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SUMMARY

Small-scale experiments of volcanic ash particle setihingater have demonstrated that
ash particles can either settle slowly and individuallyyapidly and collectively as a
gravitationally unstable ash-laden plume. This has ingrdrtmplications for the em-
placement of tephra deposits on the seabed. Numerical tmgdbhs the potential to
extend the results of laboratory experiments to largerescahd explore the conditions
under which plumes may form and persist, but many existingetsoare computationally
restricted by the fixed mesh approaches that they emplowritrast, this article presents
a new multiphase flow model that uses an adaptive unstruttoesh approach. As a sim-
ulation progresses, the mesh is optimised to focus numedsalution in areas impor-
tant to the dynamics and decrease it where it is not needeli potentially reducing
computational requirements. Model verification is perfechusing the method of manu-
factured solutions, which shows the correct solution cagmece rates. Model validation
and application considers two-dimensional simulationglame formation in a water
tank which replicate published laboratory experimentse flimerically predicted set-

tling velocities for both individual particles and plumes, well as instability behaviour,
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agree well with experimental data and observations. Plwgtikrg) is clearly hindered by
the presence of a salinity gradient, and its influence mesetbre be taken into account
when considering particles in bodies of saline water. Faurttore, individual particles
settle in the laminar flow regime while plume settling is shalyy plume Reynolds num-
bers greater than unity) to be in the turbulent flow regimeactvhas a significant impact
on entrainment and settling rates. Mesh adaptivity maistaolution accuracy whilst
providing a substantial reduction in computational reguents when compared to the
same simulation performed using a fixed mesh, highlightegltenefits of an adaptive

unstructured mesh approach.

Key words: Numerical solutions; Non-linear differential equatioMgjcaniclastic de-

posits.

1 INTRODUCTION

The settling of particles under the influence of gravity inamueous solution has long been an im-
portant phenomenon. Starting from the early works of Ridban and Zaki (1954), Kuenen (1968)
and Davis and Acrivos (1985), a vast amount of research kastigated the use of the sedimentation
process in industrial applications. Grain-size analysia common example whereby particle diame-
ters are inferred from the different settling velocitieslie fluid. If the particles form distinct layers
based on size classes at the bottom of the container, thgedhealso be separated from one another,
or removed from the fluid completely as seen when clarifyiragte water. Each of these applications
requires a good understanding of the particle settlinggm@@s to give accurate and effective results.
For example, particles were once thought to only settleviddally under Stokes’ law but further re-
search has shown that the role of vertical density currevitich significantly affect particle settling
velocities, must also be taken into account when perforrginain-size analysis (Carey 1997; Kuenen
1968). Without this increased understanding, particlendi@rs may be poorly estimated.

The need for a better understanding of particle settlinggnties also extends to the natural world,
where an important occurrence of sedimentation is therggttf pyroclastic fragmental material, gen-
erally referred to as tephra, in the world’s oceans. Tephrtigles from past volcanic eruptions settle
to form layer after layer of deposits on the seabed. Corrgetpretation of these layers can provide

important constraints on the duration and frequency ofarikm (Carey and Schneider 2011) but,
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like the other aforementioned applications, requires hundlerstanding of the complex multiphase

settling and deposition process.

Analogue experiments of tephra settling through a tank dewhave demonstrated that small
ash particles (i.e. tephra particles smaller than 2 mm imdtar (Rose and Durant 2009)) can either
settle individually, or collectively as a gravitationallystable ash-laden plume (Carey 1997). This be-
haviour is similar to that of virus particles in a buffer sidin and fungal spores in air (Bradley 1965,
1969). These plumes are generated when the concentratipartidles exceeds a certain threshold
such that the bulk density of the tephra-water mixture idigahtly large relative to the underly-
ing particle-free water for a gravitational Rayleigh-Taylnstability to develop. Furthermore, these
plumes are observed to descend as a vertical density cuvitnt velocity much greater than that
of individual particles, which has important implicatiofts the emplacement of tephra deposits on
the seabed (Carey 1997; Manville and Wilson 2004); the effetocean currents on the distribution
of settling tephra particles will be lessened because ofhioeter time-scale over which they can act,
and information about atmospheric conditions at the timarokruption is therefore more likely to
be preserved by the tephra layers that form at the bottomeobtiean. These implications must also
be taken into account when performing settling velocitgdzhgrain-size analysis for particles with
diameters smaller than 5fn (Kuenen 1968).

