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" We model patterns of habitat selection at multiple scales for a bat species of conservation concern. " Fine scale models were constructed,
evaluated and compared with radio-tracking data. " At the broad scale the bats’ distribution is mainly limited by climatic conditions. " At the
fine scale the bats are strongly associated with unimproved grasslands. " Fine-scale models can be used to identify core foraging areas within
species ranges.
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1. Introduction

The importance of scale for understanding ecological pattern
and processes is widely recognised (Levin, 1992), yet conservatio
studies and management practices addressing multiple spatia
scales are rare (du Toit, 2010). Conservation goals are scale
specific, from identifying national-level priority areas to local sit
habitat management, and therefore require different conservatio
planning approaches at different scales (Cabeza et al., 2010). More
over, because ecosystems or populations cannot be describe
adequately at a single scale (Levin, 1992) and because the effec
of environmental variables is scale-dependent (Collingham et a
2000), cross-scale studies are necessary for identifying species
habitat relationships and guiding conservation planning (Gra
et al., 2005; Lomba et al., 2010).

Mapping the spatial distribution of species is an important as
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mportant for understanding ecological processes and guiding conservatio
g a range of scales are rare. Habitat suitability modelling has been used trad
le patterns of species distribution but can also be applied to address conse
. We studied the ability of presence-only species distribution modelling t
selection at broad and fine spatial scales for one of the rarest mammals i
ed bat (Plecotus austriacus). Models were constructed with Maxent usin
a from across the UK (excluding Northern Ireland) and fine-scale radio-track
colony. Fine-scale model predictions were evaluated with radio-trackin

distant colony, and compared with results of traditional radio-tracking dat
tional analysis of habitat selection). Broad-scale models indicated that winte
pitation and land cover were the most important variables limiting the distr
ed bat in the UK. Fine-scale models predicted that proximity to unimprove
suburban areas determine foraging habitat suitability around maternity colo
nalysis also identified unimproved grasslands as the most preferred foragin
ociation with unimproved lowland grasslands highlights the potential impo
ural practices in the past century for wildlife conservation. Hence, multi-sca
ool for identifying conservation requirements at the fine landscape level tha
nservation management practices.

� 2011 Published by Elsevier Lt

endangered species, species reintroduction programs, ecosystem
restoration, and population viability analysis (Hirzel et al., 2001
Ecological modelling techniques have been mainly used to stud
broad-scale patterns of species distribution despite their potentia
to identify fine-scale habitat suitability for endangered specie
(Fernandez et al., 2003). Only recently have studies applied mode
ling at multiple-scales to address hierarchical conservation need
within and across species (e.g., Cabeza et al., 2010).

Because absence data are often not available or are unreliabl
modelling approaches that require presence-only data are particu
larly valuable (Hirzel et al., 2002). Recently, Maxent, a presence
only machine learning modelling approach (Phillips et al., 2006
has become the most commonly used species distribution mode
ling technique because it has been shown repeatedly to outper
form other presence-only, as well as presence/absence modellin
techniques (Elith et al., 2006; Hernandez et al., 2006). Maxent
especially advantageous when the amount of occurrence data
limited, as is the case with many rare and cryptic species (Wis
et al., 2008).

Predictive distribution modelling is especially relevant for iden
tifying the conservation requirements and potential distribution o
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82 bats, because their nocturnal nature, wide home ranges, and prob-
83 lems with identification, render it difficult to conduct comprehen-
84 sive mapping of distributions (Jaberg and Guisan, 2001; Greaves
85 et al., 2006). Despite their high abundance and wide geographic
86 distribution, many bat species have undergone substantial popula-
87 tion declines throughout their range in the past century, primarily
88 due to human population expansion and the associated increased
89 demand for land and food (Mickleburgh et al., 2002). However,
90 while bat roosts are protected by law in many European countries,
91 foraging habitats rarely are (Racey, 2009). The drive to maximise
92 food production in the past 60 years has resulted in substantial
93 changes in farming practices with detrimental effects on biodiver-
94 sity at all trophic levels (Boatman et al., 2007). Bats are likely to be
95 particularly sensitive to the loss of important landscape elements
96 through the removal and degradation of hedgerows and tree lines
97 (Walsh and Harris, 1996; Boughey et al., 2011), habitat fragmenta-
98 tion (Bright, 1993), and the decline of arthropod prey populations
99 as a result of agricultural intensification (Wickramasinghe et al.,

