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ABSTRACT
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MONTE CARLO SIMULATIONS OF
RANDOM ANISOTROPY MAGNETS

by David Richardson Denholm

We have used a parallel computer to perform Monte Carlo simulations on the
Harris-Plischke-Zuckermann lattice model of Random Magnetic Anisotropy, us-
ing the standard Metropolis algorithm. We have studied systems with two spin
components in both two and three spatial dimensions. varying temperature, ex-
ternal magnetic field, anisotropy strength and other thermodynamic parameters

which may possibly be relevant.

In the absence of randomness, the system reduces to the XY (planar rotator)
model, and we find that the usual Kosterlitz-Thouless behaviour in the two-
dimensional system survives the addition of randomness at intermediate temper-
atures, but at low temperatures the system shows some disordered features which
might be identified with a spin glass phase. In three dimensions, the randomness
destroys the long range order present in the pure system, replacing it with a phase
with infinite susceptibility which exhibits algebraic order with a non-universal ex-
ponent. If the system is quenched, however, a phase with exponentially decaying
correlations with properties predicted by Chudnovsky is found. For low random-
ness this apparently non-equilibrium phase is destroyed at a thermal depinning
temperature dependent on the degree of randomness.
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Preface

The original work in this thesis is as {ollows:

e The established Chudnovsky-Imry-Ma theory has been extended slightly in

sections 2.8.3, 2.8.4 and section 2.8.9. The last of these extensions has been

previously published [1].

o Chapter 4 describes the details of the implementation of the simulation on

a parallel computer.

e Chapter 5 reports on the results from simulations on the HPZ Hamiltonian
with two-component spins in two spatial dimensions, varying temperature,
anisotropy strength and external field strength. Some of these results have

previously been published in [1-3].

e Chapter 6 reports on the same system in three spatial dimensions. These

results are to be submitted for future publication.

i

The ambiguity over the FWA phase (section 2.8.7) and the theory for the
energy due to local fluctuations in spin directions (section 2.8.5) were pointed

out by professor Alan Bray at the Ph.D. viva voce.
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Chapter 1

Introduction

In this thesis an investigation of random anisotropy magnets. using Monte Carlo
simulations performed on a parallel computer, is presented and discussed. Despite
many years of study, the physics of random systems remains a topic of tremendous
interest. To a lesser extent, the work was also intended as an appraisal of the
utility of parallel computers in physics simulation, though the physical results

presented herein stand independently from the computing-science aspects of the

work.

In the remainder of this chapter, the general phenomenon of magnetism is
discussed, and the experimental properties of random magnetic systems are re-
viewed. There is room to do little more than scratch the surface, and the reader is
referred to standard references such as [4-7], which were used as source materials
for this introduction. This is also true of statistical mechanics, largely used by

physicists in the study of many-body systems such as magnets.

In chapter two, the properties of the model Hamiltonian introduced by Harris,
Plischke and Zuckermann (HPZ) [8] for random anisotropy systems are explored.
This is followed, in chapter 3. by a discourse of the classic Monte Carlo algo-
rithm of Metropolis el al., together with technical discussion of the problems of
the technique. In chapter four, an introduction to parallel computers is given,
together with specific details concerning our implementation of the Monte Carlo
method. Because this dissertation is intended for an audience with a wide range
of backgrounds, an attempt has been made to keep these chapters more or less
independent. Readers already familiar with the theoretical aspects of the HPZ
model can move straight to chapters three and four, while those with a Monte

Carlo background can use chapter two as an introduction to the model, or chapter



four as a basis for commencing simulation work on parallel computers.

The results of our extensive simulations on the random anisotropy model
with two spin components in two spatial dimensions are presented in chapter
five, while in chapter six the results from our preliminary work on the system in

three dimensions are presented and discussed.

Finally, in chapter seven the work is summarised and suggestions are made

for possible directions for future work.

A detailed description of this implementation can be found in the appendix,
in the hope that other workers can continue to use the current program without
the need to learn about parallel programming techuiques in detail. A “simulation
control language’ has been defined, so that a rich variety of simulations can be

be performed without the need to modify the program source.

1.1 Magnetism and Magnetic Materials

For thousands of years, man has been fascinated by magnetism; the ancient
Greeks were intrigued by the way the lodestone would attract pieces of iron, and
the compass has long been used as a navigation aid by detecting the direction
of the Earth’s magnetic field. An important step in the study of magnetism was
the forging of links between electricity and magnetism by the work of Oersted,
Ampere, Faraday and others. All currents (moving charges) produce magnetic

fields, and all magnetic dipoles are due to currents, microscopic or macroscopic.

All materials respond to an imposed magnetic field. The magnetic suscep-
tibility is defined as the ratio of the resulting moment to the applied magnetic
field. Some materials are diamagnetic, exhibiting a negative susceptibility, in
opposition to the applied field, while other materials are paramagnetic, forming
moments parallel to the field. A few materials, such as iron, retain their magnetic
moment even after removal of the field. These are called ferromagnets. In fact all
materials show diamagnetism, but this is masked by the much larger paramag-
netic and ferromagnetic properties where they are present. There are also more

esoteric forms of magnetic ordering, which will be discussed.

It is now well known that atoms are composed of negatively-charged electrons
orbiting positively-charged nuclei, and the differences between the elements can

be related to the differences between the electronic structure within the atoms.

o



For a complete understanding, Quantum Mechanics is required — a topic be-
vond the scope of this introduction. Suffice to say that magnetic materials are
composed of atoms with a net dipole moment, and non-magnetic materials are
composed of atoms with no net magnetic moment. (There are also effects due
to the intrinsic magnetic moment of the atomic nucleus, but these moments are
three orders of magnitude smaller than the electronic moments.) It is the interac-

tion between the atomic moments (also called spins) that produces the interesting

physics.

1.1.1 Paramagnetism

In a paramagnet, the microscopic magnetic moments of the atoms show a negli-
gible interaction with each other. Consequently, in zero field, they are arranged

randomly, and there is no net magnetic moment.

When an external field is applied to a single magnetic dipole, a torque is
exerted upon that dipole, trying to align it with the field. This results in a
net magnetic moment. Pierre Curie discovered that, at ‘ordinary’ fields and
temperatures, many materials produce a magnetic moment directly proportional
to the field, which increases as the temperature is reduced: Curie’s law states

that the magnetic susceptibility is given by

CV
X = T (1-1)

where C' is a constant depending on the material under study. For large fields or
low temperatures, the magnetisation approaches saturation once all the moments
are aligned with the field. Thermal agitation tends to knock the dipoles away
from alignment, so that a larger field is required to cause a given magnetisation

as the temperature is increased (section 1.2.1).

In solids, the microscopic dipoles can interact with each other, but Curie’s law
is obeyed by dilute alloys for example, in which the magnetic atoms are spatially

separated by non-magnetic atoms.

1.1.2 Ferromagnetism

The label ‘ferromagnetism’ derives from the Latin ferrum. meaning iron. The

magnetic properties exhibited by iron, and similar elements, stem from the way
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Figure 1.1: Schematic spin configurations for ferromagnetic ordering (a), antifer-
romagnetic ordering (b), and ferrimagnetic ordering (c).

the microscopic magnetic dipoles tend to align themselves with their neighbours.
In this way, samples of the materials show long-range magnetic order, with spins
aligned over long length-scales, as illustrated in figure 1.1(a). When a small
field is applied, the dipoles are rotated towards the field direction as before, but
in the case of ferromagnets, the rotation of the dipoles reinforces the force on
the neighbouring dipoles, and a large net magnetisation results. Thus the net

magnetic moment is very nonlinear in the external field.

Again, the full details of this exchange interaction which aligns the dipoles
require quantum mechanics, and is beyond the the scope of this thesis. In general,
the exchange interaction arises from electrostatic repulsion between negatively-

charged electrons — quantum mechanics prevents two spins with aligned dipole

W



moments from approaching closely, while it places no restriction on electrons in
different quantum mechanical states. Thus aligned spins are on average further

apart than misaligned spins, and therefore have a lower average coulomb energy.

It is found that above a certain temperature 7. known as the Curie point,
long range ordering ceases, and ferromagnetic substances revert to paramagnetic
behaviour, approximately obeying a modified form of Curie’s law (equation 1.1)
known as the Curie-Weiss law:

CI
PR
A

where T, is the ‘Weiss constant’, and has dimensions of temperature.

Below T, the system shows a spontaneous magnetisation, in the absence of
an external magnetic field. This spontaneous magnetisation is large at low tem-
peratures, and decreases with increasing temperature, as indicated schematically

in figure 1.2.

1.1.3 Phase Transitions

The first quantitative analysis was made by Weiss, who modelled the interaction
of the neighbouring dipoles as a ‘mean field’ at each site, and was able to find
a self-consistent solution. This technique is a very important one, being much
used in statistical mechanics, and will be dealt with in more detail in section 2.3.
While it unfortunately gets much of the detail wrong, it does at least qualitatively
predict a transition from a disordered state to an ordered state as the temperature

is lowered — a phase transition.

This is a specific example of a very general phenomenon. Many other systems
show phase transitions, one common example being the transition from water
to ice at 0°C. At first sight, these two phenomena appear quite unrelated, but
in any system which undergoes a phase transition, one can define an order pa-
rameter which is a measure of order. In a disordered phase (such as water or
paramagnetism) it is zero, and in an ordered phase (such as ice or a ferromagnet)
it is non-zero — the spontaneous magnetisation is a suitable order parameter in
a ferromagnet, for example. In practice, it is found that very general statements
can be made about the way the order parameter behaves. The details of the
system under investigation are rather unimportant. and general symmetry argu-

ments can be invoked. One very important characteristic of a phase transition

ot
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Figure 1.2: Spontaneous magnetisation (a) and zero-field susceptibility (b) of a
ferromagnet. At low temperatures, the susceptibility depends on whether or not
the applied field is in the same direction as the spontaneous magnetisation, and

is not shown here.



is the value of certain critical exponents — it has already been pointed out that
the magnetic susceptibility diverges at the Curie point. A number of other inter-
esting quantities also show critical behaviour, which can be characterised quite

generally by defining the following exponents.

C, ~ |t (1.3)

M ~ |t? (1.4)

x o~ (1.5)

M ~ H3 (1.6)

&~ [t (1.7)

Glr) ~ 22 (1.5)

where t is defined as %Z — 1 — it is a normalised temperature, relative to the

critical temperature. H is the external magnetic field, M is the spontaneous
magnetisation, and x the magnetic susceptibility, in magnetic systems. C, is the

specific heat.

The correlation length ¢ is a measure of the extent to which the spins are
correlated. When a change is made to one spin, that change has an influence
at a distance of the order of £. At low temperature in an ordered phase, the
correlation length is very small, and the system remains predominantly ordered.
(The system has long range order, but the correlation length is the typical size
of fluctuations in the order, not the length-scale of the order itself.) At higher
temperatures, these fluctuations grow, giving a reduced average magnetisation in
a ferromagnet, say. At the critical temperature, the correlation length becomes
infinite and fluctuations span the whole system, so that the magnetisation flips
rapidly, averaging to zero. G(r) in equation 1.8 describes the correlations at
the critical temperature. Above the phase transition, the spins still prefer to
align with their neighbours, through the exchange interaction, but now this order
is limited to the (finite) correlation length. As the temperature is increased
further, the correlation length decreases, giving smaller ‘pockets’ of order. This

1s discussed further in section 3.6.

The values of these critical exponents are a uselul way of characterising phase
transitions, but they are not independent — relationships can be derived relating

them (section 2.4.1).



1.1.4 Dipolar Interaction and Domain Formation

Anyone who has tried to make two bar magnets lie parallel will find this fer-
romagnetic ordering counter-intuitive — macroscopic magnetic dipoles prefer to
form anti-parallel alignment. This is because the exchange interaction which
is the basis of ferromagnetic ordering i1s a very short range interaction, so that
it couples only the nearest neighbour atoms together, but each interaction has
a knock-on effect, and the order pervades throughout the sample. The dipolar
interaction, on the other hand, though much weaker in strength at short dis-
tance, has a much longer range of interaction. decaving much more slowly with
distance. For macroscopic magnets it is the dipolar interaction that causes an-
tiparallel alignment, and this same mechanism accounts for the way samples of
iron do not in general show the predicted spontaneous magnetisation at room
temperature. In fact it is the combination of dipolar alignment and the reduc-
tion in the energy stored in the external magnetic field which gives rise to the
domain structure commonly witnessed in iron (figure 1.3.) Real systems, partic-
ularly polycrystalline samples, forms many domains. These domains represent a
compromise between the tendencies to align at short distances and to misalign

at large distances; such compromise is a recurring theme in condensed matter

physics.

1.1.5 Anisotropy

Another feature of magnetic systems is that of magnetic anisotropy. In our fore-
going discussion, it was implied that the magnetic dipoles can rotate freely to
point in any arbitrary direction. In a free atom. this is a reasonable assertion to
make, but when the atom is part of a regular lattice in a solid, it is not in an
isotropic environment. Thus we should not be surprised to find that the suscep-

tibility depends on the direction of the magnetic field relative to the orientation

of the crystal axes.

In fact, there is an electrostatic interaction between the electrons which con-
tribute the magnetic moment and the electric field gradient which gives rise to
the so called crystal field interaction. In the rare earth metals, for example, this
anisotropy results in considerable differences in the magnetisation of the sample,
depending on the relative directions of the field and the crystal axes. In particular,

it is found that magnetic compounds exhibit an easy direction of magnetisation.
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Figure 1.3: Domains in a ferromagnet. The energy stored in the external magnetic
field is minimised by such a configuration.
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Figure 1.4: Hysteresis

This explains why, in a ferromagnet for example, the spins do not immediately
rotate to align themselves with the external field direction, which would give a

very large magnetic susceptibility.

1.1.6 Hysteresis

One hallmark of ferromagnetic materials is that of magnetic hysteresis, illustrated
in figure 1.4. When a field is applied to an initially unmagnetised sample, the
magnetisation follows an initial magnctisalion curcc. When the field is reduced.
however, the magnetisation does not return down the saine path, but maintains a
large remanent magnetisation M, even when the field is removed. Reversing the
field does not immediately reverse the magnetisation; a field equal to the coercive

field H, must be applied before the sample reverses its direction of magnetisation.

This can be understood from the domain structure illustrated in figure 1.3:
for very small fields, the domains parallel to the field grow at the expense of
the domains of misaligned spins, In a reversible way (so that they will return
along the same path when the field is removed). The anisotropy prevents the
domains from simply rotating towards the field. As the field increases, the domain
boundaries have to be dragged over crystal impurities, polycrystalline borders,
pinning defects, etc., so that work is done and the change is irreversible. When

the field is large, the domains rotate to saturation. This last régime is reversible,
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so that when the field is removed, domains form once more, but in a different
configuration, in which the domains which were parallel to the field are favoured,

giving the system a net magnetisation.

1.1.7 Antiferromagnets and Ferrimagnets

There are other magnetic systems which are closely related to ferromagnets on
a microscopic scale, but which have very different macroscopic properties. An-
tiferromagnets such as Chromium show no spontaneous magnetisation, yet at
microscopic level there is ordering similar to ferromagnets; but with the differ-
ence that neighbouring spins lie antiparallel, as illustrated in figure 1.1(b). Hence

the moments cancel out, giving no net magnetisation.

At high temperatures, the system is again paramagnetic, obeying a Curle-
Weiss law (equation 1.2), but with a negative Weiss constant. The susceptibility
does not diverge at the Néel temperature, but there is a weak cusp. As with the
ferromagnet, the low temperature susceptibility depends on the relative directions
of the ordered atomic dipoles and the external field: when the field is perpen-
dicular to the dipoles, they all tilt towards the field (\ ). but when the field is
in the direction of the magnetisation (), there is little change in magnetisation

unless the field is strong enough to overcome the exchange interaction.

In order to detect the magnetic order explicitly, one can use techniques such
as neutron scattering, where a beam of neutrons is scattered from a target con-
structed from the material under study. Neutrons are uncharged, but have an
intrinsic magnetic dipole moment which interacts with the microscopic magnetic
structure in the sample, so that they can experience coherent diffraction from
ordered arrays of magnetic moments. In practice it is necessary to distinguish
the peaks which are due to interactions with the atomic nuclei from peaks due

to the magnetic ordering in the neutron diffraction patterns.

Ferrimagnets are systems which show a spontaneous magnetisation like fer-
romagnets, but which have antiparallel alignment of the atomic dipoles at a mi-
croscopic level. This apparent inconsistency can be resolved by noting that these
materials are composed of mixtures of atoms with unequal magnetic moments,
arranged alternately in the lattice. All the atoms of one type lie parallel on one
sublattice, which is antiparallel with another sublattice containing aligned atoms

of the other type, as illustrated on figure 1.1(c).
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1.1.8 Random Systems

In practice, materials with mixtures of ferromagnetic and antiferromagnetic in-
teractions can be constructed. In such compounds there is competition between
the different couplings, which complicates the physics. One such system is the
class of alloys of the form Eu,Sri_S. With large «, this system has ferromagnetic
nearest-neighbour coupling and antiferromagnetic next-nearest-neighbours. The
Sr atoms are not magnetic, and serve simply to dilute the lattice, giving a random
mix of ferromagnetic and antiferromagnetic interactions. Another system that
has been widely studied consists of dilute solutions of magnetic transition metal
impurities in noble metal (non-magnetic) hosts. Here, the exchange interaction
between the magnetic impurities is mediated by the conduction electrons of the
host by the RKKY interaction, after Ruderman, Kittel, I{asuya and Yosida [6].
The interaction oscillates in sign as it decays with distance, so that some pairs
of magnetic dipoles interact ferromagnetically and others experience an antifer-

romagnetic coupling.

The crucial element of such spin glasses appears to he that the low temper-
ature state is a frozen disordered one, rather than a uniform or periodic state
described above. The competition between the different couplings and an ele-
ment of randomness appear to produce this type of state, which will be discussed

in more detail in section 2.6.

Experiments on samples of spin glasses reveal the following properties:

e a marked cusp in the magnetic susceptibility as the system is cooled through
a critical temperature, but no spontaneous magnetisation at low tempera-
tures, and no peaks in neutron scattering experiments which would indicate
periodic order like antiferromagnetism. Nevertheless, the suppressed sus-

ceptibility does imply some sort of spontaneous magnetisation.

e remanent magnetisation at low temperature — the magnetisation of a sam-
ple which is cooled from above the freezing temperature in a non-zero mag-
netic field is higher than the magnetisation obtained when the same field
is applied to the same system cooled in zero field. Equivalently, the rema-
nent magnetisation on removal of the fields in the different circumstances

is different.

o field dependent freezing temperature — the larger the field, the lower
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the temperature at which the above history-dependent magnetisation sets
in; the Almeida-Thouless line separates glassy behaviour from ergodic be-

haviour (see below).

e when the susceptibility 1s measured using an oscillating field (‘ac suscepti-
bility’), the temperature at which the cusp appears is found to depend on
the frequency of the of the field; raising the frequency increases the freezing
temperature, which implies that the freezing is some sort of dynamic effect,

and the timescale of the experiment influences the observed behaviour.

Random Anisotropy

Another way of introducing competing interactions is to work on amorphous
samples of systems with large crystal fields. Without the long-range periodic
structure of a crystal, the anisotropy discussed in section 1.1.5 varies from site
to site through the system. Thus there is competition between the exchange
interaction, which tries to align the neighbouring dipoles, with the anisotropy,

which gives each dipole a local easy magnetic axis.

Amorphous alloys of rare earths in metals, such as DyCu and ThFe; show some
of the properties of spin glasses, above: there is a cusp in the susceptibility [9]
below which samples show history-dependent magnetisation [10]. The freezing
temperature is field-dependent [11], but there is no indication of time-dependence

in the freezing temperature [11].

It is these systems which have been studied in this work, but before discussing
their properties, it will prove advantageous to review some of the background of

how such systems are tackled theoretically.

1.2 Statistical Mechanics

Statistical mechanics is a tool used extensively in solid state physics, where prop-
erties of the system as a whole are inferred from consideration of the microscopic
states of the system. A complementary theory is that of thermodynamics, where
the macroscopic parameters of the system (such as magnetisation and suscep-
tibility) are derived from general considerations such as conservation of energy.

Links between these two theories have been established.

13



The fundamental building block for statistical mechanics is the Boltzmann
probability distribution, which says that the probability of the system being found
in a state 1 with energy F, is proportional to exp (—%) at temperature T
kg is Boltzmann’s constant. For brevity, it is customary to define an inverse
temperature 3 = Z:é—T" Notice that statistical mechanics is based on probability,
whereas mechanics traditionally involves following each particle deterministically.
(Molecular dynamics is a numerical simulation technique where the forces are

computed for each particle, and the equations of motion are integrated.)

If we imagine a collection, or ensemble, of identical copies of our system, and
freeze the motion at some instant, we would find the systems in microscopic
configurations reflecting this probability distribution. We define the quantities

of physical interest as averages over all these configurations. This is the ergodic

hypothesis.

As the name of the theory implies, we rely on the large number of particles
involved to cancel out the fluctuations. For the most part, standard statistical
theory says that fluctuations are typically proportional to the square root of the
number of particles, and since macroscopic systems are typically 102 particles,

the relative Auctuations give errors smaller than 1071°.

1.2.1 Example: paramagnetism

As a simple example, we can consider the paramagnetism due to a single magnetic

dipole in a field, as discussed in section 1.1.1. The energy of a dipole in a magnetic
field is given by

F=-m.H (1.9)
and we can use Boltzmann’s probability distribution to calculate an average value

for the magnetisation m and susceptibility y:

(m) = fmepo(ﬁm.H) (1.10)

_ 9(m)
T H

(1.11)

Here the angled brackets () denote a thermal average, and Z is the partition

function

Z = /exp(,@m.H). (1.12)
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Formally, Z is merely the normalisation of the Boltzmann probabilities, but
we can in fact calculate all the quantities of interest from the partition function

alone. For example, equation 1.10 can be written

d
(m) = man (1.13)

from which it can be shown fairly easily that the zero field susceptibility is pro-
portional to 3, which is to say inversely proportional to temperature i.e. Curie’s

law (equation 1.1).

When we take a large number of independent dipoles, the result is unchanged,
and the net magnetisation M is the sum of the microscopic contributions {m;}.
As soon as interactions between the dipoles are considered, however, the complex-
ity increases enormously; the energy of each microscopic state must now contain

the mutual interaction of 10%* particles.

1.2.2 Use of Models

Because these problems rapidly become intractable, physicists must simplify the
interactions to have any hope of finding a solution. One hopes that in constructing
models for systems, the salient features can be captured without considering
all the possible interactions. Typically, dipolar interactions (section 1.1.4) are
ignored, and the exchange interaction is taken to be constant, acting only on
nearest neighbours in a perfect lattice. The Heisenberg model for interacting

magnetic systems takes the form

H=-> JSi.S;—H.>_S; (1.14)
(19) g

with uniform exchange interaction strength J between spins (dipole moments) S;

and S; at sites 7 and j, and uniform magnetic field H. (27) means sum over nearest

neighbours only. J is positive if sites ¢ and j have a lerromagnetic interaction

[so that aligned spins have lower energy], and negative for an antiferromagnetic

interaction, where spins prefer to lie anti-parallel. (H is called the Hamiltonian,

and is just the operator equivalent to the total energy.)

Even this simplified system cannot be solved exactly for classical spins. An
important landmark in the development of statistical mechanics was the exact
solution of the Ising model in two dimensions. This system, inspired by quantum

mechanics, allows each dipole moment to have only two orientations, fully parallel



to or fully antiparallel to the external field. Thus each S in equation 1.14 is

replaced by an integer taking the values 41.

Despite its apparent triviality, the Ising model in two dimensions has two

important qualities:

o the two dimensional Ising system does undergo a phase transition, from a
paramagnetic high-temperature régime to a low-temperature ferromagnetic

phase, and

e because it can be solved exactly, it is a useful testbed for techniques which
are applied to more complicated models. The errors introduced by such

techniques can be monitored.

Several statistical techniques will be illustrated in chapter 2 using the Ising

model.

1.2.3 Phase Transitions and Broken Symmetry

It is useful to consider a phase transition from a statistical mechanics view. The
Heisenberg model for a ferromagnet (Hamiltonian 1.14) undergoes a paramag-
netic to ferromagnetic phase transition, developing a spontaneous magnetisation
at low temperature. The Ising system in two dimensions behaves similarly. How-
ever, the energy of the system is unchanged if all Heisenberg spins are rotated
through the same angle, or if all the Ising spins are flipped. Application of the
above ergodic hypothesis would therefore produce a zero magnetisation at all tem-
peratures, since any contribution from one configuration is exactly cancelled by a

contribution from the configuration with all spins flipped through 180° degrees.

One can only conclude that the symmetry of the Hamiltonian has been ig-
nored, and that the ergodic hypothesis has been violated. (The phase transition
occurs in the model system, so we cannot blame some hitherto unconsidered in-
teraction in the real system.) Our physically relevant measurements must now
be limited to that part of ‘configuration space’ which is available to the system;
this can be done formally by imposing a small field, and taking the limit of the

result as the magnitude of the field is reduced to zero.

It should be noticed that the symmetry can only truly be broken for a system

of infinite size, since a finite system will change its direction of magnetisation if a
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fluctuation in the local direction of the magnetisation reaches the order of the size
of the system. Near the phase transition, these fluctuations can be very large,
and only an infinite system is stable against such fluctuations since there is a non-
zero probability of a fluctuation reaching any finite size. The phase transition is
defined as the point at which the fluctuations become infinite (correlation length
diverges in equation 1.7). In practice, real systems, with order of 10** particles,
do not flip on timescales of experiments, but the effect is important for the sorts of

system sizes which are amenable to computer simulation. This will be discussed

further in section 3.6.

Random Systems

For random systems, whether random exchange or random anisotropy, it is neces-
sary to use a Hamiltonian which reflects the random variables. For spin glasses,
with random exchange, the essential physics can be captured by replacing the
term J in Hamiltonian 1.14 by J;; whose sign and possibly magnitude various

from site to site, giving the Edwards-Anderson Hamiltonian [12]:

H=-> J;S.S;, —H.> S, (1.15)
(i7) i

For the random anisotropy system, one postulated model Hamiltonian is the

Harris, Plischke and Zuckermann (HPZ) random anisotropy model [§]
H=-—3JS.S;, -3 D(S;a)’-H.>_S, (1.16)
(i) : :

where the fi; is a unit vector in the easy direction at site 2 and D is the strength
of the attraction to the local easy direction. The anisotropy energy is minimised
when the spin lies in either direction along the local easy axis, and is a maxi-
mum when the spin is perpendicular. This is a simplification of a more general

Hamiltonian where both D and .J can vary from site to site.

In each case, it is necessary to average over the random variables J;; or n;
in order to arrive at physically meaningful results. But it is important to dis-
tinguish between the thermal (Boltzmann) average over the spin variables and
the average over the (sample to sample) variations in the randomness. We must
conceptually take an ensemble of systems with different random variables, and for
each, perform the usual thermodynamic average. But as we have already seen,

a single system with a particular set of random variables is in general too hard
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for us to study, yet now we have to find properties of systems with a particular

distribution of random parameters. This will be discussed further in chapter 2.

[
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Chapter 2

Theory

Before examining the properties of the HPZ model (equation 1.16), it is useful
to study the Ising and XY models, in order to review some techniques used in
solving statistical mechanics problems. The Ising system is exactly soluble in
one and two dimensions, and is invaluable as a guide to the accuracy of these
methods. The random anisotropy system in the large anisotropy limit might be
expected to show some Ising behaviour. The XY (or planar rotator) model is the

simplest continuous spin system, and is the small anisotropy limit of the random

system studied in this work.

Both the Ising and XY models are special cases of the general Heisenberg

H=-J>S;.S;—H.>_S; (2.1)
(%) :
where J is the exchange interaction between nearest-neighbour spins S; and

S; at sites ¢ and 7, and H is the applied magnetic field. This Hamiltonian forms

the starting point for the discussion of both the Ising and XY models.

2.1 Ising Model

The Ising model is a very simple system in which each spin can take one of only
two values, ‘up’ and ‘down’, and spins interact only with nearest neighbours. It
is the classical analogue of the Quantum Mechanical spin-1 problem. In the limit
of large anisotropy, where the spins are constrained to lie along the anisotropy

axes, we might expect to find similar behaviour.
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Hamiltonian 1.14 can be simplified to

H = —JZ@JJ'—HZQ (2.2)
{4.3) ¢

where o; is now an integer, taking values 41 and the exchange sum is taken

over nearest neighbours only. The ground state in zero or uniform magnetic

field clearly has all spins aligned (assuming JJ > 0), as this is the configuration

with lowest energy. For J < 0, the spins are alternately up and down, in an

antiferromagnet configuration.

2.1.1 Domain Formation

We can reformulate the one-dimensional model in zero field in terms of the bonds
rather than the spins — each bond has energy 0 if the adjoining spins lie parallel,

or 2J at a ‘kink’, or discontinuity, in the adjacent spins:

T

The bonds are independent, and kinks appear at each bond with a probability
exp(—28J) where § = kBLT. Thus, in an infinite system, we expect kinks to

appear at any non-zero temperature, destroying long range order.

In two [or more| dimensions, these kinks become lines [surfaces], surrounding
regions of aligned spins, as illustrated in figure 2.1. Unlike the one-dimensional
case, however, the energy of these domain walls is now proportional to the perime-
ter [surface area] of the regions they enclose. In order to form a domain of reversed
spins of linear dimension~ £, a domain wall of length £%~! is required, as shown
in the figure. Thus the energy of the fluctuation ~ 2J£%°!. In one dimension, the
energy is independent of £, as expected. But with d > 1, we would not expect
to find large domains of reversed spins at low temperatures, implying that the
system possesses a net magnetisation. At higher temperatures, of course, the
increase in entropy associated with the domains would make them favourable,

and so no net magnetisation is expected at sufficiently high temperatures.

The two-dimensional Ising model was indeed shown to be ferromagnetic below
a critical temperature T, = 2.269.J by Onsager [13]. Monte Carlo simulations find

T.=23(d=2)and T, = 443 (d = 3), in energy units of J.



AAA AL A A A A A A A AAAA A AL AR
AA A2 A4 4 4444 A A A AR ANA LA
AAAAVV VA A AL AANNRNNKNNNAD
AA AV VYV VA A A AARIRR RN RINAA
AA VYV YV VA A LA AR NIREER NN AA
AAY VYV YV A4 AR RRE€CERNAA
AAV YV VYV VA4 A AARNIRN®RERRINAA
AAYV V¥V VA A A4 A A KRIRN R X RINAA
ALYV ¥VA A 4444 AARKKRNNNNANLA
A A2 A A A4 4444 A AAARNANNA R AR
A A A A A A A A A A A A A A A A A AL A AR

Figure 2.1: Comparison of domain formation in the Ising (left) and XY (right)
models in two dimensions. In the Ising syvstem. domains have a sharp domain
wall, and the energy is proportional to the perimeter of the wall, while in the
XY model, the dotted line is a nominal domain wall, enclosing the spins rotated
by more than 45°, but in practice the exchange energy is distributed over all the
shaded spins.

2.2 The XY Model

The XY (or planar rotator) model is an Heisenberg system (equation 2.1) with
two-component spins constrained to lie in the XY plane. Its properties are
presented here since we may expect to find similar properties in the limit of small

anisotropy in our random anisotropy system.

We can recast equation 1.14 for the XY system in the form

H=—J> cos(,—0,)— HY cosl, (2.3)
(7) :

where 0, is the angle between the spin at site 7 and the magnetic field (or some
arbitrary direction, in zero field). Once again, the exchange sum is over nearest

neighbours only.

2.2.1 Domain Formation

Consider the formation of a domain of size £, with spins rotated from the bulk

direction by an angle 8 (figure 2.1). The surface area is again of order €1 but
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in the case of continuous spins, the discontinuity is not abrupt as that of the
Ising system, but is spread over a number of spins, of order ¢, as shown in the
figure. Thus, the deviation between adjacent spins ~ 0/, and the energy per
. ~ 1 2 £ : . :
bond is 1 — cos(8/€) = 5(0/£)? for small angles. Thus the energy of the domain
varies like 20?¢472. In three or more dimensions, domains are inhibited at low

temperatures, and spontaneous magnetisation can occur.

