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In recent years, the concept of utilizing the phenomenon of vibration mode-localization as a

paradigm of mechanical sensing has made profound impact in the design and development of

highly sensitive micro- and nanomechanical sensors. Unprecedented enhancements in sensor

response exceeding three orders of magnitude relative to the more conventional resonant frequency

shift based technique have been both theoretically and experimentally demonstrated using this new

sensing approach. However, the ultimate limits of detection and in consequence, the minimum

attainable resolution in such mode-localized sensors still remain uncertain. This paper aims to fill

this gap by investigating the limits to sensitivity enhancement imposed on such sensors, by some of

the fundamental physical noise processes, the bandwidth of operation and the noise from the

electronic interfacial circuits. Our analyses indicate that such mode-localized sensors offer

tremendous potential for highly sensitive mass and stiffness detection with ultimate resolutions that

may be orders of magnitude better than most conventional micro- and nanomechanical resonant

sensors. VC 2011 American Institute of Physics. [doi:10.1063/1.3590143]

I. INTRODUCTION

Over the past decade, resonant sensing has emerged as a

promising technique for highly sensitive detection of small,

linear parametric variations in the structural properties of

micro- and nanomechanical sensors. The naturally high fre-

quency sensitivity of such micron/sub-micron devices1,2 and

the quasidigital nature of the output signal3 have made this

sensing paradigm particularly attractive for a wide range of

applications including bio-molecular4 and chemical mass

sensing,5 acceleration6 and strain sensing7 among several

others. In most of these sensors, the output signal corre-

sponds to a measure of the relative shift in resonant fre-

quency of a vibrating micro- or nanomechanical structure

that is subjected to small induced perturbations in structural

properties (mass and/or stiffness).

In contrast, the concept of measuring shifts in the eigen-

states (i.e., the normalized mode shapes) due to vibration

localization in arrays of weakly coupled micro- or nanome-

chanical resonators has also been proposed as an alternate

sensing mechanism in recent years.8–10 Besides its high sen-

sitivity to structural perturbations, an eigenmode-shift based

sensor (or more simply, a mode-localized sensor), also offers

the added advantage of intrinsic common mode rejection

that makes it less susceptible to false positive outputs arising

from ambient environmental fluctuations.11 Parametric sensi-

tivities that are orders of magnitude greater than correspond-

ing resonant frequency shifts have been both theoretically

and experimentally demonstrated using this new paradigm of

mechanical sensing consequently making such sensors excel-

lent candidates for a wide variety of sensing applications.

The concept has now been successfully implemented for

ultrasensitive inertial mass sensing by subjecting weakly

coupled, nearly identical micro- or nanomechanical resonators

to minute symmetry breaking, differential mass additions and

measuring the induced variation in the eigenmodes. The meas-

ured shifts in mode shapes have been demonstrated to be not

only dependent on the magnitude of induced mass perturba-

tion but also on the strength of internal coupling between the

resonators consequently resulting in mass sensitivities that are

as high as two to three orders of magnitude greater than corre-

sponding resonant frequency variations.8,9,12 These results

while establishing a new avenue of mechanical sensing also

suggest possible extensions of the technology for the develop-

ment of a new class of bio-molecular and chemical mass sen-

sors with ultrahigh parametric sensitivity. More recently, the

concept has also been utilized for monitoring small changes

in the elastic stiffness of vibrating micromechanical resona-

tors thereby extending the applicability of this new paradigm

to the mechanical sensing of strain and inertial forces.10,11

While the results elaborated in prior work8–12 clearly

demonstrate significant enhancements in the system response

of such mode-localized sensors relative to their resonant fre-

quency shift based counterparts (i.e., an enhancement in the

responsivity or the sensitivity of the system to an induced

perturbation), their ultimate resolution depend critically on

the short-term and long-term amplitude stability of the

coupled resonator platforms at their fundamental modes of

vibration. Just as in the case of resonant sensors, the output

response stability in mode-localized sensors is governed by

two disparate classes of noise mechanisms–extrinsic noise

processes arising from the external electronic interfacial

readout circuitry, and intrinsic noise processes that are
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inherent to the micro- or nanomechanical resonator arrays

that serve as platforms for mode-localized sensing. In this

paper, we evaluate the impact of some of these intrinsic and

extrinsic noise processes on the ultimate resolution of such

mode-localized sensors. In addition, we also study the ulti-

mate limits to sensitivity enhancements in such sensors

imposed by the bandwidth of coupled dynamics.

II. MODE-LOCALIZED SENSING: SENSITIVITY
ANALYSIS

Most mode-localized sensors rely on utilizing weakly

coupled nearly identical arrays of mechanical resonators as

platforms for mechanical sensing. In such an array of identi-

cal resonators coupled through weak springs, even a small

perturbation in the structural properties of one of the coupled

resonators inhibits the propagation of vibrations within the

system leading to a confinement of vibration energy to small

geometric regions. The extent of this vibration energy con-

finement depends not only on the magnitude of the periodic-

ity breaking irregularity, but also on the strength of internal

coupling between the resonators, with weaker coupling

resulting in stronger vibration confinement.10,12 This phe-

nomenon consequently results in a localization of the vibra-

tion modes under conditions of weak elastic coupling

between the resonators, resulting in drastic variations of the

eigenstates (the normalized eigenvectors/mode shapes) that

may be as high as orders of magnitude greater than corre-

sponding shifts in resonant frequency for the same induced

structural perturbation.

In order to understand the underlying physics in more

detail, consider two resonators coupled through a spring (kc)

as represented in the discretized model shown in Fig. 1. The

variation in the eigenstates due to an induced periodicity-

breaking structural perturbation on one of the two coupled

structures may be evaluated using the Rayleigh’s Energy

method.14 In the case of a perfectly periodic system wherein

the two coupled resonators are mechanically identical (i.e.,

k1¼ k2¼ k and m1¼m2¼m), the system is symmetric about

the coupling spring and the mode shapes may simply be

deduced by inspection to be symmetric and anti-symmetric

at the two fundamental modes of vibration (corresponding to

x2=x1 ¼ 1 and x2=x1 ¼ �1 respectively where x1 and x2 rep-

resent the amplitudes of vibration of the resonators 1 and 2,

respectively, at the two fundamental modes of the coupled

system).

