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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

PACULTY OP SCIENCE 

PHYSICS 

Doctor of Philosophy 

MONTE CARLO SIMULATIONS OP 
RANDOM ANISOTROPY MAGNETS 

bv David Richardson Denhohn 

We have used a parallel computer to perform Monte Carlo simulations on the 
Harris-Plischke-Zuckermann lattice model of Random Magnetic Anisotropy, us-
ing the standard Metropolis algorithm. We have studied systems with two spin 
components in both two and three spatial dimensions, \arying temperature, ex-
ternal magnetic held, anisotropy strength and other thermodynamic parameters 
which may possibly be relevant. 

In the absence of randomness, the system reduces to the X F (planar rotator) 
model, and we And that the usual Kosterlitz-Thouless behaviour in the two-
dimensional system survives the addition of randomness at intermediate temper-
atures, but at low temperatures the system shows some disordered features which 
might be identified with a spin glaas phase. In three dimensions, the randomness 
destroys the long range order present in the pure system, replacing it with a phase 
with infinite susceptibility which exhibits algebraic order with a non-universal ex-
ponent. If the system is quenched, however, a phase with exponentially decaying 
correlations with properties predicted by Chudnovsky is found. For low random-
ness this apparently non-equilibrium phase is destroyed at a thermal depinning 
temperature dependent on the degree of randomness. 
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Preface 

The original work in this thesis is as follows: 

e The established Chiidnovsky-Imry-Ma theory has been extended slightly in 

sections 2.8.3, 2.8.4 and section 2.8.9. The last of these extensions has been 

previously published [1]. 

e Chapter 4 describes the details of the implementation of the simulation on 

a parallel computer. 

# Chapter 5 reports on the results from simulations on the HPZ Hamiltonian 

with two-component spins in two spatial dimensions, varying temperature, 

anisotropy strength and external field strenglh. Some of these results have 

previously been published in [13]. 

e Chapter 6 reports on the same system in three spatial dimensions. These 

results are to be submitted for future publication. 

The ambiguity over the FWA phase (section 2.8.7) and the theory for the 

energy due to local Euctuations in spin directions (section 2.8.5) were pointed 

out by professor Alan Bray at the Ph.D. uma uoce. 
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Chapter 1 

Introduct ion 

In this thesis an investigation oT random anisolropy magiirts. using Monte Carlo 

simulations performed on a parallel computer, is presented and discussed. Despite 

many years of study, the physics of random systems remains a topic of tremendous 

interest. To a lesser extent, the work was also intended as an appraisal of the 

utility of parallel computers in physics simulation, though the physical results 

presented herein stand independently from the computing-science aspects of the 

work. 

In the remainder of this chapter, the general phenomenon of magnetism is 

discussed, and the experimental properties of random magnetic systems are re-

viewed. There is room to do little more than scratch the surface, and the reader is 

referred to standard references such aa [4-7], which were used as source materials 

for this introduction. This is also true of statistical mechanics, largely used by 

physicists in the study of many-body systems such as magnets. 

In chapter two, the properties of the model Hamiltonian introduced by Harris, 

Plischke and Zuckermann (HPZ) [8] for random aiiisotro])y systems are explored. 

This is followed, in chapter 3, by a discourse oT tlie classic Monte Carlo algo-

ri thm of Metropolis ef a/., together with technical discussion of the problems of 

the technique. In chapter four, an introduction to parallel computers is given, 

together with specific details concerning our implementation of the Monte Carlo 

method. Because this dissertation is intended for an audience with a wide range 

of backgrounds, an at tempt has been made to keep these chapters more or less 

independent. Readers already familiar with the theoretical aspects of the HPZ 

model can move straight to chapters three and Four, while those with a Monte 

Carlo background can use chapter two as an introduction to the model, or chapter 
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four as a basis for commencing simulation work on parallel computers. 

The results of our extensive simulations on the random anisotropy model 

with two spin components in two spatial dimensions are presented in chapter 

five, while in chapter six the results from our preliminary work on the system in 

three dimensions are presented and discussed. 

Finally, in chapter seven the w^ork is summarised and suggestions are made 

for possible directions for future work. 

A detailed description of this implementation can be found in the appendix, 

in the hope that other workers can continue to use the current program without 

the need to learn about parallel programming lechniqucs in detail. A 'simulation 

control language' has been defined, so that a rich variety of simulations can be 

be perform^ed without the need to modify the program source. 

1.1 Magnet ism and Magnetic Mater ia l s 

For thousands of years, man has been fascinated by magnetism; the ancient 

Greeks were intrigued by the way the lodestone would a t t rac t pieces of iron, and 

the compass has long been used as a navigation aid by detecting the direction 

of the Earth 's magnetic field. An important step in the s tudy of magnetism waa 

the forging of links between electricity and magnetism by the work of Oersted, 

Ampere, Faraday and others. All currents (moving charges) produce magnetic 

fields, and all magnetic dipoles are due to currents, microscopic or macroscopic. 

All materials respond to an imposed magnetic field. The magnetic gwscep-

2̂62%?/ is defined as the ratio of the resulting moment (o the apphed magnetic 

held. Some materials are exhibiting a negative susceptibility, in 

opposition to the applied held, while other materials are forming 

moments parallel to the held. A few materials, such as iron, retain their magnetic 

moment even after removal of the field. These are called In fact 

materials show diamagnetism, but this is masked by the much larger paramag-

netic and ferromagnetic properties where they are present. There are also more 

esoteric forms of magnetic ordering, which will be discussed. 

It is now well known that atoms are composed of negatively-charged electrons 

orbiting positively-charged nuclei, and the differences between the elements can 

be related to the differences between the electronic s t ructure within the atoms. 



For a complete understanding, Quantum Mechanics is required — a topic be-

yond the scope of this introduction. Suffice to say that magnetic materials are 

composed of atoms with a net dipole moment, and non-magnetic materials are 

composed of atoms with no net magnetic moment. (There are also effects due 

to the intrinsic magnetic moment of the atomic nucleus, but these moments are 

three orders of magnitude smaller than the electronic moments.) It is the interac-

tion between the atomic moments (also called that produces the interesting 

physics. 

1.1.1 P a r a m a g n e t i s m 

In a paramagnet, the microscopic magnetic moments of the atoms show a negli-

gible interaction with each other. Consequently, in zero field, they are arranged 

randomly, and there is no net magnetic moment. 

When an external field is applied to a single magnetic dipole, a torque is 

exerted upon that dipole, trying to align it with the field. This results in a 

net magnetic moment. Pierre Curie discovered that , at 'ordinary' fields and 

temperatures, many materials produce a magnetic moment directly proportional 

to the held, which increases as the temperature is reduced: Curie's law states 

that the magnetic susceptibihty is given by 

X = ^ (1.1) 

where C is a constant depending on the material under study. For large fields or 

low temperatures, the magnetisation approaches saturation once all the moments 

are aligned with the Aeld. Thermal agitation tends to knock the dipoles away 

from alignment, so that a larger field is required to cause a given magnetisation 

as the temperature is increased (section 1.2.1). 

In solids, the microscopic dipoles can interact with each other, but Curie's law 

is obeyed by dilute alloys for example, in which the magnetic atoms are spatially 

separated by non-magnetic atoms. 

1.1.2 F e r r o m a g n e t i s m 

The label 'ferromagnetism' derives from the Latin /Frrf/m. meaning iron. I h e 

magnetic properties exhibited by iron, and simitar elements, stem from the way 



(a) Ferromagnetic ordering 

(b) Anbifeiiomagnelic ordering 

^ 4k ^ ^ ^ ^ ^ ^ 

(c) Ferrimagnetic ordering 

Figure 1.1: Schematic spin configurations for ferromagnetic ordering (a), antifer-
romagnetic ordering (b), and ferrimagnetic ordering (c). 

the microscopic magnetic dipoles tend to align themselves with their neighbours. 

In this way, samples of the materials show long-range magnetic order, with spins 

aligned over long length-scales, as illustrated in Figure I.] (a). When a small 

field is applied, the dipoles are rotated towards the held direction aa before, but 

in the case of ferromagnets, the rotation of the dipoles reinforces the force on 

the neighbouring dipoles, and a large net magnetisation results. Thus the net 

magnetic moment is very nonlinear in the external held. 

Again, the full details of this which aligns the dipoles 

require quantum mechanics, and is beyond the the scope of this thesis. In general, 

the exchange interaction arises from electrostatic repulsion between negatively-

charged electrons — quantum mechanics prevents two spins with aligned dipole 
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moments from approaching closely, while it places no restriction on electrons in 

different quantum mechanical states. Thus aligned spins are on average further 

apart than misaligned spins, and therefore have a lower average coulomb energy. 

It is found that above a certain temperature 7^ known as the Cwvie 

long range ordering ceases, and ferromagnetic substances revert to paramagnetic 

behaviour, approximately obeying a modified form of Curie's law (equation 1.1) 

known as the Curie-Weiss law: 

^ ^ r - 7 ; 

where 21; is the ^Weiss constant^ and has dimensions of temperature. 

Below 2^, the system shows a magnetisation, in the absence of 

an external magnetic field. This spontaneous magnetisation is large at low tem-

peratures, and decreases with increasing temperature, as indicated schematically 

in hgure 1.2. 

1.1.3 P h a s e T r a n s i t i o n s 

The hrst quantitative analysis was made by Weiss, who modelled the interaction 

of the neighbouring dipoles as a 'mean held' at each site, and was able to find 

a self-consistent solution. This technique is a very important one, being much 

used in statistical mechanics, and will be dealt with in more detail in section 2.3. 

While it unfortunately gets much of the detail wrong, it does at least qualitatively 

predict a transition from a disordered state to an ordered s ta te as the temperature 

is lowered — a pAage 

This is a specific example of a very general phenomenon. Aiany other systems 

show phase transitions, one common example being the transition from water 

to ice at 0°C. At first sight, these two phenomena appear quite unrelated, but 

in any system which undergoes a phase transition, one can define an orcfer pa-

rameter which is a measure of order. In a disordered phase (such as water or 

paramagnetism) it is zero, and in an ordered phaae (such as ice or a ferromagnet) 

it is non-zero — the spontaneous magnetisation is a suitable order parameter in 

a ferromagnet, for example. In practice, it is found that very general statements 

can be made about the way the order parameter beliaves. The details of the 

system under investigation are rather unimportant, and general symmetry argu-

ments can be invoked. One very important characteristic of a phase transition 



M 

r . 

T 

(a) Spontaneous ATagnetisaHon 

T, 

T 

(b) Susceptibility 

Figure 1.2: Spontaneous magnetisation (a) and zero-field susceptibility (b) of a 
ferromagnet. At low temperatures, the susceptibility de^Dends on whether or not 
the applied Aeld is in the same direction as the spontaneous magnetisation, and 
is not shown here. 



is the value of certain — it has already been pointed out that 

the magnetic susceptibility diverges at the Curie point. A number of other inter-

esting quantities also show critical behaviour, which can be characterised quite 

generally by defining the following exponents. 

C, - l^r'" (1.3) 

M - 1̂ 1̂  (1.4) 

X - (1.5) 

M - ( 1 . 6 ) 

^ (1.7) 

G ( r ) - (1 .8) 

where ^ is dehned as ^ — 1 — it is a normalised temperature, relative to the 

critical temperature, jy is the external magnetic field, M is the spontaneous 

magnetisation, and % the magnetic susceptibility, in magnetic systems. is the 

specihc heat. 

The correlation length ^ is a measure of the extent to which the spins are 

correlated. When a change is made to one spin, that change has an in&uence 

at a distance of the order of At low temperature in an ordered phase, the 

correlation length is very small, and the system remains predominantly ordered. 

(The system has long range order, but the correlation length is the typical size 

of Euctuations in the order, not the length-scale of the order itself.) At higher 

temperatures, these Euctuations grow, giving a reduced average magnetisation in 

a ferromagnet, say. At the critical temperature, the correlation length becomes 

infinite and fluctuations span the whole system, so that the magnetisation flips 

rapidly, averaging to zero. G(r) in equation 1.8 describes the correlations at 

the critical temperature. Above the phase transition, the spins still prefer to 

align with their neighbours, through the exchange interaction, but now this order 

is limited to the (finite) correlation length. As the temperature is increased 

further, the correlation length decrea-ses, giving smaller 'pockets' of order. This 

is discussed further in section 3.6. 

The values of these critical exponents are a useful way of characterising phase 

transitions, but they are not independent — relationships can be derived relating 

them (section 2.4.1). 



1.1.4 D i p o l a r I n t e r a c t i o n a n d D o m a i n F o r m a t i o n 

Anyone who has tried to make two bar magnets lie parallel will And this fer-

romagnetic ordering counter-intuitive — macroscopic magnetic dipoles prefer to 

form on^z-parallel alignment. This is because the exchange interaction which 

is the basis of ferromagnetic ordering is a very short range interaction, so that 

it couples only the nearest neighbour atoms together, bu t each interaction has 

a knock-on effect, and the order pervades throughout the sample. The dipolar 

interaction, on the other hand, though much weaker in strength at short dis-

tance, has a much longer range of interaction, decaying much more slowly with 

distance. For macroscopic magnets it is the dipolar interaction that causes an-

tiparallel alignment, and this same mechanism accounts for the way samples of 

iron do not in general show the predicted spontaneous magnetisation at room 

temperature. In fact it is the combination of dipolar alignment and the reduc-

tion in the energy stored in the external magnetic held which gives rise to the 

domain structure commonly witnessed in iron (figure 1.3.) Real systems, partic-

ularly polycrystalline samples, forms many domains. These domains represent a 

compromise between the tendencies to align at short distances and to misalign 

at large distances; such compromise is a recurring theme in condensed matter 

physics. 

1.1.5 A n i s o t r o p y 

Another feature of magnetic systems is that of magnetic In our fore-

going discussion, it was implied that the magnetic dipoles can rotate freely to 

point in any arbitrary direction. In a free atom, this is a, reaaonable assertion to 

make, but when the atom is part of a regular lattice in a solid, it is not in an 

isotropic environment. Thus we should not be surprised to find that the suscep-

tibility depends on the direction of the magnetic field relative to the orientation 

of the crystal axes. 

In fact, there is an electrostatic interaction between the electrons which con-

tribute the magnetic moment and the electric field gradient which gives rise to 

the so called /zeW interaction. In the rare earth metals, for example, this 

anisotropy results in considerable differences in the magnetisation of the sample, 

depending on the relative directions of the held and the crystal axes. In particular, 

it is found that magnetic compounds exhibit an easy direction of magnetisation. 

S 



Figure 1.3: Domains in aferromagnet. The energy stored in the external magnetic 

field is minimised by such a configuration. 
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Figure 1.4: Hysteresis 

This explains why, in a ferromagnet for example, the spins do not immediately 

rotate to align themselves with the external field direction, which would give a 

very large magnetic susceptibility. 

1.1.6 H y s t e r e s i s 

One hallmark of ferromagnetic materials is that of magnetic illustrated 

in figure 1.4. When a held is applied to an initially immagnetised sample, the 

magnetisation follows an When I lie Field is reduced, 

however, the magnetisation does not return down the samr path, but maintains a 

large Mr even when the field is removed. Reversing the 

field does not immediately reverse the magnetisation; a held equal to the coerczue 

must be applied before the sample reverses its direction of magnetisation. 

This can be understood from the domain structure illustrated in figure 1.3: 

for very small fields, the domains parallel to the field grow at the expense of 

the domains of misaligned spins, in a reversible way (so tha t they will return 

along the same path when the held is removed). The anisotropy prevents the 

domains from simply rotating towards the held. As the held increases, the domain 

boundaries have to be dragged over crystal impurities, polycrystalline borders, 

pinning defects, etc., so that work is done and the change is irreversible. When 

the field is large, the domains rotate to saturation. This last r%ime is reversible. 
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so that when the held is removed, domains form once more, but in a different 

configuration, in which the domains which were parallel to the field are favoured, 

giving the system a net magnetisation. 

1.1.7 A n t i f e r r o m a g n e t s a n d F e r r i m a g n e t s 

There are other magnetic systems which are closely related to ferromagnets on 

a microscopic scale, but which have very different macroscopic properties. /In-

such as Chromium show no spontaneous magnetisation, yet at 

microscopic level there is ordering similar to ferromagnets; but with the differ-

ence that neighbouring spins lie antiparallel, as illustrated in figure 1.1(b). Hence 

the moments cancel out, giving no net magnetisation. 

At high temperatures, the system is again paramagnetic, obeying a Curie-

Weiss law (equation 1.2), but with a negative Weiss constant. The susceptibility 

does not diverge at the TVeeZ but there is a weak cusp. As with the 

ferromagnet, the low temperature susceptibility depends on the relative directions 

of the ordered atomic dipoles and the external field: when the field is perpen-

dicular to the dipoles, they all tilt, towards llie field (\_L). but when the held is 

in the direction of the magnetisation (X||), there is little change in magnetisation 

unless the held is strong enough to overcome the exchange interaction. 

In order to detect the magnetic order explicitly, one can use techniques such 

as sca^fermg', where a beam of neutrons is scattered from a target con-

structed from the material under study. Neutrons are uncharged, but have an 

intrinsic magnetic dipole moment which interacts with the microscopic magnetic 

structure in the sample, so that they can experience coherent diffraction from 

ordered arrays of magnetic moments. In practice it is necessary to distinguish 

the peaks which are due to interactions with the atomic nuclei from peaks due 

to the magnetic ordering in the neutron diffraction patterns. 

Perrimagnets are systems which show a spontaneous magnetisation like fer-

romagnets, but which have antiparallel alignment of the atomic dipoles at a mi-

croscopic level. This apparent inconsistency can be resolved by noting that these 

materials are composed of mixtures of atoms wilh unequal magnetic moments, 

arranged alternately in the lattice. All the atoms oT one type lie parallel on one 

sublattice, which is antiparallel with another sublatlice containing aligned atoms 

of the other type, as illustrated on figure 1.1(c). 
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1.1.8 R a n d o m S y s t e m s 

In practice, materials with mixtures of ferromagnetic and antiferromagnetic in-

teractions can be constructed. In such compounds there is competition between 

the diEerent couplings, which complicates the physics. One such system is the 

class of alloys of the form EuxSri_xS. With large a;, this system has ferromagnetic 

nearest-neighbour coupling and antiferromagnetic next-nearest-neighbours. The 

Sr atoms are not magnetic, and serve simply to dilute the lattice, giving a random 

mix of ferromagnetic amd antiferromagnetic interactions. Another system that 

has been widely studied consists of dilute solutions of magnetic transition metal 

impurities in noble metal (non-magnetic) hosts. Here, the exchange interaction 

between the magnetic impurities is mediated by the conduction electrons of the 

host by the RKKY interaction, after Ruderman, Kittel, Kasuya and Yosida [6]. 

The interaction oscillates in sign aa it decays with distance, so that some pairs 

of magnetic dipoles interact ferromagnetically and others experience an antifer-

romagnetic coupling. 

The crucial element of such appears lo be I lial the low temper-

ature state is a frozen disordered one, rather than a uniform or periodic state 

described above. The competition between the different couplings and an ele-

ment of randomness appear to produce this type of state, which will be discussed 

in more detail in section 2.6. 

Experiments on samples of spin glasses reveal the following properties: 

# a marked cusp in the magnetic susceptibility as the system is cooled through 

a critical temperature, but no spontaneous magnetisation at low tempera-

tures, and no peaks in neutron scattering experiments which would indicate 

periodic order like antiferromagnetism. Nevertheless, the suppressed sus-

ceptibility does imply some sort of spontaneous magnetisation. 

# remanent magnetisation at low temperature — the magnetisation of a sam-

ple which is cooled from above the freezing temperature in a non-zero mag-

netic field is higher than the magncti.satioii obtained when the same field 

is applied to the same system cooled in zero Held. Equivalently, the rema-

nent magnetisation on removal of the fields in the different circumstances 

is different. 

# field dependent freezing temperature — the larger the field, the lower 
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the temperature at which the above history-dependent magnetisation sets 

in; the Almeida-Thouless line separates glassy behaviour from be-

haviour (see below). 

e when the susceptibility is measured using an oscillating held ('ac suscepti-

bility^), the temperature at which the cusp appears is found to depend on 

the frequency of the of the held; raising the frequency increases the freezing 

temperature, which implies that the freezing is some sort of dynamic effect, 

and the timescale of the experiment inSuences the observed behaviour. 

R a n d o m A n i s o t r o p y 

Another way of introducing competing interactions is to work on amorphous 

samples of systems with large crystal Relds. Without tlie long-range periodic 

structure of a crystal, the anisotropy discussed in section i.1.5 varies from site 

to site through the system. Thus there is competition between the exchange 

interaction, which tries to align the neighbouring dipoles, with the anisotropy, 

which gives each dipole a Zoca/easy magnetic axis. 

Amorphous alloys of rare earths in metals, such as DyCu and TbPeg show some 

of the properties of spin glasses, above: there is a cusp in the susceptibility [9] 

below which samples show history-dependent magnetisation [10]. The freezing 

temperature is field-dependent [11], but there is no indication of time-dependence 

in the freezing temperature [11]. 

It is these systems which have been studied in this work, but before discussing 

their properties, it will prove advantageous to review some of the background of 

how such systems are tackled theoretically. 

1.2 Statistical Mechanics 

Statistical mechanics is a tool used extensively in solid s tate physics, where prop-

erties of the system as a whole are inferred from consideration of the microscopic 

states of the system. A complementary theory is that of thermodynamics, where 

the macroscopic parameters of the system (such as magnetisation and suscep-

tibility) are derived from general considerations such as conservation of energy. 

Links between these two theories have been established. 
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The fundamental building block for statistical mechanics is the Bo/kmann 

which says that the probability of the system being found 

in a state % with energy E, is proportional to exp at temperature T; 

/cg is For brevity, it is customary to define an inverse 

temperature /? = Notice that statistical mechanics is based on pro6a6%/* î/, 

whereaa mechanics traditionally involves following each particle deterministically. 

(Molecular dynamics is a numerical simulation technique where the forces a7'e 

computed for each particle, and the equations of motion are integrated.) 

If we imagine a collection, or of identical copies of our system, and 

freeze the motion at some instant, we would hnd the systems in microscopic 

configurations reflecting this probability distribution. We define the quantities 

of physical interest as averages over all these configurations. This is the ergo(ffc 

As the name of the theory implies, we rely on the large number of particles 

involved to cancel out the Suctuations. For the most par t , standard statistical 

theory says that fluctuations are typically proportional to the square root of the 

number of particles, and since macroscopic systems are typically 10^^ particles, 

the relative fluctuations give errors smaller than 10'^°. 

1.2.1 E x a m p l e : p a r a m a g n e t i s m 

As a simple example, we can consider the paramagnetism due to a single magnetic 

dipole in a field, as discussed in section l . l . l . The energy of a dipole in a magnetic 

field is given by 

E = - m . H (1.9) 

and we can use Boltzmann^s probability distribution to calculate an value 

for the magnetisation ??? and susceptibility 

( m > = ( 1 . 1 0 ) 

X = (1.11) 

Here the angled brackets () denote a thermal average, and Z is the 

2 = yexp( /3n ' i .H) . (112) 
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Formally, Z is merely the normalisation of the Boltzmann probabilities, but 

we can in fact calculate all the quantities of interest from the partition function 

alone. For example, equation 1.10 can be written 

from which it can be shown fairly easily that the zero held susceptibility is pro-

portional to ,8, which is to say inversely proportional to temperature i.e. Curie's 

law (equation 1.1). 

When we take a large number of dipoles, the result is unchanged, 

and the net magnetisation M is the sum of the microscopic contributions {mi}. 

As soon fus interactions between the dipoles are considered, however, the complex-

ity increases enormously; the energy of each microscopic s ta te must now contain 

the mutual interaction of 10^^ particles. 

1.2.2 U s e of M o d e l s 

Because these problems rapidly become intractable, physicists must simplify the 

interactions to have any hope of hnding a solution. One hopes that in constructing 

models for systems, the salient features can be captured without considering 

all the possible interactions. Typically, dipolar interactions (section 1.1.4) are 

ignored, and the exchange interaction is taken to be constant, acting only on 

nearest neighbours in a perfect lattice. The Heisenberg model for interacting 

magnetic systems takes the form 

= (1.14) 
( v ) ' 

with uniform exchange interaction strength J between spins (dipole moments) 

and S_; at sites % and and uniform magnetic field H . (z j ) means sum over nearest 

neighbours only. J is positive if sites z and j have a ferromagnetic interaction 

[so that aligned spins have lower energy], and negative for an antiferromagnetic 

interaction, where spins prefer to lie anti-parallel. ("H is called the //amz/fonmn, 

and is just the operator equivalent to the total energy.) 

Even this simplified system cannot be solved exactly for classical spins. An 

important landmark in the development of statistical mechanics was the exact 

solution of the in two dimensions. This system, inspired by quantum 

mechanics, allows each dipole moment to have only two orientations, fully parallel 
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to or fully antiparallel to the external held. Thus each S in equation 1.14 is 

replaced by an integer taking the values ±1. 

Despite its apparent triviality, the Ising model in two dimensions has two 

important qualities: 

# the two dimensional Ising system ((oeg undergo a phaae transition, from a 

paramagnetic high-temperature r%ime to a low-temperature ferromagnetic 

phase, and 

# because it can be solved exactly, it is a useful testbed for techniques which 

are applied to more complicated models. The errors introduced by such 

techniques can be monitored. 

Several statistical techniques will be illustrated in chapter 2 using the Ising 

model. 

1.2.3 P h a s e T r a n s i t i o n s a n d B r o k e n S y m m e t r y 

It is useful to consider a phase transition from a statistical mechanics view. The 

Heisenberg model for a ferromagnet (Hamiltonian 1.14) undergoes a paramag-

netic to ferromagnetic phase transition, developing a spontaneous magnetisation 

at low temperature. The Ising system in two dimensions behaves similarly. How-

ever, the energy of the system is unchanged if all Heisenberg spins are rotated 

through the same angle, or if all the Ising spins are Hipped. Application of the 

above ergodic hypothesis would therefore produce a zero magnetisation at all tem-

peratures, since any contribution from one configuration is exactly cancelled by a 

contribution from the configuration with all spins Sipped through 180° degrees. 

One can only conclude that the symmetry of the Hamiltonian has been ig-

nored, and that the ergodic hypothesis has been violated. (The phase transition 

occurs in the model system, so we cannot blame some hi ther to unconsidered in-

teraction in the real system.) Our physically relevant measurements must now 

be limited to that part of 'configuration space' which is available to the system; 

this can be done formally by imposing a small field, and taking the limit of the 

result as the magnitude of the field is reduced to zero. 

It should be noticed that the symmetry can only truly be broken for a system 

of inhnite size, since a finite system will change its direction of magnetisation if a 
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Euctuation in the local direction of the magnetisation reaches the order of the size 

of the system. Near the phase transition, these fluctuations can be very large, 

and only an infinite system is stable against such fluctuations since there is a non-

zero probability of a Suctuation reaching any finite size. The phaae transition is 

dehned aa the point at which the fluctuations become infinite (correlation length 

diverges in equation 1.7). In practice, real systems, with order of 10^^ particles, 

do not flip on timescales of experiments, but the effect is impor tant for the sorts of 

system sizes which are amenable to computer simulation. This will be discussed 

further in section 3.6. 

R a n d o m S y s t e m s 

For random systems, whether random exchange or random anisotropy, it is neces-

sary to use a Hamiltonian which reSects the random variables. For spin glasses, 

with random exchange, the essential physics can be captured by replacing the 

term J in Hamiltonian 1.14 by whose sign and possibly magnitude various 

from site to site, giving the Edwards-Anderson Hamiltonian [12]: 

^ - H . ^ S,. (1.15) 
(u) ' 

For the random anisotropy system, one postulated model Hamiltonian is the 

Harris, Plischke and Zuckermann (HPZ) random anisotropy model [8] 

-K = _ ^ J S,.S, - ^ D (S^.n,)" - H . ^ (1.16) 
(u) ' 

where the n, is a unit vector in the easy direction at site % and D is the strength 

of the attraction to the local easy direction. The anisotropy energy is minimised 

when the spin lies in either direction along the local easy axis, and is a maxi-

mum when the spin is perpendicular. This is a simplification of a more general 

Hamiltonian where both D and J can vary from site to site. 

In each case, it is necessary to average over the random variables or 

in order to arrive at physically meaningful results. But it is important to dis-

tinguish between the thermal (Boltzmann) average over the spin variables and 

the average over the (sample to sample) variations in the randomness. We must 

conceptually take an ensemble of systems with different random variables, and for 

each, perform the usual thermodynamic average. But as we have already seen, 

a single system with a particular set of random variables is in general too hard 
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for us to study, yet now we have to find properties of systems with a particular 

of random parameters. This will be discussed fur ther in chapter 2. 
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Chapter 2 

Theory 

Before examining the properties of the HPZ mode] (equation 1.16), it is useful 

to study the Ising and XY models, in order to review some techniques used in 

solving statistical mechanics problems. The Ising system is exactly soluble in 

one and two dimensions, and is invaluable as a guide to the accuracy of these 

methods. The random anisotropy system in the large anisotropy limit might be 

expected to show some Ising behaviour. The XY (or planar rotator) model is the 

simplest continuous spin system, and is the small anisotropy limit of the random 

system studied in this work. 

Both the Ising and XY models are special cases of the general Heisenberg 

model introduced in section 1.2.2: 

= (2 .1) 

where J is the exchange interaction between nearest-neighbour spins S, and 

Sj at sites % and j , and H is the applied magnetic field. 1 his Hamiltonian forms 

the starting point for the discussion of botli the Isiiig and .VY models. 

2.1 Ising Model 

The Ising model is a very simple system in which each spin can take one of only 

two values, 'up' and 'down', and spins interact only with nearest neighbours. It 

is the classical analogue of the Quantum Mechanical spin-^ problem. In the limit 

of large anisotropy, where the spins are constrained to lie along the anisotropy 

axes, we might expect to hnd similar behaviour. 
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Hamiltonian 1.14 can be simplified to 

= (2 .2) 

where cr, is now an integer, taking values ± 1 and the exchange sum is taken 

over nearest neighbours only. The ground state in zero or uniform magnetic 

field clearly has all spins aligned (assuming J > 0), as this is the configuration 

with lowest energy. For J < 0, the spins are alternately up and down, in an 

antiferromagnet configuration. 

2.1.1 D o m a i n F o r m a t i o n 

We can reformulate the one-dimensional model in zero field in terms of the bonds 

rather than the spins — each bond has energy 0 if the adjoining spins lie parallel, 

or 2 J at a ^kink', or discontinuity, in the adjacent spins: 

• t t t m • • • 
The bonds are independent, and kinks appear at each bond with a probability 

exp(—2^J) where Thus, in an infinite system, we expect kinks to 

appear at any non-zero temperature, destroying long range order. 

In two [or more] dimensions, these kinks become lines [surfaces], surrounding 

regions of aligned spins, as illustrated in figure 2.1. Unlike the one-dimensional 

case, however, the energy of these domain walls is now proportional to the perime-

ter [surface area] of the regions they enclose. In order to form a domain of reversed 

spins of linear dimension^ a domain wall of length is required, as shown 

in the figure. Thus the energy of the Euctuation 2 . In one dimension, the 

energy is independent of as expected. But with (Z > 1, we would not expect 

to find large domains of reversed spins at low temperatures, implying that the 

system possesses a net magnetisation. At higher temperatures, of course, the 

increase in entropy associated with the domains would make them favourable, 

and so no net magnetisation is expected at sufficiently high temperatures. 

The two-dimensional Ising model was indeed shown to be ferromagnetic below 

a critical temperature 7^ = 2.269 J by Onsager [13]. Monte Carlo simulations find 

31: = 2.3 ((f = 2) and Tg = 4.43 («( = 3), in energy units of J . 
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Figure 2.1: Comparison of domain formation in the Ising (left) and X Y (right) 
models in two dimensions. In the Ising system, domains have a sharp domain 
wall, and the energy is proportional to the perimeter of the wall, while in the 
X y model, the dotted line is a nominal domain wall, enclosing the spins rotated 
by more than 45°, but in practice the exchange energy is distributed over all the 
shaded spins. 

