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Dielectric crystals that act on photons as semiconductors do on
electrons — forbidding certain wavelengths to propagate —
promise highly efficient lasers and novel photonic materials

Photonic

MANY major discoveries in
physics this century originate
from the study of waves in
periodic structures. Examples
include X-ray and electron dif-
fraction by crystals, electronic
band structure and holography.
Analogies between disciplines
have also led to fruitful new avenues of research. An
exciting example is the recent discovery of three-
dimensionally periodic dielectric structures that exhibit
what is called a “photonic band gap” (PBG), by analogy
with electronic band gaps in semiconductor crystals.
Photons in the frequency range of the PBG are completely
excluded so that atoms within such materials are unable to
spontaneously absorb and re-emit light in this region; this
has obvious beneficial implications for producing highly
efficient lasers. Given that electrons and photons obey

band gaps
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wide that they coalesce and
forbid propagation in all direc-
tions within a certain range of
frequencies). Despite the diffi-
culties of designing and
constructing the right kind of
structure, and of detecting what
happens, Yablonovitch’s team
have observed a PBG at microwave frequencies in a
specially drilled dielectric material (microwave refractive
index of 3.6) with a face-centred-cubic lattice. This
“dielectric crystal” was produced by drilling evenly spaced
(8 mm pitch) sets of holes at three carefully chosen angles.
To obtain a band gap at optical frequencies requires a very
much smaller lattice spacing (~400 nm for 1.5 um light in
GaAs) and is much more challenging to produce. Although
techniques involving reactive ion beam etching are being
actively developed, no success has yet been reported.
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tude, or modulation depth, of
the ripple in potential or refrac-
tive index. Most 3-D optical
gratings (such as volume holo-
grams) have only a weakly
modulated periodicity (typically
<10-* of the average value) so
light propagation is only forbid-
den in rather narrow ranges of
wavevector. These so-called
“stop-bands”’ appear around the Bragg scattering points in
k-space and their widths are roughly proportional to the
modulation depth (see Yeh et al., Zengerle, and the author
in Further reading). It has only been suggested recently,
mainly through the pioneering efforts of Sajeev John of the
University of Toronto, Canada, and Eli Yablonovitch of
Bellcore, US, that a complete PBG should appear if the
modulation depth is increased enough in a structure with
multiple periodicities (the stop-bands should become so

1 Spontaneous emission is inhibited if the photon released
at a radiative electronic transition has an energy hv, that
lies within the PBG. Straight lines are the (k, v)
relationship in the absence of periodicity, i.e. for “free
photons®’. Out-of-phase and in-phase refer to the position
of the fringes of the photonic Bloch states relative to the
high index regions {see 3); in-phase implies that the peaks
of intensity coincide with planes of high refractive index.
The group velocity, given by 2wav/ak (thick line), tends
to zero at the band gap edges where the slope is zero

index is low. In a semiconductor
crystal, valence band electrons
spend most of their time at the
atoms (i.e. low potential energy
regions) while conduction band
electrons are found mainly in
between (high potential energy
regions). In the same way,
photons in a PBG material have
the choice of being concentrated
at the high index “atoms”, or in the low index regions in
between. The photon’s position depends on its energy, and
if a range of energies exists where neither alternative is
possible, a PBG forms. Its appearance and width depend on
the refractive index difference between “conduction band”
photons and “valence band” photons, i.e. on the modula-
tion depth of the refractive index. Photons with energies
lying within the PBG cannot propagate and their wave-
function decays exponentially with position, i.e. they
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2 Band structure of a single grating with high modulation depth M =
€,m/€q (rectangular profile shown to scale top right) for an optical
frequency v and wavevector parailel to the interface B. The angle of
incidence is 0, the Bragg frequency for 6 = 90° is vy, and the integral
values m refer to the mth order Bragg condition, given by max =
2A sing, where X is the mean wavelength in the grating. The Fourier
sgries of the grating profile, given by M(x) = 3 _M,cos(nKx), has
significant harmonics at even values of n with My = 0.56, M, = —0.18,
M, = 0.10 and Mg = —0.08; the odd amplitudes are all zero. Eight
waves were used in the Bloch expansion. The Bragg conditions follow
the dashed curves. As the modulation depth is increased, the range of
strong reflection broadens to fill the shaded regions where the density
of states is zero — photons are forbidden to exist

are “‘evanescent”. Precisely the same is true of electrons
whose energies lie within the electronic band gap.

