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Abstract Recently, Cluster observations have revealed the presence of new regions of solar wind plasma
entry at the high-latitude magnetospheric lobes tailward of the cusp region, mostly during periods of
northward interplanetary magnetic field. In this study, observations from the Global Ultraviolet Imager
(GUVI) experiment on board the TIMED spacecraft and Wideband Imaging Camera imager on board the
IMAGE satellite are used to investigate a possible link between solar wind entry and the formation of
transpolar arcs in the polar cap. We focus on a case when transpolar arc formation was observed twice right
after the two solar wind entry events were detected by the Cluster spacecraft. In addition, GUVI and IMAGE
observations show a simultaneous occurrence of auroral activity at low and high latitudes after the second
entry event, possibly indicating a two-part structure of the continuous band of the transpolar arc.

1. Introduction

During periods of northward interplanetary magnetic field (IMF), geomagnetic activity is generally quiet, but
solar wind plasma can penetrate and be stored in the magnetosphere. Recently, a new region of solar wind
plasma entry into the terrestrial magnetosphere, in the lobes tailward of the cusp, was reported, and
high-latitude magnetic reconnection was suggested to be the most probable mechanism of the entry [Shi
et al, 2013]. Higher-energy ions have been found by Fear et al. [2014] and interpreted as due to
magnetotail reconnection during periods of northward IMF. Since these events are rare, the fate of the
entered plasma has not been widely studied. It is not known whether those plasma entries will contribute
to aurora. Huang et al. [1989] and Fear et al. [2014] have reported that the higher-energy ions in the lobe
are associated with transpolar arcs, which are a fascinating phenomenon appearing occasionally during
northward IMF. Transpolar arcs are aurora structures extending poleward the auroral oval.

The transpolar arcs extending from the nightside to dayside connecting the oval from both sides are called
theta auroras (since they resemble a Greek letter theta). The theta aurora was observed several decades ago
in 1982 [Frank et al., 1982, 1986], but its formation mechanism is still poorly understood. For example, a theta
aurora associated with magnetotail plasma was reported by Huang et al. [1989]. For many years, it was
thought that the transpolar arcs form symmetrically in both hemispheres based on several studies [see, for
example, Craven et al., 1991]. Ostgaard et al. [2003] showed a nonconjugate theta aurora, when the arc
was observed only in one hemisphere.

Transpolar arcs can have different shapes, and their location can change with time or be static [e.g., Mawson
1916; Zhu et al., 1997; Kullen, 2012]. Statistical studies have previously shown that the occurrence of these
structures is correlated with high values of solar wind velocity and IMF magnitude [Kullen et al., 2002]. It
was reported that IMF B, value and its variation are controlling the location and the motion of transpolar
arcs [Fear and Milan, 2012a, and references therein]. The effect of the IMF B, component is opposite in the
northern and southern hemispheres.

While some studies explaining the formation of the transpolar arcs suggest that they lie on closed field lines
[e.g., Frank et al., 1986], others require an open field line configuration [Gussenhoven and Mullen, 1989]. The
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models that are based on the closed field line configuration require reconnection in the magnetotail [Milan
et al., 2005] or a large-scale deformation of the magnetotail [e.g., Frank et al., 1986; Kullen, 2000]. Reviews of
the various transpolar arc models can be found in, e.g., Zhu et al. [1997] or Fear and Milan [2012a].