2.2 The XY Model 

The XY (or planar rotator) model is an Heisenberg system (equation 2.1) with 

two-component spins constrained to lie in the A'] plane. Its properties are 

presented here since we may expect to find similar properties in the limit of small 

anisotropy in our random anisotropy system. 

We can recast equation 1.14 for the XY system in the form 

"K = — J ^ cos(^, " ^ ^ 
( u > ' 

.3) 

where is the angle between the spin at site ?' and the magnetic field (or some 

arbitrary direction, in zero field). Once again, the exchange sum is over nearest 

neighbours only. 

2.2.1 D o m a i n F o r m a t i o n 

Consider the formation of a domain of size with spins rotated from the bulk 

direction by an angle ^ (figure 2.1). The surface area is again of order but 
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in the case of continuous spins, tlie discontinuity is not abrupt as that of the 

Ising system, but is spread over a number of spins, of order î , as shown in the 

figure. Thus, the deviation between adjacent spins and the energy per 

bond is 1 — cos(^/^) % small angles. Thus the energy of the domain 

varies like In three or more dimensions, domains are inhibited at low 

temperatures, and spontaneous magnetisation can occur. 

In one or two dimensions, large domains are not inhibited at any non-zero 

temperature — there may be no long-range order. However, in the presence of 

an applied held, full alignment is possible at T == OK, implying an infinite zero-

held susceptibility. In the real systems discussed in section 1.1.2, the dipolar 

interaction and crystal held anisotropy prevented free rotation of domains, but 

these interactions have been neglected here. 

2.2.2 Sp in W a v e Ana lys i s 

A more formal approach is to calculate the amplitude of spin waves in the system. 

We again suppose that angles between adjacent spins are small, so that we can 

use cos^ % 1 — in equation 2.3: 

% « (2.4) 
" ( u > 

= (2.5) 
' " R e 

where a is summed over the nearest-neighbour vectors. Following [14], we take 

Fourier transforms.. . 

(2.6) 

where gk = (2.7) 

so (2 .8 ) 

- k 
where = 2 J ^ ( 1 — c o s k . a ) . (2.9) 

a 

Thus, in k-space, in this small-deviation limit, the variables are decoupled. The 

energy is now expressed in terms of wofeg of wave vector k and amplitude 

(A cross-section through the centre of the right hand side of hgure 2.1 can be 

used to illustrate the nature of a spin wave.) The equipartition of energy gives 
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= 2^ , so the intensity of each possible wave is proportional to the 

temperature. The wavelength of the spin waves is closely related to the size of 

the domains discussed in section 2.2.1: at low temperatures, only very gradual 

changes in the magnetic direction are permitted, and large domains result, while 

increased temperature allows smaller domains to be formed. 

From this spin wave analysis, various useful functions can be calculated [14]. 

One important result is the spin correlation function (section 3.5) 

^ (R) = (cos(g(R + R ' ) - g ( R ' ) ) > (2.10) 

(in two dimensions) (2.11) 

^ g-'\T(i+B/A) three dimensions). (2.12) 

The correlation function in two dimensions (equation 2.11) decays to zero 

extremely slowly — there is no true long range order, but the system is "al-

most" magnetic. Thus considerable care is required when performing numerical 

simulations on finite systems. 

2.2.3 B e r e z i n s k y - K o s t e r l i t z - T h o u l e s s t h e o r y 

Berezinsky [15] and Kosterlitz and Thouless [16] realised tha t an important ex-

citation in the two-dimensional XY model is the a topological defect, 

illustrated on figure 2.2. As we go round a contour enclosing vortices, the spin 

angles change by ±2M7r; n is the algebraic sum of enclosed vortices, using sign to 

distinguish the two possible polarities shown in the figure. 

Consider a circle centred at an isolated vortex, with radius large in com-

parison to the lattice spacing a. The change in angle of 27r is distributed over 

27rA spins, so that the total energy in the bonds around the circle ^ ^ (c.f. 

section 2.2.1), and the total energy within the circle due to the vortex is of order 

j / - ( / r = J l n - . (2.13) 
Va r a 

Thus the energy of an vortex diverges as we consider /Z —> oo. At higher 

temperatures the extra entropy carried by a vortex can make isolated vortices 

favourable: inside the circle, there are 7r possible positions for the vortex centre, 

and the entropy In /Z. A more careful analysis shows that F = E — changes 

sign at a temperature Tc = 7r J . 
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Figure 2.2: The upper two figures depict vortices of opposite polarity: running the 
figures together would cancel their effect al large distance, as shown in hgure 2.3. 
It should be noted that the anti-vortex depicted on the right is no( simply the 
spins going "the opposite way' — Hipping all spins in the left figure by 180° 
reverses the direction of rotation of the vortex, bul does not change the polarity 
of the vortex. The lower two figures depict pairs of half-vortices — the left pair 
combine to form a full vortex equivalent to the one above it, while the right pair 
cancel, with no eEect at long distance. 
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The impact of a vortex-antivoitex pa?r with separation ^ is small at large 

distances (Agnre 2.3), so that the energy is finite, again of order I n ^ , and such 

pairs can be created at low temperatures. As the separation between vortices 

in a pair increases, at higher temperatures, other vortices can 'screen' the effect 

of one vortex on its partner, thus lowering the temperature at which the pairs 

dissociate. Kosterlitz and Thouless reformulated the problem as a gas of charged 

particles, modelling the interactions between pairs as a dielectric constant. Us-

ing a mean field theory on this system (section 2.3), the phase transition from 

'topological order' was found to be at Tc = 1.35J. Monte Carlo results give 

31: = 0.89 J [17], but agree qualitatively with the nature of the phaae diagram. 

Also shown on figure 2.2 are half-vortices: around a circle enclosing a half 

vortex, the spins go through an angle j:7r. Two half-vortices of the same polarity 

are equivalent to a full vortex, while half-vortices of opposite polarities cancel, as 

expected. Half-vortices tend to appear as thermal excitations; a full vortex can 

extend itself over several sites, forming a string of frustrated spins between the 

half-vortices, as shown — frustrated because there is no orientation available to 

satisfy the exchange interaction with all neighbours. 

Kosterlitz [18] went on to study the critical properties of the system using 

renormalisation (section 2.4). The main result of this was the calculation of the 

critical exponents ^ and = 15. (?y = A? in equation 2.11). 

Vortices also have a part to play in the three-dimensional A 'y model, but as 

vortex Because these are one-dimensional structures, rather than point 

defects in the two-dimensional model, they are not expected to play a significant 

role, although there is at present no theory which takes these vortex strings into 

account. 

Finally, it should be noted that the X y model displays an anomalous 'bump' 

in the specific heat the phase transition temperature. 

2.3 Mean Field Theory 

Mean field theory can be viewed in (at least) two ways: it is the ezacf solution 

for a system with infinite-range interactions (i.e. each particle interacts with 

every other with equal strength), or it is the solution for finite-range 

interactions, ignoring fluctuations. 
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Figure 2.3: A pair of vortices (highlighted), one of each polarity. Notice how, far 
from the vortices, all spins point towards the left, so that the vortex pair does 
not have any long-range impact. 
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2.3.1 Is ing m o d e l 

In the Ising model, for example, equation 2.2 can be rewrit ten in the form 

w = - E + 5 ' . (2,14) 

= (2.15) 
i 

In this form, we can see that particle % moves in a local effective magnetic field 

If we now take the (spatial) effective held, we find each spin moving 

independently in a (uniform) field 

H' = H + zJS, (2.16) 

where z is the number of neighbours (in the approximation view). This simple 

system haa a partition function 

Z = exp ( ^ ^ ' ) + exp (2.17) 

ajid a (thermal) mean magnetisation 

(^) = tanh( / )F^) (2.18) 

= tanh^/^^j^ + zJS^^ (2.19) 

at inverse-temperature /). This can be solved graphically, plotting the lines 

u = tanh a; and (2.20) 

, = 
as illustrated in figure 2.4. In zero field, the curves always meet at a; = 0, where 

the gradient of equation 2.20 is 1; if this is greater than T / z J , the curves will 

cross again, indicating a spontaneous magnetisation and hence ferromagnetism. 

In summary, therefore, the mean field theory predicts a (second-order) phase 

transition at 7^ = z J . This is clearly in disagreement with the known behaviour 

for the one dimensional model (section 2.1), and significantly overestimates the 

critical temperature for two and three dimensions. The 1-d catastrophe occurs 

because mean field theory neglects fluctuations such as our kinks. (Or, in the 

infinite-range view of mean field theory, an isolated kink has infinite energy, as 

all the spins to one side interact unfavourably with those on the other side.) In 

two and three dimensions, it at leaat predicts the correct qualitative behaviour, 

though with too high a critical temperature. 
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0.75^x 
0.5*x 

0.5*x-0.25 

Figure 2.4: Form of graphical solution for equations 2.20 and 2.21. Changing the 
temperature changes the gradient of the straight line, while changing 77 moves 
the line in the y direction. The lines must cross once, and may cross up to three 
times. 

2.3.2 X Y Model 

A mean Aeld theory for the XY model follows section 2.3.1 fairly closely, but 

because this is a continuous system, ec^uation 2.18 becomes 

cos ^ exp cos 

with ^ cos" 0 exp (a; cos 0) 

Again, a solution can be obtained by plotting self-consistent 

y = 

and y = 

z J 

/ o W 

for various temperatures. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

Equation 2.26 is similar in form to equation 2.20, so tha t a graphical solution 

resembles Agure 2.4. As before, we use the gradient of equatioji 2.26 at .c = 0 to 

determine whether the lines cross more than once in zero field: 

/ i ( z ) 

(Za; /o(':c) x=0 

1 T 

/o(0) 2 J z 
(2.27) 
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Thus mean held theory predicts ferromagnetism in the XY model for T < (/J 

(since z = 26 )̂. This is qualitatively correct for three dimensions, but, as before, 

in lower spatial dimensions, Auctuations cannot be ignored. In this case, as (cos 

decreases, ( | s in^ | ) increases, and the of the local field changes, so that 

there is no long range order. 

The evidence therefore tends to suggest that mean held theory is at best 

misleading, and at worst just plain wrong ! However, it has the big advantage of 

being simple to formulate, and does give an indication of how to proceed. This 

is especially true in very complex systems, when mean field theory is the only 

tractable theory. It is less useful in low spatial dimensions, where Auctuations are 

more important. In general, there is a Zower (fzmensmn : in fewer spatial 

dimensions, the gain in entropy produced by introducing a domain wall exceeds 

the gain in energy at any (non-zero) temperature. 

2.4 Space Renormalisat ion 

Renormalisation is the procedure of changing the scalc of the system, and com-

paring the properties of the new system with those of the original system. The 

procedure can be carried out discretely, by 'decimating', or summing over some 

of the sites using the Kadanoff construction [19] , or by making a continuous 

transformation. If the transformed lattice has the same s t ructure as the original, 

then the partition function for the reduced lattice should have the same form as 

the original, but with an interaction strength A"' different from the original AT. 

Clearly, we can iterate this process. At infinite temperatures, all the sites are 

independent, so that changing the scale in this way cannot make any physical 

difference. Likewise, at zero temperature, in a ferromagnetic system, all sites are 

ordered, so that again there is no difference in macroscopic properties when we 

renormalise. These are called fixed points, and as we iterate our renormalisation 

procedure, we may head towards one or other of these fixed points. 

At high temperature, for example, above any phase transitions, the corre-

lation length is finite. The correlation lengtli in ihr drcimated lattice must be 

smaller, since the system is correlated over the same physical distance, which 

now corresponds to a smaller number of lattice spacings. smaller number of 

new-lattice-spacings). This is equivalent to a move to a higher temperature or 

a weaker interaction. Thus as we iterate, the system tends towards the infinite-
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temperature / zero-interaction Axed point. 

Near a critical point, the system correlation length diverges, and since there 

is then has no natural length scale, we might expect to And a 

, where the system is again unchanged by the renormalisation, requiring A'' = A". 

For example, in the 1-d Ising model in zero held, we might decimate the lattice 

by explicitly performing the sum over the even spin sites in the partition function. 

We Arst rewrite Hamiltonian 2.2 in a dimensionless form 

= = (2.28) 

with a reduced interaction AT = Explicitly summing the even spins, 

Z(A\7V) = expCK') (2.29) 
{s.} = ±l 

= E E " f i : i : • • • e x p ( w ' ) ] (2.30) 
si=±l S3=±l \S2=±1 / 

= E (2.31) 

= E($expA^'5i53^^$expA' '5355^ -- (2.32) 

where equation 2.32 follows by choosing A ' and $ such that each term agrees 

with terms in equation 2.31 for 6, = ± 1 and = ±1: 

0 e x p A ' ' = 2co8h2A' when a, = a,+2 = ± 1 (2.33) 

$ exp — AT' = 2 when 5, = —s,+2 = ±1- (2.34) 

Thus, with $ = 2\/cosh 2A" and A"' = ^ In cosh 2Ar, 

Z(A',A') = (2.35) 

and the partition function for the decimated system has been restored to its 

original form, with a reduced interaction strength — because it is In Z that is of 

physical relevance, l n $ , an additive constant, is irrelevant. 

As we iterate, A^("+^) < A'W, so that the yZow is always 

towards the T = 00 Axed point for this system. The only solution for AT' = A' 

is at A" = 00, the T = 0 Axed point. Hence, there is no critical Axed point, in 

agreement with our earlier arguments presented in section 2.1.1. 
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2.4.1 Scal ing H y p o t h e s i s 

The preceeding renormahsation algorithm can be expressed as a generalised scal-

ing hypothesis, which allows relationships between the scaling exponents in sec-

tion 1.1.3 to be dehned. 

We renormalise the lattice in blocks of spins in rf dimensions. (Z, was 2 in 

the example above.) In the vicinity of the critical point ^ = 0, we can derive 

relationships for renormalised parameters and A'. The simplest relationship 

consistent with the symmetry requirements as h —> —h and the properties of a 

critical fixed point (f = /i' = 0 when ^ = A = 0), is 

A' = / i l ' ' (2.36) 

f (2.37) 

The sca/mg' supposes that the free energy of the system is domi-

nated by a singular term near the transition. For the renormalised system, that 

term must scale like 

0 ( f , /i') = I'^A) = /^) (2.38) 

because we have renormalised in blocks of spins. As we have seen above, the 

correlation length of the renormalised system is reduced by a factor 

= (2.39) 

By definition (equation 1.7), ^(^,0) ^ M"", giving = 1 in equation 2.39. 

Choosing L = we find 

0(^,0) - (2.40) 

But simple thermodynamics relates the behaviour of the free energy to that 

of the specific heat in zero held: from equation 1.3, $(^,0) ^ giving 

JosepAaon'g /aw 

ud = 2 — Q. (2.41) 

Similar arguments give other equalities: 

a -|- 2/? -|- -y = 2 Rushbrooke's law (^ 42) 

a 4-/3(^-1-1) = 2 Griffiths ' law (2.43) 

(2 — )^)i/ — ^ Fisher's law. (2.44) 
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2.5 Replica Method 

In random systems, not only are we required to perform the usual statistical me-

chanical thermal averaging, but we must also average over the randomness within 

and between samples. In experiments on samples of real systems, the globally-

measured properties are an average over many possible local configurations of the 

random variables, so that fluctuations between different samples should be small. 

We can write down the partition function Z of our system, but it is In Z which 

is of physical relevance, and therefore which must be averaged over. The replica 

method makes use of the identity 

Z " - 1 

InZ = 11m (2.45) 
n->0 n 

to allow us to deal with the randomness by averaging Z" , which is somewhat 

easier in general (though in some cases it is perfectly possible to obtain the 

average of In Z directly). 

Z " { J } = Y . ( - 1 3 ' E H i S ' A H } ) ) . (2.46) 
Si \ a / 

The a indices are called replica indices — conceptually, we have made m 'replicas' 

of our system. Provided that , after we have performed our average over the 

randomness and made whatever approximations that are justified, the resulting 

Hamiltonian for the M coMpZetZ replicas is well behaved in n, we can take the 

limit M 0 and can find our sample-average of In Z. 

However, while the Hamiltonian is symmetric in the replica indices a , the 

lowest energy may be a state in which this symmetry is broken, in an analogous 

way to broken symmetry in ferromagnets. In this scenario, called broken replica 

symmetry, it is not clear that taking the limit n —> 0 is valid [20]. 

2.6 Spin Glasses 

The random system which has been (and remains) most studied to date is the 

spin glass [7]; as described in section 1.1.8, these systems have competing fer-

romagnetic and antiferromagnetic interactions — the exchange interaction 

between spins z and j in Hamiltonian 1.14 is random, certainly in sign, and pos-

sibly also in magnitude. The origin of this random exchange in dilute magnetic 
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Figure 2.5: Frustration in (left) the Ising spin glass and (right) the Ising limit 
of the random anisotropy model (section 2.7). The indicates that neither 
orientation satisfies all local bonds. The right picture illustrates a natural site 
for a half-vortex (section 2.2). 

systems is thought to be due to the oscillatory RKKY interaction [6]; not only the 

magnitude, but also the sign, of the exchange interaction changes with distance, 

and in dilute or amorphous systems, the separation between spins is random. 

The crucial factor appears to be — the local variations in the 

exchange contrive to provide no possible configuration where all the ferromagnetic 

and antiferromagnetic interactions are satisfied at once. This is illustrated in 

figure 2.5. Instead, there are many ground states [as opposed to the 

(fe^eneroi(e ground states in the Ising model (section 2.1) for example], with large 

energy barriers between these (relatively) low-energy states. The system becomes 

non-ef^o«^*c — it is trapped, or frozen, by these local minima, and is unable to 

sample the whole of phase-space. Because the energy barriers are not infinite, a 

non-zero temperature is required to assist the system in escaping from some of the 

energy minima. The volume of phase space available to the system depends on 

both the temperature and on the time-scale of the measurements being made — 

glassiness is a dynamic phenomenon, since the probability of the system crossing 

an energy barrier depends on the temperature. However, all systems can cross 

any finite barrier given sufBcient time. (In an infinite system, the energy barriers 

can become infinite.) 

While a non-random system is characterised by a global order parameter 
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(magnetisation), the degree of freezing in a spin glabs is measured using a local 

order parameter = (5",) at site z; the signature of the frozen state is that the 

spins do not deviate significantly with time at a local level, even though there 

may be no long-range order. 

Because the freezing is a dynamic effect, a dynamic spin glass order parameter 

gM ^ (S,(0).S.M) (2.47) 

is defined, with the Edwards-Anderson order parameter defined by 

gsA = lim g(f) (2.48) 

A crucial question is whether random anisotropy s) stems (the subject of this 

study) exhibits glassiness. 

2.7 R a n d o m Anisotropy Model 

The rational for the RAM model was described in section 1.1.8 — the general 

Hamiltonian introduced by Harris, Plischke and Zuckerman (HPZ) to take into 

account the crystal Aeld interaction in an amorphous compound is (equation 1.16) 

^ = - Z - H . ^ S, - ^ D, (S, .n,)" (2.49) 
(,;) « I 

where D, is the strength of the anisotropy at site t in random direction n,, un-

correlated with neighbouring sites. It is common to make the approximation 

D, = D in addition to the usual approximation of = J for nearest neighbours 

(section 1.2.2). 

For the two-component spins studied in this work, we can rewrite Hamilto-

nian 1.16 in the form 

'K = —.y ^ co8(^, — ^;) — jFf ^ cos 6), — D ^ cos^(0; — (2.50) 
W) ' ' 

Generalising slightly: 

7^ = — J ^ c o s ( ^ , — _̂,) — j i f ^ c o s ^ , — D ^ c o s [p(^, — ^,)] (2.51) 
(v) ' ' 

where p is the number of equivalent easy directions, equally spaced about 

p = 1 corresponds to the random field model, where each site is subject to a local 
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random field, p — 2 is the usual RAM model, with random uniaxial anisotropy, 

aad larger values of p can be used for larger numbers of easy directions. In the 

infinite anisotropy limit, these correspond to the 'clock model ' . 

The interesting physics comes from the competing interactions: the exchange 

term tends to align the neighbouring spins, while the anisotropy term tries to 

direct each spin along the local easy axis. The spins can choose to align themselves 

with each other, with a large energy cost with respect to the anisotropy axes, or 

they can line up along the local ajces, which carries an energy cost due to the 

misalignment with each other. Almost inevitably, the system must compromise, 

and it is this compromise that leads to interesting behaviour. 

When D is very small, where the exchange dominates, the spins might be 

expected to be very nearly aligned in the direction of the external field (formally 

introducing a small symmetry-breaking field if necessaiy). In this situation, 

D cos^(^, — (At) ^ + more interesting part (see below), (2.52) 

and in order to compare energies with the energy of the pure system (D = 0) as 

a function of small D, it is convenient to redefine Hamiltonian 2.50 in the form 

= - J ^ c o s ( g , - - j f ^ c o s g , - (cos"(^, - ,^,) - . (2.53) 
(u) ' ' 

in order to emphasise the more interesting part. 

Conversely, when D is very large, the anisotropy dominates, and the spins 

might be expected to be very nearly aligned with the local axes, in which case 

Dcos^(^, — (6,) % D — more interesting part (see below). (2.54) 

In order to compare energies as a function of large D, and to prevent E —> oo 

as D ^ oo. it is convenient to redefine the Hamiltonian in the form 

= — J ^ c o s ( ^ , " " ^ ^ c o s ^ , — ^cos^(^, — (;6,) — . (2.55) 
( u ) ' ' 

In the infinite D (Ising) Limit, the spins are to lie along the easy 

direction(s) — for p = 1, there is a unique ground state, while for p > 1 the 

exchange term can still influence which of the p equivalent directions the spin 

adopts. For p = 2 we can rewrite equation 2.55: 
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S; = cTiiii = i i i j (2.56) 

'K = - ^ ^ ^Jo-, (2.57) 
('j) 

where = J i jn , .n j (2.58) 

and = H,.n, (2.59) 

Equation 2.57 resembles an Ising spin glaas (section 2.6), and there can be 

as shown on hgure 2.5 — the configuration of the local anisotropy 

axes shown forms a perfect 'pinning centre' for a half vortex (figure 2.2). 

2.8 Chudnovsky-Imry-Ma 

The main analytic work on the HPZ model is the application of an Imry-Ma [21] 

argument by Chudnovsky and co-workers [22-25], reviewed in [26]. The following 

applies to zero temperature, unless otherwise stated. 

As before (section 2.2.1), we consider the formation of a domain of size ^ 

lattice sites, containing ^ spins misaligned with the surrounding spins 

(figure 2.1). We consider separately the single-spin energy contributions for the 

anisotropy energy Eanis, the exchange energy Ecxch, and the energy due to the 

external held EReij. This is essentialh" a dimensional argument, so we are not 

interested in numerical factors. 

2.8.1 A n i s o t r o p y 

In a very large domain, we expect the anisotropy axes to be distributed isotrop-

ically, but in smaller domains, statistical fluctuations may be significant. For a 

domain of size A ,̂ in which all spins are aligned at an angle for a given set of 

anisotropy axes we are interested in ^anis a function of This is illus-

trated in figure 2.6 where Eani3(^) has been compared for three different domain 

sizes for particular choices of 

We neglect signs, and use the small-D form of the Hamiltonian (equation 2.53) 

since we are calculating the energy compared with the fully-aligned state. 

1 
-Ê anis (^) - (2.60) 
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N - 4 
N=16 
N=256 

Figure 2.6: Polar plot comparing Eanis(^) for three different domain sizes, clearly 
showing a preferred domain easy-axis, with energy difference dependent on do-
main size. Solid line is a circle of radius 1, representing an infinite domain, for 
comparison. 

p_ 
TV 

D 

TV 

D 
TV ^ 

D A 
Y ] v 

where A cos 2$ = ^ cos 2(̂  

cos 2(^ — 
i 

(cos 2^ COS 2( ,̂ -|- sin 26) sin 2^,) 
i 

I COS 2^ ^ cos 2<̂ i -|- sin 2^ ^ sin 2(^, 
i i 

cos(20 - 2$) 

A sin 2$ = sin 

and A = 
\ 

cos 2( ,̂ j -t- sin 2^, 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

A is precisely the displacement after a random walk of # steps, each step of unit 

length in random direction — this has the well known result A v W . Thus 

^anis(^) Suctuates with an amplitude ^ D/\ / ]V, and a domain of spins of s ize^ 

stands to reduce energy by by rotating towards local easy direction $ , 

but at a cost of misalignment along the domain walls. As —> oo, Eanis 0, 

while aa # — 1 , Ea^is as expected. 
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2.8.2 E x c h a n g e 

The exchange energy at the surface of a domain in a continuous system was 

considered in section 2.2.1: the energy of a domain of size rotated through an 

angle of one radian is of order so that the energy per spin is given by 

Eexch - (2.68) 

2.8.3 Zero F ie ld 

In zero field, combining the anisotropy and exchange terms, and minimising for 

^ and we can calculate the energy per spin. 

^ = ^anis + ^exch (2.69) 

_ _ D r ' ^ / ^ c o s 2 ( g - 0 ) + J r ^ . (2.70) 

The minimisation with respect to ^ is trivial — the spins lie along ^ — 0 , the 

average easy direction for the domain. 

In more than 4 dimensions, ^exch always wins, ^ oo, and the system is 

ferromagnetic. When (Z = 4, ^ is either 0 or oo, depending on the ratio of y . A 

more careful analysis would be required to determine various numerical factors 

which have been disregarded. 

In general, we are interested in cases when < 4, and ^ has the form shown 

in figure 2.7. Equation 2.70 has a minimum. . . 

^ = ^ D r ^ - ' - 2 J r ' = 0 (2.71) 

^-#-1+3 _ ^ 2 J / D (2.72) 

^ - ( J / D ) ^ (2.73) 

= ( D / J ) " ^ , with energy (2.74) 

Emin - - (2.75) 

Thus small D implies large clusters containing many spins (D —> 0 implies an 

infinite cluster, i.e. ferromagnetism — this argument does not consider the topo-

logical complexities of the two-dimensional model described in section 2.2). 

This system has been dubbed the correZafed spm or 

ne( [24] — each cluster lies along its collective easy axis $ , and the neighbouring 

38 



0.6 -

0.2 -

0.0 -

0.2 -

e 

Figure 2.7: Form of equation 2.75, showing an energy min imum at the optimal 
domain size 

clusters influence the orientation along this axis . This is analogous to the sper-

omagnet or Ising spin glaas (section 2.7), but for correlated domains of spins, 

rather the individual spins. 

The spins in the CSG regime are arranged in a similar way to the illustration 

of domain formation in the two-dimensional (pure) .YY model (figure 2.1); the di-

rection of the local magnetisation varies smoothly through the sample, correlated 

in domains. The presence of random anisotropy, no mailer how small, causes the 

breakup into domains, and therefore destroys any long-range order. 

L a r g e A n i s o t r o p y 

As D increases, the clusters shrink, until they reach the order of the lattice spac-

ing, in the In this limit, neighbouring spins influence only the orien-

tation of a spin along its local axis (Hamiltonian 2.57). This is the (uncorrelated) 

speromagnet using Coey^s terminology [27]. 

Using a simple extension to the ideas of Chudnovsky a/., we can calculate 

the order of magnitude of the deviation of the spins from full alignment with the 

local anisotropy axes in this large anisotropy regime. Using the large D form of 

the HPZ Hamiltonian (2.55), each spin is pulled a small angle from the local 

eaay direction releasing exchange energy proportional to but at a cost of 
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an increase in the anisotropy energy, proportional to D cos^ Minimising the 

change in energy, we And 

- J / D , (2.76) 

(2.77) 

2.8.4 T h e r m a l D e p i n n i n g 

The energy minimnm given by equation 2.75 is not very deep. A simple argument 

resulting from a collaboration with Prof. Wayne Saslow suggests that at temper-

atures of the order of Emin, the thermal energy may allow the system to lift itself 

out of the low temperature Imry-Ma state, into some other regime. That is, the 

system is no longer 'pinned' by the configuration of the anisotropy axes above a 

temperature 

Tdepinning ^ ^ ( j j ' (278) 

2.8.5 Loca l E n e r g y F l u c t u a t u o n s 

While the spins within an Imry-Ma domain lie on average in the direction of the 

collective easy axis, there are fluctuations. The contribution to the energy can be 

calculated using an analysis similar to that used for spin-waves (section 2.2.2). 

Writing the Hamiltonian in a continuous form, 

= y [ - D c o s ^ ( g - ( ^ ) - J ( V g ) ' 

— = JV"g + D s i n 2 ( g - ( ^ ) 

= 0 

Taking Fourier transforms, 

—&^̂ t + ^(sin2(^)^ = 0 

D(sin 2< )̂̂  
" ^ ' 

Summing the contributions to the energy over the available modes, 

1 
^ ^ (sin 2<̂ )̂  (sin 2< )̂_^ 
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D" log ^ - D" log ^ = 2 
a 1/ 

= 3 

2.8.6 Smal l F ie ld 

If we now add a small external Held ^ J aa a perturbat ion, we can consider 

the extent to which the spins will move, and hence calculate the magnetic sus-

ceptibility. We neglect the exchange interaction, since neighbouring spins will 

usually be moved by similar amounts in the same direction, and we assume that 

the cluster size ^ is unchanged. In moving through a small angle <̂ 0, towards the 

held, the energy released is EReid ^ Again, we must minimise E to And 

the position of the compromise: 

= (̂ Eanis + <̂ r̂iclH (2.79) 

- (2.80) 

= 0 ( 2 . 8 1 ) 

H 
: — where (2.82) 

Hr, 

77c = D I , with magnetic susceptibility (2.83) 

% = -j j j = ~ . (2.84) 

This argument therefore predicts a magnetic susceptibility at low tem-

peratures. 

2.8.7 L a r g e F ie ld 

In this regime, the held can no longer be regarded as a small perturbative effect 

for fields larger thaii tlie defined Ijy equation 2.83. We can, however, refor-

mulate the analysis so that it is the that is the perturbation, causing 

small deviations from perfect alignment in the field direction. As before, the 

largest gain in energy is made by limiting the size of the domains, but at a cost 

in exchange energy — we suppose typical small deviations of ^ from the field 

direction, correlated in domains of size î . This picture has been dubbed the /er-

MZK.s in the literature [24]. The field now defines which 
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direction along the collective easy axes the clusters in section 2.8.3 lie, and the 

spins change direction smoothly through the sample. 

The exchange energy is unchanged (but we must now explicitly consider the 

change in spin direction): 

^exch - (2.85) 

while the energy cost per spin for deviation from the held is given by 

Ewd = ;^(1 - cos g) % (2.86) 

The domains cannot move all the way to the local average easy axes, but lose 

an energy proportional to ^ in tipping an amount ^ towards them : 

&nis = (2.87) 

In the original work [24], it was asserted that, at the minimum energy, the 

three terms would be of similar magnitude, giving 

f ~ ( i ) \ (2.88) 
H 

II 
I) ~ D { ~ ] , (2.89) 

Sm ~ D' 1 - 1 . (2.90) 

However, formally minimising the total energy with respect to both ^ and 

gives a different result. Minimising the total energy with respect to 

= 0 

, = 
2 ( / / + .y(-^) 

and substituting into the expression for E, 

2 ( / f + 

E = 
4 ( j + ; f e ) ' 

which is always minimised by > oo for (/ = 2 and r/ = 3. 
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2.8.8 Very L a r g e F ie ld 

As before (section 2.8.3), ^ cannot shrink below one lat t ice spacing in equa-

tion 2.88 — for very large Aelcls > J , we ignore the exchange term, and 

minimise the field and anisotropy terms. With no exchange to consider, these 

results are independent of dimensionality cf. 

D 

with a field dependence different from equation 2.90, which may be detectable. 