In the terminology of band theory, the density of states
is zero within the PBG — the photonic states are virtual.
Since virtual optical modes cannot propagate, they may be
viewed as localised states. For frequencies within the PBG,
photons incident from outside the material will be perfectly
reflected, just as if it were an ideal metallic object.

Limited photon localisation of this kind is well known in
multi-layer dielectric mirrors for a range of incident angles
around the Bragg condition. But what would happen if a
photon, with an energy lying within the PBG, was created
inside a volume of PBG material? This could arise if the
material were doped with a fluorescent species. The
photons emitted by spontaneous electron-hole recombina-
tion at the electronic transitions will be unable to travel
away — being reflected back and re-absorbed instead.
Spontaneous emission is thus inhibited (figure 1), which has
profound implications for the performance of solid-state
lasers as first pointed out by Yablonovitch in 1987. By
blocking spontaneous emission into undesired optical
modes, a PBG lasing structure would be able to improve a
laser’s quantum efficiency.

The interest in rare-earth doped glass lasers, in particular
frequency up-conversion lasers where the pump frequency
is less than the lasing frequency, suggests other appiica-
tions. The rare-earth ions in these lasers have a multitude
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of outer-shell transitions, and the aim of much research is
to identify “ladders” of suitable levels up which electrons
can “climb”, pumped by cheap infrared diode lasers. Once
a suitable level is reached, short wavelength lasing may be
achieved. Many possible “ladders” to up-conversion are
ruled out because an efficient radiative transition, often in
the infrared, exists at some intermediate level. Introducing
a PBG to prevent radiative recombination at this level would
allow efficient up-conversion lasing, perhaps in the blue or
ultraviolet. So far, a great deal of effort in solid-state laser
research has been directed towards controlling the environ-
ment, and hence the behaviour, of the electronic lasing
transitions. Photonic band gap materials provide an extra
dimension of control in which the quantum photodynamics
are manipulated so as to make the fullest and most efficient
use of quantum electrodynamic transitions.

Bloch expansion

Every study of waves in periodic structures makes use of a
single physical principle, enshrined in a theorem proposed
by Achille Floquet in 1884, which states that normal modes
in periodic structures can be expressed as the superposition
of a set of plane waves whose wavevectors are related by
momentum conservation: k, = Kk, + nK, where k; is an
arbitrary initial wavevector, k, the wavevector of the nth
wave, A = 27/|K| is the grating pitch, and K is the grating
vector. This theorem was later extended to multi-
dimensional periodic structures by Bloch in his treatment
of electrons in crystals and is referred to as the Bloch
expansion.

What is the physical meaning of this theorem? It can be
viewed as a direct consequence of the universal ability of
waves to image objects. A disturbance such as an
electromagnetic wave propagating through a periodic
medium must to some degree mimic the periodicity. Since
the only way waves can image a static periodic pattern is via
two- or multi-beam interference (yielding standing-wave
patterns of stationary optical fringes), other waves must
therefore appear, travelling in directions such that the
resulting pattern of interference fringes matches the
periodicity. This is another way of interpreting the equation
above; since every wavevector can be turned into any other
by adding or subtracting an integral multiple of K, and the
spacing of the interference fringes between the nth and the
mth waves is 27/|k,—k,|, the set of waves with wavevectors
given in the equation above will clearly image the grating.

