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Abstract:  

In recent years the use of paradata for nonresponse investigations has risen significantly. One 

key question is how useful paradata, including call record data and interviewer observations, 

from the current and previous waves of a longitudinal study, as well as previous wave survey 

information, are in predicting response outcomes in a longitudinal context. This paper aims to 

address this question. Final response outcome and sequence length (the number of calls/visits to 

a household) are modelled both separately and jointly for a longitudinal study. Being able to 

predict length of call sequence and response can help to improve both adaptive and responsive 

survey designs and to increase efficiency and effectiveness of call scheduling. The paper also 

identifies the impact of different methodological specifications of the models, for example 

different specifications of the response outcomes. Latent class analysis is used as one of the 

approaches to summarise call outcomes in sequences. To assess and compare the models in their 

ability to predict, indicators derived from classification tables, ROC (Receiver Operating Curves), 

discrimination and prediction are proposed in addition to the standard approach of using the 

pseudo R
2
 value, which is not a sufficient indicator on its own. The study uses data from 

Understanding Society, a large-scale longitudinal survey in the UK. The findings indicate that 

basic models (including geographic, design and survey data from the previous wave), although 

commonly used in predicting and adjusting for nonresponse, do not predict the response outcome 

well. Conditioning on previous wave paradata, including call record data, interviewer 

observation data and indicators of change, improve the fit of the models. A significant 

improvement can be observed when conditioning on the most recent call outcome, which may 

indicate that the nonresponse process predominantly depends on the most current circumstances 

of a sample unit.  

Key Words: survey non-response, interviewer call record data, paradata, call sequence, 

responsive and adaptive survey designs.  
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1. Introduction 

In recent years the use of paradata in survey research has risen significantly (e.g. Groves 

and Heeringa 2006; Bates et al. 2008; Kreuter et al. 2010a; Wagner 2013a and 2013b; Durrant et 

al. 2011; Durrant et al. 2013a and 2013b, Durrant et al. 2015; Potthoff et al. 1993; Groves and 

Couper 1996; Sinibaldi et al. 2013; Kreuter 2013; Sinibaldi et al. 2014). Paradata may be used 

for nonresponse investigation and adjustment, measurement error identification and correction, 

and for the improvement of survey management and design (Kreuter 2013). Several papers have 

explored the use of paradata for nonresponse adjustment (Kreuter and Kohler 2009; Kreuter et al. 

2010b; Biemer et al. 2013; Hanly 2014; Hanly et al. 2015) but concluded that the variables did 

not contribute much to the enhancement of nonresponse models. Kreuter and Kohler (2009) 

hypothesised that paradata instead may be more beneficial for the advancement of survey 

designs, survey processes and data management. Furthermore, the use of paradata for 

longitudinal surveys is significantly underexplored, although here the greatest benefits may lie, 

given the rich information about sample cases from previous waves. We are in fact aware of only 

one conference presentation in this area (Lagorio 2015).  

This paper here aims to address this shortcoming and investigates the use of paradata, 

including call record data and interviewer observation data, from the previous and current wave 

as well as previous survey information for the prediction of (final) response outcomes in the 

current or future waves of a longitudinal study. Standard response models have been shown to 

perform poorly in terms of prediction, usually with a (pseudo) R
2
 value of well under 8% (Olson 

et al. 2012; Olson and Groves 2012; West and Groves 2013). This indicates that the response 

process may be either very difficult to predict given standard variables and methods or that the 

response process is a more or less random process that is hard to predict by nature. The hope is 
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that paradata variables and call history information as well as the exploration of different model 

specifications can lead to improvements in the prediction of response outcomes. Another focus 

of the paper is on how best to incorporate paradata (from a previous or current wave) into the 

model. To summarise call record information from the previous wave we propose a latent class 

analysis approach (Magidson and Vermunt 2004), which to our knowledge has not yet been used 

for paradata investigations. We also explore the inclusion of derived simple summary measures 

(e.g. the proportions of different call outcomes, such as proportion of noncontacts). The study 

uses data from Understanding Society, a large-scale longitudinal survey in the UK, which 

benefits from the inclusion of rich paradata and information on call records in all waves.    

The paper is motivated by earlier exploratory work of interviewer calls (visits) of a face-

to-face panel study using sequence analysis, which identified both response outcome and 

sequence length as important identifying features of call record data (Durrant et al. 2016). The 

call sequence length is defined as the number of calls until final response outcome of a 

household is reached. The specification of models therefore takes account of both response 

outcome and sequence length simultaneously. Here in this paper, both phenomena are modelled 

separately and jointly using logistic and multinomial models respectively. Different model 

specifications are explored, including various definitions of the dependent variables. The models 

account for the clustering of households within interviewers by robust standard error estimation. 

This paper extends previous work which explored models to analyse response outcome of 

sequences in the case of a cross-sectional survey or for the first wave of a longitudinal survey, 

where previous wave paradata and previous wave survey variables are not available (see Durrant 

et al. 2015). Here in contrast, prediction of response outcomes in the context of a longitudinal 

survey taking into account prior wave information is investigated.  
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The ability of the models to predict response outcomes and sequence length is usually 

assessed in the nonresponse literature via the pseudo R
2
 statistic. However, this indicator was not 

found sufficient (Plewis et al. 2012). We propose additionally the use of a range of indicators 

derived from classification tables, ROC curves (Receiver Operating Curves) and concepts 

borrowed from epidemiology such as discrimination and prediction (see also Plewis et al. 2012; 

Agresti 2013). 

Unlike some of the previous literature, our analysis does not aim to improve nonresponse 

adjustment (although this may also be possible in principle) but to enhance survey data 

management processes. Focussing on both response outcomes and sequence length enables 

survey researchers to assess the likelihood of a household or groups of households to be 

successfully contacted and to establish the number of calls it may take to obtain the final 

response outcome. The aim of this paper is hence to improve both efficiency and effectiveness of 

interviewer calls. The models can make contributions to both adaptive and responsive survey 

designs informing improvements in either current or future survey designs respectively. More 

specifically, for survey researchers it may be of particular relevance to predict long and 

unsuccessful call outcomes. The ability to identify such cases early on in the call process (either 

before data collection or after the first, second or third contact attempt) would enable the 

reduction of survey data collection costs. Knowing that a household will require many calls and 

is very likely to end with an unsuccessful call outcome will enable survey designers to make 

informed decisions for the allocation of tailored treatments, such as to stop calling or to increase 

data collection efforts to alter the likely outcome (e.g. to offer an incentive or send a different 

interviewer).  
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Summarising the key research questions to be addressed in this paper, they are: 

1. Can predictions of nonresponse models be improved in longitudinal surveys when 

information from a previous and current wave, including survey data and paradata (i.e.  

interviewer observation data and call record data) are included? 

2. How should the variables best be entered into the models (for example via summary 

measures or a latent class analysis approach)? 

3. Which assessment criteria are best used to compare the ability of nonresponse models to 

predict the outcome (in addition to the commonly used measure of the pseudo R
2
 value)?  

4. Can we predict long and unsuccessful call outcomes early on in the data collection 

process (before data collection or after just one, two or three calls) to improve 

effectiveness and efficiency of adaptive and responsive survey designs?  

