On robust lot sizing problems with storage
deterioration, with applications to heat and
power cogeneration

S. Coniglio!, A. M.C.A. Koster?, and N. Spiekermann?

! Department of Mathematical Sciences, University of Southampton
University Road, Southampton, SO17 1BJ, United Kingdom
s.coniglio@soton.ac.uk
2 Lehrstuhl II fiir Mathematik, RWTH Aachen University
Pontdriesch 14-16, 52062, Aachen, Germany
{koster,spiekermann}@math2.rwth-aachen.de

Abstract. We consider a variant of the single item lot sizing problem
where the product, when stored, suffers from a proportional loss, and
in which the product demand is affected by uncertainty. This setting is
particularly relevant in the energy sector, where the demands must be
satisfied in a timely manner and storage losses are, often, unavoidable.
We propose a two-stage robust optimization approach to tackle the prob-
lem with second stage storage variables. We first show that, in the case
of uncertain demands, the robust problem can be solved as an instance
of the deterministic one. We then address an application of robust lot
sizing arising in the context of heat and power cogeneration and show
that, even in this case, we can solve the problem as an instance of the de-
terministic lot sizing problem. Computational experiments are reported
and illustrated.

1 Introduction

Lot Sizing (LS) is the fundamental problem of a large part of modern production
planning systems. In its basic version, given a demand for a single good over
a finite time horizon, the problem calls for a feasible production plan which
minimizes storage, production, and setup costs, also guaranteeing that certain
lower and upper bounds on both the production and the amount of good that
is stored at each point in time are met.

In the paper, we focus on a generalized version of lot sizing where the prod-
uct suffers from proportional losses when stored and the objective function is
not necessarily a linear function of the production variables. We also assume
uncertain product demands and, consequently, we will tackle the problem from
a robust optimization perspective. This suits the case of many applications in
the energy sector where the product demands of, typically, heat or power, are
often not known in advance, especially when the decision maker has to commit
to a production plan some time before it becomes operational.



In the paper, we first show that the robust counterpart of this generalized
version of the lot sizing problem can be solved as a special instance of its deter-
ministic counterpart with suitably defined demands and storage upper bounds.
We next investigate an application of this result to a production planning prob-
lem arising in the context of Combined Heat and Power Production (CHPP),
which we also show to be solvable as a special instance of the deterministic
(generalized) lot sizing problem.

The paper is organized as follows. In Section 2, we report on some previous
work on lot sizing and introduce some relevant robust optimization concepts. Our
main contribution, the reduction of the version of robust lot sizing problem that
we consider to the deterministic one, is outlined in Section 3. Section 4 illustrates
the application to heat and power cogeneration, while Section 5 collects some
computational results and observations. Section 6 concludes the paper with some
final comments.

2 Previous work

In this section, we give a brief account of some relevant work on different versions
of the lot sizing problem, also encompassing the uncertain case.

2.1 Deterministic case

Many variants of the deterministic lot sizing problem have been studied in the
literature. For an extensive account of the most relevant work, we refer the reader
to the monography [PW06]. The problem is known to be in P for the case with
linear costs, complete conservation (i.e., no losses in the stored product), zero
storage lower bounds, nonzero time dependent storage upper bounds, and no
production bounds, as shown by Atamtiirk and Kiiciikyavuz in [AKO08]. A similar
result holds for nonnegative and nondecreasing concave cost functions, complete
conservation, production bounds constant over time, and unrestricted storage,
as shown by Hellion, Mangione, and Penz in [HMP12]. For a polynomial time
algorithm for the case with storage losses and nondecreasing concave costs, but
no storage or production bounds, see the work of Hsu [Hsu00]. As to A'P-hard
cases, Florian, Lenstra, and Kan in [FLK80] provide a number of examples. These
include the case of linear as well as fixed production costs, no inventory costs, no
storage bounds, no lower production bounds, but nonconstant production upper
bounds.

