which also accounts for reconfigurations of a given embedding, and [8], which
employs both deterministic and randomized rounding techniques. For an ex-
tensive account on (mostly heuristic) algorithms for VNE, we refer the reader
to the excellent survey [3]. For a rounding algorithm based on column gen-
eration, also encompassing admission control, see [9]. For a greedy algorithm
based on the degree of utilization of the different physical nodes, see [10].
Also see [11] for an energy-efficient version of VNE subject to Gaussian traffic
demands.

Among the few exact approaches, we mention that in [12], where the au-
thors propose a Mixed-Integer Linear Programming (MILP) formulation to
carry out each step of an algorithm for the online version of the problem, [13],
which illustrates an MILP formulation for the offline version of VNE which
also accounts for the installation (or rental) of network capacities (with a
rent-at-bulk aspect), and [14,15], which extend [12] to the energy-aware and
fault-tolerant cases.

1 We assume that each task which can be parallelized on multiple physical nodes is de-
scribed in a VN request via as many virtual nodes as the number of parallel threads it can
use. This way, a task will be split only if, by splitting it, a more profitable embedding can
be obtained. On the contrary, splitting a single virtual node would force us to split both
the node and the traffic demands over the physical network in a not well defined way, see
Figure 1 (b).
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For the closely related problem of Network Functions Virtualization (NFV),
we refer the reader to [16], which addresses network planning of a mixed
physical-virtual CDN (Content Delivery Network), tackled from a stochas-
tic programming point of view, and to [17], for the embedding of network
functions with congestion minimization.

1.2 Contribution and outline of the work

To our knowledge, almost all the works on VNE assume that node and link
demands of the different VNs are known deterministically2. In a realistic set-
ting though, it is reasonable to assume that, for each VN, the actual demands
of computing power and bandwidth (i.e., node and traffic demands) entail sig-
nificant uncertainty (e.g., because of measurement errors or variability over
time).

To cope with this issue, in this work we propose a robust optimization
formulation (based on the model of Γ -robustness) for VNE which, after se-
lecting an appropriate value for the parameter Γ , allows to achieve solutions
which (under mild assumptions) satisfy each of the constraints where uncertain
parameters are involved with any desired probability. For clarity, we first intro-
duce a chance-constrained formulation for VNE where node and link demands
are assumed to be random variables and the constraints of the problem are
required to be satisfied with high probability, and show how this formulation
can be approximated via the Γ -robust formulation which is, computationally,
more tractable.

The paper is organized as follows3. In Section 2, we illustrate a deter-
ministic MILP formulation for VNE and discuss on the NP-hardness of its
two natural subproblems. In Section 3, we describe the chance-constrained
and MILP Γ -robust formulations. To tackle large-scale instances, we present,
in Section 4, two MILP-based heuristics, both yielding Γ -robust solutions: a
two-phase one, which relies on an a priori parameter setting, and an adaptive
one which does not. Extensive computational experiments are reported and
illustrated in Section 5. Concluding remarks are drawn in Section 6.

2 Deterministic MILP formulation and complexity

In this section, we provide a deterministic MILP formulation for the problem
and address the NP-hardness of its two (natural) subproblems.

2 The works in [11,18] constitute the, to our knowledge, only notable exceptions where
VNE is not tackled in a deterministic setting. Differently from the setting we assume in this
paper though, both works tackle (heuristically) the online version of VNE where the VN
requests arrive over time one by one (or, at most, in batches), whereas, in this work, we
assume that the whole set of requests is known beforehand and that admission control is in
place. Although our work can clearly be used for the case where a single VN request has to
be embedded, we recall that, in this paper, embedding costs are not considered.

3 A preliminary version of this work appeared in [1].
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2.1 Deterministic MILP formulation

Let us assume, for now, a deterministic setting where all the parameters of the
problem are precisely known beforehand. Let the directed graph G0 = (V 0, A0)
represent the physical network, with node capacities c0i for all i ∈ V 0 and link
capacities k0ij for all (i, j) ∈ A0. Let R = 1, . . . , |R| be the set of VN requests,
with profits pr ≥ 0 for all r ∈ R. For each r ∈ R, let V r be the set of virtual
nodes, each of which endowed with a parameter ωrv denoting the corresponding

node demand and a (possibly sparse) virtual traffic matrix Dr ∈ R|V
r|×|V r|

+ ,
where each element drvw ≥ 0 accounts for the traffic demand between the two
virtual nodes v, w ∈ V r. We denote by V 0(r, v) ⊆ V 0 the set of physical nodes
to which the virtual node v ∈ V r, pertaining to request r ∈ R, can be mapped
due to locality constraints.

The following MILP formulation of VNE is similar to the one proposed
in [13], although it neglects some extra aspects (notably, rent-at-bulk) which
are outside the scope of this paper. We employ three groups of decision vari-
ables: yij , x

r
vi, and fr,vwij . Let yr ∈ {0, 1} take value 1 if the request of index

r ∈ R is accepted and 0 otherwise. Let xrvi ∈ {0, 1} be equal to 1 if the virtual
node v ∈ V r, pertaining to request r ∈ R, is mapped onto the physical node
i ∈ V 0, with yr = 0 otherwise. Let fr,vwij take value 1 if the traffic between the
two virtual nodes v, w ∈ V r, for a request r ∈ R, is routed over the physical
link (i, j) ∈ A0, and 0 otherwise. Then, the VNE problem can be cast as the
following MILP:

max
∑
r∈R

pryr (1)

s.t.
∑

i∈V 0(r,v)

xrvi = yr ∀r ∈ R, v ∈ V r (2)

∑
r∈R

∑
v∈V r :

i∈V 0(r,v)

ωrvx
r
vi ≤ c0i ∀i ∈ V 0 (3)

∑
r∈R

∑
v,w∈V r

drvwf
vw,r
ij ≤ k0ij ∀(i, j) ∈ A0 (4)

∑
(i,j)∈δ+(i)

fvw,rij −
∑

(j,i)∈δ−(i)

fvw,rji = xrvi − xrwi ∀r ∈ R, v, w ∈ V r, i ∈ V 0 (5)

yr ∈ {0, 1} ∀r ∈ R (6)

xrvi ∈ {0, 1} ∀r ∈ R, v ∈ V r, i ∈ V 0(r, i) (7)

fvw,rij ∈ {0, 1} ∀r ∈ R, v, w ∈ V r, (i, j) ∈ A0. (8)

Constraints (2) enforce that each virtual node is mapped onto a (single) sub-
strate node only if the corresponding request is accepted. Constraints (3)
and (4) guarantee that the capacity of each physical node and link is not
exceeded. Constraints (5) are flow balance constraints ensuring that the rout-
ing of the virtual traffic matrices (which is a function of the mapping of the
virtual nodes v, w ∈ V r, as encoded by xrvi − xrwi) takes place. Each physical
node i ∈ V 0 acts as a source node if xrvi = 1 and xrwi = 0, as a sink node if



6 S. Coniglio et al.

xrvi = 0 and xrwi = 1, and as a “regular” intermediate node (i.e., not a source
nor a sink node) if xrvi = xrwi = 0. We remark that, if xrvi = xrwi = 1, then the
two virtual nodes v, w are co-located, i.e., are mapped to the same physical
node and, hence, their traffic demands (for both pairs v, w and w, v) vanish
(that is, they do not need to be routed on any physical links). Constraints (6)–
(8) denote the nature of the variables. Observe that, since fvw,rij is an integer
variable, a single path unsplittable routing is enforced.

We remark that this formulation, as well as the methods that we will
introduce in the remainder of the paper, can be directly adapted to the case
of splittable routing by just relaxing Constraints (8) into fvw,rij ∈ [0, 1].

2.2 VNE and subproblems: computational complexity

VNE entails the solution of two natural subproblems: node mapping and link
mapping. Here, we address the case where both of them allow for admis-
sion control. The first subproblem is obtained after dropping Constraints (4)
and (5) and the variables reported in (8). The second one is obtained after fix-
ing xrvi for all r ∈ R, v ∈ V r, and i ∈ V 0(r, v). This way, the first subproblem
is a relaxation of VNE, whereas the second one is a restriction.

From a combinatorial point of view, we refer to the first subproblem as
a Multi-Knapsack Problem with Grouped items (MKP-G). It is a Multi-
Knapsack Problem (MKP), i.e., an extension of the classical knapsack prob-
lem where more simultaneous knapsacks are present, in which the items are
grouped so that, if an item is put into one of the knapsacks, then all the other
items in the same group have to be put in some knapsacks as well. From a
VNE perspective, each group corresponds to the set of virtual nodes belonging
to a virtual network request, the items are virtual nodes, and the knapsacks
correspond to physical nodes.

We refer to the second subproblem as to an Unsplittable Multi-Commodity
Flow problem with Admission Control (UMCF-AC). In it, the demands of the
different commodities can be neglected and a linear function which associates
a profit to each accepted flow is maximized. The problem is also subject to
“grouping” constraints by which, if the demand for a pair of virtual nodes is
routed, then all the demands between pairs belonging to the same group must
be routed as well.

In the following, we discuss on the strong NP-hardness of the two sub-
problems. The first result is also pointed out in [6]:

Proposition 1 (See [6]) MKP-G is strongly NP -hard.

Proof It suffices to assume that each group contains a single item. Then, MKP-
G is equivalent to MKP, whose strong NP-hardness is shown in [19]. ut

The second result is, to the best of our knowledge, new:

Proposition 2 UMCF-AC is strongly NP -hard.
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Proof Consider the Edge Disjoint Path Problem (EDPP), which calls for k
edge disjoint paths in a directed graph between k pairs of nodes. Construct
an UMCF-AC instance with the same graph, unit link capacities, unit profits,
unit demands, and a group per demand composed of a single element. Then,
UMCF-AC admits a solution of value k if and only if the graph admits k edge
disjoint paths. ut

For an sketch of the reduction for a given instance, see Figure 2.

s1 t1

t2

s2

G0

s1 t1V N1

t2 s2 V N2

Fig. 2: Reduction from EDPP with k = 2 VNs corresponding to paths being embedded
without crossing edges due to the presence of unit link demands and capacities.

Note that, when assuming |V 0(r, v)| = 1 for all r ∈ R and v ∈ V r, VNE
becomes an instance of UMCF-AC. Therefore, the proposition also implies
that VNE is strongly NP-hard by reduction from EDPP. The two propo-
sitions not only illustrate that VNE is a hard problem, but also that both
of its naturally occurring subproblems are difficult to solve, at least from a
theoretical standpoint.