In one or two dimensions, large domains are not inhibited at any non-zero
temperature — there may be no long-range order. However, in the presence of
an applied field, full alignment is possible at 7" = 0K, implying an infinite zero-
field susceptibility. In the real systems discussed in section 1.1.2, the dipolar
interaction and crystal field anisotropy prevented free rotation of domains, but

these interactions have been neglected here.

2.2.2 Spin Wave Analysis

A more formal approach is to calculate the amplitude of spin waves in the system.
We again suppose that angles between adjacent spins are small, so that we can

use cosf &~ 1 — 16% in equation 2.3:

H —Za—a) (2.4)

(i)

= —ZZ< )~ O(R+a)), (2.

where a is summed over the nearest-neighbour vectors. Following [14], we take

&

o
(W1
~—

Fourier transforms. ..

1 ik.R
O(R) = \/—_TZer , (2.6)
where Oy = 9(R')e ik Rl 2.7
T o)
so M = 5?@;9}(12, (2.8)
where Jx = 2JY (1 —cosk.a). (2.9)

Thus, in k-space, in this small-deviation limit. the variables are decoupled. The
energy is now expressed in terms of spin waves of wave vector k and amplitude
Ox. (A cross-section through the centre of the right hand side of figure 2.1 can be

used to illustrate the nature of a spin wave.) The equipartition of energy gives
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1Jx(|0k]*) = 3T, so the intensity of each possible wave is proportional to the
temperature. The wavelength of the spin waves is closely related to the size of
the domains discussed in section 2.2.1: at low temperatures, only very gradual
changes in the magnetic direction are permitted, and large domains result, while

increased temperature allows smaller domains to be formed.

From this spin wave analysis, various useful functions can be calculated [14].

One important result is the spin correlation function (section 3.5)

G(R) = (oo (O(R T R}~ 6(R))) (2.10)
~ R (in two dimensions) (2.11)
~ ¢ MO+B/R) (in three dimensions). (2.12)

The correlation function in two dimensions (equation 2.11) decays to zero
extremely slowly — there is no true long range order, but the system is “al-
most” magnetic. Thus considerable care is required when performing numerical

simulations on finite systems.

2.2.3 Berezinsky-Kosterlitz-Thouless theory

Berezinsky [15] and Kosterlitz and Thouless [16] realised that an important ex-
citation in the two-dimensional XY model is the vortez, a topological defect,
illustrated on figure 2.2. As we go round a contour enclosing vortices, the spin
angles change by £2nm; n is the algebraic sum of enclosed vortices, using sign to

distinguish the two possible polarities shown in the figure.

Consider a circle centred at an isolated vortex, with radius R large in com-
parison to the lattice spacing a. The change in angle of 27 is distributed over
27 R spins, so that the total energy in the bonds around the circle ~ % (c.f.

section 2.2.1), and the total energy within the circle due to the vortex is of order

R R
.J/ Sdr = Jln 2 (2.13)
a T

a

Thus the energy of an isolated vortex diverges as we consider R — oc. At higher
temperatures the extra entropy carried by a vortex can make isolated vortices
favourable: inside the circle, there are 7 R? possible positions for the vortex centre,
and the entropy ~ In B. A more careful analysis shows that F' = F —T'S5 changes

sign at a temperature 7. = nJ.
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Figure 2.2: The upper two figures depict vortices of opposite polarity: running the
figures together would cancel their eflect at large distance, as shown in figure 2.3.
It should be noted that the anti-vortex depicted on the right is not simply the
spins going “the opposite way’ — flipping all spins in the left figure by 180°
reverses the direction of rotation of the vortex, but does not change the polarity
of the vortex. The lower two figures depict pairs of half-vortices — the left pair
combine to form a full vortex equivalent to the one above it, while the right pair
cancel, with no effect at long distance.



The impact of a vortex-antivortex pair with separation R is small at large
distances (figure 2.3), so that the energy is finite, again of order In R, and such
pairs can be created at low temperatures. As the separation R between vortices
in a pair increases, at higher temperatures, other vortices can ‘screen’ the effect
of one vortex on its partner, thus lowering the temperature at which the pairs
dissociate. Kosterlitz and Thouless reformulated the problem as a gas of charged
particles, modelling the interactions between pairs as a dielectric constant. Us-
ing a mean field theory on this system (section 2.3), the phase transition from
‘topological order’ was found to be at 7T, = 1.35J. Monte Carlo results give

T. = 0.89J [17], but agree qualitatively with the nature of the phase diagram.

Also shown on figure 2.2 are half-vortices: around a circle enclosing a half
vortex, the spins go through an angle £7. Two half-vortices of the same polarity
are equivalent to a full vortex, while half-vortices of opposite polarities cancel, as
expected. Half-vortices tend to appear as thermal excitations; a full vortex can
extend itself over several sites, forming a string of frustrated spins between the
half-vortices, as shown — frustrated because there is no orientation available to

satisfy the exchange interaction with all neighbours.

Kosterlitz [18] went on to study the critical properties of the system using
renormalisation (section 2.4). The main result of this was the calculation of the
1

critical exponents n = ; and ¢ = 15. (y = AT in equation 2.11).

Vortices also have a part to play in the three-dimensional XY model, but as
vortex strings. Because these are one-dimensional structures, rather than point
defects in the two-dimensional model, they are not expected to play a significant
role, although there is at present no theory which takes these vortex strings into

account.

Finally, it should be noted that the XY model displays an anomalous ‘bump’

in the specific heat above the phase transition temperature.

2.3 Mean Field Theory

Mean field theory can be viewed in (at least) two ways: it is the ezact solution
for a system with infinite-range interactions (i.e. each particle interacts with
every other with equal strength), or it is the approzimate solution for finite-range

interactions, ignoring fluctuations.
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Figure 2.3: A pair of vortices (highlighted), one of each polarity. Notice how, far
from the vortices, all spins point towards the left, so that the vortex pair does
not have any long-range impact.



2.3.1 Ising model

In the Ising model, for example, equation 2.2 can be rewritten in the form

H = —> <H+ JZSHJ S; (2.14)
i J
= - H!S. (2.15)

In this form, we can see that particle ¢ moves in a local effective magnetic field
H!. If we now take the (spatial) mean effective field, we find each spin moving

independently in a (uniform) field
H =H+2JS, (2.16)

where z is the number of neighbours (in the approximation view). This simple

system has a partition function
7 =exp(BH') + exp <-,B_H—7> (2.17)
and a (thermal) mean magnetisation
(Sy = tanh (87) (2.18)
= tanh(ﬂ (H + zJ?)) (2.19)

at inverse-temperature . This can be solved graphically, plotting the lines

y = tanhz and (2.20)
' — H

_od-a 2.91

Y =7 (2.21)

as illustrated in figure 2.4. In zero field, the curves always meet at z = 0, where
the gradient of equation 2.20 is 1; if this is greater than 7'/zJ, the curves will

cross again, indicating a spontaneous magnetisation and hence ferromagnetism.

In summary, therefore, the mean field theory predicts a (second-order) phase
transition at 7. = zJ. This is clearly in disagreement with the known behaviour
for the one dimensional model (section 2.1), and significantly overestimates the
critical temperature for two and three dimensions. The 1-d catastrophe occurs
because mean field theory neglects fluctuations such as our kinks. (Or, in the
infinite-range view of mean field theory, an isolated kink has infinite energy, as
all the spins to one side interact unfavourably with those on the other side.) In
two and three dimensions, it at least predicts the correct qualitative behaviour,

though with too high a critical temperature.
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0.5%x ------ e
0.5*x-0.25 - - 7

Figure 2.4: Form of graphical solution for equations 2.20 and 2.21. Changing the
temperature changes the gradient of the straight line, while changing H moves
the line in the y direction. The lines must cross once, and may cross up to three

times.

2.3.2 XY Model

A mean field theory for the XY model follows section 2.3.1 fairly closely, but
because this is a continuous system, equation 2.18 becomes

[2™ cos fexp (BH' cos 0) db

s 2.22
(cos ) [T exp (BH' cos ) db (2.22)
_ hsH) (2.23)
In(GH')
with I(z) = / cos™ 0 exp (x cos ) db (2.24)
Again, a solution can be obtained by plotting self-consistent
2l —H
= — 2.25
Y oy (2.25)
[1(’23)
and y = . 2.26
Y Io(z) (2.26)

for various temperatures.

Equation 2.26 is similar in form to equation 2.20, so that a graphical solution
resembles figure 2.4. As before, we use the gradient of equation 2.26 at © = 0 to
determine whether the lines cross more than once in zero field:

d I(x) LO) 1 _ T

= — 2.2
da Iy(z) (2.27)

L)~ 27 Jz

=0
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Thus mean field theory predicts ferromagnetism in the XY model for T < dJ
(since z = 2d). This is qualitatively correct for three dimensions, but, as before,
in lower spatial dimensions, fluctuations cannot be ignored. In this case, as (cos 6)
decreases, (|sin 0|) increases, and the direction of the local field changes, so that

there is no long range order.

The evidence therefore tends to suggest that mean field theory is at best
misleading, and at worst just plain wrong | However, it has the big advantage of
being simple to formulate, and does give an indication of how to proceed. This
is especially true in very complex systems, when mean field theory is the only
tractable theory. It is less useful in low spatial dimensions, where fluctuations are
more important. In general, there is a lower critical dimension : in fewer spatial
dimensions, the gain in entropy produced by introducing a domain wall exceeds

the gain in energy at any (non-zero) temperature.

2.4 Space Renormalisation

Renormalisation is the procedure of changing the scale of the system, and com-
paring the properties of the new system with those of the original system. The
procedure can be carried out discretely, by ‘decimating’, or summing over some
of the sites using the Kadanoff construction [19] , or by making a continuous
transformation. If the transformed lattice has the same structure as the original,
then the partition function for the reduced lattice should have the same form as
the original, but with an interaction strength A" different from the original K.
Clearly, we can iterate this process. At infinite temperatures, all the sites are
independent, so that changing the scale in this way cannot make any physical
difference. Likewise, at zero temperature, in a ferromagnetic system, all sites are
ordered, so that again there is no difference in macroscopic properties when we
renormalise. These are called fixed points, and as we iterate our renormalisation

procedure, we may head towards one or other of these fixed points.

At high temperature, for example, above any phase transitions, the corre-
lation length is finite. The correlation length in the decimated lattice must be
smaller, since the system is correlated over the same physical distance, which
now corresponds to a smaller number of lattice spacings. smaller number of
new-lattice-spacings). This is equivalent to a move to a higher temperature or

a weaker interaction. Thus as we iterate, the system tends towards the infinite-



temperature / zero-interaction fixed point.

Near a critical point, the system correlation length diverges, and since there
is then has no natural length scale, we might expect to find a critical fized point

, where the system is again unchanged by the renormalisation, requiring K’ = K.

For example, in the 1-d Ising model in zero field, we might decimate the lattice

by explicitly performing the sum over the even spin sites in the partition function.

We first rewrite Hamiltonian 2.2 in a dimensionless form

H =pfH=K_ ssn (2.28)
with a reduced interaction N = 3J. Explicitly summing the even spins,
Z(K,N) = > exp(H) (2.29)
{s. }==%1
= > > D> D exp(H) (2.30)
s1==%1 s3==1 sp=x%1 sy==%£1
— Z {(el{(sl-i-sB) + e—[\'(sl+53)> (61\'(33—{—35) 4. ) . ] (231)
81,823,858,
= Z(@ exp K’5153> ((D exp ]('5355> e (2.32)

where equation 2.32 follows by choosing A” and ® such that each term agrees

with terms in equation 2.31 for s, = £1 and 5,49 = £1:

dexph’ = 2cosh2h when s, = 5,49 = £1 (2.33)

Gexp—L' = 2 when s, = —s,4.9 = 1. (2.34)

Thus, with ® = 2v/cosh2A” and K/ = %ln cosh 21\,
C ] ., N
(K, N) = ®%Z<AQEJ

and the partition function for the decimated system has been restored to its
original form, with a reduced interaction strength — because it is In Z that is of

physical relevance, In @, an additive constant, is irrelevant.

As we iterate, K"t < K so that the renormalisation flow is always
towards the T' = oo fixed point for this system. The only solution for K/ = K
is at ' = oo, the T" = 0 fixed point. Hence, there is no critical fixed point, in

agreement with our earlier arguments presented in section 2.1.1.
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2.4.1 Scaling Hypothesis

The preceeding renormalisation algorithm can be expressed as a generalised scal-
ing hypothesis, which allows relationships between the scaling exponents in sec-

tion 1.1.3 to be defined.

We renormalise the lattice in blocks of L9 spins in d dimensions. (L was 2 in
the example above.) In the vicinity of the critical point ¢ = A = 0, we can derive
relationships for renormalised parameters ¢ and 2. The simplest relationship
consistent with the symmetry requirements as h — —h and the properties of a
critical fixed point (# = A’ =0 when t = h = 0), is

R = hL* (2.36)
' = tLY. (2.37)

The scaling hypothesis supposes that the free energy of the system is domi-
nated by a singular term near the transition. For the renormalised system, that

term must scale like
(1" h) = ®(LYt, LTh) = L®(L, h) (2.38)

because we have renormalised in blocks of L? spins. As we have seen above, the

correlation length of the renormalised system is reduced by a factor L:
' R) = L7, R). (2.39)
By definition (equation 1.7), £(¢,0) ~ |t|7%, giving vy = 1 in equation 2.39.
Choosing L = |¢|™¥, we find
®(t,0) ~ [t (2.40)
But simple thermodynamics relates the behaviour of the [ree energy to that

of the specific heat in zero field: from equation 1.3, ®(¢,0) ~ [{|>=®, giving

Josephson’s law
vd =2 — a. (2.41)

Similar arguments give other equalities:

a+280+y = 2 Rushbrooke’s law (2.42)
a+pB6+1) = 2 Griffiths’ law (2.43)
(2—n)v = v Fisher's law. (2.44)
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2.5 Replica Method

In random systems, not only are we required to perform the usual statistical me-
chanical thermal averaging, but we must also average over the randomness within
and between samples. In experiments on samples of real systems, the globally-
measured properties are an average over many possible local configurations of the

random variables, so that fluctuations between different samples should be small.

We can write down the partition function Z of our system, but it is In Z which
is of physical relevance, and therefore which must be averaged over. The replica
method makes use of the identity

7" —1

InZ = lim —— (2.45)

n—0 n

to allow us to deal with the randomness by averaging Z", which is somewhat

easier in general (though in some cases it is perfectly possible to obtain the

average of In Z directly).
20y = Sep (=53 (S, (1)) (2.46)

The « indices are called replica indices — conceptually, we have made n ‘replicas’
of our system. Provided that, after we have performed our average over the
randomness and made whatever approximations that are justified, the resulting
Hamiltonian for the n  coupled replicas is well behaved in n, we can take the

limit n — 0 and can find our sample-average of In Z.

However, while the Hamiltonian is symmetric in the replica indices o, the
lowest energy may be a state in which this symmetry is broken, in an analogous
way to broken symmetry in ferromagnets. In this scenario, called broken replica

symmetry, it is not clear that taking the limit n — 0 is valid [20].

2.6 Spin Glasses

The random system which has been (and remains) most studied to date is the
spin glass [7]; as described in section 1.1.8, these systems have competing fer-
romagnetic and antiferromagnetic interactions — the exchange interaction J;;
between spins ¢ and 7 in Hamiltonian 1.14 is random, certainly in sign, and pos-

sibly also in magnitude. The origin of this random exchange in dilute magnetic
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Figure 2.5: Frustration in (left) the Ising spin glass and (right) the Ising limit
of the random anisotropy model (section 2.7). The ‘77 indicates that neither
orientation satisfies all local bonds. The right picture illustrates a natural site
for a half-vortex (section 2.2).

4 A7
? >

systems is thought to be due to the oscillatory RKKY interaction [6]; not only the
magnitude, but also the sign, of the exchange interaction changes with distance,

and in dilute or amorphous systems, the separation between spins is random.

The crucial factor appears to be frustration — the local variations in the
exchange contrive to provide no possible configuration where all the ferromagnetic
and antiferromagnetic interactions are satisfied at once. This is illustrated in
figure 2.5. Instead, there are many inequivalent ground states [as opposed to the
degenerate ground states in the Ising model (section 2.1) for example], with large
energy barriers between these (relatively) low-energy states. The system becomes
non-ergodic — it is trapped, or frozen, by these local minima, and is unable to
sample the whole of phase-space. Because the energy barriers are not infinite, a
non-zero temperature is required to assist the system in escaping from some of the
energy minima. The volume of phase space available to the system depends on
both the temperature and on the time-scale of the measurements being made —
glassiness is a dynamic phenomenon, since the probability of the system crossing
an energy barrier depends on the temperature. However, all systems can cross
any finite barrier given sufficient time. (In an infinite system, the energy barriers

can become infinite.)

While a non-random system is characterised by a global order parameter
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(magnetisation), the degree of freezing in a spin glass is measured using a local
order parameter m, = (5,) at site ¢; the signature of the frozen state is that the
spins do not deviate significantly with time at a local level, even though there

may be no long-range order.

Because the freezing is a dynamic effect, a dynamic spin glass order parameter
alt) = (8. (078,00 (2.47)

is defined, with the Edwards-Anderson order parameter defined by
qea = lim q(t) (2.48)

A crucial question is whether random anisotropy systems (the subject of this

study) exhibits glassiness.

2.7 Random Anisotropy Model

The rational for the RAM model was described in section 1.1.8 — the general
Hamiltonian introduced by Harris, Plischke and Zuckerman (HPZ) to take into

account the crystal field interaction in an amorphous compound is (equation 1.16)
H=->J,S.S,-~H> S, -> D, (S.n)’ (2.49)

{21) ¢ :
where D, is the strength of the anisotropy at site ¢ in random direction n,, un-

correlated with neighbouring sites. It is common to make the approximation

D, = D in addition to the usual approximation of J,, = J for nearest neighbours

(section 1.2.2).

For the two-component spins studied in this work, we can rewrite Hamilto-

nian 1.16 in the form

H = —.]Zcos(/)2 —0,)— HZCOS H,— D ZCOSQ(Ol —&,). (2.50)
(1]) 7 :

Generalising slightly:

H=—J> cos(,—0,)— H> cost, — D> cos[p(f, — ¢,)] (2.51)
(U) 2 [
where p is the number of equivalent easy directions, equally spaced about ¢,.

p = 1 corresponds to the random field model, where each site is subject to a local
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random field. p = 2 is the usual RAM model, with random uniaxial anisotropy,
and larger values of p can be used for larger numbers of easy directions. In the

infinite anisotropy limit, these correspond to the ‘clock model’.

The interesting physics comes from the competing interactions: the exchange
term tends to align the neighbouring spins, while the anisotropy term tries to
direct each spin along the local easy axis. The spins can choose to align themselves
with each other, with a large energy cost with respect to the anisotropy axes, or
they can line up along the local axes, which carries an energy cost due to the
misalignment with each other. Almost inevitably, the system must compromise,

and it is this compromise that leads to interesting behaviour.

When D is very small, where the exchange dominates. the spins might be
expected to be very nearly aligned in the direction of the external field (formally

introducing a small symmetry-breaking field if necessary). In this situation,

D
D cos?(8, — ¢,) ~ 5 + more interesting part (see below), (2.52)

and in order to compare energies with the energy of the pure system (D = 0) as

a function of small D, it is convenient to redefine Hamiltonian 2.50 in the form
1
2 —_
H=—J> cos(,—0,)—HY cost,— D> <cos 0, — &) — 2) . (2.53)
(z]) (3 K
in order to emphasise the more interesting part.

Conversely, when D is very large, the anisotropy dominates, and the spins

might be expected to be very nearly aligned with the local axes, in which case

D cos?(9, — &,) = D — more interesting part (see below). (2.54)

In order to compare energies as a function of large D, and to prevent £ — oo

as D — oo. it is convenient to redefine the Hamiltonian in the form

H=—J> cos(f,—0,)—H> cost,— DY (cosfz(@z —¢b,) — 1) . (2.55)
{23) v 1

In the infinite D (Ising) Limit, the spins are constrained to lie along the easy
direction(s) — for p = 1, there is a unique ground state, while for p > 1 the
exchange term can still influence which of the p equivalent directions the spin

adopts. For p = 2 we can rewrite equation 2.55:
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SZ' = 0;11; :i‘_ll,' (256)

H = —=> J,oo,—> Ho, (2.57)

(%) :
where J, = Jiyn,.n, (2.58)
and H = H,n; (2.59)

Equation 2.57 resembles an Ising spin glass (section 2.6), and there can be
frustration, as shown on figure 2.5 — the configuration of the local anisotropy

axes shown forms a perfect ‘pinning centre’ for a half vortex (figure 2.2).

2.8 Chudnovsky-Imry-Ma

The main analytic work on the HPZ model is the application of an Imry-Ma [21]
argument by Chudnovsky and co-workers [22-25], reviewed in [26]. The following

applies to zero temperature, unless otherwise stated.

As before (section 2.2.1), we consider the formation of a domain of size ¢
lattice sites, containing N ~ &7 spins misaligned with the surrounding spins
(figure 2.1). We consider separately the single-spin energy contributions for the
anisotropy energy Fa.s, the exchange energy Fecen, and the energy due to the
external field Fgeq. This is essentially a dimensional argument, so we are not

interested in numerical factors.

2.8.1 Anisotropy

In a very large domain, we expect the anisotropy axes to be distributed isotrop-
ically, but in smaller domains, statistical fluctuations may be significant. For a
domain of size N, in which all spins are aligned at an angle 8, for a given set of
anisotropy axes {¢;}, we are interested in F,,;s as a function of §. This is illus-
trated in figure 2.6 where F,,;s(f) has been compared for three different domain

sizes for particular choices of {¢;}.

We neglect signs, and use the small-D form of the Hamiltonian (equation 2.53)

since we are calculating the energy compared with the fully-aligned state.

D 1
Eanis(0) = N <6052(9 —¢,) — E) (2.60)
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Figure 2.6: Polar plot comparing FEanis(f) for three different domain sizes, clearly
showing a preferred domain easy-axis, with energy difference dependent on do-
main size. Solid line is a circle of radius 1, representing an infinite domain, for

comparison.
D
~ NZCOS 2(0 — ¢4) (2.61)
D : .
= 5 (cos 20 cos 2¢; + sin 20 sin 2¢;) (2.62)
D . :
= 5 <cos 26 Z cos 2¢; + sin 26 Z sin 2@) (2.63)
DA |
where Acos2® = ) cos2¢;, (2.65)
Asin2® = > sin2¢;, (2.66)

2 2
and A = J(Zcos?@) +<Zsin‘2gb1>. (2.67)

A is precisely the displacement after a random walk of N steps, each step of unit
length in random direction — this has the well known result A ~ v/N. Thus
Eanis(9) fluctuates with an amplitude ~ D/+/N, and a domain of spins of size~ &2
stands to reduce energy by ~ D§‘§ by rotating towards local easy direction @,
but at a cost of misalignment along the domain walls. As N — oo, Fans — 0,

while as N — 1, FE..;c —~ D, as expected.
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2.8.2 Exchange

The exchange energy at the surface of a domain in a continuous system was
considered in section 2.2.1: the energy of a domain of size ¢ rotated through an

angle of one radian is of order ££%7%, so that the energy per spin is given by

1
Eexch ~ 56_2- (268)

2.8.3 Zero Field

In zero field, combining the anisotropy and exchange terms, and minimising for

0 and &, we can calculate the energy per spin.

E = Eanis + Eexch (269)
~ —DEcos2(0 — @)+ JE2 (2.70)

The minimisation with respect to 8 is trivial — the spins lie along 8 = &, the

average easy direction for the domain.

In more than 4 dimensions, Fey, always wins, £ — o0, and the system is
ferromagnetic. When d = 4, £ is either 0 or oo, depending on the ratio of -l}. A
more careful analysis would be required to determine various numerical factors

which have been disregarded.

In general, we are interested in cases when d < 4, and £ has the form shown

in figure 2.7. Equation 2.70 has a minimum. ..

ok {
= SDEET 267 =0 (2.71)

4
gEms 2J/D (2.72)
¢ ~ (J/D)= (2.73)
= (D/J)W%d with energy (2.74)

DN\ 7

Emin ~ <7> . (275)

Thus small D implies large clusters containing many spins (D — 0 implies an
infinite cluster, i.e. ferromagnetism — this argument does not consider the topo-
logical complexities of the two-dimensional XY model described in section 2.2).
This system has been dubbed the correlated spin glass, or correlated speromag-

net [24] — each cluster lies along its collective easy axis ®, and the neighbouring
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Figure 2.7: Form of equation 2.75, showing an energy minimum at the optimal
domain size £.

clusters influence the orientation along this axis . This is analogous to the sper-

omagnet or Ising spin glass (section 2.7), but for correlated domains of spins,

rather the individual spins.

The spins in the CSG régime are arranged in a similar way to the illustration
of domain formation in the two-dimensional (pure) XY model (figure 2.1); the di-
rection of the local magnetisation varies smoothly through the sample, correlated
in domains. The presence of random anisotropy, no matter how small, causes the

breakup into domains, and therefore destroys any long-range order.

Large Anisotropy

As D increases, the clusters shrink, until they reach the order of the lattice spac-
ing, in the Ising limet. In this limit, neighbouring spins influence only the orien-
tation of a spin along its local axis (Hamiltonian 2.57). This is the (uncorrelated)

speromagnet using Coey’s terminology [27].

Using a simple extension to the ideas of Chudnovsky et al., we can calculate
the order of magnitude of the deviation of the spins from full alignment with the
local anisotropy axes in this large anisotropy régime. Using the large D form of
the HPZ Hamiltonian (2.55), each spin 6, is pulled a small angle §6, from the local

easy direction ¢,, releasing exchange energy proportional to .Jé4,, but at a cost of
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an increase in the anisotropy energy, proportional to D cos? §0;. Minimising the

change in energy, we find

§0; ~ J/D, (2.76)
§EBmin ~ —J*/D. (2.77)

2.8.4 Thermal Depinning

The energy minimum given by equation 2.75 is not very deep. A simple argument
resulting from a collaboration with Prof. Wayne Saslow suggests that at temper-
atures of the order of E,;,, the thermal energy may allow the system to lift itself
out of the low temperature Imry-Ma state, into some other régime. That is, the

system is no longer ‘pinned’ by the configuration of the anisotropy axes above a

temperature

d
D\ i=d
Tdepinning ~ D <7> . (278)

2.8.5 Local Energy Fluctuatuons

While the spins within an Imry-Ma domain lie on average in the direction of the
collective easy axis, there are fluctuations. The contribution to the energy can be

calculated using an analysis similar to that used for spin-waves (section 2.2.2).

Writing the Hamiltonian in a continuous form,

H o= /[mpcoﬁw —¢) — J(V0)?] d'
oM

ot 2 2 '
50 JV0 + Dsin2(0 — ¢)

=0

Taking Fourier transforms,

—k*0, + D (sin2¢), = 0
D (sin 2¢),
Hk ~ T

Summing the contributions to the energy over the available modes,

¢ D2
(sin 2¢), (sin 2¢)_,

¢
}; BO00 ~ Y 0

k=a
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§
— o~
a

J
D
~ D? d=3

~ D?log D? log

2.8.6 Small Field

If we now add a small external field H < J as a perturbation, we can consider
the extent to which the spins will move, and hence calculate the magnetic sus-
ceptibility. We neglect the exchange interaction, since neighbouring spins will
usually be moved by similar amounts in the same direction, and we assume that
the cluster size ¢ is unchanged. In moving through a small angle §0; towards the
field, the energy released is Egaq ~ Hé0;. Again, we must minimise £ to find

the position of the compromise:

0, = (SE.(mis + 65l (279)
~ +DE280? — HSO; (2.80)
OF
= 0 81
5, (2.81)
H
80, = A where (2.82)
D T
H. = D (7> . with magnetic susceptibility (2.83)
om ) —d
¢ == —— =[] ~ 4— 9
X = =M~ DE (2.84)

This argument therefore predicts a finite magnetic susceptibility at low tem-

peratures.

2.8.7 Large Field

In this régime, the field can no longer be regarded as a small perturbative effect
for fields larger than the H. defined by equation 2.83. We can, however, refor-
mulate the analysis so that it is the anisotropy that is the perturbation, causing
small deviations from perfect alignment in the field direction. As before, the

largest gain in energy is made by limiting the size of the domains, but at a cost

in exchange energy we suppose typical small deviations of 8 from the field
direction, correlated in domains of size £&. This picture has been dubbed the fer-

romagnet with wandering ares in the literature [24]. The field now defines which
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direction along the collective easy axes the clusters in section 2.8.3 lie, and the

spins change direction smoothly through the sample.

The exchange energy is unchanged (but we must now explicitly consider the

change in spin direction):

Eexch - J§_202: (285)

while the energy cost per spin for deviation from the field is given by

Eﬁe]d = H(l — COS 0) ~ [‘[02 (286)

The domains cannot move all the way to the local average easy axes, but lose
an energy proportional to § in tipping an amount § towards them :
Eanis = —DET/20. (2.87)

In the original work [24], it was asserted that, at the minimum energy, the

three terms would be of similar magnitude, giving

JN\ 2
£~ <ﬁ> , (2.88)
JN\'TE
0~ D(TZ-) , (2.89)
9-d
Sm o~ D (%) . (2.90)

However, formally minimising the total energy with respect to both 4 and ¢

gives a different result. Minimising the total energy with respect to 8,

E = (H+JE?) 0~ DE5Y

OE _ »
- 2 (H +J€7) 0~ D
=0
g - _b&E
2(I + JE72)

and substituting into the expression for I,
D?é?—-d
T i+ HEOY

I

which is always minimised by ¢ — oo for d = 2 and d = 3.
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2.8.8 Very Large Field

As before (section 2.8.3), ¢ cannot shrink below one lattice spacing in equa-
tion 2.88 — for very large fields H > J, we ignore the exchange term, and
minimise the field and anisotropy terms. With no exchange to consider, these

results are independent of dimensionality d.

D

0~ (2.91)
2
dm ~ <%> , (2.92)

with a field dependence different from equation 2.90, which may be detectable.

2.8.9 Thermal Effects at High Fields

A further extension to the ideas of Chudnovsky et al. is to consider also deviations
from saturation in a large field due to a non-zero temperature, rather than the
randomness, so that we minimise the free energy ' = £ — TS rather than £. If
thermal excitations allow a spin to deviate from saturation by angle up to 0, the
volume of phase space available is proportional to 60, and the entropy S ~ log d8.

Neglecting the exchange and anisotropy terms in the very large field limit, we

minimise
= H§0* =T log §0 (2.93)
with respect to 80, and find that
T
Sm ~ §0% ~ —. 2.94
m 7 ( )

This effect will dominate equation 2.92 when 7' > D?/H. Conversely, because of
the differing field dependencies, equation 2.94 will always dominate for sufficiently
large field H > D?*/T.

2.8.10 Summary

In two dimensions, a correlated spin glass (D < J) has four régimes:

Region | Lower field Upper field dm 13 description
limit limit
a - D? - D=1 1 C.S.G.
b D? J D/l H™'Y%2 | T.W.A.
c J D*/T D*/H? l very large field
d D?*/T - T/H | entropy-induced
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and there are two régimes with dm ~ H7'. separated by a régime (c) with

Sm ~ H™2

In three dimensions, the table reads

Region | Lower field Upper field dm £ description
limit limit
a - D? - D% | C.S.G.
b D? J D?/H: H-: | F.W.A.
c J D*/T D?/H? 1 | very large field
d D¥T - T/H 1 entropy-induced

Further, as we change the relative sizes of the parameters D, J and T, we

expect the crossovers to change:

o for a speromagnet, (D > J), region b vanishes.

o at high temperature (T" > D3=7) region ¢ vanishes. In two dimensions,

there is nothing to separate the two H™' régimes.

e at very high temperature (1" > J), region b vanishes,

2.9 Topological Defects (Vortices)

It is useful to consider explicitly the effect of the random anisotropy on the
vortices which are significant in the (pure) XY system (section 2.2). For a suf-
ficiently large system, there is a significant chance of natural ‘vortex pinning
centres’, where a vortex is trapped in a potential well, as illustrated on figure 2.8.
In order for the vortex centre to move one lattice spacing, at least one spin near
the vortex centre must move 90° from a good alignment with the local axis to a
perpendicular configuration, as shown. (The spins that are not adjacent to the
vortex centre do not suffer such a violent change in angle, and so do not play a

significant role.)

