Evolutionary social and biogeophysical changes in the Amazon, Ganges-Brahmaputra-Meghna and Mekong deltas

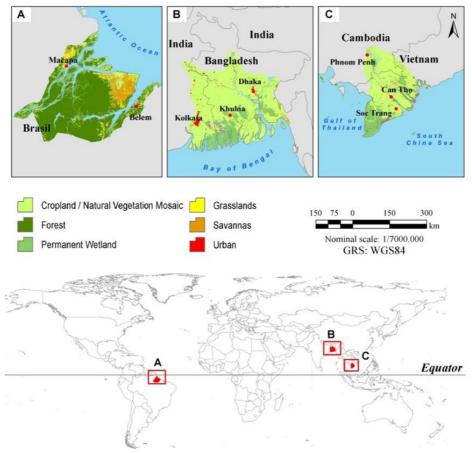
<u>de Araujo Barbosa, C.C.</u>¹, Dearing, J.A², Szabo, S.³, Hossain, M.S.², Nhan, D.K.⁴, Binh, N.T.⁴, Matthews, Z.³

¹Global Environmental Change and Earth Observation Research Group, Geography and Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom. ²Palaeoecological Laboratory, Geography and Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom. ³Social Statistics and Demography, University of Southampton, Southampton SO17 1BJ, United Kingdom. ⁴Mekong Delta Development Research Institute, Can Tho University, Viet Nam.

Abstract

Policy-making in social-ecological systems increasingly looks to iterative, evolutionary approaches that can address the inherent complexity of interactions between human wellbeing, provision of goods and the maintenance of ecosystem services. Here, we show how the analysis of available time-series in tropical delta regions over past decades can provide important insight into the social-ecological system dynamics in deltaic regions. The paper provides exploratory analysis of the recent changes that have occurred in the major elements of three tropical deltaic social-ecological systems, such as demography, economy, health, climate, food, and water. Timeseries data from official statistics, monitoring programmes and Earth observation data are analysed to explore possible trends, slow and fast variables, and observed drivers of change in the Amazon, Ganges-Brahmaputra-Meghna and Mekong deltas. In the Ganges-Brahmaputra-Meghna delta zone, increasing gross domestic product and per capita income levels since the 1980s mirror rising levels of food and inland fish production. In contrast, non-food ecosystem services, such as water availability, water quality and land stability appear to be deteriorating. In the Amazon delta, natural and anthropogenic perturbations are continuously degrading key ecosystem services, such as carbon storage in biomass and soils, the regulation of water balance, and the modulation of regional climate patterns. In the Mekong delta, rapid economic development, changing land use practices and salinity intrusion, are progressively putting more pressure on the delivery of important provisioning services, such as rice and inland aquaculture production, which are key sources of staple food, farm incomes and export revenue. Observed changes in many key indicators of ecosystem services point to a changing dynamic state and increased probability of systemic threshold transformations in the near future.

Keywords: Socio-ecological systems, Deltas, Amazon, Ganges-Brahmaputra-Meghna, Mekong, Dynamic Principal Component Analysis.


1. Introduction

Deltas are economic and environmental hot spots, home to a significant proportion (>500 million) of the world population (Ericson *et al.* 2006) and sheltering rich and biodiverse ecosystems (Bianchi and Allison 2009). The rivers that flow through the deltas are an important source of fresh water and nutrients and create ideal environmental conditions for food production (e.g. agriculture, fish farming and aquaculture production) and the support of biodiversity (Syvitski 2008; Seck *et al.* 2012; Kuenzer and Knauer 2013; Wong *et al.* 2014). The increasing pace of human development in coastal deltas over the past five decades has strained environmental resources and produced extensive economic and sociocultural changes in deltas (Duval-Diop and Grimes 2005; Kuenzer and Renaud 2012; Ernoul and Wardell-Johnson 2013). Deltaic regions all over the world are changing rapidly due to human actions (e.g., pollution of water and sediment flow reduction/increase), climatic variability (e.g., droughts and sea level

rise), and resource exploitation (e.g., mining, groundwater exploration and hydrocarbon extraction) (Kuenzer and Renaud 2012; Holgate *et al.* 2013; Restrepo 2013; Ibanez *et al.* 2014; de Araujo Barbosa *et al.* 2016b).

Changes in average weather conditions in deltaic regions strongly influence important physical and chemical properties within the ecosystems (Tsai *et al.* 2005; Morrison *et al.* 2006; Larsen *et al.* 2011). Extreme drought and rainfall peaks affect sediment shedding from the hinterland, water salinity, abundance of photosynthetic organisms, turbidity load, flood level, nutrient recycling and biological productivity, with strong potential effects on supporting, provisioning, cultural and regulatory ecosystem services (Dearing and Jones 2003; Naidoo *et al.* 2008; Maya *et al.* 2011; Hinderer 2012; de Araujo Barbosa *et al.* 2015). Thus, deterioration of deltas will cause reduction of important ecosystem services and increase the susceptibility of these areas to extreme climatic events (Nijssen *et al.* 2001; Aerts *et al.* 2006; Frappart *et al.* 2006; McMullen *et al.* 2009; van Slobbe *et al.* 2013; Szabo *et al.* 2015b).

The majority of tropical deltas in developing economies may be defined as complex, coupled social-ecological systems supporting high population densities with particular vulnerabilities to sea level change and upstream river management (Stanley and Hait 2000; Llovel *et al.* 2010; Walsh *et al.* 2014). Evaluating the specific nature of current vulnerabilities and how these may change in the near future requires consideration of the recent social-ecological dynamics (Duval-Diop and Grimes 2005; Dearing *et al.* 2012; Kuenzer and Renaud 2012). Here we examine how social and ecological elements may have interacted over time to give rise to the complex dynamics that characterise the modern social-ecological systems present in the Amazon, Ganges-Brahmaputra-Meghna (GBM) and Mekong deltas (Figure 1).

Figure 1 - Figures A, B and C represent the spatial extent of the three deltas, namely the Amazon, GBM and Mekong, defined as described in subsection 2.1. This figure contextualise the three deltas, geographic locations across the globe, and main land cover classes as observed from the Moderate Resolution Imaging Spectroradiometer (MODIS) in 2013, at 1km spatial resolution.

Research objectives

Multi-decadal trends for social, economic, ecological conditions and external drivers provide an evolutionary perspective that enable us to explore the recent changes in social-ecological dynamics, trade-offs, driver-responses, multivariate dynamics and regime shifts (Hossain et al. 2015; Zhang et al., 2015), also giving insight into what might constitute the conditions for safe and just operating spaces (Dearing et al., 2014). Ideally, an evolutionary perspective considers a large set of highly interconnected variables, with high spatial and temporal resolution, that allows detailed analysis of relationships over an extended multi-decadal period (Costanza et al. 2012; Dearing et al. 2014; Dippner and Kroncke 2015). Unfortunately, many regions of the world, including tropical deltas, are deficient in key records for major social and ecological variables. Therefore, here we adopt an initial analysis of limited data in order to compare and contrast general properties of three major world deltas. We address the following general questions: (1) What are the observable dynamics, including key drivers and feedback loops, that are steering the system toward its current equilibrium or disequilibrium state? (2) How are these dynamics affected by human intervention and ongoing environmental change? (3) Are there any common human development trajectories, including population change, ecological deterioration, rates of poverty, and indicators of human wellbeing?

Study sites

1.1 Amazon

The Amazon delta (Figure 1a) is one of the last frontiers for land development and agricultural production in Brazil (UNEP 2004; Viers et al. 2005; Lorena and Lambin 2009; Garrett et al. 2013). The human populations living in the Amazon delta are highly dependent on local extraction of natural resources (Ludewigs et al. 2009; Guedes et al. 2012), and the densely inhabited areas now show declines in the abundance of fish and game, water quality and in the quality of soils for smallholding agricultural production (Almeida et al. 2003; Brabo et al. 2003). Natural and anthropogenic perturbations in the Amazon delta region are reported to be degrading its capacity to maintain carbon storage in biomass and soils, rainfall regimes, river flow, nutrient cycling and the modulation of regional climate patterns (Boerner et al. 2007; Foley et al. 2007; Klemick 2011; de Araujo Barbosa and Atkinson 2013). The delta is also predicted under climate change scenarios to experience a decrease in rainfall, and it is unclear how this will impact social and ecological systems developing in the delta (Nepstad et al. 2011; Vergara and Scholz 2011; Tao et al. 2013). In the Amazon River basin as a whole, the major mechanisms of economic development have modified the landscape continuously, starting in the 1950s, and leading to what we now see as widespread environmental degradation. Recent studies argue that deforestation in Amazonia decreased by 77% since 2004 and stabilised after 2009, as a consequence of forest policy interventions, private sector initiative and market conditions (Godar et al. 2014). Therefore, the long lasting deforestation in the region may have passed a threshold and is now moving towards recovery, which may be an indicative of forest transition. However, this might not be the case in the Amazon estuary, as some of the main factors influencing deforestation there are still challenging Brazil's efforts in preserving its tropical forests (Godar et al. 2012; de Araujo Barbosa et al. 2014a; de Araujo Barbosa et al. 2016a).

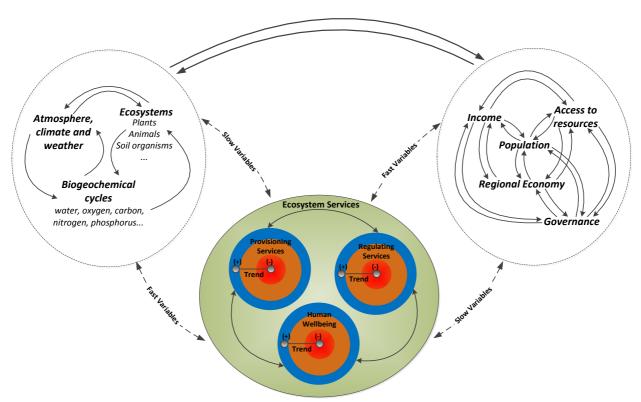
1.2 Ganges-Brahmaputra-Meghna

The GBM delta (Figure 1b) is notable for an extremely high population density, natural mangrove forest ecosystems (the Sundarbans), and a vast complex of intertidal and estuarine areas that provides nursery grounds for many species of fish and invertebrates across multiple political boundaries (Babel and Wahid 2011; Hossain *et al.* 2012; Hossain *et al.* 2013; Siddique-E-Akbor *et al.* 2014). This delta has been experiencing a rapid urban growth, which has resulted

Journal: Sustainability Science

in widespread social and economic inequality across different spatial scales (Brichieri-Colombi 2004; Sharma et al. 2010; Babel and Wahid 2011; Webster and Jian 2011). The recurrence of flood events in the region has long been viewed as a necessary trade-off against the relative beneficial conditions available for agriculture and food production (Asada and Matsumoto 2009; Islam et al. 2010a; Sharma et al. 2010; Ruane et al. 2013). Nonetheless, during the dry season the GBM delta experiences tidal water movement of more than 100 km inland, and a relative sealevel rise exceeding the global average that reflects the impact of land subsidence, all of which contributes to an increasing salinity problem (Hanebuth et al. 2013; Pethick and Orford 2013; Rogers et al. 2013; Shearman et al. 2013; Gupta et al. 2014; Higgins et al. 2014). Furthermore, infrastructure developments, such as the Farakka barrage on the main Ganges channel, have been influencing the regime of water flow in the region, with negative effects on water availability (Hossain et al. 2015a). In the long run, climate threats are likely to include changing distribution of river floods, warming temperatures, and changes in rainfall regime, which in turn will maximize current vulnerability to climate extremes, posing substantial challenges to sustainability in a region undergoing intense social changes (Chakraborty 2004; Markandya and Murty 2004; Asada and Matsumoto 2009; Cook and Lane 2010; Islam et al. 2010b; Khan 2012; Varis et al. 2012; Gain and Giupponi 2014).

