
submitted toGeophys. J. Int.

Multiphase flow modelling of volcanic ash particle settling

in water using adaptive unstructured meshes

C. T. Jacobs,1,2 G. S. Collins,2 M. D. Piggott,2,3 S. C. Kramer,1,2 C. R. G. Wilson4

1 Institute of Shock Physics, Imperial College London, London SW7 2AZ, UK

2 Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

3 Grantham Institute for Climate Change, Imperial College London, London SW7 2AZ, UK

4 Lamont–Doherty Earth Observatory, Columbia University, New York 10964, USA

SUMMARY

Small-scale experiments of volcanic ash particle settlingin water have demonstrated that

ash particles can either settle slowly and individually, orrapidly and collectively as a

gravitationally unstable ash-laden plume. This has important implications for the em-

placement of tephra deposits on the seabed. Numerical modelling has the potential to

extend the results of laboratory experiments to larger scales and explore the conditions

under which plumes may form and persist, but many existing models are computationally

restricted by the fixed mesh approaches that they employ. In contrast, this article presents

a new multiphase flow model that uses an adaptive unstructured mesh approach. As a sim-

ulation progresses, the mesh is optimised to focus numerical resolution in areas impor-

tant to the dynamics and decrease it where it is not needed, thereby potentially reducing

computational requirements. Model verification is performed using the method of manu-

factured solutions, which shows the correct solution convergence rates. Model validation

and application considers two-dimensional simulations ofplume formation in a water

tank which replicate published laboratory experiments. The numerically predicted set-

tling velocities for both individual particles and plumes,as well as instability behaviour,
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agree well with experimental data and observations. Plume settling is clearly hindered by

the presence of a salinity gradient, and its influence must therefore be taken into account

when considering particles in bodies of saline water. Furthermore, individual particles

settle in the laminar flow regime while plume settling is shown (by plume Reynolds num-

bers greater than unity) to be in the turbulent flow regime, which has a significant impact

on entrainment and settling rates. Mesh adaptivity maintains solution accuracy whilst

providing a substantial reduction in computational requirements when compared to the

same simulation performed using a fixed mesh, highlighting the benefits of an adaptive

unstructured mesh approach.

Key words: Numerical solutions; Non-linear differential equations;Volcaniclastic de-

posits.

1 INTRODUCTION

The settling of particles under the influence of gravity in anaqueous solution has long been an im-

portant phenomenon. Starting from the early works of Richardson and Zaki (1954), Kuenen (1968)

and Davis and Acrivos (1985), a vast amount of research has investigated the use of the sedimentation

process in industrial applications. Grain-size analysis is a common example whereby particle diame-

ters are inferred from the different settling velocities inthe fluid. If the particles form distinct layers

based on size classes at the bottom of the container, then they can also be separated from one another,

or removed from the fluid completely as seen when clarifying waste water. Each of these applications

requires a good understanding of the particle settling properties to give accurate and effective results.

For example, particles were once thought to only settle individually under Stokes’ law but further re-

search has shown that the role of vertical density currents,which significantly affect particle settling

velocities, must also be taken into account when performinggrain-size analysis (Carey 1997; Kuenen

1968). Without this increased understanding, particle diameters may be poorly estimated.

The need for a better understanding of particle settling properties also extends to the natural world,

where an important occurrence of sedimentation is the settling of pyroclastic fragmental material, gen-

erally referred to as tephra, in the world’s oceans. Tephra particles from past volcanic eruptions settle

to form layer after layer of deposits on the seabed. Correct interpretation of these layers can provide

important constraints on the duration and frequency of volcanism (Carey and Schneider 2011) but,
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like the other aforementioned applications, requires a full understanding of the complex multiphase

settling and deposition process.

Analogue experiments of tephra settling through a tank of water have demonstrated that small

ash particles (i.e. tephra particles smaller than 2 mm in diameter (Rose and Durant 2009)) can either

settle individually, or collectively as a gravitationallyunstable ash-laden plume (Carey 1997). This be-

haviour is similar to that of virus particles in a buffer solution and fungal spores in air (Bradley 1965,

1969). These plumes are generated when the concentration ofparticles exceeds a certain threshold

such that the bulk density of the tephra-water mixture is sufficiently large relative to the underly-

ing particle-free water for a gravitational Rayleigh-Taylor instability to develop. Furthermore, these

plumes are observed to descend as a vertical density currentwith a velocity much greater than that

of individual particles, which has important implicationsfor the emplacement of tephra deposits on

the seabed (Carey 1997; Manville and Wilson 2004); the effects of ocean currents on the distribution

of settling tephra particles will be lessened because of theshorter time-scale over which they can act,

and information about atmospheric conditions at the time ofan eruption is therefore more likely to

be preserved by the tephra layers that form at the bottom of the ocean. These implications must also

be taken into account when performing settling velocity-based grain-size analysis for particles with

diameters smaller than 50µm (Kuenen 1968).

Numerical modelling provides a method to extend the resultsof laboratory experiments to large

scales and explore the conditions under which vertical density currents may form and persist. One

crucial aspect of any numerical model is the discretisationof the domain into a finite number of cells,

forming a mesh, where the properties of the flow such as velocity are approximated upon the solution

nodes. This is directly related to both accuracy and computational footprint; more cells (or nodes) give

better accuracy but at the cost of increased simulation runtime.

Many existing multiphase flow models solve the equations governing the flow dynamics either on

a fixed structured grid or a fixed unstructured mesh. The former is not well-suited to handling complex

geometries such as the bathymetry of the ocean (Painet al. 2005), and can be inefficient if one only

wants to accurately capture the dynamics in particular areas of the domain; since the numerical res-

olution is inherently uniform, a large number of superfluousnodes will exist. Use of fixed structured

grids has restricted the resolution of even the most advanced structured grid-based multiphase models

(Neri and Macedonio 1996; Neriet al.2003; Textoret al.2005; Esposti Ongaroet al.2008). In con-

trast, unstructured meshes have the advantage that nodes can be arbitrarily connected to one another,

thus providing the freedom for the resolution to increase ordecrease only where desired (Piggottet al.

2006). However, a fixed unstructured mesh which concentrates resolution in a region of interest in the

flow, such as around a vortex, will no longer be optimal if thisvortex changes its position or size as the
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simulation progresses. The reduced accuracy resulting from this can dramatically affect the numerical

solution.

To mitigate the issues associated with fixed meshes, this work developed a multiphase flow model

within Fluidity, an open-source, combined finite element / control volume CFD code, which features

an adaptive unstructured mesh based approach (Painet al. 2001; Piggottet al. 2008, 2009; Davies

et al.2011; Imperial College London 2011). Adaptive unstructured meshes have the potential to sup-

ply finer numerical resolution only in areas important to thedynamics being studied and coarser res-

olution in those areas that are not. As the flow progresses themesh is optimised through a series of

local topological operations (such as node addition and edge flipping) to accurately, but efficiently,

represent the flow domain throughout time (Piggottet al. 2009). This approach has already brought

significant benefits to numerical models; for example, Fluidity’s single-phase flow model has shown

that an adaptive unstructured mesh can yield results equally accurate as those produced with a fixed

mesh, with more than an order of magnitude fewer nodes (Hiester et al.2011). Other models that use

an adaptive mesh approach have also reported similar benefits, including faster runtimes and reduced

computational costs over simulations performed with a uniformly fine mesh (Li and Kong 2009; Ito

et al.2011). Clearly the use of adaptive unstructured meshes is potentially very fruitful for modelling

multiphase flows, particularly those involving geophysical processes occurring on a wide range of

scales in complex domains.

The work herein describes the new multiphase capabilities of Fluidity, presents model verification

and validation by simulating experiments of particle settling through a water tank, and highlights the

benefits of mesh adaptivity by showing that it provides reduced computational cost compared with

a mesh of uniform resolution without compromising solutionaccuracy. The remainder of this article

is set out as follows. Section 2 presents the model equationsand the fluid-particle drag term used.

The equations are discretised using the finite element method in Section 3, followed by a description

of the numerical method used to compute the solution in Section 4. The method of manufactured

solutions, described in Section 5, verified the correctnessof the model implementation in Fluidity.