9 (2.91) 

(2.92) 

2.8.9 T h e r m a l E f f ec t s a t H igh F ie lds 

A further extension to the ideas of Chudnovsky ef a/, is to consider also deviations 

from saturation in a large field due to a non-zero temperature, rather than the 

randomness, so that we minimise the free energy F = E — T'5' rather than E. If 

thermal excitations allow a spin to deviate from saturation by angle up to the 

volume of phase space available is proportional to and the entropy 5' log^(). 

Neglecting the exchange and anisotropy terms in the very large field limit, we 

minimise 

with respect to (̂ 0, and find that 

T 

(2.93) 

(2.94) 

This effect will dominate equation 2.92 when T > Conversely, because of 

the differing field dependencies, equation 2.94 will always dominate for sufBciently 

large field 

2.8.10 S u m m a r y 

In two dimensions, a correlated spin glass (D < J ) has four regimes: 

Region Lower field Upper field description 
limit limit 

a - - D - i C.S.G. 
b D'' J //-1/2 F.W.A. 
c J 1 very large field 
d - I entropy-induced 
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and there are two regimes with \ separated by a regime (c) with 

In three dimensions, the table reads 

Region Lower field Upper field e description 
limit limit 

a - D'' - C.S.G. 

b D ' J F.W.A. 
c J 1 very large field 
d - 1 entropy-induced 

Further, as we change the relative sizes of the parameters D, J and T, we 

expect the crossovers to change: 

# for a speromagnet, (D > J ) , region b vanishes. 

In two dimensions, # at high temperature (T > region r vanishes, 

there is nothing to separate the two r^ imes . 

# at very high temperature (T > J ) , region b vanishes, 

2.9 Topological Defects (Vortices) 

It is useful to consider explicitly the effect of the random anisotropy on the 

vortices which are significant in the (pure) system (section 2.2). For a suf-

ficiently large system, there is a significant chance of natural 'vortex pinning 

centres^ where a vortex is trapped in a potential well, as illustrated on figure 2.8. 

In order for the vortex centre to move one lattice spacing, at least one spin near 

the vortex centre must move 90° from a good alignment with the local axis to a 

perpendicular configuration, as shown. (The spins that are not adjacent to the 

vortex centre do not suffer such a violent change in angle, and so do not play a 

significant role.) 

We might suppose that at a low temperature, witli less thermal energy than 

the depth of the pinning centres, vortices can become trapped. As the tempera-

ture is increased, they may become free to move around the system and mutually 

annihilate as usual. 
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Figure 2.8: Illustration of the energy required for a vortex to escape from a 
pinning centre. The grey lines depict the local anisotropy axis at each site, and 
the vicinity of the vortex is highlighted. The only significant change between 
the two conAgurations is that the vortex centre has moved, and two spins in the 
centre of the highlighted region have turned through 90°. While on the left, all 
the spins around the vortex are almost aligned with the local anisotropy axes, 
the two central spins are badly misaligned with the anisotropy axes, bringing an 
energy cost proportional to the anisotropy strength D. 
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2.10 Other Theoretical Analyses 

Early work [8, 28-30] used mean field theory (section 2.3) to study the HPZ 

Hamiltonian. The original work by HPZ [8] found the system to be ferromagnetic, 

but with reduced spontaneous magnetisation at zero tempera ture and a reduced 

transition temperature. Callen, Liu and Cullen [29], starting from a fully aligned 

state, calculate the extent to which each spin will be pulled towards the local 

anisotropy axis. This gives the remanent magnetisation af te r removal of a large 

magnetic field, but the authors assert that in the absence of any aligning field, 

the local magnetisation will rotate smoothly through the sample, in domains 

whose size depends on D, much like the Chudnovsky-Imry-Ma picture. Indeed, 

the calculations reproduce the results presented in section 2.8 where the limits 

^ > 1 have been reached. 

Harris and Zobin [28] considered also the transverse components of the mag-

netisation which mean field theory neglects (section 2.3.2), and supported the 

view that the system is ferromagnetic for small anisotropy strengths, but pre-

dicted a spin glass state for large D; they conRrmed these results by Monte Carlo 

simulation. Patterson, Gruzalski and Sellmyer [30] perform a numerical calcu-

lation of local mean-field equations, and report that the spin-glass phase found 

by [28] is metastable, and that the aligned state iias lower energy. They show 

that to first order in D, the transition to the ])aramagnetic phage is unaffected 

by the anisotropy. 

Derrida and Vannimenus [31] have studied the model in the infinite range limit 

(which is equivalent to mean field theory) and find that the low temperature state 

is ferromagnetic, and that the transition to the paramagnetic state is unaffected 

by D for all anisotropy strengths. 

The replica trick (section 2.-5) has been used by Chen and Lubensky [32] to 

show that a spin glass state is possible at low temperatures below some T" oc 

D. Several other authors have used the replica trick to transform the problem 

into a translationally invariant one, and hence apply renormalisation techniques 

(section 2.4). 

Dotsenko and Feigelman [33] explicitly consider the role of vortices in a two-

dimensional X y model with p-fold anisotropy of random magnitude; for p > 2, 

the system cannot be cooled below a temperature iT* = 47r/p, so that the system 

at lower temperatures show the same correlation properties as at 7" = That 
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is, the system is renormalised back to T", and shows no spin-glass state at lower 

temperatures. The system is pure-Xy'-like for intermediate temperatures T ' < 

r < TitT- For the p = 2 case in wliich we are interested, T" > T^T, so that no 

phase transition is expected for this case. These authors have also studied the 

three-dimensional HPZ model with two spin components in [34] and find that it 

. does have a low-temperature spin-glass state. 

Cardy and Ostlund [35] use renormalisation techniques to study the two-

dimensional X y model with p-fold anisotropy. In a similar way to [33], they 

find that the Kosteritz-Thouless pha.se survives the addition of the anisotropy 

provided that p > 3, and that below a temperature T* = 47r/p^ the system is 

glassy. Le Doussal and Giamarchi [20] point out that the fixed point found in [35] 

at low temperatures is unstable against replica symmetry breaking (section 2.5), 

and predict that the spin correlations go like T'log(r) above T* and T"'log(r) for 

T < T*, in a similar way to the prediction of [33]. 

Bray and Moore [36] study the p = 2 system in two dimensions in the limit 

of infinite anisotropy, finding an Ising-like transition at zero temperature to a 

non-ferromagnetic ground state. Rvidcnre For gla.ssy behaviour is presented. 

Aharony and Pytte [37] calculate tlie magnctir equation of state to leading 

order in D, and find that the low-temperature state has no spontaneous magneti-

sation but has infinite magnetic susceptibility in zero held, and the spin correla-

tions are found to decay as a power law with distance. The authors later consider 

the discontinuous change From a spontaneous magnetisation M > 0 for D = 0 to 

a nonmagnetic state for D > 0 [38]. They conclude that the susceptibility prob-

ably agrees with equation 2.84, but do not rule out the possibility of an infinite 

susceptibility. This latter analysis does not cover the two-dimensional model 

which does not have a spontaneous magnetisation even for D = 0. 

2.11 Previous Computa t ional Resu l t s 

Early work by Chi and Alben [39] studying the HPZ model on a random lattice 

model found a magnetic ground state, despite the pre.sence of the randomness. 

This result was later discounted as a Tinile-si/e eTfert by later molecular-dynamics 

simulations [40]; both studies used rather small systems with 10^ spins. 

Similarly, Harris and Sung [41] initially found that a ferromagnetic state had 
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lowest energy, whatever the strength of the random anisotropy. Later work by 

Harris [42] found that spins could be Hipped to give a lower energy, and that the 

energy barriers between the two states were approximately linear in anisotropy 

strength D. These results are based on small systems of 512 spins. 

Jayaprakash and Kirkpatrick [43] performed extensive simulations in the Ising 

limit, for both two-component spins in two spatial dimensions and three-comp-

onent spins in three spatial dimensions. They found a low temperature phase 

with short-range ferromagnetic order, and a peak in specific heat, but no critical 

behaviour, in the crossover to high temperature. They also found hysteretic 

behaviour in magnetic fields, and remanent magnetisation which is a signature of 

magnetic behaviour, together with a coercive field which decreases with increasing 

temperature. 

Chakrabarti [44] studied this Ising limit further, measuring the spin glass 

order parameter, and sturlying the rITrrtH of finite sixe. conrlnding that the low 

temperature phase is glassy. This work has been criticised [43], since the ground 

state did not ap^aear to have been correctly reached, so that the results have been 

cast into doubt due to the simple single-spin update algorithm used. 

A great deal of work has been done by Fisch [45-48], again in the Ising 

limit, and predominantly at zero temperature. .A study of the ground state 

in the Ising limit in three dimensions is presented in [45]. Finite size scaling 

of the magnetisation for systems up to 16^ shows power-law decay of the spin 

correlations for two-component spins, suggesting infinite magnetic susceptibility, 

in agreement with the predictions of [37]. Exponential decay is indicated for 

the spin correlations of three-component spins, giving a finite susceptibility. This 

work is extended in [46] to explore the ground states of systems with higher orders 

of anisotropy. The work was further extended to larger systems and non-zero 

temperatures in [47], though still in the infinite anisotropy strength limit. The 

ground state energies and magnetisations are ralrnlated, and spin correlation 

functions are found to obey a ' law. in agreement, with neutron-scattering 

experiments. A transition lo a paramagnetic phase is found around T / J = 1.91. 

This work is repeated for threefold anisotropy in [48]. 

Reed [49-51] has studied the X Y model with finite random anisotropy, though 

our results in chapters five and six indicate that he was unfor tunate in his choice 

of D = 1. A study of the system in six-fold anisotropy [49] finds an interme-

diate Kosterlitz-Thouless regime, and a low temperature regime in which the 
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parameters are renormalised back to T" as predicted by [20,33]. A comparison 

of p-fold anisotropy for p = 2 ,3 ,4 ,5 ,6 [50] is made for systems up to 16^. The 

p = 2 system is found to be non-quasiferromagnetic, below a transition temper-

ature of T / J = 1.1. Finite-size scaling is used on the three-dimensional 

model with two- and three-fold anisotropy [51], and the system is found to be 

non-quasiferromagnetic below 7^ = 2.2. 

Finally, Dieny and Barbara [52] have studied the two dimensional X K model 

with weak two-fold anisotropy at zero temperature but in non-zero magnetic 

fields, to find first magnetisation curves and hysteresis loops. They conclude 

that the effects of vortices are important. Saslow and Koon [53] have performed 

similar calculations on three-component spins in three dimensions. 
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Chapter 3 

Monte Carlo Simulation 

As described in section 1.2.2, even a small number of interactions between the 

variables of a system can render it intractable to theory. Although it is often 

possible to make simplifications without losing the essential physics, numerical 

simulation is one way of calculating the properties of problems of arbitrary com-

plexity. The problem, however, is that the large number of degrees of freedom 

available to typical systems results in an enor-mowg phase space over which to 

sum. 

Consider, for example, a simple 8 by 8 Ising system (section 2.1), with 64 

spins and therefore a. total of 2"̂ ' % 10'^ possililc configurations. Even if we could 

evaluate the energy of 10^^ configurations per srroud, Hir calculation would take 

seven months — however, at the time of writing, not even the fastest computer 

in the world can achieve 'tera-flop' performance (10^^ /Zoating point operations 

per second), so we couldn't even simply accumulate the results that fast! 

The situation gets even worse when we wish to investigate a system with 

rather than discrete, variables. We must discretise the parameters, 

but of course the total number of configurations grows rapidly with the number 

of quanta we consider — if just sixteen positions arc made available to each spin 

in an model (section 2.2), only a 4 by 4 system can be computed in the same 

seven months. 
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3.1 I l lustrat ion I - the Ising Mode l 

Let us reconsider the one-dimensional Ising model: reviewing the exact solution 

in terms of the 'kinks' introduced in section 2.1, we can sort the configurations 

into order of increasing energy, and hence find an expression for the density of 

states. 

Suppose there are + 1 spins in the chain, and therefore bonds at which 

we can put a kink. (We ignore here the degeneracy in the direction of the first 

spin, but could have included it formally by allowing a kink before the first spin, 

giving # + 1 possible positions for the kinks.) There is one configuration (the 

ground state) with no kinks, and places where we can put the first kink, so 

that there are configurations with energy 2J . There are now A'̂  — 1 bonds 

where we can activate a second kink, giving A'̂ (A^ — 1) — except that we have 

counted each configuration twice, as the kinks are indistinguishable. In general, 

there are g{k) configurations with k kinks, where 

= AA(Ar- l ) (AA_2) . . . (AA_;c + l ) 

A : (&-1 ) (A; -2 ) . . . ( 2 ) (1 ) 
N\ 

(Ar-&)!A;! 

O -

(3.2) 

(3.3) 

The partition function can now be written 

^N(/)) = E # ) e - ' ^ ' - ' (3.4) 
k=0 

where Table 3.1 shows the individual contributions to the partition func-

tion for a system with — 32 at a reduced temperature j of 0.25. It is clear that 

the partition function which is accumulated in the last column is correct to 6 sig-

nificant digits when terms with only 0, 1 or 2 kinks are considered. This amounts 

to only 529 of the 2^^ (four billion) total configurations. At a temperature of 

0.5 J , we need terms up to 7 kinks, or 0.1% of the total configurations. 

In general, while g'(A;) grows very rapidly with /c, the exponential Boltzmann 

factor decays even faster and the product shows a narrow maximum. 

For configurations near the ground state, the reluctance of a system to take on a 

state with higher energy is compensated by the large number of states available 
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k 

i=0 
g'(A;)ea;p(—2A;/3J) 

k 

i=0 

0 1 1 1 1.000000 

1 32 33 0.0107348 1.010735 

2 496 529 5.58174e-05 1.010791 

3 4960 5489 1.87247e-07 1.010791 

4 35960 41449 4.55403e-10 1.010791 

5 201376 242825 8.55517e-13 1.010791 

6 906192 1149017 1.29147e-15 1.010791 

7 3365856 4514873 1.60918e-18 1.010791 

8 10518300 15033173 1.68694e-21 1.010791 

9 28048800 43081973 1.50908e-24 1.010791 

10 64512240 107594213 1.16435e-27 1.010791 

11 129024480 236618693 7.81192e-31 1.010791 

12 225792840 462411533 4.58606e-34 1.010791 

13 347373600 809785133 2.36685e-37 1.010791 

14 471435600 1281220733 1.07756e-40 1.010791 

15 565722720 1846943453 4.33776e-44 1.010791 

16 601080390 2448023843 1.5461e-47 1.010791 

17 565722720 3013746563 4.8S151e-51 1.010791 

18 471435600 3485182163 1.36464e-54 1.010791 

19 347373600 3832555763 3.37315e-58 1.010791 

20 225792840 4058348603 7.35518e-62 1.010791 

21 129024480 4187373083 1.40994e-65 1.010791 

22 64512240 4251885323 2.3649e-69 1.010791 

23 28048800 4279934123 3.44929e-73 1.010791 

24 10518300 4290452423 4.33915e-77 1.010791 

25 3365856 4293818279 4.658e-81 1.010791 

26 906192 4294724471 4.20696e-85 1.010791 

27 201376 4294925847 3.13617e-89 1.010791 

28 35960 4294961807 1.87869e-93 1.010791 

29 4960 4294966767 8.69284e-98 1.010791 

30 496 4294967263 2.91612e-102 1.010791 

31 32 4294967295 6.31129e-107 1.010791 

32 1 4294967296 6.61626e-112 1.010791 

Table 3.1: Contributions to Ising partition function by states with different num-
bers of 'kinks' A;, at temperature T = 0.25J. 
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with that energy, but if the energy is too high, the Boltzmann factor wins. The 

log of the number of states is the entropy of the system, and this is why it is the 

free energy F = ^ that is usually minimised in statistical mechanics: as 

the temperature is increased, the entropy 5" has a more important effect, via the 

density of states 

Unfortunately, however, we do not usually know the form of ^ in advance, 

and thus we do not know from the energy of a conhguration alone, whether it 

contributes significantly to the partition function sum. We must just count 1 

each time we meet a configuration with a given energy. But as has been seen, 

most of the configurations make negligible contribution. We need some way of 

selecting the important configurations if we are to evaluate the partition function 

with a sensible amount of computer power and in a sensible time. 

3.2 Review of numerical in tegrat ion 

The simplest numerical integration technique is to sample the function at regular 

intervals, i.e. explicitly treating integration as a summation. Graphically, we find 

the area by summing lots of thin rectangular strips. 

/ + (3.5) 

where is The smaller we make the more accurate is the approximation, 

at a cost of more time. (This is true up to a limit — when is very small, 

rounding errors can lead to a loss of accuracy.) There are enhancements to this 

technique, which amount to considering more points at a t ime, and interpolating 

the function between the points. 

Another way of implementing the same algorithm is to use random numbers 

to choose the points at which to sample: 

a — 6 " 
/ /(a;)(Zj;% I]/(a:,) (3.6) 

^ ,=0 

with 3,' chosen uniformly on [o,6]. This has the advantage that a result is im-

mediately available after only a few points have sampled, and sampling need be 

continued only until it is deemed that sufficient accuracy has been established 

(generally by monitoring the effect of additional measurements). 
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3.2.1 I m p o r t a n c e S a m p l i n g 

When the function is sharply peaked, however, it does not make sense to use a 

constant strip width — using narrow strips would waste too much time at the 

'uninteresting' parts of the function, but wide strips would give too little accuracy 

at the ' important ' parts of the function. Let us make the str ip width w a function 

of x: 

/ (3.7) 

where z, = a + E"=o = 6 - a. 

We now write our function as the product of two others, for generality: 

y ^ (3.8) 

where A(z) is a smooth 'envelope', following roughly the shape of / , and ^(a;) 

contains the fine details. We want to make our strip width w(x) large when h is 

small, and narrow when A is large: w(z) = for example, might be suitable: 

~ ^ " (3.10) 

This can be interpreted another way: our rectangles have uniform width 

and height ^(z) , but where tu is small, we count more of them in fAe of 

each point; that is, the of samples is large when lu is small. Thus, our 

final result is 

/ y(z)(/z%^^ ^^gr(a ; , ) , since n = ^ w ( z , ) (3.11) 
" ,=0 

When we now move to the alternative algorithm of choosing the samples 

randomly, the form of equation 3.11 is unchanged if we draw n samples on [o,6] 

with a probability distribution It is sensible to choose a function A(a;) that 

allows easy random number generation, such as a gaussian, or we will waste as 

much time generating the numbers as we hoped to save in the first place! 
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3.2.2 A p p l i c a t i o n t o S t a t i s t i c a l M e c h a n i c s 

In statistical mechanics, we are interested in averaging physical quantities over 

the configurations {a:,}: 

% = ^ e - m W ) (3_i2) 

If we choose A({a;,}) = in equation 3.11, then 

3 « E ' 4 ( k } ) / E : (3.13) 

= (3-11) 

Thus, provided we can draw configurations at random with a Boltzmann prob-

ability distribution we can find thermal averages of as many quantities 

as we like, using a simple average over the generated configurations. 

3.3 Metropolis Algori thm 

In most of the following, we use unnormalised probabilities such that the ratio 

of two numbers gives a relative probability, but the area under the distribution 

is not explicitly chosen to be 1. 

One way of generating random numbers with an arbitrary distribution p{x) is 

to (completely) 'enclose' p(z) under another distribution g(z) which can be gener-

ated (such as a gaussian, or a top-hat function which is constant everywhere that 

p(a;) is non-zero), in a similar way to the rewriting of a function as the product 

of two others in section 3.2.1. Then generate z, from the (/(a;) distribution, and 

accept a;, as a number drawn from p(a') with probability p(a;,)/g(a;,) — i.e. draw 

another random number z uniformly on [0,1], and accept z, if z < p(a;,)/g(z,). 

Repeat until a number is accepted. 

Conceptually, this can be thought of as throwing darts at a graph of the 

distribution. If the dart lands under the curve, we accept the x-coordinate as 

a random number, otherwise we rethrow. [The piece of paper represents the 

distribution g(j;). If we miss the piece of paper, then we have failed to draw on 

g(a:), which is a smaller distribution than the whole room which encloses i t . . . ] 

Clearly, the enclosing function should be chosen to pass as closely as possible over 

the real distribution, since any darts landing above the distribution are 'wasted'. 
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Figure 3.1: (Unnormalised) probability distribution for all possible configurations 
(unsorted) for 8-particle Ising system at T = J , shown on log scale to compress 
the range. 

When we apply this technique to real statistical mechanics systems, however, 

we cannot draw the configurations with anything other than a uniform distri-

bution, as we cannot sort the configurations into any sort of order of increasing 

probability (in general — if we could, we would not need to run a simulation 

in the first place!), and we cannot draw random configurations from anything 

other than a (reasonably) smooth distribution. (If we were to generate configu-

rations by beginning with random values for the phase variables, then imposing 

constraints as we find the energy to be growing too large, a strong bias would be 

introduced into the phase space sampled.) 

Consider, for example, the one dimensional Ising system with N spins. With-

out any prior knowledge, we might use the binary representation of a random 

integer drawn from [0,2^ — 1] to set the TV spins, but for # = 8, for example, 

this gives a very bumpy probability distribution, even at high temperature, as 

shown in figure 3.1 for temperature T = J . We can only draw states % for the 

system at random, uniformly from [0,2'"^ — 1], and accept each one with a prob-

ability where is the number of kinks in state %. Clearly this is very 

inefficient; even at this high temperature, most darts thrown at the graph would 

not lie under the required distribution. 

Looking at this from a different point of view, all we are really doing is simple 
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sampling, but instead of counting e for each one, we count 1 with probability 

and we have gained nothing. 

3.3.1 M a r k o v C h a i n s 

Metropolis ef aZ. [54] hit upon the idea of generating the configurations not from 

scratch, but by building new configurations by slight modifications to previous 

ones, since the energy cannot change much if only small changes are made. 

In the Ising model, for example, successive configurations might be different by 

the Hip of a single spin. Provided we don't do something drastic with our choice 

of transformation, this will automatically take into account the density of states 

term in the partition function sum, since if there are many configurations with a 

given energy, the system will repeatedly try to get into such a state. For example, 

from a state with one kink, there are TV — 1 nearby states with two kinks, but only 

one adjacent state with no kinks, so the system will make many more at tempts 

to get to a state with higher energy, of which a proportion determined by the 

Boltzmann factor will be accepted. If a suitable operator M can be defined 

such that the configurations generated by its application have the Boltzmann 

distribution, then M can be applied over and over again, to generate a chain 

of correctly distributed configurations — Tif is a MnrA;*??; operator, generating a 

Markov chain of states. 

Borrowing notation from quantum mechanics, we might sort all the possible 

configurations into order Eo < < E2 < - and write a vector containing the 

probabilities that the system is in a given configuration. A conceptually easier 

way of looking at this is to suppose we have a very large number of different 

configurations (either the time progression of one system, or the instantaneous 

states of a large ensemble of systems), and the vector counts the nwmAer of 

systems in a given state. We can track the effect of on the system by operating 

it on the probability vector: 

P'2 

\ '• I 

M Vi 
\ ! / 

M is now a matrix, with the transition probability from configuration j to 

configuration %. 

We can now impose our constraints that configurations are drawn with Boltz-
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majin distribution — p,, the probability that the system is in configuration % with 

energy must be (proportional to) cind the column of Boltzmann factors 

must be an eigenvector of the operator M, so that the result of operating M on 

a correct Boltzmann distribution preserves the probabilities — this requires that 

the number of systems leaving state i is balanced by the total number entering 

state z, so that the number of systems in state z is unchanged: 

^ ^ M.jPj. (3.15) 
J J 

Metropolis et al. go further, applying the principle of detailed balance., requir-

ing that the individual terms in the sum balance; the number of systems making 

the transition from configuration i to j is exactly equal to the number making the 

inverse transition. Of the configurations in state a fraction are moving 

to state and a fraction of the p. in state z are moving to j . Constraining 

these to be equal: 

(3.16) 

(3.17) 

where is the energy difference between configurations z and j . One common 

way of achieving this is 

1 E, < E, 

M,, - { , (3.18) 

J 

where the r term is normally left out, such that a trial step to a state with lower 

energy is accepted, but can be used to reduce this probability, to allow 

finer control over the system dynamics. 

It is also necessary to show that the system tends towards the Boltzmann 

distribution no matter how it is started. Suppose that , at any point along the 

chain of configurations, configuration ( has a higher probability than it should. At 

the next iteration, there will be more probability Bowing out of z than is flowing 

into it, since the outward flow is proportional to the current level. Thus, even if 

we start our chain with all parameters in a certain state (all spins up, say), so that 

the probability is 1 for that configuration and 0 for all others, or in a random 

configuration (all probabilities equal), we will tend towards equilibrium as we 

iterate our Markov process — of course, it could still take an infinite number of 
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iterations to get there! In fact, it is found empirically t h a t the natural timescale 

T for relaxation of fluctuations grows as some power z of the system correlation 

length — near a phase transition, this results in a relaxation time 

T - r (3.19) 

for finite systems (section 3.6), and simulations exhibit g/owmg' (fown. 

In practice, we usually discard a large number of configurations, to allow 

the system to equilibrate, ensuring that we are not too far from the correct 

Boltzmann distribution of state population probabilities. Also, if we are running 

several simulations for different values of some thermodynamic parameter, such 

as temperature or magnetic field, we might start each subsequent simulation with 

the final configuration of the previous run, since that might be expected to be 

closer to the correct distribution than we could expect to achieve starting from 

either a random or an a p n o n configuration. Care must be taken, however, to 

avoid any hysteretic behaviour at the critical temperature, which is really just a 

symptom of insufficient equilibration. 

Because, by definition, subsequent configurations are very similar, differing 

in only one or two of the phase space coordinates, it is customary to include 

not every configuration in our thermal averages, but to miss out a number of 

states between measurements, particularly if a measurement is relatively time-

consuming; typically, we perform one, or several, Monte Carlo updates for every 

coordinate in phase space, such as each spin or particle position — we might 

include one configuration in the average every 5 MCS (Monte Carlo steps per 

spin). 

3.4 I l lustrat ion II 

For definiteness, let us consider the simple system of a particle moving in two 

dimensions with an energy proportional to the displacement r from the origin. 

We represent the position r of the particle using cartesian coordinates T and t/. 

We might define our Markov operation with the following algorithm: 

i: Choose trial step Az and A?/ to a 'nearby' position r ' 

ii: Calculate the energy change A E to move from r to r ' 
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iii: Calculate the probability of change p = 

iv: Draw a random number z on [0,1) 

v: If z < p then accept move : r —> r ' 

(If the energy cost is negative, then our 'probability' p is greater than one — 

we could explicitly limit it to one, but the implementation of an acceptance with 

a given probability will always succeed for p > 1.) 

It is important to emphasise that if we fail to accept a new state, we must 

include the unchanged state in our averages — if we failed to do this in a sim-

ple two-state system, for example, then the averages would a/wav/g show equal 

probabilities for the two states, regardless of the energy levels — it would be the 

time spent in the lower energy state before changing to the excited state that 

contains the Boltzmann distribution, as the algorithm presented would a/wayg 

immediately step down (unless T < 1 in equation 3.18). 

There are two parts making up — the probability that a system in state 

* will a t tempt to move to state j , and the probability tha t such an at tempt is 

successful (equation 3.18). Generally, all the nearby states are made equally likely 

to be chosen, but care must be taken to avoid bias. 

For this system, polar coordinates would have seemed a more natural choice — 

indeed, only one parameter would then be required to describe the system state. 

However, the density of states is proportional to r in polar coordinates, making 

it more difhcult to sample space without biasing towards positions closer to the 

origin. It is possible to compensate for this by including an extra factor ^(r ')/g'(r) 

in the Boltzmann update probability, for a trial step f rom r to r ' . In this way, 

at tempts to move towards smaller values of r are discouraged, to compensate for 

there not being more at tempts to move to larger values of r as the 

density of states requires. With cartesian coordinates, however, the problem is 

simplified as the density of states ^(r) is uniform. 

Similar care is required in simulations of magnetic systems with three-compon-

ent spins, represented using spherical polar coordinates. 

The choice of a trial step depends, of course, on the details of the system 

being simulated. In an Ising system, for example, a trial step might be the flip 

of a single spin, or it might be the of two spin states — the latter 

conserves the magnetisation; it can be generalised in a continuous system to 
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moving two coordinates, one in the opposite direction f rom the other, in order 

to meet a constraint of keeping some physical quantity fixed. In a Heisenberg 

(continuous) spin system (Hamiltonian 1.14), a trial step might be a small change 

in the direction of one spin, while for moving particles, as in this example system, 

we make a small displacement of each particle each step. 

In a system with many state variables, we can either make trial changes 

to each coordinate in some predetermined order (for example, we might proceed 

'typewriter fashion' through a lattice, from left to right, top to bottom), or choose 

both which coordinate to change and its new value at random. 

The choice of what makes a state 'nearby' is usually dynamic — if we try to 

jump to states with a very large energy cost, these a t tempts are usually rejected, 

and although we will calculate the correct equilibrium quantities, it may take a 

long time. Similarly, if we make only very small jumps, they will nearly always 

be accepted, but it will take a long time to move any appreciable distance in 

phase space, and again, it may take a long time to reach equilibrium. A typical 

heuristic approach is to choose a step size such that the number of accepted trials 

at roughly half — this may be done dynamically, using feedback to manipulate 

the step size aa the simulation proceeds. 

10^ update trials were performed on the example system, with different (fixed) 

step sizes. The table in figure 3.2(a) summarises the results, showing the step size 

(the side of the square centred at r from which r ' is chosen uniformly at random), 

the number of accepted moves, the sum of the squares of the deviations from 

the expected probability distribution rexp(—r) after histogramming the values 

of r in bins of width 0.1, and a measure of how anisotropic the distribution 

of sampled points is. 

Scatter graphs for the sampled phase space points are shown in figure 3.2 for 

the step sizes indicated in the table — it can be seen tha t for very small steps, 

there are many points, but they are not statistically independent, and they do 

not cover phase space isotropically. For very large steps, the points are certainly 

statistically independent, but there are not enough of them to give good statistics. 

For a 'reasonable' step size, the results appear to be correct. 
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step accept Fig 
0.1 9879 0.95 1.80 
0.3 9656 0.10 0.36 b 
0.5 9423 0.04 0.11 
5.0 5099 0.03 0.04 c 
10 2744 0.08 0.09 
15 1531 0.18 0.18 
25 600 0.56 0.42 d 

(a) Table of step sizes (b) s t ep=0 .3 

10 

-10 

-10 10 

10 

-10 

-10 10 

(c) 8tep=5 (d) step=25 

Figure 3.2: Results (a) and scatter graphs (b,c,d) for the simple system described 
in the text. For a small step size (b), the system does not progress far through 
phage space, and the results are anisotropic. For large step size (d), samples are 
isotropic, but there are too few events for good statistics. A reasonable step size 
(c) such that roughly half the trials are accepted gives good results. 
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3.5 W h a t We Can Measure 

Quantities such as the energy, magnetisation, pressure and density can be cal-

culated as a simple average of the Boltzmann-weighted s ta tes generated by the 

Metropolis algorithm, by equation 3.11. It must be noted, however, that a simple 

(vector) average of the magnetisation of a spin system with continuous symmetry 

is not a useful commodity to record; the instantaneous magnetisation can undergo 

global rotations with no energy cost, and in a sufficiently long simulation, the 

magnetisation will average to zero. It is customary to record the average of the 

magnitude of the magnetisation, or the root mean square (RMS) magnetisation. 

3.5.1 C o r r e l a t i o n F u n c t i o n s 

Both spatial and temporal correlation functions can be calculated. In the litera-

ture, spatial correlations are generally recorded using the form 

g'(r) = (m(r ' -j- r )m(r ' ) ) — (m(r ' + r ) ) (m( r ) ) (3.20) 

where m is the local order parameter and the average is over all r ' . 