The remainder of the paper is structured as follows. Section 2 describes the data and 

analysis sample. The analysis approach and the methods to assess the different models are 

described in section 3. Then, results are presented from the separate and joint model 

specifications. The final section summarises the main findings and discusses implications for 

survey practice.  

2. Data 

2.1 Understanding Society – the UK Longitudinal Household Survey 

This paper uses data from the first two waves of the UK longitudinal household survey, 

Understanding Society. The survey has the advantage that it contains rich call record data and a 

wide range of interviewer observations variables. It is exceptionally large and covers a 

comprehensive number of variables. Also, only interviewers with a high interviewing 
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qualification and experience were selected for the survey. The survey has a multi-stage sample 

design with clustering and stratification, and households are clustered within interviewers. All 

adult household members (age 16 and older) are asked to respond and the same individuals are 

re-interviewed in successive waves. Wave 1 data collection took place between January 2009 

and March 2011 and wave 2 data collection was conducted between January 2010 and March 

2012. For wave 1, interviewers make personal visits to households with interviews carried out 

using computer assisted personal interviewing (CAPI). In wave 2, households again receive face-

to-face interviews (apart from some households that used to be part of the BHPS sample. 

However, these cases only joined the survey at a later stage and are therefore not of relevance 

here, see section 2.2). The interviewing protocol requires a minimum of six calls to be made at 

each sampled address before it is considered unproductive, but interviewers are encouraged to 

make further calls where possible (McFall 2012). At the beginning of each wave, i.e. at the time 

of the first call, interviewers collect various interviewer observation variables, recording 

characteristics about each household and surrounding neighbourhood. Call record data are also 

available for each wave. These data contain information about each visit to the household, 

including date and time of each call and the call outcome which is categorised into non-contact, 

contact, appointment, interview, and ‘any other status’ (this last category includes ineligibles and 

refusals and is defined in this way by the survey agency. This particular categorisation is not 

under our control). Call record data are defined for each household and are not available at the 

individual level, as is usual for most surveys. Further features of the survey and its sample design 

are discussed in detail in Durrant et al. (2015) and also in Buck and McFall (2012) and will not 

be repeated here.  
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2.2 Analysis sample and construction of the datafile 

Since we are interested in nonresponse analysis in subsequent waves of a longitudinal 

study, the analysis sample conditions on response to wave 1 (wave 1 nonresponse -similar to 

nonresponse in a cross-sectional survey- was analysed in Durrant et al. (2015)). An advantage is 

that the survey variables from wave 1 (or alternatively from any previous wave) provide detailed 

information about both responding and nonresponding cases in wave 2 (or subsequent waves). 

The Understanding Society survey has, as a whole, multiple components: the General Population 

Sample (GPS), the Ethnic Minority Boost Sample (EMB), and the British Household Panel 

Study (BHPS) sample (McFall 2013). However, for this study only the main stage sample, the 

GPS, is of interest. (The BHPS sample did not take part in wave 1 and was mainly interviewed 

via telephone in subsequent waves. The EMB sample was excluded from the analysis as the rules 

for the selection of this sample are quite different from the main sample, and differences in 

sample selection for this subset are not of interest here.) Since we are interested in interviewer 

contact attempts, we focus on the face-to-face components in this study.  

To construct the desired datafile at the household level the call record variables, 

interviewer variables and survey variables from wave 1 had to be linked to call record variables, 

interviewer observation variables and the final response outcome from wave 2. Understanding 

Society, like many other longitudinal surveys, does not include a unique household identifier that 

remains identical across waves for the same household (note that naturally for some households 

the household composition would be expected to change over time and it would not be feasible 

to allocate a stable household id number to all households). Hence, the unique identifier number 

at the individual level, which remains the same for the same individual across waves, had to be 

used for the linkage. In order to do this, first each member of each household in both waves 
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obtained the same sequence of calls as the whole household. Then, the two waves were merged 

on the basis of the unique individual identifier. Finally, the linked individuals were grouped back 

into households again (based on the household id number defined for wave 2 data), such that a 

household level analysis is possible. (It was possible to link all cases based on the individual 

identification number). The vast majority of households have the same household composition in 

both waves. Any households that had one (or more) individuals joining the household (from 

outside the survey) between waves 1 and 2 do not cause any concerns for the analysis (the 

models control for household composition and any indications of changes derived via the 

interviewer observation variables). There was a small number of households (159 or 1.5%) 

which split into two or three households between wave 1 and 2 and these were included in the 

analysis as two or three separate households in wave 2 (the models include a household split 

indicator). There was no case where two separate households interviewed in wave 1 formed one 

household in wave 2. The resulting (initial) analysis sample contained 24,896 households 

including households with sequences available in both waves and responding in wave 1.  

The aim of the analysis is to predict the final response outcome in wave 2 given wave 1 

survey and paradata information. In addition, we aim to investigate if the predictive power of the 

models can be improved if initial wave 2 call record data and interviewer observation data are 

available.  The exploratory work conducted for this analysis suggested that information from the 

first three calls in the call sequences may be sufficient to reach an acceptable level of predictive 

power of the models (see also Durrant et al. 2015). Therefore (and to guarantee the 

comparability of the different models) the final analysis sample is restricted to all households 

from wave 2 that received more than three calls (11,029 households). This approach enables us 

to employ call record information from the first three calls in wave 2 to predict final length and 
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outcome of call sequences. The approach is relevant for survey practice as it helps to answer the 

question whether after a few number of call attempts (such as one, two or three calls) it is 

possible to predict the final outcome at a later call.  

There are only a very small number (174) of missing cases in wave 1 in some of the 

geographic information and design variables since these are derived from administrative data. 

Date and time of a call are automatically captured using computer assisted methods leading to no 

missing cases in these variables. Recordings of the call outcome of the households of interest did 

not contain any missing information either. There was a small number of households with 

missing items in the wave 1 survey variables, and wave 1 and wave 2 interviewer observation 

variables and these cases were also deleted (399 cases or 3.6%). The final analysis sample, 

including only cases with four or more calls in wave 2, therefore, contains 10,630 households 

with information of interest from wave 1 and wave 2.  

 

2.3 Response and explanatory variables  

The key dependent variables are sequence length and response outcome in wave 2. We 

explored a range of different specification for the dependent variables such as different 

categorisation of sequence length (2, 3 or 4 category variables; requiring binary or multinomial 

logistic models) as well as defining sequence length as a count variable (requiring a Poisson 

regression model). The overall conclusions were very similar to the ones selected for 

presentation in this paper. The final analysis results, as presented here, are based on the 

following definitions of the three response variables:  
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1.) length of call sequence (binary), distinguishing short sequences (up to six calls) and long 

sequences (more than six calls).  The cut-off point at six calls was intentionally selected to fit 

the survey protocol requirements of conducting a minimum of six call attempts if contact was 

not established earlier in the process.   

2.) (final) outcome of call sequence (binary), distinguishing successful call sequences with at 

least one interview conducted in a household (after call 3) and unsuccessful call sequences 

with no interviews achieved (after call 3). (We recognise that a successful call sequence can 

be defined in several different ways, for example as all interviews achieved in a household. 

However, we chose this definition here since it is the least restrictive.) 