1.3 Mekong


The Mekong river delta (Figure 1c) is the world's third largest delta, and it is formed by a large transboundary river system travelling through China, Myanmar, Lao People's Democratic Republic (Laos) Kingdom of Thailand, Cambodia and Vietnam (Tin et al. 2001; Kotera et al. 2008; Armitage et al. 2015; Givental and Meredith 2016). It is a territory where regional meteorological and hydrological regimes support diverse social and economic activities, as well as a diverse and productive natural environment. The delta provides 50% of Vietnam's rice production and 80% of the aquaculture production (Nguyen 2011; Gummert 2013). Rice cropping systems in the Mekong delta have shown signs of stress in response to an increasing number of severe floods, droughts, storms and tropical cyclones, followed by growing population demand for food production (Lusterio 2009; Nguyen 2011; Berg and Tam 2012; Huysveld et al. 2013; Son et al. 2013; Ahmed et al. 2014). Food production systems are rapidly expanding into the flood and salinity-intrusion areas (Tuong et al. 2003; Kotera et al. 2014), as a result of engineering works aimed at protecting populations and infrastructure from storms, rice cropping systems and shrimp farms from saltwater intrusion (Berg et al. 2012; Nguyen et al. 2014). The construction of several large-scale dams, and major channel-bed mining activities (Piman et al. 2013), have now been reported as the cause of an imbalance between flow and sediment entrainment conditions (Xue et al. 2011), affecting human livelihoods and the ecological equilibrium in the delta. Predictions of exposure to the effects of climate change for the Mekong delta include a rising sea level, rising temperatures, increased variability in rainfall regime and higher frequency of extreme events (Kotera et al. 2008; Haruyama and Ito 2009; Nguyen et al. 2014). These changes are likely to have strong negative impacts on the production of food and human wellbeing (Nguyen 2011; Berg et al. 2012; Berg and Tam 2012; Kotera et al. 2014). The combined effect of economic development, agricultural production practices, and change in consumption patterns is likely to increase the relative vulnerability of this delta to social and ecological changes (Few and Pham 2010; Coclanis and Stewart 2011; Dun 2011; Kuenzer and Renaud 2012; Quyet et al. 2012; Piman et al. 2013; Smith et al. 2013; Dang et al. 2014; Vu et al. 2014).

2. Methods and techniques

2.1 Conceptual framework

The framework used in this study (Figure 2) serves to provide a rationale for the dynamic and

integrated approach used in this work to investigate social and biogeophysical changes occurring in the three tropical deltas. This framework is based on a set of indicators reflecting the current and past state of provisioning and regulating ecosystem services. These two ecosystem service categories are considered to be of key importance, having major direct and indirect impacts on human wellbeing. For example, deforestation can affect people's livelihoods by eliminating access to provisioning services and leading to changes of landscape, which can in turn increase the risk of natural hazards (Alcamo *et al.* 2003). Indirect effects can operate through a number of biophysical, socio-economic and political processes. More specifically, soil salinity can negatively affect food security and health outcomes by impacting water quality (Alcamo et al. 2003; Szabo *et al.* 2015a). Lack of safe drinking water may lead to communal tensions and violence (Meier *et al.* 2007; Fjelde and von Uexkull 2012), though the impact of increasing/decreasing ecosystem services on human wellbeing indicators seems to have produced conflicting findings over the decades (Millennium Ecosystem Assessment 2005).

Figure 2 - Systemic dynamic relationships between environmental and human dimensions affecting the changes on ecosystem services and human wellbeing through time.

Provisioning services encompass crops, livestock, freshwater, fisheries and aquaculture (Carpenter *et al.* 2009) and are thus critical to reducing the risk of food insecurity and enhancing broader wellbeing. Regulating services, which in this study, mainly involve regulation of water and air quality can affect human wellbeing in a number of ways. For example, failure to prevent air pollution can lead to ill health, which is increasingly a challenge in the context of rapid urban growth in many delta regions. Other examples include development of adequate infrastructure, such as buffering zones along the coasts through plantations of mangroves and beach forests (Butler and Oluoch-Kosura 2006). Regulating services are intrinsically linked to provisioning ecosystem services through a two-way relationship. For example, deteriorating quality of water and food may trigger new environmental policies with new regulations that constrain land use practices. Finally, external drivers, include, on the one hand, human drivers, (e.g. national governance and international trade) and, on the other hand, environmental factors (e.g. rising temperatures and sea levels). All these factors affect boundary conditions and the internal dynamics of ecosystem services and wellbeing interactions. Ultimately, all these dynamics have

Journal: Sustainability Science

an impact on the wider socio-economic development of the delta regions and beyond. The variables chosen for our analysis were selected in order to provide clear insights into the hypothesised relationships and complex dynamics of society and nature under an ecosystem services framework (Costanza et al. 2012; Dearing et al. 2014).

2.2 Delta definitions

For the purposes of data collection we have defined the spatial extent of each delta primarily by the area downstream of the first distributary as mapped by the Shuttle Radar Topography Mission (SRTM). For the GBM, the altitude of the first distributary (the Hoogli river) at the Farraka Barrage is about 18-20 m asl. Using an SRTM contour map, the 18-20 m asl contour includes the main areas of frequent flooding along the Brahmaputra river and in the Sylhet basin. This definition is represented by over 45 districts in whole division areas of Khulna, Barisal, Dhaka, Sylhet but also a large part of Chittagong division in Bangladesh, and the Districts of Nadia, South 24-Parganas and North 24-Parganas in India. For the Mekong, the first distributary point at Phnom Penh lies at about 7-9 m asl. The Mekong SRTM contour map shows that this would delineate a delta mainly in Vietnam with a small part in Cambodia, and excludes Ho Chi Min City (Vietnam) and the Phnom Penh Municipality (Cambodia). The Amazon is less a delta and more an estuary. Therefore, we follow Ericson *et al.* (2006) use of a 5 km buffer from coastline that intersects roughly with the first distributary. This definition maps well to the distribution of municipal districts.

2.3 Data collection and Analysis

Data availability for deltas is a challenging issue because official statistics tend to map onto national or regional administrative areas rather than physiographically-defined areas. Here, we have compiled data from official regional sources (with two variables at the country level feeding into food and nutrition) in order to create realistic regional time-series of major physical drivers, regulating and provisioning ecosystem services, and human wellbeing over multiple decades (Table 1). We use z-scores to standardize our variables, allowing us to position variables, relative to other variables, and therefore establish relevant comparisons between observed social and ecological states and transitions along the time series. For a total set of variable observations, dimensionless z-scores are obtained by subtracting the variable mean from an individual raw score, and dividing by the standard deviation (Eq. 1).

$$z = \frac{(x - \mu)}{\sigma}$$
 Eq. 1

In Eq. 1 z refers to z-score, x is the value of a given variable, μ is the mean of the total set of observations for a given variable, and σ is the standard deviation. Data for provisioning services and drivers are plotted with y axes showing positive z scores for high levels of each variable (e.g. high grain yields). Data for regulating services are plotted on reversed y axes showing positive z scores for desirable ecological quantities and negative z scores for undesirable (e.g. low salinity), as determined locally (Table 1).

Table 1 - Data collected for the three deltas grouped by data category (physical drivers, regulating services, provisioning services and human wellbeing), data temporal coverage for the

Amazon (AM), Ganges-Brahmaputra-Meghna (GBM) and Mekong (MK), with respective data sources and geographical locations where the data was collected.

Category	Data	Temporal Coverage			Source	Geographical Location		
		AM	GBM	MK	Source	AM	GBM	MK
Physical drivers	Temperature Rainfall Relative air humidity Water level	1960-2013 1960-2013 1960-2013 1968-2013	1961-2013 1950-2013 - 1979-2013	1984-2013 1984-2013 1984-2013 1988-2013	Brazilian Meteorological Service (INMET 2013); Bangladesh Meteorological Department (BMD 2014); Vietnam Hydro Meteorological Service (NHMS 2014); Mekong River Commission (MRC 2014).	Belem, Macapa, Altamira, Soure, Cameta and Breves municipalities	Khulna, Barisal and Patukhali districts	Soc Trang, Can Tho, An Giang and Vinh Long provinces
Regulating services	Water Level (-desirable / +undesirable) Water discharge (-desirable / +undesirable) Water Quality (Salinity) (high salinity undesirable) Water Quality (Water pH) (low pH undesirable) Forest cover (high forest cover desirable) Sediment Concentration (-desirable / +undesirable)	1964-2012 1898-2013 - 1952-2013 1982-2013	1978-2008 1964-2008 - 1985-2014	1988-2012 - 1984-2013 - - 1986-2010	Brazilian National Water Agency (ANA 2014); Brazil's National Institute For Space Research (INPE 2014); de Araujo Barbosa et al. (2016a); Bangladesh Water Development Board; Bangladesh meteorological department; Islam et al. (2011); Vietnamese Hydro-Meteorological Service (NHMS 2014); Mekong River Commission (MRC 2014).	Amazon River (Macapa and Almeirim) Amazon estuary	Khulna, Barisal and Patukhali districts	Can Tho, An Giang and Vinh Long provinces
Provisioning services	Shrimp Production Fish production Aquaculture Production Rice Production Cassava production Animal production Agricultural production	- 1944-2013 1944-2013 1990-2013 1944-2013	1991-2007 1950-2010 - 1961-2013 - -	1989-2013 1989-2013 1989-2013 - 1989-2013	Brazilian Institute of Geography and Statistics; Brazilian Institute for Applied Economic Research; Bangladesh Bureau of Statistics; General Statistics Office of Vietnam.	Amapa and Para states	Khulna, Barisal and Patukhali districts	Long An, Tien Giang, Ben Tre, Tra Vinh, Vinh Long, Dong Thap, An Giang, Kien Giang, Can Tho, Hau Giang, Soc Trang, Bac Lieu, and Ca Maun provinces
Human Wellbeing	Total population Real inflation-adjusted GDP Employment Food security	1960-2013 1960-2013 1990-2013 1990-2013	1950-2014 1960-2014 1990-2014 1990-2013	1989-2013 1989-2013 1989-2013 1990-2013	Brazilian Institute of Geography and Statistics (IBGE 2014); Bangladesh Bureau of Statistics (BBS 2013); General Statistics Office of Vietnam (GSO 2014); Food and Agriculture Organization of the United Nations. (2014)	Amapa and Para states, Brazil	Khulna, Barisal and Patukhali districts, Bangladesh	Can Tho, An Giang and Vinh Long provinces, Vietnam

2.4 Dynamic Principal Component Analysis

Connectivity is increasingly viewed as an important property of complex systems, especially with regards the higher levels of connectivity and homogenisation observed in unstable systems (Scheffer et al., 2012). Here we use dynamic or sequential Principal Component Analysis (PCA) to provide a crude measure of the multi-decadal changes in connectivity (Billio et al., 2010; Zheng et al., 2012; Zhang et al 2015) between provisioning and regulating ecosystem services in the three deltas. We applied this approach to ecosystem service time-series indices since the 1960-70s (1990s in the case of the Mekong delta), calculating covariance using a 10 year moving window. PCA axis 1 (first eigenvalue) captures $\geq 50\%$ of the variation for the combined datasets in all three deltas.

2.5 Key system variables

2.5.1 Physical Drivers

In each delta, the selected variables define the observed changes affecting the physical environment that will in turn feed back into key ecosystem services. (Nelson *et al.* 2006; Carpenter *et al.* 2011; Potschin and Haines-Young 2011). For example, increasing variability in average values of temperature, rainfall and relative air humidity directly affect ecosystem conditions and services, and are key variables in sustaining people's livelihoods across all levels of society (O'reilly *et al.* 2003; Walker *et al.* 2008; Sullivan and Huntingford 2009; Harborne 2013; Sara *et al.* 2014). In deltas and estuaries, water level plays an important role in preserving biodiversity, enabling agriculture, climate buffering and flood control. Additionally, the effective monitoring of water levels through time provides important insights into current and past management (e.g. prioritization of hydropower over other ecosystem services) (Day *et al.* 2008; Omer 2009; Taguchi and Nakata 2009; Notter *et al.* 2012). Nevertheless, the situation observed in these deltas over the decades is only partially driven by physical drivers, and human activities are of critical importance. Therefore, an integrated approach to the problem of environmental change, its short and long-term effects on ecosystem services, is key to achieving environmental sustainability in deltaic regions (Dearing et al. 2014; Darby *et al.* 2015; Mononen *et al.* 2016).

2.5.2. Regulating Services

The variables chosen here represent the multiple regulating ecosystem services found in deltaic regions (Withers and Jarvie 2008; Barbier et al. 2011; de Araujo Barbosa et al. 2014b; Iacob et al. 2014; Yoo et al. 2014; Gonzalez-Esquivel et al. 2015). These variables provide valuable information about the major trends in important regulating services (e.g. climate regulation, water regulation, nutrient cycling, erosion control, flood control, and others) (Feld et al. 2009; King and Brown 2010; Ma and Swinton 2011; Nedkov and Burkhard 2012; O'Leary and Wantzen 2012) and provide the basis for exploring interactions with drivers and social conditions. Over time, the interactions between salinity (water quality), water pH (water quality), sediment concentration (erosion control, water quality), and forest cover (climate regulation, erosion control) define the evolution of many common biophysical effects in the three deltas (de Araújo Barbosa et al. 2010; Sabater and Tockner 2010; Basher 2013; Clarkson et al. 2013; Turner et al. 2013; Grimaldi et al. 2014; Sturck et al. 2014; Terrado et al. 2014; Beier et al. 2015; Fezzi et al. 2015; Harmackova and Vackar 2015). These effects influence ecosystem regulating services, with potential repercussions not only at the local, but also, at the regional and global scales (Rodriguez et al. 2006; Teferi et al. 2010; Laterra et al. 2012; Bagley et al. 2014; Downing et al. 2014; Hicks et al. 2015; Trumbore et al. 2015; Westphal et al. 2015).