Here the second term removes any ^accidental' correlation — for example, in 

a magnetic system in a uniform external held, the spins will all be aligned with 

the external held, and hence with each other, but we might regard this corre-

lation as accidental, and ^(r) above will reflect only correlations (where 

fluctuations in one spin are rejected in the other). In a ferromagnet in zero 

field, the correlation function decays rapidly at high temperature , but the cor-

relation length (that distance over which gf(r) decays significantly) grows as the 

temperature is lowered (fluctuations increase, but the second term remains zero 

above the critical temperature). The correlation length diverges at the transition 

(p(r) ^ then decreases aa the second term in equation 3.20 increases 

below the critical temperature — here, equation 3.20 records the correlations in 

the response to fluctuations. (The X y model in two dimensions is critical at all 

temperatures below 7AT; ^hat ^(r) 

If it is the of the long-range order in zero external field that is under 

investigation (as in this work), then it is more useful to record the 'raw' correlation 

function 

^(r) = (m(r ' 4- r )m(r ' ) ) . (3.21) 
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Time-separated measurements 

r(f) = ^m(T)m(T + — 7̂72(1- + (3.22) 

are used in the study of spin glasses (section 2.6) or other dynamic systems to 

measure decay times. Here, the bar denotes a spatial average, while the angled 

brackets denote a thermal average, over different instantaneous configurations. If 

abundant storage is available, the combined measurement 

^(r, () = ^m(r' + r, T + ^)m(r', r)^ — ^m(r' + r, r + ^)m(r\ r)^ (3.23) 

might be made. 

Because these calculations involve comparing each particle with every other 

particle, the calculation costs can become excessive, and such 'expensive' mea-

surements are generally made less frequently than simple ones requiring nearest-

neighbour comparisons only — one way of reducing the cost of the spatial corre-

lation calculation is by taking advantage of f o u n e r Trons/ormg to map the 

expression into a product in Fourier space, requiring only a time proportional to 

A^logA'^, rather than the required for a direct calculation. If there is abun-

dant on-line storage available, configurations can be stored for later analysis, on 

different hardware such as a vector processor, which is less suited for the Monte 

Carlo work in general. 

3.5.2 F l u c t u a t i o n - d i s s i p a t i o n 

The itAeovem can be used to calculate the susceptibilites 

of the system's state, such as magnetic susceptibility % or specific heat C: 

Z - ^exp(-/)[/J (3.24) 

= -^E^.Gxp(-/)[/,) (3.26) 

= - F (3.27) 

_ w z 1 / a z 2 
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Similarly, 

= (3.30) 

C = { { " ' ) - ( " ? ) • (3.31) 

X = ^ ( ( M ' ) - {Mf) . (3.32) 

S e l f - a v e r a g i n g Q u a n t i t i e s 

Measurements on quantities such as the internal energy become very accurate 

in the thermodynamic limit — fluctuations are of the order \/7V, which become 

insignihcant for large A .̂ However, simulating larger systems necessarily requires 

more computing effort — the same total computer t ime can produce fewer statis-

tically independent measurements. Quantities such aa energy, magnetisation, etc. 

can be shown to be the errors in t h e measurements are 

not increased if the system size is increased at a cost of number of independent 

measurements. 

Measurements of specific heat and susceptibility by t h e fluctuation-dissipation 

theorem, however, are themselves based on Auctuations, and do not show self-

averaging. The errors in the measurements are not driven down simply by in-

creasing the system size, so that it is better to run longer simulations on smaller 

systems than to increase the system size. 

It is necessary to take into account critical slowing down near a phase transi-

tion (equation 3.19), since a larger system requires tha t more steps are required 

to ensure statistical independence of the measurements. 

3.6 Fini te size effects 

3.6.1 B o u n d a r y C o n d i t i o n s 

If we are interested in the bulk properties of some system of interacting parti-

cles, we must be aware of surface effects: in a 'real ' system, with typically 10^^ 

particles, surface effects are (usually) small, whereas a th ree dimensional cubic 

lattice of side (optimistically) 100 units has 6 x lO'' (6%) of the 10^ sites on 

the surface — the problem is even worse for the smaller systems which can at 
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present be handled in practice. One possibility is to accept this problem, with 

particles on the surface having fewer interactions that those in the bulk — this 

is termed /ree conffffzong. One way of reducing the effect is to discount 

the particles at the surface, but computing effort is then waated on what may be 

a large number of sites which contribute nothing to the results. This waste can 

be minimised by updating the surface sites less often, or even not at all (giving 

A more common criterion to apply is pen'otfzc con(f*^!ong, whereby 

the system is replicated, and 'tiles' an infinite space — whenever we move out 

of the system, we also move out of one of the duplicates back the original 

system, as indicated in figure 3.3. For a cubic lattice system, for example, this 

simply means that the opposite edges are connected to each other, or a one-

dimensional Ising system is closed to form a ring. It should be noted, however, 

that in the latter case, the choice of periodic boundary conditions precludes the 

presence of an odd number of 'kinks' (section 2.1.1), and hence interferes with the 

correct statistical results being obtained in this case. Similarly, periodic boundary 

conditions in a two-dimensional XY model (in which the spins are formally on 

the surface of a torus) prohibit the formation of a single vortex. In cases such as 

this, the system is said to be mcommensurafe with the lattice. 

An^i-periodic boundary conditions, where opposite edges interact with the 

'opposite' sense from that of the bulk (such as an antiferromagnetic interaction 

across the boundaries in a ferromagnet), are usually reserved for studying special 

cases: for example, the dynamics of an isolated vortex m a y be studied in an XY 

system with antiperiodic boundary conditions. 

3.6.2 Ef fec t of F i n i t e Size on Cr i t i c a l B e h a v i o u r 

In the following, periodic boundary conditions are assumed. Provided that all 

the length scales within the system are much smaller than the system size, the 

behaviour of ' rea l ' systems can reasonably be inferred from the simulation results. 

As the critical temperature is approached, however, and the correlation length 

grows to the system size, the Huctuations described in section 1.1.3 can cause crit-

ical behaviour above or below the critical temperature: at temperatures slightly 

below 21:, the Auctuations over a finite correlation length are nevertheless able 

to propagate through the entire system, so that the order parameter averages to 



» AM* KM* 

b 

s 

Figure 3.3: Peiiodic Boundary Conditions. Paiticle a makes a trial move to 6, 
outside the system, and is mapped back to 6'. Notice tha t in calculating the old 
energy (paiticle at position a), the image c' is used, and in calculating the energy 
at 6, the image c" is used instead of c. 
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Figure 3.4: Illustration of the eEect of Anite size on critical behaviour 

zero; above the critical temperature, the 'pockets' of order described previously 

fill the finite system, so that instantaneous measurements imply long range order 

(which changes direction with time, giving a zero for algebraic average of order 

parameter; the root-mean-square of the order parameter shows an anomalous 

non-zero value). 

A Unite size scaling theory [55] amounts to using the system size 2} aa a variable 

in section 2.4.1, giving an energy scaling equation of the form (equation 2.38) 

= (3.33) 

Using ^ ^ can be reinterpreted as a function of Z,/i^, so that the prob-

lem can be considered in light of the relative values of iv and 2} is irrelevant if 

it is much larger than but near the critical temperature, it becomes important. 

The problem is illustrated schematically in figure 3.4. Since ^ diverges as \t\~^ 

near ^ = 0, the range of temperatures over which the correlation length exceeds 

the system size can be calculated, as shown on the figure. We might expect any 

critical behaviour to be 'smeared out ' across this range of temperatures. 

In practice, the need not be the same above and below 

though scaling suggests that should be. This results in an additional shift of 

the centre of the range of critical temperature, again proportional to This 

gives rise to specific heat curves of the form of figure 3.5 as a signature of finite 

size eEects in Monte Carlo. By plotting the data on scaled x and y axes, the 
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Figure 3.5: Typical effect of Anite size on specific heat. 

curves can be superposed, as will be shown in section 6.1. 

3.7 Monte Carlo Techniques 

Various techniques have evolved to improve the efhciency and accuracy of Monte 

Carlo simulations. 

3.7.1 M u l t i s p i n a n d C l u s t e r U p d a t e s 

Because the correlation length diverges near a critical temperature , excitations 

appear in clusters of increasing size. (For example, the excitations in the Ising 

system discussed in section 2.1.1 form misaligned domains with energy typically 

in dimensions — this energy can be equated to the thermal energy /uBiT 

at temperature T to a first approximation.) It becomes increasingly difficult, 

therefore, to move around in phase space by making trial changes to only one 

spin at a time; while the Hip of a spin may be valid thermally, its acceptance is 

unable to affect the organisation of the domains. For this reason, multi-spin-flips 

are frequently implemented, often in combination with single-spin-flip trials; aa 

the name implies, at tempts are made to move several spins together, so that the 

change is more likely to have a long-reaching effect before the move is undone at 

a later trial. 

69 



Taking this idea further, whole clusters can be updated in one group [56, 

57]; the size of the domains is not fixed, but is chosen by the system itself, 

giving a direct measure of the correlation length and therefore of the magnetic 

susceptibility. The treatment by [56] is more intuitive, whereby the entire system 

is broken into domains, and one is chosen for a flip a t t empt , but [57] is more 

easily implemented; in the latter formulation, one site is chosen aa a seed - it 

will definitely be updated. Starting from this site, the system explores outwards, 

offering to flip each adjacent spin. Accepting the flip at the neighbouring site is 

the default, since the update is chosen such that all the energy within the cluster 

is preserved; the only change is at the interface to adjoining domains. A spin 

can elect to reject the flip at tempt, remaining outside the cluster, using the usual 

Metropolis acceptance criterion (equation 3.18); the spin will remain outside the 

cluster, in its old state, if that reduces the total system energy (given that the 

neighbours within the cluster av'e going to flip), or with a Boltzmann probability 

if the energy would be increased. This will be discussed fur ther in section 4.4.5. 

3.7.2 H i s t o g r a m M e t h o d 

Conventionally, it is necessary to run simulations at a large number of separate 

temperatures near a critical temperature in order to build up a sufGciently dense 

graph of discrete energies and specific heats in the vicinity of a phase transition. 

The histogram method [58] makes use of additional information collected from 

a simulation at one temperature, and allows all the important commodities (en-

ergy, specific heat, magnetisation, etc.) to be extrapolated continuously to any 

nearby temperature and/or magnetic held, etc. (though to collect data allowing 

extrapolation in more than one variable at once requires an enormous amount of 

storage). 

In most simulations, only the average of the energy, and its standard deviation 

(to allow specific heat calculation by equation 3.31) are stored. But if the full 

distribution is recorded (in principle by also calculating higher moments, but 

in practice by binning the measurements, to form a histogram), the density of 

states in the vicinity of the sami^led phase space can be determined (to within a 

constant factor), and once the density of states is known, everything else can be 

calculated (section 3.1). 

The simulation generates a stream of measurements {E',} of the energy of 



the system. Assuming the system hcis been properly equilibrated, etc., these 

measurements are samples of the distribution E) = ^(-G) e x p ( — ( i g n o r i n g 

normalisation of p), and since we know the (inverse) temperature we can infer 

^f(E), and so the distribution of energies p(/3% E) at a nearby temperature /)': 

5'(^) = P(/), ^)exp( ,9E) (3.34) 

= p(/3%E)exp(/)'E) (3.35) 

- p ( A ' B ) e x p ( / ? - / 3 ' ) E . (3.36) 

Thus we can transform our sampled p(/), E) to a new temperature by simply 

multiplying the measured (discrete) data by an exponential, without any need 

to first fit the measured data to a curve — we merely need to normalise when 

calculating any averages using p(/)', E) . 

p (E) is likely to be approximately Gaussian, and multiplying a Gaussian by 

an exponential simply shifts that Gaussian to a new mean (again ignoring the 

normalisation) by boosting the values at one side of the original mean more 

than the other side, aa illustrated on figure 3.6. (Of course, it is precisely the 

information about the (feumfz'on from Gaussian-ness that is useful here.) However, 

our measured j)(E) is discrete, and will necessarily be noisy at the tails (due to 

quantisation errors in the binning) — if we simulate for longer, we get more 

samples here, but end up with a few samples further out . This means that we 

can extrapolate (shift) the probability distribution only within the 'bell' of the 

distribution (the region with a large number of binned samples); if we try to 

extrapolate too far, we end up trying to infer system parameters from only a 

handful of events, since as is clear from the figure, the da ta at the tail is given 

an enormous boost by the exponential function; the situation depicted is slightly 

exaggerated, and is at the extreme of the range of reliable extrapolation. 

In order to extrapolate other quantities, such as magnetisation, with temper-

ature, it is sufBcient to maintain a sum of the measurements of that quantity 

with each energy bin, and compute a weighted average with the shifted energy 

at each new temperature. 
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Figure 3.6: Illustration of the way in which multiplying a Gaussian by an ex-
ponential results in a shifted Gaussian. Real experimental data will be only 
approximately Gaussian, and the technique will use all the available information 
to track the change in temperature accurately. (Assuming a Gaussian would re-
sult in a shift proportional to temperature.) Notice in particular that a large 
shift (rapidly-growing exponential) will boost the tail of the distribution, where 
statistical accuracy is poor — this illustration depicts about the largest shift that 
can be made reliably. 
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Chapter 4 

Implementat ion Details 

4.1 Parallel Computers 

Although Monte Carlo simulation dramatically reduces the computation required 

to perform measurements on statistical systems, enormous amounts of CPU time 

are still required on all but the biggest supercomputers. One approach that 

hardware manufacturers have taken to try to meet the demand is the production 

of parallel computers, whereby many processing units cooperate in a computation. 

The University of Southampton has made a significant commitment to paral-

lel computers, both in terms of hardware (having several transputer-based par-

allel computers, and one of the first of the second-generation Meiko Computing 

Surfaces in the world) and personnel (having set up a Parallel Computing Sup-

port Group, now called the High Performance Computing group, to assist users 

in writing code to make the best use of the available resources). In addition, 

the University has a close association with the Parallel Application Centre at 

Chilworth. 

At present, a programmer must explicitly distribute the computation over the 

network of available processors, and must work hard to ensure that the system 

is (that is, each processor has a fair share of the workload), though 

software tools will almost certainly take over this tedious task in the future. There 

are a number of ways in which the code can be broken up: 

# Run the sequential program independently on each processor, each copy 

operating on a different set of parameters. This is actually the most efficient 

way of using parallel computers, and requires least programming effort, 
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provided each processor has suHicient resources to run the whole program 

in a reasonable time. For Monte Carlo simulations, this corresponds to 

running the simulation for several different temperatures, say, on several 

workstations. 

# Operate several programs sequentially, each applying small transformations 

to a stream of data. An analogy is a factory production line, where incom-

plete products pass down a conveyor belt, and each worker performs their 

simple task until a complete product emerges at t he end. Once the first 

product has reached the end of the line, hnished products emerge at the 

rate of the slowest step. In a Monte Carlo simulation, one processor might 

feed out trial movements, another might calculate the energy cost of each 

step, and so on. This para/Ze/i'aafzon was studied in [59], and is 

useful for an inhomogeneous network of computers, but it can be difhcult 

to balance the loads effectively — it will be impossible in general the break 

up the work into pieces such that each processor is kept busy at all times; 

there will inevitably be delays where processors are waiting for results from 

another which has more to do, and the whole calculation can proceed only 

at the rate of the slowest step. 

# Run the same program on each processor, each copy operating on a subset of 

the entire system, with programs (explicitly) exchanging information across 

the boundaries. This is ideal for calculations on regular lattices, where 

each program might control a subset of the lattice sites, and is sent updates 

from neighbouring processors when changes are made at the common edges. 

Geomeffic was chosen for this work. 

4.1.1 C o m m u n i c a t i n g S e q u e n t i a l P r o c e s s e s 

All these strategies are encompassed under the gegwenfm/ pro-

ceggeg [60] model of a program — a program is viewed as a number of sequential 

units, operating concurrently with the only time constraint that any pair are 

synchronised when they require to exchange information — even a conventional 

program may be viewed in this way, either trivially as a collection of one sequen-

tial process, or as a number of processes, the beginning of each being synchronised 

with the end of the previous one (as each step operates on data received from 

the previous step). Any step which does require to wait for data from the 
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previous step can be run concurrently with that previous step, and in this way, a 

program can gradually be parallelised (though it is usually bet ter to begin with a 

parallel algorithm from the outset). Even on sequential computers, cpu-intensive 

cictivities can often be run concurrently with hle-accesses or floating-point calcula-

tions, (section 4.4), as is usually done under multitasking operating systems, and 

modern RISC processors such as the DEC Alpha can issue several non-interacting 

instructions on each clock cycle ('superscalar' architecture) — compilers for such 

machines will at tempt to reorder the instructions to maximise this overlap where 

possible. 

4.1.2 T r a n s p u t e r s 

Although the above techniques (particularly the hrst) can be applied to any net-

work of workstations, for example, hardware manufacturers have designed pro-

cessors optimised for parallel computation. Inmos' T414 transputer implements 

a 10 MIP (10 million instructions per second) CPU with four dedicated high-

speed links, allowing large numbers of these processors to be coupled to form 

large computer networks. The T800 transputer adds a 1 M-Sop boating point 

unit, and arrays of these processors make formidable computing machines. 

The links transfer data by DMA (direct memory access), so that the CPU can 

continue to do useful work on other processes while data is transferred, intervening 

only to initialise and hnalise the transfer — there is a small impact on processing 

speed in practice, since the CPU has to share access to the memory. 

Although it can be inconvenient that processors can communicate only with 

those others which are physically coupled, this can be overcome by either adding 

a software "harness" to route messages through intervening processors, or with 

extra hardware to change the link connections dynamically. The next generation 

of transputers is to have on-chip message routing, so tha t messages are trans-

parently routed through each transputer without assistance from the CPU. An 

alternative scheme, where any processor can communicate directly with any other 

along a bus structure, has the disadvantage that the communications bandwidth 

is limited, and can saturate, negating any advantage in adding further proces-

sors; the bandwidth available in a point-to-point communications network scales 

as processors are added. 

In this work, the actual simulation code requires communications with only 
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neighbouring processors (since the system being simulated has nearest-neighbour 

interactions only), so that the code suEers little delay due to communication 

overheads in practice. The transputer is able to proceed with other (independent) 

calculations while data is transferred, though in practice we were not able to take 

advantage of this except for simulations on very large systems (section 4.4). 

4.2 Hardware Used 

The group acquired a Meiko Computing Surface, containing a T414 'master ' 

transputer with 3MB memory, a T800 transputer with hardware for full-colour 

high-resolution graphics (which proved very useful for monitoring the progress 

of simulations) and 32 'worker' T800 transputers, each with (a rather limiting) 

256kB memory. 

Like many other transputer arrays, this system has neither operating system 

nor filestore — instead, the system is 'hosted' by another machine, which is used 

for developing and debugging the code, 'booting' the code onto the system and 

providing access to the host's filesystem. The Meiko came with hardware suitable 

for hosting the system from a IBM PC compatible, which is, unfortunately, not 

the most suitable host: 

# The PC, in general, does not have a large hlespace, severely limiting the 

data that can be stored from a run — correlation data , in particular, places 

a significant strain on the resources. 

e The host is required to be continuously available during a set of simulations, 

and because a PC cannot, in general, multitask, it is locked up for the 

duration of the simulation. Software such as MS-Windows, which does 

allow multitasking in a limited way, is not sufEciently stable to be expected 

to run for the duration of a simulation without crashing. 

When the group purchased a VAX cluster, the former problem was solved 

by networking the PC to the VAX, allowing the VAX filespace to be accessed 

transpajrently by the PC, and hence by the Meiko. Means of "borrowing" the 

PC from the Meiko were devised, so that the PC could be used for useful work 

during the day, but it proved quite frustrating when the connection could not be 

re-established securely, and data was consequently lost. 
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The problem waa Anally resolved when the VAX joined the department 's eth-

ernet network — a PC dedicated as a LAN bridge was required both for security 

and to keep the volume of network traffic under control, and it was realised that 

the Meiko could be hosted from this PC, and a simple software Ax 

would allow communications between the Meiko and VAX along ethernet, allow-

ing the VAX to be the Zog'zcaZ host. Because the VAX is a multitasking system, 

it can serve the Meiko with virtually no impact on its main functions, but there 

are several additional benefits, such as access to the excellent queueing facilities 

available with VMS, and now that the VAXcluster has joined the Internet, the 

Meiko is effectively accessible from anywhere in the world (subject to the usual 

security checks, of course !). 

One slight complication is that the VAX and transputer use different repre-

sentations for Soating point numbers; the communication protocol was to 

use IEEE format numbers, so the VAX had to translate from its internal repre-

sentation to IEEE; fortunately, this can be done using simple bit manipulation. 

4.3 Algori thm 

We have used a standard Metropolis single-spin update algorithm — because we 

are using a parallel computer, several spins are in practice updated simultane-

ously, but such spins have no direct interactions, so that the results are exactly 

equivalent to a sequential computer updating the first spin visited by the first 

processor, then the first spin visited by the second processor, and so on through 

all the processors and all the spins. 

There has been some criticism [45] that the single-spin Monte Carlo method 

does not adequately sample the phase space of the system, and hence does not 

reach true thermodynamic equilibrium. However, because it is believed that 

it is the inability of experimental spin glass systems to explore the whole of the 

available phase space (section 2.6) that leads to interesting behaviour, we take the 

view that if our simulations do not reach equilibrium, this may reflect analogous 

behaviour in real systems. 

We rewrite Hamilton]an 1.16 in a simplified form, absorbing spin magnitudes 

into J, and representing spin direction at site z using a single parameter The 

anisotropy n, at site % is represented instead as angle the field direction is Ĥeid 
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and primed quantities are in units of J — primes will be dropped for all of the 

following discussion: 

7^ = (4.1) 

"H' = — ^ cos (^i — 0j) — D' ^ 2 cos (Oi — — H' cos (9i — ^Aeld)-(4.2) 

The temperature T is expressed in units of J/A;g, so that the Metropolis 

update criteria is a simple test based on the ratio of to T". 

Each update at tempts to rotate a single spin through either 180° (a spin 

'dip' — useful for the large anisotropy, Ising limit (section 2.7)) — or through 

some random angle, whose maximum magnitude is dynamically adjusted to keep 

the fraction of accepted trials at approximately half (section 3.4). 

A cyc/e is the fundamental unit of the simulation, and consists of a number 

of sweeps through the lattice, attempting a spin rotation at each site, followed 

by a number of sweeps attempting a spin Hip at each wile. Measurements of 

system state are made after every cycle during the simulation (section 3.3.1), 

after delays of typically several thousand cycles for equilibration (section 3.3.1). 

Cycles in this work were usually composed of 5 sweeps, mostly rotation sweeps 

for small ajiisotropy, and typically 3 rotation and 2 flip sweeps for larger values 

of D. 

In order to compare results with previous simulations performed in the large 

D limit (section 2.11), we can simulate systems with infinite D using a cycle com-

posed purely of flip sweeps, initially aligning each spin along the local anisotropy 

axis. The parameter D is irrelevant in this case, since it is the update algorithm 

which constrains the spins to lie along the anisotropy axes, but it is useful to set 

D = 0 since the energy is still measured using equation 2.50. As described in 

section 2.7, for simulations at large Z), a Hamiltonian 

- J Y . S , . S j - D Y . { ( S i . n i f - l ) ( 4 . 3 ) 

<u) ' 

is more appropriate, since ([/) remains finite as D —> oo — it is necessary simply 

to add an energy D per spin to measurements made on equation 2.50 to allow 

comparison with results at infinite D as described above. 

One other correction is necessary: for a finite anisotropy strength, at non-

zero temperature, each spin is free to oscillate about its local energy minimum, 
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contributing one degree of freedom, and, by equipartition of energy, an energy 

per spin. It is useful to add 0.5 to the specific heat measurements made at 

infinite anisotropy to allow comparison with the low temperature results. 

4.4 Implementa t ion details 

Because no one transputer has sufScient memory or computational power to 

run the complete simulation for sufSciently large systems, it was necessary to 

distribute the program over all the transputers, and choose a geometric paral-

lelisation algorithm (section 4.1), in which each transputer has full control over 

a subset of lattice points, and holds a copy of the adjacent spins at all times; 

the transputers send messages to each other to update neighbours' copies of the 

shared spins. Periodic boundary conditions were implemented trivially by config-

uring the transputer links to form a ring, as shown in Rgure 4.1, so that nothing 

was required of the software. 

In order to ensure that no at tempt was made to upda te adjacent spins on 

different transputers, each transputer was required to control at least two rows. 

The sites were visited in 'typewriter' fashion, sequentially along rows from top to 

bottom, in lock-step on all transputers; in this way, transputers did not have to 

send out individual requests for information, but simply t ransmit ted the updated 

edges to the neighbouring transputer, at the same time receiving the opposite 

neighbour's updates, after completing each edge — because processes on a trans-

puter are synchronised by such a data exchange, one transputer could not process 

a shared edge while its neighbour was still processing it. (With finer synchro-

nisation, the program could have been written to allow one transputer to begin 

on a row before its neighbour had finished, but no time would be saved over-

all, since the delay would propagate around the ring, and that transputer would 

have to wait for longer at the beginning of the next sweep. In addition, the extra 

synchronisation requires extra communication, which all introduces more delays.) 

The smallest (square) system for which all transputers are used has 64^ lattice 

sites, though this was reduced to 62^ after one of the transputers developed a 

hardware fault. For larger systems, when each transputer controls more than 

two rows, the intermediate rows can be processed while the data exchange is 

proceeding, taking advantage of the background communications available on 

the transputer (section 4.1.2). 
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Figure 4.1: The hardware layout 
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For smaller systems, a subset of the transputers was used — an alternative 

scheme, used in the code for the three-dimensional system, is to decompose the 

lattice into two sublattices, such that interacting neighbours are on different sub-

lattices — for example, the squares of a two-dimensional system can be coloured 

black and white, like a chessboard. Now no two lattice sites of the same colour in-

teract directly with each other, so trial moves could be a t t empted at all the white 

squares in the system in parallel, and each transputer can operate on a single row 

of the system — an update sweep now requires two pcisses, once operating on only 

the white squares, then, after exchanging data with the neighbouring transput-

ers, all the black squares, before exchanging information again. This technique 

is also used on vector processors, where full speed operation requires that all the 

information required for a large number of update a t tempts be available at one 

time. 

4.4.1 D r i v i n g t h e S i m u l a t i o n s 

At first, the program was written entirely in Occam (the language invented along-

side the transputer, to allow easy implementation of the pai'allelisation and com-

munication primitives available on the transputer), with the simulation param-

eters such as temperature, equilibration time, and the number of Monte Carlo 

sweeps between measurements coded as constants, and the changes to the vari-

ous parameters during a set of runs hard-coded. For conventional programs, it is 

straightforward to make changes to such a simulation, to make the system sweep 

the magnetic field, for example, to measure hysteresis, or to sweep the tempera-

ture, to compare quenched and annealed results. For parallel programs, however, 

there is an added complication: the system requires extra processes to run in the 

background on each transputer, to route messages to the graphics transputer for 

display, and to and from the 'master^ processor for averaging and filing. (Only 

the latter transputer can communicate with the host, and therefore access the 

filesystem.) 

The code was therefore modified to make it 'event' driven - the simulation 

wag broken down into a number of low-level primitive operations, and the workers 

acted on a stream of messages such as "increase the magnetic field", "run for x 

sweeps for equilibration", "measure the energy", so that only the co-ordinating 

process on the master transputer had to be recompiled to change the simulation — 

this is much closer to a conventional program, but rather than writing subroutines 
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to implement the steps of the simulation, messages were sent to the workers, 

telling them what to do next. 

Although the main loop for the simulations could easily be built from low-

level primitives, it was realised that overhead in communicating a sequence of 

"wait n sweeps" and "measure" instructions made the system inefficient — too 

much time waa wasted waiting for the next command. Thus one "primitive" 

invoked a simulation for a large number of cycles, with t h e workers sending out 

measurements at predefine intervals. (One can make analogies with CISC versus 

RISC CPU design issues.) Essentially, the program operates in two modes: slave 

mode, where parameters are set, and simulate mode ( the 's tudy' command). 

Unusual simulations can still be built up from the other primitives, of course 

(section A.7). 

When a compatible C compiler became available, it became possible to make 

the controlling program read in a description of the required simulation from 

a text file, and send the appropriate messages to the workers — a "simulation 

control language" was defined. (This would have been possible in Occam, but 

this sort of application is not one of its strengths; Occam's I / O is rather primitive 

in comparison to that of C.) In this way, the description of the simulation can 

be prepended to each results file, to minimise the risk of mixing up results when 

a large number of files are generated. The details of the control language are 

presented in appendix A.3. In addition, because the transputers were no longer 

required for recompiling the program for changes to the simulation, it became 

possible to prepare simulation descriptions in advance, reducing the turnaround 

time for subsequent simulations. 

4.4.2 Q u a n t i s a t i o n of t h e A n g l e s 

At first, each was stored as floating point variable, thus stored as accurately as 

possible, but requiring expensive trigonometric function calls in the inner loop. 

Later, the angles were quantised into (usually) 1024 integral parts — the only 

constraint (given sufficient memory) is that it is a power of two, to allow the 

periodicity to be implemented using logical operators. Extensive tests were per-

formed to find r%imes where this change made any significant difference, but, 

even at very low temperature or very close to saturation, no quantitative change 

in behaviour could be detected. 
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By storing the angles aa integers, all the computationally-expensive trigono-

metric and exponential functions can be precalculated and stored in tables, such 

that the update loop runs significantly faster — if we consider a single-spin trial 

step from to 0- at site z, the change in system energy is simply the change 

in the partial energy containing only terms containing 6)̂ : 

e x p ( — = e x p ( — ( 4 . 4 ) 

= exp(-;9w,)/exp(-/)U') (4.5) 

u, = — ^ cos(^, — ^j) — D cos (^, — ^,)^ — jy cos(^i — (4.6) 
j 

exp(—/)2/,) = Ylexp(/8cos(^^ — ^j)) x exp(/?Dcos — ^«)^) 
i 

X exp (/?/if cos (^i — ^H)) (4.7) 

and each of the terms in equation 4.7 is tabulated for all possible values of (^,—^_;). 

In fact, the tables run for two and a half cycles — the second cycle allows negative 

angles to be handled trivially by adding 27r before the lookup — 0̂  — c a n return 

values from —27r to 27r, so that 4- 27r will fall within our 2-cycle lookup 

table. (In practice, a pointer is set halfway through the table, so that offsets from 

—27r to 27r can be fetched directly. ) The extra half cycle allows the reciprocals of 

the exponentials to be calculated by adding an extra 7r before the lookup, for the 

exchange and field terms, since multiplication by the reciprocal is significantly 

faster than division in equation 4.5. The anisotropy te rm required a separate 

table for the inverses. 

Thus, inside the main update loop, only multiplications are required, with 

trigonometry required only when the tables are updated after a change in any of 

the parameters T, D or H (outside the main loop). A tradeoff of speed against 

memory has been performed: in order to increase the speed in the innermost 

loop, we have had to set aside a great deal of memory for these lookup tables, 

limiting the maximum system size we can simulate. 

One problem with this technique was that, at low temperatures and large 

field or anisotropy strength, the tables or intermediate products could overflow, 

even though the final energy change might be quite small — for example, suppose 

T = 0.1 and D = 10: a very small rotation from the local anisotropy axis might 

have = —10 and i/' = —9.99, so that the Boltzmann factor is e°-^, but the 

intermediate term, overflows the floating point unit. 

This problem was finally overcome by storing the tabulated values in two 
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parts: an integer power of e, and the exponential of t h e fractional part . For 

example, = gioo-o.i _ g-o.igioo^ would be t abu la ted aa (e"° \ 1 0 0 ) (or 

99)), and the intermediate product accumulates both an integer sum of the 

power, and a real product of the exponential part , which is guaranteed not to 

overflow. Thus the calculation returns the Metropolis acceptance probability M 

in two parts and Mr, such that 

M — Mr X exp(M,). 

While overRows are to be avoided at all costs, underflows are quietly truncated 

to zero, so it is necessary to modify slightly the Metropolis acceptance condition 

equation 3.18: for random number r between 0 and 1, we accept the update 

provided 

r < Mr exp(M,) M^ < 0 (4.8) 

rexp(-Mi) < Mr M, > 0 (4.9) 

Yet another table is used to lookup the exponentials of integers. 