The experiment of Manville and Wilson (2004) involving particle settling in a tank of water with a

salinity gradient was then simulated, and the numerically predicted plume depth and salinity profile

were obtained; the model is validated in Section 6 by comparing these quantities against experimental

data. Fluidity was also used to simulate similar settling experiments by Carey (1997), which involved

several different size ranges of particles. The observed particle settling velocities are compared against

those predicted numerically in Section 7. Finally, the key findings of this work are summarised in

Section 8.
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2 MODEL EQUATIONS

This work developed a model for dispersed multiphase flows composed of a single fluid phase (a

connected liquid or gas substance) in which one or more particle phases (comprising solid particles,

liquid droplets and/or gas bubbles) are immersed (Croweet al.1998). Each phase was identified by an

indexi, wherei = 1, 2, . . . , Nphases. By assuming that both the fluid phase and particle phase(s) could

be treated as interpenetrating continua (the so-called Eulerian-Eulerian approach (Crowe 2005)), the

physical laws of conservation of mass and momentum were usedto derive the governing equations.

These equations were considered on a domainΩ ⊂ R3 with boundary∂Ω for an interval of time

t ∈ [0, T ].

Each phasei was assigned a separate velocity fieldui, and hence a separate momentum equation,

to enable mixing and interpenetration. Extra terms were then included to account for interphase inter-

actions. Furthermore, since only low-velocity gravity-driven flows were being considered, the model

assumed incompressible flow and a common pressure fieldp so that only one continuity equation was

used. Thus, the continuity equation and momentum equation for phasei (based on the derivation by

Ishii (1975) in non-conservative form) were:

Nphases
∑

i=1

∇ · (αiui) = 0, (1)

αiρi
∂ui

∂t
+ αiρiui · ∇ui = −αi∇p+ αiρig +∇ · (αiµi∇ui) + fi, (2)

whereρi, µi andαi are the density, isotropic viscosity and volume fraction ofphasei respectively,g

is the gravitational vector, andfi represents the forces imposed on phasei by the otherNphases − 1

phases.

In this article,fi represents only the fluid-particle drag force,di, defined as

di =
3

4
ci
αfαiρf |ui − uf |

di
(ui − uf ) , (3)

where the subscriptf denotes properties of the fluid phase. A particle diameterdi was required for

each particle phase, but not the fluid phase, sincedf was always zero. The (Stokes) drag coefficientci

and the particle Reynolds numberRei were given by

ci =
24

Rei
, (4)

and
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Rei =
αfρfdi|ui − uf |

µf
, (5)

respectively (Croweet al. 1998; Neriet al. 2003). Drag caused by particle-particle interaction was

ignored because of the dilute nature of the multiphase flow.

The total value offi depended on whether phasei was the fluid phase or a particle phase; for the

fluid phaseff =
∑Nphases

i=1 di, whereas for a single particle phasep, fp = −dp such that the system is

closed (i.e.
∑Nphases

i=1 fi = 0). Note that only one particle phase was used for the simulations presented

in this article (although Fluidity has been designed to handle an arbitrary number of particle phases).

Therefore, from this point on properties of the particle phase will be denoted by a subscriptp and the

properties of the fluid phase with a subscriptf .

A non-dimensional scaling analysis of the momentum equation (see Appendix A) showed that as

the Reynolds number tends to zero, the stress tensor can become dominant relative to the other terms.

For the fluid phase’s momentum equation, where the viscositywas a known constant ofO(10−3) and

the volume fraction was close to unity in this work, this termcould not be neglected. In the case of the

particle phase’s momentum equation, the stress tensor depended on the particle phase viscosity which

is commonly defined as a (dimensional) constant ofO(1) multiplied by the particle phase’s volume

fractionαp (Miller and Gidaspow 1992; Neriet al.2003). Sinceαp was typicallyO(10−3) in this work

(at least in the main area of interest in the domain), the particle phase viscosity was of the same order

of magnitude as the fluid phase viscosity. However, this particle phase viscosity gets multiplied byαp

in the particle phase’s stress tensor, leading to a quantityat least three orders of magnitude smaller

than the fluid phase’s stress tensor, assuming the magnitudes of both velocity fields are approximately

equal. For this reason the stress tensor in the particle phase’s momentum equation was neglected in

this work.

The Stokes drag coefficient was deemed appropriate for the simulations in this work because the

maximum values of the particle Reynolds number,Rep, determineda posteriori, wereO(10−1) and

therefore implied that the flows under consideration were well within the Stokes flow regime.

It is worth noting that while the model has so far only been applied to particle settling experiments,

it could potentially be applied to many other incompressible, dilute fluid-particle systems such as the

flow of blood cells in a human body or sediment transport in rivers. However, the validity of the Stokes

drag coefficient in these applications would need to be considered carefully.
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3 DISCRETISATION

A discrete version of the continuous model equations was formed using the Galerkin finite element

method. A full derivation is given in Appendix B, but put briefly, the method began by considering the

weak form of the momentum equation:
∫

Ω

w ·

(

αρ
∂u

∂t

)

dV +

∫

Ω

w · (αρu · ∇u) dV = −

∫

Ω

w · (α∇p) dV +

∫

Ω

w · (αρg) dV +

∫

Ω

w · (∇ · (αµ∇u)) dV−

∫

Ω

w ·
3

4
c
αfαρf |u− uf |

d
(u− uf ) dV. (6)

In this weak form a solution to the velocity fieldu ∈ H1(Ω)3 was sought such that it is valid for all

test functionsw ∈ H1(Ω)3 (whereH1(Ω) is the first Hilbertian Sobolev space) (Elmanet al.2005).

Note that the subscriptedi indexing a particular phase has been dropped for clarity.

The test function and solution to the velocity field were represented by a linear combination of

piecewise linear basis functions (also known as P1DG basis functions) that are discontinuous across the

cells of the mesh, called elements, where two basis functions overlap. Therefore, within each element

e,

w =

N
u nodes,e
∑

j=1

φjwj, (7)

u =

N
u nodes,e
∑

k=1

φkuk, (8)

whereNu nodes,e is the number of velocity solution nodes in elemente, wj is the value of the test

function at nodej, anduk is the solution at nodek. The basis functionsφj andφk are unity at nodes

j andk respectively, and zero at all other nodes. When seeking the coefficientsuk, the pressure field

p also needed to be solved for. This field was represented by continuous piecewise quadratic basis

functions (also known as P2 basis functions) such that

p =

Np nodes
∑

l=1

ψlpl, (9)

wherepl is the value of the pressure field at nodel, andψl is the basis function that is unity at node

l and zero at all other nodes. Note the summation over all nodesof the domain due to the continuous

nature of the basis functions.

The discretised momentum equation gave anNu nodes ×Nu nodes system of linear equations that

could be assembled and solved for the vectors of unknown coefficientsu andp:

M
∂u

∂t
+Au+Ku+Fleftu = Cp+ b+ fright, (10)

where the matricesM, A, K andC are the mass, advection, stress and gradient matrices respectively.
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The matrixFleft contains the left-hand side part of the drag term. The vectors b andfright represent

the buoyancy force and the right-hand side part of the drag term. These terms are defined in Appendix

B.

The solution to the discretised momentum equation needed tosatisfy the discrete continuity equa-

tion, also formed using the finite element method (see Appendix B):

Nphases
∑

i=1

(

CT
i ui − ri

)

= 0, (11)

whereri is a surface integral term through which Dirichlet boundaryconditions can be applied.

The volume fraction fieldsαp andαf were discretised separately using a node-centred control

volume approach (Wilson 2009) and advected with the velocity fields (once known). The face values

of each control volume were limited using the Sweby flux limiter (Sweby 1984).

4 SOLUTION METHOD

After the momentum equation was discretised, a method was required to compute the numerical solu-

tion. Fluidity solves the single-phase incompressible Navier-Stokes equations using a pressure projec-

tion method (see the work of Chorin (1968) and Gresho and Sani(2000) for more details) which has

been extended to solve the multiphase model equations employed in this work.

The solution method began by considering the momentum equation that had been discretised in

space using the Galerkin finite element method, and in time using the backward Euler method. Each

time-step (from timen to n + 1) comprised a number of Picard iterations used to deal with the non-

linearity in the system, yielding a set of tentative resultsfor un+1
i andpn+1, denoted byutent

i andptent.

Therefore, within each time-step, the method sought a new tentative solution at each Picard iteration

to

Mi
utent
i − un

i

∆t
+Aiu

tent
i +Kiu

tent
i + Fleft,iu

tent
i = Cip

tent + bi + fright,i, (12)

such that the discrete continuity equation

Nphases
∑

i=1

(

CT
i u

tent
i − ri

)

= 0, (13)

was satisfied.

The main steps of the method are described briefly below, but afull description is given in Ap-

pendix C. To find a new tentative solution:
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(i) Compute non-linear approximations to the phase volume fraction and velocity fields using the

latest (best available) tentative solutions.