Recently, many of the models have been rejected due to their inconsistency with the increasing number of
new observations. Nowadays, most models are based on IMF B, control, like, for example, models suggested
by Kullen [2000] and Milan et al. [2005]. The B, component of IMF causes a twist in the magnetotail, which
consequently causes the formation of transpolar arcs at quiet periods without much substorm activity
(either due to magnetotail reconnection in the case of Milan et al.'s [2005] mechanism or as a direct result
of a change in the twist of the tail according to Kullen [2000]). The IMF B, control of transpolar arc location
at its formation as well as a connection to nightside ionospheric flows indicating that magnetotail
reconnection have been predicted by Milan et al's [2005] model are observed and have been reported in
statistical studies [Fear and Milan, 2012a; Fear and Milan, 2012b]. Milan et al’'s [2005] model successfully
describes many properties of the arcs origin. A case study by Goudarzi et al. [2008] showed some
consistency with Milan’s model. On the other hand, the model by Kullen [2000] interprets the appearance
and motion of transpolar arcs after an IMF B, sign change as being the result of a rotation of a twisted
magnetotail, which causes a strip of closed field lines to move over the polar cap. Simulation studies by
Naehr and Toffolletto [2004] suggest that the arc will not extend to the dayside if only a tail deformation is
responsible for the occurrence of a transpolar arc. Other simulations of an IMF B, sign change showed
similar results. While a strip of closed field lines moving over the polar cap was produced in all reported
simulations, it does not stretch completely to the dayside [e.g., Slinker et al., 2001; Kullen and Janhunen,
2004]. Consequently, some other mechanism must be involved to explain the origin of a transpolar arc.
Almost all of the previous models propose that the transpolar arc develops from one source, either from
the dayside or from the nightside [Chiu et al., 1985; Lyons, 1985; Reiff and Burch, 1985; Makita et al., 1991;
Sojka et al., 1994; Newell and Meng, 1995; Rezhenov, 1995; Chang et al., 1998; Kullen, 2000; Milan et al.,
2005]. Eriksson et al. [2005] proposed that the different parts of a transpolar arc may be created by two
different mechanisms at the dayside and nightside parts of the aurora oval, respectively. They suggest that
the dayside part can be driven by high-latitude reconnection and the nightside part can be related to the
pressure gradient-driven generation of upward field aligned currents [Vasyliunas, 1970] of the Harang
discontinuity [Erickson et al., 1991]. In Eriksson et al. [2005], two different plasma flow directions on the
same transpolar arc can be seen; however, they do not show any evidence for the proposed generation
mechanisms. They suggest that these two processes maybe often couple together and result in one
apparently continuous transpolar arc. However, in a recent case study by Fear et al. [2014], a transpolar arc
formation was observed with a hot plasma source, similar to that in the plasma sheet. The hot plasma
electron pitch angle distribution peaked perpendicular to magnetic field direction, which is a strong
evidence that the plasma along the transpolar arc was on closed field lines. These observations were
argued to be consistent with those predicted by Milan et al. [2005].

Shi et al. [2013] have discussed several possibilities for their plasma observations, which they called “entry
events,” and proposed that they were most probably caused by high-latitude reconnection. We do not
totally rule out other possibilities such as tail reconnection suggested by Fear et al. [2014]. However,
throughout this paper, we use the term “solar wind entry event” or “entry event” to refer to plasma
signatures of the type observed by Shi et al. [2013], and studying the details of the entry event formation
is beyond the scope of this paper.

In this work, based on multi-instrument observations, we present a case showing the formation of the
transpolar arc in the south hemisphere after two solar wind plasma entry events. We also show some
indication that a transpolar arc can originate both from the dayside and nightside at the same time.

2. Data Sources

To investigate the link between transpolar arcs and solar wind entry events, data from several spacecraft
missions were used. First, the event was identified by the Global Ultraviolet Imager (GUVI) instrument on
board the TIMED mission. Its low circular orbit at an altitude of 630 km results in images at a very high
spatial resolution, reaching 7 km resolution at nadir [Paxton et al, 2004] for various wavelengths from
121.6 nm up to 180.0 nm. However, the spatial coverage of GUVI is limited. The full view of the aurora oval
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and polar region at higher time resolution of the transpolar arc is provided by the IMAGE/FUV instrument
[Mende et al., 2000] with spatial resolution 60 km. Data from the Wideband Imaging Camera (WIC) are used
with 2 min cadence at 140-180 nm wavelengths.