We might suppose that at a low temperature, with less thermal energy than
the depth of the pinning centres. vortices can become trapped. As the tempera-
ture is increased, they may become free to move around the system and mutually

annihilate as usual.



v

¥ &
w. i

°
¥

IIIIIIELL
N . . ‘l' :.. |

N o Y T T

NN VX e
NNNN VY Vs
NN Y ¥V VA
R T T A
FHF AL AAARN
FIF A AAARNN
LAY N Y s
NN Y VNS
e A

> FAXXNALANKN
FFFFIFTTAALNN
> X >>>aRNRw®
aR A NN VY ke
>E I FALRRN
> A N R

Figure 2.8: Illustration of the energy required for a vortex to escape from a
pinning centre. The grey lines depict the local anisotropy axis at each site, and
the vicinity of the vortex is highlighted. The only significant change between
the two configurations is that the vortex centre has moved, and two spins in the
centre of the highlighted region have turned through 90°. While on the left, all
the spins around the vortex are almost aligned with the local anisotropy axes,
the two central spins are badly misaligned with the anisotropy axes, bringing an
energy cost proportional to the anisotropy strength D.



2.10 Other Theoretical Analyses

Early work [8,28-30] used mean field theory (section 2.3) to study the HPZ
Hamiltonian. The original work by HPZ [8] found the system to be ferromagnetic,
but with reduced spontaneous magnetisation at zero temperature and a reduced
transition temperature. Callen, Liu and Cullen [29], starting from a fully aligned
state, calculate the extent to which each spin will be pulled towards the local
anisotropy axis. This gives the remanent magnetisation after removal of a large
magnetic field, but the authors assert that in the absence of any aligning field,
the local magnetisation will rotate smoothly through the sample, in domains
whose size depends on D, much like the Chudnovsky-Imry-Ma picture. Indeed,
the calculations reproduce the results presented in section 2.8 where the limits

¢ — 1 have been reached.

Harris and Zobin [28] considered also the transverse components of the mag-
netisation which mean field theory neglects (section 2.3.2), and supported the
view that the system is ferromagnetic for small anisotropy strengths, but pre-
dicted a spin glass state for large D; they confirmed these results by Monte Carlo
simulation. Patterson, Gruzalski and Sellmyer [30] perform a numerical calcu-
lation of local mean-field equations, and report that the spin-glass phase found
by [28] is metastable, and that the aligned state has lower energy. They show
that to first order in 1), the transition to the paramagnetic phase is unaffected

by the anisotropy.

Derrida and Vannimenus [31] have studied the model in the infinite range limit
(which is equivalent to mean field theory) and find that the low temperature state
is ferromagnetic, and that the transition to the paramagnetic state is unaffected

by D for all anisotropy strengths.

The replica trick (section 2.5) has been used by Chen and Lubensky [32] to
show that a spin glass state is possible at low temperatures below some 7™
D. Several other authors have used the replica trick to transform the problem
into a translationally invariant one, and hence apply renormalisation techniques

(section 2.4).

Dotsenko and Feigelman [33] explicitly consider the role of vortices in a two-
dimensional XY model with p-fold anisotropy of random magnitude; for p > 2,
the system cannot be cooled below a temperature 7* = 47 /p, so that the system

at lower temperatures show the same correlation properties as at 7' = T*. That
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is, the system is renormalised back to 7™, and shows no spin-glass state at lower
temperatures. The system is pure-XY'-like for intermediate temperatures 7" <
T < Txr. For the p = 2 case in which we are interested, 7™ > Tk, so that no
phase transition is expected for this case. These authors have also studied the
three-dimensional HPZ model with two spin components in [34] and find that it

. does have a low-temperature spin-glass state.

Cardy and Ostlund [35] use renormalisation techniques to study the two-
dimensional XY model with p-fold anisotropy. In a similar way to [33], they
find that the Kosteritz-Thouless phase survives the addition of the anisotropy
provided that p > 3, and that below a temperature T* = 4 /p? the system is
glassy. Le Doussal and Giamarchi [20] point out that the fixed point found in [35]
at low temperatures is unstable against replica symmetry breaking (section 2.5),
and predict that the spin correlations go like 7"log(r) above T and 7™ log(r) for

T < T*, in a similar way to the prediction of [33].

Bray and Moore [36] study the p = 2 system in two dimensions in the limit
of infinite anisotropy, finding an Ising-like transition at zero temperature to a

non-ferromagnetic ground state. Evidence for glassy behaviour is presented.

Aharony and Pytte [37] calculate the magnetic equation of state to leading
order in D, and find that the low-temperature state has no spontaneous magneti-
sation but has infinite magnetic susceptibility in zero field, and the spin correla-
tions are found to decay as a power law with distance. The authors later consider
the discontinuous change from a spontaneous magnetisation M > 0 for D = 0 to
a nonmagnetic state for D > 0 [38]. They conclude that the susceptibility prob-
ably agrees with equation 2.84, but do not rule out the possibility of an infinite
susceptibility. This latter analysis does not cover the two-dimensional XY model

which does not have a spontaneous magnetisation even for D = 0.

2.11 Previous Computational Results

Early work by Chi and Alben [39] studying the HPZ model on a random lattice
model found a magnetic ground state. despite the presence of the randomness.
This result was later discounted as a linite-size effect by later molecular-dynamics

simulations [40]; both studies used rather small systems with 10 spins.

Similarly, Harris and Sung [41] initially found that a ferromagnetic state had
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Later work by

1owest energy, whatever the strength of the random anisotropy.
Harris [42] found that spins could be flipped to give a lower energy, and that the
energy barriers between the two states were approximately linear in anisotropy

strength D. These results are based on small systems of 512 spins.

Jayaprakash and Kirkpatrick [43] performed extensive simulations in the Ising
limit, for both two-component spins in two spatial dimensions and three-comp-
onent spins in three spatial dimensions. They found a low temperature phase
with short-range ferromagnetic order, and a peak in specific heat, but no critical
behaviour, in the crossover to high temperature. They also found hysteretic
behaviour in magnetic fields, and remanent magnetisation which is a signature of

magnetic behaviour, together with a coercive field which decreases with increasing

temperature.

Chakrabarti [44] studied this Ising limit further, measuring the spin glass
order parameter, and studving the cffects of finite size. concluding that the low
temperature phase is glassy. This work has been criticised [45], since the ground
state did not appear to have been correctly reached, so that the results have been

cast into doubt due to the simple single-spin update algorithm used.

A great deal of work has been done by Fisch [45-48], again in the Ising
limit, and predominantly at zero temperature. A study of the ground state
in the Ising limit in three dimensions is presented in [45]. Finite size scaling
of the magnetisation for systems up to 16 shows power-law decay of the spin
correlations for two-component spins, suggesting infinite magnetic susceptibility,
in agreement with the predictions of [37]. Exponential decay is indicated for
the spin correlations of three-component spins, giving a finite susceptibility. This
work is extended in [46] to explore the ground states of systems with higher orders
of anisotropy. The work was further extended to larger systems and non-zero
temperatures in [47], though still in the infinite anisotropy strength limit. The
ground state energies and magnetisations are calculated, and spin correlation
functions are found to obev a A" law. in agreement with neutron-scattering
experiments. A transition to a paramagnetic phase is found around T'/J = 1.91.

This work is repeated for threefold anisotropy in [48].

Reed [49-51] has studied the XY model with finite random anisotropy, though
our results in chapters five and six indicate that he was unfortunate in his choice
of D = 1. A study of the system in six-fold anisotropy [49] finds an interme-

diate Kosterlitz-Thouless régime, and a low temperature régime in which the
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parameters are renormalised back to 7™ as predicted by [20,33]. A comparison
of p-fold anisotropy for p = 2,3.4,5,6 [50] is made for systems up to 162. The
p = 2 system is found to be non-quasiferromagnetic, below a transition temper-
ature of T'/J = 1.1. Finite-size scaling is used on the three-dimensional XY
model with two- and three-fold anisotropy [51], and the system is found to be

non-quasiferromagnetic below 7, = 2.2.

Finally, Dieny and Barbara [52] have studied the two dimensional XY model
with weak two-fold anisotropy at zero temperature but in non-zero magnetic
fields, to find first magnetisation curves and hysteresis loops. They conclude
that the effects of vortices are important. Saslow and Koon [53] have performed

similar calculations on three-component spins in three dimensions.
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Chapter 3

Monte Carlo Simulation

As described in section 1.2.2, even a small number of interactions between the
variables of a system can render it intractable to theory. Although it is often
possible to make simplifications without losing the essential physics, numerical
simulation is one way of calculating the properties of problems of arbitrary com-
plexity. The problem, however, is that the large number of degrees of freedom

available to typical systems results in an enormous phase space over which to

SUuIn.

Consider, for example, a simple 8 by 8§ Ising system (section 2.1), with 64
spins and therefore a total of 2°% 22 10" possible configurations. Even if we could
evaluate the energy of 10'? configurations per second. the calculation would take
seven months — however, at the time of writing, not even the fastest computer
in the world can achieve ‘tera-flop’ performance (10'? floating point operations

per second), so we couldn’t even simply accumulate the results that fast!

The situation gets even worse when we wish to investigate a system with
continuous, rather than discrete, variables. We must discretise the parameters,
but of course the total number of configurations grows rapidly with the number
of quanta we consider — if just sixteen positions arc made available to each spin
in an XY model (section 2.2), only a 4 by 4 system can be computed in the same

seven months.

It
—
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3.1 Illustration I - the Ising Model

Let us reconsider the one-dimensional Ising model: reviewing the exact solution
in terms of the ‘kinks’ introduced in section 2.1, we can sort the configurations
into order of increasing energy, and hence find an expression for the density of

states.

Suppose there are N + 1 spins in the chain, and therefore N bonds at which
we can put a kink. (We ignore here the degeneracy in the direction of the first
spin, but could have included it formally by allowing a kink before the first spin,
giving N + 1 possible positions for the kinks.) There is one configuration (the
ground state) with no kinks, and N places where we can put the first kink, so
that there are N configurations with energy 2.J. There are now N — 1 bonds
where we can activate a second kink, giving N(N — 1) — except that we have
counted each configuration twice, as the kinks are indistinguishable. In general,

there are g(k) configurations with & kinks, where

L N(N=D(N=2)...(N-k+1)
9(k) = Kk — D)k —2)...(2)(1)
N
= WoW 02

). o

The partition function can now be written

(3.1)

I

N

Zn(B) =) glk)e™™ (3.4)
k=0

where § = 7}T~ Table 3.1 shows the individual contributions to the partition func-
tion for a system with NV = 32 at a reduced temperature z} of 0.25. It is clear that
the partition function which is accumulated in the last column is correct to 6 sig-
nificant digits when terms with only 0, 1 or 2 kinks are considered. This amounts
to only 529 of the 2% (four billion) total configurations. At a temperature of
0.5J, we need terms up to 7 kinks, or 0.1% of the total configurations.

In general, while g(k) grows very rapidly with k, the exponential Boltzmann

factor decays even faster and the product g(k).e P shows a narrow maximum.
For configurations near the ground state, the reluctance of a system to take on a

state with higher energy is compensated by the large number of states available
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k

3
k g(k) > g(i)  g(k)exp(—2kBJ) Z t)exp(—2npJ)
=0 =0
0 1 1 1 1.000000
1 32 33 0.0107348 1.010735
2 496 529 5.58174e-05 1.010791
3 4960 5489 1.87247e-07 1.010791
4 35960 41449 4.55403e-10 1.010791
5 201376 242825 8.55517e-13 1.010791
6 906192 1149017 1.29147e-15 1.010791
7 3365856 4514873 1.60918e-18 1.010791
8 10518300 15033173 1.68694e-21 1.010791
9 28048800 43081973 1.50908e-24 1.010791
10 64512240 107594213 1.16435e-27 1.010791
11 129024480 236618693 7.81192e-31 1.010791
12 225792840 462411533 4.58606e-34 1.010791
13 347373600 809785133 2.36685e-37 1.010791
14 471435600 1281220733 1.07756e-40 1.010791
15 565722720 1846943453 4.33776e-44 1.010791
16 601080390 2448023843 1.5461e-47 1.010791
17 565722720 3013746563 4.88151e-51 1.010791
18 471435600 3485182163 1.36464e-54 1.010791
19 347373600 3832555763 3.37315e-58 1.010791
20 225792840 4058343603 7.35518e-62 1.010791
21 129024480 4187373083 1.40994e-65 1.010791
22 64512240 4251885323 2.3649e-69 1.010791
23 28048800 4279934123 3.44929e-73 1.010791
24 10518300 4290452423 4.33915e-77 1.010791
25 3365856 4293818279 4.658e-81 1.010791
26 906192 4294724471 4.20696¢-85 1.010791
27 201376 4294925847 3.13617e-89 1.010791
28 35960 4294961807 1.87869e-93 1.010791
29 4960 4294966767 8.69284e-98 1.010791
30 496 4294967263 2.91612e-102 1.010791
31 32 4294967295 6.31129e-107 1.010791
32 1 4294967296 6.61626e-112 1.010791

Table 3.1: Contributions to Ising partition function by states with different num-

bers of ‘kinks’ k, at temperature T' = 0.25J.
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with that energy, but if the energy is too high, the Boltzmann factor wins. The
log of the number of states is the entropy of the system, and this is why it is the
free energy F' = E — TS that is usually minimised in statistical mechanics: as
the temperature is increased, the entropy S has a more important effect, via the

density of states g(k).

Unfortunately, however, we do not usually know the form of ¢ in advance,
and thus we do not know from the energy of a configuration alone, whether it
contributes significantly to the partition function sum. We must just count 1
each time we meet a configuration with a given energy. But as has been seen,
most of the configurations make negligible contribution. We need some way of
selecting the important configurations if we are to evaluate the partition function

with a sensible amount of computer power and in a sensible time.

3.2 Review of numerical integration

The simplest numerical integration technique is to sample the function at regular
intervals, i.e. explicitly treating integration as a summation. Graphically, we find

the area by summing lots of thin rectangular strips.

/ab flz)de =~ if(a +i.0z)dx (3.5)

where dz is b—ig The smaller we make dz, the more accurate is the approximation,
at a cost of more time. (This is true up to a limit — when §z is very small,
rounding errors can lead to a loss of accuracy.) There are enhancements to this
technique, which amount to considering more points at a time, and interpolating

the function between the points.

Another way of implementing the same algorithm is to use random numbers

to choose the points at which to sample:

b a—b
/a flayde % =2 fa) (3.6)

7

with z; chosen uniformly on [«,b]. This has the advantage that a result is im-
mediately available after only a few points have sampled, and sampling need be
continued only until it is deemed that sufficient accuracy has been established

(generally by monitoring the effect of additional measurements).



3.2.1 Importance Sampling

When the function is sharply peaked, however, it does not make sense to use a
constant strip width — using narrow strips would waste too much time at the
‘uninteresting’ parts of the function, but wide strips would give too little accuracy

at the ‘important’ parts of the function. Let us make the strip width w a function

of z:

b
/a f(z)de ~ S flas)w(x) (3.7)
where z; = a + Eézo w(z,) and 37_o = b — a.

We now write our function as the product of two others, for generality:

/f(a‘)dn: = /g(.?:)h(:z‘)d:v (3.8)

where h(xz) is a smooth ‘envelope’, following roughly the shape of f, and g(z)
contains the fine details. We want to make our strip width w(x) large when & is

small, and narrow when & is large: w(z) = Wlﬂ’ for example, might be suitable:

b o Sel)he ()

/a f@w)da = (b= a)=EL (3.9)
= —a ——————ZQ(%) n = w(x
= (b )Zw(m > w(z,). (3.10)

This can be interpreted another way: our rectangles have uniform width dz
and height g(z), but where w is small, we count more of them in the vicinity of
each point; that is, the density of samples is large when w is small. Thus, our

final result is

A{L:g(fcz), since n = Y w(z,) (3.11)

=0 2

When we now move to the alternative algorithm of choosing the samples
randomly, the form of equation 3.11 is unchanged if we draw n samples on [a, b]
with a probability distribution 3(15 It is sensible to choose a function h(z) that
allows easy random number generation, such as a gaussian, or we will waste as

much time generating the numbers as we hoped to save in the first place!



3.2.2 Application to Statistical Mechanics

In statistical mechanics, we are interested in averaging physical quantities over
the configurations {z,}:

}A({%})e—ﬁE({xx})/[{ }e—ﬁE({rz}) (3.12)

= Ja
If we choose h({z,}) = e PEU#}) in equation 3.11, then

T~ YA/ (3.13)
- %Z/X({wz}) (3.14)

Thus, provided we can draw configurations at random with a Boltzmann prob-
ability distribution e #F{#}) we can find thermal averages of as many quantities

as we like, using a simple average over the generated configurations.

3.3 Metropolis Algorithm

In most of the following, we use unnormalised probabilities such that the ratio
of two numbers gives a relative probability, but the area under the distribution

is not explicitly chosen to be 1.

One way of generating random numbers with an arbitrary distribution p(z) is
to (completely) ‘enclose’ p(2) under another distribution ¢(z) which can be gener-
ated (such as a gaussian, or a top-hat function which is constant everywhere that
p(z) is non-zero), in a similar way to the rewriting of a function as the product
of two others in section 3.2.1. Then generate x, from the ¢(z) distribution, and
accept x, as a number drawn from p(z) with probability p(x,)/q(z,) — l.e. draw
another random number z uniformly on [0,1], and accept z, if z < p(z,)/q(z.).

Repeat until a number is accepted.

Conceptually, this can be thought of as throwing darts at a graph of the
distribution. If the dart lands under the curve, we accept the x-coordinate as
a random number, otherwise we rethrow. [The piece of paper represents the
distribution g(x). If we miss the piece of paper, then we have failed to draw on
g(x), which is a smaller distribution than the whole room which encloses it. . .|
Clearly, the enclosing function should be chosen to pass as closely as possible over

the real distribution, since any darts landing above the distribution are ‘wasted’.
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Figure 3.1: (Unnormalised) probability distribution for all possible configurations
(unsorted) for S-particle Ising system at 7' = .J, shown on log scale to compress

the range.

When we apply this technique to real statistical mechanics systems, however,
we cannot draw the configurations with anything other than a uniform distri-
bution, as we cannot sort the configurations into any sort of order of increasing
probability (in general — if we could, we would not need to run a simulation
in the first place!), and we cannot draw random configurations from anything
other than a (reasonably) smooth distribution. (If we were to generate configu-
rations by beginning with random values for the phase variables, then imposing
constraints as we find the energy to be growing too large, a strong bias would be

introduced into the phase space sampled.)

Consider, for example, the one dimensional Ising system with N spins. With-
out any prior knowledge, we might use the binary representation of a random
integer drawn from [0,2" — 1] to set the N spins, but for N = 8, for example,
this gives a very bumpy probability distribution, even at high temperature, as
shown in figure 3.1 for temperature 7' = J. We can only draw states ¢ for the
system at random, uniformly from [0, 2" — 1], and accept each one with a prob-
ability e?/#% where A is the number of kinks in state . Clearly this is very
inefficient; even at this high temperature, most darts thrown at the graph would

not lie under the required distribution.

Looking at this from a different point of view, all we are really doing is simple
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sampling, but instead of counting e=?F for each one, we count 1 with probability

e PE and we have gained nothing.

3.3.1 Markov Chains

Metropolis et al. [54] hit upon the idea of generating the configurations not from
scratch, but by building new configurations by slight modifications to previous
ones, since the energy cannot change too much if only small changes are made.
In the Ising model, for example, successive configurations might be different by
the flip of a single spin. Provided we don’t do something drastic with our choice
of transformation, this will automatically take into account the density of states
term in the partition function sum, since if there are many configurations with a
given energy, the system will repeatedly try to get into such a state. For example,
from a state with one kink, there are N —1 nearby states with two kinks, but only
one adjacent state with no kinks, so the system will make many more attempts
to get to a state with higher energy, of which a proportion determined by the
Boltzmann factor will be accepted. If a suitable operator M can be defined
such that the configurations generated by its application have the Boltzmann
distribution, then M can be applied over and over again, to generate a chain
of correctly distributed configurations — A is a Markov operator, generating a

Markov chain of states.

Borrowing notation from quantum mechanics, we might sort all the possible
configurations into order Ey < F; < E; < ---, and write a vector containing the
probabilities that the system is in a given configuration. A conceptually easier
way of looking at this is to suppose we have a very large number of different
configurations (either the time progression of one system, or the instantaneous
states of a large ensemble of systems), and the vector counts the number of
systems in a given state. We can track the effect of A on the system by operating
it on the probability vector:

Pl !
Py | = M| p2

M is now a matrix, with M, the transition probability from configuration j to

configuration 1.

We can now impose our constraints that configurations are drawn with Boltz-

o7



mann distribution — p,, the probability that the system is in configuration 7 with
energy F,, must be (proportional to) e™% and the column of Boltzmann factors
must be an eigenvector of the operator M, so that the result of operating M on
a correct Boltzmann distribution preserves the probabilities — this requires that
the number of systems leaving state 7 is balanced by the total number entering

state 7, so that the number of systems in state ¢ is unchanged:

S Mup => M,p,. (3.15)
J J

Metropolis et al. go further, applying the principle of detailed balance, requir-
ing that the individual terms in the sum balance; the number of systems making
the transition from configuration ¢ to j is exactly equal to the number making the
inverse transition. Of the p, configurations in state j, a fraction M,, are moving
to state 7, and a fraction M, of the p, in state ¢ are moving to 7. Constraining

these to be equal:

M,p, = M,p, (3.16)
M, _BAE
— = v 17
M, ~ ° (3.17)

where AFE,, is the energy difference between configurations : and 7. One common

way of achieving this is

b, < E,
M, ~ , (3.18)
le=BAES E, > F,

T

[

where the 7 term is normally left out, such that a trial step to a state with lower
energy is always accepted, but can be used to reduce this probability, to allow

finer control over the system dynamics.

It is also necessary to show that the system tends towards the Boltzmann
distribution no matter how it is started. Suppose that, at any point along the
chain of configurations, configuration 1 has a higher probability than it should. At
the next iteration, there will be more probability flowing out of ¢ than is flowing
into it, since the outward flow is proportional to the current level. Thus, even if
we start our chain with all parameters in a certain state (all spins up, say), so that
the probability is 1 for that configuration and 0 for all others, or in a random
configuration (all probabilities equal), we will tend towards equilibrium as we

iterate our Markov process — of course, it could still take an infinite number of
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iterations to get there! In fact, it is found empirically that the natural timescale
7 for relaxation of fluctuations grows as some power z of the system correlation

length — near a phase transition, this results in a relaxation time
T~ L* (3.19)

for finite systems (section 3.6), and simulations exhibit critical slowing down.

In practice, we usually discard a large number of configurations, to allow
the system to equilibrate, ensuring that we are not too far from the correct
Boltzmann distribution of state population probabilities. Also, if we are running
several simulations for different values of some thermodynamic parameter, such
as temperature or magnetic field, we might start each subsequent simulation with
the final configuration of the previous run, since that might be expected to be
closer to the correct distribution than we could expect to achieve starting from
either a random or an « prior: configuration. Care must be taken, however, to
avoid any hysteretic behaviour at the critical temperature, which is really just a

symptom of insufficient equilibration.

Because, by definition, subsequent configurations are very similar, differing
in only one or two of the phase space coordinates, it is customary to include
not every configuration in our thermal averages, but to miss out a number of
states between measurements, particularly if a measurement is relatively time-
consuming; typically, we perform one, or several, Monte Carlo updates for every
coordinate in phase space, such as each spin or particle position — we might

include one configuration in the average every 5 MCS (Monte Carlo steps per

spin).

3.4 TIllustration 11

For definiteness, let us consider the simple system of a particle moving in two
dimensions with an energy proportional to the displacement r from the origin.

We represent the position r of the particle using cartesian coordinates z and y.

We might define our Markov operation with the following algorithm:

i: Choose trial step Az and Ay to a ‘nearby’ position r’
ii: Calculate the energy change AE to move from r to r’
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iii: Calculate the probability of change p = e=#4F

iv: Draw a random number z on [0, 1)

v: If z < p then accept move : r — 1’

(If the energy cost is negative, then our ‘probability’ p is greater than one —
we could explicitly limit it to one, but the implementation of an acceptance with

a given probability will always succeed for p > 1.)

It is important to emphasise that if we fail to accept a new state, we must
include the unchanged state in our averages — if we failed to do this in a sim-
ple two-state system, for example, then the averages would always show equal
probabilities for the two states, regardless of the energy levels — it would be the
time spent in the lower energy state before changing to the excited state that
contains the Boltzmann distribution, as the algorithm presented would always

immediately step down (unless 7 < 1 in equation 3.18).

There are two parts making up M,, — the probability that a system in state
¢ will attempt to move to state 7, and the probability that such an attempt is
successful (equation 3.18). Generally, all the nearby states are made equally likely

to be chosen, but care must be taken to avoid bias.

For this system, polar coordinates would have seemed a more natural choice —
indeed, only one parameter would then be required to describe the system state.
However, the density of states is proportional to 7 in polar coordinates, making
it more difficult to sample space without biasing towards positions closer to the
origin. It is possible to compensate for this by including an extra factor g(r’)/g(r)
in the Boltzmann update probability, for a trial step from r to r’. In this way,
attempts to move towards smaller values of r are discouraged, to compensate for
there not automatically being more attempts to move to larger values of r as the
density of states requires. With cartesian coordinates, however, the problem is

simplified as the density of states g(r) is uniform.

Similar care is required in simulations of magnetic systems with three-compon-

ent spins, represented using spherical polar coordinates.

The choice of a trial step depends, of course, on the details of the system
being simulated. In an Ising system, for example, a trial step might be the flip
of a single spin, or it might be the exchange of two spin states — the latter

conserves the magnetisation; it can be generalised in a continuous system to
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moving two coordinates, one in the opposite direction from the other, in order
to meet a constraint of keeping some physical quantity fixed. In a Heisenberg
(continuous) spin system (Hamiltonian 1.14), a trial step might be a small change
in the direction of one spin, while for moving particles, as in this example system,

we make a small displacement of each particle each step.

In a system with many state variables, we can either make trial changes
to each coordinate in some predetermined order (for example, we might proceed
‘typewriter fashion’ through a lattice, from left to right, top to bottom), or choose

both which coordinate to change and its new value at random.

The choice of what makes a state ‘nearby’ is usually dynamic — if we try to
jump to states with a very large energy cost, these attempts are usually rejected,
and although we will calculate the correct equilibrium quantities, it may take a
long time. Similarly, if we make only very small jumps, they will nearly always
be accepted, but it will take a long time to move any appreciable distance in
phase space, and again, it may take a long time to reach equilibrium. A typical
heuristic approach is to choose a step size such that the number of accepted trials
at roughly half — this may be done dynamically, using feedback to manipulate

the step size as the simulation proceeds.

10* update trials were performed on the example system, with different (fixed)
step sizes. The table in figure 3.2(a) summarises the results, showing the step size
(the side of the square centred at r from which r' is chosen uniformly at random),
the number of accepted moves, x?, the sum of the squares of the deviations from
the expected probability distribution rexp (—r) after histogramming the values
of 7 in bins of width 0.1, and X2, a measure of how anisotropic the distribution

of sampled points is.

Scatter graphs for the sampled phase space points are shown in figure 3.2 for
the step sizes indicated in the table — it can be seen that for very small steps,
there are many points, but they are not statistically independent, and they do
not cover phase space isotropically. For very large steps, the points are certainly
statistically independent, but there are not enough of them to give good statistics.

For a ‘reasonable’ step size, the results appear to be correct.

61



10

step accept  x? x; Fig
0.1 9879 0.95 1.80 0 4
0.3 9656 0.10 0.36 b
0.5 9423 0.04 0.11
5.0 5099 0.03 0.04 ¢
10 2744 0.08 0.09 -10 :
15 1531 0.18 0.18 ~10 0 10
25 600 0.56 042 d
(a) Table of step sizes (b) step=0.3
10 - 10
0 - 0
—10 T —10 1
—10 0 10 —10 0 10
(c) step=5 (d) step=25

Figure 3.2: Results (a) and scatter graphs (b,c,d) for the simple system described
in the text. For a small step size (b), the system does not progress far through
phase space, and the results are anisotropic. I'or large step size (d), samples are
isotropic, but there are too few events for good statistics. A reasonable step size
(¢) such that roughly half the trials are accepted gives good results.



3.5 What We Can Measure

Quantities such as the energy, magnetisation, pressure and density can be cal-
culated as a simple average of the Boltzmann-weighted states generated by the
Metropolis algorithm, by equation 3.11. It must be noted, however, that a simple
(vector) average of the magnetisation of a spin system with continuous symmetry
is not a useful commodity to record; the instantaneous magnetisation can undergo
global rotations with no energy cost, and in a sufficiently long simulation, the
magnetisation will average to zero. It is customary to record the average of the

magnitude of the magnetisation, or the root mean square (RMS) magnetisation.

3.5.1 Correlation Functions

Both spatial and temporal correlation functions can be calculated. In the litera-

ture, spatial correlations are generally recorded using the form
g(r) = (m(r' + r)m(r')) — (m(r' + r)){(m(r)) (3.20)

where m is the local order parameter and the average is over all r’.

Here the second term removes any ‘accidental’ correlation — for example, in
a magnetic system in a uniform external field, the spins will all be aligned with
the external field, and hence with each other, but we might regard this corre-
lation as accidental, and g(r) above will reflect only direct correlations (where
fluctuations in one spin are reflected in the other). In a ferromagnet in zero
field, the correlation function decays rapidly at high temperature, but the cor-
relation length (that distance over which g(r) decays significantly) grows as the
temperature is lowered (fluctuations increase, but the second term remains zero
above the critical temperature). The correlation length diverges at the transition
(g(r) ~ r~@=24m) then decreases as the second term in equation 3.20 increases
below the critical temperature — here, equation 3.20 records the correlations in
the response to fluctuations. (The XY model in two dimensions is critical at all

temperatures below Ty, so that g(r) ~ r=(@=2+n(1))),

If it is the nature of the long-range order in zero external field that is under
investigation (as in this work), then it is more useful to record the ‘raw’ correlation

function

g(r) = (m(r" + r)m(r"). (3.21)
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Time-separated measurements

T(t)= <m('r)m('r + t)> - <m(7’ + t)m(T)> (3.22)

are used in the study of spin glasses (section 2.6) or other dynamic systems to
measure decay times. Here, the bar denotes a spatial average, while the angled
brackets denote a thermal average, over different instantaneous configurations. If

abundant storage is available, the combined measurement

g(r,t) = <m(r' +r, 7+ )m(r, T)> - <m(r’ +r, 7+ t)m(r, 7')> (3.23)

might be made.

Because these calculations involve comparing each particle with every other
particle, the calculation costs can become excessive, and such ‘expensive’ mea-
surements are generally made less frequently than simple ones requiring nearest-
neighbour comparisons only — one way of reducing the cost of the spatial corre-
lation calculation is by taking advantage of Fast Fourier Transformsto map the
expression into a product in Fourier space, requiring only a time proportional to
Nlog N, rather than the N? required for a direct calculation. If there is abun-
dant on-line storage available, configurations can be stored for later analysis, on
different hardware such as a vector processor, which is less suited for the Monte

Carlo work in general.

3.5.2 Fluctuation-dissipation

The fluctuation-dissipation theorem can be used to calculate the susceptibilites

of the system’s state, such as magnetic susceptibility x or specific heat C"

Z = 3 exp(—BU) (3.24)
9 10z ‘
'a’EhlZ = 793 (3.25)
- -—%ZUiexp(—ﬁUi) (3.26)
- T (3.27)
o 1022 1 (92\°
o = Zé@?‘?(éﬁ) =(U%) - (Y (3:28)
9o .0
5 = ~"ar (3:29)
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%é%an = kTQE%(U):kTQC (3.30)
¢ = () - w7) 351

Similarly, .
X = ({ar?) - <M>2). (3.32)

Self-averaging Quantities

Measurements on quantities such as the internal energy become very accurate
in the thermodynamic limit — fluctuations are of the order v/N, which become
insignificant for large N. However, simulating larger systems necessarily requires
more computing effort — the same total computer time can produce fewer statis-
tically independent measurements. Quantities such as energy, magnetisation, etc.
can be shown to be strongly self-averaging, the errors in the measurements are
not increased if the system size is increased at a cost of number of independent

measurements.