100 2004; Conrad et al., 2006).
101 We studied the application of species distribution modelling to
102 predicting the availability of suitable habitats for species of conser-
103 vation concern across spatial scales, from factors that limit distri-
104 bution at the broad scale to the fine-scale selection of foraging
105 habitats within the potential distribution. Because of the scale-
106 dependent nature of species’ responses to ecological parameters,
107 it is important to incorporate the appropriate environmental vari-
108 ables for the specific model scale (Graf et al., 2005). While climatic
109 variables, like average seasonal temperatures and precipitation,
110 vary considerably across broad spatial scales, they do not vary suf-
111 ficiently at the finer, colony-level, scale to affect patterns of habitat
112 selection. In addition, the resolution of many available eco-geo-
113 graphical maps (like geology and human population density) is
114 too coarse to be included in fine-scale models.
115 As a case study, we used one of the rarest mammals in the UK,
116 the grey long-eared bat, Plecotus austriacus (Fischer, 1829). This lo-
117 cally rare but globally common species is widespread in southern
118 Europe but extremely rare in countries at the northern edge of
119 its distribution (Juste et al., 2008). The UK population is restricted
120 mainly to the southern coast of England and appear to be in decline
121 because several colonies have gone extinct in the past few decades
122 (Harris et al., 1995). Not only is this species rare, but it cannot be
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144recorded). The UK is at the north-western edge of the grey long-
145eared bat’s distribution (Spitzenberger et al., 2006). For the fine-
146scale foraging habitat suitability study, study sites were located
147in areas predicted by the broad-scale model as highly suitable.
148We radio-tracked grey long-eared bats from two maternity colo-
149nies located approximately 160 km apart, on the south coast of De-
150von (50�30N; 3�30W) and the Isle of Wight (50�40N; 1�20W; Fig. 1).
151Both study sites were dominated by improved pasture (Devon:
15238%, Isle of Wight: 37%) and arable land (22%, 32%), but included
153also semi-natural habitats including broadleaved woodland (9%,
1548%), riparian vegetation (both 3%), and semi-unimproved meadow
155and marsh (3%, 11%).

1562.2. Modelling procedure

157We used presence-only species distribution modelling (Maxent)
158to predict areas that contain suitable habitats for the grey long-
159eared bat in the UK (broad-scale model, resolution 30 arc seconds,
160�1 km2) and within the maternity colony ranges (fine-scale model,
161resolution 100 m2).

1622.2.1. Broad spatial scale
163For the UK model we used distribution locations with a resolu-
164tion of 1 km2, obtained from the National Biodiversity Network
165(http://data.nbn.org.uk/), Dorset Environmental Records Centre,
166National Trust, and the Bat Conservation Trust. Only records from
167the past 30 years (1980–2010) were included in the model. To
168avoid pseudoreplication we removed duplicate occurrence points,
169using only one location record per 1 km2 (N = 66). Models were
170generated using eco-geographical variables that were deemed to
171be ecologically relevant based on prior knowledge of the biology
172and annual activity cycle of temperate bats. All variables had a spa-
173tial resolution of 1 km2. The following variables were included in
174the models: spring, summer and winter temperatures; tempera-
175ture and precipitation seasonality (Bioclim variables that measure
176the extent of seasonal variability); annual and summer precipita-
177tion; altitude (WorldClim, http://www.worldclim.org); land cover
178(Land Cover map 2000, Centre of Ecology and Hydrology; reclassi-
179fied into nine classes; Supplementary 1); geology (British Geologi-
180cal Survey, http://www.bgs.ac.uk/; reclassified into 23 classes);
181human population density (LandScan 2008 Global Population
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equately detected and identified acoustically due to its low
tensity echolocation calls and the presence of a sympatric cryptic
ecies (Plecotus auritus) with similar calls (Russo and Jones, 2002).
erefore, the conservation of the grey long-eared bat can espe-
lly benefit from the application of ecological modelling tech-

ques. Lack of information on behaviour and ecological
quirements has hampered the development of conservation
anagement plans for the grey long-eared bat (Dietz et al., 2009).
This study aims to address this lack of knowledge and develop a

ethod that will allow the identification of potential foraging
ounds within the suitable range of populations of conservation
ncern. Our main objectives are: (1) to determine the effect of
vironmental variables on species distribution and habitat use
different spatial scales; (2) to evaluate the use of species distri-
tion modelling to identify suitable foraging habitats in unstud-

areas; and (3) to identify the conservation requirements of
ey long-eared bats across spatial scales.