4.4.3 F u r t h e r O p t i m i s a t i o n s 

In order to take further advantage of the hardware concurrency, the innermost 

loop for the update sweep was coded in assembly — because the Boating point 

unit and the integer unit can operate independently (synchronising only to ex-

change data), careful coding allows the integer unit to do useful work while a 

floating point operation proceeds, rather than idling while waiting for the result 

from the floating point unit. As described previously, the calculation was mostly 

table-driven, so while the floating point unit waa performing a calculation, the in-

teger unit could be calculating the offsets into the tables for the next interaction, 

preparing the next random number, implementing the periodic boundary condi-

tions, and so on. Another advantage of coding in assembly is the greater control 

over which variables are stored in the CPU's registers for m a x i m u m efficiency. (In 

fact, the transputer doesn't use traditional CPU registers, bu t a stack — hand-

assembly allows control over which variables are stored on the stack, though the 

instruction set doesn't have the full range of stack mcmipulation instructions tha t 

might have been expected.) 

It should be noted that modern RISC processors are becoming increasingly 

complex, and superscalar processors are able to issue mul t ip le instructions per 
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clock cycle, as mentioned above. Without enormous care, it is possible that 

recoding a routine in assembly will result in code running more a/ow/?/, because 

compilers are much better able to reorder the instructions to achieve maximum 

throughput — even if hand-assembled code uses fewer instructions, it may still 

run slower than compiler output, since compiler may be able to make better use 

of the double-issue of instructions. 

With all the above optimisations implemented, and the further refinement of 

careful ordering of the source code so that the code implementing the innermost 

loop waa stored within the transputer's fast-access on-chip memory, each trans-

puter averaged 25,000 spin updates per second — since a single sine, cosine or 

exponential calculation was found to take around 20/(a on the same hardware, a 

time of 40//a for the entire update calculation is very encouraging. Thus the com-

plete system could update each spin in a 62^ lattice one million times in under two 

hours. Nevertheless, we have had to run the Meiko box more or less continuously 

in order to make an investigation over an extensive range of the system parame-

ters and simulation timescales. This is particularly true of the three-dimensional 

system since, in addition to the increase in the number of spins in the system, the 

larger communications overhead reduces the efficiency of the program somewhat. 

4.4.4 Sp in C o r r e l a t i o n s 

The evaluation of spin-spin correlations (section 3.5) required careful thought: 

while the magnetic interactions in the model are local, so tha t each transputer 

requires little information other than its own subset of the spins for an update 

at tempt , the spin-spin correlations require global information. One technique was 

devised, where an accumulator grid was broken down into rows in the same way as 

the lattice, and the pieces of the accumulator circulated around the transputers 

in one direction while the spin configurations were circulated in the opposite 

direction, but the code for this was very convoluted and hard to maintain. The 

controlling T414 transputer had sufhcient memory to store the entire lattice, but 

with no Boating point unit, the correlations would take too long. 

When the VAX took over as the Meiko host, it was realised that , rather than 

running a dumb slave process on the VAX (allowing access to host hies) and 

the controlling code on the root T414 transputer, the controlling code could be 

trivially recompiled to run on the VAX itself, with only the routines for communi-
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eating with the rest of the transputers rewritten. This done, the VAX essentially 

became another computational element in the network, and its enormous memory 

made it ideal for performing the spin-spin correlations. 

In practice, we did not use the fast-fourier transform technique for calculating 

correlations (section 3.5.1) — because the system size was not always a power of 

two, use of the FFT algorithm would require padding the da ta up to a power of 

two, which would destroy the symmetry of the data. With a reasonably optimised 

algorithm, the VAX waa able to measure the correlations of the two-dimensional 

system well within the required time, and in three dimensions, we correlated only 

a subset of the sites with all other sites for each configuration — it seemed better 

to perform some correlations on a large number of different configurations than 

to measure all the correlations on fewer configurations. 

Correlations were recorded, averaged and stored in two or three dimensions — 

while most of the later analysis was performed on a one dimensional (circu-

lar/spherical) average, the raw data was kept on tape for reference. 

4.4.5 M u l t i s p i n a n d C l u s t e r U p d a t e s 

Because the spins are distributed over the parallel processors, with each proces-

sor 'owning' a subset of them, implementing an algorithm which updates pairs 

of spins at a time (section 3.7.1) would be rather difficult; while pairs within 

one processor's full control could be handled like any conventional multispin en-

coding, an update across a processor boundary carries a large communications 

overhead — the entire system would stall while the adjacent processors negotiate. 

An additional problem to be overcome is the guarding against simultaneous up-

date of adjacent spins - because each processor controls at least two rows of spins 

in the two-dimensional simulations, single-spins are automatically locked against 

adjacent updates; for two-spin Sips, messages would have to be sent to explicitly 

synchronise access to neighbouring spins. These problems are not particularly 

hard to solve, but all the extra communication breaks up the flow of execution. 

(The processors operate on their slice of the system in typewriter-fashion, as de-

scribed earlier, but they are not lock-stepped down to the individual spin; they 

merely synchronise before starting on the top row and bottom rows, to exchange 

data with the adjacent processors. On average, each lattice site takes the same 

time to process, but allowing the processors to operate at their own speed allows 



the system to compensate for small fluctuations; when messages are forwarded 

along the communications harness, for example, a small amount of cpu time is 

borrowed from the simulation.) 

The obvious algorithm would be for every other processor to lend its spins to 

the neighbouring process, which will update pairwise then return the spins. Care 

must be taken to ensure that all possible pairs get a chance at such update. 

An alternative algorithm which could be investigated for the two-dimensional 

system would be to have every second processor doing vertical pairs of (its own) 

spins (to avoid at tempts to update adjacent spins). Then after every such sweep, 

the entire lattice is rotated one step, so that next t ime, the same processors 

will be operating on different lattice sites (which are not equivalent, because of 

the anisotropy). (There is no need to shufHe the spins back after the sweep — 

all processors are equivalent.) This means that all possible two-spin pairs are 

processed, without the need for inter-processor negotiation. More careful thought 

will be required to ensure that there is no possibility for biasing the exploration 

of phase space. 

C l u s t e r U p d a t e 

Because the RAM model is predicted to breakup into domains at low tempera-

ture, the cluster-update algorithm (section 3.7.1) would appear to be the obvious 

weapon to deploy in simulating this system. Implementing such an algorithm, 

however, is decidedly tricky with a geometric distribution on a parallel machine; 

growing a cluster requires a great deal of negotiation between the processors, and 

it is not clear whether this task can be coded efficiently in parallel, or whether 

it simpler just to send all the current configurations to one node (or perhaps the 

host VAX) for cluster update. 

Flanigan and Tamayo have recently published a paper describing an imple-

mentation of a cluster update on parallel computers [61]; the details have not 

yet been fully examined, but it appears that it would be reasonably easy to 

incorporate this into the existing code. 

In order to evaluate the cluster update technique, a simple (sequential) pro-

gram was developed for experimentation. One further difficulty which emerged 

was that the cluster-update algorithm as outlined in section 3.7.1 relies on a sym-
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metry in the Hamiltonian: once the cluster has been identified, it is transformed 

as a whole, under the assumption that only the energy at the surface of the clus-

ter changes. For the random anisotropy model under investigation, however, the 

internal energy of the cluster can be preserved only if a 180° flip is performed on 

each spin in the cluster, since any other rotation or reflection would change the 

energy between each spin and the anisotropy at that site. However, we found that 

such a cluster update rule generated such a severe change that all spins elected 

to follow the site in the transformation, and the entire lat t ice simply flipped time 

and again. Even if this can be overcome (using bigger system sizes for example), 

it is evident that a cluster update is not sufficient alone to explore the whole of 

phase space, except in the infinite anisotropy limit (section 2.7. But while the 

cluster algorithm encourages larger system sizes, the auxiliary (traditional) spin 

updates required to move the spins relative to their local anisotropy axes will still 

suffer from the slowing down which the cluster algorithm tries to avoid. 

4.5 W h a t We Measure 

After every cycle during a simulation, the instantaneous values of the following 

quantities are accumulated: 

e Energy and 

e Magnetisation M . and 

e 'Liquid Crystal order parameter^ Qic = cos2(^, — ^,) 

# Number of vortices and half-vortices 

Several sets of data are collected, and from each, averages are calculated 

for the energy, magnetisation and Qic- The specific heat is calculated both by 

numerical differentiation of the energy (fitting a quadratic to triplets of energy 

measurements and differentiating), and using the Auctuation-dissipation theo-

rem (equation 3.31). Magnetic susceptibility is calculated using equation 3.32, 

since in general we do not have data at finite fields for numerical differentia-

tion. Errors in the results are estimated by averaging over the independent data 

sets, and comparison can be with data extrapolated using the histogram method 

(section 3.7.2). 
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If histogramming has been enabled, the measured quanti t ies are added into 

the accumulators closest to the measured energy — it is sufficient to record only 

an average of the other quantities at each energy in order to extrapolate the 

results to other temperatures. 

4.5.1 L iqu id C r y s t a l O r d e r P a r a m e t e r 

Qic gives a measure of the extent to which the spins are aligned with their local 

anisotropy axes Qic = 1 for full alignment (section 2.7) and 0 for uncorrelated. 

In addition, this gives a direct measure of the component of the system energy 

due to the anisotropy: for two-component spins, equation 2.60 gives 

^ ĈOŜ (<) — (4-10) 

= Dcos^(^ —(;)) — - (4.11) 

- DQic. (4.12) 

Thus, the predictions made for the energy at zero tempera ture can be applied 

here (since the two terms in equation 2.70 are equal at t he minimum). 

Similarly, for large anisotropy strength, equation 2.76 suggests that 

Qic = cos ^1 — — j (4 13) 

.D 

4.5.2 Vor t i ce s 

(4.14) 

The code to count the vortices and half-vortices was added to the 2D program 

towai'ds the end of the work, when most results had been gathered, so it was not 

deemed worthwhile to spend much effort in optimising it. A vortex is detected 

by explicitly adding up the angles round each plaquette (group of four adjacent 

lattice sites), and if it is j:27r (or rather, dig where g is the number of quantisation 

angles), then a vortex is counted. We do not bother to count positive and negative 

vortices separately, since the use of periodic boundary conditions precludes the 

presence of a net vorticity in the system. 

The half-vortices are counted in a similar way, with no a t tempt being made 

to distinguish half-vortices which are half of a full vortex (spread by thermal ex-
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citation, perhaps) and those which are simple single-spin excitations (hgnre 2.9), 

resulting in a pair of opposite half-vortices as shown in figure 2.2. 

We have not yet at tempted to count vortices in three dimensions — while 

it would be no problem to identify the presence or absence of a vortex at each 

volume element in the system, it would be much harder to identify the number 

of vortex in the system. 

4.5.3 A d d i t i o n M e a s u r e m e n t s 

Additional measurements can made on the system less frequently: 

# at any time, the current spin configuration can be copied to a 'reference' 

array, such that a spin-glass order parameter (section 2.47) can be calcu-

lated by comparing all the later configurations with the reference spins; 

the simulation control language allows the enabling and disabling of this 

measurement, which is not particularly time-consuming, but does generate 

a large v olume of data. 

# if spin-spin correlations have been enabled, then the correlations of a (ran-

dom) subset of the spins with every other spin are calculated. The simu-

lation description specifies how many spins are correlated each time, and 

how how often — it was decided that it was better to correlate a subset of 

the spins on a large number of configurations that to exhaustively study a 

few configurations. 

4.6 Real Time Graphics 

In order to aid qualitative understanding of the system, it was decided to make use 

of the graphics hardware available to show the spin configurations continuously 

as the system evolved in time. It was hoped that a video of these graphics could 

be submitted as part of this thesis, to demonstrate the insight thus afforded to 

the system, but hardware problems have precluded this. It is hoped that the 

colour pictures in the following chapters will illustrate the effectiveness of the 

graphics. 

The spins were depicted in two complementary ways: 
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# the palette on the graphics system was configured to provide a continuous 

sequence of colours from black gradually increasing in intensity to red, then 

through purple to blue, finally diminishing in intensity back to black. Black 

was used to represent spins at 0°, through to red at 120° and blue at 240°. 

In this way, the presence of domains of spins pointing in approximately the 

same directions could easily be seen. 

# green arrows were superimposed over these colours, to depict the actual 

spins at each lattice site — these arrows could be switched off to emphasise 

the colours, and hence the domain structure. 

Because periodic boundary conditions were chosen for the simulations, the 

system was drawn repeatedly to fill the screen. Crude control was provided to 

allow the view to be panned across the system, and allow t h e view to be magnified 

to concentrate on features such as vortices, or reduced to see the entire system on 

screen at once. These graphics proved invaluable in understanding qualitatively 

the behaviour of the system, a^ the colour pictures in the following chapters 

should convey. 

A possible enhancement would be to rewrite the graphics routines to display 

the system state in an X-window on the host — this might be the first step in 

perhaps allowing some degree of interaction with the system, as well as improving 

remote access to the system, not only from elsewhere in t h e building (the Meiko 

has a rather noisy fan, and would ideally be situated in a dedicated machine 

room — a long video cable is an alternative solution), but also (in principle) from 

the Internet (section 4.2). One complication would be tha t , while the graphics 

hardware is dedicated to the simulation code (since there is no software running 

on the Meiko to allow multiple users to use the system concurrently), there would 

need to be some other means of communicating with the program, in order to 

tell it onto which screen to open the window, and so on. 
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Chapter 5 

Two Dimensional XY Model 
with Random Anisotropy 

Presented here are the results from extensive simulations on two-dimensional 

systems of up to 128^ sites. Because there remains dispute in the literature 

over the nature of the low-temperature regime (section 2.10), we are particularly 

interested in measurements which test the predictions of the Chudnovsky-Imry-

Ma (CIM) theory (section 2.8). We are also interested in whether the Kosterlitz-

Thouless phase survives the addition of the random anisotropy. 

If the low-temperature regime is indeed glassy, we might expect results which 

depend on the history of the system, as well as on the timescales of the exper-

iments. For this reason, we compare the results from 'cooled' and 'quenched' 

simulations: cooled systems start at high temperature, and simulations are per-

formed at successively lower temperatures, with each simulation beginning with 

the Anal configuration of the previous one; quenched systems begin at low temper-

ature with a random spin configuration, as if quenched from high temperature, 

and each successive simulation is at a higher temperature. We compare these 

results to separate qualitatively regimes of reversible and irreversible behaviour; 

for quantitative analysis, very much longer experiments would be necessary. 

We have tended to regard the configurations generated by the cooled systems 

as true equilibrium, with the final configuration the ground state, but great care 

should be taken in practice. The Imry-Ma-Chudnovsky argument implies that 

the system breaks up into clearly defined domains, but this is not the case: for 

small anisotropy strength D, the spins change direction smoothly throughout the 

sample, correlated over what we choose to call the domain size. But because the 
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energy gain in forming domains is due to statistical fluctuations in the details of 

the local random configuration within the domain, there is not one unique way 

in which the system can segregate. The energy barriers in this case may be the 

energy required to change the domain 'centres'. If we cool the system through 

a glass transition, we may freeze the domain structure, and the system may be 

unable to change the layout of the domains, in order to find the true ground 

state. 

In section 5.1 we consider the internal energy and specific heat of the system. 

CIM is a zero-temperature theory, so that the specific heat is not considered. In 

the two-dimensional (pure) model, there is a peak in the specific heat which 

occurs atoue the Kosterlitz-Thouless transition temperature; this is therefore not 

a good quantity to study for a quajititative measure of the effect of anisotropy on 

the KT transition. However, there remains dispute in the literature on exactly 

where the Kosterlitz-Thouless transition lies in the pure system. For this reason, 

we nevertheless use the specific heat as a qualitative indicator of the effect of the 

anisotropy. 

In section 5.2 we present measurements of what we have called the liquid 

crystal order parameter, which gives a measure of correlation between each spin 

and its local anisotropy axis, as described in section 4.5.1. The spin glass order 

parameter is also a measure of how much of the internal energy is due to the an-

isotropy, which allows an explicit check on the individual terms in equation 2.70. 

In section 5.3 we consider the form of the spin-spin correlations. The pure 

system is expected to show exponential decay exp(—r/^) with distance r 

above the Kosterlitz-Thouless transition, and algebraic decay r" ' ' below Ti<T-

We perform a spherical average of the correlation data, and fit it to a generalised 

form r"'''exp(—A;r). Care must be taken in fitting the data: because of the 

periodic boundary conditions, spins half-way across the latt ice are influenced by 

the images of the spin at the origin (figure 3.6.1), so that we must limit the range 

over which the fit is carried out. 

In section 5.4 we consider the spontaneous magnetisation of our system. It 

must be emphasised that while CIM predicts destruction of any long range order, 

and that the pure system supports only quasiferromagnetism rather than true 

long-range order, our finite samples do show a net magnetisation. We investigate 

how the magnetisation is suppressed by the addition of anisotropy, and how 

this scales with system size, in an at tempt to extrapolate to the thermodynamic 
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limit. We have been unable to make a quantitative analysis of the magnetic 

susceptibility of the system, because of the lack of self-averaging of data calculated 

using fluctuation-dissipation (section 3.5.2). 

We also study the magnetisation in the presence of a large external magnetic 

held, to verify the regimes summarised in section 2.8.10. and in particular to 

pinpoint the crossovers between the different behaviours. 

Having investigated the 'static' properties (on the timescales of our simula-

tions), we turn to dynamic properties in section 5.5. Vortices are an important 

consideration in the pure system, so it is natural to investigate their properties in 

the presence of the anisotropy. We also study hysteresis curves, since the M-jif 

characteristic is an important criterion for the existence of magnetism, and the 

amorphous systems represented by this model show particularly interesting hys-

teresis curves. Finally, we study the magnetisation over very long simulations, to 

try to get a quantitative estimate of the relaxation time of the system. 

We have concentrated on small anisotropy strengths, comparing results with 

the pure system in the D — 0 limit, but we have also performed simulations with 

large anisotropy strengths, even going up to D — o o in order to compare our 

results with previous simulations in this limit. Other work to date has concen-

trated on the zero temperature liniil. wliicli is also whc^re Uir CIM predictions 

are valid. 

5.1 Energy 

The energy per spin for cooled systems is shown in figure 5.1(a) for various 

values of small anisotropy strength D. The results for D = 0 are in excellent 

quantitative agreement with [17]. The shape of the energy appears to change 

very little as a function of temperature, so that the energy shift due to the 

anisotropy is independent of temperature. Accordingly, the specihc heat curves 

are superposed (figure 5.1(b)). Also shown on this hgure are curves for specific 

heat at D = 0.4 for both smaller and larger systems. Again, there is no change 

at low temperature, though the peak at T 1 does slightly sharpen and move 

to slightly lower temperature, aa expected (section 3.6). 

For D > 1, there are clear differences in ttie energy and specific heat, as illus-

trated in figure 5.2 (where we ha\e transrormed I he eiieigy lo Hamiltouian 2.55 
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Figure 5.1: Single-spin energy (a) and speciAc heat (b) as a function of tem-
perature for various anisotropy strengths D as indicated, for 62^ systems. The 
specific heat curves in (b) are by numerical differentiation of those in (a), and 
appear to be independent of D for these small anisotropy strengths. Smooth 
curves are drawn through the discrete values to simplify the figure. .41so shown 
on this figure are results for D = 0.4 for systems of 32^ and 124^ for comparison. 



to ease comparison). The specific heat peak broadens significantly, and shifts to 

higher temperatures, reaching T % 1.3 as D —oo, in good agreement with [43]. 

This broadening seems reasonable for random systems, since different regions 

of the system might be expected to lose order at different temperatures, depending 

on the details of the local randomness. It is odd that t h e peak should move to 

higher temperatures as we increase the randomness, since we would expect a 

system with less order to require less thermal energy to disorder. It must be 

recalled, however, that the peak in the specific heat for t h e two-dimensional X Y 

model appears the transition temperature 7^-^. The broadening could be a 

finite-size effect, but as we increase the anisotropy strength, the spins should be 

correlated over smaller distances, so that if the system is to show any sort of of 

finite size change, it would be as if the system was becoming larger, not smaller, 

in which case the peak would be expected to become sharper (section 3.6). 

It in necessary to add 0.5 to the specific heat measurements made at D = oo, 

since in this limit, the spins are constrained to lie along the anisotropy axes. 

At finite D, no matter how large, the spins are able to make arbitrarily-small 

oscillations about the axes — thus, there is one extra degree of freedom per 

spin, and so contribution to the specific heat per spin, by equipartition of 

energy. Because we have quantised the spins, for computational efficiency, it is 

possible for the small oscillations to be inhibited at very low temperature or very 

large anisotropy, though we have not seen this in practice. Because our system 

is discrete rather than continuous, the specific heat must eventually drop to zero 

at low temperatures, as required by the third law of thermodynamics. For the 

most pcirt, our simulations are performed in the classical (continuous) limit of 

our discrete system. 

Much more information can be conveyed in a i,liree-dinienHiona,j plot - fig-

ure 5.3 shows specific heat as a function of both D and 7' for very large values 

of D. The contours under the surface of figure 5.3(a) suggest a slight shoulder 

which is barely perceptible — to make this clearer, the contours are shown in 

figure 5.3(b). Above D % 5, the main peak in specific heat has stabilised on 

the large-anisotropy limiting value of T = 1.25, though the height of that peak 

continues to decrease as D increases. A second, sliallower, ridge appears to follow 

the line D = 57" as indicated. This is merely noted in passing, as we have not 

performed detailed simulations in this part of the phase diagram. 

The curves of specific heat from direct measurement by the fluctuation-dissip-

96 



11 

—0— D = 5.5 
D = 4.5 
D = 3.5 

X D = 2.5 
- - D = 1.5 
- % - D = 0.5 

X 

X X 
X X X A 
A A 

ate 
3*" 

0.0 0.5 1.0 1.5 

T 

(a) Energy 

c 

0.0 0.5 .0 

D = 3.5 

D = 1.5 
D = 0.5 

0.5 -

1.5 

(b) SpeciAr Heat 

Figure 5.2: Energy (a) and specific heat (b) of cooled systems with larger anisot-
ropy strengths D, as a function of temperature. The measurements in (a) have 
been transformed to Hamiltonian 2.53 to simplify comparison, and it is necessary 
to add 0.5 to the results For D = oc, as described in t h r text. By D ^ 5, the 
specific heat curve has llje same shape as foi D = oc. though is higher — the 
energy cur^e is not shown Tor D = oo in (a) to simplify the hgure. 
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(b) Contour Plot 

Figure 5.3: Surface plot (a) showing specific heat as a function of both tem-
perature r and anisotropy strength D. The contours on the base on the base, 
reproduced on (b), imply a very gentle shoulder, as described in the text. 
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Figure 5.4: Comparing specific heat by direct measurement (points) and by nu-
merical differentiation (lines). The points show some scatter, but lie on the lines 
to within experimental uncertainty 

ation theorem (equation 3.31) are rather noisier than the results from numerical 

differentiation of the energy, as was also found by [17], bu t the curves do agree 

within experimental error (figure 5.4). This difference is due to the lack of self-

averaging in the direct measurements (section 3.5.2). 

In order to compare the change in energy as a function of D with the prediction 

made at zero temperature (equation 2.75), we must manipulate the measurements 

slightly, to transform to Hamiltonian 2.53. Figure 5.5 shows a log-log plot of 

2-|- y — i((D) against D, with a gradient found to be around 1.75, to be compared 

with a prediction ^ in two dimensions. While the da t a does not fit the form 

predicted by section 2.8.5, there may be a compromise between the two effects. 

In the large anisotropy limit, in order to include measurements made at 

D = oo, we transform the energy to Hamiltonian 2.55, and plot against 1 /D 

in figure 5.6. For D —> oo, the energy per spin at zero temperature is around 

— 1.1, which corresponds to an energy per bond of —0.55,7. We might expect — 

if each spin were able to lie along the local anisotropy direction closer to align-

ment with the neighbouring spins, but because of the frustration, the alignment 

is worse, and the energy is increased. Fisch [47] similarly finds an energy of —0.5 

per bond in simulations at D — oo for two-component spins in three dimensions. 

As D is reduced, energy seems to be reduced inversely proportionally with D, as 
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Figure 5.5: Modified single-spin energy as a function of anisotropy at zero tem-
perature for small anisotroi^y strengths. We plot 2 — y — against D on a 
log scale as described in the text. A straight line ht haa gradient 1.75, indicating 
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Figure 5.6: Modified single-spin energy as a function of anisotropy at zero tem-
perature for large anisotropy strength. We plot w(D) -|- D against ^ as described 
in the text, and find approximately linear behaviour on the approach to infinite 
D. 
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Figure 5.7: Comparing u(T) for cooled and quenched systems. The heavy line is 
for slowly-cooled systems. represents a; equilibration sweeps followed by ^ 
production sweeps. 

predicted by equation 2.77. 

Q u e n c h e d S y s t e m s 

Quenched systems appear to have higher energy at low temperatures than cooled 

systems — this indicates that the quenched system is unable to find the ground 

state, until it is warmed slightly, when it manages to its energy and fall 

onto the cooled energy curve (figure 5.7). 

At very low temperatures, the system makes largo drops in energy for small 

increases in temperature — here, small gains in thermal energy allow it to cross 

the smaller of the energy barriers (section 2.6). Subsequently, the excess energy 

is lost very gradually — it seems that the system is caught in a deep energy 

minimum, and rather than crossing the final energy barrier into the region of the 

ground state configuration, the system remains in this energy well, and as thermal 

energy is gained, the system spends less time at the bot tom of the energy minima, 

so that the average system energy becomes less dependent on the depth of the 

local minima. At sufficiently high temperatures, the system has sufficient thermal 

energy to be unaffected by the fine details of the random potential (section 2.8.4). 

The extent to which this is a dynamic effect is unclear — for a finite system, 
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the Metropolis algorithm has a non-zero probability of reaching any configuration, 

so if we run the simulations for long enough, the system mugf And the ground 

state. On the other hand, the fact that our system appears to have difficulty 

finding the ground state mai/ indicate some sort of glassy behaviour, as discussed 

in section 4.3. Disregarding the very fast simulations, figure 5.7 does appear to 

show one temperature T* for each D at which the rate of warming is irrelevant and 

the curves meet up — this might be taken to be a glass tempera ture (section 2.6, 

below which the system shows freezing. Of course, the exact details of the way 

the energy reaches the cooled value changes from run to run, and depends on 

the starting spin configuration and on the layout of the random axes; this will be 

discussed further in section 5.5.1. 

If we only partially warm the system, to a temperature below T*, then cool 

back to zero temperature, we find that the zero-trmpcrature energy is between 

the original quench energy and that of the cooird system (figure 5.8). Once 

we warm beyond T" and cool, the system energy follows the curve taken by a 

sample cooled from high temperature. Thus T* seems to be an irreversibility 

temperature. 

It is interesting that the measurements of the specific heat by the fluctuation-

dissipation theorem do nof differ significantly from the specific heat for the cooled 

system at all but the lowest temperatures (figure 5.9). This indicates that the 

system is exploring a region of configuration space similar to the region around 

the ground state, but as we have seen, the minimum is shallower. 

5.2 Liquid Crystal Order P a r a m e t e r 

Inspired by work on liquid crystals, we have recorded what we have called the 

'Liquid Crystal order parameter ' 

Q,c = ( ' 2 ( S . . n , ) ' - i ) , (5.1) 

measuring the correlation between spin and anisotropy direction at each site — 

when there is a strong correlation, such as in the large anisotropy limit at low 

temperature, we would expect Qic —̂  1. For weak anisotropy or high temperature, 

Qic — 0 . 

Figure 5.11 shows this order parameter as a function of temperature for vari-

ous values of anisotropy strength D, and as a function of D for various tempera-
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Figure 5.8: Investigation of reversibility for 62^ and D = 0.4. The heavy line is 
for slowly-cooled systems. The system is started from a random configuration 
(quenched), then warmed (with 5000 equilibration and 50000 production sweeps). 
The diamonds show these points, which agree with figure 5.7. At each point, the 
final configuration is stored away, then the system is cooled once more. The 
lines in the figure show the energy as a function of tempera ture aa the system 
is cooled from these various starting states. After each cooling run, the system 
is restored to the configuration before the cool, and warming proceeds. In an 
experiment on a real sample, the system would have to be quenched back to 
zero then warmed. It can be seen that above some T"", the energy is a reversible 
fimction of temperature. 
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Figure 5.9: Comparing c(T) for cooled and quenched systems. The solid line 
is specific heat by numerical differentiation of energy for slowly-cooled systems. 
The points are measurements by fluctuation-dissipation, and do not appear to 
differ significantly from the cooled results, except at very low temperatures, where 
figure 5.7 shows large jumps in energy to be occurring. 

tures T. Because these points appear to lie on smooth curves, considerable effort 

was made to And a universal form for the data. Fitting the data to the forms 

(5.2) 

- e x p ( - ; 4 D ) r ) (5.3) 

gives A % 0.75 at T = 0 (as shown on figure 5.11), rising approximately linearly 

with temperature until around T = 1.2 where A levels off at around 1. This zero 

temperature result is consistent with the result of using equation 4.12. 

Because we can also write equation 5.3 in the form or indeed as a 

product D^'^exp(—//gT), we can combine the equations to arrive at 

Q,, ^ D"''^+« ' ^ e x p ( - / / 2 ( D ) r ) . (5.4) 

Fitting this to the data shows that % 0.7, independent of D. Thus we can 

collapse Qic(D,!r) onto Qic(l,T') in figure 5.11 by plotting against 

T, as shown in figure 5.12. 

For T > 1.2, the fit is better using the simpler Qic/D. In equation 5.2, it 

may be possible to find a better form for A which saturates at A = 1 above 
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Figure 5.10: Liquid crystal order parameter as a function of temperature for 
various anisotropy strengths D (falling curves), and as a function of anisotropy 
strength for various temperatures T (rising curves). T h e falling points lie on 
curves of the form Qic exp(—A(Z))T') while the rising curves are fit by Q ^ 
fi{T)D. The experimental points show anomalous behaviour at neither the T* 
found in section 5.1, nor at Tkt-
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Figure 5.11: Liquid crystal order parameter as a function of D at zero tempera-
ture. For D < 2, Qic lies on the curve but it must fall away from this curve 
for larger Z), since the order parameter cannot exceed 1. 
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Figure 5.12: A plot of showing that the liquid crystal order pa-
rameter can be fitted to a universal curve, as described in the text. 

T = 1.2. It had been hoped that finding a universal curve for Qic would allow 

some insight into the physics of the low-temperature state, but this has not yet 

been forthcoming. 

For larger anisotropy strengths, Qic is predicted to approach 1 as (equa-

tion 4.14); figure 5.13 shows a log-log plot of 1 — Qic against with the gradient 

of the straight line found to be 1.75. 

Q u e n c h e d S y s t e m s 

For quenched systems at low temperatures, Qic is slightly higher than for the 

cooled system. Together with the results for energy of quenched systems (sec-

tion 5.1), this suggests that the spins are 'pinned' by the anisotropy — this will 

be explored further in section 5.5.1. 

5.3 Correlat ions 

As described in section 4.5, we are able to measure spatial spin-spin correlations 

at regular intervals during simulations. 

Because we are really interested in using the correlations to determine the 
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Figure 5.13: Behaviour of Qic at zero temperature in the large anisotropy limit. 
The straight line demonstrates that Qic 1 — 

nature of the long-range order, if any, we use the ' raw' correlation function 

(equation 3.21). For the two-dimensional (pure) model, the second term 

in equation 3.20 should anyway be zero at all non-zero temperatures, as there 

is no true long-range order in this model — we expect even less order in this 

random system. 

As before (section 5.1), there appear to be three different regimes: a high 

temperature paramagnetic phase, an intermediate %y-l ike region with power-law 

decay, and a low-temperature regime. This is reflected in the spin-spin correla-

tions — Agure 5.14 shows the three different behaviours of p(r ) (circular average 

of 5r(r)) for a 62^ system at D = 0.4 cooled from high temperature. Because of 

the periodic boundary conditions, the data is only valid out to r = 31 along the 

side of the square, but of course, along the diagonal, we can go out to as 

shown. 