The relative variation in the eigenstates of the discre-

tized 2 degree of freedom (2 DOF) system due to an induced

mass addition on one of the coupled resonators (say resona-

tor 2) relative to the other (i.e., when m2 ¼ mð1þ dmÞ,
m1 ¼ m), may be estimated to be

D
x2

x1

����
���� � dm

2j
; (1)

where dm ¼ Dm=m corresponds to the nondimensionalized

mass perturbation on resonator 2 relative to resonator 1 and

j ¼ kc=k represents the nondimensionalized (or scaled) cou-

pling factor.

Similarly, evaluating for the variation in mode shape at

the first eigenvalue for an induced perturbation in the stiff-

ness of resonator 2 relative to resonator 1 (i.e., when

k2 ¼ kð1þ dkÞ, k1 ¼ k), we get

D
x2

x1

����
���� � � dk

2j

����
���� ¼ dk

2j
: (2)

where dk ¼ Dk=k corresponds to the nondimensionalized

stiffness perturbation on resonator 2 relative to resonator 1.

From Eq. (1) and Eq. (2), the sensitivity of the system, which

corresponds to the relative shift in the mode shape of the 2

DOF mode-localized sensor, may be expressed as:

D
x2

x1

����
����= x0

2

x0
1

����
���� ¼ d

2j
(3)

where d ¼ dm or dk for the case of a mass or a stiffness per-

turbation on one of the coupled resonators, respectively; x0
1

and x0
2 represent the unperturbed, deterministic amplitudes of

vibration of the two weakly coupled resonators 1 and 2 and

x0
2=x0

1

� �
the corresponding unperturbed mode shape. From

Eq. (3), it may be observed that lowering the strength of in-

ternal coupling between the resonators, should enhance the

output response of the system. This critical dependence of

the system response of such mode-localized sensors on the

strength of internal coupling has been exploited in recent

years to attain output sensitivities that are as high as orders

of magnitude greater than corresponding variations in reso-

nant frequency for the same structural perturbation.8–12 It is

to be noted here, that while these results hold true in the case

of two weakly coupled undamped resonators, the undamped

eigenmode character of the solution should be preserved

even for the case of two damped resonators (as represented

in Fig. 2), so long as the damping is proportional [i.e., the

damping matrix of the system is simultaneously diagonaliz-

able with the mass (M) and stiffness (K) matrices of the sys-

tem as expressed in Eq. (4)].

C ¼ aM þ bK: (4)

This is because, in the case of a proportionally damped sys-

tem, substituting Eq. (4) into the equation of motion of an

array of n-coupled resonators and using the principle of

orthogonality would result in a set of n-completely

FIG. 1. Undamped two-degree of freedom (2 DOF) spring-mass system. FIG. 2. Damped lumped element model of two coupled resonators.
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decoupled equations of motion, each governing the motion

of one particular eigenvector (similar to the undamped

case14). Since there exists no coupling between the eigenvec-

tors in such a case, the extracted mode shapes of a propor-

tionally damped system would be identical to those

computed for the undamped case but would have phase dif-

ferences that govern the rate of decay of coupled oscillations

[dictated by the parameters a; b and the resonant frequency

x (corresponding to that of the decoupled harmonic oscilla-

tor)]. This special form of damping is often referred to in

structural vibration literature as Rayleigh damping and applies

in the case of most micro- or nanomechanical mode-localized

sensors that are comprised of coupled, nearly matched resona-

tors operating in the same ambient environment. This first-

order independence of the mode shape to environmental drift

becomes especially useful in the context of mode-localized

sensing, as it leads to an important, inherent advantage of

common mode rejection (CMR) in such sensors. This CMR

behavior has been experimentally demonstrated elsewhere.11

However, an important question remains to be

addressed: what is the minimum shift in the mode shape that

may be resolved in a multi-DOF mode-localized sensor?

Since the mode shapes are deduced from the relative ampli-

tudes of vibration of the coupled resonators at the fundamen-

tal modes, the resolution of a mode-localized sensor should

depend critically not only on the improved system response

[given by Eq. (3)], but also on the ability to resolve even the

smallest fluctuations in the modal amplitudes (i.e., the ampli-

tudes at the fundamental modes) when subjected to a differ-

ential symmetry breaking structural perturbation. It is to be

noted here that any variation in the modal amplitudes

(D x2=x1j j) is resolvable only so long as the measured individ-

ual amplitudes of each of the coupled resonators is greater

than the root mean square amplitude fluctuations induced by

noise in the system. The minimum resolvable mode-shape

variation can therefore be expressed as

D
x2

x1

����
����
min

=
x0

2

x0
1

����
���� ¼ D

x0
26xnoise

2

x0
16xnoise

1

����
����� x0

2

x0
1

����
����

� �
=

x0
2

x0
1

����
����; (5)

xnoise
2 and xnoise

1 correspond to the modal amplitude fluctua-

tions of resonators 2 and 1 (in the case of the 2 DOF mode-

localized sensor represented in Fig. 2) induced by noise in

the system. It can be shown that Eq. (5) can be simplified

further and expressed as

D
x2

x1

����
����
min

=
x0

2

x0
1

����
���� ¼ D

xnoise
2

x0
2

6
xnoise

1

x0
1

� �
: (6)

If X0
r represents the deterministic amplitude of vibration of

the rth coupled harmonic oscillator at its fundamental mode

and Dxnoise
r represents the standard deviations in the modal

amplitude response of the rth coupled resonators caused by

random noise, then the minimum resolvable shift in the

mode shape may be evaluated from Eq. (6) as,

D
x2

x1

����
����
min

=
x0

2

x0
1

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

r¼1

Dxnoise
r

� 	
X0

r

� �2

vuut : (7)

Equation (7) represents the resolution of a mode-localized

sensor comprising of two nearly identical, weakly coupled

micro- or nanomechanical resonators and would remain

valid so long as the standard deviations in the modal ampli-

tude response of each of the resonators are independent.