2.2 Uncertain case

Classical approaches to handle uncertainties in lot sizing are, historically, stochas-
tic in nature, dating back as early as 1960 [Sca60]. The idea is to first assign a
probability distribution to the uncertain demand and, then, to solve the problem
by looking for a solution of minimum ezpected cost. Unfortunately, as pointed
out in [LS05], even when the distribution is estimated within sufficient precision



from historical data, such methods can yield solutions which, when implemented
with the demand that realizes in practice, can be substantially more costly than
those that were predicted with the stochastic approach. Moreover, and regardless
of the accuracy of the estimation, these techniques are, in many cases, intrinsi-
cally doomed to suffer from the curse of dimensionality [BT06], as they usually
require a computing time which is, at least, linear in the size of the (discrete)
probability space, which is typically exponential in the size of the instance.

A different option, arguably more affordable from a computational stand-
point, is of resorting to a robust optimization approach, thus looking for solu-
tions which are feasible for any realization of the uncertain demand belonging
to a given uncertainty set, and which also minimize the worst case cost. Two
seminal papers in this direction are those of Bertsimas and Thiele [BT04,BT06],
who consider the uncapacitated lot sizing problem with backlogging® and fixed
costs, with demands subject to a so-called I'-robustness model of uncertainty?.
Among other results, they show that the I'-robust counterpart of the variant of
lot sizing they consider can be solved as a version of the deterministic problem
with modified demands, also for the case where production bounds are in place.

We remark that, for the result by Bertsimas and Thiele to hold, bounds on
the storage cannot be enforced. This is an issue in the energy sector, where
backlogging is not tolerable as the demand of energy, be it heat or electrical
power, must be satisfied when issued.

3 Robust lot sizing under demand uncertainty

In this section, we first introduce the generalized variant of lot sizing that we
will address. After presenting its robust counterpart, we will then illustrate how
to reduce this robust problem to a special version of the deterministic one and
draw some computational complexity considerations.

3.1 Lot sizing with deterioration and storage bounds

Consider a single product and a time horizon T' = {1,...,n}. For each time
step t € T, let d; > 0 be the product demand, ¢; > 0 the production variable,
2z € {0,1} an indicator variable equal to 1 if ¢ > 0, and u; > 0 a variable
corresponding to the value of the storage at the end of time period ¢. Let also
up > 0 be the initial storage value. We assume time dependent bounds @ . <

q < @t on the production and U, < u; < U, on the storage. The generalized

3 In case of backlogging, shortages in the inventory are allowed—or, said differently,
unmet demand can be postponed, at a cost, to the future.

4 Originally proposed in [BS03,BS04], the idea of I'-robustness is of assuming that
the uncertain parameters (demands for LS) belong to symmetric intervals and that,
for an integer I', the total number of uncertain demands which deviate from their
nominal value to either of the extremes of their intervals is bounded by I in any
solution and constraint of the problem.



variant of lot sizing that we consider can be cast as the following Mixed-Integer
Linear Programming (MILP) formulation:

(LS-DET) min f(g,2) + Z Chuy (1a)
teT

st. auup—1 +q = u + dy vteT (1b)

U <u <U,; VteT (1c)

2Qi < qr < 2Qy VteT (1d)

z €{0,1} VieT (1e)

q: =0 VteT (1f)

ug >0 VteT. (1g)

The generalization goes along two directions. First, we assume that the Objec-
tive (1a) is the sum of a (general) function f(g, z) of variables ¢, z and a linear
one of u, Y, 1 ciuy, with inventory costs ¢f. The classical case is obtained for
f(q,2) = > cplatq: +bi2zt), where a; and by are, resp., the unit production cost
and the setup cost at time ¢ € T. Secondly, we assume that, at the end of each
time period ¢t € T', a fraction (1 —«;) of the stored product is lost, as determined
by the (possibly time dependent) conservation factor oy € (0,1].