2.5.3 Provisioning Services

In order to represent the trajectories of provisioning services in the three deltas over time, we use a set of key variables able to give important information about the major components of ecosystem services availability and flow at the delta scale (Gonzalez-Esquivel et al. 2015; Ramirez-Gomez *et al.* 2015; Mononen et al. 2016). The variables in Table 1 serve as indicators not only of how much food has been produced in these deltas, but also the current level of natural resource exploitation and the intensification of various production systems in place (Gonzalez-Esquivel et al. 2015; Ramirez-Gomez et al. 2015; Suich *et al.* 2015). When linked to wellbeing indicators (Table 1) these variables give valuable information on how the trajectories in food production translate into the actual availability of food to the populations living in the delta. Furthermore, we can hypothesize how increases or decreases in production feed back into important regulating services and human wellbeing indicators (Essington and Munch 2015; Macadam and Stockan 2015; Albert *et al.* 2016; Wood *et al.* 2016).

2.5.4. Human Wellbeing

We selected variables that would provide conceptual and methodological confidence for plotting long term trajectories of human wellbeing (Bieling et al. 2014; Vidal-Abarca et al. 2014; Escobedo et al. 2015). Previous measures of socio-economic impacts of globalisation and largescale development interventions have largely been restricted to indicators focused only on income, which do not necessarily reflect social needs and priorities (Deutsch et al. 2003; Malovics et al. 2009; Dasgupta 2010; Jordan et al. 2010; Pretty 2013; Reyers et al. 2013; King et al. 2014). A set of indicators providing data on more explicit social facets, such as freedom and choice, human health and social relations, would be of great value but such data, even when available, does not provide sufficient temporal resolution in order to connect with the main objectives of this study. Therefore, we represent human wellbeing using simple and representative metrics, with time series of population growth, employment, gross domestic product (GDP), and food security providing the means to understand the multi-faceted impacts of biophysical change, globalisation and economic development on people's lives as the system coevolves through time (Chiesura and de Groot 2003; de Freitas et al. 2007; Farley 2010; Bieling et al. 2014; Howe et al. 2014). GDP has been widely perceived as a measure of output rather than wellbeing but in cross-country data, GDP per capita, is positively correlated with life expectancy and negatively correlated with infant mortality, material living standards, health, education and political voice: all factors that are important for defining human wellbeing (Cohen et al. 2014; de Oliveira and Quintana-Domeque 2014; Hou et al. 2015; Ngoo et al. 2015; Schmelzer 2015; Schoenaker et al. 2015; Vecernik and Mysikova 2015).

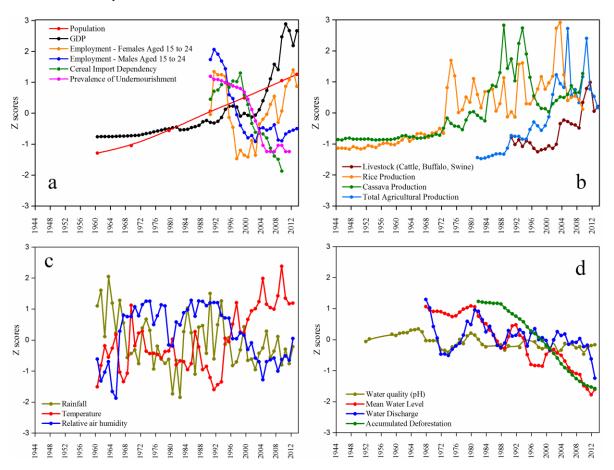
3. Results

3.1. Amazon

3.1.1. Physical drivers

The data for rainfall, temperature and relative air humidity were collected from six meteorological stations in the estuary and averaged to give insight into the climatologic variability operating at the delta scale (Figure 3c). We can see that there is a strong increasing trend in the mean temperatures starting in the early 1990s. Mean temperatures in the delta have significantly increased during the period 2000-2013 (from ~31 °C during the 1960s to ~32 °C). Annual mean rainfall values in the Amazon delta show a drying trend in the period 1960-2000 (from ~2800 mm to ~2200 mm since 2000). Average values corresponding to relative air humidity have responded promptly to changes in temperature and rainfall. The decadal relative air humidity has decreased from an average of ~85% to 83%.

3.1.2. Regulating services


Figure 3d shows trends in water pH, water discharge and water level in the delta. Water acidity in the Amazon delta shows a relatively stable trend over the period, with mean pH values observed in the main river channel declining during 1960-1975, showing smallest variations after that (starting in 1984). The line data trajectory shows a rising trend on mean water discharge values, starting to pick up constant pace after 2005. The average water discharge in the Amazon delta shows an intermittent pattern, with major changes starting to take place after 1968. The mean water levels in the Amazon delta are increasing rapidly (starting in 2000), with negative impacts on related regulation services. The annual deforestation values here represent annual figures only for the Amazon delta region, comprising the federative states of Amapa and Para (de Araujo Barbosa et al. 2016a). The rise in mean water levels is associated with the increasing number of flooding events taking place in the delta (Bradshaw et al. 2007; Espinoza et al. 2012; Pinho et al. 2015). The peak in deforestation occurs during the late 1990s and persists during the early 2000s till 2005. There is a decreasing trajectory in the annual values of deforestation in the Amazon delta starting during 2006.

3.1.3. Provisioning services

For most of the period 1944-2013 the production of cassava and rice remained high in the region, with fluctuations in accordance with government subsidies, and in response to markets. In figure 3b we see a sharp decrease in the production of cassava (starting during mid 1990s) and rice (starting in early 2000s). These changes in agricultural production in the region are followed closely by significant increases in livestock production. More recently, production of other commodities such as corn, sugarcane and soybean has influenced the sharp rise in overall total agricultural production.

3.1.4. Human Wellbeing

Human wellbeing indicators, such as GDP, collected at local level show a general increase over the period (Figure 3a). Nevertheless, GDP in the Amazon delta has decreased during the early 1990s and early 2000s, returning to an upward trend after 2005, with occasional changes throughout the entire period (from 1960 to 2013). The total population of Para and Amapa (the two federative states in the Amazon delta) show a significant rise starting in 1960 (increasing from 1.2 million to nearly 9 million inhabitants), an increase of 660% over the last 50 years. This has been followed by an equally rapid increase in the percentage of population living in urban areas, a general trend observed in most of the developing and developed world. The positive trend in GDP is reflected in the general improvement of other social indicators such as school attainment and child mortality rate. However, the apparent improvement in human wellbeing indicators does not have the same positive impacts on the proportion of population employed. It is clear (Figure 3) that employment is still a major issue, especially for young male individuals. During this time, food security indicators have improved, although with slight changes in the early 2000s (for cereal import dependency ratio) and later on after 2008 (for the prevalence of undernourished children).

Figure 3 - Amazon delta 1944-2014: annual data for a) human wellbeing, b) provisioning services, c) physical drivers and d) regulating services. The plotted lines represent desirable (ascending progression) and undesirable (descending progression) Z-score values for regulating services (mean water level along the main river channel; river water discharge; water quality along the main river channel; accumulated deforestation in the delta).

3.2. Ganges-Brahmaputra-Meghna

3.2.1. Physical drivers

Temperature figures show a step change at ~1990 (when the mean temperature rose >26 °C whereas, mean temperature was <26 °C before 1990s) (Figure 4c) (Hossain et al. 2015a). Mean annual rainfall increased from ~2500 mm before 1970 to 3000 mm after 1970. However, mean annual rainfall has decreased from ~3000 mm to ~2000 mm after 2007. From 1978 onwards sea level shows a rapid upward trend (confirming what has been pointed previously by Auerbach *et al.* (2015); Brown and Nicholls (2015); Kay *et al.* (2015)) this trend shows signs of slow down after 1990.

3.2.2. Regulating services

Salinity concentrations in the south west coastal area of GBM have increased from 5,000 Siemens (S) in 1970 to 50,000 S in 2005 suggesting that water quality in the region has degraded ~10 fold within a 30 year period (Figure 4d). Although the mean (smoothed) annual water discharge shows a relatively stable trend, the original data shows fluctuation over the time period from 1977 to 2007. The mangrove forests in the region are undergoing accelerated deforestation, impacting the ability to provide important ecosystem services (e.g erosion control) this has been developing much before 1982, with this trajectory becoming even more evident after 2004. Some

of the peaks in the water discharge curve are linked to major flood events, especially 1988, 1995, 1998 and 2002 (Younus 2014; Khan *et al.* 2015).

3.2.3. Provisioning services

Total rice production across the GBM delta rose four fold in the period 1961 - 2013 (Figure 4b). Although, the rice production has been rising steadily since 1961, with a rising trend that starts in 1995. Similarly, total inland fish catches, marine fish catches and shrimp production have increased between 1950 and 2010. Total fish catches increased between 1950 and 1970 (from 200,000 t to 600,000 t), whereas fish catches remained at a stable level between 1970 and 1990, before increasing sharply after 1990s. A similar sharp rising trend is observed for shrimp production with ~3 fold rise between 1991 and 2008. Although the marine fish catch shows a steadily increasing trend since 1950, in 1974 it has significantly dropped, going through a period of recovery (1982-1997), followed by a sharp rising trajectory starting in 1998 (Hossain *et al.* 2015b).

3.2.4. Human Wellbeing

Total population in the GBM has been constantly increasing since 1950 (Figure 4a). Human wellbeing indicators such as GDP increased 35 fold (from ~4,200 to ~150,000 million USD in the period 1960-2012) with a rate of 1053 million USD yr⁻¹ between 1960 and 1999 increasing sharply to 8300 million USD yr⁻¹ since 2000. Consequently, the food security indicators show constant signs of improvement (with decreasing trend in cereal import dependency), although we can still observe deviations from the major trend in reducing the prevalence of undernourished children, which starts after 2005. While GDP and population in the region has been growing steadily since early 1950s, the situation seems very different when it comes to employment rates for both young men and women in the GBM delta, as it has been dropping constantly, with a significant increase from 1998 to 2005.

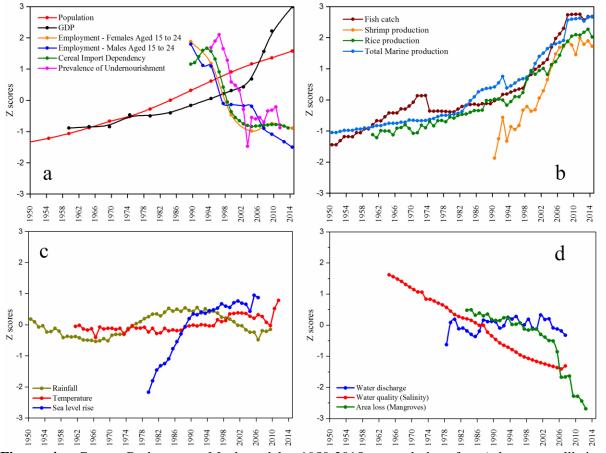


Figure 4 - Ganges-Brahmaputra-Meghna delta 1950-2015: annual data for a) human wellbeing ,b)

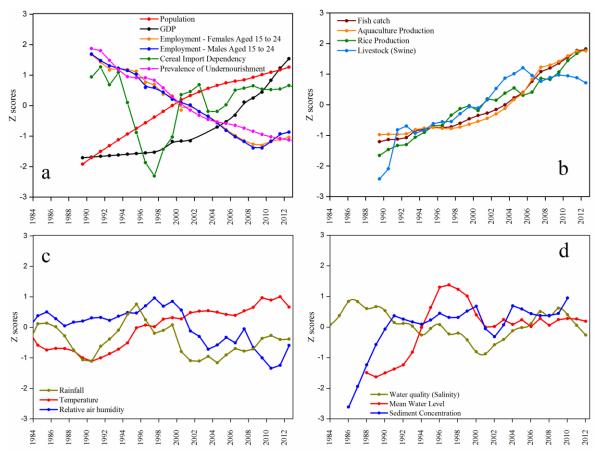
provisioning services, c) physical drivers and d) regulating services. Sea level rise refers to changes in Mean Sea Level computed at tide stations. The plotted lines represent desirable (ascending progression) and undesirable (descending progression) Z-score values for regulating services (river water discharge; water quality at the coastal zone).