From Eq. (7), it is clear that the resolution is dictated by the

amplitude stability Dxnoise
r

� 	� �
of each of the two coupled

resonators at their fundamental modes of vibration. It is to be

noted that while the description so far concerns the sensitiv-

ity of an array consisting of two weakly coupled microme-

chanical/nanomechanical resonators, a further increase in the

number of coupled resonators could provide an additional

improvement in the sensitivity/responsivity of the system.9,10

However increasing the number of resonators will corre-

spondingly increase the injected noise as well, as the meas-

ured output would then require accurate quantifications of

the relative amplitudes of vibration of all the coupled resona-

tors at the fundamental modes as may be seen by extending

Eq. (7).

As discussed earlier, any amplitude shift comparable to

the mean square noise in an ensemble of amplitude varia-

tions is resolvable only so long as the signal-to-noise ratio

(SNR) satisfies the relation SNR � 1. An estimate of this

minimum resolvable resonant amplitude shift may hence be

obtained by integrating the effective spectral density func-

tion of the amplitude fluctuations induced by noise within a

frequency band of �Dx to Dx (in the output frequency spec-

trum) that corresponds to a frequency range near the resonant

frequency of interest:

xmin

� 	
� Dxnoise
� 	

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ðDx

�Dx

Sxx xð Þdx

vuuut ; (8)

where x represents the fluctuation in resonant amplitude and

Sxx, the power spectral density. While Eq. (8) is a general

expression that denotes the root mean square amplitude fluc-

tuations measured from the system, the precise form of the

spectral density function (Sxx) depends upon the noise proc-

esses that are operative in the system within the specified fre-

quency band.

III. MECHANICAL NOISE CONTRIBUTIONS

A. Thermomechanical noise fluctuations

One of the fundamental factors that limits the resolution

of a mode-localized sensor is thermomechanical noise. Ther-

momechanical or mechanical-thermal noise originates from

thermally driven random motion of a mechanical system that

serves as the platform for mode-localized sensing. It arises

from the dynamic equilibrium between the mechanical

energy of the device and the thermal energy of the surround-

ing ambient environment and usually has a broad-band white

spectrum.15 In order to evaluate the impact of thermome-

chanical noise on the resolution of a weakly coupled multi-

degree of freedom (MDOF) mode-localized sensor, we first

determine the frequency-response function of the system.
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The equation of motion of the MDOF sensor may be written

in the form:

M€xþ C _xþ Kx ¼ F; (9)

where M, C, and K represent the mass, damping and the stiff-

ness matrices of the system, and x and F represent the vec-

tors of displacements and force. A Fourier transform of this

equation yields:

�x2M þ ixCþ K

 �

x xð Þ ¼ F xð Þ; (10)

where F xð Þ and x xð Þ represent the Fourier transforms of the

force and response matrices. It then follows that

x xð Þ ¼ H xð ÞF xð Þ; H xð Þ ¼ �x2M þ ixCþ K

 ��1

; (11)

where, H xð Þ denotes the frequency response matrix of the

sensor.

The general motion of any MDOF system may also be

written as a linear combination of modal deformations16 as

expressed in Eq. (12):

x ¼ q1 tð Þu1 þ q2 tð Þu2 þ :::þ qn tð Þun ¼
Xn

r¼1

qr tð Þur; (12)

where ur represents the rth modal eigenvector of the

dynamic system and qr tð Þ, its corresponding normal coordi-

nate. In the case where the coupled nearly identical resona-

tors are proportionally damped, the matrices M, K, and C of

the system are symmetric and the eigenvectors of the system

are orthogonal as explained in the previous section. Hence,

each normal coordinate of the system should obey a simple

single degree-of-freedom (1 DOF) harmonic resonator equa-

tion, independent of all others.16 Assuming that the drive

force is purely thermal in origin, the rth individual equation

of motion of the system may then be re-expressed in the

form:

mr €qr tð Þ þ cr _qr tð Þ þ krqr tð Þ ¼ fr tð Þ; (13)

where mr; cr; kr and fr tð Þ, represent the mass, damping, stiff-

ness and thermal forcing term of the rth individual resonator.

From Eq. (13) and Eq. (12), it is clear that by evaluating

the impact of thermomechanical noise on the rth individual

normal coordinate, one may be able to estimate the impact of

thermomechanical noise on the net sensitivity of the MDOF

mode-localized sensor. Thus, before proceeding with the

thermal noise analysis of the MDOF mode-localized sensor,

we first evaluate the input-output response of a single (rth)

resonator to a stationary random thermal noise input.

Just as in Eq. (11), the response function of the rth reso-

nator may be expressed in the form,

Hr xð Þ ¼ �x2mr þ ixcr þ kr


 ��1
: (14)

From Eq. (14), the spectral density function of the rth har-

monic oscillator for a stationary random thermal excitation

may be evaluated using the Weiner-Khintchine excitation-

response relation as17

Sqrqr
xð Þ ¼ Hr xð Þj j2Sfrfr xð Þ; (15)

where Sfrfr xð Þ is the input noise excitation power spectral

density of the rth harmonic oscillator in fr tð Þ. Based on the

Equipartition theorem,15 any mode of the system in thermal

equilibrium has an average thermal noise energy given by

kBT=2, where kB represents the Boltzmann’s constant and T,
the absolute temperature. Hence,

1

2
kBT ¼ 1

2
kr qr tð Þ2
D E

; (16)

where qr tð Þ2
D E

represents the mean square fluctuation of

the general coordinate corresponding to the modal deforma-

tion on the rth harmonic resonator. Equation (16) may

be rewritten in terms of the auto-correlation function Rqrqr
sð Þ

[that represents the ensemble of the product of qr tð Þ
when sampled at time t and that when sampled at tþ s
within the limits Rqrqr