The most striking feature at low temperatures is, of course, the rzse in ^( r ) for 

r > 25, but it should also be noted that for smaller r , the decay is no longer alge-

braic — figure 5.14(b) shows the same curves on a log-log scale, where algebraic 

decay would show up as a straight line. At very short distances, there do appear 

to be straight lines, but of course, most of the theoretical predictions for corre-

lation functions are for the large r limit. Nevertheless, this may be evidence in 

support of the breakup into domains in section 2.8 — the correlations are ^ y - l i k e 

107 



T = 0.0 
r = 0.1 
T = 0.2 
T - 0.3 
r = 0.6 
r = 1.0 
T = 1.2 

(a) Linear scale 

1.0 

0.6 

0.4 

0.2 

\ 

'' 

r 

10 

r = 0.0 
T = 0.1 
r - 0.2 
r = 0.3 
T = 0.6 
T = 1.0 
T = 1.2 

(b) Log icale 

Figure 5.14: ^(r) vs r for cooled 62^ system with D = 0.4, showing paramagnetic 
behavior (exponential decay) at high temperature, X y behaviour (power-law 
decay) at intermediate temperatures, and a distinct low-temperature behaviour. 
The same information is reproduced with a log scale in (b), showing straight lines 
(indicating power-law decay) at intermediate temperatures, but straight lines only 
at short distance at low temperature. The correlations would eventually approach 
zero for a sufficiently large system. 
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at short distances, and the correlations fall off more rapidly at larger distances, 

implying a domain-structure, perhaps. Our data supports the prediction that the 

spin correlations are independent of temperature at low temperature [20]. 

It is possible that the apparent behaviour is a feature of the limited system 

size, and that departures would show up at larger distance at all temperatures. 

However, there is no theoretical foundation for a temperature-dependent domain 

size in the Chudnovsky-Imry-Ma theory (section 2.8), and section 2.8.4 does 

predict that the breakup into domains will cease above some temperature T*. 

It appears that the spin correlations are %y-like provided that g'(r) has fallen 

by at least a third by r = 25 or so. At lower temperatures, where the pure system 

would be expected to be well correlated at this distance, the new behaviour taikes 

over. This is understandable when the nature of the domains in section 2.8 is 

recalled: the domains are due to some sort of correlations in the anisotropy 

axes; rather, they are due to the exchange interaction holding the spins together 

to a certain extent, (fespzfe the presence of the uncorrelated random axes. At 

higher temperatures, where the exchange interaction is not strong enough to keep 

the spins aligned to this degree in even the pure system, it is not surprising that 

the system cannot sustain the Imra-Ma-Chudnovsky domains with the addition 

of the random anisotropy. 

We might suppose that the domains can be sustained provided ^(r) is greater 

than some constant over the domain size 

3(f) = r " (5.5) 

= const. (5.6) 

'7 ~ (5.7) 

1 
using 2.74. (5.8) 

log D 

This holds only when is greater than one lattice spacing, so that D < 1 and 

the right hand side is positive; it is only valid for small Z), and indeed diverges 

as D 1. Using oc T from equation 2.11, 

Before discounting the rise in ^(r) at large r as a finite size effect, or a feature 

of measuring ^(r) along the diagonal rather than along the edge, it is useful to 
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Figure 5.15: Thiee dimensional plot of ^(r) for 62^ system with D = 0.4 cooled 
to T = 0.1. Contours on base are a guide to picking out features on the surface. 

look back at ^(r) in two dimensions (i.e. without performing a circular average). 

Although this data is for one particular set of anisotropy axes, each g'(r) is a 

spatial average over all pairs separated by vector r, so there has been some 

averaging over the details of the anisokropy. Figure 5.15 shows ^(r) for a 62^ 

system with D = 0.4, cooled to low temperature. The system is clearly 

circularly symmetric, and there does appear to be a domain structure, though 

adjacent domains are approximately aligned (reminiscent of the Ferromagnet with 

Wandering Axes discussed in section 2.8.7), so that the s tructure is not terribly 

clear. The results are similar to those from the studies of the one-dimensional 

XY model with random anisotropy in [62]. Figures 5.16 and 5.17 show the 

same system at higher temperatures, where the unevenness is reduced, suggesting 

again, perhaps, a changeover to XY-like behaviour. 

We fit the correlations for a cooled 62^ svstem to the form 

exp (5.10) 

and find results for and ^ consistent with the qualitative description above, as 

shown in figures 5.18(a) and 5.18(b). 

becomes non-zero above T % 1, so we conclude tha t the spin correlations 

change to exponential decay at high temperatures, as has been shown earlier. The 

apparently random values for in this regime are simply features of the fitting 
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Figure 5.16: Three dimensional plol of system in figure 5.15 at T = 0.3, showing 
only a little unevenness. 

Figure 5.17: Three dimensional plot of system in figure 5.15 at T = 0.6, showing 
a much Satter surface. 
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Figure 5.18: Fitted value of and in equation 5.10 to g'(r) for 62^ system. At 
high temperatures, all diverge ^ 0) at the same temperature, indicating 
that the parametric to quasi-ferromagnet transition is unaffected by the anisot-
ropy. (Random values for 77 are a feature of fitting process.) Decay is power-law 
at intermediate temperatures, with ^^(D. T) % ?y(0, T) Poor At at low temperature 
indicate that data no longer fits this form. 
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Figure 5.19: ^(r) for quenched 62^ system with D = 0.4 

process. For all the values of D shown, the Atted parameter ^ goes to infinity at 

a temperature just below J on figure 5.18(b), where has a value around 0.25 

(indicated by dotted line) as expected (section 2.2). Below this temperature, 

y; for the pure system (D = 0) falls slowly with temperature to 0 at T = 0, 

again as expected. For non-zero D, 7̂  follows the D = 0 curve down to some 

non-zero temperature (which depends on D), below which it appears to level 

off, as predicted by [20,33]. The fit at low temperatures should not be trusted 

quantitatively, since the data is no-longer a good At to equation 5.10, as described 

earlier; this does, however, give us another measure of T*, the temperature below 

which pure behaviour is lost. 

Q u e n c h e d S y s t e m s 

The correlations for a system quenched then warmed again show three distinct 

regimes, but now the low-temperature states have rapidly-decaying correlations, 

as shown in figure 5.19, except perhaps for a slow decay at very short distance, 

aa before. This is consistent with the conclusions drawn from the energy data 

in section 5.1: the system at low temperatures is pinned by the anisotropy, and 

cannot escape until the system is warmed somewhat. The fanning of the data 

at larger r again implies loss of circular symmetry, and perhaps a breakup into 

domains. 
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Figure 5.20: Domain size is inversely proportional to D, as predicted by equation 
2.74 

One possible picture is that , while the domains in the cooled system were 

almost aligned, here the neighbouring domains are misaligned, and the averaging 

implicit in the measurement has set most of the long distance correlations to 

zero — see section 5.3.1. The curve at T = 0.25 shows that even after the 

correlation length reaches the order of the lattice size, t he system is not yet in 

the pure state — this is at least not a finite-size effect. 

In order to get some measure of the domain size, we have forced a ht to an 

exponential form, to find a correlation length as a function of D — any consistent 

way of fitting the data would be appropriate here. This measurement is made not 

at zero temperature, since our single-spin-update Monte Carlo algorithm is unable 

to cross even the smallest energy barriers to minimise the energy. Figure 5.20 

shows that domain size is approximately inversely proportional to D, in good 

agreement with equation 2.74, despite the rather ad hoc measurement. 

Dieny and Barbara [52] found that the spin correlations decayed from 1 to 

exp(—1) over a distance ^ % 14exp( —1.4D) at zero tempera ture — this does not 

diverge aa D —> 0 as expected due to difficulty in eliminating all pairs of vortices 

in the pure system. Despite a slightly different definition of correlation length, 

our results are in good quantitative agreement, and the correlation length by this 

measure for D — 0.4 is consistent with the domain size suggested by figure 5.14. 
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5.3.1 Spin C o n f i g u r a t i o n S n a p s h o t s 

In this section, we present pictures of instantaneous spin configurations, as re-

vealed by the real time graphics (section 4.6) — it has been hoped that a video 

showing the progression of the configurations through t ime could be made avail-

able, but that h(is not proved possible in practice. Figure 5.21 shows an in-

stantaneous spin configuration for a 62^ system with D = 0.4, slowly cooled to 

T = 0.3. The spins are predominantly aligned in the ?/ direction, but this is 

almost certainly a feature of the finite size of the system. 

The analogous plot for a quenched system is presented in figure 5.22. 

Warming further, the vortices disappear, and we reach the configuration 

shown in figure 5.23 

The role of vortices will be discussed further in section 5.5.1. 

5.4 Magnet isat ion 

It must be emphasised that , as has been discussed in chapter 2, the model 

in two dimensions has no true long range order, and can have no spontaneous 

magnetisation in zero field at non-zero temperature in the thermodynamic limit. 

Instead, it shows 'quaai' ferromagnetism — the spin-spin correlations show alge-

braic decay (equation 2.11), and the system is magnetic. Simulations of 

finite systems (fo show a spontaneous magnetisation at low temperature, how-

ever, because the spin correlations do not decay within the finite size of the 

lattice (section 5.3) — this measured magnetisation is expected to fall to zero in 

the thermodynamic limit. 

We would expect the addition of randomness to further reduce the amount 

of order at low temperatures, so that there can be no net magnetisation in the 

random caae either. 

That said, we have been able to use the spurious spontaneous magnetisation 

of our finite systems to try to determine further the low temperature properties of 

the random anisotropy system. We record the root mean square magnetisation, 

so that we can follow the magnitude of the magnetisation — the pure system is 

degenerate in the direction of any net magnetisation, so that a vector average 

decays with time as the spins rotate, whereas a root-mean-square measurement 
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Figure 5.22: Instantaneous spin configuration for 62^ D = 0.4 system quenched 

then warmed to T = 0.3 
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Figure 5.24: as a function of temperature for various anisotropy strengths 
D. As noted in the text, the magnetisation must go to zero in the thermo-
dynamic limit, but it is useful nevertheless to investigate the behaviour of this 
non-thermodynamic variable. Also shown is the magnetisation from a system 
which we have quenched then warmed, showing non equilibrium behaviour. 

should have a well-defined average. 

5.4.1 M a g n e t i s a t i o n of a F i n i t e S y s t e m 

In figure 5.24, we compare as a function of temperature for various anisotropy 

strengths D for a 62^ system. For D = 0, the magnetisation is small for T > 1, 

and below this temperature, it grows smoothly as the system is cooled, reaching 

= 1 at T = 0. These results are very similar quantitatively to those of the 

60^ system studied in [17]. As we introduce randomness, keeping D < 1, the 

magnetisation appears to follow the curve for D = 0 as we cool down to some 

T*(D), below which it levels off, so that the magnetisation is depressed at low 

temperatures. 

This is just as would be expected from the behaviour of the spin-spin correla-

tions in section 5.3 — at sufRciently high temperatures, t he spin correlations are 

%y-Iike, and by equation 5.14 the magnetisation should behave similarly. 

These results are consistent with [34], where the system at low temperatures 

is renormalised back to T"* and D = 0, and [20], where the spin-spin correlations 
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cure reported to be independent of temperature below T*. For larger D, T* has 

increased beyond T = 1, and there is no intermediate range of temperatures in 

which the system can be said to be %y-like. 

Q u e n c h e d S y s t e m s 

Figure 5.24 also shows a typical result from a quench, where we find behaviour 

similar to that shown by the energy (section 5.1): at low temperature, the mag-

netisation is significantly suppressed, as is expected from the behaviour of the 

correlations in section 5.3, and only when we start to warm the system is it able 

to increase the magnetisation to match that of the cooled system — the system is 

apparently increasing its order as wc increase (lie temperature, which may be an 

indication of energy barriers being overcome as (lie system gains thermal energy. 

M a g n e t i s a t i o n as a f u n c t i o n of D 

For small anisotropy strengths, we can compare the deviation from saturation 

with the predictions of [29]. Figure 5.25 shows the deviation from saturation for 

a 32^ system at T = 0 in zero field, and the line indicates showing reasonable 

agreement with the prediction. The smaller system size tends to mimic the effect 

of cooling in a non-zero field — while at T = 0, the non-random system must be 

fully-aligned, the random system may need extra encouragement to align, and 

the smaller system size helps this. (Usually this is regarded as a problem, of 

course!) 

5.4.2 Suscep t ib i l i t y 

While we have recorded the magnetic susceptibility during our simulations, the 

lack of self-averaging which reduced the quality of the specific heat measurements 

(section 5.1) is evident also for the susceptibility measurements. Because of hnite 

size effects, we have been unable to get the system into an equilibrium state with 

small spontaneous magnetisation, so that our results cannot be interpreted as 

zero-field susceptibilities. This has also prevented us from finding the suscepti-

bility by explicitly differentiating the magnetisation with respect to applied field 

strength. 
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Figure 5.25: Deviation from saturation as a function of small D for a small 
(32^) system at T = 0, in zero external field. Line shows compared with 
prediction of [29], 

The power-law decay of correlations at intermediate temperatures indicate an 

inRnite-susceptibility regime, and all we can say at present is that the susceptibil-

ity is strongly suppressed at low temperatures by the addition of the anisotropy. 

We cannot confirm the predictions in equation 2.84 directly. 

5.4.3 Scal ing B e h a v i o u r 

The magnetisation and spin correlations are linked by 

E s . • E s . 

r = 0 

L 

r = 0 
g(r) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

so that the way the magnetisation falls to zero with Z, can reveal information 

about the nature of the spin correlations, and allows comparison to be made 

with the explicit measurements in section 5.3. 
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Figure 5.26: Scaling behaviour of the pure (nonrandom) system. Straight lines 
on a log-log plot indicate algebraic (power-law) decay. 

When there is no long range order, and the system size is much larger than 

the correlation length (so that the integral in equation 5.14 is independent of i,), 

the magnetisation falls as . 

Using g(r) r" ' ' in equation 5.14, it can be verified tha t the magnetisation 

per spin scales as for the non-random case, and we can investigate the 

scaling behaviour of the random magnet. 

Figure 5.26 shows a log-log plot of zero-held magnetisation as a function of 

size for various temperatures for the pure system, clearly showing straight lines 

as expected, except for a region of transition from low-temperature quasiferro-

magnetism (algebraic decay) to paramagnetism (fluctuations) near T = 1, where 

the lines appear to be tending towards for large The fit of to 

these curves is shown in figure 5.28, and shows i] increasing from 0 at T = 0 to 

0.25 around T = 0.9, in good agreement with [17]. The magnetisation scales as 

at high temperatures, as expected. 

Figure 5.27 show the scaling behaviour for D — 0.4 — figure 5.27(b) con-

centrates on the low-temperature regime, which is not clear from hgure 5.27(a). 

At low temperatures, the magnetisation is continuing to bend over at large Z,, so 

that we are unable to determine the behaviour quantitatively. If the Chudnovsky-

Imry-Ma domain picture, supported by section 5.3, is to be believed, it might be 
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Figure 5.27: Scaling for D = 0.4 showing undetermined behaviour at low temper-
atures (clariAed on lower Agure), power law decay (straight lines) at intermediate 
temperature, and parametric behaviour (-L"'^) at high temperature . 

123 



1 -

o + D = 0.0 
D = 0.4 

o + 

o 
+ 

+ + + + 

0.0 0.2 

o o o o o 
I 

0.4 

O o ^ o 

0.6 

6 ^ 

0.8 1.0 1.2 

T 

Figure 5.28: Comparing from At of M ^ for D = 0.0 and D = 0.4. The 
horizontal lines show i] = 0.25 which is the prediction of the pure system at Tkt 
(section 2.2.3), and = 2 which is the expected behaviour for a paramagnet. No 
fit is shown for low temperature for D = 0.4 since the da ta clearly does not fit 
this form. 

supposed that at these low temperatures, the system should scale as the num-

ber of domains, rather than number of spins — in this case, there are too few 

domains for the scaling behaviour to be determined, and simulations on much 

larger systems need to be performed. The shape of the low-temperature curves 

appears to be independent of temperature, so that the scaling curve can be sep-

arated into At temperatures higher than T % 0.4, the scaling curves, 

though somewhat bumpy, appear to lie on approximately straight lines, implying 

re-emergence of pure-system M behaviour. The data does not conclu-

sively show whether or not is the same as the pure system — as shown in 

figure 5.28, at temperatures just below 7^-^ there is good agreement between the 

•q from D — 0.0 and D = 0.4, while below T ~ 0.7, the values differ. Of course, 

while qualitatively, the data appears to lie on a straight line, determining the 

gradient of such noisy data is very error prone. At temperatures T > TAT, the 

scaling behaviour is identical to the pure system. 
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Figure 5.29: Deviation from saturation for various system sizes for D = 0.5 and 
T = 0.01, demonstrating system-size independence 

5.4.4 A p p r o a c h t o S a t u r a t i o n 

We have also made studies of the magnetisation aa the system approaches satura-

tion in large magnetic fields, to compare with the predictions made in section 2.8. 

All figures show deviation from saturation on a log-log plot, unless otherwise 

stated. 

Figure 5.29 compares the approach to saturation for a number of system sizes 

with D = 0.5 and T = 0.01, demonstrating that , in the region of interest, the 

system size is unimportant. Thus all of the following is based on results from 16^ 

systems, for computational eaae. 

The effect of thermal desaturation in an external Held (section 2.8.9) can be 

demonstrated by plotting the deviation from saturation in the pure system, with 

D = 0 — as shown in figure 5.30, the magnetisation approaches 1 as ^ for 

^ > 40, as predicted by equation 2.94. In a similar way, a large anisotropy at 

low temperatures gives a desaturation ^ D^/77^ as shown in figure 5.31. 

For D < 5, the approach is slower than as can be seen from the figure: for 

D = 0.5, the approach is which we interpret as FWA behaviour (section 2.8); 

for D = 1, the slope is around 1.4; the slope is 1.7 by D = 2 and has settled at 2 

by D = 5. 
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Figure 5.30: The effect of temperature on high-field magnetisation of the pure 
system is to cause deviation from saturation (a) proportional to (dotted line) 
at sufficiently high helds, and (b) proportional to T (along ^ = 100). 
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Figure 5.31: The elTect of (large) anisotropy on high-Held magnetisation at low 
temperature and sufficiently high fields is to cause deviation from saturation (a) 
proportional to and (b) proportional to (along ^ = 100). The crossover 
to thermal demagnetisation can just be seen at very large fields and small 
D in (a). The behaviour is valid for D > 5, as described in the text. 
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Figure 5.32: Demagnetisation in high field for D = 1 at T = 0.01, showing three 
regimes of vs. 77 behaviour 

Figure 5.32 shows the demagnetisation for Z) = 1 and T" = 0.01: there are 

three distinct high-held regimes as predicted in section 2.8, but the two 

regions are separated by a region with whereas the prediction was 

in equation 2.92. The low-held regime is interpreted to be the Ferro-

magnet with Wandering Axes (FWA) predicted in section 2.8.7, while the high 

Aeld behaviour is thermal depinning as above. D is not suGiciently large for the 

intermediate regimeto show the expected behaviour, aa described above. 

It is almost possible to make out the changeover f rom to at high 

fields for small Z) in figure 5.31(a), but this crossover field can be picked out 

quantitatively by writing the deviation from saturation as the sum of the two 

contributions (equations 2.8.8 and 2.8.9): 

(̂777 

D 

n 
2 y 

(5.15) 

(5.16) 
T T 

so that a graph of against Zf should give parallel lines of the form 

-t- j7 ' (D,!r) , 35 shown on figure 5.32, and we might define the crossover to be 

where the two contributions are equal, i.e. where by extrapolating back 

to = 0 at —Zf', as shown on the figure. Because the lines are parallel, we can 

just use the ^ intercept at Zf = 0. The crossover field Zf' is plotted on a log-log 

scale against D in figure 5.34, showing the behaviour predicted in section 2.8.9 
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Figure 5.33: Graphical determination of the crossover between anisotropy- and 
thermal-induced demagnetisation - the crossover held is the x axis intercept 77' 

over a wide range of D. Figure 5.35 shows the inverse of the crossover field as 

a function of T for D = 1 — the intercept is rather small here, so that it is 

difficult to determine the intercept precisely, but the da ta supports a crossover 

Aeld inversely proportional to T, as predicted. 

5.5 D y n a m i c Ef fec t s 

5.5.1 R o l e of Vor t i ces 

A great deal of insight into the nature of the low-temperature conhguration has 

been afforded by the use of real-time graphics (section 4.6), allowing the progress 

of the system to be followed. The colour spin-plots in section 5.3.1 show how the 

choice of colours makes it easy to make out domains (spins with similar colour) 

and vortices (where abrupt colour-changes radiate out in all directions). In later 

simulations, code wcis added to give a quantitative measure the vortex density, 

as described in section 4.5. 

For the cooled systems, the vortex density is plotted as a function of temper-

ature for various weak anisotropy strengths D in figure 5.36. It is clear that there 

are no vortices present at low temperatures, and therefore that the pinning of 

vortices is the mechanism behind the various changes in behaviour observed 

129 



100000 

10000 -

1000 -= 

D 

Figure 5.34: Crossover field as a function of D, using da t a at T = 0.01. 
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Figure 5.35: Crossover field 77' as a function of T, using da t a at D = 1. The 
thermal desaturation above T = 0.05 overwhelms the effect due to the anisotropy, 
so that the intercept cannot reliably be distinguished f rom 0. 
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Figure 5.36: Vortex count versus temperature for various anisotropy strengths 
D for 62^ system, showing that the vortices are abundant above the Kosterlitz-
Thouless, but are absent below This is further evidence that the transition 
from the paramagnetic to A'}' regimes is unaFTected by the addition of weak 
anisotropy. 

at low temperature. 

On the other hand, hgure 5.37 shows that if the system is started from a 

random (quenched) configuration, the vortices inevitably present in the initial 

conhguration are unable to mutually annihilate at low temperatures; as was ob-

served in the energy measurements (section 5.1), the .system must be warmed 

to a degree dependent on the anisotropy strength l)efore the vortex density 

drops to zero. It is immediately apparent that vortices play a crucial part in the 

low temperature behaviour of quenched systems. It is also clear that the vortex 

density is not a well-deAned variable; as before (section 5.1) it depends crucially 

on the starting configuration and the layout of the anisotropy axes for these fi-

nite systems; for infinite systems, aa described in section 2.9, we would expect all 

possible local configurations of the random axes to appear, so that this sample 

to sample variation would be reduced. 

It was noted in section 5.2 that the liquid crystal order parameter is higher 

than expected in quenched systems. This indicates that the spins are more closely 

correlated with the local anisotropy axes than for cooled systems. This supports 

the argument proposed in section 2.9 whereby the vortices are 'pinned' by par-

ticular configurations of the easy axes. 
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Figure 5.37: Number of vortirrs in queue licd G2̂  syslein Tor various D 

Because it is in the nature of vortices to annihilate in pairs at low temperature, 

it is reasonable to suppose that in a system started in a configuration containing 

vortices, the vortex count will decay at low temperatures; given that the vortex 

pinning centres discussed in section 2.9 have an energy of order D, the probability 

of a vortex escaping from a pinning centre might b e ^ exp — ^ in unit time, giving 

a mean lifetime growing like exp D T • 

Figure 5.38 shows the average time taken for all the vortices to annihilate 

from ten random starting configurations. While the number of vortices in the 

initial configurations were reasonably consistent (within 10%), there were very 

large fluctuations (factors of 10 and more) in the measured vortex lifetimes. It 

was necessary to cap each simulation at 100000 cycles, to avoid wasting cpu time 

on pathological cases; this makes it rather difficult to fit quantitatively. The 

trends, however, are clear; the lifetime drrieases witli increasing temperature, 

and increases with increasing anisotropy Htrength: and for tr inprratnres T > D, 

the measured lifetime matches roughly the baseline for D = 0 (to take simulation 

dynamics into account). 

5.5.2 H y s t e r e s i s Loops 

Strictly speaking, hysteresis loops are a purely non-equilibrium phenomenon — 

if the system was always allowed to relax fully after each change in the external 
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Figure 5.38: Vortex lifetime as a function of temperature and anisotropy strength. 
The simulations were truncated at 100,000 cycles, so t ha t the times are sup-
pressed slightly at the top end. 

field, the effect would be gone. On the other hand, as described in section 1.1.8, 

the experimental systems which inspired this work do show hysteresis, because 

of the slow relaxation times. 

In section 1.1.6, the hysteresis was accounted for in terms of domains, which 

were in turn ascribed to the dipolar interaction. In this system, we have ne-

glected the dipolar terms from the Hamiltonian, yet we still find hysteresis — 

Figure 5.39 shows the sort of hysteresis loop produced by our simulations — be-

cause of the difficulties in starting a system From equilibrium in zero held with 

zero magnetisation, as noted in .section 5.4, we have not a t tempted to find an 

initial magnetisation curve, as done in [52]. Instead, we start the spins from a 

fully aligned state in a large held, then slowly reduce and then reverse the held. 

In general, we perform the sweep on only one direction, since the system is in-

variant under a 180° rotation, so that following the reverse curve is identical to 

running a second sweep in the increasing direction — the curve is reversed and 

superposed to form a conventional hysteresis loop as required. Shown on fig-

ure 5.39 are various important quantities: the remanent magnetisation is the 

magnetisation at zero held; the coercive held is that held at which the mag-

netisation changes direction; and the 7 7 , i s the held above which 

the hysteresis ends — it is the held above which the system exhibits reversibility. 
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Figure 5.39: Typical hysteresis loop at low temperature for 62^ at D = 0.4 

The figure shows irreproduciblc jumps in the magnetisation at small reverse 

fields, bearing considerable rrHrml)lanrc lo features seen on real systems (sec-

tion 1.1.8). The long, bumpy tail at fields larger than ji/po is not always present 

on the measured curves, but does appear sufEciently often to be significant — 

this tail is very similar to those seen by Dieny and Barbara [52] in simulations of 

this model at zero temperature, where the jumps in the tail are identified as due 

to the annihilation of vortices — we shall return to this below. 

Because hysteresis curves are a dynamic effect, it is necessary to take care 

over the rate at which the magnetic field is swept, to ensure that the curves have 

converged — Saslow and Koon [53] show tliat earlier work by Chi and Alben 

(which suggested that did not rise nionotonirally with D) was flawed by lack 

of convergence. 

The value of the remanent magnetisation Mr appeared to change little with 

sweep rate (see section 5.5.3), so we ran the system f rom negative field to zero 

field once, storing this final configuration (shown in figure 5.40). then ran further 

simulations starting from this stored configuration for several different sweep 

rates. At each field value, 500 equilibration cycles and 2500 production cycles 

were performed, with each cycle consisting 4 rotation and 1 flip updates per spin. 

The field step was varied from 0.001 to 0.128 for each T and D. 

Figure 5.41 shows the sequence of curves for a 62^ system at D = 0.4 and 
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Figure 5.40: Instantaneous configuration of remanent magnetisation state for 
D = 0.4 and T = 0.1, showing small domains. Because of the small system size 
and long relaxation times, the system is still largely aligned in the direction of 
the initial field. 
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Figure 5.41: Test of convergence of hysteresis loops — hysteresis loops for various 
Aeld sweep-rates as described in the text 

r = 0.1 — aithongli the details of I he path from 0 to //,.n changes, there is no 

doubt that the value of 7/̂ 0 is rea,sonal)ty roiivorgrd. and (lie configuration at 

^co is very similar for different sweep rates: one such configuration is shown in 

figure 5.42. The energy of this configuration is approximately the same as for the 

cooled systems described in section 5.1, and lower than those of the quenched 

systems at this temperature, as before. There appear to be no vortices or half-

vortices in this configuration. The differences in the path to jifco are taken to be 

characteristics of different runs over the system, with different random numbers, 

rather than features due to the differing step rate. The jumps may be due to 

local rearrangements of the breakup into domains (see section 5.3). 

On the other hand, ^rev is clearly no/ repeatable, and varies widely from run 

to run. As was found by Barbara and Dieny at zero tempera ture [52], the way 

in which the domains collapse in the reversed field has a significant effect on the 

subsequent behaviour, in the same waa as the starting configuration in a quenched 

system has a profound effect on the development of the system (section 5.1). 

The previous work at zero temperature found tliat the jumps in the tail were 

due to the successive eliinination oT the vorliccs foiiued by initial quench (for 

the initial magnetisation curve) or the domain reversals. While we find that 

topological defects play a part, the simulation shows a small number of /zaZ/-

vortices, increasing with field, but no significant effect f rom full vortices — this 
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Figure 5.42: Instantaneous configuration at H = Hco for Z) = 0.4 and T = 0.1. 
The domains have grown in the reverse field, and are consistent in size with the 
domain size found in section 5.3 
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Figure 5.43: Role of vortices and half vortices in hysteresis curve. The half-
vortices indicate an increasing stress in the system, which is resolved in small 
jumps in the magnetisation (with the brief appearance of full vortices). 

may just be a feature of the way the code detects the vortices (section 4.5) or may 

be due to the effects of non-zero trniperatnre on the vorticcs (so that the code 

does not recognise tliem as vortices. The prcscnrc oF t l irsr Imlf-vorlires implies 

sharp domain walls, as dcpictcd on figure 2.2. and an increasing strain in the 

system. 

C o e r c i v e F ie ld 

While the reversible field 7/,^^ above i.s probably of more interest, the coercive 

field is somewhat easier to measure in practice: results are much more easily 

reproduced, as shown above; and it is easier to detect when the coercive field has 

been reached from within a simulation — a simple test using the primitives in 

section A.3 goes like 

repeat 

getstate # gets current state into system variables 

until X > 0 
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Figure 5.44: Coercive Aeld as a function of temperature T for different an-
isotropy strengths D. There appear to be drops in the coercive Held strength at 
D-dependent temperatures. 

whereas it is much harder to predict beforeliand what magnetisation is required 

to be sure that the reversible state has been reached. 

Figure 5.44 shows the coercive held Tfco collected from simulations at various 

temperatures and anisotropy strengths. Qualitatively, the curves are as expected 

from previous results: the hysteresis loops get narrower as the temperature is 

increased, but gets wider as the anisotropy strength is increased. ( [39] found the 

unexpected result that /fco did not increase monotonically with D For simulations 

of three-component spins in three dimensions, but this result waa later refuted 

by [53].) 

All hysteresis ceases above T ' for the anisotropy strengths studied as 

expected, since other evidence is that for small anisotropy, the system is X y -

like at intermediate temperatures. For sufficiently small anisotropy strengths, 

anisotropy ceases at still-lower temperatures. On the curves for Z) = 0.2, D = 0.4 

and D = 0.6, there appears to be a definite jump in /7co(T'), which could be an 

indication of a change in behaviour similar to that found earlier. 

Qualitatively, the curves can be extrapolated back to T = 0 to give approxi-

mate agreement with the zero-temperature simulations of [52]. 
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5.5.3 R e l a x a t i o n f r o m R e m a n e n t S t a t e 

We have run long simulations starting both from an aligned state (roughly equiv-

alent to the remanent magnetisation state in section 5.5.2) and from a random 

starting configuration. During these simulations, we track both magnitude and 

direction of the net magnetisation (bearing in mind that this is a finite size ef-

fect — section 5.4), and we record the spin glass order parameter (section 2.6); 

both measurements afford a measure of the rate at which the system moves 

through phase space. For the first 1000 cycles (with each cycle comprising 10 

rotation at tempts per spin — section 4.3), the generated configurations are com-

pared with the starting state; the 1000th conAguration is then stored, so that 

subsequent spin glass ordering is compared with this intermediate result; es-

sentially, we are allowing 1000 cycles for equilibration, but are recording this 

information rather than discarding it as usual. 