(ii) Make a ‘best guess’ forptent by solving a pressure Poisson equation or by using the most

up-to-date pressure field available.

(iii) Solve (12) for each phase to obtain a set of intermediate velocitiesu∗
i .

(iv) Since the set of intermediate velocities will not satisfy (13) because of the guess used for

the pressure field, find the pressure correction term∆p that enforces continuity by projecting the

intermediate velocities onto a divergence-free space and solve:

Nphases
∑

i=1

(

ri −CT
i u

∗
i

)

= ∆t





Nphases
∑

i=1

CT
i M

−1
i Ci



∆p. (14)

(v) Correct the intermediate velocities to obtainutent
i by substituting the recently found pressure

correction term into:

utent
i = u∗

i +∆tM−1
i Ci∆p. (15)

(vi) Advect all tracer fields (including the phase volume fraction fields) using the new tentative

velocitiesutent
i .

Once a desired Picard iteration limit or convergence was reached,un+1
i andpn+1 took the values

of the final tentative solution and the time-step was deemed complete. The above solution method was

then repeated until a desired time limit or steady state was attained.

5 MODEL VERIFICATION

One rigorous indication of model correctness came from a convergence analysis, which checked that

errors in the numerical solution decreased at the expected rate as the mesh resolution increased. The

method of manufactured solutions was used to obtain the solution error forui andp by constructing

an analytical solution with which the numerical solution could be compared (Roache 2002), and can

be broken down into four steps:

(i) Choose an analytical solution for eachui, αi andp such that
∑Nphases

i=1 ∇ · (αiui) = 0.

(ii) For each phasei = 1, 2, . . . , Nphases:

(a) Substituteui, αi andp into phasei’s momentum equation. Since the analytical solution will not

be the exact solution in general, a non-zero residual term will be present on the RHS (i.e. a source

term).

(b) Form a new version of phasei’s momentum equation which includes this source term, so that the
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residual will now be zero. In other words, the analytical solution that was chosen at the beginning

is now the exact solution for this new version of the momentumequation.

(iii) Solve the new set of momentum equations which include the source terms.

(iv) Obtain the error for a range of characteristic element lengths, and plot this error to determine

the order of convergence.

A two-phase MMS test was created to verify the order of convergence when using the P1DG-

P2 element pair. The analytical solutionsup = [sin(x) cos(y), sin(y) sin(x) − cos(x) sin(y)]T,

uf = [0.25 cos(x) cos(y) − x cos(y), sin(y)]T andp = cos(x) cos(y) were used. The phase volume

fractionsαp = 0.2 andαf = 0.8 were prescribed across the whole domain and remained constant

throughout time. For each velocity field, Dirichlet boundary conditions that agree with the analytical

solution were imposed along with the initial conditionup = uf = [0, 0]T. The dimensions of the

domain were0.0 ≤ x ≤ π and0.0 ≤ y ≤ π. The physical parametersρf = 1.0, ρp = 2.5, µf = 0.3,

µp = 0.3 anddp = 1.0 were chosen arbitrarily.

Four fixed unstructured meshes composed of triangular elements were produced with Gmsh (Geuzaine

and Remacle 2009) using characteristic element lengths ofl = 0.64, 0.32, 0.16 and0.08. Decreasing

time-step sizes of 0.016, 0.008, 0.004 and 0.002 maintaineda constant bound on the Courant num-

ber. All simulations were run until the steady state conditionsmax(|un+1
f − un

f |) ≤ 1.0 × 10−8,

max(|un+1
p − un

p |) ≤ 1.0× 10−8 andmax(|pn+1 − pn|) ≤ 1.0× 10−8 were attained.

Plots of the error in the velocity fields in Fig. 1 show successful convergence at second order as

expected. Since the P1DG-P2 element pair exhibits the same error scaling for the pressure field as an

element pair using piecewise linear or even piecewise constant basis functions (Cotteret al.2009) the

second order convergence forpwas also expected, providing confidence in the model implementation.

6 MODEL VALIDATION

Laboratory-scale particle settling experiments were replicated to test the model’s performance. In

experiment dsa#3 of Manville and Wilson (2004), silicon carbide particles were introduced into a

water tank from above via a settling column, at an average mass flux of 6.31 × 10−2 kgm−2s−1, for

25 seconds. The water had a linear salinity gradient with a sharp inflexion at a depth of approximately

0.25 m. Plumes that formed near the surface of the water tank were observed to settle as vertical density

currents with velocities significantly greater than the predicted Stokes’ law velocity of a single particle.

Eventually the plumes impinged on the inflexion in the salinity gradient and spread out horizontally,

which momentarily hindered the settling process. The particles then continued their rapid descent to
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Figure 1. Convergence plots for (a)uf , (b) up and (c)p using the P1DG-P2 element pair. The velocity and

pressure fields converged at second order as expected.
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the bottom of the tank. Video recordings were used to measurethe plume frontal position as a function

of time. The salinity gradients before and after plume settling were also measured.

The salinity inflexion clearly had a significant impact on theplume dynamics. Although the effects

were relatively short-lived in the laboratory experiment,the presence of a salinity gradient on a much

larger scale could greatly influence the timescale of particle settling, hence the need for accurate

and efficient numerical models. To validate the multiphase model presented here and evaluate the

effectiveness of mesh adaptivity, a suite of simulations were performed in Fluidity which replicated

the conditions under which experiment dsa#3 was performed.Both fixed and adaptive meshes were

used.

6.1 The domain, initial conditions and boundary conditions

The domain was a rectangular box representing a cross-section of the water tank used by Manville

and Wilson (2004), defined by0.0 ≤ x ≤ 0.61 m and0.0 ≤ y ≤ 0.45 m. A zero velocity field

was imposed att = 0 s for both phases, and an initial condition was also defined for the particle

phase’s volume fraction; a value of1.0×10−7 was used throughout the domain, apart from the section

0.18 ≤ x ≤ 0.43 m of the top boundary where nodal values were randomly perturbed such that

1.0 × 10−7 ≤ αp ≤ 1.0 × 10−5. This section represented the diameter of the circular container

through which particles fell onto the body of water below. Such a perturbation encouraged plumes

to form, and a minimum value of1.0 × 10−7 was used instead of zero to avoid singularities in the

system of linear equations. The following initial condition was used for the salinity fieldS to give a

linear increase until a depth of 0.2441 m where an inflexion occurs, after which the salinity gradient

becomes sharper (see Fig. 2):

S(x, y) =







17.45 + 109.52(0.2059 − y) if y ≤ 0.2059

7 + 42.81(0.45 − y) otherwise
(16)

No-normal flow boundary conditions,uf ·n = 0 andup ·n = 0, were enforced on each boundary

of the domain. A flux boundary condition forαp was used to represent the introduction of particles;

this boundary condition enforced

∂

∂t

∫

Ωv

αp dV +

∫

∂Ωv\∂Ω
̂nv · upαp dS =

∫

∂Ωv∩∂Ω
r dS, (17)

for all control volumesv on the boundary ofΩ, and a given volumetric fluxr. A volumetric flux of

r = 2.034× 10−5 ms−1, found by dividing the mass flux of6.31× 10−2 kgm−2s−1 used by Manville

and Wilson (2004) byρp, was applied along the top section0.18 ≤ x ≤ 0.43 m until t = 25 s; a zero
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Figure 2. Variation of salinity with depth att = 0 s. The inflexion occurs at a depth of 0.2441 m.

flux (i.e.r = 0 ms−1) was applied everywhere else on∂Ω to prevent particles entering or leaving. For

t > 25 s, a zero flux was enforced everywhere on∂Ω so that no more particles were introduced. Note

also that the term ̂nv · upαp represents the flux ofαp through each control volume but excludes the

contribution from the boundary condition which is providedseparately by the term on the RHS.

The effects of representing the cylindrical particle inletby a Cartesian geometry for the numeri-

cal simulations could not be quantified without running the model in a three-dimensional domain and

comparing the results. However, possible differences may occur in the plume frontal speed, in the

spreading at the salinity inflexion, and in the development of instabilities in the particle-water layer,

despite the constant flux of particles through the inlet being the same in both two and three-dimensions.

If particles were to experience drag effects from another dimension, this could cause differences in in-

stability growth and plume dynamics. Furthermore, in two dimensions a plume only entrains particles

from the left or right of the plume’s tail, but in three dimensions there are more possible sources of

particles that can become entrained, resulting in different entrainment rates which in turn affect the

frontal speed and longevity.