Methods

. Study area

Broad-scale habitat suitability was modelled for the whole of
e UK, excluding Northern Ireland (where the species was never
ease cite this article in press as: Razgour, O., et al. Using multi-scale modelling to
ng-eared bat as a case study. Biol. Conserv. (2011), doi:10.1016/j.biocon.2011.0
tabase, http://www.ornl.gov/sci/landscan/); and night light pol-
tion (http://www.ngdc.noaa.gov/dmsp/). Only variables that
ntributed to the model >1% were included in the final model.

.2. Fine spatial scale
Fine-scale foraging habitat models were generated for the two

aternity colonies, using the radio-tracking datasets (Section
). Graf et al. (2005) found that the best scale model corresponds
the size of an individual’s annual home range. In our study, indi-
ual bats could only be radio-tracked for a maximum of two
eks (the battery life of the small transmitters). As a result, the

lony range, which includes the combined location fixes of all
dividual bats radio-tracked throughout the majority of the an-
al active period (April–September), was used to represent the
e of the annual home range.
To obtain presence locations we overlaid in ArcGIS (version 9.2,

RI) the core foraging areas (Section 2.3) of all radio-tracked bats.
e resolution of the model was set at 100 m2, corresponding to
e resolution of the cluster analysis used to generate the core for-
ing areas. To avoid pseudoreplication we removed duplicate
currence points resulting from overlapping core foraging areas
tween bats or several location points from the same bat, select-
g one location point from each 100 m2 cell. To test the ability of
ecies distribution models to identify potential suitable foraging
ounds around maternity colony roosts in new locations, only
predict habitat suitability for species of conservation concern: The grey
8.010
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presence locations from the Devon colony were used to build th
model. The model extrapolation over the Isle of Wight study sit
was tested using the Isle of Wight core foraging area location
identified through radio-tracking.

Eco-geographical variables were derived from fine-scale habita
studies and aerial photographs (Landmap Spatial Discovery, Un
versity of Manchester/University College London), and manipu
lated in ArcGIS to extract distance measures at a 100 m spatia
resolution. The following variables were used: land cover typ
(Arable, Improved grasslands, Semi-unimproved meadow an
marsh, Broadleaved woodland, Conifer plantation, Riparian vegeta
tion, Scrub, Open water, and Suburban) and continuous distanc
(m) to each land cover type.

2.2.3. Model evaluation
Model fit was evaluated based on the Area Under the Curv

(AUC) of the Receiver Operator Characteristics (ROC), which mea
sures the model probability of correctly distinguishing presenc
from random locations (Phillips et al., 2006). Good model perfor
mance was considered when training and test AUC scores wer
higher than 0.75, indicating reasonable to high model discrimina
tion ability (Pearce and Ferrier, 2000; Elith et al., 2006).

Models were run using the default Maxent settings, with 100
instead of 500 iterations. We tested for the effect of modifyin

Fig. 1. Habitat suitability map for the grey long-eared bat in the UK based on the M
study sites (Devon and the Isle of Wight) are enlarged with the colony roost ma
Please cite this article in press as: Razgour, O., et al. Using multi-scale model
long-eared bat as a case study. Biol. Conserv. (2011), doi:10.1016/j.biocon.2
the regularisation betamultiplier value on model complexity an
reducing over-parameterisation by running models with regular
sation values ranging between 1 and 10. The regularisation beta
multiplier affects the focus or fitting of the output distribution
with larger values giving more generalised, spread out prediction
We used the software ENMtools (version 1.3; Warren et al., 2010
Warren and Seifert, 2011) to select the most parsimonious, best fi
model based on Akaike’s Information Criterion (AIC) scores. W
also used ENMtools to test for multicollinearity in the form of hig
correlation between model variables. If two variables were foun
to be highly correlated (R2 > 0.75), the variable that was deeme
to be less relevant in an ecological context was removed from
the model to test whether multicollinearity affected mode
predictions.