The low-altitude orbit (840 km) Defense Meteorological Satellite Program (DMSP) satellites carrying plasma
instruments allow for measurement of electron and ions precipitation in the energy range from several
tens of ev to keV energy range [Hardy et al., 2008]. Data from the DMSP f-13 are analyzed in this work.

For solar wind entry plasma parameters, observations of Cluster ion spectrometer (CIS) experiment [Reme et al.,
2001] and fluxgate magnetometer (FGM) experiment [Balogh et al., 2001] are used.

ACE spacecraft data are used for the IMF [Smith et al., 1998] and plasma measurements of the solar wind
[McComas et al., 1998].

3. Transpolar Arc on 20040927

The criteria of the solar wind entry event selection are reported in the paper by Shi et al. [2013]. To ensure that
the Cluster is in the lobe, the ratio of plasma to magnetic pressure, i.e,, the plasma beta, was required to be
less than 0.05, and the ion density should be lower than 1cm™>. In addition, the ion energy should be
centered between 0.7 and 2 keV to confirm the solar wind origin of the plasma and to exclude for instance
upflowing ionospheric ions. A more detailed description of the solar wind entry event selection criteria can
be found in Shi et al. [2013]. Using these criteria, a total number of 104 events were found occurring
between 2001 and 2004. For these events, Shi et al. [2013] found that the ratio of oxygen to proton
number density is decreased compared to the ambient regions, indicating that they have a solar wind
origin. This ratio will be higher for lobe or ionospheric upflowing ions [see, e.g., Maggiolo et al., 2011]. We
should also note that the event studied by Fear et al. [2014] was not selected by these criteria because of
the relatively higher-energy ions in that event.

Examining the GUVI data during the time periods corresponding to the entry events list of Shi et al. [2013], 15
transpolar arcs were identified. One of the most remarkable theta auroras was observed by GUVI on 27
September 2004. During a time period of northward IMF B, and enhanced negative B, on this day, two
consecutive plasma entries (as indicated by purple boxes in Figure 1) in the high-latitude magnetosphere
tailward of the cusp were observed by Cluster. The initial and final positions of Cluster for this event were
[—6.088, 4.075, and —11.818] and [—5.062, 3.873, and —11.596] Re in GSM coordinates.

In Figure 1, Cluster data from CIS and Plasma Electron and Current Experiment and IMF data from OMNI are
shown along with IMAGE WIC and TIMED/GUVI keogram. Due to the orbit of TIMED and to the scanning mode
of GUVI, its keogram looks different since various parts of the aurora map are taken at different times.
Furthermore, GUVI cannot observe all magnetic local time (MLT) regions and the entire polar cap. Thus,
the GUVI keogram is presented for the time interval ~21:35-21:44 when the spacecraft moves over the
60-90° magnetic latitude (MLAT) region. The intensifications of emissions are detected by GUVI in the
polar region at about 21:43-21:44. Since IMAGE/WIC can observe the entire polar cap every 2min,
the keogram is plotted for a 1 h MLT sector centered at 23:00 MLT, where the transpolar arc was observed.
The MLAT range from 60 to 90° is shown in the IMAGE keogram. However, above 85°, airglow does not
allow observation of the aurora. As we can see, the transpolar arc intensification observed by IMAGE
spreads from low latitudes right after the entry event. After the two entry events (right after purple boxes
from Figure 1), we can see higher-energy tail ions which can be due to tail reconnection as suggested by
Milan et al. [2005] and Fear et al. [2014]. GUVI observed the auroral activity at high latitudes just at the
time of the decrease of the transpolar arc, observed by IMAGE.

At the time of the entry event, Cluster’s foot point maps to the region near the South Pole, where the
transpolar arc is observed by TIMED/GUVI and IMAGE/WIC instruments. Cluster’s foot point coordinates
were [—88.2, 10.4] and [—86.7, 12.1] MLAT-MLT, respectively, at the beginning and at the end of the time
period of interest, as indicated in Figures 2 and 3.