3.) a variable combining both length and final outcome, distinguishing 4 categories - short 

unsuccessful (up to six calls, no interview in the sequence), short successful (up to six calls, 

at least one interview after call 3), long unsuccessful (more than six calls, no interview in the 

sequence) and long successful (more than six calls, at least one interview after call 3).   

Table 1 presents the distributions of the three response variables used in the analysis.  

[Table 1 about here] 

 

The explanatory variables in the models can be split into seven main groups. (The 

distributions of the explanatory variables broken down by the categories of the three response 

variables used in the analysis are presented in the online Appendix Table A2. The exact wording 

of all variables and details of derived variables are provided in the online Appendix Table A1.) 

1.) geographic information and design variables from wave 1 (4 variables: urban/rural indicator, 

government office region, low density area for ethnic minorities, and month and year of 

household issue); 
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2.) interviewer observation variables from wave 1 (12 variables, e.g. indicators of entry barriers, 

conditions of surrounding area such as litter in street, abandoned buildings, heavy traffic, 

type of accommodation, relative condition of the property, garden); 

3.) survey variables from wave 1 (many household level survey variables were explored and 9 

variables were selected for the final analysis, e.g. household characteristics such as 

household income, the highest educational qualification, composition of the household); 

4.) call record variables from wave 1 (6 variables, e.g. proportion of non-contact calls in a 

sequence or proportion of appointments in a sequence; length of sequence in wave 1; latent 

classes of sequences (see section 3 for their derivation));  

5.) call record variables from wave 2 (11 variables, e.g. date, time of day, day of week, call 

outcome; also derived variables including time between calls); 

6.) interviewer observations from wave 2 (9 variables, e.g. household split identifier, presence 

of a car or a van, relative condition of the property, conditions of surrounding area such as 

litter in street, abandoned buildings, heavy traffic, type of accommodation, presence of 

children in a household, relative condition of the property, garden); 

7.) changes in interviewer observations between waves 1 and 2 identifiers (8 derived variables 

indicating if there was a likely change between the observations between wave 1 and wave 2, 

e.g. change in conditions of the garden between the two waves, change in presence of a car 

or a van between the two waves). 
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3. Analysis approach 

First, the main analysis strategy is described. Then, the response outcome variables and 

resulting model specifications are defined more formally. Different model specifications are 

considered, including latent class analysis. A range of assessment and evaluation criteria are 

presented to guide comparisons between models.   

 

3.1 Response variables, model specifications and modelling strategy 

The response variables were introduced in the data section and include length of call 

sequence (short versus long sequence) and response outcome (successful versus unsuccessful 

sequence). These distinctions are motivated by research questions relevant to survey 

practitioners. To save costs, survey practice is interested in identifying cases early on (i.e. solely 

based on previous wave information or after just a few calls) which are likely to have an 

unsuccessful response outcome and which take a long time to respond. We are therefore 

interested in identifying households (or groups of households) that are likely to have long and 

unsuccessful call sequences. More formally, we employ the following three dependent variables 

and resulting binary logistic and multinomial models.  

We denote by 𝑦𝑖  the (binary or multinomial) response variable of household i . The 

dependent variable length of call sequence is defined as 

   𝑦𝑖= {
1

0

 short call sequence (up to 6 calls)              
   long call sequence (more than 6 calls)        

, 

and the  final outcome of call sequence is coded 

𝑦𝑖= {
1

0

 successful call sequence (at least one interview)              
  unsuccessful call sequence (no interview).                      
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For the two dependent variables, the response probabilities are denoted by 𝜋𝑖 = 𝑃𝑟(𝑦𝑖 = 1) and 

are related to the explanatory variables using logistic regression (e.g. Agresti 2013):  

                                             𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑙𝑜𝑔 (
𝜋𝑖

1−𝜋𝑖
) = 𝜷𝑇𝒙𝑖,                                      (1)  

where 𝒙𝑖 is a vector of household-level covariates including intercept and interactions, and 𝜷 is a 

vector of coefficients.  

Combining both length and outcome we define the third dependent variable as 

𝑦𝑖= {

1

2

3

4

 short successful (up to 6 calls, at least one interview)             

  short unsuccessful (up to 6 calls, no interview)                       

long successful (more than 6 calls, at least one interview)     
long unsuccessful (more than 6 calls, no interview).              

 

For this dependent variable multinomial logistic regression is used. If the response variable has S 

categories, then the multinomial logistic regression model can be expressed as a set of S-1 non-

redundant logistic model equations. The response probabilities are denoted by 𝜋𝑖
(𝑠)

=

𝑃𝑟(𝑦𝑖 = 𝑠) , 𝑠 = 1, 2, 3, 4. Taking ‘long unsuccessful’ as the reference category, the multinomial 

logistic regression model can be expressed as 

                                 𝑙𝑜𝑔 (
𝜋𝑖

(𝑠)

𝜋
𝑖
(4)) = 𝜷(𝑠)𝑇

𝒙𝑖
(𝑠)

, 𝑠 = 1, 2, 3,                                (2) 

where 𝒙𝑖
(𝑠)

 is a vector of covariates including intercept and interactions, and 𝜷(𝑠) is a vector of 

coefficients. 

To allow for comparison of predictability of all models and based on our analysis sample 

all call outcomes are with reference to after the first 3 calls (the measures of goodness-of-fit and 

predictability of the models as outlined in section 3.3 allow the comparison of different models 
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for the same data only). (When applying the analyses methods in practice to find the best 

predictive model for any type of analysis sample, this restriction is not necessary. Here, it is only 

used to allow strict comparisons between models.) The cut-off point of six calls reflects the 

protocol of the data collection process which suggests that each household should have at least 

six calls if productive calls were not obtained earlier in the process (McFall 2012). As already 

mentioned in the data section (section 2.3) different specifications of the dependent variables 

(including different cut-off points, different number of categories such as 2, 3, or 4 categories, 

also definition as a count variable, requiring a range of binary and multinomial logistic and 

Poisson models) were explored with no significant changes in the key findings. In all models 

robust standard error estimation is used to correctly account for the clustering of households 

within interviewers (Huber 1967; White 1980, 1984 and 1994). The models allow for the 

primary stratification present in the survey by including geographical stratification variables into 

all models. Likelihood ratio tests (using the change in the L
2
 goodness-of-fit statistic) are used to 

test the significance of a term in a model. A forward stepwise model selection procedure was 

employed. Explanatory variables are included into the models by groups discussed earlier: first, 

only geographic and design variables from wave 1 are included; then survey variables from wave 

1 are added, followed by interviewer observations variables from wave 1.  At the next step of the 

model building procedure, call record data from wave 1 are added. Then, interviewer 

observations from wave 2 and indicators of change in interviewer observations between the two 

waves are introduced. At the last stage of modelling, call record data from the current wave, 

including call outcomes from the first three calls in wave 2 are added to the final models. 
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3.2 Latent class analysis 

In order to control for call histories in previous waves, different summary measures can be 

produced.  One approach, that so far has not yet been used in the context of response prediction, 

is latent class analysis (LCA). The resulting summary measure is then used as an explanatory 

variable in the models. LCA is a model-based technique which allows summarising data in the 

form of one latent variable without significant loss of information (Bartholomew et al. 2008; 

Hagenaars and McCutcheon 2002). LCA helps to split a heterogeneous sample into classes 

which are more homogenous. The main aim of the LCA is to determine the smallest number of 

classes that is sufficient to explain relationships between manifest variables (Magidson and 

Vermunt 2004).   