We ran 20 replications of each model, each time 75% of loca
tions were randomly selected (random seed) to train the mode
and the remaining 25% to test the model predictions. The 10th per
centile (the value above which the model classifies correctly 90% o
the training locations) was selected as the threshold value fo
defining suitable habitats. This is a conservative value that is com
monly used in species distribution modelling studies (e.g., Rae
et al., 2009; Rebelo and Jones, 2010).

To evaluate the accuracy of the extrapolation of the fine-scal
model to new locations, we followed the method suggested b

nt model predictions. Black represents suitable areas and light grey unsuitable. The tw
with a white star.
ling to predict habitat suitability for species of conservation concern: The grey
011.08.010
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253 Boyce et al. (2002) and modified by Klar et al. (2008). The method
254 relates model predictions to probability of habitat use based on
255 presence only data: in this case, radio-tracking locations from the
256 Isle of Wight that were not used in model generation. Model pre-
257 dictions were plotted on a 100 m2 grid map of the study area, rank-
258 ing suitability values into seven categories that covered relatively
259 equal amounts of area. We calculated the proportion of radio-
260 tracking locations within each probability category and divided
261 them by the proportion of available area to obtain area-adjusted
262 use frequencies. These frequencies were correlated with the suit-
263 ability rank of each category. High positive correlation scores indi-
264 cate high model accuracy because they suggest that areas with
265 higher suitability based on model predictions are indeed used
266 more often in relation to their availability (Klar et al., 2008).

267 2.3. Radio-tracking

268 During April–September 2009 and 2010 we radio-tracked 20
269 grey long-eared bats (non-reproductive females (N = 8), lactating
270 females (N = 6), adult males (N = 4), and sub-adults (N = 2)) from
271 maternity colonies in the Devon and Isle of Wight study areas
272 (Supplementary 2). Bats were captured under license from Natural
273 England and fitted with radio transmitters weighing 0.35 g (PIP3,
274 Biotrack, UK).
275 Individual bats were radio-tracked throughout the whole night,
276 for an average of three nights (Supplementary 2), using
277 triangulation (Bontadina et al., 2002) and the continuous tracking
278 method (Jones and Morton, 1992) with ‘homing in’ on a single
279 bat to attain the closest proximity and most accurate location
280 possible. We used Lotek radio-receivers (Models SRX_400,
281 STR_1000, Lotek Engineering, Canada) connected to three-element
282 Yagi antennas (Biotrack, UK) to locate tagged bats. Data on hourly
283 night weather conditions (ambient temperature (Ta), rainfall and
284 wind speed) were obtained from local weather stations within a
285 m
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317covariates. Data that did not meet the assumptions of normality
318or homogeneity of variance were square root transformed. The best
319fit models were selected based on their AIC value.

3203. Results

3213.1. Broad-scale habitat suitability modelling

322The most parsimonious broad-scale habitat suitability model
323based on AIC scores included the default Maxent regularisation va-
324lue (betamultiplier = 1). The model had a very good fit (mean AUC-
325train = 0.994; mean AUCtest = 0.984), but it extrapolated little
326be
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aximum of 13 km from the study area (Bishopsteignton http://
w.canigou.co.uk/bishopsteignton.htm, and Newport weather

tions http://www.isleofwightweather.co.uk).
To reduce autocorrelation and lack of independence we only in-
ded in the analysis location points recorded at 10–15 min inter-

ls, a sufficient time for most radio-tracked bats to cross their
tire home range. Moreover, we omitted poor resolution locations
stimated accuracy range greater than 100 m). Using Ranges 7
naTrack Ltd., UK) we generated 100% Minimum Convex Polygons
CPs) to represent the seasonal home range of each individual bat
d of the colony as a whole. To estimate core foraging areas we
ed cluster analysis to remove outlying fixes and create 85% clus-
rs in areas where the majority of the night activity was concen-
ted (Davidson-Watts et al., 2006). To account for potential errors
localisation, a 100 m buffer was added around each location fix
en performing the cluster analysis.
To study patterns of fine-scale foraging habitat selection we

ed compositional analysis (Aebischer et al., 1993) to compare
e proportion of habitats used by each bat to habitat availability
the study area. We divided each colony range into the same nine
minant land cover types used in the fine-scale Maxent model

ection 2.2.2).
Linear mixed-effect models (computed in SPSS, version 16, Illi-

is) were used to analyse the effect of climatic variables and
productive condition on bat activity (time spent foraging and
ght roosting per night, and the distance the bat flew throughout
e night). Because activity measures did not differ between the
o colonies, data for the two colonies were pooled together to in-
ase the sample size. Models were constructed using individual