From top to bottom, (a) Cluster ion spectrogram, (b) ion density measured by Cluster, (c) Cluster electron
spectrogram, (d) interplanetary magnetic field in GSM coordinates, (e) keogram of IMAGE/WIC
instrument, and (f) TIMED/GUVI keogram are presented. The two purple boxes indicate the solar wind
entry events. The vertical orange lines indicate the start of transpolar arc extension and intensification.
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Figure 1. (a-f) Comparison of the entry plasma by Cluster with IMAGE and GUVI keograms.

The red circles are drawn to make easier the comparison between TIMED/GUVI observations at highest
latitudes and IMAGE/WIC data at the same time (~21:43 UT). Data from the moment of time, marked
by the two circles, show that TIMED/GUVI still observes the arc in a region where at IMAGE/WIC,
dayglow dominates.

In order to study the solar wind conditions during the 27 September 2004 event, we checked the ACE IMF
and plasma data. To take into account the measurements carried at large distance away from the Earth,
a time shift has to be done. The simple “flat delay” method, just dividing the distance between ACE
and Cluster to the solar wind average velocity V, component calculated an hour before the entry
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September 27, 2004 [Mailyan et al., 2008], can give good

12 . enough results compared with more

SOUth UT 21 44 sophisticated methods. However, we

used OMNI data (http://omniweb.gsfc.

nasa.gov) with already calculated time
shift [King and Papitashvili, 2005].

In Figure 1d, the IMF components are
shown. At the time when the transpolar

arc intensifies, as we can see, the IMF B,
component becomes northward at 21:10

06 UT. The IMF turns southward again at
21:48 UT, after an increase in the
luminosity of the transpolar arc. The arc

was found in the dusk in the southern

qQ/ hemisphere when IMF B, <0, which is
consistent with previous observations
showing that duskside arcs appear mainly
during dawnward IMF in the southern
O hemisphere and during duskward IMF in

OO the northern hemisphere [e.g., Elphinstone
et al, 1995; Kullen et al, 2002, and

T
| - references therein].

0.1 1.0 The GUVI aurora map is presented in
GUVI LBHS ( kR ) Figure 2 in Lyman-Birge-Hopfield short

filter band 140-150nm in magnetic
Figure 2. GUVI observations of the transpolar arc: auroramap andtimeto  local time and latitude frame. Fine
each pixel axis. The crosses are for Cluster, and the triangles are for DMSP  ¢tryctures in the apparent continuous
foot points. On the left part of the image, the time period (21:41-21:44) is
marked by a red line, when GUVI observes the arc at high latitudes, while

18

arc can be seen. However, as it was

IMAGE/WIC observes the decreased intensity of the arc at latitudes mentioned, each pixel of the aurora
between 78 to 84° (at nightside) and dayglow at latitudes higher than 84°  map corresponds to different time
(see also Figures 1e and 1f). moments. The corresponding UT times

are shown on the inclined axis. As we
can see, GUVI observations at the highest latitudes (absolute magnetic latitude > 80°) correspond to the
times between 21:43 and 21:45. At the time of the highest magnetic latitude at 21:44 UT, we can clearly
see structured optical emissions in the South Pole region. At this time, the Cluster foot point mapped to
the same region of the observed by GUVI transpolar arc.