Therefore, the optical modes or Bloch waves of an
extended periodic medium consist of stable superpositions
of many such waves. A range of results follows from this
picture. The simplest is the Bragg condition itself — when
the fringe pattern matches the periodicity (or a multiple of
it), Bragg diffraction occurs. Perhaps the most profound is
that the photonic Bloch waves, possessing stationary optical
fringes, can interact much more effectively with the static
periodic medium than normal photons can in uniform
dielectrics. This permits strong interactions between
electrons and photons if the electronic band gap energy
matches the photon energy at the top of the PBG — where
incidentally the Bloch wave group velocity tends to zero.

1-D gratings

How do photonic states in a simple one-dimensional
refractive index grating behave as its modulation depth is
increased? Stop-bands open up around the Bragg conditions
in k-space (the shaded regions in figure 2). Further, the
fringe visibility (the peak-to-peak amplitude divided by
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intensity fringes (high frequency side of PBG) ¥

high index grating planes

3 Probability (i.e. intensity) distributions for
two typical real photonic Bloch waves. The
lower wave has intensity peaks in-phase with
high refractive index regions; since a higher
refractive index implies a shorter effective
wavelength, the fringe pattern matches the
grating periodicity only if the vacuum optical
wavelength is longer. Conversely (upper
wave), the optical frequency must be higher
when the fringes are out-of-phase with the
high index planes. For intermediate values of
frequency, the fringe matching condition
cannot be satisfied by real k-vectors and
hence the waves are evanescent, causing the
stop-band

twice the mean amplitude) inside the stop-band is 1 (thus
preventing power flow across the grating planes) and the
fringe pattern is neither exactly in-phase nor out-of-phase
with the grating. On the stop-band branches, however, the
fringe patterns of the travelling photonic modes are exactly
in-phase or out-of-phase, with visibilities less than 1 (figure
3). As explained above, these intensity patterns determine
the photon probability distributions, so that in-phase
travelling modes experience a higher refractive index on
average than out-of-phase ones. A higher refractive index
implies a shorter effective wavelength; hence, to satisfy the
condition that the fringe pattern should match the
periodicity, the vacuum optical wavelength must be longer
when the fringes are in-phase with the high index grating
planes. Conversely, the optical frequency must be higher
when the fringes are out-of-phase with the high index planes
— as confirmed in figure 1. For intermediate values of
frequency, the fringe matching condition cannot be satisfied
by real k-vectors and hence the waves are evanescent,
causing the stop-band.

As the modulation depth M of the relative dielectric
constant (M = e,/e, where ¢, is the ripple magnitude
and €, the average value) increases (figure 2) the Bragg
condition, normally considered inviolate, becomes uncer-
tain, i.e. the range of total reflection broadens as the stop-
bands grow in width. Consider a grating with a small
number, N, of periods. For M < 1, the frequency
bandwidth is given roughly by v,/N where v, is the optical
frequency at the Bragg condition. As M increases, the
reflectivity rises without any change in bandwidth, until the
reflection per period is so large that practically 100% of the

incident beam is reflected before all the grating periods have
been used. In the limit of very strong modulation, 100% of
the light will be reflected at only one grating period, which
then behaves like a mirror with a commensurately huge
bandwidth. Even before this limit is reached, the band-
width can be a substantial fraction of the optical frequency.
A trade-off exists between the angular and frequency
bandwidths of high reflectivity. Perfect reflection will be
obtained for a single-frequency wave over a finite angular
bandwidth and for a perfectly collimated beam over a finite
range of frequencies. The common multi-layer dielectric
mirror behaves just like this. Within a certain angular and
wavelength range there are no photonic states inside the
multi-layer stack itself; the mirror reflects perfectly
(assuming it is thick enough to preclude photon tunnelling
through to the substrate).