For example, if there are six manifest or observed variables (A, B, C, D, E and F), then the 

latent class model can be expressed as 

                      𝜋𝑖𝑗𝑘𝑙𝑚𝑛𝑡 = 𝜋𝑡
𝑋𝜋𝑖𝑡

𝐴|𝑋
𝜋𝑗𝑡

𝐵|𝑋
𝜋𝑘𝑡

𝐶|𝑋
𝜋𝑙𝑡

𝐷|𝑋
𝜋𝑚𝑡

𝐸|𝑋
𝜋𝑛𝑡

𝐹|𝑋
,                                   (3) 

where 𝜋𝑖𝑗𝑘𝑙𝑚𝑛𝑡 is the probability that response i is obtained for item A, response j for item B, 

response k for item C, response l for item D, response m for item E, response n for item F and is 

in latent class t of a latent variable X;  X

t  denotes the probability of being in the latent class t = 

1,2,…,T of the latent variable X; |A X

it  denotes the conditional probability of obtaining response 

to item A, from members of class t, i=1,2,…,I; and 
|B X

jt , |C X

kt , |D X

lt , 𝜋𝑚𝑡
𝐸|𝑋

, 𝜋𝑛𝑡
𝐹|𝑋

 with j=1,2,…,J, 

k=1,2,…,K, l=1,2,…L, m=1,2,….,M, n=1,2,….,N denote the corresponding conditional 

probabilities for items B, C, D, E and F respectively (Magidson and Vermunt, 2004). In our 
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analysis, the manifest variables are the call outcomes for the first six calls in wave 1. (Different 

numbers of calls were also explored but the overall conclusions were very similar).  

  In order to determine the number of homogeneous classes, which exists in the 

heterogeneous population with respect to the latent variable, the model fit should be assessed.  

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) provide 

reliable measures of the model fit and help to determine the number of classes (Akaike 1974; 

Bozdogan 1987; Magidson and Vermunt 2004; Muthén 1998-2004; Schwarz 1978), and both 

measures are used in this analysis. The AIC is the goodness-of-fit statistic corrected for the 

complexity of the model by taking into account the number of parameters which were estimated 

(Field 2009).  The BIC is similar but more conservative than the AIC (Field 2009). This statistic 

balances two components of a model, the likelihood value and parsimony (Muthén and Muthén 

2000). For both criteria smaller values represent a better fit of the model (Dias 2001; Field 2009).   

The level of potential classification error or classification quality is also important to 

consider when deciding on the final model (Muthén and Muthén 2012; Storr et al. 2004).  

According to Beadnell et al. (2003), classification quality is the ability to distinguish 

membership in the latent class given the model and the data.  The higher the average class 

probabilities the better the ability to accurately classify sequences into their classes (Beadnell et 

al. 2003). According to Storr et al. (2004), model fit can be improved by adding more latent 

classes, but this additional class may make the model less interpretable. Therefore, it is important 

to use the judgment and the principal of parsimony when deciding on the final model.  Once the 

decision about the number of classes is taken, sequences are allocated to the appropriate latent 

classes on the basis of the call outcomes in the six calls with the help of estimated posterior 

probabilities.  The posterior probability is the probability of a sequence being in the latent class t 
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given a specific response pattern in a particular sequence (Bartholomew et al. 2008). Once the 

posterior probabilities are estimated, every sequence of calls in the dataset can be assigned to a 

particular class for which the posterior probability is the highest (Magidson and Vermunt 2004). 

This new variable which contains classes to which sequences were allocated is then used as an 

explanatory variable in the analysis. In order to conduct latent class analysis and to obtain the 

latent classes for the sequences, Mplus 7 statistical software package is employed (Muthén and 

Muthén 2012). 

  

3.3 Comparison of model performance and evaluation 

The standard way of assessing the model performance of nonresponse models in the 

literature is to use the (pseudo) R
2
 statistic (Groves and Couper 1996; Bates et al. 2008; Olson 

and Groves 2012; Olson et al. 2012; West and Groves 2013), which is a goodness-of-fit statistic 

representing the proportion of variation in the dependent variable that is explained by the model. 

The closer the statistic is to 1, the greater the proportion of variation explained by the model. 

However, as pointed out in Plewis et al. (2012) this is not the most appropriate measure to 

evaluate the ability of a model to predict the outcome. In particular, it does not distinguish 

between the accuracy of the model for nonrespondents and respondents. Instead, several 

measures are proposed, that are used for model comparisons (see also Altman 1991; Pepe 2003; 

Plewis et al. 2012; Agresti 2013; Durrant et al. 2015): discrimination and prediction, 

classification table values (the proportion of correctly classified cases), measures of sensitivity 

and positive predicted values, and the area under the curve (AUC) of the ROC.  

Let us start with the binary case. Let 𝑦̂𝑖 denote the predicted value for an observation i, 

and 𝜋̂𝑖  the predicted response propensity from the model. The predicted value is obtained 
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depending on a cut-off 𝜋0,  i.e. the prediction for observation i is 𝑦̂𝑖 = 1 if 𝜋̂𝑖 > 𝜋0, and 𝑦̂𝑖 = 0 if 

𝜋̂𝑖 ≤ 𝜋0. (The default options for setting 𝜋0, which are also used here initially, are 𝜋0 = 0.50 for 

the binary and 𝜋0 = 0.25 for the multinomial case, although in practice different values can be 

explored. We also allow for all possible values by using ROC curves, see below). Classification 

tables are obtained by cross-classifying the observed binary response, 𝑦𝑖  , with the predicted 

values, 𝑦̂𝑖, i.e. classification tables allow the evaluation of the two concepts: discrimination and 

prediction. Discrimination is simply the conditional probability that a case is predicted to be a 

respondent (nonrespondent) given that a household is indeed a respondent (nonrespondent). 

Formally, discrimination can be expressed as 𝑃(𝑦̂𝑖 = 1|𝑦𝑖 = 1) (referred to as sensitivity) and 

𝑃(𝑦̂𝑖 = 0|𝑦𝑖 = 0)  (specificity). Prediction describes the conditional probability of being a 

respondent (nonrespondent) given a household is predicted to be a respondent (nonrespondent), 

which can be expressed formally as 𝑃(𝑦𝑖 = 1|𝑦̂𝑖 = 1)  (positive predictive value) and         

𝑃(𝑦𝑖 = 0|𝑦̂𝑖 = 0) (negative predictive value). The concept of prediction is particularly useful for 

our research questions here, since the true outcomes are not actually observed until data 

collection has been completed and hence survey researchers are interested in the ability of a 

response model to predict the true outcome correctly, given the predicted values from the model. 