ts as subjects (random factor), radio-tracking nights as the re-
ated variable, reproductive condition or season as fixed factors,
d night weather conditions (Ta, rainfall and wind speed) as the
ease cite this article in press as: Razgour, O., et al. Using multi-scale modelling to
ng-eared bat as a case study. Biol. Conserv. (2011), doi:10.1016/j.biocon.2011.0
yond the current known distribution of the grey long-eared
t in the UK. The majority of predicted suitable areas were on
e south coast of England, where most currently known locations
cur. An exception is the predicted suitable areas in the southwest

of Wales, an area where grey long-eared bats have never been
corded (Fig. 1).
Although 12 eco-geographical variables were included in the

odel, the first three variables (summer precipitation, maximum
uary temperature, and annual precipitation) contributed to-
le on its own was maximum January temperature, whereas the
riable containing the most unique information was land cover,
spite contributing only 6% to the overall model. Based on the
odel’s predictions grey long-eared bats have a high probability
occurring in grassland areas with relatively low summer precip-
tion (150–180 mm) and high January temperature (>6.5 �C)

upplementary 3). The same pattern, both in terms of model pre-
ctions and contributing variables, was maintained when highly
rrelated variables (R2 > 0.75; annual precipitation, average
ring temperature and altitude) were removed to reduce multi-
llinearity. However, this model had a lower discrimination abil-

(AUC = 0.991) and was less parsimonious (higher AIC score)
an the original model (DAIC = 91.7).

. Fine-scale activity and habitat selection based on radio-tracking

.1. Factors affecting night activity patterns
The most parsimonious model for all night activity variables,

sed on the AIC score, was a factorial design including reproduc-
ted bat foraging time (F2,27 = 4.4, P = 0.046), night roosting
e (F2,20 = 9, P = 0.0016) and total night travelling distance

,25 = 10.8, P < 0.001). Lactating females foraged for longer, night
osted for longer and travelled further distances than non-repro-
ctive females (pairwise comparisons P < 0.05; Table 1). Although
ly foraging time was affected by Ta (F1,27 = 6.5, P = 0.017), all
her variables were affected by the interaction between Ta and
productive condition. Regression analysis, using one data point
r bat (night of minimum Ta) to avoid pseudoreplication, confirms
e pronounced positive relationship between bat foraging time
d Ta (R2 = 0.7, F1,18 = 41.62, P < 0.001; Fig. 2).

.2. Patterns of foraging habitat selection
Foraging areas were located up to 5 km away from the mater-

ty colony roost. Individual core foraging clusters in both study
es had a significantly different habitat composition from avail-
le habitats in individual home ranges and habitat use was not
ndom (Devon: weighted Wilk’s Lambda – K = 0.01, v2 = 50,
= 8, P < 0.0001; Isle of Wight: K = 0.001, v2 = 54, df = 6,
0.0001). Patterns of foraging habitat selection were remarkably
ilar between the two study sites. Grey long-eared bats pre-

red meadows, riparian vegetation and broadleaved woodland,
d avoided arable fields, conifer woods and open water (the last
predict habitat suitability for species of conservation concern: The grey
8.010
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376 two categories were only present in Devon). This is despite the
377 high proportion of arable land within both colony ranges (Devon
378 22%, Isle of Wight 32%). The two colonies only differed in the selec-
379 tion of suburban areas by Devon bats and the avoidance of im-
380 proved grassland by Isle of Wight bats (Fig. 3).
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404erate the model, 74% of core foraging locations identified through
405radio-tracking were in areas predicted by the model as suitable
406habitats (Fig. 4). In addition, there was a highly significant positive
407correlation between ranked model predictions (Supplementary 5)
408and area adjusted frequency of use based on the Isle of Wight
409radio-tracking test locations (Spearman Rank Correlation:
410R = 0.96, N = 7, P < 0.001), which suggests a very high predictive
411accuracy of the model.