0ð Þ ¼ E qr tð Þ2
h i

and Rqrqr
1ð Þ

¼ l2{l ¼ E qr tð Þ½ �}17] as:

1

2
kBT ¼ 1

2
kr qr tð Þ2
D E

¼ 1

2
krRqrqr

0ð Þ ¼ 1

4p
kr

ð1
�1

Sqrqr
xð Þdx:

(17)

Now, substituting Eqs. (14) and (15) into Eq. (17) enables

the evaluation of the excitation spectral density:18

1

2
kBT ¼ 1

4p
kr

ð1
�1

1

�x2mr þ ixcr þ kr

����
����2Sfrfr xð Þdx

) 1

2
kBT ¼ Sfrfr xð Þ

4p

ð1
�1

kr

kr � x2mrð Þ2þ xcrð Þ2
dx (18)

Evaluating the above integral when the damping factor is

less than 1 (i.e., when the quality factor of resonance, Q> 1)

yields18

ð1
�1

1

kr � x2mrð Þ2þ xcrð Þ2
dx � p

x2
r crmr

: (19)

Substituting Eqs. (19) into (18) yields

1

2
kBT ¼ Sfrfr

4p
krp

x2
r crmr

) Sfrfr ¼ 2kBTcr: (20)

The mean square displacement of the rth harmonic oscillator

due to a thermomechanical spectral noise input within a fre-

quency band of �Dx to Dx may now be evaluated as:

Dxnoise
r

� �2
D E

¼ 1

2p

ðDx

�Dx

Sqrqr
xð Þdx

¼
ðDf

�Df

2kBTur
2cr

kr�x2mrð Þ2þ xcrð Þ2
dx�

4kBTur
2crDf

m2
r x

4
r

;

(21)
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where Dx� xr and Df ¼ Dx=ð2pÞ: From Eq. (21), the

minimum measurable displacement for the rth individual os-

cillator of the coupled MDOF system can be derived as:

xmin
r

� 	
¼ Dxnoise

r

� 	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxnoise

r

� �2
D Er

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kBTceff
r Df

meff
r

� �2
xeff

r

� �4

s
;

(22)

where meff
r , ceff

r , and xeff
r denote the effective modal mass,

damping and angular resonant frequency of the rth individ-

ual oscillator.

Under conditions of low modal overlap (i.e., when the

ratio of the half power bandwidth to the frequency spacing

between adjacent modes is less than 1) 2xrcr= xrþ1�j½
xrj � 1�), Eqs. (15) and (12) may be used to derive the net

response spectral density function of the MDOF system for

the random thermal excitation as:

Sxx xð Þ ¼
Xn

r¼1

Sqrqr
xð Þur

2 (23)

Sxx xð Þ ¼
Xn

r¼1

S0

kr � x2mrð Þ2þ xcrð Þ2
ur

2

¼
Xn

r¼1

2kBTur
2cr

kr � x2mrð Þ2þ xcrð Þ2
: (24)

Equation (24) corresponds to the response spectral density

function of the MDOF mode-localized sensor to a stationary

random thermal noise input.

Since the response of the system relies on estimating the

mode shapes of the system from the measured amplitudes of

vibration of each of the coupled resonators at their fundamental

modes, the amplitude fluctuations represented in Eq. (22) may

directly be employed to determine the effective noise contribu-

tion in the modal response when measured from the rth coupled

harmonic resonator of the multi-degree of freedom sensor:

xmin
r

X0
r

¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTcrDfð Þ

m2
r x

4
r

� �
s

X0
r

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTceff

r Df

meff
r

� �2
xeff

r

� �4
X0

r

� �2

s

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EthDf

EcQxeff
r

s
(25)

where X0
r denotes the maximum deterministic amplitude of

the rth coupled resonator at its fundamental mode of vibra-

tion, Eth ¼ kBT=2 represents the thermal energy on the rth

harmonic oscillator and Ec, its corresponding maximum

drive energy given by Eq. (26).

Ec ¼ meff
r xeff

r

� �2
X0

r

� �2
D Eh i

=2 (26)

The minimum resolution of the mode localized sensor com-

prising of two nearly identical resonators would then corre-

spond to [from Eq. (7)]

D
x2

x1

����
����
min

=
x0

2

x0
1

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

r¼1

Dxnoise
r

� 	
X0

r

� �2

¼

vuut 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EthDf

2EcQxeff
r

s
: (27)

Substituting Eqs. (27) in (3), the minimum resolvable shift in

mass/stiffness may be estimated as

d
2j
� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EthDf

2EcQxeff
r

s
: (28)

Assuming that the two resonators are initially identical, Eq.

(28) may be rewritten for a mass perturbation on one of the

two nearly identical resonators as

Dmmin

meff

� 8j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EthDf

2EcQxeff

s
; (29)

where meff and xeff denotes the effective modal mass and

angular resonant frequency of each of the weakly coupled

identical harmonic resonators (before an induced mass per-

turbation). The minimum resolvable shift in stiffness may be

evaluated in a similar fashion to get:

Dkmin

keff

� 8j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EthDf

2EcQxeff

s
: (30)

Equations (29) and (30) represent the fundamental resolution

of a 2 DOF mode-localized sensor induced by thermome-

chanical noise when subjected to induced differential pertur-

bations in mass and stiffness, respectively, when measured

from the first fundamental mode of vibration. Comparing

this resolution with those attainable in the conventional reso-

nant frequency shift based sensing scheme [the mass resolu-

tion of which is expressed in Eq. (31)19], we notice that the

resolution in this paradigm of mechanical sensing scales pro-

portionally with the scaled coupling factor “j” as elucidated

by Eq. (32).

Dmmin

meff

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EthDf

EcQxeff

s
(31)

Dmminð Þmod

Dmminð Þfreq

/ j: (32)

B. Momentum-exchange noise

Next, we evaluate the limits imposed due to the momentum-

exchange between the micro- or nanomechanical resonators

(that form a part of the weakly coupled mode-localized sen-

sor array) and the gas molecules from the surrounding me-

dium that impinge upon them. The complement of this noise

process (thermomechanical noise) was considered previously.