Measurements of the direction of the net magnetisation, starting from an 

aligned state, are shown in figure 5.45, with the angle of magnetisation in the 

left figure and a probability distribution (histogram) on the right. At low tem-

peratures, the system moves to and remains at the nearest local minimum; when 

the temperature is raised, it is able to find what appears to be a 'global' mini-

mum direction (since the natural domain size found in section 5.3 is of the order 

of the system size. At higher temperatures still, it is able to flip between the 

two equivalent orientations along this minimum — it is possible in principle to 

use the time between flips as a measure of the system relaxation time, but we 

have been unable to fit this data quantitatively. Even at high temperatures, the 

system shows a marked preference for the easy direction. At low temperatures, 

the magnitude of the magnetisation is very slightly higher than the earlier results 

where the system is cooled from high temperature, which is as expected. 

For a quenched (random) starting state, it is the magnitude of the magneti-

sation that is of interest — we are interested in the timescales required for the 

magnetisation of the quenched state to 'recover' (section 5.4.1). Figure 5.46 

compares the magnetisation as a function of lime for two temperatures for a 62^ 

system with D = 0.4. With T — 0.3, the system rapidly finds one metastable 

state, where it remains for what is in fact a considerable amount of Monte Carlo 

time, before jumping to a region of phase space with magnetisation akin to the 

cooled system. Almost inevitably, the jump coincides with the annihilation of a 

pair of vortices, as illustrated on the bottom curve in the figure. 
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Figure 5.45: Angle of magnetisation witli tin]e(ler() and a probal)llity distribution 
(right) for 62^ system with D = 0.4. For teniperaluies (top to bottom) 0.1, 
0.4, 0.8, 1.0. At low temperature, the system finds nearest local minimum and 
stays there; at slightly higher temperatures, the system is able to And a deeper 
energy minimum. At higher temperatures still, the system flips between the two 
equivalent directions. Even at high temperatures, the probability distribution 
shows that there is still a tendency to favour these preferred directions. 
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Figure 5.46: Magnetisation as a function of time from random starting state. 
The jump in the curve for T = 0.3 corresponds to the annihilation of a pair of 
vortices as shown in the lower curve. 

At a lower temperature, the system hnds what appears to be the same me-

tastable state, but spends the whole of the substantial simulation without being 

able to reach the vicinity of the ground state (whose magnetisation is slightly 

higher than the final state of the T = 0.3 configuration). The magnetisation is 

certainly rising with time — even longer simulations would eventually allow the 

system to shake off the last pair of vortices (not shown). 

Measurements of the spin glass order parameter (section 4.5) tell the same 

story: the system moves rapidly away from the initial random configuration, then 

appears to be trapped in a metaatable state for long periods at low temperature. 

At higher temperatures, the system fluctuates more rapidly. Figure 5.47 shows 

the spin glass order parameter measurements as a function of time at different 

temperatures. The order parameter was measured with respect to the initial 

(random) configuration for the Hrst 1000 sweeps, then the 1000th configuration 

is stored, and subsequent measurements are with respect to that configuration. 

If a later conAguration is stored, the low temperature measurements reveal the 

system to be stuck in a metastable state, whereas the higher temperature curve 

again moves rapidly away, revealing that it is sampling a fairly large volume of 

phase space. We have been unable to make a quantitative analysis of the spin 

glass order parameter results. 
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Figure 5.47: Spin Glass Order Parameter from a quenched start. The system 
rapidly moves away from the initial configuration (time up to 1000 sweeps) for 
both curves. For the upper curve (low temperature), the system appears stuck 
in a metastable state. The lower curve at higher tempera ture is sampling a 
larger volume of phase space; redefining the order parameter relative to a later 
configuration shows that the system is not stuck in a metastable state. 

5.6 S u m m a r y 

Our simulations show that , below a certain 7 "̂ which depends on D, the system 

shows irreversibility — the system parameters such as energy, magnetisation 

and liquid crystal order parameter have different values for cooled and quenched 

systems, and the spins show different correlation functions. Vortices appear to 

play an important part in this, as shown in section 5.5.1, since the graphs of the 

cooled and quenched quantities meet as the last vortices are annihilated from the 

quenched systems. 

While we And this irreversibility for all system sizes, the quantitative details 

do depend on 7̂ , and for small systems the irreversible behaviour ceases at lower 

temperatures. This is as expected, since a Monte Carlo algorithm can explore a 

small system much more carefully, and a small system has much smaller energy 

barriers. 

It is clear, however, that the differences in behaviour are not due to the 

vortices. The scaling of the magnetisation and the spin correlations for the cooled 

systems indicate a marked change in behaviour at around the same temperature. 

143 



1.2 

o o o 

0.8 G G OX * X 

D O X 

0.4 + OO X 0 X 

o (3:+ K - T o X 

0.4 0.8 1.2 

T 

Figure 5.48: Tentative phase diagram for the two-dimensional % y model with 
small random anisotropy, collecting together measurements from cooled correla-
tions (O), quenched correlations (4-), cooled and quenched energy and magneti-
sation (O) and results from finite size scaling of magnetisation (x ) . P represents 
the paramagnetic phase, K T is the Kosterlitz-Thouless regime, and G denotes 
the part of phase space which we call glassy. 

with a change from Kosterlitz-Thouless behaviour to a distinct low-temperature 

regime. There are no vortices present in the cooled system to account for this 

change. 

We collect together the various values of T ' from the previous sections to form 

a tentative phase diagram (figure 5.48): 

# one meaaure of T" is the temperature at which the values of the energy, 

magnetisation and liquid crystal order parameters coincide for cooled and 

quenched experiments. The cooled systems always have lower energy, im-

plying that the quenched systems are trapped in local minima until they 

gain enough thermal energy to escape (c.f. section 2.8.4). 

# It is possible to identify a region at intermediate tempera ture in which the 

spin-correlation function is algebraic, like the Kosterlitz-Thouless phase of 

the pure system. There is a fairly clearly marked change to a diiferent 

(unidentified) regime at low temperature. 

e The scaling behaviour of the magnetisation gives another indicator of T* 
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as the system changes from power-law decay to a low temperature scaling 

form. 

# At low temperatures in quenched systems, the spins decorrelate over much 

smaller distances than for systems cooled to the s a m e temperature. The 

temperature at which the correlations become algebraic give an independent 

measure for T". 

It is convenient to defer further discussion until the three-dimensional results 

have been presented, so that the two systems can be reviewed in parallel. 
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C h a p t e r 6 

T h r e e Dimens iona l XY M o d e l 
w i t h R a n d o m A n i s o t r o p y 

Presented here are initial results from simulations on the three-dimensional X Y 

model with random anisotropy. Brcaiise thr number of spins is very large for 

even rather modest system dimensions, we have not been able to perform such 

extensive simulations over as wide a range of the system paiameters as we were 

able to cover for the system in two dimensions in chapter 5. In order to make 

even a 31^ system run in a reasonable time, many sacrifices in terms of memory 

usage had to made (section 4.4.2), so that 31^ was in fact the largest system we 

were able to study with the limited storage available on the main hardware — 

we were able to make brief use of a bigger parallel computer, with fewer compute 

nodes, but more memory per node, to simulate slightly larger systems; this time, 

the computer power, rather than the memory was the limiting factor. 

Most of the following corresponds closely to the equivalent sections in the 

previous chapter. The most obvious difference between the results in two and 

three dimensions is that much larger values of D are required to malce a significant 

effect on the system — because of the higher dimensionality, more paths exist 

between nearby spins, and the exchange interaction has a more significant effect. 

In the pure system, the exchange interaction in three dimensions is sufBcient to 

produce long-range order at low temperatures, whereas in two dimensions, the 

exchange can only sustain quasi-ferromagnetism — the system aZmoaf orders. 

It should be eaaier to detect the destruction of true long-range order in three 

dimensions as opposed to the two dimensional quasi-ferromagnetism. Also, the 

effect of vortices in three dimensions is expected to be much less significant — 
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while vortices can still form, they take the form of vortex strings, as described in 

section 2.2.3. 

As before, we contrast results from cooled and quenched systems in zero Held, 

and we study energy (section 6.1). liquid crystal order parameter (section 6.2), 

correlations (section 6.3) and magnelisation (section 6.4), in order to investigate 

the predictions of the Chudnovsky-Imry-Ma theory in section 2.8. 

6.1 E n e r g y 

Like the two dimensional system (section o.]), the shape of the energy vs. temper-

ature curve changcH very liKlr willi D a1 small D. sulTcniig only a shiTt dependent 

on Z) but independent of temperature, as shown in figure 6.i(a). Accordingly, 

the curves for the specific heal are superposed in figure 6.1(b). 

For larger values of D, differences appear in the shape of t((T'), as shown in fig-

ure 6.2(a), and consequently in the specific heat curves, as shown in figure 6.2(b). 

The energy has been transformed to Hamiltonian 2.55, which is more appropriate 

for large anisotropy strengths (section 2.8.3), and a factor of 0.5A;gT' haa been 

added to the specific heat for D = oo. to compensate for the loss of one degree 

of freedom per spin as before. 

Here, the specific heat cur\es broaden and mo\e to lower temperature, as 

expected and unlike the two-dimensional system. The curve for D = oo has a 

broad peak centred around T — 1.95J, in good agreement with the description 

in [47], though there was no graph shown in that work, so detailed comparison 

cannot be made. The energy of the ground state is in excellent agreement with 

the results presented in [47]. despile (he general rrilirism in that paper of the 

single-spin update algorithm used here. 

6.1.1 Scal ing 

Because the peak in the (pure) model in three dimensions represents a gen-

uine phase transition (whereas the peak in the specific heat for two dimensions 

occurs above the phase transition, as discussed in section 2.2.3), we can at tempt 

to fit a scaling form to the data. (7(7, D) is taken to be of the form 

C'(7 .D) = Co + D - V ( ( r - r j D - ' ' ) (6.1) 
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Figure 6.1: Energy (a) and Specific Heat (b) against tempera ture for cooled 31^ 
systems with various small anisotropy strengths D. As before, the shape of the 
energy curve is unchanged with D, so that the specific heat curves are superposed. 
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(section 2.4.1) so that a plot of (C — Co)D'^ against, ( /'— collapses all the 

data onto one curve, as shown on Rgiire 6.1.1 with A = 0.25, ^ = 0.5 and 7^ — 2.2 

(as found by [51]) — more data for larger system sizes is required to determine 

71: more accurately, and without an accurate value for TL, the exponents cannot 

be precisely determined. As noted for the two-dimensional case, it might be 

inferred that the change in the curve is due to some indirect effect on system size. 

But again, an increased anisotropy strength would result in a smaller correlation 

length, so that a given system size would better-represent a real system aa the 

anisotropy is increased; this is the opposite from what is observed. 

The specific heat data for D < 3 does not collapse onto the common curve, aa 

can be seen from the figure (with points joined by straight lines for emphasis) — 

the system size f, is also a scaling variable, and it may be tha t the rounding due 

to outweighs that due to the anisotropy D for small D (since the curves for 

D < 3 in figure 6.2(b) are superposed without scaling). 

Fitting this data to a Gaussian plus a linear (crin (for want of a better ex-

pression) we arrive at a curve 

/(<) = c + n e x p ^ - ^ ^ ^ ^ j ^ - ^ f (6.2) 

with ( = T — Tc and a = 1.2, 6 = 0.08, c = 0.65, e = 0.045 and g' = 1.5, as shown 

in figure 6.3(b). 

It is possible to derive a relationship between the scaling exponents A and 

in equation 6.1. As D -4̂  0, we expect to recover equation 1.3 (C 1^1'"°')-

Thus, for small argument a;, / (T) ^ so that equation 6.1 becomes 

C (6.3) 

requiring a = ~ K 

Since a is very small for the three-dimensional .VK system, we should ex-

pect to find A <K but if we apply this constraint above, we cannot acheive a 

satisfactory fit. 

6.1.2 C o m p a r i s o n of Specif ic H e a t by D i f f e r e n t i a t i o n a n d 
F l u c t u a t i o n - D i s s i p a t i o n 

The specific heats by numerical differentiation of the energy data and by the 

ductuation-dissipation theorem (equation 3.31) are compared on figure 6.4. There 
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Figure 6.3: Scaling curve for specific heat from figure 6.2(b). The data for low 
D does not fall on the scaled form in (a), as indicated with straight lines for 
emphasis. The data is fit to a scaling form (equation 6.2) aa shown in (b). 
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Figure 6.4: Comparing specific heat by fluctuation-dissipation and by numerical 
differentiation. Apart from near the phase transition, the curves are in good 
agreement at small D, but for larger D there is some disagreement for interme-
diate temperatures. 

is good agreement (except near the phaae transition) for D = 1, but there does 

appear to be some mismatch at intermediate temperatures for larger D. As 

before, there is no peak other than the (shifted) pure peak. 

6.1.3 D e p e n d e n c e of E n e r g y on A n i s o t r o p y S t r e n g t h 

In order to compare the energy as a function of D with the prediction made in 

equation 2.75, we transform the energy data to Hamiltonian 2.55, resulting in a 

curve of the form ^(7 as shown in figure 6.5, which is in poor agreement with 

the Chudnovsky-Imry-Ma theory, which predicts ^ in three dimensions, but 

in excellent agreement with the local Auctation theory presented in section 2.8.5. 

It is possible that the small system dimension ^ is insufficient for the breakup 

into Imry-Ma domains to be fully realised, though a local energy term would 

always be expected to dominate a longer-range effect. 

Figure 6.6 shows the behaviour of the energy aa D —̂  oo at zero tempera-

ture — as before, the energy is transformed to the large D Hamiltonian (equa-

tion 2.55) to allow inclusion of the point for D = oo. The approach to infinity is 

approximately linear in as predicted by equation 2.77. 
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Figure 6.6: Energy is inversely proportional to D on approach to D = oo (using 
the large D Hamiltonian — equation 2.55). 
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Figure 6.7: Comparing qucnchcd and cooird energy for D = 4 

Q u e n c h e d S y s t e m s 

As with the two dimensional system, we have also run simula,tions where we start 

from a random configuration at low temperature (as if quenched from high tem-

perature), and slowly warm. As before, the energy as the temperature is 

increased — again, the interpretation is that the system is somehow frozen, and 

is able to reorganise only when sufficient thermal energy is available to surmount 

energy barriers. Figure 6.7 shows the sort of graph obtained from such simula-

tions, which (apart from the larger D required to see the effect) are reminiscent 

of the two-dimensional simulations (figure 5.7). 

As before, there appears to be a range of temperature over which the energy 

drops rapidly, followed by a gradual convergence to the energy from the cooled 

simulations, which is interpreted to be tlie result of the system exploring a deep 

potential well — as the temperature is increased, so that the system is sampling 

phase space away from the local energy minimum, the details of the region of 

phase space become irrelevant. The details do not appear to change significantly 

over a range of simulation timescales. 
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Figure 6.8: Liquid crystal order parameter with D and iT. 

6.2 Liquid C r y s t a l O r d e r P a r a m e t e r 

Figure 6.8 shows the liquid crystal order parameter measured for various D and 

r — the curves are similar qualitatively to those results for two dimensions (Ag-

ure 5.10), but at higher anisotropy strengths, the curves appear to become convex 

rather then concave. (Data was not collected for Qic at such large anisotropy 

strengths in two dimensions.) We do not have a theory for this behaviour, and 

have been so far been unable to find a universal form for these three-dimensional 

data, but the approximately linear behaviour with D at zero temperature (up-

permost rising curve on the hgure) is compatible with the observation of E 

in section 6.1, by equation 4.12. The linear behaviour ceases around D = 3, 

which is also the anisotropy strength above which the specific heat fulfilled the 

scaling relation for this system size (section 6.1). However, the quadratic nature 

of energy against anisotropy strength appears to persist until around D = 4. 

1 — Qic is plotted against 1 /D on a log scale, in order to verify the predicted 

behaviour for large D in equation 4.14; here, we find the straight line has a 

gradient of 1.9 for D > 3 in good agreement with theory. 
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Figure 6.9: Qic on approach to the k ing limit. The dotted line illustrates (D 

Q u e n c h e d S y s t e m s 

We find that at low temperatures, the liquid crystal order parameter is higher for 

the quenched system than the cooled system, as shown on figure 6.10, implying 

that the metaatable state at low temperatures is in some way pinned by the 

anisotropy — the system is in a local minimum in which the spins are slightly 

more closely coi'related to the anisotiopy axes than in the cooled state, as before. 

6.3 Cor r e l a t i ons 

The theory in section 2.2 predicts that the real-space spin-correlations in the pure 

three-dimensional .Vy model decay like ^(r) ^ n exp(6/r); for even quite small r, 

this is indistinguishable from g(r) ^ a a6/r (since exp(a;) ^ 1 4- a; for small a:), 

as shown in figure 6.11(a). The fit to the data can be made even better at short 

distance by using a power smaller (more negative) than —1 in the second form. 

Since we find that the behaviour changes with the addition of the random 

ajiisotropy, it was found to be convenient to use a generalised fit 

^(r) (z -|- (6.4) 

to the spherical average of the data. 
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Figure 6.10: Comparing Qic for cooled and quenched systems for D = 4. 

However, actually performing a fit with this form is very difhcult, since the 

parameters are highly correlated and therefore the minimum of in ^parameter 

s p a c e ' is r a t h e r shal low. O n e way of f i t t i n g t h e d a t a q u a l i t a t i v e l y is t o p lo t on a 

log-log scale, subtracting different amounts until the points form a straight line — 

the appropriate value for the constant is fairly evident, since the curve on the 

log plot abruptly changes from concave to convex in the vicinity of the correct 

subtrahend. 

To ht quantitatively, it is convenient to take Fourier transforms, so that the 

constant term is mapped to k = 0, and 

r"'^exp(—2k.r)c(^r = A;^"^/(A;r)'''^exp(—2A;rcos^)(/(A;r)(f6)6(^ (6-5) 

k A - 3 (6.6) 

since the integral on the right hand side of equation 6.5 is simply a number. 

Thus, if the data hts this form, 3 — A is simply the gradient of the straight line 

on the log-log graph of the fourier transform of the correlation data, as shown 

in figure 6.11(b); fitting this straight line is a much easier task, both because we 

have reduced it to a two-parameter fit, and because the minimum is better-

defined for a fit of this form. It is the small-A; data which is important, since 

this corresponds to large distance in real space. The gradient on figure 6.11(b) 

is slightly larger (less negative) than —2, which corresponds to a slightly faster 

decay in real space, as noted above. 
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Figure 6.11: Correlations of pure A'V model in three dimensions. Fit is simplified 
by taJxing Fourier transforms, whereby the second form in (a) becomes a straight 
line with gradient approximately —2 on a log plot, as shown in (b). 
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6.3.1 Coo led s y s t e m s 

Figure 6.12 compares the correlation function at five temperatures for D = 0 (a) 

and D = 4 (b). As in the two-dimensional system, the correlation function for 

the random system changes very little below a certain D-dependent temperature. 

Unlike that system, however, the form of the correlation function does not change 

from intermediate temperatures, though the power does appear to change. 

The dotted line on figure 6.12(b) shows a At of the low temperature corre-

lations to o + % though as was noted above, the minimum of for a At 

of this form is very broad, and the fit is quite good over a rather large range 

of parameters. The parameter a corresponds to a long range order — we find 

that this constant term falls with increasing system size, suggesting that in the 

> oo limit, we have simple power-law decay. This behaviour was also found 

in related work on the random anisotropy nematic spin model [63]. 

Figure 6.13 shows the htted value for A against temperature in equation 6.4 

for various anisotropy strengths D. The fit is rather erratic, but it is fairly clear 

that the trend is for the power to level off at low temperature, and the power 

increases with increasing D. For 7" > 2.2, the fit produces the same parameters 

for all D — we identify this as the paramagnetic regime. 

The fit gives the same results for all D for T > 2.2 — this is identified as the 

paramagnetic regime. 

As noted in the introduction to this section, A is expected to be close to 1 for 

D = 0. However, for this case, the constant a does nof vanish with increasing 

system size, as we expect true long-range order for the non-random system. The 

data for D < 1 is extremely hard to fit. We attribute this to a finite size effect — 

the system is crossing over from a state with (approximately) power-law decay 

with a constant to a state with a different power-law decaying to zero (in the 

large Z limit). 

This will be discussed further in the section 6.4.2. 

6.3.2 Q u e n c h e d S y s t e m s 

The spin correlations have a different form at low temperature in quenched sys-

tems, as shown in figure 6.14(a). As the system is warmed, the order increases as 
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Figure 6.12: Spin correlations Tor (a) D = 0 and (b) D = 4. Temperature 
increases from 0 at top to 2.5 at bottom, in steps of 0.5. The low-temperature 
data shows 'bunching' analogous to the two-dimensional system. The dotted line 
on (b) shows the curve 0.4 -f- 0.4 x 
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Figure 6.13: Fit of form a + 6r ^ to the spin correlations. Despite rather erratic 
values, the trend is clear: A increases with increasing D. 

the system overcomes energy barriers, until the system is able to adopt the same 

configuration as the cooled systems. 

In order to obtain a measure of the domain sizes, to verify CIM predictions, 

we force-fit an exponential form to the low-temperature data, aa before. This 

gives approximate domain sizes as shown in figure 6.14(b). The line shows a fit 

of the form in good agreement with the CIM prediction of ^ 

(equation 2.74). 

6.4 M a g n e t i s a t i o n 

Unlike the two-dimensional case, the (pure) X y model in three dimensions is 

expected to have true long-range order, and hence a spontaneous magnetisation 

at low temperature. However, only an infinite system can genuinely show a broken 

symmetry state; the magnetisation of a finite system can still rotate in space with 

time, so that care is still required during a simulation in order to ensure that the 

measured magnetisation M does not average to zero. 
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Figure 6.15: Spontaneous Magnetisation as a function of temperature for various 
anisotropy strengths. 

6.4.1 M a g n e t i s a t i o n of a F i n i t e S y s t e m 

We And that the addition of random anisotropy suppresses the magnetisation of 

the 3D model at a given system size, aa shown in figure 6.15. However, we 

And the reduction for a given anisotropy strength to be signiAcantly smaller than 

for the two-dimensional system: the magnetisation for D = 1 in a 31^ system is 

about the same as for only D = 0.2 in a 62^ system (Agure 5.24). This may be 

due to the smaller linear dimension of the system (we use more spins in three 

dimensions than in two, but the linear dimension is smaller, and it is the ratio 

between correlation length and that inAuences Anite size behaviour), or it 

may be due to the fact that the pure three-dimensional system is 'more' magnetic 

in the Arst place (section 2.2). Even at D = oo, the 31^ system shows a non-zero 

magnetisation which is in good quantitative agreement with [46]. 

The plot of zero-temperature magnetisation against anisotropy strength D 

in Agure 6.16 bears remarkable respml)laiice to the predictions of mean Aeld the-

ory [29]. This again suggests a Anite size elTcct — in a small system, the magneti-

sation does not get a chance to change direction across the sample before reaching 

the other edge. The difference from full alignment is shown in Agure 6.16(b), and 

for small D it is in reasonable agreement with the ^ predicted by mean 

Aeld theory [29]. 
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Figure 6.16: Ground-state magnetisation as a function of anisotropy strength. 
The line in (b) shows ^ in reasonable agreement with mean Aeld the-
ory [29] 
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Q u e n c h e d S y s t e m s 

As in the two-dimensional system, the system must be warmed to a temperature 

T*(D) before the magnetisation achieves the same value as for the cooled system. 

As would be expected from the preceeding results, T" is much larger for a given 

anisotropy strength than for the two-dimensional system; a typical result is shown 

in figure 6.17. T ' does grow rapidly with D (figure 6.26), however, so this may 

be a feature of the small system-size — as discussed in section 2.6, glassiness is a 

dynamic feature, and the size of the energy barriers depends on the system size. 

6.4.2 F i n i t e Size Scal ing 

In the the study on the two-dimensional system, the scaling of the net magneti-

sation with system size seemed to give Ihe most reliable (qualitative) indication 

of a change in 'static' behaviour (on (he timesrales of our simulations). We have 

made a similar study of the scaling of the three-dimensional system, but we are 

hampered somewhat by the limited system dimension which we have been able 

to study. As noted at the beginning of this chapter, we were able to use a little 

t ime on another machine to work with a slightly larger system. 

Figure 6.18 shows the scaling behaviour of the non-random system, with a 

close-up on the low-temperature behaviour in figure 6.18(b). Because we expect 

165 



1.00 

0 .10 1 

0.01 

L 

(a) High Temperatures 

m 

(b) Low Temperatures 

Figure 6.18: Scaling of magnetisation of nonrandom system with system size. 
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graph, with T = 2.4J at the bottom. 

166 



long-range order at low temperature, the magnetisation should not change with 

system-size. Putting = o- | -6/r in equation 5.14, we And ^ 

so that for sufhciently large system, m is independent of iL, as required. The 

scaling curves can be shown to fit this form exactly, at low temperature. 

At high temperatures (T > 2.2), the scaling behaviour changes over to ^ 

as expected for a paiamagnetic regime. 

The corresponding scaling behaviour for our random system is shown on fig-

ure 6.19. We were able to calculate the magnetisation at only one point for a 

lajger system; this single point is invaluable, however, in demonstrating that the 

magnetisation is falling as some power of system size Z, (straight-line on log-log 

p l o t ) . 

At low temperatures, the curves appears to be bending down with increasing 

Z,, in a similar way to the two-dimensional system (figure 5.27); it is not clear 

from this figure whether they are heading towards a different power law from the 

intermediate temperature results, but when results for different D's are taken 

into account, it seems likely that the power is the same. At higher temperatures, 

the magnetisation begins with with a more rapid decay at small Z,, but head 

towards the same power law for larger system sizes. These may be effects due to 

the 02,(7")-

At high temperatures, the curves are heading towards as before. The 

crossover is not sufficiently clear-cut for the transition temperature to be identified 

us ing t h i s a p p r o a c h . 

A power law of magnetisation with system size is consistent with the exphcit 

measurements on the spin correlations in section 6.3, where we found the cor-

relations g(r) Gz,(?^) + putting this form into equation 5.14, we should 

expect to find ^ <^ (̂7") -t- We measure the gradient of the magnetisation 

scaling curves, and present the results in figure 6.20. 

The powers from the finite-size scaling are somewhat smaller than those from 

the direct measurement on the correlation function, though the general trends 

are the same. [63] found similar behaviour, but extrapolation of the correlation 

results to large Z} brought the results into agreement. 
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Figure 6.19: Scaling of magnetisation of D = 2 system with system size. Each 
line is a different temperature, from 0 at the top, increasing in steps of 0.2 J down 
the graph, with T = 2.4J at the bottom. The curves at low temperature show 
a s imi l a r ' b u n c h i n g ' t o t h e t w o - d i m e n s i o n a l s y s t e m . W e w e r e a b l e t o u s e t i m e 

on another computer system to make one measurement at an even larger system 
size, to confirm the power-law decay. 
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D 

Figure 6.20: Gradient of magnetisation curves 

6.4.3 A p p r o a c h t o S a t u r a t i o n 

In order to investigate the CIM predictions for the approach to saturation (sum-

marised in section 2.8.10), we have performed studies with large magnetic fields. 

As was found in the two dimensional case (figure 5.29, the system size is relatively 

unimportant, so the following is based on results from a 16^ system, to minimise 

the computational load. 

Figure 6.21 demonstrates thermal desaturation (section 2.8.9) on a system 

with weak anisotropy (D = 0.25), with a dotted line indicating the 77"^ predi-

cated by equation 2.94. 

In strong anisotropy, at low temperature, the desaturation in large field is pre-

dicted to have take the form ^ (section 2.8). As before (section 5.4.4), 

we And an extended crossover region with the 77 dependence changing, until it 

saturates at 77"^ for D > 4: for D = 0.25, we find 7i7"\ which we interpreted as 

thermal desaturation above; for D = 1, we find 77"^'^; by D — 2 it hcis become 

77"^'^, and it has reached 77"^^ by D = 4. This is shown on figure 6.22. 

We have been unable to identify the FWA regime with 77"&, as predicted by 

equation 2.90. The curves in the figures do have to pass through 77": in order 

to reach 77"% but they do not spend sufficiently long with this behaviour for the 

FWA regime to be formally identified. As noted in section 2.8.7, there is some 

confusion over the existence of the FWA phase. 
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6.5 D y n a m i c Effec ts 

In the two-dlmensionaJ system, we found that the details of the quenched be-

haviour depended on the system size and the timescale of the experiments, aa 

expected. We have run some very long simulations on the 31^ system in order 

to discover the time dependence of the system. Figure 6.23(a) shows the mag-

netisation of the system as a function of t ime over 5 x 10^ steps per spin, from a 

random start with anisotropy strength 4 at a temperature of 0.5 J . 

The jumps in magnetisation appear to be correlated to the jumps in energy, as 

expected. Even after 10^ sweeps through the lattice, the system appears to have 

some way to go before the various parameters reach the values from the cooled 

simulations, which are chosen to be the extremes of the scales on the Hgures. 

Figure 6.24 compares the relaxation of the energy towards that of the cooled 

system for various temperatures for the D = 4 31^ system. The relaxation time 

clearly falls abruptly at some temperature dependent on D, and the apparent 

glassiness disappears at temperatures above this This will be discussed 

further in chapter 7. 

6.5.1 H y s t e r e s i s 

Because hysteresis is an important criterion for the existence of magnetism in a 

given material, we have tried to measure an M — ^ characteristic for the three 

dimensional system. However, while we found that the curves converged in the 

two-dimensional system as we reduced the field sweep-rate, we were not able to 

And a stable curve in three dimensions for sweep rates accessible with the current 

implementation and with the current hardware. 

Figure 6.25 shows a set of curves for a 16^ system with D = 4 at T" — O.IJ. We 

perform 7,500 sweeps at each field point, and vary the field in steps of between 

0.1 J and 0.001 J . For each reduction in sweep rate by a factor of 2, the coercive 

field appears to be reduced by a constant amount. For a given sweep rate, the 

coercive field increases with anisotropy strength and decreases with increasing 

temperature, but without a more careFul analysis of the dynamics of the system, 

it is impossible to make a quantitative analysis. 
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Figure 6.23: Magnetisation (a) and energy and liquid crystal order parameter (b) 
as a function of time for 31^ system with D = 4 and T" — 0.5. The upper limit 
of the magnetisation scale (0.45) is the value of the magnetisation for a system 
cooled to T — 0.5, while the lower limit of the scales in (b) are the equivalent 
targets for energy and Qic. Though the changes look rather large on these figures, 
the jumps are extremely small in practice — the excess energy above the cooled 
system (lower limit of scale) is about the same as the separation of the cooled 
and quenched curves on Hgure 6.7. 
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Figure 6.26: Tentative Phase Diagram for three-dimensional system. The line de-
lineating the high-temperature paramagnetic phase (P) is t he speciHc-heat scaling 
curve, extrapolated to small D. We compare energy (o), magnetisation (4-) and 
correlations (O) for cooled and c^uenched systems, and include the explicit obser-
vation of the relaxation time (x ) , in order to separate reversible from irreversible 
(glassy) behaviour. 

6.6 S u m m a r y 

As before, we collect together the various pieces of evidence to produce a tentative 

phase diagram (figure 6.26): 

e The specific heat scaling curve provides a clear delineation for the transition 

to paramagnetic behaviour at high temperatures. We extrapolate the curve 

towards D = 0, where tlie finite size eFTccts obscured the effect. 

# We use the differences in the energy, magnetisation and correlations between 

the cooled and quenched systems to separate reversible from irreversible 

behaviour. 

Like the two-dimensional system, there is no thermodynamic indication of the 

onset of irreversibility. In the two-dimensional system, we did find a qualitative 

change in the correlation function to support the irreversibility data, but here we 

have no such change; the only evidence is an increased relaxation time. This will 

be discussed further in chapter 7. 
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C h a p t e r 7 

Discussion a n d Conclus ions 

In any Monte Carlo study, results are valid only if precautions are taken to ensure 

finite size effects are controlled, and that adequate e(|uilibration and simulation 

time has been allowed, particularly in the vicinity or|)hase transitions. Multispin 

and cluster update algorithms have been advocated as techniques for overcoming 

critical slowing down. Despite criticism in the literature over the use of a single-

spin update algorithm, we have used such an algorithm in our study the 

model with random anisotropy. We have performed simulations on a wide variety 

of timescales in order to establish the validity of our results. 