3 Addressing the case of data uncertainty

In many practical applications, it is reasonable to assume that, for each VN, the
actual demand of computing resources and traffic may vary, often substantially,
over time. For instance, an online gaming or a movie streaming service may
have more or less customers, and, therefore, a different resource consumption,
depending on its popularity, which clearly changes over time (with, e.g., peaks
for new content releases, after an advertising campaign, and so on). This poses
a problem from a network reliability point of view, as it can lead to traffic
congestion, quality of service degradations, or, even, service disruptions.

Classical approaches to circumvent data uncertainty typically consider a so-
called worst case setting, so to guarantee that the network will be operational
even for peak values of traffic. Although guaranteeing feasibility, this practice
comes at an often unnecessary cost as, in many cases, it is very unlikely for
every demand in every VN to simultaneously be at its peak. Indeed, in a
number of practical cases, it is reasonable to assume that the probability that
all demands simultaneously reach their peak values is fairly small. This is
reasonable, in our example, when assuming that new content releases and
advertising campaign do not take place for all services at the same time.
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The idea is to look for a solution where the different VNs are provisioned
for demands which are smaller than their peak values, thus guaranteeing that
the substrate network has sufficient capacity for almost all the traffic con-
figurations, only neglecting a few unlikely cases. This way, we are likely to
obtain more profitable solutions where more VN requests are embedded, thus
avoiding costly issues of overprovisioning.

3.1 A chance-constrained MILP formulation

One natural way of taking demand uncertainties into account is of interpret-
ing ωrv and drvw not as constants, but as (bounded) random variables. In the
reminder of this work, we will assume that, for any r ∈ R, each uncertain node
demand ωrv is an independent random variable taking value in the symmetric
interval [ω̄rv − ω̂rv, ω̄rv + ω̂rv], with nominal (expected) value ω̄rv and maximum
deviation ω̂rv. Similarly, we assume that each uncertain link demand drvw ∈ Dr

takes values in the symmetric interval [d̄rvw− d̂rvw, d̄rvw + d̂rvw], centered around

the nominal (expected) value d̄rvw, with a maximum deviation d̂rvw.

Let ε ∈ [0, 1] be the probability with which each constraint is required to
be satisfied. When requiring the satisfaction of Constraints (3) and (4) with,
at least, a probability of ε, we obtain the following chance-constrained MILP
formulation of VNE:

max (1) (9)

s.t. Pr

(∑
r∈R

∑
v∈V r :i∈V 0(r,v)

ωrvx
r
vi ≤ c0i

)
≥ ε ∀i ∈ V 0 (10)

Pr

∑
r∈R

∑
v,w∈V r

drvwf
vw,r
ij ≤ k0ij

 ≥ ε ∀(i, j) ∈ A0 (11)

(2), (5), (6), (7), (8). (12)

Note that, if the deterministic Formulation (1)–(8) is solved with worst
case data, i.e., by setting each random variable to its maximum value, we
obtain an embedding which is also a feasible solution to the chance-constrained
Formulation (9)–(12) when solved with any ε, and (neglecting zero-measure
events) an optimal one for ε = 1. As we will see with our computational
experiments, which we report in Section 5, the objective function value of
such solutions is typically very poor.

Clearly, Formulation (1)–(8) can also be solved with nominal data, substi-
tuting for each random variable its expected value. Although typically yielding
much larger objective function values, this choice corresponds to setting ε = 0,
thus asking for solutions that are feasible only for the zero-measure event where
all the uncertain data take a single set of values. As such, these solutions are
(theoretically and, often, also in practice) infeasible with probability 1.
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3.2 A Γ -robustness approach

For most nontrivial probability distributions of the random variables, chance-
constrained problems are, in general, very hard to solve. This is because, to
rely on mathematical programming tools, they require a closed-form solution
to the integrals corresponding to each probabilistic constraint the derivation of
which is, usually, not known. An attractive way to circumvent this drawback,
also successfully applied to a number of networking problems, see, e.g., [20], is
of recurring to robust optimization and, specifically, to a Γ -robust approach.

Roughly speaking, the Γ -robustness model [21,22] assumes that, in any
possible realization of the uncertain data (i.e., of the random variables of the
chance-constrained model), at most Γ coefficients will simultaneously deviate
from their nominal value. This model naturally meets the features of VNE if
we assume that the number of demands simultaneously reaching their peak
values is bounded by Γ , as Γ -robust solutions are guaranteed to be feasible for
any realization of the uncertain coefficients with at most Γ deviations. What
is more, Γ -robustness also establishes, under the sole assumption of indepen-
dence of the random variables and of symmetry of their intervals, that, if more
than Γ deviations occur, feasibility will still be retained with a probability cor-
responding to a monotone increasing function of Γ . Thus, the model allows to
approximate our chance-constrained formulation for an arbitrary ε by select-
ing a suitable value for Γ (see [22] for more details). Most interestingly, the
model leads to problems which are computationally much more tractable than
those involving chance constraints, as we will show in the following.

In the remainder of the paper, we will refer to the probability that a so-
lution is feasible as protection level (and to its estimation, as observed via
computational experiments, as empirical protection level). The adoption of
higher values for Γ , which guarantee a higher protection level, comes at a
cost, the so-called price of robustness, as a consequence of the set of feasible
solutions becoming smaller for larger values of Γ .

3.3 A robust MILP formulation for VNE

Let us now show how to derive an MILP Γ -robustness formulation for VNE.
We will address the case where, for each node and link, at most Γ demands
deviate from their nominal value. Equivalently, this corresponds to the case
where all but Γ demands deviate from their worst case value. We recall that, for
Γ = 0, the robust problem corresponds to the original problem with nominal
data while, for Γ =∞, it corresponds to the original problem with worst case
data where all the coefficients simultaneously deviate to their maximum value.

3.3.1 Γ -robust MILP formulation for VNE I: node demands

For convenience, define VNi :=
{

(r, v) ∈ R× ∪r∈RV r : i ∈ V 0(r, v)
}

. For any
physical node i ∈ V 0, the set VNi corresponds to all the request-node pairs r, v
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where the virtual node v ∈ V r can be mapped to the physical node i. Letting
Γ ∈ Z+, the (nonlinear) robust counterpart to Constraints (10) is:

∑
r∈R

∑
v∈V r :

i∈V 0(r,v)

ω̄rvx
r
vi

︸ ︷︷ ︸
nominal LHS

+ max
T⊆VN

i
|T |≤Γ

∑
(r,v)∈T

ω̂rvx
r
vi

︸ ︷︷ ︸
maximum deviation

≤ c0i ∀ i ∈ V 0.

The constraint accounts for the scenario where the Γ coefficients with the
largest value of ω̂rvx

r
vi (those in the set T ) simultaneously deviate. If the con-

straint is satisfied for the maximum (total) deviation, the nominal constraint
will then be satisfied for any realization in the uncertainty set. As originally
shown in [22], this nonlinear constraint can be recast in a linear way (i.e., with-
out the need for the internal max operator) with the introduction of a set of
auxiliary variables and constraints. We briefly illustrate this in the following.

Let zrv = 1 if (r, v) ∈ T and 0 otherwise. Assuming that xrvi is fixed, the
inner maximization problem can be cast as the following Linear Program (LP),
whose dual variables are reported in brackets:

max
∑
r∈R

∑
v∈V r :

i∈V 0(r,v)

(ω̂rvx
r
vi) z

rv
i (13)

s.t.
∑
r∈R

∑
v∈V r :

i∈V 0(r,v)

zrvi ≤ Γ [πi] (14)

zrvi ∈ [0, 1] ∀ r ∈ R, v ∈ V r : i ∈ V 0(r, v) [ρrvi ]. (15)

Note that, since the problem has a totally unimodular constraint matrix, zrvi
will be integer in any optimal solution. The LP dual reads:

min Γπi +
∑
r∈R

∑
v∈V r :

i∈V 0(r,v)

ρrvi (16)

s.t. πi + ρrvi ≥ ω̂rvxrvi ∀ r ∈ R, v ∈ V r : i ∈ V 0(r, v). (17)

πi ≥ 0, ρrvi ≥ 0 ∀ r ∈ R, v ∈ V r : i ∈ V 0(r, v). (18)

By LP duality, any feasible solution to (16)–(18) has an objective function
value at least as large as that of an optimal solution to (13)–(15). Therefore,
for each i ∈ V 0, the robust counterpart to Constraint (10) corresponds to:

∑
r∈R

∑
v∈V r :i∈V 0(r,v)

(ω̄rvx
r
vi + ρrvi ) + Γπi ≤ c0i , (19)

together with Constraints (17) and the variables in (18).
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3.3.2 Γ -robust MILP formulation for VNE II: traffic (link) demands

Let VL := {(r, v, w) : r ∈ R, v, w ∈ V r}. Letting Γ ∈ Z+, the (nonlinear) ro-
bust counterpart to Constraint (11), for all (i, j) ∈ A0, reads:

∑
r∈R

∑
v,w∈V r

d̄rvwf
vw,r
ij︸ ︷︷ ︸

nominal LHS

+ max
T⊆VL

|T |≤Γ

∑
(r,v,w)∈T

d̂rvwf
vw,r
ij

︸ ︷︷ ︸
maximum deviation

≤ k0ij
∀r ∈ R, v, w ∈ V r,
∀(i, j) ∈ A0.

(20)

Similarly to the node case, a linear reformulation can be obtained after in-
troducing the variables πij , ρ

vw,r
ij ≥ 0 for all r ∈ R, v, w ∈ V r and, for all

(i, j) ∈ A0, the constraints:

∑
r∈R

∑
v,w∈V r

(d̄rvwf
vw,r
ij + ρvw,rij ) + Γπij ≤ k0ij (21)

πij + ρvw,rij ≥ d̂rvwf
vw,r
ij ∀r ∈ R, v, w ∈ V r (22)

πij ≥ 0, ρvw,rij ≥ 0 ∀r ∈ R, v, w ∈ V r. (23)

The complete Γ -robust formulation for VNE is obtained from that in (1)–(8)
after substituting for Constraints (3) and (4) their robust counterparts.

4 Heuristics for the Γ -robust VNE problem

Although much more tractable than its original chance-constrained counter-
part (as it “only” requires the solution of an MILP), the Γ -robust version of
VNE is still, as we will see in Section 5, very hard to solve for large instances
within a reasonable computing time. Hence, in this section we propose two
heuristics approaches to produce good-quality robust solutions at a smaller
computational effort. Both approaches rely on splitting the VNE problem into
the robust counterparts to the two subproblems which we mentioned before,
which are then solved sequentially within a given time limit.