6.2 Physical parameters

The physical parameters used were:ρp = 3,100kgm−3, µf = 0.001 Pas, dp = 62 µm (the mean

diameter of particles used in the experiments) andg = [0,−9.8]T ms−2. The particle phase was

assumed to be inviscid (i.e.µp = 0 Pas). The fluid densityρf obeyed a linear equation of state:
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Table 1.Number of nodes in the fixed unstructured meshes.

l (m) Nvertices Nu nodes Np nodes Reference

0.02 820 4,602 924 F1

0.01 3,090 17,910 3,298 F2

0.005 12,799 75,528 13,219 F3

0.0025 50,943 303,120 51,787 F4

ρf = ρ0 (1.0 + β (S − S0)) (18)

whereρ0, S0 andβ are the fluid reference density, reference salinity, and saline contraction coefficient

respectively. For this work,ρ0 = 1,000kgm−3, S0 = 0, andβ = 7.2088×10−4 (a generally accepted

test value from McDougall (1987)).

6.3 Spatial discretisation and time-stepping

Further to the discretisation of the model equations and thevolume fraction fields described in Section

3, the salinity field was discretised using a node-centred control volume approach (Wilson 2009). Once

again, the Sweby flux limiter (Sweby 1984) was used.

The implicit backward Euler scheme marched the equations forward in time for 180 s. After

an initial time-step of 0.001 s, Fluidity’s adaptive time-stepping method permitted larger time-steps

whilst enforcing a maximum Courant number of 0.5. Furthermore, within each time-step, two Picard

iterations dealt with the non-linearity when solving the governing equations.

6.4 Meshes

6.4.1 Fixed meshes

Gmsh (Geuzaine and Remacle 2009) was used to generate unstructured meshes composed of triangular

elements with a user-defined characteristic element lengthl. Four different values ofl were used in the

fixed mesh simulations, listed in Table 1 with the corresponding number of verticesNvertices, velocity

nodesNu nodes and pressure nodesNp nodes.
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6.4.2 Mesh adaptivity

Simulations using mesh adaptivity were supplied an initialmesh withl = 0.0025 m, also generated

using Gmsh. The mesh was then adapted every 20 time-steps using the libmba2d library (Vasilevski

and Lipnikov 1999).

Fluidity seeks an accurate representation of the dynamics by optimising the mesh; this process is

driven by three main components:

(i) Topological operations: Each element is considered individually and may be improved through

a series of topological operations; edges can be split to introduce new elements and refine the mesh,

or collapsed to remove elements and coarsen the mesh, for example (Piggottet al.2009).

(ii) Quality functional: The decision to improve an element or not, and how, is guidedby a qual-

ity functionalQ which considers an element’s size and shape. The adaptivitylibraries optimise this

functional by seeking an ideal element, defined as having unit edge length with respect to a given

metric.

(iii) Metric: The quality functional is evaluated using a metric based onthe curvature of a solution

field of interest (in this case,αp) and a user-defined weightǫ (Painet al.2001). Areas of high solution

field curvature will attract more resolution, and less so elsewhere. The weightǫ stems from interpola-

tion error theory; decreasingǫ generally yields finer resolution because of the tighter error tolerance,

while increasing it provides coarser resolution (Hiesteret al.2011).ǫ therefore controls the extent to

which elements are refined.

After each adapt, the solution field required interpolationbetween the pre- and post-adapt meshes;

this work used a linear interpolation scheme called consistent interpolation (Farrell 2009). The upper

and lower bounds on the element size were set tolmin = 0.00001 m andlmax = 0.1 m throughout the

domain, apart from the region defined by0 ≤ x ≤ 0.61 m and0 ≤ y ≤ 0.02 m wherelmin = 0.0025

m; this was to prevent Fluidity from over-resolving the build-up of a particle layer that was not as

important as the dynamics elsewhere in the tank.

Four different values ofǫ were used in the adaptive mesh simulations, listed in Table 2. These

were absolute values ofαp, rather than relative values (i.e. the weight was defined in terms of a fixed

volume fraction and not a percentage of the volume fraction field).

6.5 Results

The high particle influx caused the build-up of a particle layer along the surface of the tank which

quickly became unstable because of the rapid increase in bulk density. Small plumes formed after

approximately 3–4 s, most of which eventually became entrained in the flow to form one large plume
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Table 2.Solution field weights for the adaptive unstructured mesh simulations.

ǫ Reference

9.5× 10−5 A1

7.5× 10−5 A2

6.0× 10−5 A3

5.0× 10−5 A4

which descended with a velocity of around 0.01–0.02 ms−1; this is greater than the predicted Stokes’

law velocity of 0.0044 ms−1 for a single particle, as expected. After 15–20 s the plume head impinged

on the salinity inflexion and spread out laterally because the plume reached a point where its bulk

density was no longer greater than that of the underlying particle-free water. Such buoyancy effects

caused a small amount of rebound also visible in the experiments. The particles then continued their

descent to the bottom of the tank. Numerical model time frames showing plume evolution compare

well with the experimental results (see Fig. 3; time frames of the experiment are taken from Manville

and Wilson (2004)).

The numerical model accurately predicted the position of the plume front as a function of time,

including the subtle change around 20 seconds when the plumeimpinged on the salinity inflexion (see

Fig. 4). Throughout the simulation, the plume’s passage ledto entrainment of less saline water which

in turn caused significant changes to the salinity profile. After the plume settled, however, the salinity

gradient in the water returned to its initial state as observed in the experiments.

6.5.1 Plume speed comparison

To quantitatively assess the accuracy of the fixed and adaptive mesh approaches, and to further validate

the numerical model, each simulation was repeated five timesand the results were averaged. A linear

least squares fit was applied to the averaged data points betweent = 4 s (when plumes had formed)

and t = 15 s (when the plume head first hit the salinity inflexion), and also betweent = 15 s and

t = 31 s. The gradients of these two linear fits gave an average plumefrontal speed to be used as a

measure of accuracy. A similar procedure was performed on the experimental data points to give a

benchmark value with which to compare the numerical resultsagainst.

Figure 5 presents the average plume frontal speed against the average number of velocity nodes,

for the two separate time intervals, using results from all 8simulations. Vertical error bars represent

the margin of error found from computing a 95% confidence interval for the slope of each linear fit.
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Figure 3. Simulation of particle settling through a salinity gradient at t = 10, 15, 20, 25, 30 and180 s. Data

taken from simulation A4. From left to right: video stills ofthe experiment from the article by Manville and

Wilson (2004); visualisation of the phase volume fractionαp; the adaptive unstructured mesh. Note that the

colour bar is saturated att = 180 s due to the build up of a dense particle layer on the surface, with a maximum

αp value of∼0.4. All visualisations show the whole 0.61 m by 0.45 m domain.
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Figure 4. (a): Plume depth against time. (b): Variation of salinity with depth. Resolution is focused on the

bottom of the tank att = 180 s, so more data points are present there. Both plots use data from simulation A4.

Horizontal error bars show the maximum and minimum number ofnodes used within the time interval

under consideration.

In general, the plume frontal speeds from the adaptive mesh simulations closely matched the

experimental data whilst requiring fewer nodes than the fixed mesh runs to attain the same solution

accuracy. For example, the accuracy of simulation F4 is comparable to that of simulation A4 in the first

Figure 5. Average plume frontal speed against average number of velocity nodes, betweent = 4 s andt = 15 s

(a), and also betweent = 15 s andt = 31 s (b).
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Table 3.Number of velocity nodes required for the fixed and adaptive meshes fromt = 0 s tot = 180 s.

Reference Nmin
u nodes Nmax

u nodes N
average
u nodes Time steps % time in adaptivity

F1 4,602 4,602 4,602 798 —

F2 17,910 17,910 17,910 2,023 —

F3 75,528 75,528 75,528 4,624 —

F4 303,120 303,120 303,120 11,246 —

A1 9,705 303,102 21,024 13,618 10% (680 adapts)

A2 9,894 303,102 32,972 16,270 13% (813 adapts)

A3 9,303 303,102 53,966 20,027 7% (1,001 adapts)

A4 10,410 303,102 76,506 22,009 11% (1,100 adapts)

time interval, and to that of simulation A3 in the second. In both cases, the adaptive meshes contain at

least 4 times as fewer velocity nodes on average.

While a certain amount of variability in the fixed mesh results came from randomly perturbing

the initial value ofαp along the top boundary, the most likely cause of increased variability in the

adaptive mesh results was the further numerical perturbation and diffusion introduced by altering the

mesh throughout each simulation which in turn encouraged bigger differences in plume evolution.