Measurements of specific heat and susceptibility by the fluctuation-dissipation
theorem, however, are themselves based on fluctuations, and do not show self-
averaging. The errors in the measurements are not driven down simply by in-
creasing the system size, so that it is better to run longer simulations on smaller

systems than to increase the system size.

It is necessary to take into account critical slowing down near a phase transi-
tion (equation 3.19), since a larger system requires that more steps are required

to ensure statistical independence of the measurements.

3.6 Finite size effects

3.6.1 Boundary Conditions

If we are interested in the bulk properties of some system of interacting parti-
cles, we must be aware of surface effects: in a ‘real’” system, with typically 10%
particles, surface effects are (usually) small, whereas a three dimensional cubic
lattice of side (optimistically) 100 units has 6 x 10* (6%) of the 10° sites on

the surface — the problem is even worse for the smaller systems which can at
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present be handled in practice. One possibility is to accept this problem, with
particles on the surface having fewer interactions that those in the bulk — this
is termed free boundary conditions. One way of reducing the effect is to discount
the particles at the surface, but computing effort is then wasted on what may be
a large number of sites which contribute nothing to the results. This waste can
be minimised by updating the surface sites less often, or even not at all (giving

fized boundary conditions).

A more common criterion to apply is periodic boundary conditions, whereby
the system is replicated, and ‘tiles’ an infinite space — whenever we move out
of the system, we also move out of one of the duplicates back into the original
system, as indicated in figure 3.3. For a cubic lattice system, for example, this
simply means that the opposite edges are connected to each other, or a one-
dimensional Ising system is closed to form a ring. It should be noted, however,
that in the latter case, the choice of periodic boundary conditions precludes the
presence of an odd number of ‘kinks’ (section 2.1.1), and hence interferes with the
correct statistical results being obtained in this case. Similarly, periodic boundary
conditions in a two-dimensional XY model (in which the spins are formally on
the surface of a torus) prohibit the formation of a single vortex. In cases such as

this, the system is said to be incommensurate with the lattice.

Anti-periodic boundary conditions, where opposite edges interact with the
‘opposite’ sense from that of the bulk (such as an antiferromagnetic interaction
across the boundaries in a ferromagnet), are usually reserved for studying special
cases: for example, the dynamics of an isolated vortex may be studied in an XY

system with antiperiodic boundary conditions.

3.6.2 Effect of Finite Size on Critical Behaviour

In the following, periodic boundary conditions are assumed. Provided that all
the length scales within the system are much smaller than the system size, the
behaviour of ‘real’ systems can reasonably be inferred from the simulation results.
As the critical temperature is approached, however, and the correlation length
grows to the system size, the fluctuations described in section 1.1.3 can cause crit-
ical behaviour above or below the critical temperature: at temperatures slightly
below T,, the fluctuations over a finite correlation length are nevertheless able

to propagate through the entire system, so that the order parameter averages to
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Figure 3.3: Peiriodic Boundary Conditions. Paiticle @ makes a trial move to b,
outside the system, and is mapped back to b'. Notice that in calculating the old
energy (patticle at position @), the image ¢’ is used, and in calculating the energy
at b, the image ¢” is used instead of c.
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Figure 3.4: Illustration of the eflect of finite size on critical behaviour

zero; above the critical temperature, the ‘pockets’ of order described previously
fill the finite system, so that instantaneous measurements imply long range order
(which changes direction with time, giving a zero for algebraic average of order
parameter; the root-mean-square of the order parameter shows an anomalous

non-zero value).

A finite size scaling theory [55] amounts to using the system size L as a variable

in section 2.4.1, giving an energy scaling equation of the form (equation 2.38)
O(t.L) = L7*®(tLY"Y). (3.33)

Using & ~ [t|7%, tL*” can be reinterpreted as a function of L/€, so that the prob-
lem can be considered in light of the relative values of L and £. L is irrelevant if

it is much larger than £, but near the critical temperature, it becomes important.

The problem is illustrated schematically in figure 3.4. Since £ diverges as [¢|™
near t = 0, the range of temperatures over which the correlation length exceeds
the system size can be calculated, as shown on the figure. We might expect any

critical behaviour to be ‘smeared out’ across this range of temperatures.

In practice, the critical amplitudes need not be the same above and below T,
though scaling suggests that v should be. This results in an additional shift of
the centre of the range of critical temperature, again proportional to L™". This
gives rise to specific heat curves of the form of figure 3.5 as a signature of finite

size effects in Monte Carlo. By plotting the data on scaled x and y axes, the
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Figure 3.5: Typical effect of finite size on specific heat.

curves can be superposed, as will be shown in section 6.1.

3.7 Monte Carlo Techniques

Various techniques have evolved to improve the efficiency and accuracy of Monte

Carlo simulations.

3.7.1 Multispin and Cluster Updates

Because the correlation length diverges near a critical temperature, excitations
appear in clusters of increasing size. (For example, the excitations in the Ising
system discussed in section 2.1.1 form misaligned domains with energy typically
€471 in d dimensions — this energy can be equated to the thermal energy kpT
at temperature T to a first approximation.) It becomes increasingly difficult,
therefore, to move around in phase space by making trial changes to only one
spin at a time; while the flip of a spin may be valid thermally, its acceptance is
unable to affect the organisation of the domains. For this reason, multi-spin-flips
are frequently implemented, often in combination with single-spin-flip trials; as
the name implies, attempts are made to move several spins together, so that the
change is more likely to have a long-reaching effect before the move is undone at

a later trial.
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Taking this idea further, whole clusters can be updated in one group [56,
57]; the size of the domains is not fixed, but is chosen by the system itself,
giving a direct measure of the correlation length and therefore of the magnetic
susceptibility. The treatment by [56] is more intuitive, whereby the entire system
is broken into domains, and one is chosen for a flip attempt, but [57] is more
easily implemented; in the latter formulation, one site is chosen as a seed - it
will definitely be updated. Starting from this site, the system explores outwards,
offering to flip each adjacent spin. Accepting the flip at the neighbouring site is
the default, since the update is chosen such that all the energy within the cluster
is preserved; the only change is at the interface to adjoining domains. A spin
can elect to reject the flip attempt, remaining outside the cluster, using the usual
Metropolis acceptance criterion (equation 3.18); the spin will remain outside the
cluster, in its old state, if that reduces the total system energy (given that the
neighbours within the cluster are going to flip), or with a Boltzmann probability

if the energy would be increased. This will be discussed further in section 4.4.5.

3.7.2 Histogram Method

Conventionally, it is necessary to run simulations at a large number of separate
temperatures near a critical temperature in order to build up a sufficiently dense
graph of discrete energies and specific heats in the vicinity of a phase transition.
The histogram method [58] makes use of additional information collected from
a simulation at one temperature, and allows all the important commodities (en-
ergy, specific heat, magnetisation, etc.) to be extrapolated continuously to any
nearby temperature and/or magnetic field, etc. (though to collect data allowing

extrapolation in more than one variable at once requires an enormous amount of

storage).

In most simulations, only the average of the energy, and its standard deviation
(to allow specific heat calculation by equation 3.31) are stored. But if the full
distribution is recorded (in principle by also calculating higher moments, but
in practice by binning the measurements, to form a histogram), the density of
states in the vicinity of the sampled phase space can be determined (to within a
constant factor), and once the density of states is known, everything else can be

calculated (section 3.1).

The simulation generates a stream of measurements {F;} of the energy of
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the system. Assuming the system has been properly equilibrated, etc., these
measurements are samples of the distribution p(8, F) = g(£) exp(—FE) (ignoring
normalisation of p), and since we know the (inverse) temperature 3, we can infer

g(E), and so the distribution of energies p(8’, E) at a nearby temperature g3':

9(E) = p(B,E)exp(BE) (3.34)
= p(B', E)exp(B'E) (3.35)
p(B,E) = p(B,E)exp(f—B)E. (3.36)

Thus we can transform our sampled p(f3, E') to a new temperature by simply
multiplying the measured (discrete) data by an exponential, without any need

to first fit the measured data to a curve — we merely need to normalise when

calculating any averages using p(g’, F).

p(F) is likely to be approximately Gaussian, and multiplying a Gaussian by
an exponential simply shifts that Gaussian to a new mean (again ignoring the
normalisation) by boosting the values at one side of the original mean more
than the other side, as illustrated on figure 3.6. (Of course, it is precisely the
information about the deviation from Gaussian-ness that is useful here.) However,
our measured p(F) is discrete, and will necessarily be noisy at the tails (due to
quantisation errors in the binning) — if we simulate for longer, we get more
samples here, but end up with a few samples further out. This means that we
can extrapolate (shift) the probability distribution only within the ‘bell” of the
distribution (the region with a large number of binned samples); if we try to
extrapolate too far, we end up trying to infer system parameters from only a
handful of events, since as is clear from the figure, the data at the tail is given
an enormous boost by the exponential function; the situation depicted is slightly

exaggerated, and is at the extreme of the range of reliable extrapolation.

In order to extrapolate other quantities, such as magnetisation, with temper-
ature, it is sufficient to maintain a sum of the measurements of that quantity
with each energy bin, and compute a weighted average with the shifted energy

at each new temperature.
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Figure 3.6: Illustration of the way in which multiplying a Gaussian by an ex-
ponential results in a shifted Gaussian. Real experimental data will be only
approximately Gaussian, and the technique will use all the available information
to track the change in temperature accurately. (Assuming a Gaussian would re-
sult in a shift proportional to temperature.) Notice in particular that a large
shift (rapidly-growing exponential) will boost the tail of the distribution, where
statistical accuracy is poor — this illustration depicts about the largest shift that
can be made reliably.



Chapter 4

Implementation Details

4.1 Parallel Computers

Although Monte Carlo simulation dramatically reduces the computation required
to perform measurements on statistical systems, enormous amounts of CPU time
are still required on all but the biggest supercomputers. One approach that
hardware manufacturers have taken to try to meet the demand is the production

of parallel computers, whereby many processing units cooperate in a computation.

The University of Southampton has made a significant commitment to paral-
lel computers, both in terms of hardware (having several transputer-based par-
allel computers, and one of the first of the second-generation Meiko Computing
Surfaces in the world) and personnel (having set up a Parallel Computing Sup-
port Group, now called the High Performance Computing group, to assist users
in writing code to make the best use of the available resources). In addition,

the University has a close association with the Parallel Application Centre at

Chilworth.

At present, a programmer must explicitly distribute the computation over the
network of available processors, and must work hard to ensure that the system
is load-balanced (that is, each processor has a fair share of the workload), though
software tools will almost certainly take over this tedious task in the future. There

are a number of ways in which the code can be broken up:

e Run the sequential program independently on each processor, each copy
operating on a different set of parameters. This is actually the most efficient

way of using parallel computers, and requires least programming effort,
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provided each processor has sufficient resources to run the whole program
in a reasonable time. For Monte Carlo simulations, this corresponds to
running the simulation for several different temperatures, say, on several

workstations.

Operate several programs sequentially, each applying small transformations
to a stream of data. An analogy is a factory production line, where incom-
plete products pass down a conveyor belt, and each worker performs their
simple task until a complete product emerges at the end. Once the first
product has reached the end of the line, finished products emerge at the
rate of the slowest step. In a Monte Carlo simulation, one processor might
feed out trial movements, another might calculate the energy cost of each
step, and so on. This algorithmic parallelisation was studied in [59], and is
useful for an inhomogeneous network of computers, but it can be difficult
to balance the loads effectively — it will be impossible in general the break
up the work into pieces such that each processor is kept busy at all times;
there will inevitably be delays where processors are waiting for results from
another which has more to do, and the whole calculation can proceed only

at the rate of the slowest step.

Run the same program on each processor, each copy operating on a subset of
the entire system, with programs (explicitly) exchanging information across
the boundaries. This is ideal for calculations on regular lattices, where
each program might control a subset of the lattice sites, and is sent updates
from neighbouring processors when changes are made at the common edges.

Geometric parallelisation was chosen for this work.

4.1.1 Communicating Sequential Processes

All these strategies are encompassed under the communicating sequential pro-

cesses [60] model of a program -— a program is viewed as a number of sequential

units, operating concurrently with the only time constraint that any pair are

synchronised when they require to exchange information — even a conventional

program may be viewed in this way, either trivially as a collection of one sequen-

tial process, or as a number of processes, the beginning of each being synchronised

with the end of the previous one (as each step operates on data received from

the previous step). Any step which does not require to wait for data from the
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previous step can be run concurrently with that previous step, and in this way, a
program can gradually be parallelised (though it is usually better to begin with a
parallel algorithm from the outset). Even on sequential computers, cpu-intensive
activities can often be run concurrently with file-accesses or floating-point calcula-
tions, (section 4.4), as is usually done under multitasking operating systems, and
modern RISC processors such as the DEC Alpha can issue several non-interacting
instructions on each clock cycle (‘superscalar’ architecture) — compilers for such

machines will attempt to reorder the instructions to maximise this overlap where

possible.

4.1.2 Transputers

Although the above techniques (particularly the first) can be applied to any net-
work of workstations, for example, hardware manufacturers have designed pro-
cessors optimised for parallel computation. Inmos’ T414 transputer implements
a 10 MIP (10 million instructions per second) CPU with four dedicated high-
speed links, allowing large numbers of these processors to be coupled to form
large computer networks. The T800 transputer adds a 1 M-flop floating point

unit, and arrays of these processors make formidable computing machines.

The links transfer data by DMA (direct memory access), so that the CPU can
continue to do useful work on other processes while data is transferred, intervening
only to initialise and finalise the transfer — there is a small impact on processing

speed in practice, since the CPU has to share access to the memory.

Although it can be inconvenient that processors can communicate only with
those others which are physically coupled, this can be overcome by either adding
a software “harness” to route messages through intervening processors, or with
extra hardware to change the link connections dynamically. The next generation
of transputers is to have on-chip message routing, so that messages are trans-
parently routed through each transputer without assistance from the CPU. An
alternative scheme, where any processor can communicate directly with any other
along a bus structure, has the disadvantage that the communications bandwidth
is limited, and can saturate, negating any advantage in adding further proces-
sors; the bandwidth available in a point-to-point communications network scales

as processors are added.

In this work, the actual simulation code requires communications with only
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neighbouring processors (since the system being simulated has nearest-neighbour
interactions only), so that the code suffers little delay due to communication
overheads in practice. The transputer is able to proceed with other (independent)
calculations while data is transferred, though in practice we were not able to take

advantage of this except for simulations on very large systems (section 4.4).

4.2 Hardware Used

The group acquired a Meiko Computing Surface, containing a T414 ‘master’
transputer with 3MB memory, a T800 transputer with hardware for full-colour
high-resolution graphics (which proved very useful for monitoring the progress
of simulations) and 32 ‘worker’ T'800 transputers, each with (a rather limiting)

256kB memory.

Like many other transputer arrays, this system has neither operating system
nor filestore — instead, the system is ‘hosted’ by another machine, which is used
for developing and debugging the code, ‘booting’ the code onto the system and
providing access to the host’s filesystem. The Meiko came with hardware suitable
for hosting the system from a IBM PC compatible, which is, unfortunately, not

the most suitable host:

e The PC, in general, does not have a large filespace, severely limiting the
data that can be stored from a run — correlation data, in particular, places

a significant strain on the resources.

e The host is required to be continuously available during a set of simulations,
and because a PC cannot, in general, multitask, it is locked up for the
duration of the simulation. Software such as MS-Windows, which does
allow multitasking in a limited way, is not sufficiently stable to be expected

to run for the duration of a simulation without crashing.

When the group purchased a VAX cluster, the former problem was solved
by networking the PC to the VAX, allowing the VAX filespace to be accessed
transparently by the PC, and hence by the Meiko. Means of “borrowing” the
PC from the Meiko were devised, so that the PC could be used for useful work
during the day, but it proved quite frustrating when the connection could not be

re-established securely, and data was consequently lost.
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The problem was finally resolved when the VAX joined the department’s eth-
ernet network — a PC dedicated as a LAN bridge was required both for security
and to keep the volume of network traffic under control, and it was realised that
the Meiko could be physically hosted from this PC, and a simple software fix
would allow communications between the Meiko and VAX along ethernet, allow-
ing the VAX to be the logical host. Because the VAX is a multitasking system,
it can serve the Meiko with virtually no impact on its main functions, but there
are several additional benefits, such as access to the excellent queueing facilities
available with VMS, and now that the VAXcluster has joined the Internet, the
Meiko is effectively accessible from anywhere in the world (subject to the usual

security checks, of course !).

One slight complication is that the VAX and transputer use different repre-
sentations for floating point numbers; the communication protocol was defined to
use IEEE format numbers, so the VAX had to translate from its internal repre-

sentation to IEEE; fortunately, this can be done using simple bit manipulation.

4.3 Algorithm

We have used a standard Metropolis single-spin update algorithm — because we
are using a parallel computer, several spins are in practice updated simultane-
ously, but such spins have no direct interactions, so that the results are exactly
equivalent to a sequential computer updating the first spin visited by the first
processor, then the first spin visited by the second processor, and so on through

all the processors and all the spins.

There has been some criticism [45] that the single-spin Monte Carlo method
does not adequately sample the phase space of the system, and hence does not
reach true thermodynamic equilibrium. However, because it is believed that
it is the inability of experimental spin glass systems to explore the whole of the
available phase space (section 2.6) that leads to interesting behaviour, we take the
view that if our simulations do not reach equilibrium, this may reflect analogous

behaviour in real systems.

We rewrite Hamiltonian 1.16 in a simplified form, absorbing spin magnitudes
into J, and representing spin direction at site ¢ using a single parameter 6;. The

anisotropy n; at site ¢ is represented instead as angle ¢;, the field direction is fgelq
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and primed quantities are in units of J — primes will be dropped for all of the

following discussion:

H o= —J>.Si.S; =D (Sif)* ~H.DS; (4.1)
(i) i :
H = = cos(fi—0;)— D' cos(0; — ¢:)° — H' > cos (0; — bera) (4.2)
(1,4) i i

The temperature 7' is expressed in units of J/kg, so that the Metropolis

update criteria is a simple test based on the ratio of AE to T.

Each update attempts to rotate a single spin through either 180° (a spin
‘flip” — useful for the large anisotropy, Ising limit (section 2.7)) — or through
some random angle, whose maximum magnitude is dynamically adjusted to keep

the fraction of accepted trials at approximately half (section 3.4).

A cycle is the fundamental unit of the simulation, and consists of a number
of sweeps through the lattice, attempting a spin rotation at each site, followed
by a number of sweeps attempting a spin flip at each site. Measurements of
system state are made after every cycle during the simulation (section 3.3.1),
after delays of typically several thousand cycles for equilibration (section 3.3.1).
Cycles in this work were usually composed of 5 sweeps, mostly rotation sweeps
for small anisotropy, and typically 3 rotation and 2 flip sweeps for larger values

of D.

In order to compare results with previous simulations performed in the large
D limit (section 2.11), we can simulate systems with infinite D using a cycle com-
posed purely of flip sweeps, initially aligning each spin along the local anisotropy
axis. The parameter D is irrelevant in this case, since it is the update algorithm
which constrains the spins to lie along the anisotropy axes, but it is useful to set
D = 0 since the energy is still measured using equation 2.50. As described in

section 2.7, for simulations at large D, a Hamiltonian
— Ty 88— DY ((Sii) - 1) (4.3)
(13) ¢

is more appropriate, since (UU) remains finite as D — oo — it is necessary simply
to add an energy D per spin to measurements made on equation 2.50 to allow

comparison with results at infinite D as described above.

One other correction is necessary: for a finite anisotropy strength, at non-

zero temperature, each spin is free to oscillate about its local energy minimum,
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contributing one degree of freedom, and, by equipartition of energy, an energy
%kBT per spin. It is useful to add 0.5 to the specific heat measurements made at

infinite anisotropy to allow comparison with the low temperature results.

4.4 Implementation details

Because no one transputer has sufficient memory or computational power to
run the complete simulation for sufficiently large systems, it was necessary to
distribute the program over all the transputers, and choose a geometric paral-
lelisation algorithm (section 4.1), in which each transputer has full control over
a subset of lattice points, and holds a copy of the adjacent spins at all times;
the transputers send messages to each other to update neighbours’ copies of the
shared spins. Periodic boundary conditions were implemented trivially by config-
uring the transputer links to form a ring, as shown in figure 4.1, so that nothing

was required of the software.

In order to ensure that no attempt was made to update adjacent spins on
different transputers, each transputer was required to control at least two rows.
The sites were visited in ‘typewriter’ fashion, sequentially along rows from top to
bottom, in lock-step on all transputers; in this way, transputers did not have to
send out individual requests for information, but simply transmitted the updated
edges to the neighbouring transputer, at the same time receiving the opposite
neighbour’s updates, after completing each edge — because processes on a trans-
puter are synchronised by such a data exchange, one transputer could not process
a shared edge while its neighbour was still processing it. (With finer synchro-
nisation, the program could have been written to allow one transputer to begin
on a row before its neighbour had finished, but no time would be saved over-
all, since the delay would propagate around the ring, and that transputer would
have to wait for longer at the beginning of the next sweep. In addition, the extra

synchronisation requires extra communication, which all introduces more delays.)

The smallest (square) system for which all transputers are used has 64% lattice
sites, though this was reduced to 62? after one of the transputers developed a
hardware fault. For larger systems, when each transputer controls more than
two rows, the intermediate rows can be processed while the data exchange is
proceeding, taking advantage of the background communications available on

the transputer (section 4.1.2).
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Figure 4.1: The hardware layout
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For smaller systems, a subset of the transputers was used — an alternative
scheme, used in the code for the three-dimensional system, is to decompose the
lattice into two sublattices, such that interacting neighbours are on different sub-
lattices — for example, the squares of a two-dimensional system can be coloured
black and white, like a chessboard. Now no two lattice sites of the same colour in-
teract directly with each other, so trial moves could be attempted at all the white
squares in the system in parallel, and each transputer can operate on a single row
of the system — an update sweep now requires two passes, once operating on only
the white squares, then, after exchanging data with the neighbouring transput-
ers, all the black squares, before exchanging information again. This technique
is also used on vector processors, where full speed operation requires that all the

information required for a large number of update attempts be available at one

time.

4.4.1 Driving the Simulations

At first, the program was written entirely in Occam (the language invented along-
side the transputer, to allow easy implementation of the parallelisation and com-
munication primitives available on the transputer), with the simulation param-
eters such as temperature, equilibration time, and the number of Monte Carlo
sweeps between measurements coded as constants, and the changes to the vari-
ous parameters during a set of runs hard-coded. For conventional programs, it is
straightforward to make changes to such a simulation, to make the system sweep
the magnetic field, for example, to measure hysteresis, or to sweep the tempera-
ture, to compare quenched and annealed results. For parallel programs, however,
there is an added complication: the system requires extra processes to run in the
background on each transputer, to route messages to the graphics transputer for
display, and to and from the ‘master’ processor for averaging and filing. (Only
the latter transputer can communicate with the host, and therefore access the

filesystem.)

The code was therefore modified to make it ‘event’ driven - the simulation
was broken down into a number of low-level primitive operations, and the workers
acted on a stream of messages such as “increase the magnetic field”, “run for x
sweeps for equilibration”, “measure the energy”, so that only the co-ordinating
process on the master transputer had to be recompiled to change the simulation —

this i1s much closer to a conventional program, but rather than writing subroutines
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to implement the steps of the simulation, messages were sent to the workers,

telling them what to do next.

Although the main loop for the simulations could easily be built from low-
level primitives, it was realised that overhead in communicating a sequence of
“wait n sweeps” and “measure” instructions made the system inefficient — too
much time was wasted waiting for the next command. Thus one “primitive”
invoked a simulation for a large number of cycles, with the workers sending out
measurements at predefine intervals. (One can make analogies with CISC versus
RISC CPU design issues.) Essentially, the program operates in two modes: slave
mode, where parameters are set, and simulate mode (the ‘study’ command).

Unusual simulations can still be built up from the other primitives, of course

(section A.7).

When a compatible C compiler became available, it became possible to make
the controlling program read in a description of the required simulation from
a text file, and send the appropriate messages to the workers — a “simulation
control language” was defined. (This would have been possible in Occam, but
this sort of application is not one of its strengths; Occam’s 1/0 is rather primitive
in comparison to that of C.) In this way, the description of the simulation can
be prepended to each results file, to minimise the risk of mixing up results when
a large number of files are generated. The details of the control language are
presented in appendix A.3. In addition, because the transputers were no longer
required for recompiling the program for changes to the simulation, it became
possible to prepare simulation descriptions in advance, reducing the turnaround

time for subsequent simulations.

4.4.2 Quantisation of the Angles

At first, each #; was stored as floating point variable, thus stored as accurately as
possible, but requiring expensive trigonometric function calls in the inner loop.
Later, the angles were quantised into (usually) 1024 integral parts — the only
constraint (given sufficient memory) is that it is a power of two, to allow the
periodicity to be implemented using logical operators. Extensive tests were per-
formed to find régimes where this change made any significant difference, but,
even at very low temperature or very close to saturation, no quantitative change

in behaviour could be detected.



By storing the angles as integers, all the computationally-expensive trigono-
metric and exponential functions can be precalculated and stored in tables, such
that the update loop runs significantly faster — if we consider a single-spin trial
step §6; from 6; to @ at site ¢, the change in system energy U is simply the change

in the partial energy u;, containing only terms containing 0;:

exp(—BdU) = exp(—pfdu;) (4.4)
= exp(—Bus)/ exp(— ) (45)
u = - Zcos(ﬁi —0;) — Dcos (0; — ¢;)° — H cos(; — 0g1) (4.6)

exp(—fu;) = Hexp(ﬁ cos(0; — 0;)) x exp(BD cos (0; — gb,)?)
X exp (B H cos (0; — 0n)) (4.7)

and each of the terms in equation 4.7 is tabulated for all possible values of (0;—6;).
In fact, the tables run for two and a half cycles — the second cycle allows negative
angles to be handled trivially by adding 27 before the lookup — 0; — 6, can return
values from —2m to 2m, so that §; — 0; 4+ 27 will fall within our 2-cycle lookup
table. (In practice, a pointer is set halfway through the table, so that offsets from
—27 to 2m can be fetched directly. ) The extra half cycle allows the reciprocals of
the exponentials to be calculated by adding an extra 7 before the lookup, for the
exchange and field terms, since multiplication by the reciprocal is significantly
faster than division in equation 4.5. The anisotropy term required a separate

table for the inverses.

Thus, inside the main update loop, only multiplications are required, with
trigonometry required only when the tables are updated after a change in any of
the parameters T', D or H (outside the main loop). A tradeoff of speed against
memory has been performed: in order to increase the speed in the innermost
loop, we have had to set aside a great deal of memory for these lookup tables,

limiting the maximum system size we can simulate.

One problem with this technique was that, at low temperatures and large
field or anisotropy strength, the tables or intermediate products could overflow,
even though the final energy change might be quite small — for example, suppose

T = 0.1 and D = 10: a very small rotation from the local anisotropy axis might

0.1

have u; = —10 and u; = —9.99, so that the Boltzmann factor is €”', but the

intermediate term, ¢'° overflows the floating point unit.

This problem was finally overcome by storing the tabulated values in two

0
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parts: an integer power of e, and the exponential of the fractional part. For
example, %99 = 190701 = 701100 "and would be tabulated as (e7%',100) (or
(€°9,99)), and the intermediate product accumulates both an integer sum of the
power, and a real product of the exponential part, which is guaranteed not to
overflow. Thus the calculation returns the Metropolis acceptance probability M

in two parts M; and M,, such that
M = M, x exp(M;).

While overflows are to be avoided at all costs, underflows are quietly truncated
to zero, so 1t is necessary to modify slightly the Metropolis acceptance condition
equation 3.18: for random number r between 0 and 1, we accept the update

provided

IN

r M, exp(M;) M; <0 (4.8)
rexp(—M;) < M, M, >0 (4.9)

Yet another table is used to lookup the exponentials of integers.

4.4.3 Further Optimisations

In order to take further advantage of the hardware concurrency, the innermost
loop for the update sweep was coded in assembly — because the floating point
unit and the integer unit can operate independently (synchronising only to ex-
change data), careful coding allows the integer unit to do useful work while a
floating point operation proceeds, rather than idling while waiting for the result
from the floating point unit. As described previously, the calculation was mostly
table-driven, so while the floating point unit was performing a calculation, the in-
teger unit could be calculating the offsets into the tables for the next interaction,
preparing the next random number, implementing the periodic boundary condi-
tions, and so on. Another advantage of coding in assembly is the greater control
over which variables are stored in the CPU’s registers for maximum efficiency. (In
fact, the transputer doesn’t use traditional CPU registers, but a stack — hand-
assembly allows control over which variables are stored on the stack, though the
instruction set doesn’t have the full range of stack manipulation instructions that

might have been expected.)

It should be noted that modern RISC processors are becoming increasingly

complex, and superscalar processors are able to issue multiple instructions per
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clock cycle, as mentioned above. Without enormous care, it is possible that
recoding a routine in assembly will result in code running more slowly, because
compilers are much better able to reorder the instructions to achieve maximum
throughput — even if hand-assembled code uses fewer instructions, it may still
run slower than compiler output, since compiler may be able to make better use

of the double-issue of instructions.

With all the above optimisations implemented, and the further refinement of
careful ordering of the source code so that the code implementing the innermost
loop was stored within the transputer’s fast-access on-chip memory, each trans-
puter averaged 25,000 spin updates per second — since a single sine, cosine or
exponential calculation was {found to take around 20/s on the same hardware, a
time of 405 for the entire update calculation is very encouraging. Thus the com-
plete system could update each spin in a 62% lattice one million times in under two
hours. Nevertheless, we have had to run the Meiko box more or less continuously
in order to make an investigation over an extensive range of the system parame-
ters and simulation timescales. This is particularly true of the three-dimensional
system since, in addition to the increase in the number of spins in the system, the

larger communications overhead reduces the efficiency of the program somewhat.

4.4.4 Spin Correlations

The evaluation of spin-spin correlations (section 3.5) required careful thought:
while the magnetic interactions in the model are local, so that each transputer
requires little information other than its own subset of the spins for an update
attempt, the spin-spin correlations require global information. One technique was
devised, where an accumulator grid was broken down into rows in the same way as
the lattice, and the pieces of the accumulator circulated around the transputers
in one direction while the spin configurations were circulated in the opposite
direction, but the code for this was very convoluted and hard to maintain. The
controlling T414 transputer had sufficient memory to store the entire lattice, but

with no floating point unit, the correlations would take too long.

When the VAX took over as the Meiko host, it was realised that, rather than
running a dumb slave process on the VAX (allowing access to host files) and
the controlling code on the root T414 transputer, the controlling code could be

trivially recompiled to run on the VAX itself, with only the routines for communi-
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cating with the rest of the transputers rewritten. This done, the VAX essentially
became another computational element in the network, and its enormous memory

made it ideal for performing the spin-spin correlations.

In practice, we did not use the fast-fourier transform technique for calculating
correlations (section 3.5.1) — because the system size was not always a power of
two, use of the FFT algorithm would require padding the data up to a power of
two, which would destroy the symmetry of the data. With a reasonably optimised
algorithm, the VAX was able to measure the correlations of the two-dimensional
system well within the required time, and in three dimensions, we correlated only
a subset of the sites with all other sites for each configuration — it seemed better
to perform some correlations on a large number of different configurations than

to measure all the correlations on fewer configurations.

Correlations were recorded, averaged and stored in two or three dimensions —
while most of the later analysis was performed on a one dimensional (circu-

lar/spherical) average, the raw data was kept on tape for reference.