In the molecular region, the equation of motion of the

rth individual harmonic resonator when subjected to viscous

drag takes the form:20

mrð Þ€xr tð Þ þ Frdrag þ krxr tð Þ ¼ fr tð Þ; (33)

where the drag force, Frdrag consists of two components:20 one

resulting from the intrinsic damping within the resonator and

another, resulting from the interaction between the resonator

and the gas molecules of the ambient viscous environment.
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The drag force may hence, be represented in the following

form20

Frdrag
¼ coscillator

rdrag

� 

_xr þ cambient

rdrag

� 

_xr þ cinertial

rdrag

� 

€xr: (34)

Substituting Eqs. (34) into (33), we get

mr þ cinertial
rdrag

� 

€xr tð Þ þ cambient

rdrag
þ coscillator

rdrag

� 

_xr

þ krxr tð Þ ¼ fr tð Þ: (35)

It may be observed that the drag force consists of both iner-

tial components that are proportional to the acceleration and

dissipative components. Depending on the pressure of the

ambient and the intrinsic quality factor of the harmonic os-

cillator, the impact of the inertial and dissipative components

of the drag force on the dynamic behavior would vary.20 The

inertial component of the drag force (that is the component

of Frdrag proportional to the acceleration) has an effect of

increasing the mass of the vibrating oscillator (from mr to

mr þ cinertial
rdrag

), the influence of which becomes negligible at

lower pressure conditions. Hence, when such sensors are

operated in vacuum, the drag force should simply consist of

the component describing the intrinsic damping within the

oscillator coscillator
rdrag

� 

and the dissipative drag proportional to

the velocity of oscillation cambient
rdrag

� 

as elaborated by Koku-

bun et al.20 The damped equation of motion of the rth har-

monic resonator under conditions of low ambient pressures

may thus be rewritten as:

mrð Þ€xr tð Þ þ cambient
rdrag

þ coscillator
rdrag

� 

_xr þ krxr tð Þ ¼ fr tð Þ: (36)

From Eq. (36), it is clear that there exists a simple superposi-

tion of damping mechanisms under low ambient pressure

conditions and hence, the net quality factor at the fundamen-

tal mode of the rth harmonic resonator may be expressed as:

1

Qr
¼
X

n

1

Qn
r

¼ 1

Q oscillator
r

þ 1

Q ambient
r

: (37)

From Eq. (37), it is obvious that the magnitude of Qr cannot

exceed the value of the smallest individual quality factor aris-

ing from each of the damping mechanisms and thus, instead

of estimating the quality factors of each individual damping

mechanism, it would suffice to approximate the expression by

considering the damping component of the drag force that

dominates in that region. In the case where in the intrinsic

damping of the resonator is much lower than that arising from

the ambient, i.e., when Q oscillator
r � Q ambient

r , the quality factor

of the rth harmonic oscillator would thus correspond approxi-

mately to that arising from collisions with surrounding envi-

ronmental gas molecules alone and hence, from Eq. (37), the

input spectral density of momentum exchange noise may be

expressed in the form

SME ¼ 2kBTcambient
rdrag

: (38)

The response of the system may now be derived using the

Weiner-Khintchine input output response, in a similar

manner to that estimated previously for thermomechanical

noise, resulting in:

Sxx xð Þ ¼
Xn

r¼1

2kBTur
2cambient

rdrag

kr � x2mrð Þ2þ xcr
ambient
drag

� 
2
: (39)

From Eq. (39), the minimum resolvable shifts in mass and

stiffness due to momentum-exchange may be evaluated as:

Dmmin

meff

� 8j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ethcambient

rdrag
Df

2Ecmrx2
r

s

Dkmin

keff

� 8j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ethcambient

rdrag
Df

2Ecmrx2
r

s
: (40)

It is to be noted that the above derivation is valid only when

the micromechanical resonator arrays are operated in partial/

high vacuum environments, as at higher ambient pressures

the effect of the inertial drag term would also have to be con-

sidered in the analysis.

IV. BANDWIDTH LIMIT

Although it is clear from Eq. (32) and Eq. (40) that lower-

ing the effective normalized coupling spring constant should

result in better resolutions in this sensing paradigm when com-

pared to those attainable using the traditional resonant fre-

quency shift based sensing approach, it is to be noted that

reducing “j” would also significantly alter the coupled dy-

namics of the system by lowering the frequency separation

between the two modes.21 This consequently imposes a practi-

cal bandwidth limit on the minimum usable coupling j and in

effect, the minimum attainable resolution in this sensing para-

digm. This is because in order to obtain a simple estimate of

the eigenstate variations in such 2 DOF sensors as derived in

the previous section, the frequency separation between the

two resonant peaks would have to be larger than the half-

width of each of the resonances. This becomes a mandatory

condition that needs to be satisfied for the single-mode

approximation made in the previous analysis to hold true.

Under conditions of weak internal coupling, the frequen-

cies corresponding to the in-phase and anti-phase modes

may be written as:

x2
1 ¼

k

m
; x2

2 ¼
k þ 2kcð Þ

m
: (41)

If x2
0 ¼ k=m, the frequency separation between the two

modes may be derived as:

x2
2 � x2

1 ¼
2kc

m
¼ 2jx2

0: (42)

Under conditions of weak internal coupling, the two eigenval-

ues are spaced close to each other [from Eq. (42)], and hence,

x2 � x1 � jx0: (43)

As mentioned earlier, the frequency separation between the

two peaks would have to be larger than the half width of the
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resonances x0=Q, and hence, the minimum practical value

of j would be limited to

jmin �
1

Q
: (44)

Substituting Eqs. (44) into (32), it is clear that the minimum

resolvable shift in mass relative to the frequency based sens-

ing would then be dictated by the quality factor of resonance

at the fundamental mode of vibration as expressed in Eq.