Another useful measure, that can be derived from the classification table, is the percentage of 

observations correctly classified, which is an overall summary measure of model performance, 

and reflects the summary of the diagonal of the classification table as a weighted average of 

sensitivity and specificity: 

         𝑃(correctly classified)  =  𝑃(𝑦𝑖 = 1 and 𝑦̂𝑖 = 1) +  𝑃(𝑦𝑖 = 0 and 𝑦̂𝑖 = 0) 

                                     =  𝑃(𝑦̂𝑖 = 1|𝑦𝑖 = 1) 𝑃(𝑦𝑖 = 1) + 𝑃(𝑦̂𝑖 = 0|𝑦𝑖 = 0) 𝑃(𝑦𝑖 = 0)  
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In the results section we refer to sensitivity and positive predicted values with respect to 

modelling long and unsuccessful call sequences. 

For the multinomial case, classification tables and therefore discrimination and 

prediction, can be similarly defined. Here we have several categories of correctly classified and 

misclassified cases. For a 4 category variable, as is the case in this paper, this results in a 4×4 

classification table, allowing for 4 correctly (the diagonal) and 12 incorrectly classified groups.  

A potential restriction is the dependency of prediction and discrimination (and therefore 

of classification tables) on the (arbitrary) cut-off value π0. ROC curves (Agresti 2013) address 

this problem by deriving different measures across all possible cut-off values. The ROC curve 

plots sensitivity as a function of (1-specificity) for all possible π0. For a given specificity, better 

predictive power corresponds to higher sensitivity.  If π0 is near 0, then most predictions are 1, 

which implies that sensitivity is near 1, specificity is near 0, and the point (1-specificity; 

sensitivity) is close to (1;1).  If π0 is near 1, almost all predictions are 0, then, sensitivity is near 

0, specificity is near 1, and (1-specificity; sensitivity) is close to (0;0). To help interpretation, the 

higher the ROC curve, i.e. the greater the AUC, the better is the predictive power of the model.    

4. Results 

Table 2 presents a range of models starting from the basic model, only controlling for 

geographic and design variables, up to a model that controls for previous and current wave 

paradata, interviewer observations, survey variables and the outcome of the most recent calls. All 

modelling steps are carried out for the two binary logistic models (sequence length, final 

response outcome) and the joint multinomial model (sequence length and final response 

outcome). More than 25 models were fitted for each of the three dependent variables, exploring a 
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variety of model specifications, including different explanatory variables. Table 2 presents 8 

selected models for each of the three different response outcomes. A range of assessment criteria 

are presented, including the pseudo R
2
 value (Nagelkerke R

2
 statistic (Nagelkerke 1991)), the 

percentage of the overall correctly classified values (derived from the diagonal of the 

classification table) and the AUC from the ROC curve. We are interested in models with a high 

pseudo R
2
 value. The closer the pseudo R

2
 value is to 1 the better is the goodness-of-fit of the 

model and the higher the proportion of variability in the response variable that is explained by 

the model. For comparison, standard response propensity models reported in the literature often 

have pseudo R
2
 values of between 3-8% (Olson et al. 2012; Olson and Groves 2012; West and 

Groves 2013). When comparing models based on the values from the classification table, we are 

interested in those with higher values, indicating that a higher percentage of cases is correctly 

classified. (These values do not yet distinguish between the predictions of different categories. 

These results are presented in Tables 3-5.) To be able to interpret the classification table values 

in a meaningful way we compare them with the observed outcome distributions from wave 2 

provided in Table 1. For comparison, without any prior information for the two binary outcomes 

(response and sequence length) we would expect about 50% of cases to be predicted correctly. 

For the multinomial outcome with 4 categories it would be 25%. With prior information, for 

example based on the observed outcome distributions from wave 2 provided in Table 1, 

comparing the values with the most frequently observed distribution in this table, we would 

expect about 63% for the variable length to be correctly classified, 71% for the variable outcome 

and 50% for the combined outcome of both length and response. We therefore aim to find 

classification values of above 63%, 71% and 50% respectively. The larger the differences 

between these base values and the values obtained for the models, the higher the predictive 



23 

 

power of the model. With respect to the AUC values we are interested in models with values 

above 0.5, indicating that a model classifies the group better than chance.  (As an example, the 

ROC curves for the final model (Model 8) for length and for response outcome are given in the 

Appendix (Figures A1 and A2).) 

The results for Model 1, the ‘base model’, indicate a very low pseudo R
2 

value (2%) 

(Table 2). Although the classification table values are doing better than chance, there is no 

improvement when compared to the marginal distribution (63%, 70.7% and about 50%).  The 

AUC values are low of just above 0.5. This suggests that geographic and design information on 

their own do not help in predicting the variables of interest in comparison to chance, despite the 

significance of some variables in the three models (month of survey, type of residence 

(urban/rural)). The standard approach in the nonresponse literature is to condition on the survey 

variables from the previous wave (or, if available, on any other fully observed variables such as 

from Census, register or administrative data). We therefore refer to Model 2, which includes 

survey variables from the previous wave, as the ‘standard model’. Interestingly, survey variables 

improve the predictability of the models only very slightly (pseudo R
2
 values now between 5-8%, 

classification table values are around 63%, 71% and 50% and the AUC is 0.62) despite many 

variables being highly significant. We find a very similar trend for Model 3, which conditions on 

interviewer observation variables from wave 1, indicating that although some of the interviewer 

observation variables are highly significant, they do not improve the actual prediction 

substantially. Models with historical call record information, including summary measures of 

call record data from the previous wave (e.g. proportion of noncontacts etc., with or without 

length of sequence which was added as a categorical and as a continuous variable), improve the 

models further but again this improvement is not very large (Model 4) (pseudo R
2
 value is now 
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between 7% and 11%, the classification table values are 65%, 71% and 50%, the AUC is 0.64). 

Another way of accounting for historical call record data is to perform LCA. The best solution 

obtained in LCA using AIC, BIC and classification quality criteria contained 4 classes, with the 

classes as follows: the first class of sequences had 1-2 calls only, the second had sequences with 

3 calls, the third had sequences with 4-5 calls and the fourth class had a high proportion of 

noncontact calls in the first 6 calls. Comparing the LCA approach (Model 4b) with the approach 

of using summary measures of historical call record information (Model 4) we can see that both 

approaches produce very similar results. The LCA approach, although worth exploring, does not 

seem to perform any better than controlling for the simple summary measures of historical call 

record data such as proportion of noncontacts or proportion of contacts for our data. The next 

step is to include paradata from the early stages of the current wave (wave 2), comprising 

interviewer observation variables (Model 5; this model also includes an indicator if a household 

split between the two waves) and an indicator if there has been a likely change between 

interviewer observations between the two waves (Model 6). Again the model performance is 

improved (the pseudo R
2
 value is now 10%, 14% and 17%, the classification table is 65%, 73% 

and 52%, and all AUC are around 0.7). Including also call record variables (such as timings of 

calls and time between calls) again leads to an improvement with pseudo R
2 

values now reaching 

11%, 18% and 22%, and the classification table reaching 66%, 74% and 53% for the first time). 

The best analysis results are achieved for the final model (Model 8), which includes the outcome 

of the last 3 calls in the current wave (the pseudo R
2
 value reaches 24%, 27% and even 36%, 

classification table values of 70%, 77% and 56% and all AUC above 0.75, which is significantly 

larger than 0.5). The values are now clearly higher than for standard nonresponse models (see 

also Plewis et al. 2012), meaning that discrimination between respondents and nonrespondents is 
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better. From Table 2, we can see that the final model (Model 8) is significantly better than the 

base model (Model 1) and the standard nonresponse model (Model 2) for all three types of 

models (binary and multinomial). Exploring the final model further, controlling for the outcomes 

one at a time, we find the more recent the call outcome information, the better is the performance. 