4.4.5 Multispin and Cluster Updates

Because the spins are distributed over the parallel processors, with each proces-
sor ‘owning’ a subset of them, implementing an algorithm which updates pairs
of spins at a time (section 3.7.1) would be rather difficult; while pairs within
one processor’s full control could be handled like any conventional multispin en-
coding, an update across a processor boundary carries a large communications
overhead — the entire system would stall while the adjacent processors negotiate.
An additional problem to be overcome is the guarding against simultaneous up-
date of adjacent spins — because each processor controls at least two rows of spins
in the two-dimensional simulations, single-spins are automatically locked against
adjacent updates; for two-spin flips, messages would have to be sent to explicitly
synchronise access to neighbouring spins. These problems are not particularly
hard to solve, but all the extra communication breaks up the flow of execution.
(The processors operate on their slice of the system in typewriter-fashion, as de-
scribed earlier, but they are not lock-stepped down to the individual spin; they
merely synchronise before starting on the top row and bottom rows, to exchange
data with the adjacent processors. On average, each lattice site takes the same

time to process, but allowing the processors to operate at their own speed allows
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the system to compensate for small fluctuations; when messages are forwarded
along the communications harness, for example, a small amount of cpu time is

borrowed from the simulation.)

The obvious algorithm would be for every other processor to lend its spins to
the neighbouring process, which will update pairwise then return the spins. Care

must be taken to ensure that all possible pairs get a chance at such update.

An alternative algorithm which could be investigated for the two-dimensional
system would be to have every second processor doing vertical pairs of (its own)
spins (to avoid attempts to update adjacent spins). Then after every such sweep,
the entire lattice is rotated one step, so that next time, the same processors
will be operating on different lattice sites (which are not equivalent, because of
the anisotropy). (There is no need to shuffle the spins back after the sweep —
all processors are equivalent.) This means that all possible two-spin pairs are
processed, without the need for inter-processor negotiation. More careful thought
will be required to ensure that there is no possibility for biasing the exploration

of phase space.

Cluster Update

Because the RAM model is predicted to breakup into domains at low tempera-
ture, the cluster-update algorithm (section 3.7.1) would appear to be the obvious
weapon to deploy in simulating this system. Implementing such an algorithm,
however, is decidedly tricky with a geometric distribution on a parallel machine;
growing a cluster requires a great deal of negotiation between the processors, and
it is not clear whether this task can be coded efficiently in parallel, or whether
it simpler just to send all the current configurations to one node (or perhaps the

host VAX) for cluster update.

Flanigan and Tamayo have recently published a paper describing an imple-
mentation of a cluster update on parallel computers [61]; the details have not
yet been fully examined, but it appears that it would be reasonably easy to

incorporate this into the existing code.

In order to evaluate the cluster update technique, a simple (sequential) pro-
gram was developed for experimentation. One further difficulty which emerged

was that the cluster-update algorithm as outlined in section 3.7.1 relies on a sym-
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metry in the Hamiltonian: once the cluster has been identified, it is transformed
as a whole, under the assumption that only the energy at the surface of the clus-
ter changes. For the random anisotropy model under investigation, however, the
internal energy of the cluster can be preserved only if a 180° flip is performed on
each spin in the cluster, since any other rotation or reflection would change the
energy between each spin and the anisotropy at that site. However, we found that
such a cluster update rule generated such a severe change that all spins elected
to follow the site in the transformation, and the entire lattice simply flipped time
and again. Even if this can be overcome (using bigger system sizes for example),
it is evident that a cluster update is not sufficient alone to explore the whole of
phase space, except in the infinite anisotropy limit (section 2.7. But while the
cluster algorithm encourages larger system sizes, the auxiliary (traditional) spin
updates required to move the spins relative to their local anisotropy axes will still

suffer from the slowing down which the cluster algorithm tries to avoid.

4.5 What We Measure

After every cycle during a simulation, the instantaneous values of the following

quantities are accumulated:

o Energy U and U?

Magnetisation M. A%, and M*

‘Liquid Crystal order parameter’ Qi = cos2(0, — ¢,)

Number of vortices and half-vortices

Several sets of data are collected, and from each, averages are calculated
for the energy, magnetisation and ()).. The specific heat is calculated both by
numerical differentiation of the energy (fitting a quadratic to triplets of energy
measurements and differentiating), and using the fluctuation-dissipation theo-
rem (equation 3.31). Magnetic susceptibility is calculated using equation 3.32,
since in general we do not have data at finite fields for numerical differentia-
tion. Errors in the results are estimated by averaging over the independent data
sets, and comparison can be with data extrapolated using the histogram method

(section 3.7.2).

[vs]
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If histogramming has been enabled, the measured quantities are added into
the accumulators closest to the measured energy — it is sufficient to record only
an average of the other quantities at each energy in order to extrapolate the

results to other temperatures.

4.5.1 Liquid Crystal Order Parameter

Q1. gives a measure of the extent to which the spins are aligned with their local
anisotropy axes ¢;. Q. = 1 for full alignment (section 2.7) and 0 for uncorrelated.
In addition, this gives a direct measure of the component of the system energy

due to the anisotropy: for two-component spins, equation 2.60 gives

D 1

Eanis(0) =+ <6082(0 — %i) — 3> (4.10)
= Dcos?(0 —¢) — 5 (4.11)

~ DQ.. (4.12)

Thus, the predictions made for the energy at zero temperature can be applied

here (since the two terms in equation 2.70 are equal at the minimum).

Similarly, for large anisotropy strength, equation 2.76 suggests that

Q.. = cos <1 — %) (4.13)

~ (é) . (4.14)

4.5.2 Vortices

The code to count the vortices and half-vortices was added to the 2D program
towards the end of the work, when most results had been gathered, so it was not
deemed worthwhile to spend much effort in optimising it. A vortex is detected
by explicitly adding up the angles round each plaquette (group of four adjacent
lattice sites), and if it is £27 (or rather, +¢ where ¢ is the number of quantisation
angles), then a vortex is counted. We do not bother to count positive and negative
vortices separately, since the use of periodic boundary conditions precludes the

presence of a net vorticity in the system.

The half-vortices are counted in a similar way, with no attempt being made

to distinguish half-vortices which are half of a full vortex (spread by thermal ex-
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citation, perhaps) and those which are simple single-spin excitations (figure 2.9),

resulting in a pair of opposite half-vortices as shown in figure 2.2.

We have not yet attempted to count vortices in three dimensions — while
it would be no problem to identify the presence or absence of a vortex at each
volume element in the system, it would be much harder to identify the number

of vortex strings in the system.

4.5.3 Addition Measurements

Additional measurements can made on the system less frequently:

e at any time, the current spin configuration can be copied to a ‘reference’
array, such that a spin-glass order parameter (section 2.47) can be calcu-
lated by comparing all the later configurations with the reference spins;
the simulation control language allows the enabling and disabling of this
measurement, which is not particularly time-consuming, but does generate

a large volume of data.

o if spin-spin correlations have been enabled, then the correlations of a (ran-
dom) subset of the spins with every other spin are calculated. The simu-
lation description specifies how many spins are correlated each time, and
how how often — it was decided that it was better to correlate a subset of
the spins on a large number of configurations that to exhaustively study a

few configurations.

4.6 Real Time Graphics

In order to aid qualitative understanding of the system, it was decided to make use
of the graphics hardware available to show the spin configurations continuously
as the system evolved in time. It was hoped that a video of these graphics could
be submitted as part of this thesis. to demonstrate the insight thus afforded to
the system, but hardware problems have precluded this. It is hoped that the
colour pictures in the following chapters will illustrate the effectiveness of the

graphics.

The spins were depicted in two complementary ways:
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o the palette on the graphics system was configured to provide a continuous
sequence of colours from black gradually increasing in intensity to red, then
through purple to blue, finally diminishing in intensity back to black. Black
was used to represent spins at 0°, through to red at 120° and blue at 240°.
In this way, the presence of domains of spins pointing in approximately the

same directions could easily be seen.

e green arrows were superimposed over these colours, to depict the actual
spins at each lattice site — these arrows could be switched off to emphasise

the colours, and hence the domain structure.

Because periodic boundary conditions were chosen for the simulations, the
system was drawn repeatedly to fill the screen. Crude control was provided to
allow the view to be panned across the system, and allow the view to be magnified
to concentrate on features such as vortices, or reduced to see the entire system on
screen at once. These graphics proved invaluable in understanding qualitatively
the behaviour of the system, as the colour pictures in the following chapters

should convey.

A possible enhancement would be to rewrite the graphics routines to display
the system state in an X-window on the host — this might be the first step in
perhaps allowing some degree of interaction with the system, as well as improving
remote access to the system, not only from elsewhere in the building (the Meiko
has a rather noisy fan, and would ideally be situated in a dedicated machine
room — a long video cable is an alternative solution), but also (in principle) from
the Internet (section 4.2). One complication would be that, while the graphics
hardware is dedicated to the simulation code (since there is no software running
on the Meiko to allow multiple users to use the system concurrently), there would
need to be some other means of communicating with the program, in order to

tell it onto which screen to open the window, and so on.
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Chapter 5

Two Dimensional XY Model
with Random Anisotropy

Presented here are the results from extensive simulations on two-dimensional
systems of up to 1282 sites. Because there remains dispute in the literature
over the nature of the low-temperature régime (section 2.10), we are particularly
interested in measurements which test the predictions of the Chudnovsky-Imry-
Ma (CIM) theory (section 2.8). We are also interested in whether the Kosterlitz-

Thouless phase survives the addition of the random anisotropy.

If the low-temperature régime is indeed glassy, we might expect results which
depend on the history of the system, as well as on the timescales of the exper-
iments. For this reason, we compare the results from ‘cooled’ and ‘quenched’
simulations: cooled systems start at high temperature, and simulations are per-
formed at successively lower temperatures, with each simulation beginning with
the final configuration of the previous one; quenched systems begin at low temper-
ature with a random spin configuration, as if quenched from high temperature,
and each successive simulation is at a higher temperature. We compare these
results to separate qualitatively régimes of reversible and irreversible behaviour;

for quantitative analysis, very much longer experiments would be necessary.

We have tended to regard the configurations generated by the cooled systems
as true equilibrium, with the final configuration the ground state, but great care
should be taken in practice. The Imry-Ma-Chudnovsky argument implies that
the system breaks up into clearly defined domains, but this is not the case: for
small anisotropy strength D, the spins change direction smoothly throughout the

sample, correlated over what we choose to call the domain size. But because the



energy gain in forming domains is due to statistical fluctuations in the details of
the local random configuration within the domain, there is not one unique way
in which the system can segregate. The energy barriers in this case may be the
energy required to change the domain ‘centres’. If we cool the system through
a glass transition, we may freeze the domain structure, and the system may be
unable to change the layout of the domains, in order to find the true ground

state.

In section 5.1 we consider the internal energy and specific heat of the system.
CIM is a zero-temperature theory, so that the specific heat is not considered. In
the two-dimensional (pure) XY model, there is a peak in the specific heat which
occurs above the Kosterlitz-Thouless transition temperature; this is therefore not
a good quantity to study for a quantitative measure of the effect of anisotropy on
the KT transition. However, there remains dispute in the literature on exactly
where the Kosterlitz-Thouless transition lies in the pure system. For this reason,
we nevertheless use the specific heat as a qualitative indicator of the effect of the

anisotropy.

In section 5.2 we present measurements of what we have called the liquid
crystal order parameter, which gives a measure of correlation between each spin
and its local anisotropy axis, as described in section 4.5.1. The spin glass order
parameter is also a measure of how much of the internal energy is due to the an-

isotropy, which allows an explicit check on the individual terms in equation 2.70.

In section 5.3 we consider the form of the spin-spin correlations. The pure
XY system is expected to show exponential decay exp(—r/€) with distance r
above the Kosterlitz-Thouless transition, and algebraic decay r~7 below Tkr.
We perform a spherical average of the correlation data and fit it to a generalised
form r~"exp(—kr). Care must be taken in fitting the data: because of the
periodic boundary conditions, spins half-way across the lattice are influenced by
the images of the spin at the origin (figure 3.6.1), so that we must limit the range

over which the fit is carried out.

In section 5.4 we consider the spontaneous magnetisation of our system. It
must be emphasised that while CIM predicts destruction of any long range order,
and that the pure system supports only quasiferromagnetism rather than true
long-range order, our finite samples do show a net magnetisation. We investigate
how the magnetisation is suppressed by the addition of anisotropy, and how

this scales with system size, in an attempt to extrapolate to the thermodynamic
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limit. We have been unable to make a quantitative analysis of the magnetic
susceptibility of the system, because of the lack of self-averaging of data calculated

using fluctuation-dissipation (section 3.5.2).

We also study the magnetisation in the presence of a large external magnetic
field, to verify the régimes summarised in section 2.8.10. and in particular to

pinpoint the crossovers between the different behaviours.

Having investigated the ‘static’ properties (on the timescales of our simula-
tions), we turn to dynamic properties in section 5.5. Vortices are an important
consideration in the pure system, so it is natural to investigate their properties in
the presence of the anisotropy. We also study hysteresis curves, since the M-H
characteristic is an important criterion for the existence of magnetism, and the
amorphous systems represented by this model show particularly interesting hys-
teresis curves. Finally, we study the magnetisation over very long simulations, to

try to get a quantitative estimate of the relaxation time of the system.

We have concentrated on small anisotropy strengths, comparing results with
the pure system in the D — 0 limit, but we have also performed simulations with
large anisotropy strengths, even going up to D — oo in order to compare our
results with previous simulations in this limit. Other work to date has concen-
trated on the zero temperature limit. which is also where the C'IM predictions

are valid.

5.1 Energy

The energy per spin for cooled systems is shown in figure 5.1(a) for various
values of small anisotropy strength D. The results for D = 0 are in excellent
quantitative agreement with [17]. The shape of the energy appears to change
very little as a function of temperature, so that the energy shift due to the
anisotropy is independent of temperature. Accordingly, the specific heat curves
are superposed (figure 5.1(b)). Also shown on this figure are curves for specific
heat at D = 0.4 for both smaller and larger systems. Again, there is no change
at low temperature, though the peak at 7' & 1 does slightly sharpen and move

to slightly lower temperature, as expected (section 3.6).

For D > 1, there are clear differences in the energy and specific heat, as illus-

trated in figure 5.2 (where we have transformed the energy to Hamiltonian 2.55
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Figure 5.1: Single-spin energy (a) and specific heat (b) as a function of tem-
perature for various anisotropy strengths D as indicated, for 62% systems. The
specific heat curves in (b) are by numerical differentiation of those in (a), and
appear to be independent of D for these small anisotropy strengths. Smooth
curves are drawn through the discrete values to simplifv the figure. Also shown
on this figure are results for D = 0.4 for systems of 32% and 124% for comparison.



to ease comparison). The specific heat peak broadens significantly, and shifts to

higher temperatures, reaching 7'~ 1.3 as D — oo, in good agreement with [43].

This broadening seems reasonable for random systems, since different regions
of the system might be expected to lose order at different temperatures, depending
on the details of the local randomness. It is odd that the peak should move to
higher temperatures as we increase the randomness, since we would expect a
system with less order to require less thermal energy to disorder. It must be
recalled, however, that the peak in the specific heat for the two-dimensional XY
model appears above the transition temperature Txr. The broadening could be a
finite-size effect, but as we increase the anisotropy strength, the spins should be
correlated over smaller distances. so that if the svstem is to show any sort of of
finite size change, it would be as if the system was becoming larger, not smaller,

in which case the peak would be expected to hecome sharper (section 3.6).

It in necessary to add 0.5 to the specific heat measurements made at D = oo,
since in this limit, the spins are constrained to lie along the anisotropy axes.
At finite D, no matter how large, the spins are able to make arbitrarily-small
oscillations about the axes — thus, there is one extra degree of freedom per
spin, and so kg7 contribution to the specific heat per spin, by equipartition of
energy. Because we have quantised the spins, for computational efficiency, it is
possible for the small oscillations to be inhibited at very low temperature or very
large anisotropy, though we have not seen this in practice. Because our system
is discrete rather than continuous, the specific heat must eventually drop to zero
at low temperatures, as required by the third law of thermodynamics. For the
most part, our simulations are performed in the classical (continuous) limit of

our discrete system.

Much more information can be conveyved in a three-dimensional plot - fig-
ure 5.3 shows specific heat as a function of both D and 1" for very large values
of D. The contours under the surface of figure 5.3(a) suggest a slight shoulder
which is barely perceptible — to make this clearer, the contours are shown in
figure 5.3(b). Above D ~ 5, the main peak in specific heat has stabilised on
the large-anisotropy limiting value of 7" = 1.25, though the height of that peak
continues to decrease as [ increases. A second, shallower, ridge appears to follow
the line D = 57 as indicated. This is merely noted in passing, as we have not

performed detailed simulations in this part of the phase diagram.

The curves of specific heat from direct measurement by the fluctuation-dissip-

96



0.0 4 —°— ZD):?.S
- =45
029 s p=3s
—0 4 e XK D :25
064 —=- D=15
u _0.8 4 7 * - D 05
—1.0
—-1.2 T ?
—1.4 $ A’ZA«A’AA’A « K
16 5 T N
. e
—1.8 X T T
0.0 0.5 1.0 1.5
T
{(a) Energy
1.5 —
— D =« IEPTEN ;:‘\\\
_____ D = 15 ,/’L/i/ N \\ >
---- 0 D =35 S N
1.0~ D =25 I N
--- D=15
C D =05
0.5
0.0 | c
0.0 0.5 1.0 1.5

(b) Specific Heat

Figure 5.2: Energy (a) and specific heat (b) of cooled systems with larger anisot-
ropy strengths D, as a function of temperature. The measurements in (a) have
been transformed to Hamiltonian 2.33 to simplify comparison. and it is necessary
to add 0.5 to the results for D = oc, as described in the text. By D ~ 5, the
specific heat curve has the same shapc as for D = x. though is higher — the
energy curve is not shown for D = oc in (a) to simplify the figure.
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Figure 5.4: Comparing specific heat by direct measurement (points) and by nu-
merical differentiation (lines). The points show some scatter, but lie on the lines

to within experimental uncertainty

ation theorem (equation 3.31) are rather noisier than the results from numerical
differentiation of the energy, as was also found by [17], but the curves do agree
within experimental error (figure 5.4). This difference is due to the lack of self-

averaging in the direct measurements (section 3.5.2).

In order to compare the change in energy as a function of D with the prediction
made at zero temperature (equation 2.75), we must manipulate the measurements
slightly, to transform to Hamiltonian 2.53. Figure 5.5 shows a log-log plot of
24 % —u(D) against D, with a gradient found to be around 1.75, to be compared
with a prediction u ~ D? in two dimensions. While the data does not fit the form

predicted by section 2.8.5, there may be a compromise between the two effects.

In the large anisotropy limit, in order to include measurements made at
D = oo, we transform the energy to Hamiltonian 2.55, and plot against 1/D
in figure 5.6. For D — oc, the energy per spin at zero temperature is around
—1.1, which corresponds to an energy per bond of —0.55.7. We might expect —%J
if each spin were able to lie along the local anisotropy direction closer to align-
ment with the neighbouring spins, but because of the frustration, the alignment
is worse, and the energy is increased. Fisch [47] similarly finds an energy of —0.5
per bond in simulations at D = oo for two-component spins in three dimensions.

As D is reduced, energy seems to be reduced inversely proportionally with D, as
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in the text, and find approximately linear behaviour on the approach to infinite
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Figure 5.7: Comparing u(T) for cooled and quenched systems. The heavy line is
for slowly-cooled systems. (x,y) represents & equilibration sweeps followed by y
production sweeps.

predicted by equation 2.77.

Quenched Systems

Quenched systems appear to have higher energy at low temperatures than cooled
systems — this indicates that the quenched system is unable to find the ground
state, until it is warmed slightly, when it manages to reduce its energy and fall

onto the cooled energy curve (figure 5.7).

At very low temperatures, the system makes large drops in energy for small
increases in temperature — here, small gains in thermal energy allow it to cross
the smaller of the energy barriers (section 2.6). Subsequently, the excess energy
is lost very gradually — it seems that the system is caught in a deep energy
minimum, and rather than crossing the final energy barrier into the region of the
ground state configuration. the system remains in this energy well, and as thermal
energy is gained, the system spends less time at the bottom of the energy minima,
so that the average system encrgy becomes less dependent on the depth of the
local minima. At sufficiently high temperatures, the system has sufficient thermal

energy to be unaffected by the fine details of the random potential (section 2.8.4).

The extent to which this is a dynamic eflect is unclear — for a finite system,
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the Metropolis algorithm has a non-zero probability of reaching any configuration,
so if we run the simulations for long enough, the system must find the ground
state. On the other hand, the fact that our system appears to have difficulty
finding the ground state may indicate some sort of glassy behaviour, as discussed
in section 4.3. Disregarding the very fast simulations, figure 5.7 does appear to
show one temperature 7™ for each D at which the rate of warming is irrelevant and
the curves meet up — this might be taken to be a glass temperature (section 2.6,
below which the system shows freezing. Of course, the exact details of the way
the energy reaches the cooled value changes from run to run, and depends on
the starting spin configuration and on the layout of the random axes; this will be

discussed further in section 5.5.1.

If we only partially warm the svstem, to a temperature below T, then cool
back to zero temperature, we find that the zero-temperature energy is between
the original quench energy and that of the cooled system (figure 5.8). Once
we warm beyond 7™ and cool, the system energy follows the curve taken by a
sample cooled from high temperature. Thus 7™ seems to be an irreversibility
temperature.

It is interesting that the measurements of the specific heat by the fluctuation-
dissipation theorem do not differ significantly from the specific heat for the cooled
system at all but the lowest temperatures (figure 5.9). This indicates that the

system is exploring a region of configuration space similar to the region around

the ground state, but as we have seen, the minimum is shallower.

5.2 Liquid Crystal Order Parameter

Inspired by work on liquid crystals, we have recorded what we have called the

‘Liquid Crystal order parameter’

Qi = (2(S,m)* = 1), (5.1)

measuring the correlation between spin and anisotropy direction at each site —
when there is a strong correlation, such as in the large anisotropy limit at low
temperature, we would expect ()1. — 1. For weak anisotropy or high temperature,

Q]C — 0.

Figure 5.11 shows this order parameter as a function of temperature for vari-

ous values of anisotropy strength D, and as a function of D for various tempera-
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Figure 5.8: Investigation of reversibility for 62? and D = 0.4. The heavy line is
for slowly-cooled systems. The system is started from a random configuration
(quenched), then warmed (with 5000 equilibration and 50000 production sweeps).
The diamonds show these points, which agree with figure 5.7. At each point, the
final configuration is stored away, then the system is cooled once more. The
lines in the figure show the energy as a function of temperature as the system
is cooled from these various starting states. After each cooling run, the system
is restored to the configuration before the cool, and warming proceeds. In an
experiment on a real sample, the system would have to be quenched back to
zero then warmed. It can be seen that above some T, the energy is a reversible

function of temperature.
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Figure 5.9: Comparing c¢(T) for cooled and quenched systems. The solid line
is specific heat by numerical differentiation of energy for slowly-cooled systems.
The points are measurements by fluctuation-dissipation, and do not appear to
differ significantly from the cooled results, except at very low temperatures, where
figure 5.7 shows large jumps in energy to be occurring.

tures T'. Because these points appear to lie on smooth curves, considerable effort

was made to find a universal form for the data. Fitting the data to the forms
QD) ~ DD (5.2)
Qie(T) ~ exp(=u(D)T) (5-3)

gives A & 0.75 at 7' = 0 (as shown on figure 5.11), rising approximately linearly

with temperature until around 7' = 1.2 where A levels off at around 1. This zero

temperature result is consistent with the result of /' ~ D*™® using equation 4.12.

. . [ ’ .
Because we can also write equation 5.3 in the form D*T, or indeed as a

product D*1T exp(—pu,T), we can combine the equations to arrive at
Qie ~ D702 expy(— 1y (D)T). (5.4)
Fitting this to the data shows that pz = 0.7, independent of D. Thus we can

collapse Qi.(D, T) onto Q\(1,7T) in figure 5.11 by plotting Qc/D%™+%2T against

T, as shown in figure 5.12.

For T' > 1.2, the fit is better using the simpler Q./D. In equation 5.2, it

may be possible to find a better form for A which saturates at A = 1 above
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Figure 5.10: Liquid crystal order parameter as a function of temperature for
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strength for various temperatures 7' (rising curves). The falling points lie on
curves of the form Q). ~ exp(—A(D)T) while the rising curves are fit by Q ~
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Figure 5.11: Liquid crystal order parameter as a function of D at zero tempera-
ture. For D < 2, Qi lies on the curve D%7® but it must fall away from this curve
for larger D, since the order parameter cannot exceed 1.
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Figure 5.12: A plot of Qi./D*™*%2T showing that the liquid crystal order pa-
rameter can be fitted to a universal curve, as described in the text.

T = 1.2. It had been hoped that finding a universal curve for Q). would allow

some insight into the physics of the low-temperature state, but this has not yet

been forthcoming.

For larger anisotropy strengths, Q. is predicted to approach 1 as D™? (equa-
tion 4.14); figure 5.13 shows a log-log plot of 1 — Q. against £, with the gradient
of the straight line found to be 1.75.

Quenched Systems

For quenched systems at low temperatures, (). is slightly higher than for the
cooled system. Together with the results for energy of quenched systems (sec-
tion 5.1), this suggests that the spins are ‘pinned’ by the anisotropy — this will

be explored further in section 5.5.1.

5.3 Correlations

As described in section 4.5, we are able to measure spatial spin-spin correlations

at regular intervals during simulations.

Because we are really interested in using the correlations to determine the
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Figure 5.13: Behaviour of ()i at zero temperature in the large anisotropy limit.
The straight line demonstrates that Q). ~ 1 — D~175,

nature of the long-range order, if any, we use the ‘raw’ correlation function
(equation 3.21). For the two-dimensional (pure) XY model, the second term
in equation 3.20 should anyway be zero at all non-zero temperatures, as there
is no true long-range order in this model — we expect even less order in this

random system.

As before (section 5.1), there appear to be three different régimes: a high
temperature paramagnetic phase, an intermediate X'Y-like region with power-law
decay, and a low-temperature régime. This is reflected in the spin-spin correla-
tions — figure 5.14 shows the three different behaviours of ¢(r) (circular average
of g(r)) for a 62% system at D = 0.4 cooled from high temperature. Because of
the periodic boundary conditions, the data is only valid out to » = 31 along the
side of the square, but of course, along the diagonal, we can go out to L//2 as

shown.

The most striking feature at low temperatures is, of course, the risein g(r) for
r > 25, but it should also be noted that for smaller r, the decay is no longer alge-
braic — figure 5.14(b) shows the same curves on a log-log scale, where algebraic
decay would show up as a straight line. At very short distances, there do appear
to be straight lines, but of course, most of the theoretical predictions for corre-
lation functions are for the large r limit. Nevertheless, this may be evidence in

support of the breakup into domains in section 2.8 — the correlations are X'Y-like
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Figure 5.14: g(r) vs » for cooled 62? system with D = 0.4, showing paramagnetic
behavior (exponential decay) at high temperature, X" behaviour (power-law
decay) at intermediate temperatures, and a distinct low-temperature behaviour.
The same information is reproduced with a log scale in (b), showing straight lines
(indicating power-law decay) at intermediate temperatures, but straight lines only
at short distance at low temperature. The correlations would eventually approach
zero for a sufficiently large system.
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at short distances, and the correlations fall off more rapidly at larger distances,
implying a domain-structure, perhaps. Our data supports the prediction that the

spin correlations are independent of temperature at low temperature [20].

It is possible that the apparent XY behaviour is a feature of the limited system
size, and that departures would show up at larger distance at all temperatures.
However, there is no theoretical foundation for a temperature-dependent domain
size in the Chudnovsky-Imry-Ma theory (section 2.8), and section 2.8.4 does

predict that the breakup into domains will cease above some temperature 7.

It appears that the spin correlations are XY -like provided that g(r) has fallen
by at least a third by » = 25 or so. At lower temperatures, where the pure system
would be expected to be well correlated at this distance, the new behaviour takes
over. This is understandable when the nature of the domains in section 2.8 is
recalled: the domains are not due to some sort of correlations in the anisotropy
axes; rather, they are due to the exchange interaction holding the spins together
to a certain extent, despite the presence of the uncorrelated random axes. At
higher temperatures, where the exchange interaction is not strong enough to keep
the spins aligned to this degree in even the pure system, it is not surprising that
the system cannot sustain the Imra-Ma-Chudnovsky domains with the addition

of the random anisotropy.

We might suppose that the domains can be sustained provided g(r) is greater

than some constant over the domain size &:

g(§) = &7 (5-5)
= const. (5'6)

1
-~ 5.7
g log & (57)
~ _lo;D using 2.74. (5.8)

This holds only when ¢ is greater than one lattice spacing, so that D < 1 and
the right hand side is positive; it is only valid for small D, and indeed diverges

as D — 1. Using n o< T from equation 2.11,

1

. 9
log D (5:9)

T~ —

Before discounting the rise in g(r) at large r as a finite size effect, or a feature

of measuring g(r) along the diagonal rather than along the edge, it is useful to
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Pigure 5.15: Three dimensional plot of g(r) for 62% system with D = 0.4 cooled
to 7' = 0.1. Contours on base are a guide to picking out features on the surface.

look back at g(r) in two dimensions (i.e. without performing a circular average).
Although this data is for one particular set of anisotropy axes, each ¢g(r) is a
spatial average over all pairs separated by vector r, so there has been some
averaging over the details of the anisotropy. Figure 5.15 shows g(r) for a 62*
system with D = 0.4, cooled to low temperature. The system is clearly not
circularly symmetric, and there does appear to be a domain structure, though
adjacent domains are approximately aligned (reminiscent of the Ferromagnet with
Wandering Axes discussed in section 2.8.7), so that the structure is not terribly
clear. The results are similar to those from the studies of the one-dimensional
XY model with random anisotropy in [62]. Figures 5.16 and 5.17 show the
same system at higher temperatures, where the unevenness is reduced, suggesting

again, perhaps, a changeover to XY -like behaviour.

We fit the correlations for a cooled 622 system to the form

g(r) ~r~"exp -g, (5.10)

and find results for  and ¢ consistent with the qualitative description above, as

shown in figures 5.18(a) and 5.18(b).

£71 becomes non-zero above T & 1, so we conclude that the spin correlations
change to exponential decay at high temperatures, as has been shown earlier. The

apparently random values for n in this régime are simply features of the fitting
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Figure 5.16: Three dimensional plot of system in figure 5.15 at 7' = 0.3, showing
only a little unevenness.

Figure 5.17: Three dimensional plot of system in figure 5.15 at 7" = 0.6, showing
a much flatter surface.
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Figure 5.18: Fitted value of n and 7! in equation 5.10 to g(r) for 622 system. At
high temperatures, all ¢ diverge (67! — 0) at the same temperature, indicating
that the parametric to quasi-ferromagnet transition is unaflected by the anisot-
ropy. (Random values for n are a feature of fitting process.) Decay is power-law
at intermediate temperatures, with n(D.T) ~ n(0,7) Poor fit at low temperature
indicate that data no longer fits this form.
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Figure 5.19: g(r) for quenched 62? system with D = 0.4

process. For all the values of D shown, the fitted parameter £ goes to infinity at
a temperature just below J on figure 5.18(b), where n has a value around 0.25
(indicated by dotted line) as expected (section 2.2). Below this temperature,
n for the pure system (D = 0) falls slowly with temperature to 0 at 7" = 0,
again as expected. For non-zero D, 5 follows the D = 0 curve down to some
non-zero temperature (which depends on D), below which it appears to level
off, as predicted by [20,33]. The fit at low temperatures should not be trusted
quantitatively, since the data is no-longer a good fit to equation 5.10, as described
earlier; this does, however, give us another measure of T, the temperature below

which pure XY behaviour is lost.

Quenched Systems

The correlations for a system quenched then warmed again show three distinct
régimes, but now the low-temperature states have rapidly-decaying correlations,
as shown in figure 5.19, except perhaps for a slow decay at very short distance,
as before. This is consistent with the conclusions drawn from the energy data
in section 5.1: the system at low temperatures is pinned by the anisotropy, and
cannot escape until the system is warmed somewhat. The fanning of the data
at larger r again implies loss of circular symmetry, and perhaps a breakup into

domains.
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Figure 5.20: Domain size is inversely proportional to D, as predicted by equation

2.74

One possible picture is that, while the domains in the cooled system were
almost aligned, here the neighbouring domains are misaligned, and the averaging
implicit in the measurement has set most of the long distance correlations to
zero — see section 5.3.1. The curve at T = 0.25 shows that even after the
correlation length reaches the order of the lattice size, the system is not yet in

the pure XY state — this is at least not entirely a finite-size effect.