4.1 Two-phase heuristic

First, let us outline our two-phase method. In the first phase, we carry out
admission control and Γ -robust node embedding, but neglect link mapping
and link capacities. In the second phase, we complete the partial solution
found in phase one by looking for a Γ -robust link mapping for the accepted
VNs (assuming that their node mapping is fixed, as found in the first phase),
while still allowing for VN rejections. Similar ideas (node mapping in the first
phase, routing in the second one) have already been applied to VNE, see for
instance [8], but, differently from other methods, in our case we allow for VN
rejections in both phases, include the robustness aspect in each phase, and
solve each subproblem as an MILP. In this sense, due to entailing the solution
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of two MILPs at each iteration, our algorithm could be classified as a math
heuristic.

4.1.1 Phase one subproblem

In the first phase, we restrict VNE to the Γ -robust node embedding subprob-
lem with admission control. Formally, this amounts to the Γ -robust MILP:

max
∑
r∈R

pryr (24)

s.t.
∑

i∈V 0(r,v)

xrvi = yr ∀r ∈ R, v ∈ V r (25)

∑
r∈R

∑
v∈V r :i∈V 0(r,v)

(ω̄rvx
r
vi+ ρrvi ) +Γπi≤ c0i ∀i∈V 0 (26)

πi + ρrvi ≥ ω̂rvxrvi ∀r ∈ R, v ∈ V r, i ∈ V 0(r, v) (27)

yr ∈ {0, 1} ∀r ∈ R (28)

xrvi ∈ {0, 1} ∀r ∈ R, v ∈ V r, i ∈ V 0(r, v) (29)

πi ≥ 0, ρrvi ≥ 0 ∀r ∈ R, v ∈ V r, i ∈ V 0(r, v). (30)

This subproblem is the Γ -robust counterpart to the MKP-G problem that we
introduced in Section 2. While, as we have shown, MKP-G is strongly NP-
hard, it is fairly easier to solve than the whole Γ -robust VNE problem, as we
will see in Section 5. We remark that, by construction, optimal solutions to
this subproblem provide upper bounds to the Γ -robust version of VNE.

4.1.2 Phase two subproblem

Let (ỹ, x̃) be a solution to the first phase problem and let R̃ := {r ∈ R : ỹr 6= 0}
be the subset of requests that have been accepted in the first phase. Also define

∆̃r ∈ {0, 1}|V
r|×|V r|

so that δ̃rvw = 0 if and only if x̃rvi = x̃rwi = 1 for some
i ∈ V 0 (recall that the corresponding flow vanishes due to co-location). Then,
the second phase problem corresponds to the following Γ -robust MILP:

max
∑
r∈R′

pryr (31)

s.t.
∑

(i,j)∈δ+(i)

fvw,rij −
∑

(j,i)∈δ−(i)

fvw,rji =

 yr if x̃rvi = 1
−yr if x̃rwi = 1
0 else

∀i ∈ V 0, r ∈ R′,
∀v, w ∈ V r : δ̃rvw = 1

(32)

∑
r∈R′

∑
v,w∈V r :

δ̃rvw=1

(d̄rvwf
vw,r
ij + ρvw,rij )+Γπij ≤ k0ij ∀(i, j) ∈ A0 (33)

πij + ρvw,rij ≥ d̂rvwf
vw,r
ij ∀r ∈ R′, v, w ∈ V r: δ̃rvw= 1, (i, j) ∈ A0 (34)

yr ∈ {0, 1} ∀r ∈ R′ (35)

fvw,rij ∈ {0, 1} ∀r ∈ R′, v, w ∈ V r: δ̃rvw= 1, (i, j) ∈ A0 (36)

πij ≥ 0, ρvw,rij ≥ 0 ∀r ∈ R′, v, w ∈ V r: δ̃rvw= 1, (i, j) ∈ A0. (37)
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The subproblem is the Γ -robust counterpart to the UMCF-AC problem that
we introduced in Section 2. In spite of its strong NP-hardness, as we will see
in Section 5, this subproblem will be much easier to solve, for all instances
that we will consider, than MKP-G.

We note that, by solving the phase one and phase two subproblems in
sequence with the same value of Γ , the heuristic that we introduced always
provides a lower bound (i.e., a feasible solution) to the Γ -robust VNE problem.

4.1.3 Revised phase one subproblem

Preliminary experiments have shown that, in many cases, more than 50% of
the requests accepted in the first phase are then discarded in the second phase.
This is a consequence of the fact that the phase one subproblem is oblivious of
the routing aspect. Among its feasible solutions, we would indeed prefer one
where pairs of virtual nodes sharing a traffic demand are mapped to physical
nodes which are as close as possible. This is because, the more links are used
in the routing, the higher the consumption of link capacity in the substrate
network will be. A sketch of this simple observation can be found in Figure 3.

G0
1

VN (traffic demand = d)

G0
2

G0
3

Capacity consumption:

3d

d

0

Fig. 3: Three embeddings of a single VN requiring a different amount of physical link ca-
pacity. Note how, in case of co-location, the flow between source and sink nodes vanishes.

To circumvent this drawback, we restrict the feasible region of the first
phase subproblem to solutions where pairs of virtual nodes sharing a traffic
demand are mapped to physical nodes that are not too far away from each
other, thus, hopefully, reducing the number of rejections in phase two. For the
purpose, we cluster the virtual node pairs v, w ∈ V r of any VN request of index
r ∈ R into a set C of categories, depending on their traffic demand values drvw.
For each category C ∈ C, we introduce a parameter zC which describes the
maximum distance, in terms of number of links, that we allow between the
physical nodes onto which v and w can be mapped.

More formally, for any two physical nodes i, j ∈ V 0, let σ(i, j) be the length
of a shortest path (in terms of number of links) in G0 between them. We par-
tition the different pairs of virtual nodes into three categories, based on the
magnitude of their traffic demands: L (for low), M (for medium), and H (for
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high). Given the three corresponding parameters zL, zM , zH ∈ Z+, we intro-
duce the following distance-bounding constraints to the phase one problem:

xrvi + xrwj ≤ 1 ∀ r ∈ R, v, w ∈ V r, i, j ∈ V 0 :


σ(i, j) > zL ∧ {v, w} ∈ L
σ(i, j) > zM ∧ {v, w} ∈M
σ(i, j) > zH ∧ {v, w} ∈ H.

(38)

The results obtained with this heuristic will be discussed in Section 5.

4.2 Adaptive heuristic

While the two-phase heuristic very effectively provides good quality solutions
in a short amount of computing time (see Section 5), its success heavily de-
pends on a good choice of its input parameters zL, zM , zH . To avoid the need
for finding a suitable choice of such parameters a priori, we now propose an
adaptive algorithm in which a suitable parameter setting is chosen automati-
cally.

The method solves a sequence of Γ -robust phase one and phase two sub-
problems. If, at any iteration, the phase two subproblem terminates accepting
all the requests that were accepted in phase one, it halts. If not, it looks for
a pair of virtual nodes which, if their VN were accepted, would consume the
largest quantity of link capacity, adds a constraint similar to Constraint (38)
to the phase one subproblem to reduce the corresponding amount of physical
link capacity consumption, and iterates until a time or iteration limit is met.

For any virtual node v, denote by i(v) the physical node to which v has
been mapped in the last iteration. At each iteration and for each request r ∈ R,
we associate to each pair of virtual nodes {v, w}, with v, w ∈ V r, a value equal
to the product between their traffic demand and the distance σ(i(v), i(w))
between the corresponding physical nodes i(v), i(w) in terms of number of
links. Then, for each request of index r ∈ R, we identify the following virtual
node pair: (

v′, w′
)

:= argmax
v,w∈V r

{
max {drvw, drwv} · σ(i(v), i(w))

}
.

Note that, due to employing the shortest path measure in term of number of
links, the expression which is maximized corresponds to the minimum physical
resource consumption that would correspond to any embedded virtual pair.

Then, to impose a mapping to a closer pair of physical nodes, we add to
the first phase problem, for the current triple (r, v′, w′), the constraints:

xrv′i + xrw′j ≤ 1 ∀i, j ∈ V 0 : σ(i, j) >
⌈σ(i(v′), i(w′))

2

⌉
(39)

if σ(i(v′), i(w′)) > 4, and the constraints:

xrv′i + xrw′j ≤ 1 ∀i, j ∈ V 0 : σ(i, j) > σ(i(v′), i(w′))− 1 (40)

if σ(i(v′), i(w′)) ≤ 4.
The pseudocode for the adaptive heuristic is reported in Algorithm 1.
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Algorithm 1 Adaptive Heuristic
while time limit not reached do

Solve Phase I subproblem via the MILP (24)–(30)
Let R̃ := {r ∈ R : yr = 1}
Solve Phase II subproblem via the MILP (31)–(37)
if yr = 1 ∀r ∈ R̃ then

terminate
end if
Let S := {}
for r ∈ R do

(v′, w′) := argmaxv,w∈V r
{

max {drvw, drwv} · σ(i(v), i(w))
}

for i, j ∈ V 0 do
if σ(i(v′), i(w′)) > 4 then

Add Constraint (39) to S
end if
if σ(i(v′), i(w′)) ≤ 4 then

Add Constraint (40) to S
end if

end for
end for
Add all constraints in S to Phase I problem

end while

5 Computational results

Our computations are carried out on an Intel(R) Core(TM) i7-3770 CPU @
3.40 GHz with 32 GB RAM. We employ the state-of-the-art MILP solver
CPLEX 12.4, relying on AMPL as modeling language. We set a time limit
of 3600 seconds for the exact Γ -robust MILP formulations, adopting a much
shorter time limit of 300 seconds per subproblem in both the two-phase and
the adaptive heuristics. The latter is run for, at most, 12 iterations.

As physical networks, we consider four instances of similar size and density,
all taken from the SNDlib [23] and transformed into directed graphs with
antiparallel links: Abilene (12 nodes, 30 links), Atlanta (15, 44), Nobel-
us (14, 42), and Polska (12, 36). The physical node capacities are randomly
drawn from the tuple (10, 50, 100, 500), with a probability of (0.1, 0.4, 0.4, 0.1).
Physical link capacities are set to 500 for all the edges.

We consider VN requests with 12 virtual nodes, a profit chosen uniformly
at random between 20 and 100, and a random topology with a link density
of 0.5. As to the locality aspect, we construct each set V 0(r, v) by first sampling
uniformly at random a cardinality factor αrv from the interval [ 12 , 1] and then
adding node i ∈ V 0 to V 0(r, v) with a probability αrv.