3.3. Mekong

3.3.1. Physical drivers

Mean temperature has tended to increase while relative air humidity and rainfall have been decreasing since 1990s (Figure 5c). Extremely hot years occurred in 1998, 2010, 2012 and 2013. As mean temperature increased, air relative humidity tended to decrease in the period 2000-2013. It is likely that saturation pressure of water vapour increased while vapour pressure has remained the same, causing the relative humidity to drop. Consequently, decreasing air humidity and rainfall can have negative impacts on crop production through higher crop irrigation requirement.

3.3.2. Regulating services


Levels of salinity, the concentration of suspended sediments, and average water levels have been changing considerably over the last few decades (Figure 5d). After 1989 water levels initiated a rising trajectory until 1996, when it is followed by a decreasing trend until 2001, where it seem to be following a more "stable" trajectory. This has been accompanied by a rising trend sediment concentration between 1986 and 1991, ending latter to give way to a more stable trajectory. The Mekong delta show a decreasing trend in salinity levels, between 1984 and 1986, when it starts a sharp decreasing trajectory until 2002, soon after changing its trajectory towards higher salinity values. Salinity intrusion in the Mekong is under constant change, continuing to cause negative impacts, as seen recently with 2016 being one of the worst years on record.

3.3.3. Provisioning Services

Positive trends can be observed in for production of all main crops and livestock (Figure 5b). Between 1990 and 2013 annual production of rice has generally increased, with only a few declines observed during the 2000s. The trajectory for total fish catch shows similar positive trend, closely followed by aquaculture production, with a few years were fish catch is positioned just below the aquaculture production. Nhan et al (2007) highlight that in the early 1990s less than 5% of the area suitable for aquaculture was used for that activity but this proportion increased to 22% by 2004 (Figure 5b). Livestock production rose significantly, with starting point during the 1990s, with its trajectory moving upwards during the period 1993 – 2006, and more recently (2008) it shows a descending trajectory.

3.3.4. Human Wellbeing

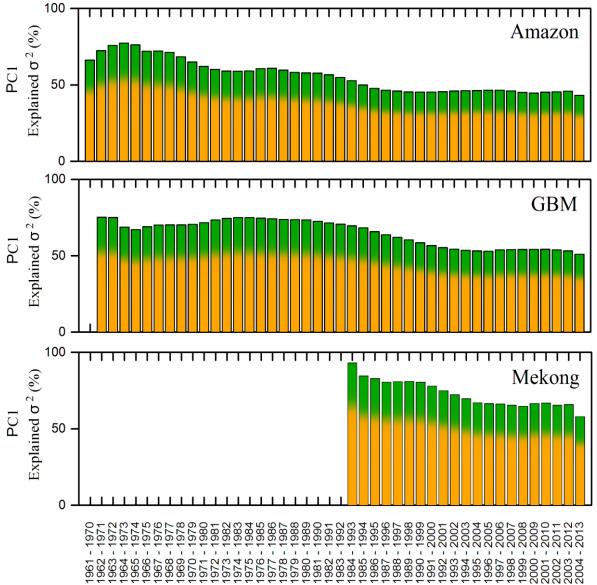

The region experienced increasing pressure from rising population numbers (Figure 5a). Population numbers in the Mekong delta have increased sharply with a change of 36% in the period 1990 – 2013. It has been followed (although not running as rapidly) by GDP, which has been following a major upward trend since 1990, a tendency that starts becoming more consistent during the early 2000s. During the same period, the employment ratio among the young population has been decreasing constantly, with a recent, although still modest, improvement starting in 2010. The food security indicators in the Mekong delta show signs of constant improvement in the form of a steadily decreasing trajectory in the prevalence of undernourished children. Deviations from this trend occurs during the period between 2009 but neverthless the situation seems very different from dependency on cereal imports. The sharp decrease during the early 1990s is replaced by a sharp rising trajectory after 1997.

Figure 5 - Mekong delta 1984-2013: annual data for a) human wellbeing, b) provisioning services, c) physical drivers and d) regulating services. The plotted lines represent desirable (ascending progression) and undesirable (descending progression) Z-score values for regulating services (mean water level along the main river channel; water quality along the main river channel; sediment concentration).

3.4 Connectivity between provisioning and regulating services

The connectivity analyses (Figure 6) show remarkably similar results with the PCA 1 curves showing relatively high values before the 1990s with declining trends to the present day. The decline in PCA 1 values appears to start earliest (early 1990s) in the Amazon, later (late 1990s) in the GBM, and latest (early 2000s) in the Mekong. This common pattern may reflect the general effect of market economies and globalisation since the 1990s. We tentatively interpret the higher values before 1990 in terms of tightly coupled provisioning and regulating services at the regional scale, promoted by nationalisation and subsidies. For example, deteriorating water quality may have been more directly linked to standardised land use and agricultural practices that were often centrally controlled. The later effects of globalisation appear to have reduced the strength of this coupling, a finding that may be interpreted in alternative ways. The growth of provisioning services may have risen without producing proportional negative environmental impacts (e.g. Mekong: Figure 5), perhaps as the result of farming diversification and technological advances. But equally, the findings could be interpreted as an acceleration of environmental deterioration occurring despite a slowing down of agricultural production (e.g. Amazon, GBM: Figures 3 and 4).

Figure 6 - Dynamic Principal Component Analysis using a 10 year moving window applied to time series indices for provisioning and regulating ecosystem services in each delta. The bars represent the proportion of variance (σ^2) explained by the first principal component during the moving time window.

4. Discussion

The general pattern of long-term trends from at least 1990 across the three deltas describes rising population and GDP, rising or fluctuating provisioning services, fluctuating climate drivers, and declining or fluctuating regulating services. Additionally, employment levels of young people have declined markedly. Major regional exceptions are found in the Amazon where there has been a rise in temperatures since the mid-late 1990s and continued growth in livestock production in the Amazon since the mid-2000s at the expense of rice and cassava production. Over a multidecadal timescale, none of the deltas currently show any variable running on with a quasi-stationary pattern. In system terms, all the deltas are in non-stationary or transient states with little evidence for stability or equilibrium.

The most rapid trends in each delta (relative to all others) are for GDP growth which has risen ~3 st dev. units since 2002 (Amazon), 1994 (GBM) and 1999 (Mekong). These levels of growth illustrate the successful economic development of the three regions associated with national schemes for poverty alleviation and the large-scale effects of globalization since the 1990s. Certainly, the rising trend of GDP in GBM has resulted in an improvement of other indicators

Journal: Sustainability Science

such as school attainment and child mortality rate (Dalal and Goulias 2010; Chowdhury *et al.* 2013). A major part of the economic growth has been based on intensification of agriculture and aquaculture as shown by the rapid trends in provisioning services reflecting the use of hybrid grains, fertilizers, pesticides and technological advances, such as irrigation techniques. The most rapid trends for these are livestock production since 2000 (Amazon), shrimp cultivation (GBM), and aquaculture production (Mekong).

Where the data exist, the evidence suggests that the rise in provisioning services has adversely affected the regulating services. In the Amazon delta, the rising trend for deforestation (~3 standard deviation units between 2002 and 2010) seems to be a direct consequence of the expanding livestock grazing (de Araujo Barbosa et al. 2016a), and contrasts with claims that deforestation rates across the whole Amazon basin are stabilizing (Godar *et al.* 2014). In the GBM and Mekong, the declining water quality (~2 standard deviation units 1982-2008 and 1986-2000 respectively) is the result of higher salinity levels caused by shrimp ponds, inefficient irrigation, lower river discharges and marine intrusions (Haider and Hossain 2013; Abedin *et al.* 2014; Pokrant 2014; Kay et al. 2015). Local studies in the GBM coastal zone show that conversion of rice fields to shrimp farms is almost certainly a factor in increasing soil and surface water salinity (Hossain et al. 2015a).

Across the three deltas, the chains of causation that link governance and policy to farm decisions, through to production levels and environmental degradation are varied and complex. For example, deforestation in the Amazon represents a local and direct human activity, driven by a diverse set of demands generated across the globe, dependent upon complex interactions between domestic and trans-boundary drivers. Over time, transitions in global and regional temperatures and salinity values are driven by various distal (upstream), environmental, direct and indirect human actions that makes them more or less uncontrollable within the deltaic system (Ferguson et al., 2013; Folke et al., 2004; Janssen et al., 2004; Ullah et al., 2015). In the Mekong delta, the adverse effects arising from climate change, altered natural flow patterns in water and in sediments (as a consequence of hydropower development), have already created transboundary environmental tensions and reduced the capacity of people to maintain their livelihoods(Lu and Siew 2006; Li and He 2008; Xue et al. 2011; Manh et al. 2015).

In system terms, we can argue that for all three deltas the inherent dynamics of function, resilience, connectivity and feedback have significantly changed. The boundary conditions (e.g. climate, regional economies) that constrain the system functioning have significantly changed over the studied time periods. System resilience as defined by the condition of 'slow' variables (e.g. forest cover, water quality) shows long term decline. National policies and globalization have affected the coupling of ecosystem services. And, in each delta there are examples of rapidly rising or declining trends that may be viewed as the result of strengthening positive feedback mechanisms that link land use decisions to farm incomes and profit generation that in turn link to environmental degradation, often in the absence of robust environmental regulations. We may surmise that, in system terms, all three social-ecological systems may have moved outside safe operating spaces into unsustainable configurations.

Therefore, the overall changes in these deltaic social-ecological systems may be described in general terms as unsustainable trade-offs between rising food production and a deteriorating natural environment, though perhaps only to a limited extent in the Mekong. The leading question is what the long-term consequences might be. Lower rates of deterioration in recent years in the GBM and recent fluctuations of water quality in the Mekong suggest that the long term environmental decline may be stabilizing (Li and He 2008; Tho *et al.* 2012; Renaud *et al.* 2015). But the most recent provisioning data indicate slowing or stabilizing trends for rice and livestock production (Amazon), rice production (GBM) and livestock production (Mekong). We may therefore ask whether these are the result of negative feedback loops driven by deteriorating

regulating services, that are now constraining food production, or whether market conditions have changed, or more sustainable methods have been introduced?

Unfortunately, this is difficult to answer. The connectivity analyses underline the possible negative and positive effects of globalisation on the relationship between provisioning and regulating services but do not provide evidence for causation. Regulating services may have declined generally but the evidence for negatively impacting agricultural production levels is equivocal because the effects of ecological degradation, environmental regulation and land use selection on provisioning services are conflated. In our exploratory analysis we are constrained by the availability of data and a simple trend analysis of standardized data that cannot compare trends in terms of absolute effects without calibration. For example, one z-score unit of change in temperature may be more harmful to crop production than the same relative change in salinity. However, the general decline in regulating services has to be viewed as an unsustainable loss of natural capital with the possibility, as argued elsewhere (Raudsepp-Hearne et al. 2010), for timelagged declines in crop and fish production as positive feedback mechanisms strengthen (Hossain et al. 2015a). The possibility that rapidly declining regulating services in the Amazon and GBM are now increasingly decoupled from agricultural production levels (though not the agricultural practices themselves) is consistent with a heightened risk for rapid social-ecological change as unsustainable system dynamics play out through tipping points and regime shifts. It may be uncertain whether these mechanisms are happening already but they will certainly be accentuated by the observed rises in temperature which may be expected to adversely affect pollination, crop yields and surface water quality. From a systems perspective of sustainability, the current deltaic systems lie outside safe and just operating spaces in potentially dangerous zones (Dearing et al. 2014). Current work is aimed at developing simulation models that can both capture the complex dynamics revealed here and anticipate the effects of alternative governance measures on future social-ecological states.

5. Conclusions

This paper shows that the biophysical and socioeconomic changes in the three deltas have similar origins. Several well-established mechanisms exist to explain the overall variation we observe in the three deltas. These mechanisms are created and maintained by feedbacks originated from the interaction between society and the environment. Current and past observed condition were shown here using a series of records denoting changing patterns of rainfall, temperatures, sea level rise, water levels and discharge, sediment flow, forest cover, in the context of intensive social changes. The complex myriad of interactions currently in place in these deltaic systems will increasingly be affected by changes in average weather conditions, management practices and the fast pace of resource exploitation. The power of international and institutional arguments that emphasize the necessity for sustainable economic development, and adaptation to changes in climate, has yet to translate into effective safeguards for the sustainable use of natural resources in these deltas and the livelihoods and wellbeing that depend upon them. This finding suggests that the sustainability of tropical deltas urgently requires the decoupling of local economic growth from local resource use before irreversible ecological shifts develop.