Numerical modelling provides a method to extend the resiltaboratory experiments to large
scales and explore the conditions under which vertical ilenarrents may form and persist. One
crucial aspect of any numerical model is the discretisadioihe domain into a finite number of cells,
forming a mesh, where the properties of the flow such as uglact approximated upon the solution
nodes. This is directly related to both accuracy and contiput footprint; more cells (or nodes) give

better accuracy but at the cost of increased simulatioriment

Many existing multiphase flow models solve the equationegung the flow dynamics either on
a fixed structured grid or a fixed unstructured mesh. The foismeot well-suited to handling complex
geometries such as the bathymetry of the ocean (&aah 2005), and can be inefficient if one only
wants to accurately capture the dynamics in particularsaoédhe domain; since the numerical res-
olution is inherently uniform, a large number of superflunosles will exist. Use of fixed structured
grids has restricted the resolution of even the most adbsiractured grid-based multiphase models
(Neri and Macedonio 1996; Neet al. 2003; Textoret al. 2005; Esposti Ongaret al. 2008). In con-
trast, unstructured meshes have the advantage that nadég eabitrarily connected to one another,
thus providing the freedom for the resolution to increaséemrease only where desired (Pigggital.
2006). However, a fixed unstructured mesh which concestrasolution in a region of interest in the

flow, such as around a vortex, will no longer be optimal if thestex changes its position or size as the
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simulation progresses. The reduced accuracy resultimg tinés can dramatically affect the numerical

solution.

To mitigate the issues associated with fixed meshes, thik dereloped a multiphase flow model
within Fluidity, an open-source, combined finite elementiitecol volume CFD code, which features
an adaptive unstructured mesh based approach éaih2001; Piggottet al. 2008, 2009; Davies
et al. 2011; Imperial College London 2011). Adaptive unstruaduneeshes have the potential to sup-
ply finer numerical resolution only in areas important to dy@amics being studied and coarser res-
olution in those areas that are not. As the flow progressemttgh is optimised through a series of
local topological operations (such as node addition ane dlijgping) to accurately, but efficiently,
represent the flow domain throughout time (Piggattal. 2009). This approach has already brought
significant benefits to numerical models; for example, Ftyklsingle-phase flow model has shown
that an adaptive unstructured mesh can yield results guaediurate as those produced with a fixed
mesh, with more than an order of magnitude fewer nodes (gtiesal. 2011). Other models that use
an adaptive mesh approach have also reported similar lenediuding faster runtimes and reduced
computational costs over simulations performed with aarnity fine mesh (Li and Kong 2009; Ito
et al.2011). Clearly the use of adaptive unstructured meshegéntialy very fruitful for modelling
multiphase flows, particularly those involving geophykipeocesses occurring on a wide range of

scales in complex domains.

The work herein describes the new multiphase capabilifi€uidity, presents model verification
and validation by simulating experiments of particle gsgtthrough a water tank, and highlights the
benefits of mesh adaptivity by showing that it provides reducomputational cost compared with
a mesh of uniform resolution without compromising solutamturacy. The remainder of this article
is set out as follows. Section 2 presents the model equadindsthe fluid-particle drag term used.
The equations are discretised using the finite element dethSection 3, followed by a description
of the numerical method used to compute the solution in &ecti The method of manufactured
solutions, described in Section 5, verified the correctriéghe model implementation in Fluidity.
The experiment of Manville and Wilson (2004) involving peleg settling in a tank of water with a
salinity gradient was then simulated, and the numericalbdigted plume depth and salinity profile
were obtained; the model is validated in Section 6 by compatiese quantities against experimental
data. Fluidity was also used to simulate similar settlingeziments by Carey (1997), which involved
several different size ranges of particles. The observditjgasettling velocities are compared against
those predicted numerically in Section 7. Finally, the keyifigs of this work are summarised in

Section 8.
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2 MODEL EQUATIONS

This work developed a model for dispersed multiphase flowspmsed of a single fluid phase (a
connected liquid or gas substance) in which one or moregmhases (comprising solid particles,
liquid droplets and/or gas bubbles) are immersed (Cretat. 1998). Each phase was identified by an
indexd, wherei = 1,2, ..., Nphases- By assuming that both the fluid phase and particle phase() c
be treated as interpenetrating continua (the so-calledriantEulerian approach (Crowe 2005)), the
physical laws of conservation of mass and momentum were tasddrive the governing equations.
These equations were considered on a dorfiaic R? with boundarydf) for an interval of time
te[0,7].