4124. Discussion

413This study investigated the application of species distribution
414modelling to predicting patterns of habitat selection at broad and
415fine spatial scales, using the appropriate eco-geographical vari-
416ables for the specific model scale and application. We found that
417at the broad spatial scale the UK distribution of the grey long-eared
418bat is primarily limited by unsuitable climatic conditions, while at
419the fine scale, within its potential range, the grey long-eared bat
420appears to be limited by the availability of its preferred foraging
421habitats. Similarly, Lomba et al. (2010) showed that while climatic
422variables determine the potential regional range of a rare plant
423species, at the local scale land use related variables have a stronger
424effect on distribution patterns. This corresponds to cross species
425patterns of rarity, in which climatic variables tend to be the most
426limiting factor over the entire range of the species, while at finer
427spatial scales responses to climate are often masked by responses
428to local environmental variables such as soils, terrain, and habitat
429
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Table 1
Summary of nocturnal activity and habitat use data for radio tracked grey long-eared bats in Devon and the Isle of Wight. Travel distance is the cumulative distance a bat flew
throughout the night (from the day roost to different foraging grounds and back to the day roost), while maximum distance to foraging areas refers to the distance between the
colony roost and the furthest core foraging area used by the bat. Data are presented as means (±SD).

Variables Devon colony Isle of Wight colony Non-reproductive females Lactating females Males

N 12 8 7 6 4
Emergence (mins after sunset) 32 (±10) 43 (±12) 32 (±5) 36 (±16) 39 (±6)
Foraging time (min) 358 (±104) 341 (±137) 235 (±108) 418 (±44) 364 (±34)
Night roosting (min) 43 (±27) 61 (±36) 30 (±18) 64 (±41) 56 (±30)
Travel distance (km) 8.4 (±4) 11 (±5) 4.3 (±3) 12 (±2) 12.3 (±6)
Maximum distance to foraging areas (km) 3.1 (±1) 3 (±1) 2.1 (±1) 3.3 (±1) 4 (±1)
Home range (km2) 37.2 17.4 2.2 (±2) 6 (±0.5) 6.1 (±3)

Fig. 2. The increase in grey long-eared bat foraging time with the increase in
minimum night ambient temperatures (Foraging time (min) = 54.54 + 27.73 (min-
imum ambient temperature �C)). Black circles represent bats from the Devon colony
(2009) and white circles bats from the Isle of Wight (2010).
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3.3. Fine-scale habitat suitability modelling

The model with the best performance based on AIC scores had
mean training AUC value of 0.81 (AUCtest = 0.79), and a betamult
plier regularisation value of 2 (and therefore less localised predic
tions than the default setting model). Of the six habitat variable
included in the model, the most important variables were distanc
to meadows and distance to suburban centres, contributing to
gether 50%. Distance to meadows was also the most informativ
variable on its own and contained the most information that is ab
sent from other variables. Bats had a high probability of foraging i
areas that are less than 200 m away from meadows and are eithe
adjacent to suburban centres or at a distance of 1.3–1.8 km awa
from them. Of the land cover types, as with the results of the com
position analysis, bats used meadows, riparian vegetation an
scrub more than expected by chance, but had the lowest probabi
ity of occurring in arable land. None of the variables used in th
fine-scale model were correlated with one another.

3.3.1. Model evaluation using test radio-tracking data
Both in the Devon and Isle of Wight study sites Maxent pre

dicted additional suitable foraging grounds to those identifie
through radio-tracking, yet the great majority of radio-trackin
core foraging locations fell within areas identified as suitable b
the model. Although data from Isle of Wight were not used to gen
Please cite this article in press as: Razgour, O., et al. Using multi-scale model
long-eared bat as a case study. Biol. Conserv. (2011), doi:10.1016/j.biocon.2
type (Gaston, 1994).

4.1. Role of climatic variables

The most important climatic variables limiting the broad-scal
distribution of the grey long-eared bat were winter temperatur
and summer precipitation. Insectivorous bats in the UK arouse fre
quently from winter hibernation to feed when higher outside tem
peratures signal increased food availability (Hays et al., 1992; Par
et al., 2000). Winter insect activity increases with increasing tem
peratures (Williams, 1951) because the minimum temperatur
threshold for flight activity in many insects exceeds 8 �C (Taylo
1963). It has been suggested previously that the survival of th
grey long-eared bat at the northern edge of its range depends o
a sufficient supply of flying insects during warm winter evening
to compensate for the depletion of fat stores due to frequent arous
als from hibernation (Stebbings, 1970).