Acknowledgements

This work has been funded by the Coordination for the Improvement of Higher Education Personnel (CAPES) Foundation within the Ministry of Education, Brazil through research grant provided to de Araujo Barbosa, C. C (BEX: 0327-12-3). Dearing, J.A., Szabo, S., and Matthews, Z. contributions were supported by the international Belmont Forum project "Catalyzing action towards sustainability of deltaic systems with an integrated modelling framework for risk assessment" (award no. 1342944). Md. Sarwar Hossain acknowledges financial support provided by a joint NERC/ESRC interdisciplinary PhD studentship award and the University of

Southampton. This is a Sustainability Science at Southampton publication.

References

Abedin, M.A., Habiba, U., & Shaw, R. (2014). Community Perception and Adaptation to Safe Drinking Water Scarcity: Salinity, Arsenic, and Drought Risks in Coastal Bangladesh. *International Journal of Disaster Risk Science*, 5, 110-124

Aerts, J.C.J.H., Renssen, H., Ward, P.J., de Moel, H., Odada, E., Bouwer, L.M., & Goosse, H. (2006). Sensitivity of global river discharges under Holocene and future climate conditions. *Geophysical Research Letters*, 33

Ahmed, N., Ward, J.D., & Saint, C.P. (2014). Can integrated aquaculture-agriculture (IAA) produce "more crop per drop"? *Food Security*, 6, 767-779

Albert, C., Galler, C., Hermes, J., Neuendorf, F., von Haaren, C., & Lovett, A. (2016). Applying ecosystem services indicators in landscape planning and management: The ES-in-Planning framework. *Ecological Indicators*, *61*, 100-113

Alcamo, J., Bennett, E.M., & Millennium Ecosystem Assessment (Program) (2003). *Ecosystems and human well-being: a framework for assessment*. Washington, D.C.: Island Press

Almeida, O.T., Lorenzen, K., & McGrath, D.G. (2003). Commercial fishing in the Brazilian Amazon: regional differentiation in fleet characteristics and efficiency. *Fisheries Management and Ecology*, 10, 109-115

ANA (2014). In. Brasilia, Brazil: Agência Nacional de Águas

Armitage, D., de Loe, R.C., Morris, M., Edwards, T.W.D., Gerlak, A.K., Hall, R.I., Huitema, D., Ison, R., Livingstone, D., MacDonald, G., Mirumachi, N., Plummer, R., & Wolfe, B.B. (2015). Science-policy processes for transboundary water governance. *Ambio*, 44, 353-366

Asada, H., & Matsumoto, J. (2009). Effects of rainfall variation on rice production in the Ganges-Brahmaputra Basin. *Climate Research*, 38, 249-260

Auerbach, L.W., Goodbred, S.L., Mondal, D.R., Wilson, C.A., Ahmed, K.R., Roy, K., Steckler, M.S., Small, C., Gilligan, J.M., & Ackerly, B.A. (2015). Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain. *Nature Climate Change*, *5*, 153-157

Babel, M.S., & Wahid, S.M. (2011). Hydrology, management and rising water vulnerability in the Ganges-Brahmaputra-Meghna River basin. *Water International*, *36*, 340-356

Bagley, J.E., Davis, S.C., Georgescu, M., Hussain, M.Z., Miller, J., Nesbitt, S.W., VanLoocke, A., & Bernacchi, C.J. (2014). The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems. *Biomass & Bioenergy*, 71, 187-201

Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., & Silliman, B.R. (2011). The value of estuarine and coastal ecosystem services. *Ecological Monographs*, *81*, 169-193

Basher, L.R. (2013). Erosion Processes and Their Control in New Zealand. *Ecosystem Services in New Zealand: Conditions and Trends*, 363-374

BBS (2013). Bangladesh Bureau of Statistics (BBS). Peoples Republic of Bangladesh. In. Dhaka, Bangladesh

- Beier, C.M., Caputo, J., & Groffman, P.M. (2015). Measuring ecosystem capacity to provide regulating services: forest removal and recovery at Hubbard Brook (USA). *Ecological Applications*, 25, 2011-2021
- Berg, H., Berg, C., & Nguyen, T.T. (2012). Integrated Rice-Fish Farming: Safeguarding Biodiversity and Ecosystem Services for Sustainable Food Production in the Mekong Delta. *Journal of Sustainable Agriculture*, 36, 859-872
- Berg, H., & Tam, N.T. (2012). Use of pesticides and attitude to pest management strategies among rice and rice-fish farmers in the Mekong Delta, Vietnam. *International Journal of Pest Management*, 58, 153-164
- Bianchi, T.S., & Allison, M.A. (2009). Large-river delta-front estuaries as natural "recorders" of global environmental change. *Proceedings of the National Academy of Sciences of the United States of America*, 106, 8085-8092
- Bieling, C., Plieninger, T., Pirker, H., & Vogl, C.R. (2014). Linkages between landscapes and human well-being: An empirical exploration with short interviews. *Ecological Economics*, 105, 19-30
- BMD (2014). In. Dakha, Bangladesh: Bangladesh meteorological department
- Boerner, J., Mendoza, A., & Vosti, S.A. (2007). Ecosystem services, agriculture, and rural poverty in the Eastern Brazilian Amazon: Interrelationships and policy prescriptions. *Ecological Economics*, 64, 356-373
- Brabo, E.S., Angelica, R.S., Silva, A.P., Faial, K.R.F., Mascarenhas, A.F.S., Santos, E.C.O., Jesus, I.M., & Loureiro, E.C.B. (2003). Assessment of mercury levels in soils, waters, bottom sediments and fishes of acre state in Brazilian Amazon. *Water Air and Soil Pollution*, 147, 61-77
- Bradshaw, C.J.A., Sodhi, N.S., Peh, K.S.H., & Brook, B.W. (2007). Global evidence that deforestation amplifies flood risk and severity in the developing world. *Global Change Biology*, 13, 2379-2395
- Brichieri-Colombi, J.S. (2004). Hydrocentricity: A limited approach to achieving food and water security. *Water International*, 29, 318-328
- Brown, S., & Nicholls, R.J. (2015). Subsidence and human influences in mega deltas: The case of the Ganges-Brahmaputra-Meghna. *Science of the Total Environment*, 527, 362-374
- Butler, C.D., & Oluoch-Kosura, W. (2006). Linking future ecosystem services and future human well-being. *Ecology and Society*, 11
- Carpenter, S.R., Mooney, H.A., Agard, J., Capistrano, D., DeFries, R.S., Diaz, S., Dietz, T., Duraiappah, A.K., Oteng-Yeboah, A., Pereira, H.M., Perrings, C., Reid, W.V., Sarukhan, J., Scholes, R.J., & Whyte, A. (2009). Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. *Proc Natl Acad Sci U S A*, 106, 1305-1312
- Carpenter, S.R., Stanley, E.H., & Vander Zanden, M.J. (2011). State of the World's Freshwater Ecosystems: Physical, Chemical, and Biological Changes. *Annual Review of Environment and Resources*, Vol 36, 36, 75-99
- Chakraborty, R. (2004). Sharing of river waters among India and its neighbors in the 21st century: War or peace? *Water International*, 29, 201-208

Chiesura, A., & de Groot, R. (2003). Critical natural capital: a socio-cultural perspective. *Ecological Economics*, 44, 219-231

Chowdhury, A.M.R., Bhuiya, A., Chowdhury, M.E., Rasheed, S., Hussain, Z., & Chen, L.C. (2013). Bangladesh: Innovation for Universal Health Coverage 1 The Bangladesh paradox: exceptional health achievement despite economic poverty. *Lancet*, *382*, 1734-1745

Clarkson, B.R., Ausseil, A.G.E., & Gerbeaux, P. (2013). Wetland Ecosystem Services. *Ecosystem Services in New Zealand: Conditions and Trends*, 192-202

Coclanis, P.A., & Stewart, M.A. (2011). Precarious Paddies: The Uncertain, Unstable, and Insecure Lives of Rice Farmers in the Mekong Delta. *Environmental Change and Agricultural Sustainability in the Mekong Delta*, 45, 103-114

Cohen, R.L., Alfonso, Y.N., Adam, T., Kuruvilla, S., Schweitzer, J., & Bishai, D. (2014). Country progress towards the Millennium Development Goals: adjusting for socioeconomic factors reveals greater progress and new challenges. *Globalization and Health*, 10

Cook, B.R., & Lane, S.N. (2010). Communities of knowledge: Science and flood management in Bangladesh. *Environmental Hazards-Human and Policy Dimensions*, *9*, 8-25

Costanza, R., van der Leeuw, S., Hibbard, K., Aulenbach, S., Brewer, S., Burek, M., Cornell, S., Crumley, C., Dearing, J., Folke, C., Graumlich, L., Hegmon, M., Heckbert, S., Jackson, S.T., Kubiszewski, I., Scarborough, V., Sinclair, P., Sorlin, S., & Steffen, W. (2012). Developing an Integrated History and future of People on Earth (IHOPE). *Current Opinion in Environmental Sustainability*, *4*, 106-114

Dalal, P., & Goulias, K.G. (2010). Literacy, Access, and Mobility Analysis from Sylhet, Bangladesh. *Transportation Research Record*, 132-139

Dang, H.L., Li, E., Bruwer, J., & Nuberg, I. (2014). Farmers' perceptions of climate variability and barriers to adaptation: lessons learned from an exploratory study in Vietnam. *Mitigation and Adaptation Strategies for Global Change*, 19, 531-548

Darby, S.E., Dunn, F.E., Nicholls, R.J., Rahman, M., & Riddy, L. (2015). A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges-Brahmaputra-Meghna delta. *Environ Sci Process Impacts*, 17, 1587-1600

Dasgupta, P. (2010). Nature's role in sustaining economic development. *Philosophical Transactions of the Royal Society B-Biological Sciences*, 365, 5-11

Day, J.W., Christian, R.R., Boesch, D.M., Yanez-Arancibia, A., Morris, J., Twilley, R.R., Naylor, L., Schaffner, L., & Stevenson, C. (2008). Consequences of climate change on the ecogeomorphology of coastal wetlands. *Estuaries and Coasts*, *31*, 477-491

de Araujo Barbosa, C.C., & Atkinson, P. (2013). Monitoring tropical estuaries: remote sensing as a tool for predicting the impact of climate change on ecosystem services. In, *Ecsa* 53: Elsevier

de Araujo Barbosa, C.C., Atkinson, P., & Dearing, J. (2014a). The spatial extent of change in tropical forest ecosystem services in the Amazon delta. *AGU Fall Meeting Abstracts*, 1, 11

de Araujo Barbosa, C.C., Atkinson, P.M., & Dearing, J.A. (2016a). Extravagance in the commons: Resource exploitation and the frontiers of ecosystem service depletion in the Amazon estuary. *Sci Total Environ*, 550, 6-16