The same theta aurora observed also by IMAGE/WIC instrument is shown in Figure 3. Unfortunately, due to
the airglow, it is only possible to see the nightside part in WIC data, while the dayside image is available
only from GUVI. IMAGE/WIC spatial resolution is much lower in comparison with GUVI; hence, the small
branches in the arc cannot be seen by IMAGE. However, the temporal resolution of IMAGE data allows us
to see the time evolution of the arcs (Figure 3). At 21:21, we can see an intense aurora activity starting in
the midnight region, thereafter a gradual extension of the arc toward the polar region that continues
until 21:31 when the transpolar reaches the dayglow region. The transpolar arc becomes considerably
weaker at 21:43-21:45, and then a new intensification starts around 21:48. After the second entry event at
21:41-21:44 when we see a weakening arc in the nightside region and cannot observe the dayside
because of the dayglow in the WIC image, GUVI observed the arc at the highest latitudes. This time
sequence can be clearly seen from the last panels of Figure 1. The red circles show the location where
GUVI observed the arc intensification at these latitudes, while the IMAGE data are dominated by airglow.
During that time period, the arc luminosity decreases, as is evident from the IMAGE keogram in Figure 1e
(the area below the red circle). The similarity of the arc shape at low latitudes is also apparent from the
comparison of Figures 2 and 3 IMAGE/WIC aurora map at 21:31 UT. However, WIC data for 21:43 at low
latitudes look quite different from GUVI observations at high latitudes.
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Figure 3. IMAGE WIC observations of the theta aurora. The crosses correspond to the foot points of Cluster between 21:00 and 22:00. The area above the lines
connecting 06:00 to 18:00 MLT is dayglow. The straight cut at nightside caused by uncertainties of airglow correction and has no physical meaning.

The DMSP f-13 spacecraft also passed above the transpolar arc when it was observed by GUVI. The transpolar
arc as we saw is located at a narrow sector near 23:00 MLT. In Figure 4, we can see electron and ion
measurements by DMSP. The red box corresponds to the time when DMSP f-13 is at the region of the
interest. In the picture, we can see “inverted-V" structures, characteristic of electrons accelerated
downward by the electric field, causing aurora. Two such structures are seen at 21:46-21:47 marked by the
box. The average energy of the electrons is about several hundreds eV. The values are in a good
agreement with typical values reported in previous studies [see, for example, Park et al., 2012]. lon
precipitations are much weaker than the electron precipitations, which mean that DMSP passes an aurora
precipitation region, where electrons move toward the Earth and ions flow in opposite direction [ljjima
et al., 1984].

DMSP data of electron precipitation show several inverted-V structures across the entire polar cap. This fits
well with several less intense polar cap auroral arcs in the GUVI image. These features agree well with
Sun-aligned arcs, which are typical for northward IMF [e.g., Valladares et al., 1994; Shiokawa et al., 1997].
Kozlovsky et al. [2007] suggested that they are caused by solar wind entry into the closed magnetosphere.
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Figure 4. DMSP f-13 observations of precipitating ions and electrons.

4. Discussion and Conclusions

We have presented a transpolar arc observed by two different imagers—the high-altitude orbit IMAGE which
gave the global aurora map and time evolution information and the lower-altitude orbit GUVI onboard TIMED
which gave more detailed structure of the theta aurora and the information about the dayside polar regions
that are not visible on IMAGE due to the dayglow.

It is clear from GUVI images that the arc already existed when the auroral intensification spreads along the
arc. This suggests that an intensification occurs of an already existing arc which may have been formed by
the mechanism as proposed in Milan et al. [2005].

It is known that, e.g., solar wind pressure pulses can brighten up already existing transpolar arcs [Liou et al.,
2005]. The duskward position of the transpolar arc on the southern hemisphere and the negative IMF B,
value also are in an agreement with Milan’s model as well as consistent with other models as stated above.

On the other hand, Cluster observed solar wind entry events at high latitudes. The Cluster foot point maps to
the dayside part of the transpolar arc observed by GUVI. Observations of this particular event show that right
after the solar wind entry, a polar cap arc starts to extend from the nightside toward the dayside. On the GUVI
image, this transpolar arc seems to consist of two branches (Figure 2).

lonospheric flows accompanying the formation of transpolar arcs have been reported in several studies. The
Super Dual Auroral Radar Network (SuperDARN) array of high-frequency radars [Baker et al., 2007] provides
ionospheric convection pattern, which is extremely valuable data for transpolar arc studies [see, for
example, Koustov et al., 2008, 2012]. We checked the SuperDARN data (not shown) for the convection
pattern in the ionosphere. Flows on the nightside indicate reconnection at the magnetotail. However, the
smaller number of the stations in southern hemisphere does not allow an appropriate analysis of the
event from the ionosphere convection point of view.

