The University of Southampton
University of Southampton Institutional Repository

Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands), using marine current energy converters

Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands), using marine current energy converters
Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands), using marine current energy converters
Energy from marine currents offers the promise of regular and predictable electrical generation at higher power densities than other renewables. The marine current resource is potentially large but mainly concentrated in a number of sites around the world. The power density for a horizontal axis turbine operating in such currents has a similar form to that of a wind turbine and is dependent on the cube of the velocity and the fluid density which for water is about 1000 times that of air.
These two factors imply that the power density for marine current energy converters will be appreciably higher than that of wind generators resulting in smaller and hence more manageable size turbines.
In the UK, for example, tidal races which exist in the waters around the Channel Islands and the ‘Sounds’ off the Scottish west coast are well known. The energy density at such sites is high due land mass constrictions which result in large current velocities at depths which are suitable for the installation of multiple arrays of turbines. This study was undertaken for the purpose of quantifying the potential of generating electricity from the Alderney Race in the Channel Islands.
The work quantifies the resource, identifies fluid currents that could be used for the establishment of various size arrays in the race and constructs some logical course of action and direction for the installation of marine current turbines in arrays in the Race. The analytically predicted results for the selected site of the Alderney race showed that such installations can realise energy yields in excess of 7.4 TWh which is equivalent to 2% of the UK requirements for the year 2000. However, despite the totally predictable resource the energy yield of the site followed an uneven power production which could be used in a planned mixed power production structure.
The analysis, although based on data from Admiralty Charts, has shown that there is a large potential for energy generation from such sites. Furthermore, and by virtue of the topography of the site, it is feasible to envisage a modular approach to the installation of size-dependent marine energy conversion devices or turbines to be deployed in phases taking into account technology progression and developments.
0960-1481
1931-1945
Bahaj, A.S.
a64074cc-2b6e-43df-adac-a8437e7f1b37
Myers, L.E.
b0462700-3740-4f03-a336-dc5dd1969228
Bahaj, A.S.
a64074cc-2b6e-43df-adac-a8437e7f1b37
Myers, L.E.
b0462700-3740-4f03-a336-dc5dd1969228

Bahaj, A.S. and Myers, L.E. (2004) Analytical estimates of the energy yield potential from the Alderney Race (Channel Islands), using marine current energy converters. Renewable Energy, 29 (12), 1931-1945. (doi:10.1016/j.renene.2004.02.013).

Record type: Article

Abstract

Energy from marine currents offers the promise of regular and predictable electrical generation at higher power densities than other renewables. The marine current resource is potentially large but mainly concentrated in a number of sites around the world. The power density for a horizontal axis turbine operating in such currents has a similar form to that of a wind turbine and is dependent on the cube of the velocity and the fluid density which for water is about 1000 times that of air.
These two factors imply that the power density for marine current energy converters will be appreciably higher than that of wind generators resulting in smaller and hence more manageable size turbines.
In the UK, for example, tidal races which exist in the waters around the Channel Islands and the ‘Sounds’ off the Scottish west coast are well known. The energy density at such sites is high due land mass constrictions which result in large current velocities at depths which are suitable for the installation of multiple arrays of turbines. This study was undertaken for the purpose of quantifying the potential of generating electricity from the Alderney Race in the Channel Islands.
The work quantifies the resource, identifies fluid currents that could be used for the establishment of various size arrays in the race and constructs some logical course of action and direction for the installation of marine current turbines in arrays in the Race. The analytically predicted results for the selected site of the Alderney race showed that such installations can realise energy yields in excess of 7.4 TWh which is equivalent to 2% of the UK requirements for the year 2000. However, despite the totally predictable resource the energy yield of the site followed an uneven power production which could be used in a planned mixed power production structure.
The analysis, although based on data from Admiralty Charts, has shown that there is a large potential for energy generation from such sites. Furthermore, and by virtue of the topography of the site, it is feasible to envisage a modular approach to the installation of size-dependent marine energy conversion devices or turbines to be deployed in phases taking into account technology progression and developments.

Full text not available from this repository.

More information

Published date: 2004

Identifiers

Local EPrints ID: 39418
URI: http://eprints.soton.ac.uk/id/eprint/39418
ISSN: 0960-1481
PURE UUID: f520e931-fd3f-44ec-8b3a-e0541a444190
ORCID for A.S. Bahaj: ORCID iD orcid.org/0000-0002-0043-6045
ORCID for L.E. Myers: ORCID iD orcid.org/0000-0002-4724-899X

Catalogue record

Date deposited: 28 Jun 2006
Last modified: 03 Dec 2019 02:08

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×