- de Araujo Barbosa, C.C., Atkinson, P.M., & Dearing, J.A. (2016b). Extravagance in the commons: Resource exploitation and the frontiers of ecosystem service depletion in the Amazon estuary. *Science of the Total Environment*, 550, 6-16
- de Araujo Barbosa, C.C., Atkinson, P.M., & Dearing, J.A. (2015). Remote sensing of ecosystem services: A systematic review. *Ecological Indicators*, 52, 430–443
- de Araújo Barbosa, C.C., de Sá, L.A.C.M., & Portugal, J.L. (2010). CARTOGRAFIA PARA O ESTUDO DA EROSÃO COSTEIRA. *Estudos Geológicos*, 20, 3
- de Araujo Barbosa, C.C., Hossain, S., Szabo, S., Matthews, Z., Heard, S., & Dearing, J. (2014b). Recent social and biogeophysical changes in the Ganges-Brahmaputra-Meghna, Mekong, and Amazon deltas as inputs into evolutionary policy-making. *AGU Fall Meeting Abstracts*, 1, 05
- de Freitas, C.M., Schuetz, G.E., & de Oliveira, S.G. (2007). Environmental sustainability and human well-being indicators from the ecosystem perspective in the Middle Paraiba Region, Rio de Janeiro State, Brazil. *Cadernos De Saude Publica*, 23, S513-S528
- de Oliveira, V.H., & Quintana-Domeque, C. (2014). Early-life environment and adult stature in Brazil: An analysis for cohorts born between 1950 and 1980. *Economics & Human Biology, 15*, 67-80
- Dearing, J.A., Bullock, S., Costanza, R., Dawson, T.P., Edwards, M.E., Poppy, G.M., & Smith, G.M. (2012). Navigating the Perfect Storm: Research Strategies for Socialecological Systems in a Rapidly Evolving World. *Environmental Management*, 49, 767-775
- Dearing, J.A., & Jones, R.T. (2003). Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records. *Global and Planetary Change*, *39*, 147-168
- Dearing, J.A., Wang, R., Zhang, K., Dyke, J.G., Haberl, H., Hossain, M.S., Langdon, P.G., Lenton, T.M., Raworth, K., Brown, S., Carstensen, J., Cole, M.J., Cornell, S.E., Dawson, T.P., Doncaster, C.P., Eigenbrod, F., Floerke, M., Jeffers, E., Mackay, A.W., Nykvist, B., & Poppy, G.M. (2014). Safe and just operating spaces for regional social-ecological systems. *Global Environmental Change-Human and Policy Dimensions*, 28, 227-238
- Deutsch, L., Folke, C., & Skanberg, K. (2003). The critical natural capital of ecosystem performance as insurance for human well-being. *Ecological Economics*, 44, 205-217
- Dippner, J.W., & Kroncke, I. (2015). Ecological forecasting in the presence of abrupt regime shifts. *Journal of Marine Systems*, 150, 34-40
- Downing, A.S., van Nes, E.H., Balirwa, J.S., Beuving, J., Bwathondi, P.O.J., Chapman, L.J., Cornelissen, I.J.M., Cowx, I.G., Goudswaard, K.P.C., Hecky, R.E., Janse, J.H., Janssen, A.B.G., Kaufman, L., Kishe-Machumu, M.A., Kolding, J., Ligtvoet, W., Mbabazi, D., Medard, M., Mkumbo, O.C., Mlaponi, E., Munyaho, A.T., Nagelkerke, L.A.J., Ogutu-Ohwayo, R., Ojwang, W.O., Peter, H.K., Schindler, D.E., Seehausen, O., Sharpe, D., Silsbe, G.M., Sitoki, L., Tumwebaze, R., Tweddle, D., van de Wolfshaar, K.E., van Dijk, H., van Donk, E., van Rijssel, J.C., van Zwieten, P.A.M., Wanink, J., Witte, F., & Mooij, W.M. (2014). Coupled human and natural system dynamics as key to the sustainability of Lake Victoria's ecosystem services. *Ecology and Society, 19*
- Dun, O. (2011). Migration and Displacement Triggered by Floods in the Mekong Delta. *International Migration*, 49, e200-e223

- Duval-Diop, D.M., & Grimes, J.R. (2005). Tales from two deltas: Catfish fillets, high-value foods, and globalization. *Economic Geography*, 81, 177-200
- Ericson, J.P., Vorosmarty, C.J., Dingman, S.L., Ward, L.G., & Meybeck, M. (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications. *Global and Planetary Change*, 50, 63-82
- Ernoul, L., & Wardell-Johnson, A. (2013). Governance in integrated coastal zone management: a social networks analysis of cross-scale collaboration. *Environmental Conservation*, 40, 231-240
- Escobedo, F.J., Clerici, N., Staudhammer, C.L., & Corzo, G.T. (2015). Socio-ecological dynamics and inequality in Bogota, Colombia's public urban forests and their ecosystem services. *Urban Forestry & Urban Greening*, *14*, 1040-1053
- Espinoza, J.C., Ronchail, J., Guyot, J.L., Junquas, C., Drapeau, G., Martinez, J.M., Santini, W., Vauchel, P., Lavado, W., Ordonez, J., & Espinoza, R. (2012). From drought to flooding: understanding the abrupt 2010-11 hydrological annual cycle in the Amazonas River and tributaries. *Environmental Research Letters*, 7
- Essington, T.E., & Munch, S.B. (2015). Trade-offs between supportive and provisioning ecosystem services of forage species in marine food webs (vol 24, pg 1543, 2014). *Ecological Applications*, 25, 1748-1748
- Farley, J. (2010). Conservation Through the Economics Lens. Environ Manage, 45, 26-38
- Feld, C.K., da Silva, P.M., Sousa, J.P., de Bello, F., Bugter, R., Grandin, U., Hering, D., Lavorel, S., Mountford, O., Pardo, I., Partel, M., Rombke, J., Sandin, L., Jones, K.B., & Harrison, P. (2009). Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. *Oikos*, *118*, 1862-1871
- Few, R., & Pham, G.T. (2010). Climatic hazards, health risk and response in Vietnam: Case studies on social dimensions of vulnerability. *Global Environmental Change-Human and Policy Dimensions*, 20, 529-538
- Fezzi, C., Harwood, A.R., Lovett, A.A., & Bateman, I.J. (2015). The environmental impact of climate change adaptation on land use and water quality. *Nature Climate Change*, *5*, 255-260
- Fjelde, H., & von Uexkull, N. (2012). Climate triggers: Rainfall anomalies, vulnerability and communal conflict in Sub-Saharan Africa. *Political Geography*, *31*, 444-453
- Foley, J.A., Asner, G.P., Costa, M.H., Coe, M.T., DeFries, R., Gibbs, H.K., Howard, E.A., Olson, S., Patz, J., Ramankutty, N., & Snyder, P. (2007). Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. *Frontiers in Ecology and the Environment*, 5, 25-32
- Food and Agriculture Organization of the United Nations. (2014). Food Security Indicators. In, *FAO statistics series*. Rome: Food and Agriculture Organization of the United Nations
- Frappart, F., Do Minh, K., L'Hermitte, J., Cazenave, A., Ramillien, G., Le Toan, T., & Mognard-Campbell, N. (2006). Water volume change in the lower Mekong from satellite altimetry and imagery data. *Geophysical Journal International*, 167, 570-584
- Gain, A.K., & Giupponi, C. (2014). Impact of the Farakka Dam on Thresholds of the Hydrologic Flow Regime in the Lower Ganges River Basin (Bangladesh). *Water*, 6, 2501-2518

Garrett, R.D., Lambin, E.F., & Naylor, R.L. (2013). The new economic geography of land use change: Supply chain configurations and land use in the Brazilian Amazon. *Land Use Policy*, *34*, 265-275

Givental, E., & Meredith, D. (2016). Environmental and political implications of Vietnam's water vulnerabilities: A multiscale assessment. *Singapore Journal of Tropical Geography*, *37*, 59-75

Godar, J., Gardner, T.A., Tizado, E.J., & Pacheco, P. (2014). Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. *Proceedings of the National Academy of Sciences of the United States of America*, 111, 15591-15596

Godar, J., Tizado, E.J., & Pokorny, B. (2012). Who is responsible for deforestation in the Amazon? A spatially explicit analysis along the Transamazon Highway in Brazil. *Forest Ecology and Management*, 267, 58-73

Gonzalez-Esquivel, C.E., Gavito, M.E., Astier, M., Cadena-Salgado, M., del-Val, E., Villamil-Echeverri, L., Merlin-Uribe, Y., & Balvanera, P. (2015). Ecosystem service trade-offs, perceived drivers, and sustainability in contrasting agroecosystems in central Mexico. *Ecology and Society*, 20

Grimaldi, M., Oszwald, J., Doledec, S., Hurtado, M.D., Miranda, I.D., de Sartre, X.A., de Assis, W.S., Castaneda, E., Desjardins, T., Dubs, F., Guevara, E., Gond, V., Lima, T.T.S., Marichal, R., Michelotti, F., Mitja, D., Noronha, N.C., Oliveira, M.N.D., Ramirez, B., Rodriguez, G., Sarrazin, M., da Silva, M.L., Costa, L.G.S., de Souza, S.L., Veiga, I., Velasquez, E., & Lavelle, P. (2014). Ecosystem services of regulation and support in Amazonian pioneer fronts: searching for landscape drivers. *Landscape Ecology*, 29, 311-328

GSO (2014). Population, Employment, National Accounts and State budget statistics. In. Ha Noi, Vietnam.: General Statistics Office of Vietnam

Guedes, G.R., Brondizio, E.S., Barbieri, A.F., Anne, R., Penna-Firme, R., & D'Antona, A.O. (2012). Poverty and Inequality in the Rural Brazilian Amazon: A Multidimensional Approach. *Human Ecology*, 40, 41-57

Gummert, M. (2013). Improved Postharvest Technologies and Management for Reducing Postharvest Losses in Rice. *Ii Asia Pacific Symposium on Postharvest Research Education and Extension (Aps2012), 1011*, 63-70

Gupta, N., Kleinhans, M.G., Addink, E.A., Atkinson, P.M., & Carling, P.A. (2014). One-dimensional modeling of a recent Ganga avulsion: Assessing the potential effect of tectonic subsidence on a large river. *Geomorphology*, 213, 24-37

Haider, M.Z., & Hossain, M.Z. (2013). Impact of salinity on livelihood strategies of farmers. *Journal of Soil Science and Plant Nutrition, 13*, 417-431

Hanebuth, T.J.J., Kudrass, H.R., Linstadter, J., Islam, B., & Zander, A.M. (2013). Rapid coastal subsidence in the central Ganges-Brahmaputra Delta (Bangladesh) since the 17th century deduced from submerged salt-producing kilns. *Geology*, *41*, 987-990

Harborne, A.R. (2013). The ecology, behaviour and physiology of fishes on coral reef flats, and the potential impacts of climate change. *Journal of Fish Biology*, 83, 417-447

Harmackova, Z.V., & Vackar, D. (2015). Modelling regulating ecosystem services trade-offs across landscape scenarios in Trebonsko Wetlands Biosphere Reserve, Czech Republic. *Ecological Modelling*, 295, 207-215

Haruyama, S., & Ito, T. (2009). Flood Risk and Landform of Cambodian Mekong Delta. *Geomorphology and Plate Tectonics*, 35-54

Hicks, C.C., Cinner, J.E., Stoeckl, N., & McClanahan, T.R. (2015). Linking ecosystem services and human-values theory. *Conservation Biology*, 29, 1471-1480

Higgins, S.A., Overeem, I., Steckler, M.S., Syvitski, J.P.M., Seeber, L., & Akhter, S.H. (2014). InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh. *Journal of Geophysical Research-Earth Surface*, 119, 1768-1781

Hinderer, M. (2012). From gullies to mountain belts: A review of sediment budgets at various scales. *Sedimentary Geology*, 280, 21-59

Holgate, S.J., Matthews, A., Woodworth, P.L., Rickards, L.J., Tamisiea, M.E., Bradshaw, E., Foden, P.R., Gordon, K.M., Jevrejeva, S., & Pugh, J. (2013). New Data Systems and Products at the Permanent Service for Mean Sea Level. *Journal of Coastal Research*, 29, 493-504

Hossain, M.S., Dearing, J., Rahman, M.M., & Salehin, M. (2015a). Recent changes in ecosystem services and human well-being in the Bangladesh coastal zone. *Regional Environmental Change*, 1-15

Hossain, M.S., Johnson, F.A., Dearing, J.A., & Eigenbrod, F. (2015b). Recent trends of human wellbeing in the Bangladesh delta. *Environmental Development*

Hossain, M.Y., Rahman, M.M., Jewel, M.A., Ahmed, Z.F., Ahamed, F., Fulanda, B., Abdallah, E.M., & Ohtomi, J. (2012). Conditions- and Form-Factor of the Five Threatened Fishes from the Jamuna (Brahmaputra River Distributary) River, Northern Bangladesh. *Sains Malaysiana*, 41, 671-678

Hossain, Y., Jewel, A.S., Rahman, M., Haque, A.B.M.M., Elbaghdady, H.A.M., & Ohtomi, J. (2013). Life-history Traits of the Freshwater Garfish Xenentodon cancila (Hamilton 1822) (Belonidae) in the Ganges River, Northwestern Bangladesh. *Sains Malaysiana*, 42, 1207-1218

Hou, J., Walsh, P.P., & Zhang, J. (2015). The dynamics of Human Development Index. *Social Science Journal*, 52, 331-347

Howe, C., Suich, H., Vira, B., & Mace, G.M. (2014). Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. *Global Environmental Change-Human and Policy Dimensions*, 28, 263-275