We remark that, similarly to the classical case where a; =1 for all t € T, in
every feasible solution (g, z,u) of LS-DET, u; is uniquely determined as a func-
tion of ¢;, us—1, and d;. Indeed, from Constraint (1b), we deduce, by substitution
fromt=1tot=|T|:

Uy 1= (Hak> uo—i—Z( H ozk> (q; — dy) VteT. (2)
k=1

i=1 \k=i+1

Note that Equation (2) is causal, i.e., that the storage at time ¢ only depends
on the demand (and production) at times 1,...,¢# — 1. From the equation, it
follows that a pair (g, z) suffices to fully characterize a solution to LS-DET, as
the (unique) value of the missing vector u can be calculated a posteriori from
Equation (2). We call a pair (g, z) satisfying Constraints (1d)—(1f) a production
plan and denote by Zrsprr(q,2) = (g,2,u), with « as in Equation (2), its
induced solution to LS-DET.

3.2 Uncertain demands

Assuming that the uncertain demand vector d takes values in the uncertainty
set D, the robust counterpart of LS-DET, i.e., a version of the problem where
we look for a solution (g, z,u) which is feasible for all realizations d € D, has to
be a solution to:

(LS-ROB) min (1a) (3a)
s.t. QpUp—1 + gt = Ug + dt Vit € T, deD (3b)
(1e)-(1g), (3¢)



where the original Constraints (1b) (which are called Constraint (3b) here) are

enforced for all realizations d; € D. As we will better explain in the following,

we remark that, in this case, all the variables are first stage variables, i.e., they

are required to take a single value which is independent of the realization of d.
For any nontrivial D, the following holds:

Proposition 1. If 3{d',d*} C D with d* # d?, then LS-ROB is infeasible.

Proof. For any value of ¢,d, Constraints (3b) induce the linear system Au =
q — d + eraqug, where A is a full rank matrix with the all-one vector as main
diagonal and the vector —« as the diagonal below it. Assuming that LS-ROB
is feasible, we have Ju : Au = g — d' + ejaqug and Au = ¢ — d? + ejoup.
This implies A7!(q — d* + e1aiup) = A7 (g — d? + eyaup), that is, d' = d?, a
contradiction. a

It is thus natural, as well as very reasonable in practice, to assume that the
value of the storage u; at time ¢ € T can be adapted as a function u.(d) of
the demand d € D which has realized up to time ¢ — 1, i.e., that u is a second
stage variable. A direct formulation for the robust counterpart of LS-DET with
a second stage u is thus:

(LS-ROB2) min f(q,2)+n (4a)
st apur—1(d) + q¢ = ue(d) + dy VteT,de D (4b)

Uy <uy(d) < Uy vteT,de D (4c)

N> chu(d) vd e D (4d)

teT

(1d)—(1f) (4e)

ut(d) >0 VteT,de D (4f)

n = 0. (4g)

The newly introduced variable n accounts for the worst case storage cost over
all d € D (a so-called, partial, epigraph reformulation). Assuming, as it is the
case for a discrete scenario approach, a finite D, LS-ROB2 calls for a vector
u(d) > 0 for each d € D which satisfies Constraints (4b)—(4d). Clearly, LS-
ROB2 can be solved directly by employing a mixed-integer linear programming
solver, although at the cost of expressing Constraints (4b)—(4d) and (4f) |D|
times.

3.3 Solving LS-ROB2 as an instance of LS-DET

We now present a more efficient way to solve LS-ROB2 as an instance of LS-DET
with suitably chosen demand and storage upper bound vectors d and U.

As for LS-DET, a production plan (g, z) is required to satisfy Constraints (1d)—
(1f), which are condensed, in LS-ROB2, in Constraint (4e). Its induced solution



Trs-ros2(q, 2) = (¢, z,u(d),n) to LS-ROB2 can be defined, w.l.o.g., as:

ug(d) == (Hak> u0+z< 11 ak> (i—d;)) VteT,deD  (5a)
k=1

i=1 \k=i+1

7 = max {Zcz’uxd)} : (5b)

teT

Differently from the case of LS-DET, another induced solution can be con-
structed by selecting any 7 satisfying 7 > maxaep {3 ,cp ciuy(d)}. Clearly
though, such solution cannot be optimal.