(45):

Dmminð Þmod

Dmminð Þfreq

/ 1

Q
: (45)

This is a very interesting result as it directly elucidates the

dependence of the resolution in this sensing paradigm on the

quality factor (Q). This bandwidth trade-off should conse-

quently dictate the ultimate limit to the minimum usable cou-

pling strength that may be realized for operation in mode-

localized resonator arrays.

V. ELECTRONIC PREAMPLIFIER NOISE

While the noise due to thermomechanical motion and

momentum exchange dictate the ultimate resolution attain-

able in this sensing paradigm, in most practical applications,

the noise fluctuation originating from the sensor’s interfacial

electronic preamplifier circuits tends to dominate the effec-

tive noise performance. In this section, we discuss and evalu-

ate the impact of noise fluctuations arising from such

electronic preamplifier circuits on the fundamental resolution

of mode-localized sensors. However, unlike the previous

analyses in the prior sections, we discuss the impact of pre-

amplifier noise for the specific case wherein the micro- or

nanomechanical resonator arrays are transduced electrically.

The case of electrical/capacitive transduction was chosen for

this particular analysis because of the ease of electromechan-

ical transduction and for the purpose of experimental

verification.

In most cases, the open-loop measurement circuit of an

electrically transduced mode-localized sensor consists of a

standard vector network analyzer (VNA) and a preamplifier

circuit (used to amplify the motional current of each of the

resonators) as illustrated in Fig. 3.

A measurement of the scattering (S21) parameter

response on the network analyzer allows for a proportional

measure of the voltage transmission gain due to the motion

of each of the coupled resonators as a function of the drive

frequency (i.e., a measure of ~Vout=~Vac

� �
where ~Vout repre-

sents the voltage output due to the motion of the resonator

for an input RF voltage stimulus, ~Vac). If the preamplifier

employed is a trans-resistance amplifier as illustrated in Fig.

3, the measured S21 transmission should correspond to an

amplified (but proportional) measure of the admittance trans-

fer-function ~iout=~Vac

� �
of each of the coupled resonators. In

order to evaluate the impact of noise on the measured admit-

tance transfer-function, let us first evaluate the impact of

noise on the current output ~iout generated due to the motion

of the resonators in the presence of a deterministic RF input

voltage stimulus, ~Vac, from the network analyzer. Since the

capacitive transduction scheme relies on measuring the

motional current of each of the coupled resonators and in

consequence, the admittance transfer function, each resona-

tor in the coupled array of a mode-localized sensor may be

modeled as an equivalent current source for the purpose of

noise analysis.

Just as in the previous analyses, let us consider the case

of a 2DOF mode-localized sensor similar to the one repre-

sented in Fig. 2. Under conditions of low modal overlap, the

mechanical equation of motion of the rth coupled resonator

subjected to a harmonic electrical excitation may be

expressed as in Eq. (13):

mr €qr tð Þ þ cr _qr tð Þ þ krqr tð Þ ¼ fr tð Þ: (46)

In case of parallel plate capacitive transduction, the voltage

applied across the drive capacitor results in a stored electri-

cal potential energy, the derivative of which yields the force

of actuation. An application of a dc and ac voltage across the

capacitive drive electrode gap with Vdc � ~Vac

�� ��, hence

results in a drive force of magnitude:22

fr � Vdc
@C

@x
~Vac

� �����
r

: (47)

The output motional current from the rth coupled resonator

due to the drive force fr is given by the derivative of charge

with respect to time

ir ¼
dQr

dt
¼ C0 þ dCð Þ dVac

dt
þ Vdc þ Vacð Þ dC

dt
: (48)

Rewriting Eq. (48) in phasor form,

~ir ¼ C0jxr
~Vac

� �
þ Vdc

@C

@x

����
0

jxr~xr

� �
þ 2~Vac

@C

@x

����
0

jxr~xr

� �
:

(49)

If the applied Vdc is much larger than Vac, the current may be

approximated as:

~ir � C0jxr
~Vac

� �
þ Vdc

@C

@x

����
0

jxr~xr

� �
¼~iparasitic

r þ I0
r

!
; (50)FIG. 3. (Color online) Conventional open-loop measurement setup in elec-

trically transduced mechanical resonators.
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where ~iparasitic
r ¼ C0jxr

~Vac

� �
represents the parasitic capaci-

tive feedthrough current and I0
r

!
¼ Vdc

@C
@x

��
0
jxr~xr denotes the

motional current originating from the motion of the rth reso-

nator. The equivalent electrical impedance (or the motional

impedance) of the device hence corresponds to:

Zm ¼
~Vac

I0
r

! : (51)

Since the mechanical impedance of the vibratory element is

defined as the ratio of the force to the velocity, the admit-

tance transfer function of a capacitively transduced resonator

(after negating the effect of feedthrough parasitic22) may be

derived using Eqs. (46) and (51) as:

Ym ¼
I0
r

!

~Vac

¼ g2
r jx~xr

fr

� �
¼ g2

r

mreq

x2
r

jx
þ x0

Qr
þ jx

� ��1

; (52)

where gr ¼ Vdc
@C
@x

��
0

denotes the electromechanical transduc-

tion coefficient of the rth individual resonator; xr, its funda-

mental angular frequency of vibration; mreq, the equivalent

mass of the resonator at the rth fundamental natural fre-

quency. Since the modal response of the system is evaluated

by measuring the relative admittance transfer function

responses of the two coupled resonators, the response of the

sensor may be written as:

Ymð ÞR2

Ymð ÞR1

����
���� ¼ I0

2

!

VR2
ac

�!
0
@

1
A

������
������= I0

1

!