For the virtual node and traffic demands, we mimic a case where histor-
ical data are available, creating a historical sequence of 100 data sets. First,
for each uncertain coefficient ωrv or drvw, we sample a value from the tuple
(10, 50, 100, 500) (scaled by 0.04 for nodes and 0.06 for links) uniformly at
random, with a probability of (0.1, 0.4, 0.4, 0.1). The historical sequence for
that coefficient is then constructed by adding to the previously sampled value
a Gaussian error with zero mean and a standard deviation equal to three
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times the original value, for each of the 100 snapshots in the sequence, forcing
any demand value thus obtained to 0 if negative. Finally, the nominal node
and traffic demands w̄rv and d̄rvw are computed as the arithmetic average over

the 100 snapshots, computing ω̂rv and d̂rvw as the largest deviations w.r.t. w̄rv
and d̄rvw over the historical sequence.

We generate the instances with an increasing number of requests, that is
|R| ∈ {5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 24, 28, 32}. They are constructed incre-
mentally for each topology, so that every instance of a given topology with r
requests contains the same requests as an instance with the same topology
and r′ < r requests, plus r− r′ additional ones. As a consequence, the value of
an optimal solution for any given topology is a nondecreasing function of |R|.
During the generation of the instances, we choose the random seeds so that
the sequence of VN requests is different for each physical topology. The data
set thus constructed is composed of 56 instances.

In the following, we will compare the solutions obtained via the differ-
ent methods w.r.t. their objective function value and their empirical protec-
tion level. The latter is defined as the number of snapshots, in the historical
sequence of each instance, for which no node or link capacity constraint is
violated by the robust solution that we have found.

5.1 Exact nominal and worst case solutions

To better motivate the relevance of data uncertainty for VNE, as well as the
profitability of a robust optimization approach, we first evaluate the solutions
obtained for worst case demands (i.e., for Γ = ∞ and ε = 1) and average
demands (for Γ = 0 and ε = 0), as mentioned in Section 3.

Complete results for the full data set are reported in Table 1. The table
shows that the instances with the worst case data are quite harder to solve
than those with average data (with, overall, an average gap of 32% versus one
of 0%, and an average computing time 3.5 times larger), thus showing that
the problem gets more difficult for a higher load. More precisely, out of 56
instances, while only 8 instances cannot be solved to optimality with average
data (with an average gap of 2.75%), this number increases to 33 instances
with worst case data (with an average gap of 53%).

As we anticipated in Section 3, although the objective function values with
average data are much larger than those for the worst case, for the majority of
instances the corresponding solutions are infeasible in almost all the snapshots
of the historical sequence. On the contrary, the solutions with worst case data
are always feasible, but at the cost of a very poor objective function value.
This is illustrated, for the abilene instances, in Figure 4.

5.2 Exact solutions via the Γ -robust MILP formulation

We now illustrate the results obtained with the Γ -robust MILP formulation,
first focusing on the abilene instances. We assume Γ ∈ {1, 2, 3}, adopting the
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Table 1: Results for the deterministic MILP formulation obtained within 3600 seconds with nom-
inal (average) and worst case data. Entries are rounded to the nearest integer.

|R| 5 6 7 8 9 10 12 14 16 18 20 24 28 32 Avg

O
b
je
c
t
iv

e
F
c
t
.

N
o
m
in
a
l Abil 342 381 438 471 500 500 512 512 595 632 632 632 664 715 538

Atl 402 444 523 559 623 695 853 970 1061 1197 1273 1324 1443 1447 915
Nob 346 393 441 532 570 629 734 810 894 917 1011 1165 1211 1282 781
Pol 265 312 398 452 550 644 782 875 968 1082 1082 1065 1219 1284 784
Avg 339 383 450 504 561 617 720 792 880 957 1000 1047 1134 1182 755

W
.-
C
a
se Abil 68 68 125 126 126 126 126 126 163 163 163 163 151 151 132

Atl 251 332 344 210 301 301 194 263 184 174 336 220 227 348 263
Nob 225 225 180 98 189 228 130 146 228 193 228 215 185 237 193
Pol 169 169 217 245 277 277 277 301 301 252 238 238 348 263 255
Avg 178 199 217 170 223 233 182 209 219 196 241 209 228 250 211

P
r
o
t
e
c
t
io

n
L
e
v
e
l

N
o
m
in
a
l Abil 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Atl 27 19 1 3 0 0 0 0 0 0 0 0 0 0 4
Nob 54 19 1 0 0 0 0 0 0 0 0 0 0 0 5
Pol 38 29 22 14 7 2 0 0 0 0 0 0 0 0 8
Avg 30 17 6 4 2 0 0 0 0 0 0 0 0 0 4

W
.-
C
a
se Abil 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Atl 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Nob 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Pol 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Avg 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

O
p
t
im

a
li
ty

G
a
p

N
o
m
in
a
l Abil 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Atl 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
Nob 0 0 0 0 0 0 0 4 0 0 0 1 2 4 1
Pol 0 0 0 0 0 0 0 0 0 0 0 5 3 1 1
Avg 0 0 0 0 0 0 0 1 0 0 0 2 1 2 0

W
.-
C
a
se Abil 0 0 0 0 0 0 0 0 0 0 0 0 21 21 3

Atl 32 0 0 81 26 26 96 58 127 145 25 97 100 31 60
Nob 0 0 52 179 44 20 110 87 20 41 20 42 74 35 52
Pol 0 22 13 0 0 0 0 0 0 29 36 36 0 33 12
Avg 8 5 16 65 18 11 51 36 37 54 20 44 49 30 32

C
o
m

p
u
t
in

g
T
im

e
N
o
m
in
a
l Abil 3 14 7 13 168 853 507 364 244 78 16 71 1394 896 331

Atl 1 1 1 4 5 5 10 35 47 15 518 177 3600 3600 573
Nob 1 1 2 6 4 8 12 3600 33 502 3112 3600 3600 3600 1291
Pol 0 1 1 1 2 4 5 8 143 24 1484 3600 3600 3600 891
Avg 1 4 3 6 44 218 133 1002 117 155 1283 1862 3049 2924 771

W
.-
C
a
se Abil 1 1 226 688 692 1659 1249 1357 31 29 44 34 3600 3600 944

Atl 3600 242 105 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3111
Nob 30 176 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3100
Pol 14 3600 3600 3207 2738 2149 2109 255 1890 3600 3600 3600 3298 3600 2661
Avg 911 1005 1883 2774 2657 2752 2640 2203 2280 2707 2711 2708 3525 3600 2454

(a) (b)

Fig. 4: (a) Objective function values and (b) protection values for the worst case and average
case, reported as a function of |R|, for the Abilene instances.
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same value for both the node and link capacity constraints. We do not report
further results for larger values of Γ as, in our experiments, we achieve a very
high empirical protection level already for Γ = 3.

Figure 5 (a) reports the objective function value for different values of Γ , as
a function of |R|. Note that the value of an optimal Γ -robust solution should be
between the average and worst case ones and that such value should be larger
for smaller values of Γ . As we can see, this is not always the case. E.g., we
observe that, for |R| = 16 and Γ = 3, as a consequence of prematurely reaching
the time limit, we achieve a strictly smaller objective function value than for
the worst case. In general, it seems that, with many requests (|R| > 14) and for
increasing values of Γ , the Γ -robust formulations are more and more difficult
to solve. As an example, observe that, for |R| = 28, no solution is found for
Γ ∈ {1, 2, 3}, while the solution for |R| = 32 and Γ = 1 has a smaller value than
that for the same Γ and |R| = 24. This is better shown in Figure 5 (b), which
reports the optimality gap of the solutions (truncated to 500 for illustration
purposes), showing that, for instances with a large |R| and for larger values
of Γ , the exact approach based on the Γ -robust formulation does not scale
well.

(a) (b)

Fig. 5: (a) Objective function values for the abilene instances, obtained with the different
models and reported as a function of |R|. (b) Gaps for the abilene instances.

We obtain qualitatively comparable results also for the other topologies, as
reported in Table 2. Indeed, when considering the full data set (56 instances)
with three values of Γ (168 VNE problems in total), in 119 cases we cannot find
an optimal solution within the time limit, registering an average gap of 76%
(only considering the instances where the gap is finite). In 101 cases, not even
a nontrivial solution (i.e., one where at least a single VN is accepted) is found
(thus, the gap is infinite). This shows that, when compared to the average and
worst case data, with Γ -robustness we obtain much harder problems.

5.3 Two-phase and adaptive heuristics

Let us now consider the two heuristic methods. Differently from the exact case,
where we consider Γ ∈ {0, 1, 2, 3} for both node and link capacity constraints,
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Table 2: Results for the exact MILP Γ -robust formulation obtained within 3600 seconds. Entries
are rounded to the nearest integer.

|R| 5 6 7 8 9 10 12 14 16 18 20 24 28 32 Avg

O
b
je
c
t
iv

e
F
c
t
. Γ
=

1 Abil 68 68 125 194 194 194 194 194 288 288 288 292 - 161 196
Atl 332 374 453 489 553 - - - - - - - - - 440
Nob 294 341 389 480 518 518 - - - - - - - - 423
Pol 265 312 398 452 550 550 - - - - - - - - 421
Avg 240 274 341 404 454 421 194 194 288 288 288 292 - 161 295

Γ
=

2 Abil 68 68 125 194 194 194 194 194 220 220 137 - - - 164
Atl 332 374 - - - - - - - - - - - - 353
Nob 294 294 294 98 - - - - - - - - - - 245
Pol 265 312 321 - 104 76 - - - - - - - - 180
Avg 240 262 247 97 149 135 194 194 220 220 137 - - - 190

Γ
=

3 Abil 68 68 125 126 126 126 126 125 57 57 57 - - - 96
Atl 332 - - - - - - - - - - - - - 332
Nob 225 225 222 - - - - - - - - - - - 224
Pol 197 - - - - - - - - - - - - - 197
Avg 206 147 174 126 126 126 126 125 57 57 57 - - - 121

P
r
o
t
e
c
t
io

n
L
e
v
e
l

Γ
=

1 Abil 96 99 94 83 89 88 83 97 81 60 80 85 - 88 86
Atl 98 93 86 63 22 - - - - - - - - - 84
Nob 92 86 94 72 64 78 - - - - - - - - 81
Pol 95 85 66 76 33 42 - - - - - - - - 73
Avg 95 91 85 33 77 69 83 97 81 60 80 85 - 88 82