Our main result follows:

Theorem 1. For an uncertainty set D over which a linear function can be op-
timized in polynomial time, LS-ROB2 can be polynomially reduced (w.r.t. pro-

duction plans) to an instance of LS-DET with d = d’' and U = T thus defined:

d, == max {dt - i < H ak> (d; — dz)} VteT (6a)

=1 k=i+1
U, :=U,— A VteT (6b)
t t
Ay = max {Z < I1 ozk) (d; — di)} VteT.  (6c)
=1 k=i+1

Proof. First, note that the values for d; and U; can be computed iteratively, from
t = 1tot = |T|, in polynomial time due to the assumptions on D. For a given pro-
duction plan (g, 2), adopting d = d’ and U = U/, we show that Zps ros2(q, 2) =
(q, z,u(d),n) is feasible for LS-ROB2 if and only if Zys prr(q, 2) = (g, 2,u) is
feasible for LS-DET. We deduce the following:

d, >0 vteT  (7a)
ug = géilljl {uc(d)} vteT (7b)
ur + Ay = max {us(d)} vteT (7¢)

n=Zc§ut+gleag{ZciZHak(di—di)} (7d)

teT teT i=1 k=i

const

For the derivations, which we omit due to space reasons, we refer the reader
to the Online Appendix [CKS16]. We are to show that Constraints (4c) are
satisfied by u(d) if and only if Constraints (1c) are satisfied by u (as all the
other constraints are satisfied by definition of production plan). This is shown
by observing that, for all ¢ € T, the following holds true:

U, <u(d) ¥de D& U, <mingep{w(d)} & U, <u
ut(d) S ﬁt Vde D < ma,XdeD{Ut(d)} S Ut < U+ At S ﬁt = Ut S U;



Since Objectives (4a) and (la) are equal up to a constant additive term, i.e.:

fla,2)+n=f(g,2)+ Y cjus + const, 9)
teT

we deduce that a production plan is optimal for LS-ROB2 if and only if it is
optimal for LS-DET. a

Intuitively, the newly defined demand d; induces a lower bound on the prod-
uct which has to be available at time ¢ € T, thus ensuring that every demand
d € D can be met. The value A reduces the storage upper bound of the trans-
formed problem to prevent that, when a large production is realized but, sud-
denly, a large deficit in demand occurs (an event which would result in an over-
flow of storage), the actual storage upper bound U; is not exceeded.

We remark that the assumptions in Theorem 1 subsume the cases of many
widely employed robustness models, including polyhedral uncertainty sets (such
as the I'-robustness one), discrete scenario uncertainty sets, or ellipsoidal uncer-
tainty sets, such as those used in [BTEGNO09].

From a computational complexity perspective, the following holds:

Corollary 1. Given an uncertainty set D over which a linear function can be
optimized in polynomial time and suitable assumptions on the givens, LS-ROB2
is in P (resp., N'P-hard) if and only if the corresponding version of LS-DET is
in P (resp., N'P-hard).

Proof. To polynomially reduce LS-ROB2 to LS-DET, use Lemma 1. For the
polynomial reduction from LS-DET to LS-ROB2, consider that every determin-
istic problem can be regarded as a robust optimization problem. a

Note that, as a consequence of Corollary 1, LS-ROB2 is in P for all the
polynomially solvable cases of LS-DET that we reported in Section 2 for which
the algorithm allows for time dependent upper bounds U on w. This is, for
instance, the case of the problem studied in [HMP12].

We conclude by noting that our result can be slightly extended as follows:

Remark 1. Theorem 1 and Corollary 1 still hold if we introduce additional con-
straints on z and ¢ or assumptions on the givens (except for d and U). They are
also valid for U; = oo and for not necessarily nonnegative demands d.

4 Application to heat and power cogeneration

In this section, we consider an application of the previous results to the case
of Combined Heat and Power Production (CHPP). CHPP plants are produc-
tion units in which the heat that is generated when cooling down the plant is
extracted and, at least partially, utilized for heating purposes. The units are
equipped with a storage tank where the heat in excess can be, temporarily,
stored, subject to constant proportional losses due to dissipation effects over
time.