The outcome of the most recent call contributes to the biggest improvement in comparison to, for 

example, including the outcome of just the first call or the first two calls (results not shown).  

The values of the classification table given in Table 2 provide information on the overall 

probability of correctly classified cases. However, this overall measure does not provide an 

indication of how well we are classifying the values with respect to particular groups, such as the 

long unsuccessful call sequences, which is the group of our primary interest. To start with, Table 

3 indicates for all 8 models the results of the discrimination power for the two binary and the 

multinomial modelling case, i.e. the percentage of correctly classified households by categories 

of the dependent variables (i.e. for the two binary cases sensitivity 𝑃(𝑦̂𝑖 = 1|𝑦𝑖 = 1)  and 

specificity 𝑃(𝑦̂𝑖 = 0|𝑦𝑖 = 0 ) are shown and for the multinomial case 𝑃(𝑦̂𝑖 = 𝑠|𝑦𝑖 = 𝑠) , for 

𝑠 = 1,2,3,4). The results clearly show that the base model and the standard model are not 

performing very well, since, in fact, they predict (almost) all outcomes as short successful and do 

not discriminate between the different categories. Although, as we have seen in Table 2, this 

leads to a relatively high percentage of overall correctly classified cases, the models perform in 

reality very poorly with regards to our category of interest, the long unsuccessful cases. We can 

see that, broadly speaking, the more sophisticated the models become, the better their 

performance. For example, including prior wave call record data and interviewer observation 

variables, increases the discrimination power to about 20% (long), 7% (unsuccessful) and 10% 

(long unsuccessful). For models including paradata from the current wave (Models 5-8), this 
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increases to just above 20% for the multinomial case (Models 5-7) and even to 31% for the final 

multinomial model, including the outcomes of the most recent calls (Model 8), meaning that 

about 31% of households that have long unsuccessful call sequences 31% are correctly classified 

by the model as being indeed in this category. (For the two binary cases these are 50% for the 

long and 37% for the unsuccessful categories respectively.) 

[Table 3 about here] 

From a survey practice perspective, another, possibly even more useful, measure is the 

ability to predict the different outcomes well (rather than to discriminate between the different 

categories). This means in practice, that if the model predicts a particular outcome for a 

household, such as a long unsuccessful call sequence - either before wave data collection starts 

or after just one, two or three calls - the prediction measure gives us the probability of indeed 

identifying a true long unsuccessful outcome. Table 4 shows the predictive power for all three 

types of models and for all 8 modelling stages (i.e. for the two binary dependent variables the 

table shows 𝑃(𝑦𝑖 = 1|𝑦̂𝑖 = 1)  (positive predictive value) and 𝑃(𝑦𝑖 = 0|𝑦̂𝑖 = 0)  (negative 

predictive value) and for the multinomial case (𝑃(𝑦𝑖 = 𝑠|𝑦̂𝑖 = 𝑠)), for 𝑠 = 1,2,3,4). We can see 

clearly from Table 4 that the base model again performs very poorly, not predicting any cases 

correctly as long unsuccessful calls. Interestingly, the standard nonresponse model is already a 

good improvement predicting about 53% of the long, 56% of the unsuccessful and 35% of the 

long unsuccessful cases correctly. The values improve slightly for models including historic 

paradata. They improve further when most recent paradata are included. The final model (Model 

8) again indicates the best performance with above 60% (long), 65% (unsuccessful) and 41% 

(long unsuccessful). Summarising all results from Tables 2, 3 and 4 we conclude that the models 

including historic paradata improve the prediction of the base and standard model. The most 
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recent paradata (paradata from the current wave), in particular the outcome of the most recent 

calls, are the most useful predictor variables in the models.  

[Table 4 about here] 

Given that it is not possible to predict all cases correctly, in a final step we are interested 

in how the cases, that the model did not predict correctly, are distributed. Table 5 breaks down 

further the modelling results for Model 8 of the multinomial model from Tables 3 and 4, now 

showing the complete classification table. The upper panel (panel A) indicates sensitivity and the 

lower panel (panel B) shows the positive predicted values. (Note that the diagonals in Table 5 for 

cases A and B are the last row from Table 3 and 4 for the multinomial model respectively.) We 

are particularly interested in panel B, the case where the model predicts a long unsuccessful 

outcome. We can see that 41.4% are indeed in this category (the same result was already 

reported in Table 4), and for the remaining cases 20.1% and 19.1% are classified as short 

successful and short unsuccessful respectively. It should be noted that the misclassification to 

short sequences (successful or unsuccessful) would not have in practice negative implications 

since the recommended 6 calls might be made anyway. We can see that actually only 19.3% are 

classified incorrectly as long successful.  

[Table 5 about here] 

The analysis identified a range of variables as significant or highly significant across the 

various models of interest. Although we do not wish to go into detail with the discussion of the 

coefficients in the models some of the main findings are briefly highlighted. The full modelling 

results for the final models (Model 8) for the two binary outcomes and the multinomial outcome 

are given in the online Appendix (Tables A3 and A4). Although the inclusion of survey variables 
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as seen earlier does not improve the ability of the models to predict the outcomes of interest by 

very much, many of the variables are significant or highly significant (e.g. highest qualification), 

supporting well known correlates of nonresponse in longitudinal surveys (Lepkowski and 

Couper 2002; Watson and Wooden 2009; de Leeuw and de Heer 2002; Campanelli and 

O'Muircheartaigh 1999; Pickery et al. 2001; Haunberger 2010). We noted earlier that paradata 

from the previous wave increase the ability of the models for prediction. Indeed, we find a range 

of interviewer observation variables (including derived indicators of changes in households 

between waves) and call record variables to be (highly) significant across the range of models. 

Interestingly, we observe that households that had long sequences in the previous wave, a high 

proportion of noncontact calls or a high proportion of calls with contacts (but no further 

outcomes) are indeed significantly more likely to also have long call sequences in the current 

wave. This indicates that trends over time (across waves) may indeed exist and some households 

with a particular calling pattern may exhibit a similar calling pattern in a future wave. Whilst 

some variables are significant for both length and response outcomes, others only predict one of 

the dependent variables (e.g. the variable length of sequence in previous wave does not have a 

significant impact on call outcome, whereas it does predict length of call sequence; also, if the 

household has people of pension age then this has a highly positive impact on sequence length 

(predicting a short call sequence), whereas it is not significant in the outcome variable; times 

between calls are significant for both length and response outcome). In addition, some variables 

are found to be significant across all of the various modelling stages (across models 1-8) 

indicating consistent influences on the dependent variables, whereas others are sometimes 

significant and sometimes not (for example time between calls was significant across all of the 
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modelling stages for final response outcome, whereas time of day was sometimes significant and 

sometimes not, indicating an unstable relationship with the dependent variables).  