The idea of a two-part structure of transpolar arcs has been proposed by Eriksson et al. [2005]. They presented
a case study where, based on data from multiple spacecraft and high-frequency radars, it was proposed that
the apparent continuous arc actually consisted of two parts. Unlike other previous models, they proposed
that two different mechanisms are responsible for the theta aurora formation at dayside and nightside
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Figure 5. (a—e) Differential energy flux of electron and magnetic field measured by Cluster on 27 September 2004. From
top to bottom, parallel, antiparallel, perpendicular to the magnetic field, and omnidirectional electron fluxes along with
magnetic field measurements are presented.

regions. According to Eriksson et al. [2005], high-latitude lobe reconnection is necessary to generate the
dayside part of the transpolar arc. At the nightside region, upward field aligned currents of the Harang
discontinuity create the nightside part of the arc. There exist several other observations showing different
flow directions on the same transpolar arc, which strengthens the idea suggested by Eriksson et al.'s [2005]
[e.g. Liou et al., 2005; Nielsen et al., 1990]. The observations of the electron precipitation at the dayside and
nightside parts [Park et al., 2012] also point to the difference between these regions. For the event of 27
September 2004 event, the GUVI high-resolution data also show some fine structure of the transpolar arc.
This also can be in favor of the Eriksson’s model, since the lower spatial resolution of IMAGE WIC would
show the more complex structure of the theta aurora as a one continuous entity. But for the formation of
the nightside part of the arc, from our observations in this event, we cannot distinguish whether it is
caused by Harang discontinuity as suggested by Eriksson et al. [2005] or magnetotail reconnection by
Milan et al. [2005].

Fear et al. [2014] reported the presence of a double loss cone within high-latitude, high-altitude plasma
signatures with higher energy than those observed by Shi et al. [2013], indicative of the signatures being
observed on closed magnetic field lines. However, the examination of the pitch angle distribution of the
entry plasma electrons (shown in Figure 1¢) for the 27 September 2004 event did not reveal the existence
of double loss cones. This is shown in Figure 5. In that Figure, the parallel, antiparallel, and perpendicular
to magnetic field electron distributions are shown, along with Cluster FGM measurements. Figure 5 shows
that the electron flux is not dominating in the perpendicular direction. The observation of double loss
cones similar to those reported in Fear et al. [2014] would be a very strong evidence of the closed field
line configuration. A bidirectional distribution of the electrons observed for this event as it can be seen
from Figure 5. The enhanced fluxes in parallel to magnetic field direction near 21:16 and 21:40 indicate the
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presence of electron upflows. Since the event occurred at the southern hemisphere, these dominating in the
parallel to the field electrons move toward the direction opposite to the Earth.

Double loss cones are a sufficient but not necessary condition for the closed field line condition. In the event
discussed in this paper, we did not find fluxes peaking at the perpendicular direction. The absence of the loss
cone does not mean automatically an open field line configuration. Therefore, the topology of the field lines
in this example cannot be convincingly determined from the data in this example. In Shi et al’s [2013]
mechanism, the present observations would be interpreted as plasma of solar wind origin which has
entered on open magnetic field lines, whereas in Fear et al.s [2014] interpretation, the plasma would be
explained as being on the outer edge of a closed field line region where a double loss cone has not yet
formed (as observed in Figure 3a of Fear et al. [2014], either side of the double loss cone, although we
note again the difference in energy between the plasma observations in the two studies).

Further analysis of similar events would be necessary to improve the understanding of the role of solar wind
entry at high latitudes for the formation and evolution of transpolar arcs.
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