From a production planning perspective, two products and two demands
are present: one of heat and one of power. Power in excess or defect w.r.t. the
given demand can be sold or bought from the power marked. Storage is costless,
while a cost is incurred for fuel consumption. In principle, we can outline three
sources of uncertainty: heat demands, power demands, and power market prices.
Among the three, heat demands are, arguably, the most critical. This is because
badly estimated heat demands can lead to infeasible production plans where
the storage bounds are violated. Differently, badly estimated power demands or
market prices can only introduce an extra cost in the objective function. For this
reason, in the following we will focus solely on uncertain heat demands.

4.1 Problem formulation

We adopt the same variables as in LS-DET, with ¢, u, and d" representing the
amount of heat which is, resp., produced, stored, and required as a demand.
For power, we introduce a second production variable p;, indicating the amount
of power that is generated at time t € T, two market variables, p® and p®,
representing the amount of power that is, at each point in time, bought and
sold, and a demand vector dP. Let cP be the vector of market prices for both
buying and selling a MWh of power and let ¢/ be the vector of fuel prices. Fuel
consumption at time ¢, as denoted by the variable f;, is modeled as the linear
function sq; + hzy, where hz; is a constant term corresponding to the activation
of the CHPP unit. We assume that heat and power are produced with a fixed
proportion p € (0,1) and that « is constant over T'.

Let D" be the uncertainty set for the heat demands. As for LS-ROB2, we
assume second stage storage variables u(d") as a function of the uncertain heat
demand d" € D". We introduce the following robust two-stage MILP formula-
tion:

(CHPP-ROB2) min Y (o} — p}) +cl f,) (10a)
teT

st aus_1(d") + ¢ = uy(d") +dP Vvt e T,d" € D" (10b)

PP+ pb=dl +ps VteT (10c)

U<u(d)<U vt € T,d" € D" (10d)

2Q < ¢ < 2Q VteT (10e)

fe=sq + hz VteT (10f)

Y = pg: VteT (10g)

a, fo, 08,08, pf >0 VteT (10h)

ug(d") >0 vt € T,d" € D" (10i)

z €{0,1} vteT. (10)



Given a production plan (g, z), its induced solution to CHPP-ROB?2, i.e.,
ICHPP—ROBQ (Qa Z) = (Q7 2, f7 pp,pb,ps7 u(dh))a is defined as:

t
up(d") = a'ug + Y o' (g; — dfY) VteT (11a)
1=1

ft = sq; + hz VteT
PP = pa vieT
pi = max{d} —p},0}
p; = max{p; —dy,0}.

The following holds:

Proposition 2. CHPP-ROB2 can be solved as an instance of LS-DET.

Proof. By substitution from Constraint (10g), Constraints (10c) become, for all
telT:

Py —pi =d} — pq

which, after substitution, together with Constraint (10f), in Objective (10a),
yield:

> (@ = par) + el (s +hz)) = > ((ef s = pau + el hz) + 3 b

teT teT teT
t
By setting:
a.2) =Y (s = p)a+clhz) (122)
teT
ap=a VteT (12b)
ci:=0 WteT (12¢)

and dropping the constant term, we obtain an instance of LS-ROB2. The corre-
sponding instance of LS-DET is obtained by applying Corollary 1. a

Unfortunately, we are not aware of any specialized algorithm capable of solv-
ing LS-DET with a; < 1 in combination with (constant) lower and upper produc-
tion bounds. In spite of this, in the next section we will rely on the transforma-
tion into LS-DET to solve CHPP-ROB2 via mixed-integer linear programming
techniques in a much shorter amount of computing time than when tackling it
directly in its original form.



5 Computational results

We report on a set of computational experiments on a CHPP-ROB2 problem
originating within the project Robuste Optimierung der Stromversorgungsysteme
(Robust Optimization of Power Supply Systems), funded by the German Bun-
desmanisterium fir Wirtschaft und Energie (Federal Ministry for Economic Af-
fairs and Energy, BMWi).