Γ
=

2 Abil 100 100 99 100 98 99 100 99 100 100 100 - - - 100
Atl 100 100 - - - - - - - - - - - - 100
Nob 100 99 100 100 - - - - - - - - - - 100
Pol 100 96 100 - 100 100 - - - - - - - - 99
Avg 100 99 100 100 99 99 100 99 100 100 100 - - - 100

Γ
=

3 Abil 100 100 100 100 100 100 100 100 100 100 100 - - - 100
Atl 100 - - - - - - - - - - - - - 100
Nob 100 100 100 - - - - - - - - - - - 100
Pol 100 - - - - - - - - - - - - - 100
Avg 100 100 100 100 100 100 100 100 100 100 100 - - - 100

O
p
t
im

a
li
ty

G
a
p
Γ

=
1 Abil 0 0 0 0 0 0 0 0 0 0 0 23 ∞ 159 14

Atl 0 0 0 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
Nob 0 0 0 0 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
Pol 0 0 0 0 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
Avg 0 0 0 0 0 0 0 0 0 0 0 23 - 159 14

Γ
=

2 Abil 0 0 0 0 0 0 0 0 31 31 110 ∞ ∞ ∞ 16
Atl 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
Nob 0 0 16 319 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 84
Pol 0 0 24 ∞ 429 624 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 215
Avg 0 0 13 160 214 312 0 0 31 31 110 - - - 79

Γ
=

3 Abil 0 0 0 54 54 54 54 55 405 405 405 ∞ ∞ ∞ 135
Atl 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ -
Nob 0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
Pol 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
Avg 0 0 0 54 54 54 54 55 405 405 405 - - - 135

C
o
m

p
u
t
in

g
T
im

e
Γ

=
1 Abil 2 1 2 61 3 33 5 49 6 671 146 3600 3600 3600 841

Atl 1 3 6 3600 10 3600 3600 3600 3600 3600 3600 3600 3600 3600 2573
Nob 2 3 3 2068 13 19 3600 3600 3600 3600 3600 3600 3600 3600 2208
Pol 3 270 338 11 1975 2890 3600 3600 3600 3600 3600 3600 3600 3600 2449
Avg 2 69 87 1435 500 1635 2701 2712 2702 2868 2737 3600 3600 3600 2018

Γ
=

2 Abil 4 5 36 425 784 156 399 441 3601 3600 3600 3600 3600 3600 1704
Atl 186 2192 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3256
Nob 8 433 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3117
Pol 144 2502 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3275
Avg 86 1283 2709 2806 2896 2739 2800 2810 3600 3600 3600 3600 3600 3600 2838

Γ
=

3 Abil 12 31 37 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 2834
Atl 876 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3405
Nob 97 751 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3146
Pol 180 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3356
Avg 291 1996 2709 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3185
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in the two heuristics methods we always set Γ = 0 for the second subproblem
(which carries out the link mapping). This is because, even without explicitly
accounting for robustness in it, we still obtain solutions with a very high
empirical protection level, as we will better illustrate in the following.

Let us first focus on the two-phase heuristic. As described in Section 4,
we cluster the virtual nodes pairs into the three categories L,M,H (low,
medium, and high). Each pair v, w ∈ V r belongs to H if drvw ≥ 50, to M
if 10 ≤ drvw < 50, and to L otherwise. To assess the sensitivity of the w.r.t.
the parameters zL, zM , and zH , we illustrate the results obtained with the

method for all the combinations of zL, zM , zH ∈ {|V 0|, |V
0|
2 , |V

0|
4 , 2, 1}, with

zL ≤ zM ≤ zH . Table 3 reports a comparison over all parameter settings,
aggregated over all substrate networks and all Γ values. Let SOL(Γ, s, r, p) be
the solution value of the two-phase heuristic for a given Γ ∈ G := {0, 1, 2, 3},
substrate network s ∈ S := {abilene, atlanta, nobel-us, polska}, number of re-
quests r = |R| ∈ {5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 24, 28, 32}, and parameter
setting p ∈ P . Then, for a fixed r and parameter setting p0, each entry of

Table 3 is computed as 1
|G| |S| |P |

∑
Γ∈G

∑
s∈S

∑
p∈P

SOL(Γ,s,r,p)
SOL(Γ,s,r,p0)

. Thus, each

entry describes the relative quality of the solutions obtained with parameter
setting p0, compared to the solutions obtained with all other parameter set-
tings. The lower the value, the better p0 performs w.r.t. the others (the results
for the best setting, on average, over all the instances are underlined). As we
can see, the unique “winner” is zL = |V 0|, zM = 2, and zH = 1.

Fig. 6: Objective function value ratio between the best solution found via the two-phase
heuristic (zL = |V 0|, zM = 2, and zH = 1) and the exact formulation, reported as a
function of |R|, for the Abilene instances.

We now compare the results for the “winning” parameter setting to the
exact approach. We first illustrate the results for the abilene instances. In
Figure 6, we report the ratio between the solution values found heuristically
and the best ones obtained via the exact formulation (in case no nonzero
solution is found with the exact method, we set this ratio to 5.0). Interestingly,
for Γ = 1, the heuristic provides competing solutions to those obtained via
the exact approach for all the abilene instances. For the first half of the
instances (those with |R| ≤ 14), the heuristic achieves a comparable objective
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Table 3: Performance ratio of each parameter setting zL, zM , zH ∈ {|V 0|, |V
0|

2 ,
|V 0|

4 , 2, 1} with
zL ≤ zM ≤ zH , for each |R|. The results for the, on average, best setting over all the instances
are underlined.

zL zM zH
|R|

Avg
5 6 7 8 9 10 12 14 16 18 20 24 28 32

1 1 1 1.41 1.31 1.41 1.56 1.60 1.39 1.43 1.44 1.48 1.36 1.48 1.34 1.10 1.01 1.38

2 1 1 1.16 1.09 1.15 1.20 1.21 1.17 1.17 1.15 1.00 0.98 1.01 1.00 0.93 0.89 1.08

2 2 1 0.97 0.96 1.02 0.99 0.98 0.98 0.95 0.94 0.96 0.93 0.91 0.91 0.93 0.89 0.95

2 2 2 0.97 0.97 1.01 0.98 0.98 0.99 0.97 0.96 0.97 0.94 0.92 0.94 0.94 0.99 0.97

|V 0| 1 1 1.16 1.08 1.15 1.19 1.20 1.17 1.16 1.14 1.01 0.99 0.99 0.97 0.92 0.89 1.07

|V 0| 2 1 0.96 0.96 0.99 0.96 0.95 0.96 0.93 0.93 0.93 0.93 0.93 0.89 0.94 0.91 0.94

|V 0| 2 2 0.96 0.96 1.01 0.97 0.98 0.99 0.97 0.95 0.96 0.97 0.99 0.97 0.98 0.98 0.97

|V 0| |V 0| 1 0.96 0.96 0.98 0.97 0.96 0.96 1.05 0.96 0.99 0.98 0.98 0.99 0.96 1.01 0.98

|V 0| |V 0| 2 0.96 0.96 0.96 0.97 0.98 0.98 1.04 1.02 1.03 1.07 1.05 1.05 1.08 1.04 1.01

|V 0| |V 0| |V 0|
2 0.96 0.98 1.00 1.07 1.06 1.05 1.12 1.17 1.13 1.14 1.14 1.15 1.16 1.10 1.09

|V 0| |V 0| |V 0|
4 0.96 0.98 0.99 0.99 1.00 0.99 1.03 1.05 1.09 1.13 1.10 1.11 1.12 1.08 1.05

|V 0| |V 0| |V 0| 0.96 0.98 1.00 1.07 1.06 1.05 1.12 1.17 1.13 1.14 1.14 1.15 1.16 1.10 1.09

|V 0| |V 0|
2 1 0.96 0.96 0.98 0.96 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.99 0.97 1.00 0.97

|V 0| |V 0|
2 2 0.96 0.96 0.96 0.97 0.98 1.00 1.03 1.02 1.03 1.07 1.05 1.06 1.10 1.04 1.02

|V 0| |V 0|
2

|V 0|
2 0.96 0.98 1.00 1.07 1.06 1.05 1.11 1.16 1.12 1.14 1.15 1.15 1.14 1.11 1.08

|V 0| |V 0|
2

|V 0|
4 0.96 0.98 0.99 0.99 1.00 0.99 1.01 1.05 1.07 1.13 1.10 1.12 1.13 1.08 1.04

|V 0| |V 0|
4 1 0.96 0.96 0.96 0.97 0.94 0.97 0.95 0.95 0.96 0.95 0.97 0.93 0.95 0.94 0.95

|V 0| |V 0|
4 2 0.97 0.96 0.97 0.97 0.98 1.01 1.01 0.99 0.99 0.99 1.02 1.06 1.02 1.05 1.00

|V 0| |V 0|
4

|V 0|
4 0.96 0.97 0.98 0.99 0.99 1.00 0.99 1.03 1.04 1.05 1.02 1.05 1.06 1.67 1.06

|V 0|
2 1 1 1.16 1.08 1.15 1.19 1.20 1.18 1.16 1.14 1.01 0.99 0.99 0.95 0.92 0.88 1.07

|V 0|
2 2 1 0.96 0.96 0.99 0.96 0.95 0.96 0.93 0.92 0.94 0.96 0.93 0.91 0.95 0.90 0.95

|V 0|
2 2 2 0.96 0.96 1.01 0.97 0.98 1.00 0.97 0.95 0.96 0.97 0.99 0.98 0.97 0.99 0.98

|V 0|
2

|V 0|
2 1 0.96 0.96 0.98 0.96 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.99 0.97 1.02 0.97

|V 0|
2

|V 0|
2 2 0.96 0.96 0.96 0.97 0.98 0.98 1.02 1.02 1.04 1.07 1.04 1.06 1.08 1.02 1.01

|V 0|
2

|V 0|
2

|V 0|
2 0.96 0.98 1.00 1.07 1.12 1.05 1.11 1.14 1.13 1.14 1.13 1.16 1.15 1.11 1.09

|V 0|
2

|V 0|
2

|V 0|
4 0.96 0.98 0.99 0.99 1.00 0.99 1.01 1.05 1.10 1.13 1.10 1.12 1.11 1.09 1.05

|V 0|
2

|V 0|
4 1 0.96 0.96 0.96 0.97 0.94 0.97 0.95 0.95 0.96 0.95 0.96 0.94 0.96 0.94 0.96

|V 0|
2

|V 0|
4 2 0.96 0.96 0.97 0.97 0.98 1.03 1.01 0.99 0.99 0.99 1.02 1.06 1.02 1.05 1.00

|V 0|
2

|V 0|
4

|V 0|
4 0.96 0.96 0.98 0.99 0.99 1.00 0.99 1.02 1.04 1.05 1.02 1.04 1.05 1.65 1.05

|V 0|
4 1 1 1.16 1.08 1.15 1.19 1.20 1.18 1.17 1.13 1.02 1.00 0.99 0.96 0.94 0.90 1.08

|V 0|
4 2 1 0.97 0.97 1.02 0.96 0.95 0.96 0.93 0.92 0.94 0.94 0.92 0.95 0.98 0.93 0.95

|V 0|
4 2 2 0.97 0.97 1.01 0.96 0.96 0.97 0.95 0.95 0.95 0.95 0.98 0.95 1.03 1.03 0.97

|V 0|
4

|V 0|
4 1 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.94 0.93 0.94 0.95 0.95 0.96 0.92 0.95

|V 0|
4

|V 0|
4 2 0.96 0.97 0.96 0.97 0.97 0.97 0.99 0.98 0.97 0.94 1.00 1.00 1.02 1.03 0.98

|V 0|
4

|V 0|
4

|V 0|
4 0.96 0.96 0.97 0.99 0.98 1.00 0.95 0.97 1.01 1.01 0.99 1.06 1.35 1.04 1.02
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Table 4: Detailed results for the two-phase heuristic with zL = |V 0|, zM = 2, and zH = 1.