2-D and 3-D PBGs

The conclusion from above is that if one seeks complete
reflection over a large spread of solid angles and over as
wide a range of frequencies as possible, the modulation
depth must be large. What about structures with three-
dimensional photonic band gaps that are complete over 4
steradians? A singly periodic structure clearly cannot forbid
propagation along its grating planes. If, however, other sets
of grating planes are added and an appropriate three-
dimensional crystal structure built up, with a large enough
M, a genuine PBG might appear. Examples (calculated
from a simple two-dimensional scalar model) are given in
figures 4 and 5. (See Ho et al., Leung and Liu, Zhang and

4 Approximate 2-D wavevector diagram of a square
lattice (see 6), including four waves in the Floquet
expansion for the fields, plotted around the origin of
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wavevector space with optical frequency as a
parameter. Modulation depth is M = 0.5, and the band
gap width is ~0.05 of the Bragg frequency. As the
frequency rises the labels increase from 1 to 15; (a)
initially (1-9) the circles grow, coalesce and four
increasingly small circles (the loci of real k-vectors)
appear at 45° to the axes, disappearing at the PBG
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edge when v/v, = 0.78. As the frequency falls further
(b), a point is reached where four small ellipses appear
on the axes, growing in size; this is the upper PBG
edge and occurs at v/vy = 0.83. If M < 0.4, the band
gap ceases to be complete. These patterns replicate
over all k-space. The four red wavevectors in (a) and
(b) are those of the photonic Bloch waves whose .
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5 Same as 4 but for a hexagonal sinusoidal
lattice with M = 0.3, including three
harmonics in the Bloch expansion. As the
frequency rises the labels increase from 1 to
17; (a) initially (1-9) the circles grow,
coalesce and six increasingly small

“triangles’ of real k-vectors appear spaced
60° apart eventually disappearing at the
PBG edge where v/ivy = 0.87; k-space is
then empty of real states; (b) as the
frequency rises further, six small ellipses

x appear shifted 30° relative to the positions of
the triangles; this is the upper PBG edge and
occurs at v/vy = 0.94. Thus the PBG width

is ~0.07 of the Bragg frequency. A
hexagonal geometry produces a PBG more

easily than a cubic. The three red
wavevectors in (a) and (b) are those of
photonic Bloch waves whose spatial
intensity patterns are shown in 7

Satpathy, and Yablonovitch and Gmitter in Further reading
for rigorous treatments of the 3-D case.) The additional
periodicities cause new stop-bands to show up in k-space,
their position depending on the structure. As the modula-
tion depth increases, these extra stop-bands begin to grow
in size, crushing the travelling modes (with real k-vectors)
out of existence until the whole of real k-space is empty
within the PBG frequency range.

At certain points of high symmetry (for example the W
symmetry point in face-centred-cubic lattices), the PBG can
(if the “atomic” shape is also highly symmetrical) be
suppressed regardless of the modulation strength. This
raised a very important issue which could only be clarified
with the help of band theorists. Yablonovitch’s team
originally reported that their structure, consisting of
spherical air cavities in a material of refractive index 3.6,
showed an experimental band gap at microwave frequen-
cies. The theorists demonstrated that this was not possible,
due to the collapse of the PBG at points of high symmetry.
It was at first suggested that imperfections in fabrication
had disturbed the delicate geometrical symmetry at the W-
point, although Yablonovitch later states that his measure-
ment technique had insufficiently high resolution. Working
with the theorists, he realised that the attainment of a PBG
depends crucially on the microscopic shape of the unit cells.
Using a modified drilling technique in which the hole size
was increased so that adjacent holes broke into each other,

unit cells of non-spherical symmetry were produced and a
genuine band gap observed, a result which now agrees with
theory.