However, this did not greatly alter the overall behaviour.

6.5.2 The effectiveness of mesh adaptivity

The computational savings from using fewer nodes should also be weighed up against the cost of

adaptivity. As a percentage of the total runtime, Fluidity spent around 10% in the adaptivity routines

(as shown in Table 3) which included the assembly of the metric and the interpolation as well as the

mesh optimisation itself. The cost of one adapt was approximately the same as that of two time-steps

for all adaptive mesh simulations. Despite this, since the mesh only adapted every 20 time-steps, the

extra cost was insignificant when taking the benefits of usingfewer nodes without significant loss of

accuracy (if any) into account.

The other extra cost, although not directly related to mesh adaptivity, came from the presence of

smaller elements which generally caused Fluidity’s adaptive time-stepping method to enforce smaller

time-steps to prevent the CFL condition from being breached, which explains why the adaptive mesh

simulations required more time-steps than those using a fixed mesh.

To evaluate both of the costs described above, the elapsed wall time per time-step and per adapt

was obtained from simulation A3; the results are given in Fig. 6.

Simulations F4 and A3 gave comparable accuracy for the second time interval and, on average,
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Figure 6. Wall time against number of velocity nodes.

used 303,120 and 53,966 velocity nodes respectively. Figure 6 shows that approximately 10 seconds

of wall time were spent per time-step when using 53,966 nodes, but since A3 took around twice the

number of time-steps, a measure of the overall cost relativeto F4 was found by multiplying the 10

seconds of wall time by 2 and adding on the 7% extra time taken by the adaptivity routines. This

gave 21 seconds of elapsed wall time in total — a saving of around 60% when compared with the 55

seconds of wall time required for one time-step in simulation F4. It is worth noting that this overall

computational saving was achieved for simulations of plumes settling in a restricted, laboratory-scale

domain. In this case, a large amount of resolution was placedin the majority of the domain att = 30 s

to resolve the laterally-spreading plume. If a similar plume settling problem was applied to the ocean

scale, the area requiring high resolution would be much smaller relative to the overall size of the

domain. The potential advantages that mesh adaptivity can offer therefore become more apparent with

problems requiring resolution on a range of scales in larger, more complex domains, especially when

three-dimensional domains are considered and when more computationally-demanding setups (e.g.

multiple particle phases with different particle diameters) are desired.

7 MODEL APPLICATION

The laboratory experiments by Carey (1997) studied the dynamics of tephra particles in water by intro-

ducing them into a tank from above using a delivery system anda particle disperser, at an average mass

flux of 4.72×10−4 kgm−2s−1. In these experiments, two stages of particle settling wereobserved. At

early times when the concentration of particles was low, theparticles abruptly decelerated upon their
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entry to the water and settled individually under Stokes’ law at an average velocity of 0.002 ms−1 (for

experiment 96-1), forming a layer of particle-rich water that increased in particle concentration with

time. However, after about 30–60 seconds, gravitationallyunstable particle-laden plumes grew from

this layer as Rayleigh-Taylor instabilities, transporting particles to the bottom of the tank at speeds 10

times greater than that of single particles.

To measure the success of the numerical simulations presented herein, the model predictions of

the onset time of pluming and the speed of the plumes were compared with estimates from the exper-

iments.

7.1 Simulation setup

The domain was a rectangular column representing the water tank used by Carey (1997), defined by

0.0 ≤ x ≤ 0.3m,0.0 ≤ y ≤ 0.7 m and0.0 ≤ z ≤ 0.3 m in three dimensions. For the two-dimensional

simulations presented in this work, a cross-section from thex-y plane was used.

A zero velocity field was imposed at timet = 0 s for both phases, and an initial condition was

also defined for the particle phase’s volume fraction; a value of 1.0 × 10−7 was used throughout the

domain, apart from along the top boundary where nodal valueswere randomly perturbed such that

1.0 × 10−7 ≤ αp ≤ 1.0 × 10−5. This perturbation was done to encourage plumes to form, anda

minimum value of1.0 × 10−7 was used instead of zero to avoid singularities in the systemof linear

equations.

No-normal flow boundary conditions,uf · n = 0 and up · n = 0, were enforced on each

boundary of the domain. Along the top boundary a flux boundarycondition, defined in Section 6,

enforced a constant volumetric flux of2.018 × 10−7 ms−1 which corresponded to a mass flux of

4.72 × 10−4 kgm−2s−1.

The physical parameters used were:ρp = 2,340kgm−3, ρf = 1,000kgm−3, µf = 0.001 Pas, and

g = [0,−9.8]T ms−2. The particle diameterdp varied between simulations, but ranged from26 µm

to 64 µm inclusive (within the range used by Carey (1997)). The particle phase was assumed to be

inviscid (i.e.µp = 0 Pas).

The setup of the time-stepping method was the same as that given in Section 6, except the simu-

lation was performed only untilt = 120 s.

The unstructured mesh, composed of triangular and tetrahedral elements in two and three dimen-

sions respectively, was produced with Gmsh (Geuzaine and Remacle 2009). For fixed mesh simula-

tions, the characteristic element lengthl was fixed at 0.0025 m unless stated otherwise. This setup

produced a mesh containing 39,512 vertices, 234,678 velocity nodes and 40,308 pressure nodes. Sim-

ulations using mesh adaptivity were supplied an initial mesh with l = 0.0025 m, also generated using
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Gmsh. The mesh was then adapted every 20 time-steps using thelibmba2d library (Vasilevski and

Lipnikov 1999). The mesh was not refined below a fixed minimum element length oflmin = 0.00001

m nor coarsened above a fixed maximum element length oflmax = 0.1 m. After each adapt, the solu-

tion fields were interpolated using consistent interpolation (Farrell 2009) as in Section 6. The weight

ǫ was set to1.0 × 10−2 in the section defined by0.0 ≤ x ≤ 0.3 and0.0 ≤ y ≤ 0.05 to prevent the

build-up of a particle layer on the bottom which was not important in this study. Elsewhere,ǫ was set

to 5.0 × 10−5.

7.2 Results

Results from the tephra settling simulations are shown in Fig. 7. A near-surface layer of tephra particles

formed during the first 15 s in the case wheredp = 26 µm, and during the first 30 s fordp = 48 µm. In

these early stages, the particles in the layer settled individually at the predicted Stokes’ law velocity,

as expected. From Stokes’ law, the predicted settling velocities for particles withdp = 26 µm and

dp = 48 µm are 0.00049 ms−1 and 0.00168 ms−1 respectively, and the numerical results in Fig. 8

agree well with this.

Just as Carey (1997) witnessed, as more tephra entered the water and the particle concentration

increased the layer eventually became gravitationally unstable and plumes began to form, descend-

ing with velocities more than ten times greater than those ofindividual particles. Each plume was

characterised by a vertical current of particles. As the velocity of the plume increased downwards, it

displaced fluid that flowed around it with an equal and opposite velocity. This return flow caused drag

effects that gave a variety of sharp and bulbous plume heads,and caused the longest plumes to entrain

smaller plumes either side of them, thus furthering plume depth and longevity.

The smaller particle diameter ofdp = 26 µm caused the system to become unstable much sooner

because the slower Stokes’ law settling caused the near-surface layer concentration to build up quicker.

The smaller layer thickness initially resulted in decreased plume length and diameter, when compared

to the simulation withdp = 48 µm. Furthermore, a significant amount of particle entrainmentwas

observed as the plumes grew from the layer and travelled towards the bottom of the water tank.

It is worth considering the differences between the development of Rayleigh-Taylor instabilities

at the interface between two stratified immiscible fluids, and plume development in the tephra-water

mixture. In the former case, if the denser fluid is lying on topof the lighter fluid then instabilities

will form immediately and grow at an exponential rate (Rayleigh 1883; Duffet al.1962). In the latter

case, at early times the individual particles settle at Stokes’ law velocity through the water as they are

denser. However, finger-like instabilities may form at the interface between the upper, particle-laden

layer and the lower, particle-free layer, if the concentration of particles in the upper layer builds up high
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Figure 7. Visualisation of a two-dimensional adaptive mesh simulation withdp = 48 µm, at t = 10, 30, 50, 80

and120 s (from left to right). Warmer colours represent a higher volume fraction of the particle phase. All

visualisations show the whole 0.3 m by 0.7 m domain.

enough for the particles to start having an effect on each other (through drag reduction and drifting).