VR1
ac

�!
0
@

1
A

������
������: (53)

Now, if the same deterministic RF input voltage stimulus

V
!

ac

� 

is applied on both resonators simultaneously in such

a way that VR2
ac ¼ VR1

ac , then the minimum resolvable shift in

the mode shape would simply correspond to the minimum

measurable ratio of the motional currents of the two coupled

resonators as expressed in Eq. (54):

D
Ymð ÞR2

Ymð ÞR1

����
����
min

=
Ymð ÞR2

Ymð ÞR1

����
���� ¼ D

I2

I1

����
����
min

=
I0
2

I0
1

����
���� ¼ D

x2

x1

����
����
min

=
x0

2

x0
1

����
����;
(54)

where D I2

I1

��� ���
min
=

I0
2

I0
1

��� ��� ¼ D
I0
2
6inoise

2

I0
1
6inoise

1

��� ���� I0
2

I0
1

��� ���� 

=

I0
2

I0
1

��� ���. From Eq. (54),

it is clear that in order to evaluate the impact of the elec-

tronic preamplifier noise on the minimum measurable mode

shape of the system, we may re-express all noise components

as equivalent currents and simply evaluate the effect of noise

on the measured motional current. Evaluating the preampli-

fier noise when modeling the rth resonator as a current

source results in Eq. (55):

inoise
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
inoise
r

� �2
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2n þ e2

n 1þ Rs

Rf

� �2

=R2
s þ

4kBT

Rf

" #vuut ;

(55)

where in and en represent the input current and voltage noise

of the trans-resistance amplifier considered for the analysis

(the values of which may be obtained from the datasheet of

the amplifier chosen). Rs and Rf represent the motional resist-

ance of the resonator at the fundamental resonant mode of

interest and the amplifier feedback resistance, respectively.

The minimum resolvable shift in the mode shapes of the 2

DOF mode-localized sensor when transduced electrically in

open loop may hence be derived in a similar fashion to that

of Eq. (7) to get:

D
Ymð ÞR2

Ymð ÞR1

����
����
min

=
Ymð ÞR2

Ymð ÞR1

����
���� � D

inoise
2

I0
2

6
inoise
1

I0
1

� �
(56)

D
Ymð ÞR2

Ymð ÞR1

����
����
min

=
Ymð ÞR2

Ymð ÞR1

����
���� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

r¼1

Dinoise
r

� 	
I0
r

� �2

vuut ; (57)

where I0
r represents the noiseless deterministic motional cur-

rent of the rth coupled resonator and Dinoise
r , the noise cur-

rents of the rth coupled resonator when characterized in

open loop.

VI. EXPERIMENTAL METHODS

In order to evaluate the noise performance of mode-

localized sensors experimentally, we consider a mode-local-

ized sensor comprising of a pair of electrically coupled,

nearly identical microelectromechanical flexural wine glass

mode ring resonators (an optical micrograph of which is

shown in Fig. 4).

The device was fabricated in a commercial foundry pro-

cess using the silicon-on-insulator microelectromechanical

systems (SOI-MEMS) process through MEMSCAP Inc.,

USA. Each of the rings had an inner and outer diameter of

190 lm and 220 lm, respectively, with a thickness of 10

lm. Actuation was achieved using parallel plates of equal

dimensions (120 lm long, 6 lm wide, 10 lm thick) attached

to the anti-nodal points of the rings as shown in Fig. 4. The

fabricated devices were tested under partial vacuum (� 10

mTorr) in a custom vacuum chamber. Figure 5 shows a sche-

matic of the experimental measurement setup. All features

including the drive and coupling gaps were designed to be 2

lm wide for both of the coupled ring resonators.

FIG. 4. (Color online) Optical micrograph of electrically coupled flexural

wine-glass mode ring resonators.
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Initially, DC polarization voltages ofþ 15 V and �15 V

were applied on resonators 1 and 2 through their respective

sense electrodes (ports) while applying an ac drive power of

�15 dBm on the drive electrode. The potential difference

between the resonators should correspondingly result in the

formation of an imaginary electro-elastic coupling spring
across the coupling gap between the two resonators.10,19 This

coupling behavior was verified experimentally by measuring

the scattering (S21) parameter frequency responses as illus-

trated in Fig. 6 (extracted after parasitic capacitance cancella-

tion using the procedure detailed by Yan et al.23). The quality

factor at the first fundamental mode was measured to be

approximately 13000 at a pressure of approximately 5 mTorr.

Before experimentally quantifying the fluctuation in the

measured motional current of each of the coupled ring reso-

nators, the expected variations in the current arising from the

intrinsic and extrinsic noise sources discussed in the previous

sections were theoretically evaluated as elaborated in Table I

(the input noise current and noise voltage for the amplifier

chosen (OPA656) was obtained from the datasheet and cor-

responded to in � 1:3fA=
ffiffiffiffiffiffi
Hz
p

and en � 7nV=
ffiffiffiffiffiffi
Hz
p

, respec-

tively). The dominant noise component is boxed. (The

impact of thermomechanical noise on the measured motional

current is evaluated by first estimating the displacement due

to thermal noise and then quantifying its corresponding cur-

rent fluctuation as detailed in Table I).

It is clear that the fundamental noise floor imposed by the

thermomechanical noise on the measured current noise is sig-

nificantly lower in comparison to that induced by the associ-

ated electronic interfacial circuitry (the amplifier voltage noise

and the noise due to the feedback thermal resistance). The

electronic noise should hence, dominate the effective noise

performance of the sensor in this particular case. Calculating

the net current noise in the system from Eq. (55), we get:

Dinoiseh i � 2:38pA=
ffiffiffiffiffiffi
Hz
p

: (58)

Thus, for a measurement bandwidth of 10 Hz, the minimum

resolvable shift in the measured modal response of the rth

coupled resonator corresponds to

Dxrh i
X0

r

¼ Dinoiseh i
I0
r

� 0:0048: (59)

From Eq. (59) and (57), the effective resolution of the sensor

when the two coupled resonators are initially identical

should relate to

D
Ymð ÞR2

Ymð ÞR1

����
����
min

=
Ymð ÞR2

Ymð ÞR1

����
���� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

r¼1

Dinoise
r

� 	
I0
r

� �2

vuut � 0:006:

(60)

This result was verified experimentally by measuring the

mean and standard deviation of the modal amplitudes of

motional current from the measured admittance spectra of

resonators 1 and 2 at the first fundamental mode of vibration.