We consider a dataset of 232 days, spanning a period of two years (with some
missing months). Market prices for the power market are taken from EPEX
STOP (the European Power Exchange). The power demand is taken from his-
torical data for the whole country of Germany, downscaled to 50000 households,
while the heat demand data is taken from a portion of Frankfurt (of around
50000 households). We assume s = 1.51 EUR/MWh, h = 5.43 EUR/MWh, and

p = 0.4. The bounds are set to U = 0 MWh, U = 120 MWh, @ = 37.5 MWh,
Q = 125 MWh. We also set ug = 36 MWh.

We adopt a discrete scenario uncertainty set D", built from a heat demand
forecast provided by our industrial partner ProCom GmbH. The first scenario
of D" is the original forecast for the current day, as produced by ProCom. It
is generated in a two-stage fashion, with an autoregressive component and a
neural network one, with temperature and calendar events as main influence
factors. We then single out the 50 days from the set of historical time series
where the corresponding pair of demand and forecast is closest in L1 norm.
After computing the forecast error between the two, we create a scenario where
such error is added to the forecast demand of the current day (for which the
problem is being solved). This way we, intuitively, “learn” the forecast error
from historical data and apply it to the current forecast, creating 50 additional
scenarios. The general idea is that the forecast error follows certain patterns, so
that it is more likely that combinations of the historical forecast errors will also
apply to the error of the current day for which CHPP-ROB2 is being solved.

The experiments are run on an Intel i7-3770 3.40 GHz machine with 32 GB
RAM using CPLEX 12.6 and AMPL as modeling language. We consider four
settings, with a time horizon of, resp., 24, 48, 72, and 96 hours. The total time in
seconds to solve all the instances, as well as the standard deviation, are reported
in the following table. In it, as well as in the charts that will follow, CHPP-ROB2
accounts for the problem when solved via the original Formulation (10a)—(10j),
whereas LS-DET corresponds the problem being solving via Formulation (1a)-
(1g) after begin transformed, by applying Theorem 1, into an instance of the
deterministic lot sizing problem. Proportional speedup factors are also reported.

CHPP-ROB2| LS-DET Speedup

horizon|totTime stdev|totTime stdev|[totTime stdev
24 h 37.05 0.05 7.96 0.01|] 4.65 5.00
48 h 140.01 0.17| 16.32 0.03| 8.58 5.67
72h | 323.95 0.47| 34.77 0.15| 9.32 3.13
96 h | 805.86 2.65| 64.49 0.42|| 12.50 6.31




As the table illustrates, the improvement in computing time achieved when
solving the problem as an instance of LS-DET, rather than in its original form,
steeply increases with size of the instances. From an average speedup of 4.65
times for the 24 h instances, we register one of 8.58 times for the 48 h instances,
one of 9.32 times for the 72 h instances, and one of 12.5 times for the 96 h
instances. On average, the speedup is of 7.69 times. This illustrates that, even
when adopted in a mixed-integer linear programming setting, the transforma-
tion proposed in Theorem 1 allows for a substantial reduction in the computing
times. The table also shows that the computing time, if seen as a stochastic pro-
cess, becomes much more stable when Theorem 1 is employed. Indeed, with its
application, we observe a reduction in the standard deviation ranging between
3.13 times for the 72 h instances to 6.31 times for the 96 h ones, with an average
reduction of 5.03 times. A visual depiction is reported in Figure 1.
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Fig. 1. Computing times when solving CHPP-ROB2 in its original form vs. those when
solving it as an instance of LS-DET via the transformation outlined in Theorem 1. Each
instance is composed of: (a) 24 hours, (b) 48 hours, (c) 72 hours, (d) 96 hours.

6 Concluding remarks

We have considered a generalized variant of lot sizing with proportional storage
losses and a nonlinear objective function, showing how, for the case of uncertain
demands, the problem can be solved as a special instance of the deterministic one
via a polynomial time transformation. We have then considered an application to
heat and power cogeneration systems, showing that, when uncertain demands



are considered, even that problem can be tackled as a special instance of lot
sizing. Computational experiments have shown that our transformation allows
us to solve the problem in a much shorter computing time even when using a
general purpose mixed-integer linear programming solver.
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