If the collective settling velocity is much faster than the Stokes’ law velocity, the initial instability

growth is likely to be similar to the case of two stratified immiscible fluids. On the other hand, as

particle concentration within the plume changes with time,because of mixing and/or additional influx

of particles, the buoyancy and hence the settling velocity of the plume also change with time, in a

more complex manner than the idealised case of two immiscible fluids.

Experiments of the settling of a sand-water mixture throughan underlying water layer (Lange

et al. 1998), with similar physical parameters to the simulationspresented in this article, showed an

initial instability growth rate consistent with that predicted by linear stability analysis applied to two

immiscible fluids (Rayleigh 1883). However, after only 200 ms of instability growth, the growth rate
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Figure 8.Maximum velocity of tephra particles against time, fordp = 26 µm anddp = 48 µm. Tephra particles

initially settle at the predicted Stokes’ law velocity (a).As more tephra fluxes in, the layer becomes unstable

and plumes begin to form, resulting in settling velocities over 10 times greater than that of an individual particle

(b).

deviated from the ideal growth rate, reflecting the fact thatthe system rapidly became too non-linear

for the stability analysis to hold.

An additional complexity of multiphase instability growthis that, unless the particle concentration

remains high as a result of continual particle influx, entrainment of particle-free water into the plume

reduces the buoyancy of the plume, slowing its descent. Moreover, the relative buoyancy of the plume

may be further reduced by any increase in the fluid density with depth. As already seen in Section

6, plume settling was hindered when the surrounding water became denser than the plume due to

an increasing salinity with depth, causing the plume to disperse. Running further simulations might

allow the formulation of an empirical correlation to predict the onset of Rayleigh-Taylor instabilities

as a function of layer concentration, particle diameters, influx rates and density contrasts.

Throughout each simulation the particle Reynolds numberRep remained small (O(10−1)) when

considering a single particle with diameterdp. At the onset of plume formation, a new Reynolds

number was defined at the plume scale byReplume =
αfρfdplume|up−uf |

µf
, wheredplume >> dp is

the diameter of the plume. As the instabilities rapidly grew, Replume became much greater than unity

because of the larger length scale. This implied that individual particle settling was in the laminar

flow regime, while plumes were in the turbulent flow regime, which is consistent with the behaviour

reported in the literature (Manville and Wilson 2004).

Plume formation occurred after 60 s for experiment 96-1 (which used a mean particle diameter of
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Table 4.Number of nodes in the fixed unstructured meshes.

l (m) Nvertices Nu nodes Np nodes Reference

0.02 608 3,354 704 F1

0.01 2,423 13,944 2,619 F2

0.005 9,770 57,426 10,166 F3

0.0025 39,512 234,678 40,308 F4

0.00125 155,661 929,172 157,257 F5

dp = 48 µm), and after 30 s for experiment 96-5 (which used a mean particle diameter ofdp = 26 µm)

(Carey 1997); this qualitatively agrees with the behaviourseen in both simulations. Fordp = 26 µm,

the wavelength of the growing instabilities was smaller compared to thedp = 48 µm case, and the

resulting plumes were initially shorter and thinner but quickly merged via entrainment into larger

plumes that settled with a velocity of around 0.04ms−1 after 120 s. This was also expected because the

spacing between growing instabilities and their diametersare related to the thickness of the particle-

rich layer (Marsh 1988; Manville and Wilson 2004).

Eventually the particles were deposited at the bottom of thetank. Some particles were picked up

by the return flow of fluid and recycled, feeding other plumes that are making their way to the bottom,

while other particles remained stationary as expected.

7.3 Plume onset

To be confident that instabilities formed because of the physics and were not numerical artefacts, a

convergence analysis was performed using both fixed and adaptive (two-dimensional) meshes up until

the onset of plume formation. The integral of the kinetic energy density of the particle phase was

measured as a function of time and was expected to converge toa particular value as the mesh was

refined. Five fixed mesh simulations were run using decreasing characteristic element lengths, given

in Table 4. Similarly, five decreasing values ofǫ were used for the adaptive mesh simulations, given in

Table 5.

The simulation setup was as before apart from three modifications. Firstly, the initial particle phase

volume fraction was perturbed along the top boundary using asine function (instead of randomly) to

avoid any stochastic effects between the data sets. Specifically, the volume fraction at nodei along the

top boundary was defined asαp(xi) = 10−7 + 10−5 sin(πxi

0.3
) such that only half a period was used to

ensure the initial condition is independent of the mesh resolution. Otherwise, coarser meshes would

poorly resolve (or miss out) higher frequencies which may inturn affect the dynamics. Secondly,
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Table 5.Solution field weights for the adaptive unstructured mesh simulations.

ǫ Reference

5.0× 10−5 A1

2.5× 10−5 A2

1.25× 10−5 A3

6.25× 10−6 A4

3.125× 10−6 A5

the frequency of an adapt was increased to once every 10 time-steps; since there are higher levels

of numerical diffusion in cases whereǫ is relatively large, adapting more frequently will preventthe

already-diffused tephra from moving too far out of the area of highest resolution between adapts,

thus limiting further numerical diffusion. Finally, the particle diameter was set to 64µm to increase

the stability of the system, as it can be very difficult to identify convergence if instabilities form

and become non-linear and turbulent too quickly. As the meshresolution is increased, even a small

difference in the perturbation of the particle phase volumefraction field can yield plumes of widely

varying shape, size and position due to their chaotic nature. This means that there is no unique solution

to converge to. Only the development of the particle layer upuntil the point at which instabilities start

to form may be suitable to check for convergence because the dynamics are in the laminar flow regime

and relatively linear. Quantitative values with which convergence can be judged were therefore only

considered up until this point.

The integral of the kinetic energy density of the particle phase over a subsection ofΩ, defined

by 0.0 ≤ x ≤ 0.3 and0.05 ≤ y ≤ 0.7, was plotted throughout time only up until the point where

instabilities noticeably form at around 30 s; the dynamics became too turbulent and non-linear to show

convergence after this time for the reasons explained in theprevious sub-section. This upper subsection

of Ω was used in order to make a fair comparison between fixed and adaptive meshes, because asl

decreases in the fixed mesh simulations the particle layer that forms on the bottom of the domain will

become better resolved, whereas the resolution will alwaysstay coarse and remain the same in the

adaptive mesh simulations despite a decreasing value ofǫ in the upper subsection.

Convergence was observed att = 30 s, for both fixed and adaptive meshes, as shown in Figs 9

and 10 respectively. The error in Fig. 9 is the absolute difference of the integral of the kinetic energy

density between simulation F5 and simulations F1 to F4 inclusive, aftert = 30 s. Similarly, the error

in Fig. 10 is the absolute difference of the integral of the kinetic energy density between simulation

A5 and simulations A1 to A4 inclusive.
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Figure 9. (a): Integral of the particle phase’s kinetic energy density against time, on fixed unstructured meshes

with different values ofl. (b): Error in the integral of the kinetic energy density after t = 30 s.

A plot of the error against a common quantity — the number of velocity nodes — in Fig. 11

shows faster convergence with adaptive meshes whilst usingapproximately an order of magnitude

fewer nodes.

Figure 10. (a): Integral of the particle phase’s kinetic energy density against time, on adaptive unstructured

meshes with different values ofǫ. (b): Error in the integral of the kinetic energy density after t = 30 s.
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Figure 11. Convergence plot for fixed and adaptive meshes. Note that att = 30 s, the integral of the kinetic

energy density is1.927 × 10−8 kgms−2 for F5 and1.9347 × 10−8 kgms−2 for A5, which are close enough

together for a reasonable comparison of errors to be made between the fixed and adaptive mesh simulations.

8 CONCLUSION

This work described the development of a dispersed multiphase flow model, implemented in the Flu-

idity CFD code, which used an adaptive unstructured mesh approach. The governing equations were

introduced along with their discretisation via the finite element method. A pressure projection method

was used to solve the resulting system of equations, and two Picard iterations dealt with the non-

linearity. The model implementation’s correctness was verified with the method of manufactured so-

lutions, which showed second order convergence for the velocity and pressure fields as expected from

the P1DG-P2 element pair.