|R| 5 6 7 8 9 10 12 14 16 18 20 24 28 32 Avg

O
b
je
c
t
iv

e
F
u
n
c
t
io

n

Γ
=

0 Abi 342 381 438 471 500 500 512 512 595 632 632 632 664 715 538
Atl 402 444 523 559 623 695 853 900 988 1001 1119 1091 1179 1090 819
Nob 346 393 441 532 570 629 696 771 782 841 851 997 1105 1128 720
Pol 265 312 398 452 522 644 702 718 726 714 795 873 774 866 626
Avg 339 383 450 504 554 617 691 725 773 797 849 898 931 950 676

Γ
=

1 Abi 68 68 125 194 194 194 194 194 288 288 288 360 360 381 228
Atl 332 374 453 489 553 625 783 900 912 960 949 925 892 903 718
Nob 294 341 389 480 518 518 555 631 621 636 606 724 650 637 543
Pol 265 312 398 452 522 550 570 606 642 633 602 573 651 732 536
Avg 240 274 341 404 447 472 526 583 616 629 611 646 638 663 506

Γ
=

2 Abi 68 68 125 194 194 194 194 194 220 220 220 256 277 277 193
Atl 332 374 453 489 511 519 605 655 686 697 703 683 737 730 584
Nob 294 294 342 366 402 402 402 395 401 360 404 467 411 410 382
Pol 265 312 368 394 454 406 478 500 491 526 554 573 601 606 466
Avg 240 262 322 361 390 380 420 436 450 451 470 495 507 506 406

Γ
=

3 Abi 68 68 68 126 126 126 126 126 220 220 220 220 220 220 154
Atl 332 332 411 447 447 447 459 497 535 560 497 585 604 582 481
Nob 225 225 273 282 320 320 320 319 320 320 330 457 366 354 317
Pol 197 244 322 346 397 406 456 500 500 526 526 475 500 585 427
Avg 206 217 269 300 323 325 340 361 394 407 393 434 423 435 345

P
r
o
t
e
c
t
io

n
L
e
v
e
l

Γ
=

0 Abi 0 1 1 0 1 2 0 0 0 0 1 1 0 0 1
Atl 3 11 6 8 1 1 2 0 1 0 0 0 0 0 2
Nob 37 39 28 9 6 3 1 0 0 0 0 0 0 0 9
Pol 18 4 7 2 2 0 1 0 0 0 0 0 0 0 2
Avg 15 14 11 5 3 2 1 0 0 0 0 0 0 0 4

Γ
=

1 Abi 100 99 97 92 92 92 96 94 82 94 88 78 77 74 90
Atl 99 86 86 76 70 64 54 49 57 45 43 49 40 60 63
Nob 88 91 84 81 74 75 77 52 62 56 64 59 59 81 72
Pol 98 75 82 75 67 64 57 56 69 66 64 71 68 60 69
Avg 96 88 87 81 76 74 71 63 68 65 65 64 61 69 73

Γ
=

2 Abi 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100
Atl 100 99 97 99 98 99 99 99 95 97 97 99 97 100 98
Nob 100 100 99 99 99 100 98 99 98 100 99 99 99 99 99
Pol 99 98 99 99 97 100 97 100 91 98 98 96 94 98 97
Avg 100 99 99 99 99 100 99 100 96 99 99 99 98 99 99

Γ
=

3 Abi 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Atl 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Nob 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Pol 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100
Avg 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

function value (with a ratio close to 1.0), while it clearly outperforms the exact
approaches on the harder instances (|R| ≥ 16) where, for Γ = 3, the heuristic
solutions are better by a factor larger than 3.5.

The results for the complete data set can be found in Table 4. Times
are reported in Table 5. We remark that the heuristic method finds nonzero
solutions for all the instances and for all values of Γ , whereas, with the exact
method, we find nonzero solutions for only 87 cases out of 168. For the cases
where a solution to the exact formulation is known, we find solutions which
are substantially better than the best ones found via the exact method within
the time limit. On average, the heuristic methods yields solutions with an
objective function value that is better by a factor of 1.42. If we restrict to
Γ > 0, this factor goes up to 2.04.

We remark that, for all the instances that can be solved to optimality with
the exact approach, equivalent solution values are obtained with the heuristic
approaches. This indicates that, at least on the smaller instances for which
the optimal solution value is known, the heuristics are definitely competitive
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Table 5: Detailed computing times for the two-phase heuristic with zL = |V 0|, zM = 2, and
zH = 1.

|R| 5 6 7 8 9 10 12 14 16 18 20 24 28 32 Avg

C
o
m

p
u
t
in

g
T
im

e
P
h
a
s
e

I

Γ
=

0 Abilene 0 0 0 0 1 5 6 7 1 2 2 2 1 4 2
Atlanta 0 0 0 0 0 0 0 0 0 0 1 1 14 15 2
Nobel-us 0 0 0 0 0 0 0 300 0 0 9 13 14 95 31
Polska 0 0 0 0 0 0 0 0 1 1 1 8 300 59 26
Avg 0 0 0 0 0 1 1 77 1 1 3 6 82 43 15

Γ
=

1 Abilene 0 0 0 0 0 0 0 0 0 0 0 1 300 300 43
Atlanta 0 0 0 0 0 0 1 2 300 300 300 300 300 300 129
Nobel-us 0 0 0 0 0 1 1 8 300 300 300 300 300 300 129
Polska 0 0 0 0 0 0 0 300 300 300 300 300 300 300 150
Avg 0 0 0 0 0 0 1 77 225 225 225 225 300 300 113

Γ
=

2 Abilene 0 0 0 1 0 1 0 1 13 13 22 47 300 272 48
Atlanta 0 0 0 1 2 3 300 300 300 300 300 300 300 300 172
Nobel-us 0 0 0 300 300 300 300 300 300 300 300 300 300 300 236
Polska 0 1 300 300 300 300 300 300 300 300 300 300 300 300 257
Avg 0 0 75 150 151 151 225 225 228 228 230 237 300 293 178

Γ
=

3 Abilene 0 0 0 1 0 1 1 1 2 2 2 34 68 80 14
Atlanta 0 1 1 5 13 7 6 18 300 300 300 300 300 300 132
Nobel-us 0 0 0 1 3 3 300 300 300 300 300 300 300 300 172
Polska 0 1 300 139 300 300 300 300 300 300 300 300 300 300 246
Avg 0 0 76 37 79 78 152 155 226 226 226 233 242 245 141

C
o
m

p
u
t
in

g
T
im

e
P
h
a
s
e

I
I

Γ
=

0 Abilene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Atlanta 0 0 0 0 0 0 1 2 3 9 5 13 107 17 11
Nobel-us 0 0 0 0 0 0 1 1 8 1 1 2 2 2 1
Polska 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1
Avg 0 0 0 0 0 0 1 1 3 3 2 4 28 5 3

Γ
=

1 Abilene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Atlanta 0 0 0 0 0 0 0 0 0 0 0 9 0 0 1
Nobel-us 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Polska 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Avg 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

Γ
=

2 Abilene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Atlanta 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Nobel-us 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Polska 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Avg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ
=

3 Abilene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Atlanta 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Nobel-us 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Polska 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Avg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C
o
m

p
u
t
in

g
T
im

e
P
h
a
s
e

I+
I
I

Γ
=

0 Abilene 0 0 0 0 1 5 6 7 1 2 2 2 1 4 2
Atlanta 0 0 0 0 0 0 1 2 3 9 6 14 121 32 13
Nobel-us 0 0 0 0 0 0 1 301 9 1 10 15 16 97 32
Polska 0 0 0 0 1 0 1 1 2 1 2 8 301 61 27
Avg 0 0 0 0 0 1 2 78 3 3 5 10 110 48 19

Γ
=

1 Abilene 0 0 0 0 0 0 0 0 0 0 0 1 300 300 43
Atlanta 0 0 0 0 0 0 2 2 300 300 300 309 300 300 130
Nobel-us 0 0 0 0 0 1 1 8 300 300 300 300 300 300 129
Polska 0 0 0 0 1 1 1 300 300 300 300 301 300 300 150
Avg 0 0 0 0 0 0 1 78 225 225 225 228 300 300 113

Γ
=

2 Abilene 0 0 0 1 0 1 0 1 13 13 22 47 300 272 48
Atlanta 0 0 0 1 3 4 300 300 300 300 300 300 300 300 172
Nobel-us 0 0 0 300 300 300 300 300 300 300 300 300 300 300 236
Polska 0 1 300 300 300 300 300 300 300 300 300 300 300 300 257
Avg 0 0 75 151 151 151 225 225 228 228 231 237 300 293 178

Γ
=

3 Abilene 0 0 0 1 0 1 1 1 2 2 2 34 68 80 14
Atlanta 0 1 1 5 13 7 6 20 300 300 300 300 300 300 132
Nobel-us 0 0 0 1 4 3 300 300 300 300 300 300 300 300 172
Polska 0 1 300 139 300 300 300 300 300 300 300 300 300 300 246
Avg 0 0 76 37 79 78 152 155 226 226 226 234 242 245 141
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in terms of solution quality. Table 5 also illustrates how easier the second phase
problem is w.r.t. the first one in terms of computing times.