 

5. Conclusions and implications for survey practice 

This paper aims to use paradata and survey data from the previous and current wave of a 

longitudinal study to improve the prediction of nonresponse models and to use the resulting 

models for informing current and future survey designs. Although the use of paradata in 

nonresponse modelling has increased in recent years (Potthoff et al. 1993; Groves and Couper 

1996; Bates et al. 2008; Kreuter et al. 2010a and 2010b; Sinibaldi et al. 2013; Sinibaldi et al. 

2014; Wagner 2013a and 2013b; Durrant et al. 2015), it is yet unanswered if historic and/or 

current paradata are useful in the context of a longitudinal survey. Whilst so far nonresponse 

modelling has focussed on the final response outcome or on outcome at the next call (Groves and 

Heeringa 2006; Durrant et al. 2011; Durrant et al. 2013a and 20134b; Hanly 2014; Sinibaldi 

2014; Durrant et al. 2015), the models presented predict both sequence length and response 

outcome, separately and jointly. The prediction of particular types of call outcomes, such as long 

and unsuccessful call sequences, are assessed. This approach may be particularly useful from a 

survey practice perspective: if we are able to predict, for example, long unsuccessful call 

outcomes before data collection or after just a few calls (such as one, two or three calls) it may 

be possible for survey practitioners to make informed decisions about future tailored treatment 

approaches, either by stop calling or by allocating increased data collection efforts to obtain a 

response from more difficult households. Standard nonresponse models are often developed for 

understanding influences on nonresponse better (i.e. analysis of the significance of correlates in 



30 

 

the model is of interest, see for example Durrant and Steele 2009) or for nonresponse adjustment, 

such as for the development of a weighting model. To be able to predict response outcomes with 

the aim of changing current or future survey designs different assessment criteria need to be used. 

In addition to the standard approach of the (pseudo) R
2
 statistic, this paper proposes the use of 

classification tables, discrimination (sensitivity and specificity), prediction (positive and negative 

predicted value) and the AUC of the ROC curve. The paper also explores different model 

specifications and the inclusion of a range of specification of explanatory variables, including 

variables derived via a latent class modelling approach.  

In the following, the most important findings for both survey methodology and survey 

practice are summarised: 

1. The findings indicate that ‘basic’ models (including geographic and design variables) and 

‘standard’ nonresponse modelling approaches (only accounting for previous wave survey 

data) although commonly used in predicting and adjusting for nonresponse, do not 

predict the response outcome very well (R
2
 values are between 5-8% which is to be 

expected for standard nonresponse models (Olson et al. 2012; Olson and Groves 2012; 

West and Groves 2013), the classification table values of the percentage of correctly 

classified cases are 63%,71% and 50% depending on the type of model, better than 

chance but not better than the observed distribution).  

2. Conditioning on previous wave paradata, including call record data, interviewer 

observation data and indicators of change, improve the fit of the model. A significant 

improvement can be observed when conditioning on current wave paradata (from the 

initial stages of the current wave data collection), in particular when conditioning on the 

most recent call outcome (pseudo R
2
 values reach 24%, which is very high in a social 
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science context; of the long call sequences we can predict approximately 60% correctly, 

of the unsuccessful call sequences 65% and of the long and unsuccessful cases 41% 

correctly, which is much higher than for the standard models and estimation by chance). 

The findings may indicate that the nonresponse process predominantly depends on the 

most current circumstances of a sample unit and may be less determined by past events. 

The fact that overall it is difficult to predict nonresponse, may also indicate that the 

nonresponse process in parts may be a random process, which is difficult to predict by 

nature.  

3. A latent class analysis approach provides an attractive way of taking account of historic 

call record data into the models. For our data, we find that the latent class analysis 

approach performs very similarly to an approach of including derived simple summary 

measures into the models. Also, different model specifications (e.g. different 

specifications of the dependent variables) did not alter the main conclusions of the 

findings.  

4. Several interviewer observation variables (including derived indicators of changes in 

households between waves) and call record variables are found to be (highly) significant 

across the range of models. Interestingly, we observe that households that had long 

sequences in the previous wave, a high proportion of noncontact calls or a high 

proportion of calls with contacts (but no further outcomes) are indeed significantly more 

likely to also have long call sequences in the current wave. This indicates that trends over 

time (across waves) may indeed exist and some households with a particular calling 

pattern may exhibit a similar calling pattern in a future wave. 
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5. The results for the different assessment criteria of the models have shown that it is 

worthwhile exploring a range of methods to evaluate and compare the models. The 

commonly used approach of the R
2
 statistic alone is not sufficient in this context. 

Concepts frequently used in epidemiology, such as discrimination, prediction and AUC 

are recommended (see also Plewis et al. 2012). These allow the assessment of the ability 

of the models to predict certain groups of the dependent variables, which is of interest 

here, such as predicting long unsuccessful calls.  

6. Often, significance of variables in a model is used as an indication that controlling for 

such variables improves the fit of the model. Many variables have been found to be 

highly significant in the models considered and these include a range of interviewer 

observation variables, call record variables (previous and current) and survey variables.  

However, prediction can still be low depending on the model. Therefore, significance of 

correlates in a model alone is not sufficient to assess the predictive power of the model 

and its use for adaptive and responsive survey designs.  

7. In this paper we also find that modelling call sequence length in addition to just the 

response outcome which is common in the nonresponse literature helps in understanding 

future calling patterns.  

 

Currently the work does not take account of any cost data (and these data are also not 

available to us). In practice some calls may be relatively inexpensive, whereas other types of 

calls or visits may be more burdensome for the survey agency. For example, a call to a 

household on the way to another household may be carried out at relatively little cost. Survey 

researchers may wish to take this type of information into account when making decisions on 

which households best to follow up or when to stop calling. It should be noted that the study here 
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uses observed interviewer calls. The data were not obtained by a random allocation of 

interviewers or interviewer calls to households. Hence, it is possible to analyse associations but 

causal statements cannot be made. However, this is not a limitation since we are interested in the 

comparison of different models and in identifying indicators that help to predict future outcomes 

as it would be the case in a standard survey design setting (rather than in an experiment). The 

data used here do not include any feedback variables from interviewers (for example interviewer 

ratings on how likely the case is to respond and when). We are aware of only one other study in 

this area (Eckman et al. 2013). In future work, it would be of interest to assess the ability of the 

models to predict the outcomes when such interviewer assessment variables are included, using 

the evaluation criteria of discrimination and prediction outlined in this paper. 

It is hoped that the modelling and assessment approach presented here will help survey 

practitioners to improve nonresponse models and prediction to inform current and future survey 

design decisions. As was already pointed out in Plewis et al. (2012) we strongly recommend the 

use of discrimination, prediction, classification tables and ROC curves rather than simply the 

(pseudo) R
2
 value to assess predictability of response models. The methodology outlined in this 

paper can be used and adapted by survey managers of other datasets. The approach is currently 

implemented by Statistics Sweden in an adapted form to the Swedish Labour Force Survey, to 

help cut costs of unproductive interviewer telephone calls and personal visits to households.  
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Tables  

 

Table 1: Distributions of the three response variables in the final analysis sample (total 10,630 

households). 
 