Experiment dsa#3 by Manville and Wilson (2004), which considered particle settling in a tank of

water with a salinity gradient, was simulated to demonstrate that plume descent is hampered by the

presence of a salinity (and therefore density) gradient. Inboth fixed and adaptive mesh simulations,

the plumes that formed in the first 4–5 seconds later impingedon the salinity inflexion after approx-

imately 15–20 seconds and spread out laterally, after whichthe particles continued their descent to

the bottom. The salinity profile att = 180 s showed that it remains mostly unchanged by the passage

of the plume, agreeing well with experimental observations. The numerically predicted frontal speed

of the plumes was also obtained from plume depth data during two time intervals: 4 to 15 seconds,

and 15 to 31 seconds; the same was done using the experimentaldata. The fixed and adaptive mesh

simulations converged towards the two values derived from the experiment, thereby providing a first

step towards model validation, but the adaptive mesh approach allowed the use of at least 4 times as
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fewer velocity nodes when compared with a fixed unstructuredmesh simulation. This provided an ap-

proximate computational saving of around 60% when comparedto a fixed mesh simulation, without

loss of solution accuracy. The benefits of mesh adaptivity are expected to be even more pronounced

when simulating plume settling through a large-scale oceancolumn.

Adaptive unstructured mesh simulations of the experimentsby Carey (1997), which considered

different size ranges of tephra particles, were also performed for48 µm and26 µm particle diameters.

Particles fluxed in and began settling individually at the correct velocity predicted by Stokes’ law, but

once the bulk density of the tephra-water mixture was large enough, plumes formed with the help

of the small perturbations randomly seeded in the particle phase volume fraction field. The velocities

increased to over 10 times those of individual particles settling at Stokes’ law velocity. Fordp = 26 µm

anddp = 48 µm this happened after approximately 30 s and 60 s respectively, which closely matched

experimental observations. A convergence analysis showedthat the adaptive unstructured mesh used

approximately one order of magnitude fewer nodes than the fixed uniform unstructured mesh would

to reach the same level of accuracy, further illustrating the potential advantages that mesh adaptivity

can bring to the numerical modelling community.
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Table A1. Scaling parameters

Scale Notation Dimension

Length L [L]

Time T [T ]

Mass M [M ]

Speed U [LT−1]

Pressure P [MUL−2T−1]

Gravitational acceleration G [LT−2]

Force (per unit volume) F [ML−2T−2]
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APPENDIX A: NON-DIMENSIONAL SCALING ANALYSIS

To non-dimensionalise (2), the scaling parameters in TableA1 were first defined.

Non-dimensional variables were then defined in terms of these scaling parameters and the dimen-

sional variables in (2):

t̃ =
1

T
t, (A.1)

p̃ =
1

P
p, (A.2)

ũi =
1

Ui
ui, (A.3)

g̃ =
1

G
g, (A.4)

f̃i =
1

Fi
fi, (A.5)

∇̃ = L∇. (A.6)

Substituting the non-dimensional variables into (2) gave:

αiρi
Ui

T

∂ũi

∂t̃
+ αiρi

U2
i

L
ũi · ∇̃ũi = −αi

P

L
∇̃p̃+ αiρiGg̃ +

Ui

L2
∇̃ ·

(

αiµi∇̃ũi

)

+ F f̃i. (A.7)
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This equation was non-dimensionalised by dividing each term by ρiU
2
i

L
which has dimension [ML−2T−2],

yielding:

αi
∂ũi

∂t̃
+ αiũi · ∇̃ũi = −αi∇̃p̃+ αig̃ +

1

Rei
∇̃ ·

(

αi∇̃ũi

)

+ f̃i, (A.8)

whereRei is the Reynolds number of phasei defined asρiUiL
µi

.

APPENDIX B: DISCRETISATION

B1 Weak form of the momentum equation

A discrete version of the continuous model equations was formed using the Galerkin finite element

method which began by considering the weak form of the momentum equation, derived by multiplying

(2) through by a vector-valued test functionw ∈ H1(Ω)3 (whereH1(Ω) is the first Hilbertian Sobolev

space) and integrating over the domainΩ as follows (Elmanet al.2005):
∫

Ω

w ·

(

αρ
∂u

∂t

)

dV +

∫

Ω

w · (αρu · ∇u) dV = −

∫

Ω

w · (α∇p) dV +

∫

Ω

w · (αρg) dV +

∫

Ω

w · (∇ · (αµ∇u)) dV−

∫

Ω

w ·
3

4
c
αfαρf |u− uf |

d
(u− uf ) dV. (B.1)

Note that the subscriptedi indexing a particular phase has been dropped in this appendix for clarity.

The particle phase form of the drag term has also been assumedhere for simplicity, but the derivation

of the weak form for the fluid phase follows the same methodology.

Integrating the advection and stress terms by parts and applying the divergence theorem yielded
∫

Ω

w ·

(

αρ
∂u

∂t

)

dV−

∫

Ω

u · (αρu∇ ·w) dV−

∫

Ω

u · (w∇ · (αρu)) dV

+

∫

∂Ω

(u (w · (αρu))) · n dS = −

∫

Ω

w · (α∇p) dV +

∫

Ω

w · (αρg) dV(B.2)

−

∫

Ω

(∇w) · (αµ∇u) dV +

∫

∂Ω

(w · (αµ∇u)) · n dS−

∫

Ω

w ·
3

4
c
αfαρf |u− uf |

d
(u− uf ) dV,

wheren denotes the unit normal vector pointing outwards from∂Ω. In this weak form a solution to the

velocity fieldu ∈ H1(Ω)3 was sought such that it is valid for allw ∈ H1(Ω)3. Dirichlet or Neumann

boundary conditions foru could be enforced via the surface integrals.

B2 Basis functions

Instead of searching the whole (infinite) function spaceH1(Ω)3 for a solution, the space of test func-

tions and solutions were restricted to a finite-dimensionalsubspaceH1
h(Ω)

3 ⊂ H1(Ω)3 such that the

test function and solution were represented by a linear combination of interpolating basis functions

{φk}
N

u nodes

k=1 (Elmanet al. 2005), whereNu nodes is the number of velocity solution nodes. These
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basis functions can be continuous or discontinuous across the small subdomains of the mesh, called

elements, where two basis functions overlap. Furthermore,basis functions have limited support be-

tween nodes, such thatφk has a value of unity only at nodek, and a value of zero at all other nodes

(Elmanet al.2005) in order to perform the interpolation. Hence, the solution is essentially formed by

piecing together the interpolating polynomials and the coefficients across each element in the domain.

This work used discontinuous piecewise linear basis functions (also known as P1DG basis func-

tions) for the velocity field such that solution nodes were not shared between elements; each element

was essentially an independent problem. Within an elemente the test function and solution were

therefore given by

w =

N
u nodes,e
∑

j=1

φjwj, (B.3)

u =

N
u nodes,e
∑

k=1

φkuk, (B.4)

whereNu nodes,e is the number of velocity solution nodes in elemente, andwj anduk are the values

of the test function and solution at nodej and nodek respectively. Note that in the summationsj and

k are the local node index with respect to the elemente, not the global node index with respect to the

entire domainΩ, because each element was considered individually when using discontinuous basis

functions.

When seeking the coefficientsuk, the pressure fieldp also needed to be solved for. In this work

p was represented by its own set of continuous piecewise quadratic basis functions{ψl}
Np nodes

l=1 ⊂

H1(Ω) (also known as P2 basis functions) such that

p =

Np nodes
∑

l=1

ψlpl, (B.5)

wherepl are the values of the pressure field at nodel. Note the summation over all nodes of the domain

due to the continuous nature of the basis functions. The particular choice of basis functions used for

the velocity and pressure fields formed theP1DG-P2 element pair, which was chosen because of its

desirable LBB stability property. Further details can be found in the article by Cotteret al. (2009).

Substituting (B.3), (B.4) and (B.5) into (B.2), and using the fact that the vectorswj were arbitrary

(Zienkiewicz and Taylor 2000), yielded the discretised version of the weak form:
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N
u nodes,e
∑

k=1

∫

Ωe

φjαρφk dV
∂uk

∂t
−

N
u nodes,e
∑

k=1

∫

Ωe

∇φj · αρuφk dV uk

−

N
u nodes,e
∑

k=1

∫

Ωe

φj∇ · (αρu)φk dV uk +

N
u nodes,e
∑

k=1

∫

∂Ωe

(φjuαρ) · neu|∂Ωe
dS

+

N
u nodes,e
∑

k=1

∫

Ωe

∇φj · αµ∇φk dV uk −

N
u nodes,e
∑

k=1

∫

∂Ωe

φjαµne (∇u) |∂Ωe
dS(B.6)

+

N
u nodes,e
∑

k=1

∫

Ωe

φj
3

4
c
αfαρf |u− uf |

d
φk dV uk = −

Np nodes
∑

l=1

∫

Ω

φjα∇ψl dV pl +

∫

Ωe

φjαρg dV

+

∫

Ωe

φj
3

4
c
αfαρf |u− uf |

d
uf dV,

for all φj in each elemente. The integrals involving the velocity field were restrictedto the domain and

boundary of elemente, denotedΩe and∂Ωe respectively, because of the discontinuities in the basis

functions used. However, in order for the surface integralsto be well-defined, this work evaluated

u|∂Ωe
using upwinding (see the work by Wilson (2009) for more information) and the derivative

(∇u) |∂Ωe
using the scheme of Bassi and Rebay (1997).