In order to get some measure of the domain size, we have forced a fit to an
exponential form, to find a correlation length as a function of D — any consistent
way of fitting the data would be appropriate here. This measurement is made not
at zero temperature, since our single-spin-update Monte Carlo algorithm is unable
to cross even the smallest energy barriers to minimise the energy. Figure 5.20
shows that domain size is approximately inversely proportional to D, in good

agreement with equation 2.74, despite the rather ad hoc measurement.

Dieny and Barbara [52] found that the spin correlations decayed from 1 to
exp(—1) over a distance £ & 14 exp(—1.4D) at zero temperature — this does not
diverge as D — 0 as expected due to difficulty in eliminating all pairs of vortices
in the pure system. Despite a slightly different definition of correlation length,
our results are in good quantitative agreement, and the correlation length by this

measure for D = 0.4 is consistent with the domain size suggested by figure 5.14.

114



5.3.1 Spin Configuration Snapshots

In this section, we present pictures of instantaneous spin configurations, as re-
vealed by the real time graphics (section 4.6) — it has been hoped that a video
showing the progression of the configurations through time could be made avail-
able, but that has not proved possible in practice. Figure 5.21 shows an in-
stantaneous spin configuration for a 62% system with D = 0.4, slowly cooled to
T = 0.3. The spins are predominantly aligned in the y direction, but this is

almost certainly a feature of the finite size of the system.
The analogous plot for a quenched system is presented in figure 5.22.

Warming further, the vortices disappear, and we reach the configuration

shown in figure 5.23

The role of vortices will be discussed further in section 5.5.1.

5.4 Magnetisation

It must be emphasised that, as has been discussed in chapter 2, the XY model
in two dimensions has no true long range order, and can have no spontaneous
magnetisation in zero field at non-zero temperature in the thermodynamic limit.
Instead, it shows ‘quasi’ ferromagnetism — the spin-spin correlations show alge-
braic decay (equation 2.11), and the system is almost magnetic. Simulations of
finite systems do show a spontaneous magnetisation at low temperature, how-
ever, because the spin correlations do not decay within the finite size of the
lattice (section 5.3) — this measured magnetisation is expected to fall to zero in

the thermodynamic limit.

We would expect the addition of randomness to further reduce the amount
of order at low temperatures, so that there can be no net magnetisation in the

random case either.

That sald, we have been able to use the spurious spontaneous magnetisation
of our finite systems to try to determine further the low temperature properties of
the random anisotropy system. We record the root mean square magnetisation,
so that we can follow the magnitude of the magnetisation — the pure system is
degenerate in the direction of any net magnetisation, so that a vector average

decays with time as the spins rotate, whereas a root-mean-square measurement
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T'=0.3
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Figure 5.22: Instantaneous spin configuration for 62* D = 0.4 system quenched
then warmed to 7' = 0.3
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Figure 5.24: M? as a function of temperature for various anisotropy strengths
D. As noted in the text, the magnetisation must go to zero in the thermo-
dynamic limit, but it is useful nevertheless to investigate the behaviour of this
non-thermodynamic variable. Also shown is the magnetisation from a system
which we have quenched then warmed, showing non equilibrium behaviour.

should have a well-defined average.

5.4.1 Magnetisation of a Finite System

In figure 5.24, we compare M? as a function of temperature for various anisotropy
strengths D for a 622 system. For D = 0, the magnetisation is small for 7' > 1,
and below this temperature, it grows smoothly as the system is cooled, reaching
M? =1 at T = 0. These results are very similar quantitatively to those of the
60? system studied in [17]. As we introduce randomness, keeping D < 1, the
magnetisation appears to follow the curve for D = 0 as we cool down to some
T*(D), below which it levels off, so that the magnetisation is depressed at low

temperatures.

This is just as would be expected from the behaviour of the spin-spin correla-
tions in section 5.3 — at sufficiently high temperatures, the spin correlations are

XY-like, and by equation 5.14 the magnetisation should behave similarly.

These results are consistent with [34], where the system at low temperatures

is renormalised back to 7% and D = 0, and [20], where the spin-spin correlations
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are reported to be independent of temperature below T™. For larger D, T* has
increased beyond T = 1, and there is no intermediate range of temperatures in

which the system can be said to be XY-like.

Quenched Systems

Figure 5.24 also shows a typical result from a quench, where we find behaviour
similar to that shown by the energy (section 5.1): at low temperature, the mag-
netisation is significantly suppressed, as is expected from the behaviour of the
correlations in section 5.3, and only when we start to warm the system is it able
to increase the magnetisation to match that of the cooled system — the system is
apparently increasing its order as we increase the temperature, which may be an

indication of energy barriers being overcome as the system gains thermal energy.

Magnetisation as a function of D

For small anisotropy strengths, we can compare the deviation from saturation
with the predictions of [29]. Figure 5.25 shows the deviation from saturation for
a 322 system at 7' = 0 in zero field, and the line indicates D??2, showing reasonable
agreement with the prediction. The smaller system size tends to mimic the effect
of cooling in a non-zero field — while at 7' = 0, the non-random system must be
fully-aligned, the random system may need extra encouragement to align, and

the smaller system size helps this. (Usually this is regarded as a problem, of

course!)

5.4.2 Susceptibility

While we have recorded the magnetic susceptibility during our simulations, the
lack of self-averaging which reduced the quality of the specific heat measurements
(section 5.1) is evident also for the susceptibility measurements. Because of finite
size effects, we have been unable to get the system into an equilibrium state with
small spontaneous magnetisation, so that our results cannot be interpreted as
zero-field susceptibilities. This has also prevented us from finding the suscepti-
bility by explicitly differentiating the magnetisation with respect to applied field

strength.
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Figure 5.25: Deviation from saturation as a function of small D for a small
(322) system at 7' = 0, in zero external field. Line shows D??, compared with
prediction of D? [29],

The power-law decay of correlations at intermediate temperatures indicate an
infinite-susceptibility régime, and all we can say at present is that the susceptibil-
ity is strongly suppressed at low temperatures by the addition of the anisotropy.

We cannot confirm the predictions in equation 2.84 directly.

5.4.3 Scaling Behaviour

The magnetisation and spin correlations are linked by

(M?) = <<Zs>(;sj)> (5.11)

= zZ<§j:si.sj> (5.12)
~ Ld< /Tiog(r)ddr> (5.13)
(m*) ~ L‘d< /riog(r)ddr> (5.14)

so that the way the magnetisation falls to zero with L can reveal information

about the nature of the spin correlations, and allows comparison to be made

with the explicit measurements in section 5.3.
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Figure 5.26: Scaling behaviour of the pure (nonrandom) system. Straight lines
on a log-log plot indicate algebraic (power-law) decay.

When there is no long range order, and the system size is much larger than
the correlation length (so that the integral in equation 5.14 is independent of L),

the magnetisation falls as L%,

Using g(r) ~ r~7 in equation 5.14, it can be verified that the magnetisation
per spin scales as L™"/? for the non-random case, and we can investigate the

scaling behaviour of the random magnet.

Figure 5.26 shows a log-log plot of zero-field magnetisation as a function of
size for various temperatures for the pure system, clearly showing straight lines
as expected, except for a region of transition from low-temperature quasiferro-
magnetism (algebraic decay) to paramagnetism (fluctuations) near 7' = 1, where
the lines appear to be tending towards m? ~ L~ for large L. The fit of n to
these curves is shown in figure 5.28, and shows 7 increasing from 0 at 7' = 0 to
0.25 around 7' = 0.9, in good agreement with [17]. The magnetisation scales as

L~! at high temperatures, as expected.

Figure 5.27 show the scaling behaviour for D = 0.4 — figure 5.27(h) con-
centrates on the low-temperature régime, which is not clear from figure 5.27(a).
At low temperatures, the magnetisation is continuing to bend over at large L, so
that we are unable to determine the behaviour quantitatively. If the Chudnovsky-

Imry-Ma domain picture, supported by section 5.3, is to be believed, it might be
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Figure 5.27: Scaling for D = 0.4 showing undetermined behaviour at low temper-
atures (clarified on lower figure), power law decay (straight lines) at intermediate
temperature, and parametric behaviour (L~%) at high temperature.



2_ < DZOO o(}
+ D=0.4 ¢
[
+
n 1 4 o
+
¢
+ + + + 3
60000000000230‘*’64’
O 1 T 1 i i
0.0 0.2 0.4 0.6 0.8 1.0 1.2

T

Figure 5.28: Comparing 5 from fit of M ~ L="2 for D = 0.0 and D = 0.4. The
horizontal lines show 1 = 0.25 which is the prediction of the pure system at Ty
(section 2.2.3), and n = 2 which is the expected behaviour for a paramagnet. No
fit is shown for low temperature for D = 0.4 since the data clearly does not fit
this form.

supposed that at these low temperatures, the system should scale as the num-
ber of domains, rather than number of spins — in this case, there are too few
domains for the scaling behaviour to be determined, and simulations on much
larger systems need to be performed. The shape of the low-temperature curves
appears to be independent of temperature, so that the scaling curve can be sep-
arated into f(T)g(L). At temperatures higher than 7' & 0.4, the scaling curves,
though somewhat bumpy, appear to lie on approximately straight lines, implying
re-emergence of pure-system M ~ L~7/2 behaviour. The data does not conclu-
sively show whether or not n is the same as the pure system — as shown in
figure 5.28, at temperatures just below Txr there is good agreement between the
n from D = 0.0 and D = 0.4, while below T ~ 0.7, the values differ. Of course,
while qualitatively, the data appears to lie on a straight line, determining the
gradient of such noisy data is very error prone. At temperatures 7' > Txr, the

scaling behaviour is identical to the pure system.
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Figure 5.29: Deviation from saturation for various system sizes for D = 0.5 and
T = 0.01, demonstrating system-size independence

5.4.4 Approach to Saturation

We have also made studies of the magnetisation as the system approaches satura-
tion in large magnetic fields, to compare with the predictions made in section 2.8.

All figures show deviation from saturation on a log-log plot, unless otherwise

stated.

Figure 5.29 compares the approach to saturation for a number of system sizes
with D = 0.5 and 7 = 0.01, demonstrating that, in the region of interest, the
system size is unimportant. Thus all of the following is based on results from 16

systems, for computational ease.

The effect of thermal desaturation in an external field (section 2.8.9) can be
demonstrated by plotting the deviation from saturation in the pure system, with
D = 0 — as shown in figure 5.30, the magnetisation approaches 1 as % for
H > 40, as predicted by equation 2.94. In a similar way, a large anisotropy at

low temperatures gives a desaturation ém ~ D?/H? as shown in figure 5.31.

For D < 5, the approach is slower than /=2, as can be seen from the figure: for
D = 0.5, the approach is H~!, which we interpret as FWA behaviour (section 2.8);
for D = 1, the slope is around 1.4; the slope is 1.7 by D = 2 and has settled at 2
by D = 5.
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Figure 5.30: The effect of temperature on high-field magnetisation of the pure
system is to cause deviation from saturation (a) proportional to H~! (dotted line)
at sufficiently high fields, and (b) proportional to T' (along H = 100).
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Figure 5.31: The effect of (large) anisotropy on high-field magnetisation at low
temperature and sufficiently high fields is to cause deviation from saturation (a)
proportional to H~2 and (b) proportional to D? (along H = 100). The crossover
to H~! thermal demagnetisation can just be seen at very large fields and small
D in (a). The D? behaviour is valid for D > 5, as described in the text.
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Figure 5.32: Demagnetisation in high field for D =1 at 7" = 0.01, showing three
régimes of ém vs. H behaviour

Figure 5.32 shows the demagnetisation for D = 1 and 7" = 0.01: there are
three distinct high-field régimes as predicted in section 2.8, but the two H™*
regions are separated by a region with ém ~ H™!® whereas the prediction was
H~=? in equation 2.92. The low-field H~! régime is interpreted to be the Ferro-
magnet with Wandering Axes (FWA) predicted in section 2.8.7, while the high
field behaviour is thermal depinning as above. D is not sufficiently large for the

intermediate régimeto show the expected H~2 behaviour, as described above.

It is almost possible to make out the changeover from H~? to H~! at high
fields for small D in figure 5.31(a), but this crossover field can be picked out
quantitatively by writing the deviation from saturation as the sum of the two

contributions (equations 2.8.8 and 2.8.9):

2
dm  ~ <-§:> +-[§ (5.15)

2 2
5771% ~ ~DT— + H (5.16)

so that a graph of dm H?/T against H should give parallel lines of the form
H + H'(D,T), as shown on figure 5.32, and we might define the crossover to be
where the two contributions are equal, i.e. where H = H’, by extrapolating back
to dm = 0 at —H’, as shown on the figure. Because the lines are parallel, we can
just use the y intercept at H = 0. The crossover field H’ is plotted on a log-log

scale against D in figure 5.34, showing the D? behaviour predicted in section 2.8.9

128



400 )
T,D
350 1 o (0.01,2.0
300 _ + 001,15
o 0.01,1.2 o. -
& 250 X 0.01,1.0 o .
o a 0.01,0.5 &
f 2000 % (0.051.0 ey §
= 150 - ] 0.05,0.5 LT é ”
100 - % .
50
0 T T T
—200  —100 200 300 400
—H

Figure 5.33: Graphical determination of the crossover between anisotropy- and
thermal-induced demagnetisation - the crossover field is the x axis intercept H’

over a wide range of D. Figure 5.35 shows the inverse of the crossover field as
a function of T for D = 1 — the intercept is rather small here, so that it is
difficult to determine the intercept precisely, but the data supports a crossover

field inversely proportional to T', as predicted.

5.5 Dynamic Effects

5.5.1 Role of Vortices

A great deal of insight into the nature of the low-temperature configuration has
been afforded by the use of real-time graphics (section 4.6), allowing the progress
of the system to be followed. The colour spin-plots in section 5.3.1 show how the
choice of colours makes it easy to make out domains (spins with similar colour)
and vortices (where abrupt colour-changes radiate out in all directions). In later
simulations, code was added to give a quantitative measure the vortex density,

as described in section 4.5.

For the cooled systems, the vortex density is plotted as a function of temper-
ature for various weak anisotropy strengths D in figure 5.36. It is clear that there
are no vortices present at low temperatures, and therefore that the pinning of

vortices is not the mechanism behind the various changes in behaviour observed
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Figure 5.34: Crossover field H' as a function of D, using data at 7' = 0.01.
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Figure 5.35: Crossover field H' as a function of 7', using data at D = 1. The
thermal desaturation above T' = 0.05 overwhelms the effect due to the anisotropy,
so that the intercept cannot reliably be distinguished from 0.
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Figure 5.36: Vortex count versus temperature for various anisotropy strengths
D for 62?% system, showing that the vortices are abundant above the Kosterlitz-
Thouless, but are absent below Tir. This is further evidence that the transition
from the paramagnetic to XY régimes is unaflected by the addition of weak

anisotropy.

at low temperature.

On the other hand, figure 5.37 shows that if the system is started from a
random (quenched) configuration, the vortices inevitably present in the initial
configuration are unable to mutually annihilate at low temperatures; as was ob-
served in the energy measurements (section 5.1), the system must be warmed
to a degree dependent on the anisotropy strength D before the vortex density
drops to zero. It is immediately apparent that vortices play a crucial part in the
low temperature behaviour of quenched systems. It is also clear that the vortex
density is not a well-defined variable; as before (section 5.1) it depends crucially
on the starting configuration and the layout of the anisotropy axes for these fi-
nite systems; for infinite systems, as described in section 2.9, we would expect all
possible local configurations of the random axes to appear, so that this sample

to sample variation would be reduced.

It was noted in section 5.2 that the liquid crystal order parameter is higher
than expected in quenched systems. This indicates that the spins are more closely
correlated with the local anisotropy axes than for cooled systems. This supports
the argument proposed in section 2.9 whereby the vortices are ‘pinned’ by par-

ticular configurations of the easy axes.

131



Vortex count

1.0

Figure 5.37: Number of vortices in quenched 627 system for various D

Because it is in the nature of vortices to annihilate in pairs at low temperature,
it 1s reasonable to suppose that in a system started in a configuration containing
vortices, the vortex count will decay at low temperatures; given that the vortex
pinning centres discussed in section 2.9 have an energy of order D, the probability
of a vortex escaping from a pinning centre might be~ exp — % in unit time, giving

. . . . L1, N D
a mean lifetime growing like exp .

Figure 5.38 shows the average time taken for all the vortices to annihilate
from ten random starting configurations. While the number of vortices in the
initial configurations were reasonably consistent (within 10%), there were very
large fluctuations (factors of 10 and more) in the measured vortex lifetimes. It
was necessary to cap each simulation at 100000 cycles, to avoid wasting cpu time
on pathological cases; this makes it rather difficult to fit quantitatively. The
trends, however, are clear; the lifetime decreases with increasing temperature,
and increases with increasing anisotropy strength: and for temperatures 7' > D,
the measured lifetime matches roughly the baseline for 2 = 0 (to take simulation

dynamics into account).

5.5.2 Hysteresis Loops

Strictly speaking, hysteresis loops are a purely non-equilibrium phenomenon —

if the system was always allowed to relax fully after each change in the external
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Figure 5.38: Vortex lifetime as a function of temperature and anisotropy strength.
The simulations were truncated at 100,000 cycles, so that the times are sup-
pressed slightly at the top end.

field, the effect would be gone. On the other hand, as described in section 1.1.§,
the experimental systems which inspired this work do show hysteresis, because

of the slow relaxation times.

In section 1.1.6, the hysteresis was accounted for in terms of domains, which
were in turn ascribed to the dipolar interaction. In this system, we have ne-
glected the dipolar terms from the Hamiltonian, yet we still find hysteresis —
Figure 5.39 shows the sort of hysteresis loop produced by our simulations — be-
cause of the difficulties in starting a system from equilibrium in zero field with
zero magnetisation, as noted in section 5.4, we have not attempted to find an
initial magnetisation curve, as done in [52]. Instead, we start the spins from a
fully aligned state in a large field, then slowly reduce and then reverse the field.
In general, we perform the sweep on only one direction, since the system is in-
variant under a 180° rotation, so that following the reverse curve is identical to
running a second sweep in the increasing direction — the curve is reversed and
superposed to form a conventional hysteresis loop as required. Shown on fig-
ure 5.39 are various important quantities: the remanent magnetisation M, is the
magnetisation at zero field; the coercive field H, is that field at which the mag-
netisation changes direction; and the reversible field H,.. is the field above which

the hysteresis ends — it is the field above which the system exhibits reversibility.
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Figure 5.39: Typical hysteresis loop at low temperature for 622 at D = 0.4

The figure shows irreproducible jumps in the magnetisation at small reverse
fields, bearing considerable resemblance to features scen on real systems (sec-
tion 1.1.8). The long, bumpy tail at fields larger than Hc, is not always present
on the measured curves. but does appear sufficiently often to be significant —
this tail is very similar to those seen by Dieny and Barbara [52] in simulations of
this model at zero temperature, where the jumps in the tail are identified as due

to the annihilation of vortices — we shall return to this below.

Because hysteresis curves are a dynamic effect. it is necessary to take care
over the rate at which the magnetic ficld is swept, to ensure that the curves have
converged — Saslow and INoon [533] show that carlier work by Chi and Alben
(which suggested that /., did not rise monotonically with D) was flawed by lack

of convergence.

The value of the remanent magnetisation M, appeared to change little with
sweep rate (see section 5.5.3), so we ran the system from negative field to zero
field once, storing this final configuration (shown in figure 5.40). then ran further
simulations starting from this stored configuration for scveral different sweep
rates. At each field value, 500 cquilibration cycles and 2500 production cycles
were performed, with each cycle consisting 4 rotation and 1 flip updates per spin.

The field step was varied from 0.001 to 0.128 for each 7" and D.

Figure 5.41 shows the sequence of curves for a 622 system at D = 0.4 and

134



B R L L T T L T T T N N TS S TN T s s S 2 8 4 2 s L L
P S N N N et Lt o N e Rt g b L N N
R L L T T N N T e e g a2 a2 S T L T S S XN g L S gt L
BTSSP RS EARNBDT PFTASSTIIFIFATF TS >>sddshdddd s hdsddsdy
e N e L L S N st s s T L L & N N N NN gt L 2
SRR BEPSSFETIFEAAAT S I EARD DS T P IT ST IT I TP PTITSTITPSTRET ST TS T T >
S PBRAASF T ETFIAPDPSIASIRAEAAT T I ST FT DA ST ST ST TT T T DT> > BT >
N A 2 T 4 e N N NN Y A A A I SN L L e 2 gL 2 T 2 s e S S L L T
N N e st s T T g NN e ettt e s LN N 2L N S e e g e T L L e L LNt
BRSPS EDEFTIT TSRS PIIPTSIFATITTPAPALAISES S SRR SIS ITF A S>> >
N e s s e R e e e T R e e e 2L e AN 2 LT e e 2 2 2 I TS 2 & T
A N T A s A LT N R T T P 2L LS A T I 22 SR ST LI 2 2 &L
I ERRPT ISP S ST EIITESIAT S BAP T I AP ST IIFT P I ARASIAF ISP IARD DS TSI TSI >T T T 7
BEPABRADP B P ISP IAPT I DT FT S IRASPFTPIADSFTTIF I ISP EASSITAFARADIAS ST TIPS >FF >
N R et s e 2 T N N e s S e e S 2 e s S R 2 2 T T T L 2 S 2 L S A
PO TES ST EABRARR S ST I TP IAS PSRBT TSI AT I TST ST ST TS TIT I EDPSSTTTTTT P>
PRSP TP ARAP ST T SRAPDIPT AR TS S P T I ITSTITATH DD ITIDDSTFTFIN>H S
DA TIPS TTTTT PP EPIPAATADT IASSTIITIAI PP P STIS PP IT ARSI IrAA»rr
PFFSTETADDT I PTTIPIEIANDT P PRSPPI IIFIITITIPPEADPDRDT PSP LPTITF»Y
B PFTTEDRTSFH PSP SI P DA DT I PTITEIPTPITIATTSEITDEIDADTIPTSIISPTFT PS>
N et et s L T TN T & 2 N NN et s L L A N T S
N N st s o e B N e S T S TR S 2 2 a R T N G N S
R R A A AS S S T R e e T B N N g T R 2 g o o e L
ST EARS DI T I RRS T I T EAST ISP I II T ST TIIT AP AADSIFFFFF A AsAARSr>>
e S N N s s s A2 AN T S S LTI e e T T 2 LT 2 L L T L N e = L N
AP DA DA P AR RN DT S S AP T TIPS ISP TSI I I T ST ST ISP ST RIS IS EIIIIFARS S AS D
BRABPRAARDRADP PSSP TIS IS AP SIS IFPTFSTIIII DI AS ST IASSIIFIasiss s dad
BARAP P BSFTESIFS IR I EPRASDE SIS FSTESSIN DI DRSS STFIFFSARS D>
N R g g e N N N N e s e s T NPT 2 TN 4 2 N T 22 2 N ot = L T
e T e e T TR L T e R SN gl e e s L s S S g AT T T RN et T X
PP TR TTESTTT ST DS T IS TIITAAT PP BDDTETTIPPTSTTIFTETSrerdryry
et L S R A N S g At & LD & F gt o A N R et o L e B A 2
T TP eTTEPABISPIABAS ST T I TIPS ST T SFTATTITTTITTITDESTSeASDT IS >FF >F
28422 288 S AN g IS RN AT LTS T2 e g T TR L N S N S e et d
T TETT ISP LI EAAS IR AN AN T AT P AP T I T ST P ITTIT ST T IITEPARCSIFT S>>
R T g N N N N N S Y N NN g N S = 2 o o N o L N A
PP SRR BTSSR APASTARNRARBT P ASFF P IIIIT S SAANS SIS EPF ST >TSS edshs>
et L S N N N T 2 S R N e et L o o g N A e e et L
PEF BB ERAPASFIIIFFIARARA AP I ISP ADIS DI I PP SR DAF I PACFFISIIPRABT S SIS AP
PREEASRT S I BETIAF TP AT P IFP IS PP EALAP TR ASDAARADD SRS TIPS DI AT S>>
PP EASS RS EF I AT ISP EASPARRSIADSI DS ARABRRARNDD TP SIS AT F P> h>>>P>
BB SBAT ST A AT ST ARS SIS T AT PARNDRAD BRI RDDPAD ST EPFF ST &P P> s>
N e Ca st s 2 A 2 AT TR S TN S L T e NN T TSNV T T LT L L L L TN,
PP EDRASST I AT TSP IS ST ISP P FPEETIAAP AP ADD ISR RADFIFFI T TSI > D brD
PAABR DB P P T T IFPSIFTIAFTESITFSIPT AT PP IIAAARST TS S SIP P IFI TSI TS >P
BERABP RSP ARSI I I ST PP DI FTIT T RIS S RII TSI I TS S RIS DT T TS >DTTTH TP Tr>>
PRABB ST S EPIIITIESSIIITI PP IITSI I IEDRS DS SPFTIIATTTP ST TITAT T >>>
FHESPAS ARSI P ST IR IR IPT PSP S ST R IR TSI I IIFITITI DD FTITI IS add
PH PRSP ADS AP S ST P AR APANS T I PIFIT P ARTAF S>> PF AT TIPS IASASTF ST >IN >
L2 AL XA AL L T2 LT TN NN 2 2 LT TN T L L LT 2 22 2 SN NENTT L L Lo T T T
Le et E L 2 g N o N N S et ot LT 2 g e e e T o g 3 N
e s s a2 a2 22 L 4N A TN NN RN R g g N NN Y e s S S e
Lttt & N N N ik N N N et L S g N A e Y T S
PF T TFARSFFAAAMRAS P IR RASP P I FASISI BTSSP SIAP S AR S EAD DA DD D PP
e ada L Lo & L LT S N N e 2 N R & L 2 € O A
F PP RS RS FIT IS SIS FII SIS SIS ESTIIIISPTIISIT ST DARD DT T
s R S g X g T R e N SR 22 el e AT T L LT S e g g S NS & & N N R N N .4
et T2 2 2 X S L g s s T 2 2 L a2 L s 2N o L s T NN L N A
et s S o X N S L a g sl LT IN N EL LR TS & N e g o o e e N N N e T
e R g e N S S a g s LT T TN T L L LE S T SN T L L L L S o O N N s o &
AAP PP IDP S PSSP FIIFIPT PRSP FEFFFIFPARATFFIFSSPSADA >SS FFA>2AAS AN DARND
LSS 2 L N e S N N e g g e N N ks S TR 3 T G e

Instantaneous configuration of remanent magnetisation state for

0.4 and 7" = 0.1, showing small domains. Because of the small system size
and long relaxation times, the system is still largely aligned in the direction of

the
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Figure 5.41: Test of convergence of hysteresis loops — hysteresis loops for various
field sweep-rates as described in the text

T = 0.1 — although the details of the path [rom 0 to f{., changes, there is no
doubt that the value of I, is reasonably converged. and the configuration at
H., is very similar for different sweep rates: one such configuration is shown in
figure 5.42. The energy of this configuration is approximately the same as for the
cooled systems described in section 5.1, and lower than those of the quenched
systems at this temperature, as before. There appear to be no vortices or half-
vortices in this configuration. The differences in the path to H., are taken to be
characteristics of different runs over the system, with different random numbers,
rather than features due to the diflering step rate. The jumps may be due to

local rearrangements of the breakup into domains (see section 5.3).

On the other hand. H.., is clearly not repeatable, and varies widely from run
to run. As was found by Barbara and Dieny at zero temperature [52], the way
in which the domains collapse in the reversed field has a significant effect on the
subsequent behaviour, in the same was as the starting configuration in a quenched
system has a profound effect on the development of the system (section 5.1).
The previous work at zero temperature found that the jumps in the tail were
due to the successive eliimination of the vortices formed by initial quench (for
the initial magnetisation curve) or the domain reversals. While we find that
topological defects play a part, the simulation shows a small number of half-

vortices, increasing with field, but no significant effect from f{ull vortices — this

136



R W AN T T AL AR AAAARRM A AT A T >rmaadnan Yy §e

. Row W W>>r T AAAA AL MMM AAAA T roaana A ANV V2L

- o % R R W \A2 e v a7 A A4 d44 R4 dAdrrrorasran Y yV VY VE2L

; ®%w VA2 > 7 A A A AA A4 A A4 A >rrooroa Ay AFPIVVIEL

w s KRR % R Y A2 2ol ddAAATAAA T o>>ad Y TV VYV F V2

R RN R R % 2RSS AN 2 S R A A R E R g NN S AR R AR,

R R A RN R w LY VYA AR 2> o r sy d Ad 7l 7 r>>asnaa YA PPN
RARMR AR R R RN R R Y VAN A AN R D SR S T T AN T H AT T > A rrrrANANYY J PP ¥

A AAR AR ERRARRRRYN R RSS2 e R R o S T CSC S S 222
RAAARA RN R ARARRRR PPV NN AR T A A T 7 AT AT 722 AR>S AUNYV V£ &

=R RARMRRAAARRE AR n 23 PV 2>y A dd rrrrrraressrana itV pre
RARRARRRAAAR AR R AR we L VYA N AP FTAdvrrrrrarrrrr A AV VP 2e
SRRARARARRAAA RN R R i els pp YV YA R BB F A AT rar T arrasra A VP pere
SRARRRRARRRRARBN SRR N GGl pp F YA N RS> PAFFTF PS> TS >22ANNN VPV PV p a2
RARRARRARARN G R =R RRRRRR RS e vl p P P Y YN RP TP I T I>> ST 2AR Y N (I V2P P ree
SRR ERRAARRARARRBRRNNG <22 P { YAAB ARSI BT >F > >ASUANN N (Y VP V22 LLS

RE RS ARARRRNAAARRRND Y e P j YRR ABARNARNRP AP S AUNAANNNY YV P VP Lpes
BRERRRBAAMANMAARNARN R vl P P J YUNANRAAAYLRNYAUN D2 AAY Y Y VP P peseww

Wt kRN RARRNRRAAAR cwee PP YA RARUANNRY A AN R ARANY Y P Y p ot ccew

¥ R u R RRAAAR L vles P P AAALABRANRNDRANRBRAANNY Y Y (V VPP v as

% % R R AR R bt YYNYY AN ARRRAARNDUNNY N VY VP PRl re

% RRARR . warerss Y AL YA AN AU PSP 2RANNN Y VPR P PV Lo pppicse

b ALY YA YUAUUUBDDASDANY YNV (VP Yy pppray

L BV A AAQARNRANRTARIAL AN ANV VYV VPPV P pe

i) 4440055 a0 Tincadaennix bbb R A L4

b 3245850 A cdts i nndatamnah> bRl 28 024

}x&t**‘«*s . o e PP YA T (AR PSR RRAUNRND TP 2T A AN YN G AN PP 2
I 22 P s et YR Y YA YYRARRABD DS DI F SIS SR SDAYL YL LAANY Y Fp2
B Y PP hesdesedose: Ry P R R R RN E RSN S s g d st L g IS A S  E E E S R AR R Y
PP pLrsss PV VAV AAY QAN ALY PP P FFFIIF > SARNRADALRANYLY Y LY P
'}}}}}“éémébé‘»&*&*‘t}f{i\\***\&\*)1111»7’?)#5»;55{*"\\\‘xﬁv
IV Y preppraecescscssef P P P Y ARABRS PP SANANDTFIFFPPPIFSR2ASSSIFS >SRN Y Y § Y Y
VANV pappprrpprccec bt f )} (2P PTOrIrrrIirrdrTyerrddrsdsiAdrsrrrrrray iy
YYQ WV VP ppppporrcace pp p YA YNDPPIFTTSFZTITFITH SSF2bIr2ARRDTFrFFyo»ray L LAY
YANNNNY VYNV PV PR 2222 P 2 b YNV AR P 7o o A AAAAA A AT A TSP S SADRBT I A F>AL YL LAY
AANNNNV VYNV YV 2P PP PV VP VAN AN NP 7 A v d A AAAA A v T w v r>rrrrrradd7rasa ALYy
AANYAL YN YV V2P Y Y A vnnsrerrrarrdddddrrorrrorarraddddrays>sanayi A
SAABAY YA AAN Y Y V(Y TN 2> nnyvorrrvrdddddAdaaarsaaarrraydddddreosssdra
2 S22 ALYAALNANL A Y G Y N2 2rrrorrrrrd A Ad4dAAAA A AAarAdAAAAAAd A AT rr>r>>
FF R N NN RNNRANNN 2> I ra s add A g vAA A AL MM AN A dAdbAdAddbddAdAdaryrar>
T r AR RIUNNNNR D> T A A A AT AT AAAARAARMN AN A AL A A ddAdbddarrvarar>
FATFT o> rARND NN > AT AL AL AAAAARRNAARMMRMANAAA AL AL L AR A d AT ATTan
T AT A>rrrrrradAr>>>r A AAAAAA44AARNR A A4 AN AbAdAdAdAbddAADTAATHTAS
Aaxagvrgarasrrerdror>rs vl ddAd 4444 AM A A A4 A QA ddaArddmarmmrwrraT
A>T rr A AP PAIAN> > T A AAAAAAAAAAAAAMRNAARN AN A A A b dAAAATAd T rrrr>rTaaT
T rrrrrrAd s> AAAAAA AL b 444 A Ad4 4N ATAdb A b dammararosrrdrry
SRR RADT P I T T I T IIAAAAAAAAAA A AL A AL A b v A AL L Ad A AT v AAP>>>Tran
RARARRAR DG P F T A AT AT v v AAAA A A A A AV A AL A A QA AA AL N b A AdAddTAdAd AT o> rr>mry
AANNANNN A2 > > r a7 s d A AT 7T AAAAAAAAAARNA A AL AANA AL Adb A b b A Arvaddarsars>r>oa
AN NN VNP> 7T 7 AT AAAAAAAAAA A A AN AAA DAL AL AL A4 A AR dAAAdTTA T Forr>aan
YV YV VYV Y A n2 > oo r v v A A m AL A A AA A ALAMANAAAAAAAAR A DA AAAAd A AT T v > raay
FVYPF VPPV VA N2> rrrrsdddddAAAddANAAdAAAdANAAAAAAdATAAATrrraany
VEPEZPPREP VA AN 222> 2o A dAAdAA A4 474 A b dbdddAdddddddddAamamarraanyy
prpperepy YV A2 x> A 2> T T4 A LA AR LA AAAA AL AAAANA A A AAAAdTAT T >> o>V}
PR I 222 yaw»r Al AdaadddaanddddddNAbdd A drrdddrrrrorsy )
'3 FEER A2 > AAAAAAA LA AT AAA A AL AN A AT TAT AL AT AT 7220 ALY ¥
£V WA T T AAAA AA AL A AL AN A AAARMNA A v T T T A AT T FI2B2ANY ¥}

134 (AP P> A AL A AAAL AL AL A A ARAR A A A Ao TATHAT>ANYY P 2

PV a>rrra7 b AA A A4 AAALAAbNRN A AT TASTAPFT>PS>B N P2

PV IA2»rrAb A4 444 a7444 R A4 AdaomrrrrrdrrayVi )

FPVAAa>>TA A4 M4 AAAAARRRMAMA N4 A A AT S>> 22w aa L}y

PPAANAA»> T 7 A AR AAAAAAANA A A4 A AF>>rarssrrnan (Y {pe

Figure 5.42: Instantaneous configuration at H = H, for D = 0.4 and 7' = 0.1.
The domains have grown in the reverse field. and are consistent in size with the
domain size found in section 5.3
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Figure 5.43: Role of vortices and half vortices in hysteresis curve. The half-
vortices indicate an increasing stress in the system, which is resolved in small
jumps in the magnetisation (with the brief appearance of full vortices).

may just be a feature of the way the code detects the vortices (section 4.5) or may
be due to the effects of non-zero temperature on the vortices (so that the code
does not recognise them as vortices. The presence of these half-vortices implies
sharp domain walls, as depicted on figure 2.2, and au increasing strain in the

system.