Super-resolution

Microscopic field intensity patterns for four selected 2-D
photonic states are given in figures 6 and 7. Although these
pictures illustrate how photons get redistributed into
regions of low and high refractive index, leading to band
gap formation, the simplicity of the model (it includes very
few waves in Bloch’s expansion) means that important
harmonics of the basic spatial periodicity are missing. These
higher harmonics play an important role in the PBG’s
sensitivity to unit cell shape, resolving an interesting
question: since the wavelength is of the same order as the
unit cell dimension, how is it that fine details in the cell
geometry should matter since they are below the Rayleigh
resolution limit, which states that the smallest feature that
light can resolve is half the wavelength? The answer lies in
the Bloch expansion. The higher order wavevectors in this
are many times larger than the average k-vector in the
medium. Since their effective wavelength, given by 27/|k |,
is therefore much shorter than on average in the material,
and since the amplitudes of the higher order plane waves in
the Bloch expansion become large at high modulation
depths, a unique kind of super-resolution occurs. A

6 Field intensity distributions in the 0.6
square case close to the PBG edge,

(a) on the low frequency side of the 04
PBG (see 4a for wavevectors) and (b)

on the high frequency side of the PBG 0.2
(4b). The region at the origin (in the

centre of the plot) is high index. When 0
the light is concentrated in these high
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7 Similar to 6 but for a' hexagonal
lattice, Again the region in the" -
centre of the plot is high index.
(a) The field distribution of a Bloch
. wave on the low frequency side of
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corollary of this is that the exact profile of the periodicity
can then become central to whether a PBG appears; as
shown by Yablonovitch, asymmetries in the microscopic
shape of the “atoms” in the PBG material can upset the
symmetry balance and prevent PBG suppression.

Electrons versus photons

So far we have blithely been assuming that electrons and
photons can be treated as interchangeable. They clearly are
not. Electrons have charge and rest mass while photons
have neither. Electrons obey Fermi~Dirac statistics whereas
photons obey Bose-Einstein statistics, i.e. an unlimited
number of photons can be packed into one optical Bloch
state, whereas the Pauli exclusion principle permits only
two electrons per electronic Bloch state. The governing
time-independent differential equations in each case are:

2
_E Vi + V(b = Ed 0y
2m

for electrons and

—VZE — V(E . VIn{1 + M(r)}) — R*M(r)E = k’E 2)

for photons, where k2 = (w/c)%, scales as the frequency
squared and €, is the mean relative dielectric constant.

V(r) and M(r) describe, respectively, the periodic spatial
variation of the electrostatic potential (for electrons) and
€./€, (for photons). ¥ is the electron wavefunction, E is
the electric field, E, is the total electron energy and m the
electron rest mass.

Now Schrodinger’s equation is scalar, whereas Maxwell’s
is vector in nature and contains an extra term when the
electric field points parallel to the direction of spatial
variation of M(r) (the middle term on the left hand side of
(2)). When the electric fields of all the waves represented
by the Bloch expansion are parallel to each other and to the
reflecting grating planes, strong interference fringes can
always form and significant stop-bands appear. If, however,
the electric fields point out of a reflecting “atomic” plane,
two things can happen that can weaken or prevent the
appearance of a PBG, particularly for the large refractive
index modulation depths. Firstly, at Brewster’s angle (when
the electric field of the reflected wave is perpendicular to
the electric field of the transmitted wave) the reflected
amplitude is zero and the PBG disappears; secondly, only
weak (if any) stop-bands can form when the major pair of
partial waves in the Bloch expansion are orthogonally
polarised. Both problems can be side-stepped by ensuring
that a sufficient number of strong non-coplanar reflecting
planes exists in the crystal structure so that the partial band
gaps created by each set coalesce to cover all 4 steradians.
If one stop-band shrinks to zero in a particular direction,
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the presence of the others will prevent the collapse of the
PBG.

A second striking difference between electrons and
photons concerns their frequency dependence. The total
energy E, of an electron is independent of the potential V
it finds itself in. As E, falls (i.e. the de Broglie wavelength
rises), the kinetic energy T = E, — V can become negative,
at which point the electron is localised. In contrast, as the
photon energy falls (i.e. the optical wavelength increases),
the equivalent terms in the electromagnetic wave equation
scale together, meaning that localisation can never occur in
a homogeneous dielectric. In a perfect metal, on the other
hand, k? is negative, yielding localisation at all frequencies
(so long as €, remains negative). It is interesting to
speculate on the behaviour of photons in the converse of a
dielectric crystal — a metallic crystal. Such a structure could
be formed in a metal by introducing periodically spaced air
cavities, and the result would be the opening up of a
photonic band window (PBW) in the background gap of the
metal at appropriate regions of the spectrum — the opposite
of the photonic band gap that appears in the background
window for a dielectric. In this PBW, certain photonic
states, their periodic field intensities peaking in the
interstices between the metallic sites, would manage to
sneak through without attenuation.