Huysveld, S., Schaubroeck, T., De Meester, S., Sorgeloos, P., Van Langenhove, H., Van Linden, V., & Dewulf, J. (2013). Resource use analysis of Pangasius aquaculture in the Mekong Delta in Vietnam using Exergetic Life Cycle Assessment. *Journal of Cleaner Production*, 51, 225-233

Iacob, O., Rowan, J.S., Brown, I., & Ellis, C. (2014). Evaluating wider benefits of natural flood management strategies: an ecosystem-based adaptation perspective. *Hydrology Research*, 45, 774-787

Ibanez, C., Day, J.W., & Reyes, E. (2014). The response of deltas to sea-level rise: Natural mechanisms and management options to adapt to high-end scenarios. *Ecological Engineering*, 65, 122-130

IBGE (2014). Sistema IBGE de Recuperação Automática (SIDRA). In. Rio de Janeiro: IBGE

INMET (2013). Series Meteorologicas. In. Brasilia, Brazil: Instituto Nacional de Meteorologia

INPE (2014). Dados de Desmatamento consolidados. In, *Projeto PRODES*. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, Brazil

Islam, A.S., Haque, A., & Bala, S.K. (2010a). Hydrologic characteristics of floods in Ganges-Brahmaputra-Meghna (GBM) delta. *Natural Hazards*, *54*, 797-811

Islam, M.B., Ali, M.Y., Amin, M., & Zaman, S.M. (2011). Climatic Variations: Farming Systems and Livelihoods in the High Barind Tract and Coastal Areas of Bangladesh. *Climate Change and Food Security in South Asia*, 477-497

Islam, S.N., Singh, S., Shaheed, H., & Wei, S.K. (2010b). Settlement relocations in the char-lands of Padma River basin in Ganges delta, Bangladesh. *Frontiers of Earth Science*, *4*, 393-402

Jordan, S.J., Hayes, S.E., Yoskowitz, D., Smith, L.M., Summers, J.K., Russell, M., & Benson, W.H. (2010). Accounting for Natural Resources and Environmental Sustainability: Linking Ecosystem Services to Human Well-Being. *Environmental Science & Technology*, 44, 1530-1536

Kay, S., Caesar, J., Wolf, J., Bricheno, L., Nicholls, R.J., Islam, A.K.M.S., Haque, A., Pardaens, A., & Lowe, J.A. (2015). Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change. *Environmental Science-Processes & Impacts*, 17, 1311-1322

Khan, A.L. (2012). Creative Adaptation: Bangladesh's Resilience to Flooding in a Changing Climate. Climate Change Modeling for Local Adaptation in the Hindu Kush-Himalayan Region, 11, 159-175

Khan, M.M.H., Bryceson, I., Kolivras, K.N., Faruque, F., Rahman, M.M., & Haque, U. (2015). Natural disasters and land-use/land-cover change in the southwest coastal areas of Bangladesh. *Regional Environmental Change*, *15*, 241-250

King, J., & Brown, C. (2010). Integrated basin flow assessments: concepts and method development in Africa and South-east Asia. *Freshwater Biology*, 55, 127-146

King, M.F., Reno, V.F., & Novo, E.M.L.M. (2014). The Concept, Dimensions and Methods of Assessment of Human Well-Being within a Socioecological Context: A Literature Review. *Social Indicators Research*, 116, 681-698

Klemick, H. (2011). Shifting cultivation, forest fallow, and externalities in ecosystem services: Evidence from the Eastern Amazon. *Journal of Environmental Economics and Management*, 61, 95-106

Kotera, A., Nguyen, K.D., Sakamoto, T., Iizumi, T., & Yokozawa, M. (2014). A modeling approach for assessing rice cropping cycle affected by flooding, salinity intrusion, and monsoon rains in the Mekong Delta, Vietnam. *Paddy and Water Environment*, 12, 343-354

Kotera, A., Sakamoto, T., Nguyen, D.K., & Yokozawa, M. (2008). Regional Consequences of Seawater Intrusion on Rice Productivity and Land Use in Coastal Area of the Mekong River Delta. *Jarq-Japan Agricultural Research Quarterly*, 42, 267-274

Kuenzer, C., & Knauer, K. (2013). Remote sensing of rice crop areas. *International Journal of Remote Sensing*, 34, 2101-2139

Kuenzer, C., & Renaud, F.G. (2012). Climate and Environmental Change in River Deltas Globally: Expected Impacts, Resilience, and Adaptation. *Mekong Delta System: Interdisciplinary Analyses of a River Delta*, 7-46

Larsen, S., Andersen, T., & Hessen, D.O. (2011). Climate change predicted to cause severe increase of organic carbon in lakes. *Global Change Biology*, 17, 1186-1192

Laterra, P., Orue, M.E., & Booman, G.C. (2012). Spatial complexity and ecosystem services in rural landscapes. *Agriculture Ecosystems & Environment*, 154, 56-67

Li, S.J., & He, D.M. (2008). Water level response to hydropower development in the upper Mekong River. *Ambio*, *37*, 170-177

Llovel, W., Becker, M., Cazenave, A., Cretaux, J.F., & Ramillien, G. (2010). Global land water storage change from GRACE over 2002-2009; Inference on sea level. *Comptes Rendus Geoscience*, 342, 179-188

Lorena, R.B., & Lambin, E.F. (2009). The spatial dynamics of deforestation and agent use in the Amazon. *Applied Geography*, 29, 171-181

Lu, X.X., & Siew, R.Y. (2006). Water discharge and sediment flux changes over the past decades in the Lower Mekong River: possible impacts of the Chinese dams. *Hydrology and Earth System Sciences*, 10, 181-195

Ludewigs, T., D'Antona, A.d.O., Brondizio, E.S., & Hetrick, S. (2009). Agrarian Structure and Land-cover Change Along the Lifespan of Three Colonization Areas in the Brazilian Amazon. *World Development*, *37*, 1348-1359

Lusterio, A.C. (2009). Living with water: The settlements of Vietnam Mekong Delta. *Water and Urban Development Paradigms*, 67-74

Ma, S., & Swinton, S.M. (2011). Valuation of ecosystem services from rural landscapes using agricultural land prices. *Ecological Economics*, 70, 1649-1659

Macadam, C.R., & Stockan, J.A. (2015). More than just fish food: ecosystem services provided by freshwater insects. *Ecological Entomology*, 40, 113-123

Malovics, G., Toth, M., & Gebert, J. (2009). A critical analysis of sustainability indicators and their applicability on the regional level. *Cers* 2009 - 3rd Central European Conference in Regional Science, International Conference Proceedings - Young Scientists Articles, 1186-1192

Manh, N.V., Dung, N.V., Hung, N.N., Kummu, M., Merz, B., & Apel, H. (2015). Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. *Global and Planetary Change*, 127, 22-33

Markandya, A., & Murty, M.N. (2004). Cost-benefit analysis of cleaning the Ganges: some emerging environment and development issues. *Environment and Development Economics*, 9, 61-81

Maya, M.V., Soares, M.A., Agnihotri, R., Pratihary, A.K., Karapurkar, S., Naik, H., & Naqvi, S.W.A. (2011). Variations in some environmental characteristics including C and N stable isotopic composition of suspended organic matter in the Mandovi estuary. *Environmental Monitoring and Assessment, 175*, 501-517

McMullen, C.P., Jabbour, J.R., & United Nations Environment Programme. (2009). *Climate change science compendium 2009*. Nairobi, Kenya: UNEP

Meier, P., Bond, D., & Bond, J. (2007). Environmental influences on pastoral conflict in the Horn of Africa. *Political Geography*, 26, 716-735

Millennium Ecosystem Assessment (2005). *Ecosystems and human well-being: synthesis*. Washington, DC: Island Press

Mononen, L., Auvinen, A.P., Ahokumpu, A.L., Ronka, M., Aarras, N., Tolvanen, H., Kamppinen, M., Viirret, E., Kumpula, T., & Vihervaara, P. (2016). National ecosystem service indicators: Measures of social-ecological sustainability. *Ecological Indicators*, 61, 27-37

Morrison, G., Sherwood, E.T., Boler, R., & Barron, J. (2006). Variations in water clarity and chlorophyll a in Tampa Bay, Florida, in response to annual rainfall, 1985-2004. *Estuaries and Coasts*, 29, 926-931

MRC (2014). In. Lao, Vietnam: Mekong River Commission

Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R.E., Lehner, B., Malcolm, T.R., & Ricketts, T.H. (2008). Global mapping of ecosystem services and conservation priorities. *Proceedings of the National Academy of Sciences of the United States of America*, 105, 9495-9500

Nedkov, S., & Burkhard, B. (2012). Flood regulating ecosystem services-Mapping supply and demand, in the Etropole municipality, Bulgaria. *Ecological Indicators*, 21, 67-79

Nelson, G.C., Bennett, E., Berhe, A.A., Cassman, K., DeFries, R., Dietz, T., Dobermann, A., Dobson, A., Janetos, A., Levy, M., Marco, D., Nakicenovic, N., O'Neill, B., Norgaard, R., Petschel-Held, G., Ojima, D., Pingali, P., Watson, R., & Zurek, M. (2006). Anthropogenic drivers of ecosystem change: An overview. *Ecology and Society, 11*

Nepstad, D.C., McGrath, D.G., & Soares-Filho, B. (2011). Systemic Conservation, REDD, and the Future of the Amazon Basin. *Conservation Biology*, 25, 1113-1116

Ngoo, Y.T., Tey, N.P., & Tan, E.C. (2015). Determinants of Life Satisfaction in Asia. *Social Indicators Research*, 124, 141-156

Nguyen, A.L., Dang, V.H., Bosma, R.H., Verreth, J.A.J., Leemans, R., & De Silva, S.S. (2014). Simulated Impacts of Climate Change on Current Farming Locations of Striped Catfish (Pangasianodon hypophthalmus; Sauvage) in the Mekong Delta, Vietnam. *Ambio*, *43*, 1059-1068

Nguyen, V.V. (2011). Climate Change and Agricultural Production in Vietnam. *Economic, Social and Political Elements of Climate Change*, 227-243

Nhan, D.K., Phong, L.T., Verdegem, M.J.C., Duong, L.T., Bosma, R.H., & Little, D.C. (2007). Integrated freshwater aquaculture, crop and livestock production in the Mekong delta, Vietnam: Determinants and the role of the pond. *Agricultural Systems*, *94*, 445-458

NHMS (2014). In. Ha Noi, Vietnam: Vietnam Hydro Meteorological Service

Nijssen, B., O'Donnell, G.M., Hamlet, A.F., & Lettenmaier, D.P. (2001). Hydrologic sensitivity of global rivers to climate change. *Climatic Change*, *50*, 143-175

Notter, B., Hurni, H., Wiesmann, U., & Abbaspour, K.C. (2012). Modelling water provision as an ecosystem service in a large East African river basin. *Hydrology and Earth System Sciences*, 16, 69-86

O'Leary, S.J., & Wantzen, K.M. (2012). Flood pulse effects on benthic invertebrate assemblages in the hypolacustric interstitial zone of Lake Constance. *Annales De Limnologie-International Journal of Limnology*, 48, 267-277

O'reilly, C.M., Alin, S.R., Plisnier, P.D., Cohen, A.S., & McKee, B.A. (2003). Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. *Nature*, 424, 766-768

Omer, A.M. (2009). Energy use and environmental impacts: A general review. *Journal of Renewable and Sustainable Energy, 1*

Pethick, J., & Orford, J.D. (2013). Rapid rise in effective sea-level in southwest Bangladesh: Its causes and contemporary rates. *Global and Planetary Change*, 111, 237-245

Piman, T., Lennaerts, T., & Southalack, P. (2013). Assessment of hydrological changes in the lower Mekong Basin from Basin-Wide development scenarios. *Hydrological Processes*, 27, 2115-2125

Pinho, P.F., Marengo, J.A., & Smith, M.S. (2015). Complex socio-ecological dynamics driven by extreme events in the Amazon. *Regional Environmental Change*, *15*, 643-655

Pokrant, B. (2014). Brackish Water Shrimp Farming and the Growth of Aquatic Monocultures in Coastal Bangladesh. *Historical Perspectives of Fisheries Exploitation in the Indo-Pacific*, 12, 107-132

Potschin, M.B., & Haines-Young, R.H. (2011). Ecosystem services: Exploring a geographical perspective. *Progress in Physical Geography*, 35, 575-594

Pretty, J. (2013). The Consumption of a Finite Planet: Well-Being, Convergence, Divergence and the Nascent Green Economy. *Environmental & Resource Economics*, 55, 475-499