Coercive Field

While the reversible ficld H,., above is probably of more interest, the coercive
field H., is somewhat easicr to measurc in practice: results are much more easily
reproduced, as shown above; and it is casier to detect when the coercive field has
been reached from within a simulation — a simple test using the primitives in

section A.3 goes like
repeat

getstate # gets current state into system variables

until X > 0
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Figure 5.44: Coercive field H,, as a function of temperature T for different an-
isotropy strengths D. There appear to be drops in the coercive field strength at
D-dependent temperatures.

whereas it is much harder to predict beforehand what magnetisation is required

to be sure that the reversible state has been reached.

Figure 5.44 shows the coercive field H,, collected from simulations at various
temperatures and anisotropy strengths. Qualitatively, the curves are as expected
from previous results: the hysteresis loops get narrower as the temperature is
increased, but gets wider as the anisotropy strength is increased. ( [39] found the
unexpected result that H., did not increase monotonically with D for simulations
of three-component spins in three dimensions. but this result was later refuted
by [53].)

All hysteresis ceases above T = Tkt for the anisotropy strengths studied as
expected, since other evidence is that for small anisotropy, the system is XY-
like at intermediate temperatures. Ior sufficiently small anisotropy strengths,
anisotropy ceases at still-lower temperatures. On the curves for D = 0.2, D = 0.4
and D = 0.6, there appears to be a definite jump in He,(7'), which could be an

indication of a change in behaviour similar to that found earlier.

Qualitatively, the curves can be extrapolated back to 7' = 0 to give approxi-

mate agreement with the zero-temperature simulations of [52].
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5.5.3 Relaxation from Remanent State

We have run long simulations starting both from an aligned state (roughly equiv-
alent to the remanent magnetisation state in section 5.5.2) and from a random
starting configuration. During these simulations, we track both magnitude and
direction of the net magnetisation (bearing in mind that this is a finite size ef-
fect — section 5.4), and we record the spin glass order parameter (section 2.6);
both measurements afford a measure of the rate at which the system moves
through phase space. For the first 1000 cycles (with each cycle comprising 10
rotation attempts per spin — section 4.3), the generated configurations are com-
pared with the starting state; the 1000th configuration is then stored, so that
subsequent spin glass ordering i1s compared with this intermediate result; es-
sentially, we are allowing 1000 cycles for equilibration, but are recording this

information rather than discarding it as usual.

Measurements of the direction of the net magnetisation, starting from an
aligned state, are shown in figure 5.45, with the angle of magnetisation in the
left figure and a probability distribution (histogram) on the right. At low tem-
peratures, the system moves to and remains at the nearest local minimum; when
the temperature is raised, it is able to find what appears to be a ‘global’ mini-
mum direction (since the natural domain size found in section 5.3 is of the order
of the system size. At higher temperatures still, it is able to flip between the
two equivalent orientations along this minimum — it is possible in principle to
use the time between flips as a measure ol the system relaxation time, but we
have been unable to fit this data quantitatively. Even at high temperatures, the
system shows a marked preference for the easy direction. At low temperatures,
the magnitude of the magnetisation is very slightly higher than the earlier results

where the system is cooled from high temperature, which is as expected.

For a quenched (random) starting state, it is the magnitude of the magneti-
sation that is of interest — we are interested in the timescales required for the
magnetisation of the quenched state to ‘recover’ (section 5.4.1). Figure 5.46
compares the magnetisation as a [unction of time for two temperatures for a 622
system with D = 0.4. With 7" = 0.3, the system rapidly finds one metastable
state, where it remains for what is in fact a considerable amount of Monte Carlo
time, before jumping to a region of phase space with magnetisation akin to the
cooled system. Almost inevitably, the jump coincides with the annihilation of a

pair of vortices, as illustrated on the bottom curve in the figure.
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Figure 5.45: Angle of magnetisation with time (left) and a probability distribution
(right) for 62 system with D = 0.4. lor temperatures (top to bottom) 0.1,
0.4, 0.8, 1.0. At low temperature, the system finds nearest local minimum and
stays there; at slightly higher temperatures, the system is able to find a deeper
energy minimum. At higher temperatures still, the system flips between the two
equivalent directions. Even at high temperatures, the probability distribution
shows that there is still a tendency to favour these preferred directions.
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Figure 5.46: Magnetisation as a function of time from random starting state.
The jump in the curve for T' = 0.3 corresponds to the annihilation of a pair of
vortices as shown in the lower curve.

At a lower temperature, the system finds what appears to be the same me-
tastable state, but spends the whole of the substantial simulation without being
able to reach the vicinity of the ground state (whose magnetisation is slightly
higher than the final state of the 7" = 0.3 configuration). The magnetisation is
certainly rising with time — even longer simulations would eventually allow the

system to shake off the last pair of vortices (not shown).

Measurements of the spin glass order parameter (section 4.5) tell the same
story: the system moves rapidly away from the initial random configuration, then
appears to be trapped in a metastable state for long periods at low temperature.
At higher temperatures, the system fluctuates more rapidly. Figure 5.47 shows
the spin glass order parameter measurements as a function of time at different
temperatures. The order parameter was measured with respect to the initial
(random) configuration for the first 1000 sweeps, then the 1000th configuration
is stored, and subsequent measurements are with respect to that configuration.
If a later configuration is stored, the low temperature measurements reveal the
system to be stuck in a metastable state, whereas the higher temperature curve
again moves rapidly away, revealing that it is sampling a fairly large volume of
phase space. We have been unable to make a quantitative analysis of the spin

glass order parameter results.
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Figure 5.47: Spin Glass Order Parameter from a quenched start. The system
rapidly moves away from the initial configuration (time up to 1000 sweeps) for
both curves. For the upper curve (low temperature), the system appears stuck
in a metastable state. The lower curve at higher temperature is sampling a
larger volume of phase space; redefining the order parameter relative to a later
configuration shows that the system is not stuck in a metastable state.

5.6 Summary

Our simulations show that, below a certain 7 which depends on D, the system
shows irreversibility — the system parameters such as energy, magnetisation
and liquid crystal order parameter have different values for cooled and quenched
systems, and the spins show different correlation functions. Vortices appear to
play an important part in this. as shown in section 5.5.1, since the graphs of the
cooled and quenched quantities meet as the last vortices are annihilated from the

quenched systems.

While we find this irreversibility for all system sizes, the quantitative details
do depend on L, and for small systems the irreversible behaviour ceases at lower
temperatures. This is as expected, since a Monte Carlo algorithm can explore a
small system much more carefully, and a small system has much smaller energy
barriers.

It is clear, however, that the differences in behaviour are not entirely due to the
vortices. The scaling of the magnetisation and the spin correlations for the cooled

systems indicate a marked change in behaviour at around the same temperature,
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Figure 5.48: Tentative phase diagram for the two-dimensional XY model with
small random anisotropy, collecting together measurements from cooled correla-
tions (<), quenched correlations (+), cooled and quenched energy and magneti-
sation (O) and results from finite size scaling of magnetisation (x). P represents
the paramagnetic phase, KT is the Kosterlitz-Thouless régime, and G denotes
the part of phase space which we call glassy.

with a change from Kosterlitz-Thouless behaviour to a distinct low-temperature
régime. There are no vortices present in the cooled system to account for this

change.

We collect together the various values of 7 from the previous sections to form

a tentative phase diagram (figure 5.48):

e one measure of 7™ is the temperature at which the values of the energy,
magnetisation and liquid crystal order parameters coincide for cooled and
quenched experiments. The cooled systems always have lower energy, im-
plying that the quenched systems are trapped in local minima until they

gain enough thermal energy to escape (c.[. section 2.8.4).

o It is possible to identify a region at intermediate temperature in which the
spin-correlation function is algebraic, like the Kosterlitz-Thouless phase of
the pure system. There is a fairly clearly marked change to a different

(unidentified) régime at low temperature.

e The scaling behaviour of the magnetisation gives another indicator of 1™
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as the system changes from power-law decay to a low temperature scaling

form.

o At low temperatures in quenched systems, the spins decorrelate over much
smaller distances than for systems cooled to the same temperature. The

temperature at which the correlations become algebraic give an independent

measure for 7.

It is convenient to defer further discussion until the three-dimensional results

have been presented, so that the two systems can be reviewed in parallel.



Chapter 6

Three Dimensional XY Model
with Random Anisotropy

Presented here are initial results from simulations on the three-dimensional XY
model with random anisotropy. Because the number of spins is very large for
even rather modest system dimensions, we have not been able to perform such
extensive simulations over as wide a range of the system parameters as we were
able to cover for the system in two dimensions in chapter 5. In order to make
even a 31% system run in a reasonable time, many sacrifices in terms of memory
usage had to made (section 4.4.2), so that 31% was in fact the largest system we
were able to study with the limited storage available on the main hardware —
we were able to make brief use of a bigger parallel computer, with fewer compute
nodes, but more memory per node, to simulate slightly larger systems; this time,

the computer power, rather than the memory was the limiting factor.

Most of the following corresponds closely to the equivalent sections in the
previous chapter. The most obvious difference between the results in two and
three dimensions is that much larger values of D are required to make a significant
effect on the system — because of the higher dimensionality, more paths exist
between nearby spins, and the exchange interaction has a more significant effect.
In the pure system, the exchange interaction in three dimensions is sufficient to
produce long-range order at low temperatures, whereas in two dimensions, the
exchange can only sustain quasi-ferromagnetism — the system almost orders.
It should be easier to detect the destruction of true long-range order in three
dimensions as opposed to the two dimensional quasi-ferromagnetism. Also, the

effect of vortices in three dimensions is expected to be much less significant —
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while vortices can still form, they take the form of vortex strings, as described in

section 2.2.3.

As before, we contrast results from cooled and quenched systems in zero field,
and we study energy (section 6.1). liquid crystal order parameter (section 6.2),
correlations (section 6.3) and magnetisation (section 6.4), in order to investigate

the predictions of the Chudnovsky-Imry-Ma theory in section 2.8.

6.1 Energy

Like the two dimensional system (section 5.1), the shape of the energy vs. temper-
ature curve changes very little with D at small D. suffering only a shift dependent
on D but independent of temperature, as shown in figure 6.1(a). Accordingly,

the curves for the specific heat are superposed in figure 6.1(b).

For larger values of D. differences appear in the shape of w(T'), as shown in fig-
ure 6.2(a), and consequently in the specific heat curves, as shown in figure 6.2(b).
The energy has been transformed to Hamiltonian 2.55, which is more appropriate
for large anisotropy strengths (section 2.8.3), and a factor of 0.5kgT has been
added to the specific heat for D = occ. to compensate for the loss of one degree

of freedom per spin as before.

Here, the specific heat curves broaden and move to lower temperature, as
expected and unlike the two-dimensional system. The curve for D = oo has a
broad peak centred around 7" = 1.95J, in good agreement with the description
in [47], though there was no graph shown in that work, so detailed comparison
cannotl be made. The energy of the ground state is in excellent agreement with
the results presented in [47]. despite the general criticism in that paper of the

single-spin update algorithm used here.

6.1.1 Scaling

Because the peak in the (pure) X'} model in three dimensions represents a gen-
uine phase transition (whereas the peak in the specific heat for two dimensions
occurs above the phase transition. as discussed in section 2.2.3), we can attempt

to fit a scaling form to the data. C(T, D) is taken to be of the form
C(T.D) = Co+ D[ (T = T.)D™*) (6.1)
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Figure 6.1: Energy (a) and Specific Heat (b) against temperature for cooled 31°
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energy curve is unchanged with D, so that the specific heat curves are superposed.

148



¥
D =380 © @gém
D=60 ~+ 5 *
004 p=40 o 2571
D=20 x 250 x
D=00 & 855 % :
@QBE XX s s
u  —1.0 4 @Qggmm x -
42888800 Lo L
Q X
_OO;J%DDzXXXXXX AAAA
2. % X X AAAAA
Fay
N ° "
—3.0 442 ' |
0 1.0 2.0
T
(a) Energy
94 —— D =00
_____ D =20
...... D =40
............ D =6.0
- D =38.0 X
c | T D = 7 X
1 - ;
0 ' |
0.0 1.0 2.0

T
(b) Specific Heat

Figure 6.2: Energy (a) and Specific Heat (b) against temperature for cooled
313 systems with various larger anisotropy strengths D. The energy data is
transformed to the large-D Hamiltonian (2.55), and the specific heat is plotted
with smooth lines to simplify the comparison. A factor 0.5 is added to the D = oo

curve as before

149



(section 2.4.1) so that a plot of (C'— Cy) D" against (1"~ T.)D=* collapses all the
data onto one curve, as shown on figure 6.1.1 with A = 0.25, y = 0.5 and T, = 2.2
(as found by [51]) — more data for larger system sizes is required to determine
T. more accurately, and without an accurate value for 7., the exponents cannot
be precisely determined. As noted for the two-dimensional case, it might be
inferred that the change in the curve is due to some indirect effect on system size.
But again, an increased anisotropy strength would result in a smaller correlation
length, so that a given system size would better-represent a real system as the

anisotropy is increased; this is the opposite from what is observed.

The specific heat data for D < 3 does not collapse onto the common curve, as
can be seen from the figure (with points joined by straight lines for emphasis) —
the system size L is also a scaling variable, and it may be that the rounding due
to L outweighs that due to the anisotropy D for small D (since the curves for

D < 3 in figure 6.2(b) are superposed without scaling).

Fitting this data to a Gaussian plus a lincar term (for want of a better ex-

pression) we arrive at a curve

flt)=c+ aexp (—— <t —Z e>2> — gt (6.2)

witht =T — T, and « = 1.2, b = 0.08, ¢ = 0.65, ¢ = 0.045 and g = 1.5, as shown

in figure 6.3(b).

It is possible to derive a relationship between the scaling exponents A and p

in equation 6.1. As D — 0, we expect to recover equation 1.3 (C' ~ [t|™%).

Thus, for small argument z, f(z) ~ 277, so that equation 6.1 becomes

C ~ D,\-{-C\'ui-—c\" (63)

requiring o = ——%.

Since « is very small for the three-dimensional XY system, we should ex-
pect to find A <« g, but if we apply this constraint above, we cannot acheive a

satisfactory fit.

6.1.2 Comparison of Specific Heat by Differentiation and
Fluctuation-Dissipation

The specific heats by numerical differentiation of the energy data and by the

fluctuation-dissipation theorem (equation 3.31) are compared on figure 6.4. There
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Figure 6.4: Comparing specific heat by fluctuation-dissipation and by numerical
differentiation. Apart from near the phase transition, the curves are in good
agreement at small D, but for larger D there is some disagreement for interme-
diate temperatures.

is good agreement (except near the phase transition) for D = 1, but there does
appear to be some mismatch at intermediate temperatures for larger D. As

before, there is no peak other than the (shifted) pure XY peak.

6.1.3 Dependence of Energy on Anisotropy Strength

In order to compare the energy as a function of D with the prediction made in
equation 2.75, we transform the energy data to Hamiltonian 2.55, resulting in a
curve of the form §U ~ D? as shown in figure 6.5, which is in poor agreement with
the Chudnovsky-Imry-Ma theory, which predicts U ~ D* in three dimensions, but
in excellent agreement with the local fluctation theory presented in section 2.8.5.
It is possible that the small system dimension L is insufficient for the breakup
into Imry-Ma domains to be fully realised, though a local energy term would

always be expected to dominate a longer-range effect.

Figure 6.6 shows the behaviour of the energy as ) — oo at zero tempera-
ture — as before, the energy is transformed to the large D Hamiltonian (equa-
tion 2.55) to allow inclusion of the point for D = oo. The approach to infinity is

approximately linear in D™}, as predicted by equation 2.77.
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Quenched Systems

As with the two dimensional system, we have also run simulations where we start
from a random configuration at low temperature (as if quenched from high tem-
perature), and slowly warm. As before, the energy falls as the temperature is
increased — again, the interpretation is that the system is somehow frozen, and
is able to reorganise only when sufficient thermal energy is available to surmount
energy barriers. Figure 6.7 shows the sort of graph obtained from such simula-
tions, which (apart from the larger D required to see the eflect) are reminiscent

of the two-dimensional simulations (figure 5.7).

As before, there appears to be a range of temperature over which the energy
drops rapidly, followed by a gradual convergence to the energy from the cooled
simulations, which is interpreted to be the result of the system exploring a deep
potential well — as the temperature is increased. so that the system is sampling
phase space away from the local energy minimum, the details of the region of
phase space become irrelevant. The details do not appear to change significantly

over a range of simulation timescales.
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6.2 Liquid Crystal Order Parameter

Figure 6.8 shows the liquid crystal order parameter measured for various D and
T — the curves are similar qualitatively to those results for two dimensions (fig-
ure 5.10), but at higher anisotropy strengths, the curves appear to become convex
rather then concave. (Data was not collected for Q). at such large anisotropy
strengths in two dimensions.) We do not have a theory for this behaviour, and
have been so far been unable to find a universal form for these three-dimensional
data, but the approximately linear behaviour with D at zero temperature (up-
permost rising curve on the figure) is compatible with the observation of £ ~ D?
in section 6.1, by equation 4.12. The linear behaviour ceases around D = 3,
which is also the anisotropy strength above which the specific heat fulfilled the
scaling relation for this system size (section 6.1). However, the quadratic nature

of energy against anisotropy strength appears to persist until around D = 4.

1 — Q. is plotted against 1/D on a log scale, in order to verify the predicted
D~?% behaviour for large D in equation 4.14; here, we find the straight line has a

gradient of 1.9 for D > 3 in good agreement with theory.
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Quenched Systems

We find that at low temperatures, the liquid crystal order parameter is higher for
the quenched system than the cooled system, as shown on figure 6.10, implying
that the metastable state at low temperatures is in some way pinned by the
anisotropy — the system is in a local minimum in which the spins are slightly

more closely correlated to the anisotropy axes than in the cooled state, as before.

6.3 Correlations

The theory in section 2.2 predicts that the real-space spin-correlations in the pure
three-dimensional XY model decay like g(r) ~ @ exp(b/r); for even quite small r,
this is indistinguishable from g(r) ~ @ + ab/r (since exp(x) ~ 1 4+ « for small z),
as shown in figure 6.11(a). The fit to the data can be made even better at short

distance by using a power smaller (more negative) than —1 in the second form.

Since we find that the behaviour changes with the addition of the random

anisotropy, it was found to be convenient to use a generalised fit
g(r) ~a+ br= (6.4)
to the spherical average of the data.
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However, actually performing a fit with this form is very difficult, since the
parameters are highly correlated and therefore the minimum of x? in ‘parameter
space’ is rather shallow. One way of fitting the data qualitatively is to plot on a
log-log scale, subtracting different amounts until the points form a straight line —
the appropriate value for the constant is fairly evident, since the curve on the
log plot abruptly changes from concave to convex in the vicinity of the correct

subtrahend.

To fit quantitatively, it is convenient to take Fourier transforms, so that the

constant term is mapped to k = 0, and

/7"’\ exp(—ikr)d’r = k*° /(kr)”’\ exp(—1kr cos 0) d(kr)ddde (6.5)
~ kN (6.6)

since the integral on the right hand side of equation 6.5 is simply a number.

Thus, if the data fits this form, 3— X is simply the gradient of the straight line
on the log-log graph of the fourier transform of the correlation data, as shown
in figure 6.11(b); fitting this straight line is a much easier task, both because we
have reduced it to a two-parameter fit, and because the x? minimum is better-
defined for a fit of this form. It is the small-k data which is important, since
this corresponds to large distance in real space. The gradient on figure 6.11(b)
is slightly larger (less negative) than —2, which corresponds to a slightly faster

decay in real space, as noted above.
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6.3.1 Cooled systems

Figure 6.12 compares the correlation function at five temperatures for D = 0 (a)
and D = 4 (b). As in the two-dimensional system, the correlation function for
the random system changes very little below a certain D-dependent temperature.
Unlike that system, however, the form of the correlation function does not change

from intermediate temperatures, though the power does appear to change.

The dotted line on figure 6.12(b) shows a fit of the low temperature corre-
lations to a + br=%7, though as was noted above, the minimum of y? for a fit
of this form is very broad, and the fit is quite good over a rather large range
of parameters. The parameter « corresponds to a long range order — we find
that this constant term falls with increasing system size, suggesting that in the
L — oo limit, we have simple power-law decay. This behaviour was also found

in related work on the random anisotropy nematic spin model [63].

Figure 6.13 shows the fitted value for A against temperature in equation 6.4
for various anisotropy strengths D. The fit is rather erratic, but it is fairly clear
that the trend is for the power to level ofl at low temperature, and the power
increases with increasing D. Tor T > 2.2, the fit produces the same parameters

for all D — we identify this as the paramagnetic régime.

The fit gives the same results for all D for 7" > 2.2 — this is identified as the

paramagnetic régime.

As noted in the introduction to this section, A is expected to be close to 1 for
D = 0. However, for this case, the constant a does not vanish with increasing
system size, as we expect true long-range order for the non-random system. The
data for D < 1 is extremely hard to fit. We attribute this to a finite size effect —
the system is crossing over from a state with (approximately) power-law decay
with a constant to a statc with a different power-law decaying to zero (in the

large L limit).

This will be discussed further in the section 6.4.2.

6.3.2 Quenched Systems

The spin correlations have a different form at low temperature in quenched sys-

tems, as shown in figure 6.14(a). As the system is warmed, the order increases as
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the system overcomes energy barriers, until the system is able to adopt the same

configuration as the cooled systems.

In order to obtain a measure of the domain sizes, to verify CIM predictions,
we force-fit an exponential form to the low-temperature data, as before. This
gives approximate domain sizes as shown in figure 6.14(b). The line shows a fit
of the form £=' ~ D?15 in good agreement with the CIM prediction of £ ~ D2

(equation 2.74).

6.4 Magnetisation

Unlike the two-dimensional case, the (pure) XY model in three dimensions is
expected to have true long-range order, and hence a spontaneous magnetisation
at low temperature. However, only an infinite system can genuinely show a broken
symmetry state; the magnetisation of a finite system can still rotate in space with
time, so that care is still required during a simulation in order to ensure that the

measured magnetisation M does not average to zero.
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6.4.1 Magnetisation of a Finite System

We find that the addition of random anisotropy suppresses the magnetisation of
the 3D XY model at a given system size, as shown in figure 6.15. However, we
find the reduction for a given anisotropy strength to be significantly smaller than
for the two-dimensional system: the magnetisation for D = 1 in a 31° system is
about the same as for only D = 0.2 in a 62% system (figure 5.24). This may be
due to the smaller linear dimension of the system (we use more spins in three
dimensions than in two, but the linear dimension L is smaller, and it is the ratio
between correlation length ¢ and L that influences finite size behaviour), or it
may be due to the fact that the pure three-dimensional system is ‘more’ magnetic
in the first place (section 2.2). Even at D = oo, the 31% system shows a non-zero

magnetisation which is in good quantitative agreement with [46].

The plot of zero-temperature magnetisation against anisotropy strength D
in figure 6.16 bears remarkabhle resemblance to the predictions of mean field the-
ory [29]. This again suggests a finite size effect — in a small system, the magneti-
sation does not get a chance to change direction across the sample before reaching
the other edge. The difference from [ull alignment is shown in figure 6.16(b), and
for small D it is in reasonable agreement with the §A ~ D? predicted by mean

field theory [29].
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Quenched Systems

As in the two-dimensional system, the system must be warmed to a temperature
T*(D) before the magnetisation achieves the same value as for the cooled system.
As would be expected from the preceeding results, 7 is much larger for a given
anisotropy strength than for the two-dimensional system; a typical result is shown
in figure 6.17. T~ does grow rapidly with D (figure 6.26), however, so this may
be a feature of the small system-size — as discussed in section 2.6, glassiness is a

dynamic feature, and the size of the encrgy barriers depends on the system size.

6.4.2 Finite Size Scaling

In the the study on the two-dimensional system, the scaling of the net magneti-
sation with system size seemned to give the most reliable (qualitative) indication
of a change in ‘static’ behaviour (on the timescales of our simulations). We have
made a similar study of the scaling of the three-dimensional system, but we are
hampered somewhat by the limited system dimension which we have been able
to study. As noted at the beginning of this chapter, we were able to use a little

time on another machine to work with a slightly larger system.

Figure 6.18 shows the scaling behaviour of the non-random system, with a

close-up on the low-temperature behaviour in figure 6.18(h). Because we expect

165



1.00 7

me 010 o

0.01 T T T
5 10 30
L
(a) High Temperatures
1.0
0.8

0.6 \\\‘

0.4 T T I
10 30

Ut

L

(b) Low Temperatures

Figure 6.18: Scaling of magnetisation of nonrandom system with system size.
For clarity, figure (b) shows a close-up of the low-temperature data. Each line 1s
a different temperature, from 0 at the top, increasing in steps of 0.2J down the
graph, with 7' = 2.4J at the bottom.
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long-range order at low temperature, the magnetisation should not change with
system-size. Putting g(r) = « +b/r in equation 5.14, we find m(L)? ~ a’'+ V'L,
so that for sufficiently large system, m is independent of L, as required. The

scaling curves can be shown to fit this form exactly, at low temperature.

At high temperatures (T > 2.2), the scaling behaviour changes over to m? ~

L3, as expected for a paramagnetic régime.

The corresponding scaling behaviour for our random system is shown on fig-
ure 6.19. We were able to calculate the magnetisation at only one point for a
larger system; this single point is invaluable, however, in demonstrating that the
magnetisation is falling as some power of system size L (straight-line on log-log

plot).

At low temperatures, the curves appears to be bending down with increasing
L, in a similar way to the two-dimensional system (figure 5.27); it is not clear
from this figure whether they are heading towards a different power law from the
intermediate temperature results, but when results for different D’s are taken
into account, it seems likely that the power is the same. At higher temperatures,
the magnetisation begins with with a more rapid decay at small L, but head

towards the same power law for larger system sizes. These may be effects due to

the ar (7).

At high temperatures, the curves are heading towards L3 as before. The
crossover is not sufficiently clear-cut for the transition temperature to be identified

using this approach.

A power law of magnetisation with system size is consistent with the explicit
measurements on the spin correlations in section 6.3, where we found the cor-
relations g(r) ~ ar(T) + br~": putting this form into equation 5.14, we should
expect to find m? ~ a(T)+ L=". We measure the gradient of the magnetisation

scaling curves, and present the results in figure 6.20.

The powers from the finite-size scaling are somewhat smaller than those from
the direct measurement on the correlation [unction, though the general trends
are the same. [63] found similar behaviour, but extrapolation of the correlation

results to large L brought the results into agreement.
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size, to confirm the power-law decay.
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6.4.3 Approach to Saturation

In order to investigate the CIM predictions for the approach to saturation (sum-
marised in section 2.8.10), we have performed studies with large magnetic fields.
As was found in the two dimensional case (figure 5.29, the system size is relatively
unimportant, so the following is based on results from a 16 system, to minimise

the computational load.

Figure 6.21 demonstrates thermal desaturation (section 2.8.9) on a system
with weak anisotropy (D = 0.25), with a dotted line indicating the H~! predi-

cated by equation 2.94.

In strong anisotropy, at low temperature, the desaturation in large field is pre-
dicted to have take the form dm ~ D?*/H? (section 2.8). As before (section 5.4.4),
we find an extended crossover region with the H dependence changing, until it
saturates at H=? for D > 4: for D = 0.25, we find /!, which we interpreted as
thermal desaturation above; for D = 1, we find 1'%, by D = 2 it has become

H=15 and it has reached H~1® by D = 4. This is shown on figure 6.22.

We have been unable to identify the FWA régime with H~ 3, as predicted by
equation 2.90. The curves in the figures do have to pass through H~% in order
to reach H™!, but they do not spend sufficiently long with this behaviour for the
FWA régime to be formally identified. As noted in section 2.8.7, there is some

confusion over the existence of the FWA phase.
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6.5 Dynamic Effects

In the two-dimensional system, we found that the details of the quenched be-
haviour depended on the system size and the timescale of the experiments, as
expected. We have run some very long simulations on the 31° system in order
to discover the time dependence of the system. Figure 6.23(a) shows the mag-
netisation of the system as a function of time over 5 x 10° steps per spin, from a

random start with anisotropy strength 4 at a temperature of 0.5J.

The jumps in magnetisation appear to be correlated to the jumps in energy, as
expected. Even after 10° sweeps through the lattice, the system appears to have
some way to go before the various parameters reach the values from the cooled

simulations, which are chosen to be the extremes of the scales on the figures.