We feel that if our simulations show time-dependence, then real systems may 

also show similar behaviour. In particular, for example, simulations using a 

cluster update algorithm cannot exhibit hysteresis, since that algorithm permits 

spin Hips to be applied globally, and the symmetry of the Hamiltonian guarantees 

that the system will flip to follow the held. On the other hand, it is true that 

simulations on a finite system using any valid update algorithm should in practice 

eventually flip all the spins; on reasonable simulation timescales, however, local 

update algorithms do show hysteresis, which is also seen in experiments on real 

systems. Thus, algorithms which improve the crgodirity of the simulation do not 

necessarily give the 'correct' or desired answers. 

We have not explicitly performed each simulation over a large number of 

different configurations of the random axis; this should be done on at least a 

small part of the phase space to confirm that these results are free from sample 

to sample variations. That said, we have not strictly kept the same sets of axes 

across all simulations at a given system size, so that there has been some variation. 

Our results are in good quantitative agreement with previously published results 
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in the various limits (T — 0 , D — 0 , D -4 oo) so we are fairly confident of the 

validity of our results. 

7.1 T w o d imens iona l s y s t e m 

7.1.1 C h u d n o v s k y - I m r y - M a 

The most important theoretical prediction which we have sought to confirm is 

the zero-temperature phenomenological Chudnovsky-Imry-Ma (CIM) theory re-

viewed in section 2.8. For small anisotropy strength, this predicts a breakup of 

the system into domains, and makes a variety of predictions about changes in 

various system parameters with anisotropy strength. 

Our results for systems cooled to zero temperature are in good agreement 

with these domain predictions: 

# For small anisotropy strengths, the energy contains a component propor-

tional to in reasonable agreement with in equation 2.75; 

# In an external magnetic field, the approach to saturation is as as 

predicted for the ferromagnet with wandering axes. 

In addition, the domain size from quenched correlations agrees with predicted 

behaviour. We have been unable to verify the predictions for the magnetic 

susceptibility quantitatively, as noted in section 5.4.2. The susceptibility does 

appear to be strongly suppressed at low temperature. 

For larger anisotropy strengths, the domain size reaches a lower limit of one 

lattice spacing, and a different regime is predicted. In this regime we find: 

# a component of energy inversely proportional to D, as predicted (equa-

tion 2.77); 

e Approach to magnetic saturation in an external field like (equa-

tion 2.92) 

In addition, at non-zero temperatures, the approach to saturation in a mag-

netic field is observed to go like T / a s predicted by equation 2.94. 
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7.1.2 C a r d y a n d O s t l u n d 

The renormalisation results of Cardy and Ostlund [35] predict that the low-

temperature Kosterlitz-Thouless phase will survive the addition of the random-

ness at intermediate temperatures, 0/ eog?/ 

(fzrec^iong Zeasf & Other theoretical analyses concur with this picture. 

Our simulations with only two easy axes fall outwith the remit for this pre-

diction, but we (fo find that the spin-correlations decay with the same power 7; 

as the pure system at intermediate temperatures, suggesting the survival of the 

Kosterlitz-Thouless phase above a temperature proportional to D. 

The notion of thermal depinning section 2.8.4 is appealing, since it uses simple 

arguments to predict the overcoming of the anisotropy barriers due to thermal 

excitations. Our results show a depinning temperature proportional to D, in 

quantitative dispute with the prediction in two dimensions (equation 2.78). 

7.1.3 T h e P a r a m a g n e t i c T r a n s i t i o n 

We have not paid particular attention to the effect of the anisotropy on the 

transition to paramagnetism around there remains dispute in the literature 

on the exact signature of the transition in the pure system, and we did not 

at tempt to compound the difficulties with the addition of randomness. 

The bump in the specific heat for the pure system is an anomalous feature, 

occurring the phase transition. We find that the bump does not move 

for small anisotropy strengths, and we interpret this evidence as support for the 

survival of the Kosterlitz-Thouless phase at intermediate temperatures. For laiger 

anisotropy strengths, the peak does broaden and move to higher temperatures. 

We have not investigated this behaviour in detail. 

7.1.4 T h e Low T e m p e r a t u r e P h a s e 

We have tended to refer to the low temperature phage as ^glassy' without really 

attempting to justify the use. The data from the quenched simulations implies 

some irreversibility at low temperature, and the magnetic order has been reduced 

by the anisotropy. 

A true spin glass shows many ground states separated by energy barriers 
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whose magnitude increases with system size, so that the dynamics of the system 

depend on the timescales used. Our results certainly imply energy barriers, but 

we do not have sufEcient data to form conclusions on the size dependence. But 

the measurements on vortex lifetimes certainly indicate the presence of energy 

barriers, which can be overcome with sufEcient thermal energy. 

We also see static changes in behaviour at temperatures which appear to 

coincide with the glassiness. In particular, the spin correlations and the Anite-

size scaling of the magnetisation indicate a qualitative change in behaviour. There 

are no pinned vortices in systems cooled to these temperatures, which precludes 

an effect solely due to topological defects due to dimensionality of the system. 

7.2 T h r e e D imens iona l S y s t e m 

In three dimensions we And that the long-range order found in the pure sys-

tem at low temperatures is destroyed by the addition of the random anisotropy, 

as predicted by most workers in this field. We deduce that there remains a 

phase transition, separating a paramagnetic regime at high temperature from a 

low-temperature state with algebraic correlations, as predicted by Aharony and 

Pyt te [37]. We And, however, non-universal behaviour, with the exponent depen-

dent on D. Other work has been done in the inhnite-anisotropy limit with the 

justification that system parameters can be renormalised. 

We have been able to fit a scaling curve to the specific heat peak, in order to 

calculate a crossover scaling exponent for the transition temperature, though for 

small system sizes the rounding is obscured by finite-size effects — this will have 

adversely affected Reed's work on this system around Tj, [51]. 

Algebraic decay of spin correlations corresponds to a phase with infinite mag-

netic susceptibility, as was predicted by Aharony and P y t t e [37]. This result was 

also found by Fisch in simulations in the Ising limit [45,47]. 

It appears that the equilibrium low-temperature phase does agree with 

the predictions of CIM for small anisotropy: 

e We find evidence for an infinite-susceptibility pheise, which conflicts with 

the prediction of a finite anisotropy by CIM and others. 

# The energy is found to contain a component proportional to for D < 5, 
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whereas equation 2.75 predicts in three dimensions. The anisotropy 

component of the energy from the liquid crystal order paiameter measure-

ments confirm the behaviour. 

# In a large external Held, we are unable to observe the FWA state predicted 

in section 2.8.7 

For larger anisotropy strengths, our results do agree with predictions made 

for the limit where the cluster size falls to the lattice spacing (sections 2.8.3 

and 2.8.8). 

Simulations on systems quenched from high temperature show some CIM 

properties. In particular, the spin are correlated over length scales characteristic 

of the predictions in section 2.8. 

7.2.1 T h e Low T e m p e r a t u r e P h a s e 

As in the two-dimensional system, we find significant irreversible effects at low 

temperatures: the properties of the system cooled to low temperature are very 

different to those of systems quenched as if from high temperature. In particular, 

the magnetisation of the quenched (finite) system is strongly suppressed below 

that of the cooled system, and the system dynamics are extremely slow. Only 

after the system is warmed above a D-dependent do the 

dynamics speed up, and the cooled and quenched systems agree. 

The simple argument in section 2.8.4 predicts that T* in three di-

mensions, but the separation line in figure 6.26 is much closer to linear. How-

ever, because we find that the D-dependence of energy is not consistent with the 

Chudnovsky-Imry-Ma prediction of but does agree with the two-dimensional 

observation we should not be surprised to find a similar irieversibility curve 

dependence. 

In contrast to the two-dimensional system, however, the glassiness is not cou-

pled with a qualitative change in behaviour. The onset of glassiness in the two-

dimensional system was associated with a change in the spin correlations and 

finite-size analysis, but there is no such change here — the irreversibility in the 

three-dimensional system appears to be entirely a dynamic effect. 

In the two-dimensional system, we found a qualitative change in the nature of 
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the spin correlation function a.t low temperature. Here, we find that the correla-

tions are algebraic both above and below T*, with the same power of decay. The 

only indication of the apparent freezing is that the ampli tude of the correlation 

function stops changing with temperature around T*, giving a 'bunching' of the 

size-scaling curves very similar to the two-dimensional system. 

7.3 Poss ib le I m p l e m e n t a t i o n E n h a n c e m e n t s 

In section 4.2, it was explained that some effort was expended to host the trans-

puter system from the group's microVAX, since the pc 'operating system' was 

just not sufficiently Hexible or stable to host simulalions lasting days or weeks. 

The code was subsequently modified so that some of the program actually ran 

on the vax host, allowing spin correlations to be calculated on a machine with 

suHicient memory to hold all spins at once, while the transputers continued to 

generate new configurations. 

It has already been noted that one possible enhancement to the program 

would be to use one of the more recent cluster-update algorithms: since the ran-

dom anisotropy magnet is expected to form clusters, a cluster update algorithm 

seems a natural choice. As noted in section 4.4.5, it might be simpler to send 

the spins to the (sequential) host for the cluster update part of the simulation, 

particularly since the group's latest alpha workstation gives an order of magni-

tude in computing power over the vax, and can be used as the transputer host 

with nothing more than a recompile of the software. However, if large quantities 

of data need to be transferred between transputers and host, it is likely that 

the bridge interface would turn out to be a bottleneck, and the communications 

overhead would be become significant. 

Recently, Linux, a free unix implementation for the PC , has become available, 

and the group has found this sufMciently stable that a 486 coM/ff be trusted to 

host the transputers for the days or weeks required for a simulation. So it would 

be worth investigating putting the transputer interface card into a pc and recom-

piling the code - a 486 is intermediate in performance between microVAX and 

DEC alpha, while the direct connection reduces the communications bottleneck 

between transputers and host. The group's linux PC's are also on the internet, 

so that accessibility to the system is not lost. A little more effort would allow 

several PCs and even the alpha to cooperate on some aspects of the problem 
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while the transputers continue to generate spin configurations. 

7.3.1 G r a p h i c s 

While the real-time graphics were very illuminating for the two-dimensional sys-

tem, visualising the three-dimensional system as two-dimensional slices was not 

particulaiiy useful, since the simulations generally use an order of magnitude 

more spins, and therefore took an order of magnitude longer. It would probably 

be better to dump the current configuration every so often, then recreate the 

graphics 'oiHine' — it is possible that there are packages around which would 

allow sophisticated navigation through the system as it changes. 

7.4 Pa ra l l e l C o m p u t e r s 

It was stated at the beginning of this thesis that one of the goals of the work was 

to investigate the use of parallel computers for monte-carlo simulations. We were 

very fortunate to inherit a 32-node transputer system of which we had sole use, 

putt ing a significant amount of computing power at our disposal — there is no 

doubt that we could not have performed simulations over such a wide region of 

phase space without this. However, inevitably, the hardware manufacturers have 

continued to increase the performance of their CPUs, so t h a t the group's (sequen-

tial) DEC alpha workstation now performs with a similar performance, but is of 

course much easier to program, and doesn't carry the internal communications 

overheads. The manufacturers of dedicated parallel computers have not really 

kept up, and the next generation of transputers (the T9000) has still not been 

released. Specialist companies are, however, now looking into making parallel 

computers out of conventional chips — the mass market means that the price of 

the Intel 486/Pentium and the DEC alpha is much lower than the parallel CPUs, 

and there are parallel computers based on these. Standards are slowly emerging 

for message passing, etc. — it will make it much easier to justify investing time 

and resources in the development of parallel programs if there is some guarajitee 

that such a program can be ported to other manufacturer 's parallel computers. 

As it is, the existing OCCAM code for this simulation is unlikely to be of use 

on any other contemporary parallel computers, though the (sequential) front end 

code which parses and actions the simulation control files can almost certainly 
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be salvaged and reused. 

Parallel computers will always give an unbeatal)le price/performance ratio. 

But the effort required to make the most of them remains prohibitive, and since 

sequential computers increase in performance by an order of magnitude every 

few years, it is probable that the effort is not justified. T h e most efficient way of 

using a parallel computer is to run a separate job on each node, since this avoids 

communication overheads. (This work could not be organised this way because 

if insufficient memory per node.) And if each processor is running independently, 

there is no need for specialist parallel hardware; VMS is a particularly good 

operating system from this respect since batch queues can be distributed over a 

cluster of machines, and there are several batch systems emerging for unix. It is 

a mat ter of personal frustration that considerable computer power lies untapped 

in the physics dept. at the University of Southampton; a large number of 486's 

in the various offices spend almost all day and certainly all night lying idle, when 

they could so easily be doing useful simulations in the background. 
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A p p e n d i x A 

Simula t ion Con t ro l L a n g u a g e 

The details of the simulation control language are presented here, in the hope 

that this work can be continued with the existing software. The code will be 

made available by anonymous ftp from sotona.phys.soton.ac.uk [152.78.192.42] 

though it is possible that lack of disk space will require tha t the hies be moved 

to tape — instructions will be left there for how to proceed. 

A . l I n t r o d u c t i o n 

The control language is a description of a simulation in terms of low level primitive 

operations. The controlling process, which may be running on either a transputer 

or the host system, reads and parses a control hie, and sends out a stream of 

instructions to the workers to implement the simulation. In this implementation, 

the primitives are messages sent to the transputer network for action, but on a 

sequential machine the same primitives could be actioned as subroutine calls. In 

this way, the details of the parallel nature of the program are hidden from the 

user. 

The code was developed in this way because a parallel program is implemented 

as a number of processes executing simultaneously - changes to the How of the 

simulation required changes to several hies, which wag tedious and error prone, 

and required long recompile times. Because the compiler runs on the transputers, 

the code could not be recompiled while a simulation was running. 

Another advantage of the textual control hie is tha t it can be written to 

the results hie in its entirety, so that each data file contains full details of the 

183 



Variable Use 
B External field strengh 
C External field direction (0-27r) 
D Anisotropy 
T Temperature 
K System depth (in three-dimensional simulations) 
L System width 
M System height 
N System size = 7L x M x J 
VF Number of workers 
Z Number of quantisation axes 
u System energy 
X Magnetisation in a; direction 
Y Magnetisation in y direction 
Q Liquid crystal order parameter 
V Vortex density 
H/ Half-vortex density 

Table A.l: variables used by the simuiation control language 

simulation which generated it, minimising danger of mixing up the large number 

of data files produced. 

A.2 Var iables 

The control language has 52 variables, /I to Z and o to z. The upper case letters 

are reserved for reading or setting system parameters, and changes made to them 

are conveyed to the rest of the simulation code, while the lower case letters are 

used for loop control, and as temporary workspace in the controlling process only. 

Table A.2 shows the system variables currently implemented. The variables in 

the first section are used to control the simulation. Those in the second section 

are set up by the code-initialisation section, so that the script can customise itself 

- for example, it may do correlations less frequently on a large system. In this 

implementation, these are supplied to the controlling process by the transputer 

system during initialisation, since the transputer part of the code has the size 

compiled in, for speed. The last section shows the variables which are updated 

by the primitive, and which are written to the file during a 
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A.3 P r i m i t i v e o p e r a t i o n s 

The primitive operations are described here, in the order they might typically 

be used in a simulation - the first few are typically done once to configure the 

simulation, and the rest might make up the body of a loop over temperature or 

field. denotes a reasonably simple expression involving variables and 

constants, with operators / and A (power), and with functions exp, log 

and sqrt. can be 'x% ' y \ ' h \ ' d ' or 'random' to set spins or anisotropy 

axes to X direction, y direction, aligned along Held, aligned along anisotropy axes 

or random, respectively - an arbitrary direction can be selected by setting the 

field in that direction, then aligning with held. * . . . n denote integer constants, 

y denotes a file number, denotes a comma-seperated list of elements "con-

stant string", n/ for end-of-line, or variable, with optional sufhx for specifying 

required accuracy. Sufhx is or _n, where n is number of decimal places, and 

is used to replace the decimal point with which is required for numbers in 

directory names under VMS, for example. 

seed sets the seed for the pseudorandom number generator 

axes sets the direction of the anisotropy axes. (Cannot specify direc-

tion o f ' d ' here.) 

spins sets the direction of the spins 

cycle m n defines a cycle to be m sweeps through the lattice, attempting a 

rotation at each site, followed by M sweeps at tempting a spin flip at each 

site. A cycle is the unit timestep of the simulation, n is typically 0 or 1 

when D is small, and n % m for larger D. 

graphics n sets the number of cycles between graphics updates 

correlations m enables correlations to be made every m cycles during the 

simulation. If n ^ 0, only n sites are chosen at random to be compared 

with all the others in each configuration - for large systems, this allows the 

same computational effort to sample correlations from a larger number of 

configurations than studying each configuration exhaustively. 

order / % directs that spin glass order parameter (equation 2.47) should be com-

puted every cycle, with reference to the configuration stored in store number 

and written to file / 
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histogram r enables histogramming (section 3.7.2) with a resolution of r in the 

(single-site) energy 

plot T,*, . . . selects which variable(s) are written to file during a study 

open / opens file number / with given name 

tofile y writes a line to file / 

w r i t e string writes line to screen 

wait n performs n cycles without measurement for equilibriation 

store % stores current configuration to store number 

restore % restores the current configuration from store % 

s tudy / m n performs 72 sequential studies each of m cycles, writing n averaged 

values to file / - making several measurements in this way allows some 

check on any drift in parameters over time. This could be done using 

combinations of gekfafe and but since this where most time is 

spent, it was implemented as a primitive operation. 

gets tate performs a measurement on the current configuration, storing results 

in the system variables indicated in table A.l 

writecorr / writes the accumulated correlations to Hie / 

writehist / writes accumulated histogram results to file / 

close / closes file / 

writespins write current spin configuration to named file. 

writeaxes write current anisotropy axes to named file. 

repeat . . . until simple flow control 

if ezprea62on[then simple decision making 

. . . goto usually used with z/ to build more sophisticated 8ow control 
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It should be noted that if the system is being brought to equilibrium with-

out any measurements ( r epea t , wait n, u n t i l . . . ) , then a g e t s t a t e should be 

put into the loop, to prevent a build-up of wait commands in the buffers (since 

repeat . . . until is handled entirely within the front end, and wait does not re-

quired the front end to wait until the transputers have finished. See section A.7. 

A.4 Fi le f o r m a t 

A standard file format evolved, where data was output in blocks, with each group 

optionally preceeded by a single number on a line as a header; this header was 

usually temperature, for cooled or quenched simulations, but could be field or 

time, depending on the simulation. If no header was given, the filename was 

parsed for a number; data was stored in files with names such as 'MX_D0.400' 

for Ma; at D = 0.400. 

is used in files to mark comments. Each file opened by the open primitive 

has the entire control file written to it as a block of comments, so that data files 

are self-documenting, in order to avoid confusion when a large number of data 

files are produced. 

The s t u d y primitive outputs one complete set of parameters on each line, in 

the order: energy; specific heat; liquid ciystal order parameter; magnetisation in 

the X and y directions, followed l)y mean, mean .square and mean oT Fourth power; 

magnetic susceptibility in x and y directions, and net susceptibility; count of vor-

tices and half-vortices. See section 4.5 for more details. These data were typically 

written to a file with a name like '_D0.400\ and a simple program averaged the pa-

rameters over the different runs and wrote to files such as JD0.400', 'C JD0.400\ 

etc. 

The spin glass order parameter are written simply as lines of order parameter 

against time. Initially, the correlations were written as blocks of M lines of 2̂  

columns of ASCII numbers, but this was taking up too much filespace, especially 

when it came to three dimensions. Additionally, by writing only a few decimal 

places, information was lost. Laterally, the data was written as a block of binary 

data. One snag is that the VAX and the transputer use different internal repre-

sentations for Soating point numbers, so the block of binary data was preceeded 

by a comment line detailing whether it was IEEE or VAX floating point data. 
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Most of our simulations used the VAX as the host (section 4.4.4) so this has not 

been a problem in practice, but this may become relevent if the code is used fur-

ther. (The group's DEC Alpha can be told to use IEEE floats as a compile-time 

option, so moving from VAX to Alpha may eliminate this problem.) 

The writehist command writes each block of histogram data as lines of in-

creasing energy, with each line containing: the (unnormaslised) count; the energy 

of the bin; the mean, mean square and mean of the fourth power of the magneti-

sation; and the liquid crystal order parameter. 

The wr i t e sp ins and wr i t eaxes primitives do not write the entire simulation 

control file as comments because these output hies were intended for plotting by 

a postscript program, and parsing is not a strongpoint of this language. 

A.5 D a t a Analys is 

A suite of simple analysis programs was written to allow various manipulations 

to the data to be made. Because of the standard file format, a library of routines 

was implemented to read the data file, parse file name for temperature, parse 

the command line for standard options, and so on, so that simple utilities could 

be put together with little effort. These programs will be made available by 

anonymous f tp with the rest of the code — see section A. Each of the following 

utilities provides a usage summary when given -? as an argument: 

analyse.c : reads the output from the s tudy primitive, writing each averaged 

parameter and standard deviation to a file whose default name is the con-

catenation of the parameter to the input file name. Typically, the input 

name was of the form 'J30.400' and output went to ^U_D0.400', 'CJD0.400\ 

etc.. 

docorr.c : performs a similar role for the correlations; reads the raw binary 

data, takes a fourier transform, performs a circular/spherical average and 

writes the output as thi'ee columns r, ^(r) and (?(A;). 

analhist.c : analyses histogram data output, allowing extrapolation of data to 

nearby temperatures, and outputting either shifted histograms or thermal 

averages at the new temperature. Care is taken to avoid numerical overflows 

by only ever scaling numbers down: silent truncation to zero is permitted. 
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It should also be noted that the full system energy must be used, not the 

energy per spin. [This caused much confusion initially.] 

chngevar .c ; reads a set of files representing different values of a parameter, 

changing variable. For example, given hies such as M_DO.OOO, MJ30.100, 

M_D0.200... , each containing data for various temperatures, this program 

will output M as a function of D, with each different temperature as a 

different data set. 

seperate.c : typically used on the output from chngevar, this program takes an 

input hie comprising several data sets, and writes each set to a different 

output file. The program takes as a parameter a template for the output 

filenames. 

m a n i p . c : allows arbitrary manipulations to be applied to the data files in a 

general way. For example, this was used to calculate the direction of mag-

netisation from the x and y components, for section 5.5.3. 

A.6 U s e r G u i d e 

Once an account on the group's VA^IScluster has been allocated, it is a simple 

matter to perform simulations using the existing software. Access to the system 

is available from anywhere on the internet; the VAX is accessed through the DNS 

name so tona .phys . so ton . ac .uk [152.78.192.42]. 

A local command L E A R N is provided for setting up system extensions on a 

per-process basis. Lines of the form 

$ LEARN BATCH MAKE TOOLSET 

$ EXEC == "$SYS$DISK:[]"' 

should be put into your LOGIN.COM hie, so that in each session the local com-

mands exec, make and batch are available, as well as the compilers for the 

transputer. Online help is available: 

H E L P M E I K O describes the transputer toolset, with some local implementa-

tion details which, if nothing else, should contain sufficient technical infor-

mation for the University's High Performance Computing Group (formerly 
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the Parallel Computing Support Group) to give assistance. Aianuals and 

courses on parallel programming and the transputer toolset are available 

from them. 

H E L P M A K E gives information on the local version of the unix 'make' utility. 

H E L P B A T C H gives information on the local 'batch' command. 

exec is the v^ay we usually invoke c programs to give them parameters. (It's a 

bit of DCL magic that is beyond the scope of this manual !) 

The program comes in two parts: an OCCAM part which runs on the Meiko; 

and a C front end which usually runs on the vax, but can also be run on a 

transputer by making a small change to the configuration file 'xy.cfs'. 

A.6 .1 O r g a n i s a t i o n of t h e Source C o d e 

Because there is a lot of overlap between the two- and three-dimensional code, the 

common code is placed in one directory, with subdirectories with the dimension-

specific code. 

The code is in two distinct parts; the C front end compiles and runs the 

simulation control language, sending messages to the OCCAM program which 

actually pei-forms the simulation. These two parts are compiled separately. 

The front end consists of the files 

header.h a shared header file, defining structures, the message protocol, etc. 

main.c the main program, which co-ordinates activity and runs the simulation. 

pa r se .c contains the routines required to compile the simulation control file into 

an interna] p-code. 

actions.c contains the subroutines to action tlie simulation control primitives. 

Each primitive corresponds to a subroutine in actions.c, for the most part. 

The front end is compiled for two or three dimensions, selected by a macro 

in header.h. It should be possible in principle to reuse this language compiler 

by replacing actions.c with subroutines appropriate to different simulations — 
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the actual simulation work can he put in actions.c, rather than simply sending 

messages to another program. 

The simulation code is compiled from one of the subdirectories. For several 

files, the main code is in a file in the parent directory, which is included into the 

compiled code. Frequently, the code in the parent directory does an include for 

code in the subdirectory — this will pick up the version from the appropriate 

subdirectory. 

The OCCAM source is split into the following files, some of whos names are 

historical. The reader is referred to figure 4.1. 

xy.cfs contains the transputer configuration description, mapping the processes 

in the source to the physical transputers. 

mstrschd.occ is the 'master' scheduler, which communicates with the front 

end, forwarding commands to the workers and performing averages and 

histogramming. This hie includes mstrschd.occ in the parent directory, 

which in turn sources mstrschd.inc and mstr2.inc 

sched.occ implements the routing harness illustrated on figure 4.1. It routes 

commands to and results from the workers 

worker.occ actually performs the simulations. Files tables.inc, random.occ, 

settable.occ are read from the parent directory. In addition, the inner 

loops which are handcoded in assembler are in seperate files state_mc.occ, 

flip_mc.occ and mc_mc.occ, in order to make it easier to substitute occam 

versions state.occ.occ, flip_occ.occ and mc_mc.occ for testing and develop-

ment. The machine code versions also optionally include the occam ver-

sions, to verify that the machine code and occam versions produce the same 

answers. 

g raph ics .occ drivers the graphics hardware 

A.6 .2 R e c o m p i l i n g 

The code must be recompiled if the system size is to be changed. It is necessary to 

set the system size in file consts.inc, and set the number of transputers in xy.cfs. 

A version of the unix utility is used to recompile the program; simply typing 
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MAKE 

at the DCL command line will recompile the program. 

A.6 .3 P r e p a r i n g t o S i m u l a t e 

Any text editor can be used to prepare simulation control language files — editors 

available include fue, a folding editor derived from micro-emacs, as well as the 

standard VMS editors EDT and EVE. See the example control files in section A.7. 

Failing that , the files can be prepared on any other machine and sent to the VAX 

by ftp. 

A.6.4 R u n n i n g t h e S i m u l a t i o n 

Two steps are used to run the program in this implementation: 

# The transputer part of the code is onto the Meiko using a modified 

version of the standard Iserver transputer Mcrvcr: 

$ ISERVER /SR /SG WIRING.DAT /SC XY.BTL 

which first of all configures the transputer links according to the description 

in the file 'wiring.dat\ There are files 'wire4.wir\ 'wire8.wir% 'wirel6.wir' 

ajid 'wireSl.wir^ which contain the setup for the usual system sizes. Further 

details are available with HELP MEIKO CONFIGURING. 

# The VAX end is contained in an executable XY.EXE — this can be run 

interactively using 

$ EXEC XY file.scf CT=<temp>] [D=<anis>] ... 

while developing a simulation. Variables can optionally be set on the com-

mand line using variable=valuc, as indicated. Recausc DCL is case insen-

sitive, only upper-case variables can be set in this way. Production runs 

are submited to the VMS queue MEIKOSB.ATCH by simply prepending 

BATCH/MEJKO to the command line: 
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$ BATCH/MEIKO EXEC XY file.scf ... 

though normal DCL command procedures can be SUBMIT-ed as usual if 

that is preferred. 

It is not necessary to boot the transputer code for each run; provided each sim-

ulation ends without error, the code will automatically restar t itself in preparation 

for the next run, so that several runs can be submitted, wi th different anisotropy 

strengths for example. If there are several users using the MEIKO$BATCH 

queue, then it would of course be necessary to reboot each time, since it must 

be assumed that other jobs will run between your jobs; there is a local command 

M B A T C H which allows the boot and run to be controlled from one line: 

$ LEARN MBATCH 

$ MBATCH "iserver/sr/sg wireSl.wir /sc xy.btl" "exec xy cool.scf" 

which will do both commands in batch. Alternatively, a DCL Rle containing the 

lines 

$ SET DEF [directory] 

$ ISERVER /SR /SG ... 

$ EXEC XY file.scf ... 

$ EXIT 

may be submitted to the queue in the usual VMS way (HELP SUBMIT). SET 

DEF is the VMS equaivalent of the DOS/unix cd command. (There is a local CD 

command available —HELP CD for details). The BATCH command automati-

cally arranges for the batch job to run in the directory f rom which the command 

was submitted. It is even possible for the simulation control Ale to be sent inhne 

to the front end: 

$ ISERVER ... 

$ EXEC XY SYS$INPUT ... 

# control file goes here 

set T=1.4 

repeat 
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wait 100 

getState 

set T=T-0,1 

until T<0.1 

end 

$ EXIT 

and DCL will send all the lines from the EXEC line to the next line beginning 

with $ to XY.EXE as the control Ale (SYS$INPUT). As always, there are many 

ways of doing things. . . 

A.7 E x a m p l e P r o g r a m s 

Two example simulation control programs are presented. Figure A.l shows the 

usual sort of simulation performed, where the system star ts at high temperature, 

and is cooled, performing simulations at each successive temperature. Figure A.2 

shows a more novel use of the language, where the lifetime of the vortices in an 

initially quenched system is measured. Ten independent measurements are made, 

and the mean and standard deviation are output. This is tlie program used for 

the results in section 5.5.1. 
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# Example program 1 

# randomise the axes and spins 

seed 91 

axes random 

spins random 

#define each cycle as four rotation sweeps and 1 flip sweep. 

cycle 4 1 

# D defaults to 0.4 unless it was set on command line 

if D==0 then set D=0.4 

# write results to a file who's name depends 

# on anisotropy strength, in subdirectory 

# [.cool_<L>] (vms syntax) (eg [.cool_62]_D0.400) 

open 0 "[.cool_", L:0, "]_D", D:3 

#start at high temperature 

set T=1.4 

#loop over temperature 

repeat 

write "T=",T,nl # inform user how far we've got 

wait 1000 # equilbriate 

study 0 2000 5 # 5 averages over 2000 cycles each, to file 0 

set T=T-0.1 

until T<0.05 # allow for rounding errors 

#close file 

close 0 

end 

Figure A . l : Typ ica l s imula t ion control p rog ram, where t h e s y s t e m is progressively 

cooled, wi th s imula t ions run at each t e m p e r a t u r e . 
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# Example program 2 

open 0 "vortex_life.dat" 

repeat 

set T=0.5 

repeat 

set s=0 # sum of life 

set q=0 # sum of squares 

set i=0 # number of measurements made 

repeat 

set 1=0 # lifetime of these vortices 

axes random 

spins random 

repeat 

wait 50 

set 1=1+50 

getstate 

v=V*N 

if 1>=99999 then set v=0 # dont wait any longer 

until v==0 

write " annihilated after 1:0, nl 

# add this result into the averages 

set s=s+l 

set q=q+l*l 

set i=i+l 

until i==10 # ten measurements for each pair of parameters 

# work out the statistics... 

set m=s/10 

set v=sqrt((q/10)-(m*m)) 

# .. and write to file 0 

tofile 0 D:l," ",m," ",v, nl 

set T=T-0.1 

until T<0.05 

tofile 0 nl 

set D=D+0.1 

until D>1.05 

end 

Figure A.2: Contro l p r o g r a m for a m o r e novel s imu la t ion : average t h e vor tex 

l i fe t ime over t en sets of axes a n d ini t ia l conhgnra t ions f o r each T" a n d D . 
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