B3 System of linear equations

The discretised momentum equation (B.6) gave anNu nodes × Nu nodes system of linear equations

that could be assembled and solved for the vectors of unknowncoefficientsu andp:

M
∂u

∂t
+Au+Ku+Fleftu = Cp+ b+ fright, (B.7)

where the matricesM, A, K andC are the mass, advection, stress and gradient matrices respectively.

The matrixFleft contains the left-hand side part of the drag term. The vectors b andfright represent

the buoyancy force and the right-hand side part of the drag term. These terms are defined as

Mjk =

∫

Ωe

φjαρφk dV, (B.8)

Ajk = −

∫

Ωe

∇φj · αρuφk dV−

∫

Ωe

φj∇ · (αρu)φk dV

+

∫

∂Ωe

(φjuαρ) · neu|∂Ωe
dS, (B.9)

Kjk =

∫

Ωe

∇φj · αµ∇φk dV −

∫

∂Ωe

φjαµne (∇u) |∂Ωe
dS, (B.10)
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Fleft,jk =

∫

Ωe

φj
3

4
c
αfαρf |u− uf |

d
φk dV, (B.11)

Cjk = −

∫

Ω

φjα∇ψk dV, (B.12)

bj =

∫

Ωe

φjαρg dV, (B.13)

fright,j =

∫

Ωe

φj
3

4
c
αfαρf |u− uf |

d
uf dV. (B.14)

The solution to the discretised momentum equation also needed to satisfy the discrete continuity

equation

Nphases
∑

i=1

(

CT
i ui − ri

)

= 0, (B.15)

which is the discretised version of the weak form of (1) afterbeing integrated by parts. It can be

shown that the matrixCT acts as a divergence operator (Gresho and Sani 2000). The surface integral

resulting from the integration by parts formed the vectorr through which Dirichlet velocity boundary

conditions could be applied:

rj = −

∫

∂Ω

αψju · n dS. (B.16)

The volume fraction fieldsαp andαf were discretised separately using a node-centred control

volume approach (Wilson 2009) and advected with the velocity fields (once known). The face values

of each control volume were limited using the Sweby flux limiter (Sweby 1984).

APPENDIX C: SOLUTION METHOD

The solution method began by considering the momentum equation that had been discretised in space

using the Galerkin finite element method, and in time using the backward Euler method:

Mi(α
n+1
i )

un+1
i − un

i

∆t
+Ai(α

n+1
i ,un+1

i )un+1
i +Ki(α

n+1
i )un+1

i

+Fleft,i(α
n+1
i ,un+1

i ,un+1
f )un+1

i = Ci(α
n+1
i )pn+1 + bi(α

n+1
i ) + fright,i(α

n+1
i ,un+1

i ,un+1
f ),(C.1)

whereun+1
i andpn+1 are to be found. The arguments of the matrices and vectors highlight the non-

linearity coming from the dependence on the volume fraction, and also the velocity in the advection

and drag terms, at timen+ 1.

Each time-step (from timen to n + 1) was broken down into a series of Picard iterations to deal

with the non-linearity in the system. This yielded a set of tentative results forun+1
i andpn+1, denoted
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by utent
i andptent. Therefore, instead of seeking a solution to (C.1) for a whole time-step, the method

sought a new tentative solution at each Picard iteration to

Mi(α̃
n+1
i )

utent
i − un

i

∆t
+Ai(α̃

n+1
i , ũn+1

i )utent
i +Ki(α̃

n+1
i )utent

i

+Fleft,i(α̃
n+1
i , ũn+1

i , ũn+1
f )utent

i = Ci(α̃
n+1
i )ptent + bi(α̃

n+1
i ) + fright,i(α̃

n+1
i , ũn+1

i , ũn+1
f ), (C.2)

such that the discrete continuity equation

Nphases
∑

i=1

(

CT
i (α̃

n+1
i )utent

i − ri(α̃
n+1
i )

)

= 0, (C.3)

was satisfied. At the beginning of an iteration, the latest (best available) tentative solution was used to

compute the non-linear approximations to the phase volume fraction, velocity of phasei and velocity

of the fluid phasef , denoted bỹαn+1
i , ũn+1

i andũn+1
f respectively, as follows:

ũn+1
i = θnlu

tent
i + (1− θnl)u

n
i , (C.4)

ũn+1
f = θnlu

tent
f + (1− θnl)u

n
f , (C.5)

α̃n+1
i = θnlα

tent
i + (1− θnl)α

n
i . (C.6)

Initial values forutent
i , utent

f andαtent
i were set at the beginning of each time-step:utent

i = un
i ,

utent
f = un

f andαtent
i = αn

i . For all the simulations described in this article,θnl = 0.5. Note also that

from this point on the arguments of the matrices and vectors will be dropped for clarity.

To find the new tentative solution, the method first made a ‘best guess’ forptent, denotedp∗,

either by solving a pressure Poisson equation or by using themost up-to-date pressure field available.

Equation (C.7) was then solved for each phase to obtain a set of intermediate velocitiesu∗
i .

Mi
u∗
i − un

i

∆t
+Aiu

∗
i +Kiu

∗
i + Fleft,iu

∗
i = Cip

∗ + bi + fright,i. (C.7)

In general, the intermediate velocitiesu∗
i do not satisfy the continuity equation (B.15)

(i.e.
∑Nphases

i=1

(

CT
i u

∗
i − ri

)

6= 0) because of the guess used for the pressure. However, the veloci-

tiesutent
i which, by definition, should satisfy

∑Nphases

i=1

(

CT
i u

tent
i − ri

)

= 0 could be found from a

Helmholtz decomposition ofu∗
i ; this split the vector up into a divergence-free and a curl-free compo-

nent:

u∗
i = utent

i +∇λi, (C.8)
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where∇λi is an unknown vector. By choosing the form∇λi = ∆t
ρi
∇

(

ptent − p∗
)

, (C.8) was rear-

ranged and discretised as follows:

Mi
utent
i − u∗

i

∆t
= Ci

(

ptent − p∗
)

. (C.9)

The next step of the projection method sought the pressure correction term∆p = (ptent − p∗).

InvertingMi in (C.9) and multiplying both sides by the divergence matrixCT
i gave

CT
i

(

utent
i − u∗

i

)

= ∆tCT
i M

−1
i Ci∆p. (C.10)

Using the fact that
∑Nphases

i=1

(

CT
i u

tent
i − ri

)

= 0 (from the discrete continuity equation),∆p was

obtained by solving

Nphases
∑

i=1

(

ri −CT
i u

∗
i

)

= ∆t





Nphases
∑

i=1

CT
i M

−1
i Ci



∆p. (C.11)

Hence,∆p was found by projecting the intermediate velocities onto a divergence-free space.

The velocitiesu∗
i could now be corrected (to obtainutent

i ) by substituting in the recently found

pressure correction term into

utent
i = u∗

i +∆tM−1
i Ci∆p. (C.12)

Once these new tentative results forun+1
i andpn+1 were found, the Picard iteration was complete. Any

tracer fields (including the phase volume fraction fields) were then advected using the new tentative

velocitiesutent
i , thus providing the best available solutions for all fields in the next iteration.

It is important to note that although the corrected velocitiesutent
i satisfied the continuity equation,

they only satisfied the following version of the momentum equation:

Mi
utent
i − un

i

∆t
+Aiu

∗
i +Kiu

∗
i + Fleft,iu

∗
i = Cip

tent + bi + fright,i. (C.13)

because the advection, stress and drag terms were not taken into account in the correction fromu∗
i

to utent
i . This momentum equation is not quite the same as (C.2), whichis why Picard iterations are

required to converge to a set of velocities that satisfy both(C.2) and (C.3).

Once a desired Picard iteration limit or convergence was reached,un+1
i andpn+1 took the values

of the final tentative solution and the time-step was deemed complete. The above solution method was

then repeated until a desired time limit or steady state was attained.