Figure 6.24 compares the relaxation of the energy towards that of the cooled
system for various temperatures for the D = 4 312 system. The relaxation time
clearly falls abruptly at some temperature dependent on D, and the apparent
glassiness disappears at temperatures above this 7*(D). This will be discussed

further in chapter 7.

6.5.1 Hysteresis

Because hysteresis is an important criterion for the existence of magnetism in a
given material, we have tried to measure an M — H characteristic for the three
dimensional system. However, while we found that the curves converged in the
two-dimensional system as we reduced the field sweep-rate, we were not able to
find a stable curve in three dimensions for sweep rates accessible with the current

implementation and with the current hardware.

Figure 6.25 shows a set of curves for a 16 system with D = 4 at T = 0.1J. We
perform 7,500 sweeps at each field point, and vary the field in steps of between
0.1J and 0.001.J. For each reduction in sweep rate by a factor of 2, the coercive
field appears to be reduced by a constant amount. For a given sweep rate, the
coercive field increases with anisotropy strength and decreases with increasing
temperature, but without a more careful analysis of the dynamics of the system,

it 1s impossible to make a quantitative analysis.
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and quenched curves on figure 6.7.
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(glassy) behaviour.

6.6 Summary

As before, we collect together the various pieces of evidence to produce a tentative

phase diagram (figure 6.26):

o The specific heat scaling curve provides a clear delineation for the transition
to paramagnetic behaviour at high temperatures. We extrapolate the curve

towards D = 0, where the finite size effects obscured the eflect.

o We use the diflerences in the energy, magnetisation and correlations between
the cooled and quenched systems to separate reversible from irreversible

behaviour.

Like the two-dimensional system, there is no thermodynamic indication of the
onset of irreversibility. In the two-dimensional system, we did find a qualitative
change in the correlation function to support the irreversibility data, but here we
have no such change; the only evidence is an increased relaxation time. This will

be discussed further in chapter 7.
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Chapter 7

Discussion and Conclusions

In any Monte Carlo study, results are valid only if precautions are taken to ensure
finite size effects are controlled, and that adequate equilibration and simulation
time has been allowed, particularly in the vicinity of phase transitions. Multispin
and cluster update algorithms have been advocated as techniques for overcoming
critical slowing down. Despite criticism in the literature over the use of a single-
spin update algorithm, we have used such an algorithm in our study the XV
model with random anisotropy. We have performed simulations on a wide variety

of timescales in order to establish the validity of our results.

We feel that if our simulations show time-dependence, then real systems may
also show similar behaviour. In particular, for example, simulations using a
cluster update algorithm cannot exhibit hysteresis, since that algorithm permits
spin flips to be applied globally, and the symmetry of the Hamiltonian guarantees
that the system will flip to follow the field. On the other hand, it is true that
simulations on a finite system using any valid update algorithm should in practice
eventually flip all the spins; on reasonable simulation timescales, however, local
update algorithms do show hysteresis, which is also seen in experiments on real
systems. Thus, algorithms which improve the ergodicity of the simulation do not

necessarily give the “correct’ or desired answers.

We have not explicitly performed each simulation over a large number of
different configurations of the random axis; this should be done on at least a
small part of the phase space to confirm that these results are free from sample
to sample variations. That said, we have not strictly kept the same sets of axes
across all simulations at a given system size, so that there has been some variation.

Our results are in good quantitative agreement with previously published results



in the various limits (7" — 0, D — 0, D — oc) so we are fairly confident of the

validity of our results.

7.1 Two dimensional system

7.1.1 Chudnovsky-Imry-Ma

The most important theoretical prediction which we have sought to confirm is
the zero-temperature phenomenological Chudnovsky-Imry-Ma (CIM) theory re-
viewed in section 2.8. For small anisotropy strength, this predicts a breakup of
the system into domains, and makes a variety of predictions about changes in

various system parameters with anisotropy strength.

Our results for systems cooled to zero temperature are in good agreement

with these domain predictions:

e For small anisotropy strengths, the energy contains a component propor-

tional to D™ in reasonable agreement with D? in equation 2.75;

e In an external magnetic field, the approach to saturation is as D?/H as

predicted for the ferromagnet with wandering axes.

In addition, the domain size from quenched correlations agrees with predicted
D! behaviour. We have been unable to verify the predictions for the magnetic
susceptibility quantitatively, as noted in section 5.4.2. The susceptibility does

appear to be strongly suppressed at low temperature.

For larger anisotropy strengths, the domain size reaches a lower limit of one

lattice spacing, and a different régime is predicted. In this régime we find:

e a component of energy inversely proportional to D, as predicted (equa-
tion 2.77);
. . . . 2
e Approach to magnetic saturation in an external field like (%) (equa-

tion 2.92)

In addition, at non-zero temperatures, the approach to saturation in a mag-

netic field is observed to go like T/ H, as predicted by equation 2.94.
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7.1.2 Cardy and Ostlund

The renormalisation results of Cardy and Ostlund [35] predict that the low-
temperature Kosterlitz-Thouless phase will survive the addition of the random-
ness at intermediate temperatures, provided that the number of equivalent easy

directions is al least 3. Other theoretical analyses concur with this picture.

Our simulations with only two easy axes fall outwith the remit for this pre-
diction, but we do find that the spin-correlations decay with the same power 7
as the pure system at intermediate temperatures, suggesting the survival of the

Kosterlitz-Thouless phase above a temperature proportional to D.

The notion of thermal depinning section 2.8.4 is appealing, since it uses simple
arguments to predict the overcoming of the anisotropy barriers due to thermal
excitations. Qur results show a depinning temperature proportional to D, in

quantitative dispute with the D? prediction in two dimensions (equation 2.78).

7.1.3 The Paramagnetic Transition

We have not paid particular attention to the effect of the anisotropy on the
transition to paramagnetism around Tir; there remains dispute in the literature
on the exact signature of the transition in the pure system, and we did not

attempt to compound the difficulties with the addition of randomness.

The bump in the specific heat for the pure system is an anomalous feature,
occurring above the phase transition. We find that the bump does not move
for small anisotropy strengths, and we interpret this evidence as support for the
survival of the Kosterlitz-Thouless phase at intermediate temperatures. For larger
anisotropy strengths, the peak does broaden and move to higher temperatures.

We have not investigated this behaviour in detail.

7.1.4 The Low Temperature Phase

We have tended to refer to the low temperature phase as ‘glassy’ without really
attempting to justify the use. The data from the quenched simulations implies
some irreversibility at low temperature, and the magnetic order has been reduced

by the anisotropy.

A true spin glass shows many ground states separated by energy barriers
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whose magnitude increases with system size, so that the dynamics of the system
depend on the timescales used. Our results certainly imply energy barriers, but
we do not have sufficient data to form conclusions on the size dependence. But
the measurements on vortex lifetimes certainly indicate the presence of energy

barriers, which can be overcome with sufficient thermal energy.

We also see static changes in behaviour at temperatures which appear to
coincide with the glassiness. In particular, the spin correlations and the finite-
size scaling of the magnetisation indicate a qualitative change in behaviour. There
are no pinned vortices in systems cooled to these temperatures, which precludes

an effect solely due to topological defects due to dimensionality of the system.

7.2 Three Dimensional System

In three dimensions we find that the long-range order found in the pure sys-
tem at low temperatures is destroyed by the addition of the random anisotropy,
as predicted by most workers in this field. We deduce that there remains a
phase transition, separating a paramagnetic régime at high temperature from a
low-temperature state with algebraic correlations, as predicted by Aharony and
Pytte [37]. We find, however, non-universal behaviour, with the exponent depen-
dent on D. Other work has been done in the infinite-anisotropy limit with the

justification that system parameters can be renormalised.

We have been able to fit a scaling curve to the specific heat peak, in order to
calculate a crossover scaling exponent for the transition temperature, though for
small system sizes the rounding is obscured by finite-size effects — this will have

adversely affected Reed’s work on this system around 7 [51].

Algebraic decay of spin correlations corresponds to a phase with infinite mag-
netic susceptibility, as was predicted by Aharony and Pytte [37]. This result was

also found by Fisch in simulations in the Ising limit [45,47].

It appears that the equilibrium low-temperature phase does not agree with

the predictions of CIM for small anisotropy:

e We find evidence for an infinite-susceptibility phase, which conflicts with

the prediction of a finite anisotropy by CIM and others.

o The energy is found to contain a component proportional to D? for D < 3,
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whereas equation 2.75 predicts D* in three dimensions. The anisotropy
component of the energy from the liquid crystal order parameter measure-

ments confirm the D? behaviour.

o In a large external field, we are unable to observe the FWA state predicted

in section 2.8.7

For larger anisotropy strengths, our results do agree with predictions made
for the limit where the cluster size falls to the lattice spacing (sections 2.8.3

and 2.8.8).

Simulations on systems quenched from high temperature do show some CIM
properties. In particular, the spin are correlated over length scales characteristic

of the predictions in section 2.8.

7.2.1 The Low Temperature Phase

As in the two-dimensional system, we find significant irreversible effects at low
temperatures: the properties of the system cooled to low temperature are very
different to those of systems quenched as if from high temperature. In particular,
the magnetisation of the quenched (finite) system is strongly suppressed below
that of the cooled system, and the system dynamics are extremely slow. Only
after the system is warmed above a D-dependent depinning temperature do the

dynamics speed up, and the cooled and quenched systems agree.

The simple argument in section 2.8.4 predicts that 7* ~ D? in three di-
mensions, but the separation line in figure 6.26 is much closer to linear. How-
ever, because we find that the D-dependence of energy is not consistent with the
Chudnovsky-Imry-Ma prediction of D', but does agree with the two-dimensional
observation D?, we should not be surprised to find a similar irreversibility curve

dependence.

In contrast to the two-dimensional system, however, the glassiness is not cou-
pled with a qualitative change in behaviour. The onset of glassiness in the two-
dimensional system was associated with a change in the spin correlations and
finite-size analysis, but there is no such change here — the irreversibility in the

three-dimensional system appears to be entirely a dynamic effect.

In the two-dimensional system, we found a qualitative change in the nature of
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the spin correlation function at low temperature. Here, we find that the correla-
tions are algebraic both above and below 7™, with the same power of decay. The
only indication of the apparent freezing is that the amplitude of the correlation
function stops changing with temperature around 7, giving a ‘bunching’ of the

size-scaling curves very similar to the two-dimensional system.

7.3 Possible Implementation Enhancements

In section 4.2, it was explained that some eflort was expended to host the trans-
puter system from the group’s microVAX, since the pc ‘operating system’ was
just not sufficiently flexible or stable to host simulations lasting days or weeks.
The code was subsequently modified so that some of the program actually ran
on the vax host, allowing spin correlations to be calculated on a machine with
sufficient memory to hold all spins at once, while the transputers continued to

generate new configurations.

It has already been noted that one possible enhancement to the program
would be to use one of the more recent cluster-update algorithms: since the ran-
dom anisotropy magnet is expected to form clusters, a cluster update algorithm
seems a natural choice. As noted in section 4.4.5, it might be simpler to send
the spins to the (sequential) host for the cluster update part of the simulation,
particularly since the group’s latest alpha workstation gives an order of magni-
tude in computing power over the vax, and can be used as the transputer host
with nothing more than a recompile of the soltware. However, if large quantities
of data need to be transferred between transputers and host, it is likely that
the bridge interface would turn out to be a bottleneck, and the communications

overhead would be become significant.

Recently, Linux, a [ree unix implementation for the PC, has become available,
and the group has found this sufficiently stable that a 486 could be trusted to
host the transputers for the days or weeks required for a simulation. So it would
be worth investigating putting the transputer interface card into a pc and recom-
piling the code — a 486 is intermediate in performance between microVAX and
DEC alpha, while the direct connection reduces the communications bottleneck
between transputers and host. The group’s linux PC’s are also on the internet,
so that accessibility to the system is not lost. A little more effort would allow

several PCs and even the alpha to cooperate on some aspects of the problem
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while the transputers continue to generate spin configurations.

7.3.1 Graphics

While the real-time graphics were very illuminating for the two-dimensional sys-
tem, visualising the three-dimensional system as two-dimensional slices was not
bl
particularly useful, since the simulations generally use an order of magnitude
more spins, and therefore took an order of magnitude longer. It would probably
be better to dump the current configuration every so often, then recreate the
g Y )
graphics ‘offline’ — it is possible that there are packages around which would

allow sophisticated navigation through the system as it changes.

7.4 Parallel Computers

It was stated at the beginning of this thesis that one of the goals of the work was
to investigate the use of parallel computers for monte-carlo simulations. We were
very fortunate to inherit a 32-node transputer system of which we had sole use,
putting a significant amount of computing power at our disposal — there is no
doubt that we could not have performed simulations over such a wide region of
phase space without this. However, inevitably, the hardware manufacturers have
continued to increase the performance of their CPUs, so that the group’s (sequen-
tial) DEC alpha workstation now performs with a similar performance, but is of
course much easier to program, and doesn’t carry the internal communications
overheads. The manufacturers of dedicated parallel computers have not really
kept up, and the next generation of transputers (the T9000) has still not been
released. Specialist companies are, however, now looking into making parallel
computers out of conventional chips — the mass market means that the price of
the Intel 486/Pentium and the DEC alpha is much lower than the parallel CPUs,
and there are parallel computers based on these. Standards are slowly emerging
for message passing, etc. — it will make it much easier to justify investing time
and resources in the development of parallel programs if there is some guarantee
that such a program can he ported to other manufacturer’s parallel computers.
As it 1s, the existing OCCAM code for this simulation is unlikely to be of use
on any other contemporary parallel computers, though the (sequential) front end

code which parses and actions the simulation control files can almost certainly
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be salvaged and reused.

Parallel computers will always give an unbeatable price/performance ratio.
But the effort required to make the most of them remains prohibitive, and since
sequential computers increase in performance by an order of magnitude every
few years, it is probable that the effort is not justified. The most efficient way of
using a parallel computer is to run a separate job on each node, since this avoids
communication overheads. (This work could not be organised this way because
if insufficient memory per node.) And if each processor is running independently,
there is no need for specialist parallel hardware; VMS is a particularly good
operating system from this respect since batch queues can be distributed over a
cluster of machines, and there are several batch systems emerging for unix. It is
a matter of personal frustration that considerable computer power lies untapped
in the physics dept. at the University of Southampton; a large number of 486’s
in the various offices spend almost all day and certainly all night lying idle, when

they could so easily be doing useful simulations in the background.
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Appendix A

Simulation Control Language

The details of the simulation control language are presented here, in the hope
that this work can be continued with the existing software. The code will be
made available by anonymous ftp from sotona.phys.soton.ac.uk [152.78.192.42]
though it is possible that lack of disk space will require that the files be moved

to tape — instructions will be left there for how to proceed.

A.1 Introduction

The control language is a description of a simulation in terms of low level primitive
operations. The controlling process, which may be running on either a transputer
or the host system, reads and parses a control file, and sends out a stream of
instructions to the workers to implement the simulation. In this implementation,
the primitives are messages sent to the transputer network for action, but on a
sequential machine the same primitives could be actioned as subroutine calls. In
this way, the details of the parallel nature of the program are hidden from the

user.

The code was developed in this way because a parallel program is implemented
as a number of processes executing simultaneously - changes to the flow of the
simulation required changes to several files, which was tedious and error prone,
and required long recompile times. Because the compiler runs on the transputers,

the code could not be recompiled while a simulation was running.

Another advantage of the textual control file is that it can be written to

the results file in its entirety, so that each data file contains full details of the
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Variable Use

B External field strengh

C External field direction (0-27)

D Anisotropy

T Temperature

K System depth (in three-dimensional simulations)
L System width

M System height
N System size = L x M x J

w Number of workers

4 Number of quantisation axes
U System energy

X Magnetisation in @ direction
Y Magnetisation in y direction
Q Liquid crystal order parameter
V Vortex density

W Half-vortex density

Table A.1: variables used by the simulation control language

simulation which generated it, minimising danger of mixing up the large number

of data files produced.

A.2 Variables

The control language has 52 variables, A to Z and « to z. The upper case letters
are reserved for reading or setting system parameters, and changes made to them
are conveyed to the rest of the simulation code, while the lower case letters are
used for loop control, and as temporary workspace in the controlling process only.
Table A.2 shows the system variables currently implemented. The variables in
the first section are used to control the simulation. Those in the second section
are set up by the code-initialisation section, so that the script can customise itself
— for example, it may do correlations less frequently on a large system. In this
implementation, these are supplied to the controlling process by the transputer
system during initialisation, since the transputer part of the code has the size
compiled in, for speed. The last section shows the variables which are updated

by the getstate primitive, and which are written to the file during a study.



A.3 Primitive operations

The primitive operations are described here, in the order they might typically
be used in a simulation — the first few are typically done once to configure the
simulation, and the rest might make up the body of a loop over temperature or
field. ezpression denotes a reasonably simple expression involving variables and
constants, with operators +,—,%, / and A (power), and with functions exp, log
and sqrt. direction can be ‘x’, ‘y’, ‘h’, ‘d’ or ‘random’ to set spins or anisotropy
axes to x direction, y direction, aligned along field, aligned along anisotropy axes
or random, respectively — an arbitrary direction can be selected by setting the
field in that direction, then aligning with field. ¢...n denote integer constants.
f denotes a file number. string denotes a comma-seperated list of elements “con-
stant string”, nl for end-of-line, or variable, with optional suffix for specifying
required accuracy. Suffix is :n or _n where n is number of decimal places, and
_n is used to replace the decimal point with _, which is required for numbers in

directory names under VMS, for example.

seed expression sets the seed for the pseudorandom number generator

axes direction sets the direction of the anisotropy axes. (Cannot specify direc-

tion of ‘d” here.)
spins direction sets the direction of the spins

cycle m n defines a cycle to be m sweeps through the lattice, attempting a
rotation at each site, followed by n sweeps attempting a spin flip at each
site. A cycle is the unit timestep of the simulation. n is typically 0 or 1

when D is small, and n = m for larger D.
graphics n sets the number of cycles between graphics updates

correlations m n enables correlations to be made every m cycles during the
simulation. If n # 0, only n sites are chosen at random to be compared
with all the others in each configuration - for large systems, this allows the
same computational effort to sample correlations from a larger number of

configurations than studying each configuration exhaustively.

order f ¢ directs that spin glass order parameter (equation 2.47) should be com-
puted every cycle, with reference to the configuration stored in store number

7, and written to file f



histogram r enables histogramming (section 3.7.2) with a resolution of r in the

(single-site) energy
plot T,i,... selects which variable(s) are written to file during a study
open [ string opens file number f with given name
tofile f string writes a line to file f
write string writes line to screen
wait n performs n cycles without measurement for equilibriation
store ¢ stores current configuration to store number ¢
restore ¢ restores the current configuration {rom store ¢

study f m n performs n sequential studies each of m cycles, writing n averaged
values to file f — making several measurements in this way allows some
check on any drift in parameters over time. This could be done using
combinations of wait, getstate and lofile, but since this where most time is

spent, it was implemented as a primitive operation.

getstate performs a measurement on the current configuration, storing results

in the system variables indicated in table A.l
writecorr f writes the accumulated correlations to file f
writehist f writes accumulated histogram results to file f
close [ closes file f
writespins siring write current spin configuration to named file.
writeaxes siring write current anisotropy axes to named file.
repeat ... until expression simple flow control
if expression[then action] simple decision making

:label ... goto label usually used with if to build more sophisticated flow control
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It should be noted that if the system is being brought to equilibrium with-
out any measurements (repeat, wait n, until... ), then a getstate should be
put into the loop, to prevent a build-up of wait commands in the buffers (since
repeat...until is handled entirely within the front end, and wait does not re-

quired the front end to wait until the transputers have finished. See section A.7.

A.4 File format

A standard file format evolved, where data was output in blocks, with each group
optionally preceeded by a single number on a line as a header; this header was
usually temperature, for cooled or quenched simulations, but could be field or
time, depending on the simulation. If no header was given, the filename was
parsed for a number; data was stored in files with names such as ‘MX_D0.400’

for M, at D = 0.400.

# is used in files to mark comments. FEach file opened by the open primitive
has the entire control file written to it as a block of comments, so that data files
are self-documenting, in order to avoid confusion when a large number of data

files are produced.

The study primitive outputs one complete set of parameters on each line, in
the order: energy; specific heat; liquid crystal order parameter; magnetisation in
the x and y directions, followed by mean, mean square and mean of fourth power;
magnetic susceptibility in x and y directions, and net susceptibility; count of vor-
tices and half-vortices. See section 4.5 for more details. These data were typically
written to a file with a name like ‘_D0.400°, and a simple program averaged the pa-
rameters over the different runs and wrote to files such as ‘U_10.400’, ‘C_D0.400’,

etc.

The spin glass order parameter are written simply as lines of order parameter
against time. Initially, the correlations were written as blocks of M lines of L
columns of ASCII numbers, but this was taking up too much filespace, especially
when it came to three dimensions. Additionally, by writing only a few decimal
places, information was lost. Laterally, the data was written as a block of binary
data. One snag is that the VAX and the transputer use different internal repre-
sentations for floating point numbers, so the block of binary data was preceeded

by a comment line detailing whether it was [EEE or VAX floating point data.



Most of our simulations used the VAX as the host (section 4.4.4) so this has not
been a problem in practice, but this may become relevent if the code is used fur-
ther. (The group’s DEC Alpha can be told to use IEEE floats as a compile-time

option, so moving from VAX to Alpha may eliminate this problem.)

The writehist command writes each block of histogram data as lines of in-
creasing energy, with each line containing: the (unnormaslised) count; the energy
of the bin; the mean, mean square and mean of the fourth power of the magneti-

sation; and the liquid crystal order parameter.

The writespins and writeaxes primitives do not write the entire simulation
control file as comments because these output files were intended for plotting by

a postscript program, and parsing is not a strongpoint of this language.

A.5 Data Analysis

A suite of simple analysis programs was written to allow various manipulations
to the data to be made. Because of the standard file format, a library of routines
was implemented to read the data file, parse file name for temperature, parse
the command line for standard options, and so on, so that simple utilities could
be put together with little effort. These programs will be made available by
anonymous ftp with the rest of the code — see section A. Each of the following

utilities provides a usage summary when given -7 as an argument:

analyse.c : reads the output from the study primitive, writing each averaged
parameter and standard deviation to a file whose default name is the con-
catenation of the parameter to the input file name. Typically, the input

name was of the form ‘. D0.400” and output went to ‘U_D0.400, ‘C_D0.400",

etc..

docorr.c : performs a similar role for the correlations; reads the raw binary
data, takes a fourier transform, performs a circular/spherical average and

writes the output as three columns r, ¢(r) and G(k).

analhist.c : analyses histogram data output, allowing extrapolation of data to
nearby temperatures, and outputting either shifted histograms or thermal
averages at the new temperature. Care is taken to avoid numerical overflows

by only ever scaling numbers down: silent truncation to zero is permitted.



It should also be noted that the full system energy must be used, not the

energy per spin. [This caused much confusion initially.]

chngevar.c : reads a set of files representing different values of a parameter,
changing variable. For example, given files such as M_D0.000, M_D0.100,
M_D0.200. .., each containing data for various temperatures, this program
will output M as a function of D, with each different temperature as a

different data set.

seperate.c : typically used on the output from chngevar, this program takes an
input file comprising several data sets, and writes each set to a different
output file. The program takes as a parameter a template for the output

filenames.

manip.c : allows arbitrary manipulations to be applied to the data files in a
general way. For example, this was used to calculate the direction of mag-

netisation from the x and y components, for section 5.5.3.

A.6 User Guide

Once an account on the group’s VMScluster has been allocated, it is a simple
matter to perform simulations using the existing software. Access to the system
is available from anywhere on the internet; the VAX is accessed through the DNS

name sotona.phys.soton.ac.uk [152.78.192.42].

A local command LEARN is provided for setting up system extensions on a

per-process basis. Lines of the form

$ LEARN BATCH MAKE TOOLSET
$ EXEC == "$SYS$DISK:[]’"

should be put into your LOGIN.COM file, so that in each session the local com-
mands exec, make and batch are available, as well as the compilers for the

transputer. Online help is available:

HELP MEIKO describes the transputer toolset, with some local implementa-
tion details which, if nothing else, should contain sufficient technical infor-

mation for the University’s High Performance Computing Group (formerly
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the Parallel Computing Support Group) to give assistance. Manuals and
courses on parallel programming and the transputer toolset are available

from them.
HELP MAKE gives information on the local version of the unix ‘make’ utility.

HELP BATCH gives information on the local ‘batch’ command.

exec is the way we usually invoke ¢ programs to give them parameters. (It’s a

bit of DCL magic that is beyond the scope of this manual !)

The program comes in two parts: an OCCAM part which runs on the Meiko;
and a C front end which usually runs on the vax, but can also be run on a

transputer by making a small change to the configuration file ‘xy.cfs’.

A.6.1 Organisation of the Source Code

Because there is a lot of overlap between the two- and three-dimensional code, the

common code is placed in one directory, with subdirectories with the dimension-

specific code.

The code is in two distinct parts; the C front end compiles and runs the
simulation control language, sending messages to the OCCAM program which

actually performs the simulation. These two parts are compiled separately.

The front end consists of the files

header.h a shared header file, defining structures, the message protocol, etc.
main.c the main program, which co-ordinates activity and runs the simulation.

parse.c contains the routines required to compile the simulation control file into

an internal p-code.
actions.c contains the subroutines to action the simulation control primitives.

Each primitive corresponds to a subroutine in actions.c, for the most part.

The front end is compiled for two or three dimensions, selected by a macro
in header.h. It should be possible in principle to reuse this language compiler

by replacing actions.c with subroutines appropriate to different simulations —
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the actual simulation work can be put in actions.c, rather than simply sending

messages to another program.

The simulation code is compiled from one of the subdirectories. For several
files. the main code is in a file in the parent directory, which is included into the
compiled code. Frequently, the code in the parent directory does an include for
code in the subdirectory — this will pick up the version from the appropriate

subdirectory.

The OCCAM source is split into the following files, some of whos names are

historical. The reader is referred to figure 4.1.

xy.cfs contains the transputer configuration description, mapping the processes

in the source to the physical transputers.

mstrschd.occ is the ‘master’ scheduler, which communicates with the front
end, forwarding commands to the workers and performing averages and
histogramming. This file includes mstrschd.occ in the parent directory,

which in turn sources mstrschd.inc and mstr2.inc

sched.occ implements the routing harness illustrated on figure 4.1. It routes

commands to and results {rom the workers

worker.occ actually performs the simulations. Files tables.inc, random.occ,
settable.occ are read from the parent directory. In addition, the inner
loops which are handcoded in assembler are in seperate files state_.mc.occ,
flip_.mc.occ and mc_mc.occ, in order to make it easier to substitute occam
versions state_occ.occ, {lip_occ.occ and me_mc.occ for testing and develop-
ment. The machine code versions also optionally include the occam ver-
sions, to verifv that the machine code and occam versions produce the same

answers.

graphics.occ drivers the graphics hardware

A.6.2 Recompiling

The code must be recompiled if the system size is to be changed. It is necessary to
set the system size in file consts.inc, and set the number of transputers in xy.cfs.

A version of the unix utility make is used to recompile the program; simply typing
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$ MAKE

at the DCL command line will recompile the program.

A.6.3 Preparing to Simulate

Any text editor can be used to prepare simulation control language files — editors
available include fue, a folding editor derived from micro-emacs, as well as the
standard VMS editors EDT and EVE. See the example control files in section A.7.

Failing that, the files can be prepared on any other machine and sent to the VAX

by ftp.

A.6.4 Running the Simulation

Two steps are used to run the program in this implementation:

o The transputer part of the code is booted onto the Meiko using a modified

version of the standard iserver transputer server:
$ ISERVER /SR /SG WIRING.DAT /SC XY.BTL

which first of all configures the transputer links according to the description
in the file ‘wiring.dat’. There are files ‘wired.wir’, ‘wire8.wir’, ‘wirel6.wir’
and ‘wire31.wir’ which contain the setup for the usual system sizes. Further

details are available with HELP MEIKO CONFIGURING.

e The VAX end is contained in an executable XY.EXE — this can be run

interactively using

$ EXEC XY file.scf [T=<temp>] [D=<anis>]

while developing a simulation. Variables can optionally be set on the com-
mand line using variable=value, as indicated. Because DCL is case insen-
sitive, only upper-case variables can be set in this way. Production runs
are submited to the VMS queue MEIKOSBATCH by simply prepending
BATCH/MEIKO to the command line:
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$ BATCH/MEIKO EXEC XY file.scf ...

though normal DCL command procedures can be SUBMIT-ed as usual if

that is preferred.

It is not necessary to boot the transputer code for each run; provided each sim-
ulation ends without error, the code will automatically restart itself in preparation
for the next run, so that several runs can be submitted, with different anisotropy
strengths for example. If there are several users using the MEIKO$BATCH
queue, then it would of course be necessary to reboot each time, since it must
be assumed that other jobs will run between your jobs; there is a local command

MBATCH which allows the boot and run to be controlied from one line:

$ LEARN MBATCH

$ MBATCH "iserver/sr/sg wire3l.wir /sc xy.btl" "exec xy cool.scf"

which will do both commands in batch. Alternatively, a DCL file containing the

lines

$ SET DEF [directory]
$ ISERVER /SR /SG

$ EXEC XY file.scf ...
$ EXIT

may be submitted to the queue in the usual VMS way (HELP SUBMIT). SET
DEF is the VMS equaivalent of the DOS/unix ¢d command. (There is a local CD
command available —HELP CD for details). The BATCH command automati-
cally arranges for the batch job to run in the directory from which the command
was submitted. It is even possible for the simulation control file to be sent inline

to the front end:

$ ISERVER .

$ EXEC XY SYS$INPUT ...
# control file goes here
set T=1.4

repeat
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wait 100
getstate
set T=T-0.1
until T<0.1
end
$ EXIT

and DCL will send all the lines from the EXEC line to the next line beginning
with § to XY.EXE as the control file (SYS$INPUT). As always, there are many

ways of doing things. ..

A.7 Example Programs

Two example simulation control programs are presented. Figure A.1 shows the
usual sort of simulation performed, where the system starts at high temperature,
and is cooled, performing simulations at each successive temperature. Figure A.2
shows a more novel use of the language, where the lifetime of the vortices in an
initially quenched system is measured. Ten independent measurements are made,
and the mean and standard deviation are output. This is the program used for

the results in section 5.5.1.
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# Example program 1

# randomise the axes and spins
seed 91

axes random

spins random

#define each cycle as four rotation sweeps and 1 flip sweep.
cycle 4 1

# D defaults to 0.4 unless it was set on command line
if D==0 then set D=0.4

# write results to a file who’s name depends

# on anisotropy strength, in subdirectory

# [.cool_<L>] (vms syntax) (eg [.coo0l_62]_.D0.400)
open 0 "[.cool_", L:0, "]_D", D:3

#start at high temperature
set T=1.4

#loop over temperature

repeat
write '"T=",T,nl # inform user how far we’ve got
wait 1000 # equilbriate

study 0 2000 5 # 5 averages over 2000 cycles each, to file 0
set T=T-0.1
until T<0.05 # allow for rounding errors

#iclose file
close O

end

Figure A.1: Typical simulation control program, where the system is progressively
cooled, with simulations run at each temperature.
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# Example program 2
open 0 "vortex_life.dat"

repeat

set T=0.5

repeat
set s=0 # sum of life
set g=0 # sum of squares
set 1i=0 # number of measurements made
repeat

set 1=0 # lifetime of these vortices

axes random
spins random
repeat
wait 50
set 1=1+50
getstate
v=V*xN
if 1>=99999 then set v=0 # dont wait any longer
until v==0

write " annihilated after ", 1:0, nl
# add this result into the averages
set s=s+l

set g=q+1x*1

set i=i+1

until i==10 # ten measurements for each pair of parameters
# work out the statistics...
set m=s/10
set v=sqrt((q/10)-(m*m))
# .. and write to file 0
tofile O D:t," ", T:1," “,m," ",v, nl
set T=T-0.1
until T<0.05
tofile 0 nl
set D=D+0.1
until D>1.05
end

Figure A.2: Control program for a more novel simulation: average the vortex
lifetime over ten sets of axes and initial configurations for each 7' and D.
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