This was done by studying the fluctuations in the output due

to noise in the system for a set of samples (while maintaining

the measurement parameters the same in both ring

FIG. 5. Schematic of the measurement setup used for the characterization of

electrically coupled resonator pairs.

FIG. 6. (Color online) Schematic

depicting the experimentally measured

transmission responses of resonators 1

and 2 for a set of three samples while

maintaining a constant drive input.

TABLE I. Theoretical evaluation of current noise arising from various noise

sources.

Noise considered

Effective noise

current A2=
ffiffiffiffiffiffi
Hz
p� � Formula

Feedback thermal

resistance

3.5� 10�24 4kBT
Rf

Amplifier voltage noise 2.2� 10�24 e2
n 1þ Rs

Rf

� �2

=R2
s ; Rs ¼

meff x
Qg2

� �
Amplifier current noise 1.7� 10�30 i2

n

Mechanical thermal noise 4.32� 10�29
i2m � Vdc

@C

@x

����
0

jx~x

����
����2 ;

xh i ¼
ffiffiffiffiffiffiffiffiffi
x2

r

� 	q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ethur

2crDf

m2
r x

4
r

q� �
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resonators) and measuring the variations in the modal ampli-

tude at the first eigenvalue from both resonators. The meas-

ured responses from the two coupled resonators are

illustrated in Figs. 7 and 8. The measured responses of reso-

nator 1 for a set of six samples are further elaborated in

Table II.

Evaluating the minimum resolvable shifts in the mode

shape from the results in Figs. 7 and 8, we get DiR1h i=
I0
R1 � 0:0062 from resonator 1, and DiR2h i=I0

R2 � 0:0078

from resonator 2 where DiR1 and DiR2 relate to the measured

standard deviations in current measured from resonators 1

and 2, respectively, while I0
R1 and I0

R2 refer to their determin-

istic motional currents at the first fundamental mode of the

coupled vibratory behavior. This results in an effective noise

floor of [from Eq. (60)]:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

r¼1

Dinoise
r

� 	
I0
r

� �2

vuut � 0:01: (61)

The following conclusions may be made from the analysis:

comparing the result derived theoretically [Eq. (60)] with

that obtained from experiments [Eq. (61)], it is clear that the

sensor noise floor measured experimentally is nearly consist-

ent with predictions. While the sample size considered in

this analysis corresponds to a set of six samples, larger sam-

ple sizes should yield a more accurate estimate of the statisti-

cal deviation that may be expected within the system.

Nonetheless, it is evident that the dominant noise floor in

this particular case is from the electronic interfacial pream-

plifier circuitry as elucidated analytically. Further optimiza-

tion of the interface circuit should hence, help minimize this

electronic noise floor to improve the practical resolution of

the mode-localized sensor considered in this study. Alterna-

tive measurement schemes13,20 may also be adopted to

obtain experimental estimates of the fundamental limits

imposed by thermomechanical and momentum-exchange

noise in such sensors.

VII. CONCLUSIONS

In this paper, we evaluate the fundamental and practical

limits to mode-localized sensing imposed by several impor-

tant intrinsic and extrinsic noise sources, and the coupled

FIG. 7. (Color online) Measured trans-

mission responses of resonator 1 at the

(a) first and (b) second eigenvalues for a

set of three samples while maintaining a

constant drive input.

FIG. 8. (Color online) Measured trans-

mission responses of resonator 2 at the

(a) first and (b) second eigenvalues for a

set of three samples while maintaining a

constant drive input.

TABLE II. Measured fluctuation in the modal amplitudes measured from

resonator 1 at the first and second fundamental modes of vibration.

Sample Amplitude measured at

first eigenvalue

Amplitude measured at

second eigenvalue

1 0.002077175 0.001194426

2 0.002090454 0.001215476

3 0.002114550 0.001197169

4 0.002106751 0.001213621

5 0.002097941 0.001194710

6 0.002100198 0.001202473

Sum 0.012587069 0.007217875

Sample mean 0.002097845 0.001202979

Sample variance 1.69164� 10�10 8.89919� 10�11

Standard deviation of

measured current

1.30063� 10�5 9.43355� 10�6
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dynamics. Our investigation of the fundamental limit on the

performance of such mode-localized sensors results in the

expression:

dmin ¼ 8j
Xn

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EthDf

2EcQxeff
r

s
; (62)

which makes transparent the most essential considerations

for optimizing the ultimate sensitivity of mode-localized

sensors. It is clear from Eq. (63), that one important parame-

ter that distinguishes mode-localized sensors from the more

conventional resonant frequency shift based sensing

approach, is the resolution dependence on the strength of in-

ternal coupling, j, between the coupled resonator arrays.

Weaker effective coupling (lower j) between the resonators

should help enhance not only the responsivity of such sen-

sors to an induced structural perturbation as elucidated in

prior studies, but should also contribute to substantial

improvements in the resolution under conditions of weak in-

ternal coupling. With recent reports detailing the realization

of scaled (nondimensionalized) coupling factors, j�10�3,

improvements in the resolution by 3 to 4 orders of magnitude

relative to corresponding resonant sensors should be possible

using this unique sensing technique. Such resolution

enhancements open the door to a new paradigm of mechani-

cal sensing with ultimate sensitivity limits that are orders of

magnitude greater than conventional resonant sensors. How-

ever, it is to be noted that reduction in the coupling factor

significantly impacts the coupled dynamics by lowering the

frequency separation between the modes consequently

imposing a practical bandwidth limit on the minimum attain-

able coupling factor that varies inversely with the Quality

factor of resonance at the fundamental modes of operation.

Substituting this practical bandwidth limit enables the evalu-

ation of the minimum measurable resolution in such sensors

to be:

dmin � 8
Xn

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EthDf

2EcQ3xeff
r

s
: (63)
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