It is worth mentioning though that, if one is not able to find a good param-
eter setting beforehand, the variability of the two-phase heuristic in terms of
solution quality can be quite high. For a visual depiction, see Figure 7, which
reports the solution values for all parameter settings for the abilene instance.
This phenomenon better shown in Table 6, which reports the minimum and
maximum objective function value achieved with different parameter settings
for each instance. Remarkably, the differences in solution quality are quite sig-
nificant. As an example, for Γ = 2 we have solutions between, on average, 427
and 261.

Fig. 7: Objective function values (blue) for the two-phase heuristic on the abilene instances,

with |R| = 28 and Γ = 1 with zL, zM , zH ∈
{
|V 0|, |V

0|
2
,
|V 0|
4
, 2, 1

}
and zL ≤ zM ≤ zH .

The corresponding solution obtained via the adaptive heuristic is shown in red.

Let us now consider the adaptive heuristic which, by design and differently
from the two-phase heuristic, does not depend on a user-supplied parameter
initialization. The corresponding results are shown in Table 7. As we can see,
the adaptive heuristic provides results which are comparable to those obtained
with the two-phase heuristic employing the “winning” parameter setting—
although, on average, the results for the former are slightly worse (although
by a mere 3%) than those for the latter. Nevertheless, there are cases where the
adaptive heuristic improves over the two-phase heuristic with the “winning”
parameter setting zL = |V 0|, zM = 2, and zH = 1, such as for abilene with
|R| = 28, as can be observed in Figure 7.

Overall, both heuristic methods dramatically outperform the exact ap-
proach, with the adaptive one being able to do so even without an a priori
knowledge of a “good” parameter setting (although at the cost of a higher
computing time when compared to the two-phase heuristic).
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Table 6: Best (max) and worst (min) solution values obtained via the two-phase heuristic over all

parameter settings, i.e., zL, zM , zH ∈
{
|V 0|, |V

0|
2 ,

|V 0|
4 , 2, 1

}
, with zL ≤ zM ≤ zH . Entries are

rounded to the nearest integer.

|R| 5 6 7 8 9 10 12 14 16 18 20 24 28 32 ∅

Γ
=

0

Abilene
342 381 438 471 500 500 512 512 595 632 632 632 664 715 538
224 301 339 304 332 332 304 318 342 379 438 396 413 369 342

Atlanta
402 444 523 559 623 695 853 970 1061 1118 1206 1262 1416 1387 894
332 363 453 489 517 536 582 622 631 712 665 664 633 701 564

Nobel-
us

346 393 441 532 570 629 734 846 894 917 1011 1176 1223 1313 788
346 393 441 487 522 499 603 617 705 712 660 715 725 786 587

Polska
265 312 398 452 550 644 782 837 968 1054 961 1011 1082 1141 747
265 312 370 424 473 539 614 585 580 504 506 473 535 601 484

Avg (max) 339 383 450 504 561 617 720 791 880 930 953 1020 1096 1139 742
Avg (min) 292 342 401 426 461 477 526 536 565 577 567 562 577 614 494

Γ
=

1

Abilene
68 68 125 194 194 194 194 194 288 288 288 360 417 417 235
0 0 57 57 57 57 57 57 151 151 151 223 280 280 113

Atlanta
332 374 453 489 553 625 783 900 912 976 955 996 1070 1115 752
251 251 330 366 366 438 596 588 552 644 574 622 0 0 398

Nobel-
us

294 341 389 480 518 518 623 652 631 636 649 744 776 775 573
196 243 291 382 420 420 420 464 464 464 519 644 649 539 437

Polska
265 312 398 452 550 550 600 644 644 687 687 698 793 856 581
235 282 360 360 458 435 480 537 557 532 530 525 501 574 455

Avg (max) 240 274 341 404 454 472 550 598 619 647 645 700 764 791 535
Avg (min) 171 194 260 291 325 338 388 412 431 448 444 504 358 348 351

Γ
=

2

Abilene
68 68 125 194 194 194 194 194 288 288 288 256 288 288 209
0 0 57 57 57 57 57 57 57 57 57 57 114 114 57

Atlanta
332 374 453 489 511 519 610 722 709 714 739 759 784 740 604
251 251 330 366 366 438 524 559 548 499 508 449 89 0 370

Nobel-
us

294 294 342 366 402 402 402 402 402 433 419 512 486 478 402
196 196 196 196 234 304 341 278 278 278 278 328 366 0 248

Polska
265 312 370 422 454 466 494 528 538 573 573 573 624 704 493
235 282 340 384 397 397 381 399 367 334 359 404 447 417 367

Avg (max) 240 262 323 368 390 395 425 462 484 502 505 525 546 553 427
Avg (min) 171 182 231 251 264 299 326 323 313 292 301 310 254 133 261

Γ
=

3

Abilene
68 68 125 137 137 137 137 137 220 220 220 220 277 277 170
0 0 57 57 57 57 57 57 57 57 57 57 114 114 57

Atlanta
332 332 411 447 447 447 459 560 560 560 560 585 648 644 499
251 251 330 366 366 366 459 449 451 445 451 499 544 0 373

Nobel-
us

225 225 273 282 320 320 320 320 320 320 337 457 453 468 331
82 129 129 129 129 266 157 158 158 266 158 242 275 327 186

Polska
197 244 322 346 406 406 456 500 500 554 526 526 571 638 442
169 169 283 271 271 271 321 305 305 324 324 356 399 428 300

Avg (max) 206 217 283 303 328 328 343 379 400 414 411 447 487 507 361
Avg (min) 126 137 200 206 206 240 249 242 243 273 248 289 333 217 229

5.4 Considerations on the protection level

We now focus on the empirical protection level achieved by the different ap-
proaches. Recall that, when adopting worst case or average data, the protection
level is equal to 0 for the former whereas, as it can be observed computation-
ally, it is almost always equal to 100% for the latter.
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Table 7: Results for the adaptive heursitic.

|R| 5 6 7 8 9 10 12 14 16 18 20 24 28 32 Avg

O
b
je
c
t
iv

e
F
c
t
.
V
a
lu

e
s

Γ
=

0

Abi 322 381 438 450 480 480 472 472 566 507 507 564 513 658 486
Atl 402 444 523 559 623 695 783 906 866 929 956 937 990 920 752
Nob 346 393 441 532 570 629 734 770 879 842 836 1046 989 1106 722
Pol 265 312 398 452 550 644 752 739 750 740 597 626 724 798 596
Avg 334 383 450 498 556 612 685 722 765 755 724 793 804 871 639

Γ
=

1

Abi 68 68 125 194 194 194 194 194 288 288 288 360 381 381 230
Atl 332 374 453 453 553 625 783 762 833 832 850 750 605 602 629
Nob 294 341 389 480 480 473 586 607 636 630 609 728 750 748 554
Pol 265 312 398 452 522 522 553 604 595 640 623 649 572 706 530
Avg 240 274 341 395 437 454 529 542 588 598 593 622 577 609 486

Γ
=

2

Abi 68 68 125 194 194 194 194 194 288 288 288 256 277 277 208
Atl 332 374 453 447 511 519 610 686 722 660 662 659 552 550 553
Nob 294 294 342 366 402 402 402 395 395 405 401 459 397 467 387
Pol 265 284 368 394 454 454 478 475 491 498 492 548 583 606 456
Avg 240 255 322 350 390 392 421 438 474 463 461 481 452 475 401

Γ
=

3

Abi 68 68 125 126 126 126 126 126 220 220 220 220 220 220 158
Atl 332 332 411 447 411 447 459 560 560 560 560 574 580 554 485
Nob 225 225 260 282 320 320 320 312 320 320 337 420 419 456 324
Pol 189 244 294 308 369 369 412 437 481 472 472 472 517 585 402
Avg 204 217 273 291 307 316 329 359 395 393 397 422 434 454 342

P
r
o
t
e
c
t
io

n
V
a
lu

e
s

Γ
=

0

Abi 1 0 1 2 1 1 3 2 0 1 0 1 0 0 1
Atl 75 72 75 1 1 0 2 0 0 0 1 0 0 0 16
Nob 59 49 1 1 0 0 0 0 0 0 0 0 0 0 8
Pol 96 86 23 2 3 0 0 1 0 0 1 1 0 0 15
Avg 58 52 25 2 1 0 1 1 0 0 1 1 0 0 10

Γ
=

1

Abi 98 98 98 97 99 99 99 94 89 94 87 71 62 80 90
Atl 91 84 91 90 81 68 54 63 39 42 28 42 50 31 61
Nob 88 84 81 82 75 85 60 56 42 52 54 57 49 61 66
Pol 90 81 75 72 68 68 59 66 69 61 62 59 63 57 68
Avg 92 87 86 85 81 80 68 70 60 62 58 58 56 57 71

Γ
=

2

Abi 100 100 100 100 100 100 100 100 98 98 98 99 100 100 100
Atl 99 98 99 100 99 99 99 96 96 100 98 98 98 99 99
Nob 100 100 99 99 99 99 99 99 100 97 99 100 98 99 99
Pol 99 99 97 95 100 100 95 98 95 96 99 98 94 96 97
Avg 100 99 99 99 100 100 98 98 97 98 99 99 98 99 99

Γ
=

3

Abi 100 100 100 100 100 100 100 100 100 100 100 100 99 99 100
Atl 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100
Nob 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Pol 100 100 100 100 100 100 100 100 99 100 100 100 100 99 100
Avg 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

C
o
m

p
u
t
in

g
T
im

e
s

Γ
=

0

Abi 6 14 12 37 29 33 13 34 42 45 49 56 62 67 36
Atl 9 9 11 36 59 67 99 207 267 334 350 355 464 464 195
Nob 8 10 8 8 8 9 44 128 137 211 206 465 486 614 167
Pol 6 7 16 12 27 51 125 97 110 116 90 97 94 119 69
Avg 7 10 12 23 31 40 70 116 139 177 174 244 276 316 117

Γ
=

1

Abi 6 6 6 8 7 8 8 9 7 7 9 41 38 36 14
Atl 11 9 10 10 32 17 127 180 522 2059 3180 3484 623 1231 821
Nob 8 9 9 9 8 11 13 45 310 309 611 613 1518 613 292
Pol 6 6 12 30 34 62 68 213 308 551 569 2798 1891 1973 609
Avg 8 7 9 14 20 24 54 112 287 732 1093 1734 1017 963 434

Γ
=

2

Abi 7 11 9 15 10 11 11 11 31 33 31 911 912 910 208
Atl 10 9 10 10 29 18 1664 3098 3445 2137 3042 3361 622 613 1291
Nob 8 8 8 308 308 309 309 308 309 311 308 308 308 308 244
Pol 6 6 6 367 307 307 2114 3320 3318 3357 3600 2716 3466 3320 1872
Avg 8 9 8 175 164 161 1024 1684 1776 1459 1745 1824 1327 1288 904

Γ
=

3

Abi 6 6 6 306 307 307 307 308 612 607 607 607 1808 1209 500
Atl 9 9 10 10 10 15 15 21 1222 1521 1519 1819 2136 1820 724
Nob 8 8 8 8 8 8 307 308 308 308 308 612 1214 1211 330
Pol 6 6 308 607 2173 1528 2020 3019 2819 3316 3314 3315 3389 2717 2039
Avg 7 7 83 233 625 465 662 914 1240 1438 1437 1588 2137 1739 898
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Let us first consider the exact Γ -robust approach for Γ ∈ {1, 2, 3}, as re-
ported in Table 2. We remark that the empirical protection level is induced by
the feasibility of a solution and not by its optimality. Therefore, it is reasonable
to measure the former for all the solutions provided by the method, regardless
of them being optimal or not. Quite interestingly, we observe that, although
the empirical protection level for Γ = 1 is not very high (being equal to, on
average, 82%), it already reaches a value of, on average, 100% for Γ = 2.