Variables with categories Frequencies Percentages 

Length    

Short sequence (up to 6 calls) 6704 63.1 

Long sequence (7-30 calls) 3926 36.9 

Final outcome   

No single interview in a sequence after call 3 3110 29.3 

At least one interview in a sequence after call 3 7520 70.7 

Combined response   

Short successful 5304 49.9 

Short unsuccessful 1400 13.2 

Long successful 2216 20.8 

Long unsuccessful 1710 16.1 
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Table 2: Different evaluation criteria to allow comparisons of the three types of models for 

length, final response outcome and the combined dependent variable of length and final response 

outcome (Nagelkerke’s pseudo R
2
, the overall percentage of correctly classified households 

provided by the classification tables and the Area under the Curve (AUC) from the Receiver 

Operating Curves (ROC)). 

 
 Model Length Outcome Combined 

pseudo 

R
2
 

Classification 

Table 

AUC pseudo 

R
2
 

Classification 

Table 

AUC Pseudo 

R
2
 

Classification 

Table 

1 Just 

geographic 

and design 

variables 

from W1 

0.019 63.1 0.570 0.025 70.7 0.582 0.033 49.9 

2 + survey 

W1 

0.055 63.6 0.618 0.055 71.0 0.622 0.081 50.1 

3 + 

interviewer 

observation 

W1 

0.060 63.8 0.624 0.062 71.0 0.629 0.092 50.3 

4 + call record 

W1 

0.080 64.5 0.643 0.072 71.1 0.640 0.113 50.4 

4b Model 3 

+latent 

classes 

+length of 

sequence 

0.078 64.5 0.642 0.067 71.1 0.635 0.108 50.2 

5 Model 4 

+interviewer 

observations 

W2 + HH 

split 

indicator 

0.090 65.0 0.653 0.128 72.3 0.688 0.159 51.3 

6 +change 

between 

interviewer 

observation 

W1 and W2 

indicators 

0.095 65.3 0.657 0.141 72.6 0.698 0.171 51.5 

7 Model 6+ 

all call 

record (all 3 

calls) W2 

(without call 

outcomes) 

0.110 66.0 0.668 0.181 73.7 0.724 0.219 52.4 

8 + call 

outcomes 

for 3 calls 

W2 

0.242 69.3 0.751 0.270 75.6 0.777 0.362 56.0 

Note: HH = household; W1 = Wave 1; W2 = Wave 2. 
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Table 3: Results of the classification table showing the percentage of correctly classified 

(discriminated) households by categories of the two binary and the multinomial dependent 

variable for each of the 8 modelling stages considered. (Column percentages shown, i.e. 

percentage of those households which were estimated correctly out of the total observed in the 

group.) (For the two binary outcomes these are sensitivity P(ŷi = 1|yi = 1) and specificity 

P(ŷi = 0|yi = 0), and for the multinomial model it is P(𝑦̂i = s|𝑦i = s), for s = 1,2,3,4). 

 

 Length Final Outcome  Combined Length and Outcome  

Model Short  Long Successful Un 

successful  

Short 

Successful 

(n=5304) 

Short 

Unsuccessful 

(n=1400) 

Long  

Successful 

(n=2216) 

Long 

Unsuccessful 

(n=1710) 

1 100.0% 0.0% 100.0% 0.0% 100.0% 0.0% 0.0% 0.0% 

2 93.2% 13.1% 98.6% 4.3% 98.6% 0.3% 0.1% 5.5% 

3 92.2% 15.2% 97.9% 5.8% 97.6% 0.5% 1.4% 7.8% 

4 89.4% 22.1% 97.3% 7.7% 95.0% 0.8% 4.9% 11.5% 

4b 89.7% 21.6% 97.6% 6.8% 95.2% 0.6% 4.8% 10.1% 

5 88.7% 24.6% 94.9% 17.8% 93.2% 3.1% 5.6% 20.4% 

6 88.5% 25.6% 94.2% 20.4% 92.7% 3.8% 5.5% 22.5% 

7 87.5% 29.3% 93.3% 26.4% 90.4% 14.1% 8.9% 22.0% 

8 80.8% 49.8% 91.6% 36.7% 84.4% 23.1% 28.1% 31.1% 
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Table 4: Results of the classification table showing the percentage of correctly predicted 

households by categories of the two binary and the multinomial dependent variable for each of 

the 8 modelling stages considered. (Row percentages shown, i.e. percentage of those households 

which were observed correctly out of the total estimated in the group). (For the two binary 

outcomes these are the positive (P(yi = 1|ŷi = 1))  and negative predicted values (P(yi =
0|ŷi = 0)), and for the multinomial model it is P(𝑦i = s|𝑦̂i = s), for s = 1,2,3,4).   

 

 Length Final Outcome  Combined Length and Outcome  

Model Short  Long Successful Un 

successful  

Short 

Successful 

(n=5304) 

Short 

Unsuccessful 

(n=1400) 

Long  

Successful 

(n=2216) 

Long 

Unsuccessful 

(n=1710) 

1 63.1% 0.0% 70.7% 0.0% 49.9% 0.0% 0.0% 0.0% 

2 64.7% 53.1% 71.4% 55.8% 50.5% 66.7% 37.5% 34.6% 

3 65.0% 53.4% 71.5% 53.7% 50.9% 46.7% 37.2% 37.2% 

4 66.2% 54.9% 71.8% 54.3% 51.8% 39.3% 32.6% 36.6% 

4b 66.1% 55.1% 71.7% 54.4% 51.6% 42.1% 31.5% 34.6% 

5 66.8% 56.1% 73.6% 54.3% 53.3% 43.0% 38.3% 37.2% 

6 67.0% 56.5% 74.1% 59.0% 53.7% 37.9% 35.0% 39.1% 

7 67.9% 57.8% 75.4% 61.9% 54.8% 48.3% 36.8% 40.4% 

8 73.3% 60.3% 77.8% 64.5% 62.1% 48.6% 42.2% 41.1% 
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Table 5: Complete classification table for the multinomial model (dependent variable is 

combined length and outcome) for Model 8: (A) column percentages (percentages predicted out 

of the total observed in the category) reflecting sensitivity of modelling long unsuccessful calls 

and (B) row percentages (percentages of households observed in the group out of the total 

predicted in the category) reflecting positive predictive values.  

 

  Observed 

Short 

Successful 

(n=5304) 

Short 

Unsuccessful 

(n=1400) 

Long 

Successful 

(n=2216) 

Long 

Unsuccessful 

(n=1710) 

A (Discrimination) 

 

 

                           Predicted 

         

Short 

Successful 

84.4% 50.1% 58.0% 43.5% 

Short 

Unsuccessful 

2.8% 23.1% 2.7% 7.9% 

Long 

Successful 

8.0% 9.2% 28.1% 17.6% 

Long 

Unsuccessful 

4.9% 17.5% 11.2% 31.1% 

B (Prediction) 

 

 

                           Predicted 

 

 

 

 

Short 

Successful 

62.1% 9.7% 17.8% 10.3% 

Short 

Unsuccessful 

22.3% 48.6% 8.8% 20.2% 

Long 

Successful 

28.7% 8.7% 42.2% 20.4% 

Long 

Unsuccessful 

20.1% 19.1% 19.3% 41.4% 

 

 

 

 

 

 

 

 

 

 