A third major difference, not evident from the equations,
involves Coulomb forces between electrons and the lattice
potential. In the solid state, composite particles such as
excitons, polaritons, magnons and plasmons arise through
these interactions. They are not expected to have any
photonic analogue in PBG structures.

Novel effects

There are, however, a number of novel interactions unique
to PBG structures which have no direct analogue in
electronic band theory. Sajeev John has shown that intra-
gap photon—-atom bound states appear if the PBG material
is doped with a fluorescent species whose electronic
transition energy lies within the PBG. He goes on to
propose mid-gap impurity bands where photons can hop
from site to site and thus enjoy limited mobility at an
otherwise forbidden energy level. These bands have some
properties in common with electron-impurity-bands in
semiconductors.

As the edge of the PBG is approached from below or
above, the group velocity and momentum of the photonic
Bloch waves both tend to zero, i.e. the photon becomes
increasingly localised (see figure 1). Strong resonant
interactions between the stationary lattice and the localised
photons can then occur — in a sense, this is why the stop-
band opens up in the first place. The photons acquire, close
to a band edge, something of a material-like quality. One
consequence of this has been outlined by John, who has
shown that if the electronic gap energy of a radiative
transition is close to a PBG edge, strong coupling between
bound electron and photonic electromagnetic field causes a
novel splitting of the electronic level, akin to the Lamb shift
in quantum field theory.

A related aspect of PBG materials is the possibility,
suggested by Yablonovitch and Gmitter (in collaboration
with Meade and co-workers at MIT), of intra-gap photonic,
rather than electronic, donor/acceptor states. These may be
created by introducing structural defects inside which the
local intra-gap k-vector is real — creating a localised real
photonic state. They differ from the photon—atom bound
states of John in that they are bosonic states, permitting an
unlimited number of photons to be trapped. If such traps

were distributed evenly throughout the PBG material, with
an inter-defect spacing that allowed significant tunnelling
from site to site, diffusive hopping transport of intra-gap
photons would be possible (figure 8). The tunnelling rate
will depend sensitively on the spacing, which suggests that
these media might exhibit large stress-optical effects. Also
for a photon trapped in an intra-gap defect state, zero-point
field fluctuations, which give rise to noise and cannot be
eliminated in free space or in isotropic homogeneous media,
are completely absent. The drawback is that this cannot be
verified experimentally except by breaking the crystal and
thereby eliminating the effect!

Novel materials, radical properties

PBG materials seem set to revolutionise optoelectronics by
making possible the design and creation of a range of new
materials with radical properties. By switching the emphasis
from controlling the electronic environment (altering, for
example, the fluorescence life-time and phonon energies) to
engineering a new photonic environment (altering the
energy—momentum relationship for photons via a PBG), a
world of possibilities, just beginning to be explored, opens
up. Work on PBG materials may eventually result in
semiconductor diode lasers with improved quantum effi-
ciencies, new schemes for frequency up-conversion lasers in
rare-earth doped glasses and crystals, materials with
photonically resonant or anti-resonant optical nonlineari-
ties, and novel photon—electron particles. So far, however,
PBGs have been observed only at microwave frequencies in
FCC structures drilled into commercial high index dielec-
tric. The race is on to demonstrate an optical PBG, perhaps
using the Bellcore scheme based on reactive ion beam
etching of GaAs. The moment when PBG structures are
used — in anger — to control the behaviour of optoelectro-
nic lasing and nonlinear materials is rapidly approaching.
And, perhaps even more exciting, the field is still certain to
turn up further discoveries.
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