Quyet, V.M., Le, Q.B., Scholz, R.W., & Vlek, P.L.G. (2012). Detecting Geographic Hotspots of Human-Induced Land Degradation in Vietnam and Characterization of Their Social-Ecological Types. 2012 Ieee International Geoscience and Remote Sensing Symposium (Igarss), 6220-6223

Ramirez-Gomez, S.O.I., Torres-Vitolas, C.A., Schreckenberg, K., Honzak, M., Cruz-Garcia, G.S., Willcock, S., Palacios, E., Perez-Minana, E., Verweij, P.A., & Poppy, G.M. (2015). Analysis of ecosystem services provision in the Colombian Amazon using participatory research and mapping techniques. *Ecosystem Services*, *13*, 93-107

Raudsepp-Hearne, C., Peterson, G.D., Tengo, M., Bennett, E.M., Holland, T., Benessaiah, K., MacDonald, G.K., & Pfeifer, L. (2010). Untangling the Environmentalist's Paradox: Why Is Human Well-being Increasing as Ecosystem Services Degrade? *Bioscience*, 60, 576-589

Renaud, F.G., Le, T.T.H., Lindener, C., Guong, V.T., & Sebesvari, Z. (2015). Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre Province, Mekong Delta. *Climatic Change*, 133, 69-84

Restrepo, J.D. (2013). The perils of human activity on South American deltas: lessons from Colombia's experience with soil erosion. *Deltas: Landforms, Ecosystems and Human Activities,* 358, 143-152

Reyers, B., Biggs, R., Cumming, G.S., Elmqvist, T., Hejnowicz, A.P., & Polasky, S. (2013). Getting the measure of ecosystem services: a social-ecological approach. *Frontiers in Ecology and the Environment*, 11, 268-273

Rodriguez, J.P., Beard, T.D., Bennett, E.M., Cumming, G.S., Cork, S.J., Agard, J., Dobson, A.P., & Peterson, G.D. (2006). Trade-offs across space, time, and ecosystem services. *Ecology and Society*, 11

Rogers, K.G., Goodbred, S.L., & Mondal, D.R. (2013). Monsoon sedimentation on the 'abandoned' tide-influenced Ganges-Brahmaputra delta plain. *Estuarine Coastal and Shelf Science*, 131, 297-309

Ruane, A.C., Major, D.C., Yu, W.H., Alam, M., Hussain, S.G., Khan, A.S., Hassan, A., Al Hossain, B.M.T., Goldberg, R., Horton, R.M., & Rosenzweig, C. (2013). Multi-factor impact analysis of agricultural production in Bangladesh with climate change. *Global Environmental Change-Human and Policy Dimensions*, 23, 338-350

Sabater, S., & Tockner, K. (2010). Effects of Hydrologic Alterations on the Ecological Quality of River Ecosystems. *Water Scarcity in the Mediterranean: Perspectives under Global Change*, 8, 15-39

Sara, G., Milanese, M., Prusina, I., Sara, A., Angel, D.L., Glamuzina, B., Nitzan, T., Freeman, S., Rinaldi, A., Palmeri, V., Montalto, V., Lo Martire, M., Gianguzza, P., Arizza, V., Lo Brutto, S., De Pirro, M., Helmuth, B., Murray, J., De Cantis, S., & Williams, G.A. (2014). The impact of climate change on mediterranean intertidal communities: losses in coastal ecosystem integrity and services. *Regional Environmental Change*, 14, S5-S17

Schmelzer, M. (2015). The growth paradigm: History, hegemony, and the contested making of economic growthmanship. *Ecological Economics*, 118, 262-271

Schoenaker, N., Hoekstra, R., & Smits, J.P. (2015). Comparison of Measurement Systems for Sustainable Development at the National Level. *Sustainable Development*, 23, 285-300

Seck, P.A., Diagne, A., Mohanty, S., & Wopereis, M.C.S. (2012). Crops that feed the world 7: Rice. *Food Security*, 4, 7-24

Sharma, B., Amarasinghe, U., Cai, X.L., de Condappa, D., Shah, T., Mukherji, A., Bharati, L., Ambili, G., Qureshi, A., Pant, D., Xenarios, S., Singh, R., & Smakhtin, V. (2010). The Indus and the Ganges: river basins under extreme pressure. *Water International*, *35*, 493-521

Shearman, P., Bryan, J., & Walsh, J.P. (2013). Trends in Deltaic Change over Three Decades in the Asia-Pacific Region. *Journal of Coastal Research*, 29, 1169-1183

- Siddique-E-Akbor, A.H.M., Hossain, F., Sikder, S., Shum, C.K., Tseng, S., Yi, Y., Turk, F.J., & Limaye, A. (2014). Satellite Precipitation Data-Driven Hydrological Modeling for Water Resources Management in the Ganges, Brahmaputra, and Meghna Basins. *Earth Interactions*, 18
- Smith, T.F., Thomsen, D.C., Gould, S., Schmitt, K., & Schlegel, B. (2013). Cumulative Pressures on Sustainable Livelihoods: Coastal Adaptation in the Mekong Delta. *Sustainability*, *5*, 228-241
- Son, N.T., Chen, C.F., Chen, C.R., Chang, L.Y., Duc, H.N., & Nguyen, L.D. (2013). Prediction of rice crop yield using MODIS EVI-LAI data in the Mekong Delta, Vietnam. *International Journal of Remote Sensing*, 34, 7275-7292
- Stanley, D.J., & Hait, A.K. (2000). Deltas, radiocarbon dating, and measurements of sediment storage and subsidence. *Geology*, 28, 295-298
- Sturck, J., Poortinga, A., & Verburg, P.H. (2014). Mapping ecosystem services: The supply and demand of flood regulation services in Europe. *Ecological Indicators*, 38, 198-211
- Suich, H., Howe, C., & Mace, G. (2015). Ecosystem services and poverty alleviation: A review of the empirical links. *Ecosystem Services*, 12, 137-147
- Sullivan, C.A., & Huntingford, C. (2009). Water resources, climate change and human vulnerability. 18th World Imacs Congress and Modsim09 International Congress on Modelling and Simulation, 3984-3990
- Syvitski, J.P.M. (2008). Deltas at risk. Sustainability Science, 3, 23-32
- Szabo, S., Hossain, M.S., Adger, W.N., Matthews, Z., Ahmed, S., Lázár, A., & Ahmad, S. (2015a). Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh. *Sustainability Science*, 1-11
- Szabo, S., Renaud, F., Hossain, M.S., Sebesvari, Z., Matthews, Z., Foufoula-Georgiou, E., & Nicholls, R.J. (2015b). Sustainable Development Goals Offer New Opportunities for Tropical Delta Regions. *Environment: Science and Policy for Sustainable Development*
- Taguchi, K., & Nakata, K. (2009). Evaluation of biological water purification functions of inland lakes using an aquatic ecosystem model. *Ecological Modelling*, 220, 2255-2271
- Tao, Z., Jinyan, Z., Feng, W., Jiao, L., & Juan, H. (2013). Regional Climate Variability Responses to Future Land Surface Forcing in the Brazilian Amazon. *Advances in Meteorology*, 852541 (852549 pp.)-852541 (852549 pp.)
- Teferi, E., Uhlenbrook, S., Bewket, W., Wenninger, J., & Simane, B. (2010). The use of remote sensing to quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia. *Hydrology and Earth System Sciences*, 14, 2415-2428
- Terrado, M., Acuna, V., Ennaanay, D., Tallis, H., & Sabater, S. (2014). Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. *Ecological Indicators*, *37*, 199-209
- Tho, N., Merckx, R., & Ut, V.N. (2012). Biological characteristics of the improved extensive shrimp system in the Mekong delta of Vietnam. *Aquaculture Research*, 43, 526-537

- Tin, H.Q., Berg, T., & Bjornstad, A. (2001). Diversity and adaptation in rice varieties under static (ex situ) and dynamic (in situ) management A case study in the Mekong Delta, Vietnam. *Euphytica*, 122, 491-502
- Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. *Science*, 349, 814-818
- Tsai, A.Y., Chiang, K.P., Chang, J., & Gong, G.C. (2005). Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. *Limnology and Oceanography*, 50, 1221-1231
- Tuong, T.P., Kam, S.P., Hoanh, C.T., Dung, L.C., Khiem, N.T., Barr, J., & Ben, D.C. (2003). Impact of seawater intrusion control on the environment, land use and household incomes in a coastal area. *Paddy and Water Environment*, 1, 65-73
- Turner, M.G., Donato, D.C., & Romme, W.H. (2013). Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. *Landscape Ecology*, 28, 1081-1097
- UNEP (2004). Barthem, R. B., Charvet-Almeida, P., Montag, L. F. A. and Lanna, A.E. Amazon Basin, GIWA Regional assessment 40b. University of Kalmar, Kalmar, Sweden. In
- van Slobbe, E., de Vriend, H.J., Aarninkhof, S., Lulofs, K., de Vries, M., & Dircke, P. (2013). Building with Nature: in search of resilient storm surge protection strategies. *Natural Hazards*, 66, 1461-1480
- Varis, O., Kummu, M., & Salmivaara, A. (2012). Ten major rivers in monsoon Asia-Pacific: An assessment of vulnerability. *Applied Geography*, 32, 441-454
- Vecernik, J., & Mysikova, M. (2015). GDP and life satisfaction in European countries focus on transition. *Post-Communist Economies*, 27, 170-187
- Vergara, W., & Scholz, S.M. (2011). Modeling Future Climate in the Amazon Using the Earth Simulator.
- Vidal-Abarca, M.R., Suarez-Alonso, M.L., Santos-Martin, F., Martin-Lopez, B., Benayas, J., & Montes, C. (2014). Understanding complex links between fluvial ecosystems and social indicators in Spain: An ecosystem services approach. *Ecological Complexity*, 20, 1-10
- Viers, J., Barroux, G., Pinelli, M., Seyler, P., Oliva, P., Dupre, B., & Boaventura, G.R. (2005). The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil). *Science of the Total Environment*, 339, 219-232
- Vu, Q.M., Le, Q.B., & Vlek, P.L.G. (2014). Hotspots of human-induced biomass productivity decline and their social-ecological types toward supporting national policy and local studies on combating land degradation. *Global and Planetary Change*, 121, 64-77
- Walker, S.J., Degnan, B.M., Hooper, J.N.A., & Skilleter, G.A. (2008). Will increased storm disturbance affect the biodiversity of intertidal, nonscleractinian sessile fauna on coral reefs? *Global Change Biology*, 14, 2755-2770
- Walsh, J.P., Corbett, D.R., Ogston, A.S., Nittrouer, C.A., Kuehl, S.A., Allison, M.A., & Goodbred, S.L. (2014). Shelf and slope sedimentation associated with large deltaic systems.

Biogeochemical Dynamics at Major River-Coastal Interfaces: Linkages with Global Change, 86-117

Webster, P.J., & Jian, J. (2011). Environmental prediction, risk assessment and extreme events: adaptation strategies for the developing world. *Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences*, 369, 4768-4797

Westphal, C., Vidal, S., Horgan, F.G., Gurr, G.M., Escalada, M., Chien, H.V., Tscharntke, T., Heong, K.L., & Settele, J. (2015). Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. *Basic and Applied Ecology, 16*, 681-689

Withers, P.J.A., & Jarvie, H.P. (2008). Delivery and cycling of phosphorus in rivers: A review. *Science of The Total Environment*, 400, 379-395

Wong, P.P., Losada, I.J., Gattuso, J.P., Hinkel, J., Khattabi, A., McInnes, K.L., Saito, Y., & Sallenger, A. (2014). Coastal systems and low-lying areas. In C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, & L.L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (pp. 361-409). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press

Wood, S.L.R., Rhemtulla, J.M., & Coomes, O.T. (2016). Intensification of tropical fallow-based agriculture: Trading-off ecosystem services for economic gain in shifting cultivation landscapes? *Agriculture Ecosystems & Environment*, 215, 47-56

Xue, Z., Liu, J.P., & Ge, Q.A. (2011). Changes in hydrology and sediment delivery of the Mekong River in the last 50 years: connection to damming, monsoon, and ENSO. *Earth Surface Processes and Landforms*, *36*, 296-308

Yoo, J., Simonit, S., Connors, J.P., Kinzig, A.P., & Perrings, C. (2014). The valuation of off-site ecosystem service flows: Deforestation, erosion and the amenity value of lakes in Prescott, Arizona. *Ecological Economics*, 97, 74-83

Younus, M.A.F. (2014). Crop Adjustment Processes to Extreme Floods. Vulnerability and Adaptation to Climate Change in Bangladesh: Processes, Assessment and Effects, 117-128