Rainfall, on the other hand, has a particularly strong effect o
insect activity in the summer, and variation in rainfall and min
mum temperature explains more than 66% of the variation in in
sect activity over summer in England (Williams, 1951). Very we
summer conditions are associated with lower reproductive succes
in aerial insectivorous bats (Burles et al., 2009) because reduced in
sect availability can leave lactating females unable to satisfy the
increased energetic demands (Kurta et al., 1989). Hence, whil
ling to predict habitat suitability for species of conservation concern: The grey
011.08.010
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452 winter temperatures may be a strong determinant of grey long-
453 eared bat overwinter survival, summer precipitation may affect
454 reproductive success.
455 At the fine scale, climatic factors, and in particular temperature,
456 also strongly affected the nocturnal activity of grey long-eared
457 bats, with foraging activity reduced dramatically as temperatures
458 dropped below 6 �C (Fig. 2). This relationship between foraging
459 time and temperature is probably the result of increased foraging
460 costs with reduced prey availability below 10 �C (Burles et al.,
461 2009). Increased foraging time and night travelling distance in lac-
462 tating females, despite longer night roosting periods, can be ex-
463 plained by their greater energetic demands (Kurta et al., 1989).

464 4.2. Role of habitat variables

465 Land cover was identified as an important variable affecting the
466 broad-scale distribution of the grey long-eared bat. Grassland was
467 the most favoured habitat type both at broad and fine spatial
468 sc
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Fig. 3. Selection of core foraging areas by radio-tracked bats in Devon (a) and the Isle of Wig
percent area ± SE) within individual bat home ranges (individual bat MCPs) with used ha
clusters). Habitat types are ranked based on their extent of use relative to availability, from
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Pl
lo
ales. However, only at the finer resolution we were able to distin-
ish between improved and unimproved grasslands because
any unimproved fields are too small to be accurately classified
the coarse 1 km2 land cover map.
The strong selection of unimproved meadows and marshes

obably relates to their high diversity and abundance of Lepidop-
ra and other insects (Rands and Sotherton, 1986; Di Giulio et al.,
ease cite this article in press as: Razgour, O., et al. Using multi-scale modelling to
ng-eared bat as a case study. Biol. Conserv. (2011), doi:10.1016/j.biocon.2011.0
01). In contrast, the avoidance of arable land and conifer woods,
en present, may reflect the low abundant and diversity of insect
these habitat types (Winter, 1983; Robinson and Sutherland,
02). Radio-tracking also allowed the identification of other
portant foraging habitats, including riparian vegetation and
oadleaved woodland, two important foraging habitats for insec-
orous bats in general (e.g., Bontadina et al., 2002; Smith and
cey, 2008). However, unlike its sympatric cryptic sister species,
e brown long-eared bat, that is primarily associated with decid-
us woodlands (Entwistle et al., 1996), the grey long-eared bat
ly used woodlands extensively when ambient temperatures
re low or during heavy rainfall (O. Razgour, personal
servations).
The fine-scale Maxent model showed that proximity to unim-

oved grasslands and distance to suburban areas were the most
portant variables predicting foraging habitat suitability. Dis-

nce to suburban areas followed a bimodal pattern of selection,
rresponding on the one hand to the tendency of lactating bats
forage near the vicinity of the maternity roost (Henry et al.,
02), and on the other hand to the selection of more rural foraging
bitats away from suburban centres. Semi-natural habitats within
ban areas can offer important foraging grounds for bats when the
rrounding landscape is dominated by intensive agriculture
ehrt and Chelsvig, 2003), or in this case also when bats roost
buildings within suburban areas.

ht (b) based on habitat composition analysis, comparing available habitats (mean
bitats (mean percent area ± SE) within individual bat core foraging areas (85%

most preferred habitat on the left to least used on the right.
predict habitat suitability for species of conservation concern: The grey
8.010
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4.3. Evaluation of modelling approach

Modelling habitat suitability, based on presence only data, ma
be problematic for species at the edge of their distribution, wher
environmental conditions represent only a marginal part of th
species’ fundamental niche, and therefore most individuals liv