Similar observations can be drawn with both of our heuristics, as reported
in Table 4 and in Table 7. For Γ = 0 (the case with average data), the empirical
protection level is, as expected, very small (3% on average for the two-phase
heuristic and 10% for the adaptive one). For Γ = 1, it is still not very high
for both methods, being close to 71% on average for both. Differently, for
Γ = 2, 3 we obtain solutions with very few violations and a higher empirical
protection level equal to, respectively, 99% and 100% on average (again for
both heuristics).

5.5 Recommendations

As a consequence of the results that we observed in our experiments, we would
advise to resort to the exact MILP formulation for the nominal case of VNE
only with no more than |R| = 20 requests and to the exact Γ -robust for-
mulation only for Γ = 1 and with up to |R| = 10 requests. For all the other
cases, we would suggest the adoption of our two-phase heuristic (which, among
the two proposed algorithms, is definitely the faster one) with parameters
zL = |V 0|, zM = 2, and zH = 1. In case substantial differences in solution
quality can be observed by experimenting with other parameter values (such
differences could be substantial, as illustrated in Table 6) and a fine parameter
tuning cannot be carried out in a preprocessing step, we advise the adoption of
the computationally more demanding but, without a good guess on a suitable
parameter choice, more stable, adaptive heuristic.

As to the choice of Γ , when aiming for a very high, i.e., > 95%, protection
level, we would advise, based on our experiments, to select Γ = 2 for the node
capacity constraints, while (possibly) letting Γ = 0 for the link capacity ones.

5.6 Results on larger instances

To better assess how our algorithms scale on instances of larger size, we con-
clude the section by reporting on a set of experiments carried out on 8 physical
networks taken from the Internet Topology Zoo database [24], Fatman, Digex,
Cernet, Bellsouth, Intellifiber, RedBestel, Deltacom, and Cogentco,
with, resp., |V 0| = 20, 30, 40, 60, 72, 83, 112, and 199. Due to their size (larger
than those used in the previous experiments), we consider up to |R| = 50 VN
requests.

We experiment with our two-phase heuristic, adopting the parameter set-
ting zL = |V 0|, zM = 2, zH = 1 which we have found to perform better in the
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previous experiments, with Γ = 1 in phase one and Γ = 0 in phase two. The
results are illustrated in Table 8. Note that, in the table, the computing time
accounts for the total time spent in the two phases, neglecting the preprocess-
ing time invested to compute the all pairs shortest paths which are needed for
the distance-bounding constraints in phase one.

Overall, the table shows that our two-phase algorithm can solve reasonably
well VNE instances with large physical networks (Cogentco contains |V 0| =
199 nodes) with up to |R| = 40 simultaneous VN requests, while the method
starts to fail for |R| = 45, 50 due to the solver failing to find a nonzero solution
to the phase one subproblem in the time limit.

The table also illustrates an interesting phenomenon. Indeed, it clearly
shows that, although both subproblems get harder, as one would expect, when
|R| increases, the phase one subproblem gets substantially easier when the size
of the physical network |V 0| grows. This is, most likely, a feature of the under-
lying multi-knapsack structure, due to which the introduction of more physical
nodes only makes node capacity a more abundant resource, without compli-
cating the structure of the problem too much. Interestingly, the situation is
reversed for the phase two subproblem, which gets harder for physical net-
works of larger size. This is, possibly, a consequence of the network topologies
still playing a large role in it, so that, having a physical network of increased
size does not directly translate into a problem which is easier to solve.

We remark that these two opposite behaviors are, quite interestingly, some-
what complementary in that, by increasing the value of |V 0|, while the phase
one subproblem gets harder, the phase two subproblem gets easier. Overall,
we end up with a situation where, if one of the two subproblems is not solved
to optimality, then the other one (in most of the cases) is, thus obtaining an,
overall, still effective algorithm.

6 Concluding remarks

Based on a chance-constrained formulation for the Virtual Network Embed-
ding problem where node and traffic demands of the virtual networks are
assumed to be random variables, we have proposed an exact Γ -robust Mixed-
Integer Linear Programming (MILP) formulation which allows to find solu-
tions with large profits that are guaranteed to be feasible with a high proba-
bility. Based on this formulation, which is suitable to solve small size instances
in a reasonable amount of computing time but which scales poorly for larger
networks, we have introduced two MILP-based Γ -robust heuristics: a two-
phase heuristic and an adaptive one.

Computational experiments indicate that, while the exact approaches be-
come computationally challenging for instances with an increasing number of
virtual network requests, both heuristics provide high quality solutions even
for larger problems. We advise to adopt the first heuristic for the case where
its input parameters can be determined beforehand whereas, if this is not the
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Table 8: Results on 8 Internet Topology Zoo instances of increasing size |V 0|. Entries are rounded
to the nearest integer.

|V 0| |R| 8 9 10 12 14 16 18 20 24 28 32 35 40 45 50 Avg

O
b
je
c
t
iv

e
F
c
t
. 20 Fatman 328 302 331 315 341 450 417 429 370 413 523 468 434 441 391 397

30 Digex 405 409 439 422 422 424 487 476 450 445 422 235 284 305 0 375
40 Cernet 396 477 477 664 679 820 704 692 724 811 724 911 682 0 0 584
50 Bellsouth 366 379 478 459 497 544 582 734 571 763 827 789 864 758 0 574
72 Intellifiber 385 428 442 441 538 493 496 579 583 620 524 576 599 0 290 466
83 RedBestel 280 379 349 380 407 416 443 458 505 543 565 522 540 0 509 420

112 Deltacom 343 408 472 541 687 547 619 632 806 803 695 617 833 996 0 600
199 Cogentco 365 459 496 534 631 566 684 740 702 778 793 779 837 0 0 558

Avg 359 405 436 470 525 533 554 593 589 647 634 612 634 313 149 497

P
r
o
t
.
L
e
v
e
l 20 Fatman 99 100 98 98 95 92 98 96 91 97 94 96 94 90 97 96

30 Digex 100 100 100 100 99 98 93 97 93 92 100 100 100 100 100 98
40 Cernet 97 100 100 100 100 97 92 90 96 99 94 90 92 100 100 96
50 Bellsouth 100 99 100 99 97 100 98 96 95 88 91 95 92 98 100 97
72 Intellifiber 100 99 99 99 99 99 99 93 98 96 84 93 98 100 100 97
83 RedBestel 100 100 99 98 99 99 100 97 97 95 93 97 85 100 99 97

112 Deltacom 98 99 99 99 98 99 99 98 97 98 97 95 95 95 93 97
199 Cogentco 100 99 100 98 100 100 100 100 99 99 99 98 95 99 97 99

Avg 99 100 99 99 98 98 97 96 96 96 94 96 94 98 98 97

O
.G

a
p

(
P
h
.I
) 20 Fatman 0 0 0 0 4 3 10 15 23 50 44 48 78 78 78 29

30 Digex 0 0 0 0 0 0 3 6 19 64 184 821 639 472 ∞ 158
40 Cernet 0 0 0 0 0 0 0 12 17 38 53 50 68 ∞ ∞ 18
50 Bellsouth 0 0 0 0 0 0 0 0 0 0 5 6 8 71 ∞ 6
72 Intellifiber 0 0 0 0 0 0 0 0 0 0 0 8 18 ∞ 684 51
83 RedBestel 0 0 0 0 0 0 0 0 0 0 0 0 0 ∞ 78 6

112 Deltacom 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
199 Cogentco 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Avg 0 0 0 0 1 0 2 4 7 19 36 117 101 124 168 33

O
.G

a
p

(
P
h
.I
I) 20 Fatman 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Digex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 Cernet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 Bellsouth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
72 Intellifiber 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 1
83 RedBestel 0 0 0 0 0 0 0 0 0 6 0 11 2 0 0 1

112 Deltacom 0 0 0 0 0 0 0 0 0 8 3 0 10 5 ∞ 2
199 Cogentco 0 0 0 0 0 5 0 0 10 8 7 11 11 ∞ ∞ 4

Avg 0 0 0 0 0 1 0 0 1 3 2 3 3 1 0 1

C
o
m

p
u
t
.
T
im

e 20 Fatman 0 1 10 300 300 301 301 300 301 301 301 301 301 2 2 201
30 Digex 2 6 3 9 11 30 328 338 317 330 307 300 300 2 0 152
40 Cernet 2 2 2 2 6 9 72 315 318 327 321 326 327 299 299 175
50 Bellsouth 1 1 1 3 5 4 7 9 140 256 373 331 372 315 299 141
72 Intellifiber 8 9 10 28 21 44 107 66 124 265 600 458 404 0 3 143
83 RedBestel 6 6 20 12 33 56 86 114 236 333 181 600 600 0 202 166

112 Deltacom 8 15 18 42 78 118 115 96 163 309 312 295 359 553 600 205
199 Cogentco 11 84 51 78 160 304 84 164 307 304 310 311 321 342 313 210

Avg 5 16 14 59 77 108 137 175 238 303 338 365 373 189 215 174

case, we suggest to employ the adaptive heuristic, which provides competi-
tive solutions, albeit at the cost of a larger investment in computing time.
Experimenting with different values of Γ , so to establish a trade-off between
the objective function value and the probability of being feasible for all real-
izations of the uncertain data, we have observed that, in our setting, Γ = 2
provides the most favorable option, yielding at the same time solutions with a
high objective function value which are, empirically, feasible with a very high
probability.
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