Fig. 4. Habitat suitability maps for grey long-eared bats in the Devon (a) and Isle
Wight (b) study sites based on Maxent model predictions. Location points from th
Devon colony were used to construct the model and extrapolate to the Isle of Wig
study site, while location points from the Isle of Wight were used to test the mod
extrapolation in subsequent analysis. Black represents suitable areas and light gre
unsuitable. White circles denote core foraging areas identified through radi
tracking.
Please cite this article in press as: Razgour, O., et al. Using multi-scale model
long-eared bat as a case study. Biol. Conserv. (2011), doi:10.1016/j.biocon.2
in sub-optimal conditions (Braunisch et al., 2008). Although th
UK is at the edge of the grey long-eared bat’s distribution, the prin
cipal limiting variables identified by the broad-scale Maxent mode
appear to be relevant across its range. In central and souther
Europe the grey long-eared bat is commonly associated with grass
lands and open landscapes located in lowlands or lower elevation
which experience higher ambient temperatures (Horáček, 1975
Benda and Ivanova, 2003).

Little extrapolation beyond the currently known distributio
may reflect the intensive surveying of bats in the UK, which result
in relatively complete distribution maps. Beyond that, lack of loca
tion records from south-west Wales may be the result of barriers t
colonisation (Rossiter et al., 2000) despite potentially suitable con
ditions occurring there.

Fine-scale habitat suitability models predicted the location o
foraging habitats successfully in the test study site, and reveale
similar patterns of foraging habitat selection as traditional meth
ods of radio-tracking data analysis. Beyond the high extrapolatio
ability, the combined radio-tracking and modelling approach a
lowed the inclusion of distance variables, which refined pattern
of foraging habitat selection. Distance constraints can improv
the accuracy of species distribution model predictions becaus
they account for dispersal ability and spatial autocorrelation o
environmental variables (Allouche et al., 2008).

4.4. Conservation implications

Grey long-eared bat foraging grounds were located up to 5 km
away from the colony roost, and therefore local-scale conservatio
efforts should focus on enhancing the extent of unimproved grass
lands and well-developed riparian vegetation within a 5 km radiu
around known maternity roosts. Other bat species may requir
conservation management at wider radii to satisfy their foragin
habitat use demands (e.g., Almenar et al., 2009).

Extensive application of inorganic fertilisers, a switch to silag
cultivation and increased grazing intensity led to the loss of mor
than 92% of unimproved lowland grasslands in England (Fulle
1987; Vickery et al., 2001). This decline is especially concerning g
ven the strong association of grey long-eared bats with meadow
and their minimal use of arable fields and improved grassland
Within the agricultural landscape mosaic, grey long-eared bat
tended to use more natural habitats like field margins, hedge
and scattered trees (O. Razgour, personal observations). Non
cropped habitats are an important component of between-fiel
habitat heterogeneity and connectivity, and are associated wit
the maintenance of farmland biodiversity across trophic leve
(Benton et al., 2003). Scattered trees in particular, have been iden
tified as keystone elements in anthropogenically-disturbed land
scapes (Manning et al., 2006), and offer important foragin
habitats for insectivorous bats (Lumsde and Bennet, 2005). How
ever, agricultural intensification and mechanisation increases fiel
and farm sizes, resulting in extensive removal of hedgerows an
loss of field boundaries (Robinson and Sutherland, 2002).

Less intensive farming practices not only promote semi-unim
proved grasslands but also increase the proportion of non-croppe
habitat elements in the agricultural landscape (Critchley et a
2003). Hence, at the broader, national-scale the conservation an
long-term survival of grey long-eared bats and other UK bat spe
cies may depend on the implementation of such farming practice
This conclusion is supported by studies showing that the activit
and species richness of bats and their prey are higher on organ
farms (Wickramasinghe et al., 2004), and that the abundance an
species richness of moths increases following the implementatio
of agri-environmental schemes (Taylor and Morecroft, 2009).

The use of multi-scale models allowed us to identify conserva
tion requirements at the fine landscape level that can guid
ling to predict habitat suitability for species of conservation concern: The grey
011.08.010
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Pl
lo
tional-level conservation management practices. Despite the
portant role of broad-scale conservation studies in identifying

eas in need of conservation investment, they cannot provide suf-
ient information to direct conservation action (Cabeza et al.,
10). In this study we demonstrated that habitat suitability mod-
ing at both broad and fine spatial scales can be used in combina-
n as important conservation tools, not only to predict potential

stribution, but also to identify important foraging grounds for
ecies of conservation concern. This modelling approach is partic-
arly suitable for rare and elusive species that cannot be easily re-
rded or caught at their foraging grounds.
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