Each phase was assigned a separate velocity fiajdand hence a separate momentum equation,
to enable mixing and interpenetration. Extra terms wera theluded to account for interphase inter-
actions. Furthermore, since only low-velocity gravityven flows were being considered, the model
assumed incompressible flow and a common pressuresfsddhat only one continuity equation was
used. Thus, the continuity equation and momentum equatiopHasei (based on the derivation by

Ishii (1975) in non-conservative form) were:

Nphases
> Ve (aw) =0, )
i—1
Ou;
aiﬂia—lz + a;pia; - Vu; = —a;Vp + a;pig + V - (i V) + (2)

wherep;, u; anda; are the density, isotropic viscosity and volume fractioplodse: respectivelyg
is the gravitational vector, anfj represents the forces imposed on phabg the otherNVppases — 1
phases.

In this article,f; represents only the fluid-particle drag fordg, defined as

_ 3. areipslui —uy

di = 7o d;

(0; —uy), )

where the subscripf denotes properties of the fluid phase. A particle diamétevas required for
each particle phase, but not the fluid phase, sihce/as always zero. The (Stokes) drag coefficignt

and the particle Reynolds numbe; were given by

(4)

and
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dilu; —
Re; — 2121 — | ©)
1y

respectively (Crowet al. 1998; Neriet al. 2003). Drag caused by particle-particle interaction was

ignored because of the dilute nature of the multiphase flow.

The total value of; depended on whether phaswas the fluid phase or a particle phase; for the
fluid phasef; = ZZ].V:P{“"‘“S d;, whereas for a single particle phasef, = —d,, such that the system is
closed (i.e.ZﬁE’f‘“es f; = 0). Note that only one particle phase was used for the sinamatpresented
in this article (although Fluidity has been designed to fead arbitrary number of particle phases).
Therefore, from this point on properties of the particle gghwill be denoted by a subscripand the

properties of the fluid phase with a subscript

A non-dimensional scaling analysis of the momentum eqogdee Appendix A) showed that as
the Reynolds number tends to zero, the stress tensor cambetmminant relative to the other terms.
For the fluid phase’s momentum equation, where the viscesitya known constant ¢#(10-3) and
the volume fraction was close to unity in this work, this terauld not be neglected. In the case of the
particle phase’s momentum equation, the stress tensondeg@en the particle phase viscosity which
is commonly defined as a (dimensional) constan©¢f) multiplied by the particle phase’s volume
fractiona, (Miller and Gidaspow 1992; Nesit al. 2003). Sincey, was typicallyO(10~3) in this work
(at least in the main area of interest in the domain), thegbaghase viscosity was of the same order
of magnitude as the fluid phase viscosity. However, thisgarphase viscosity gets multiplied lay,
in the particle phase’s stress tensor, leading to a quaattitgast three orders of magnitude smaller
than the fluid phase’s stress tensor, assuming the magsitdid@th velocity fields are approximately
equal. For this reason the stress tensor in the particlesfghammentum equation was neglected in

this work.

The Stokes drag coefficient was deemed appropriate for tmglations in this work because the
maximum values of the particle Reynolds numiis,, determineda posteriorj wereO(10~!) and

therefore implied that the flows under consideration werkwi¢hin the Stokes flow regime.

It is worth noting that while the model has so far only beenliagdo particle settling experiments,
it could potentially be applied to many other incompressiblilute fluid-particle systems such as the
flow of blood cells in a human body or sediment transport iangv However, the validity of the Stokes

drag coefficient in these applications would need to be densd carefully.



Multiphase flow modelling of ash settling 7
3 DISCRETISATION

A discrete version of the continuous model equations wasddrusing the Galerkin finite element
method. A full derivation is given in Appendix B, but put Hhie the method began by considering the

weak form of the momentum equation:

/ -(apg > dV+/w apu-Vu) dV = — /w (aVp) dV +

3 —
/w apg) dV+/w - (auVu)) dV—/QW-ZCM (u—uy) dV. (6)

In this weak form a solution to the velocity field € H'(Q2)3 was sought such that it is valid for all
test functionsw € H'(Q)3 (whereH'(Q) is the first Hilbertian Sobolev space) (Elmanal. 2005).
Note that the subscriptedndexing a particular phase has been dropped for clarity.

The test function and solution to the velocity field were esgnted by a linear combination of
piecewise linear basis functions (also known ag®fasis functions) that are discontinuous across the
cells of the mesh, called elements, where two basis furetieerlap. Therefore, within each element

€,

u nodes,e

Z biw;, 7
Nu_nodes,e

u= Z Prug, )
k=1

where Ny nodes,e 1S the number of velocity solution nodes in elementv; is the value of the test
function at nodgj, anduy, is the solution at nodg. The basis function; and¢;, are unity at nodes
j andk respectively, and zero at all other nodes. When seekingaé#ficentsu,, the pressure field
p also needed to be solved for. This field was represented bynoons piecewise quadratic basis

functions (also known as P2 basis functions) such that

p nodes

Z Yipr, ©)

wherep, is the value of the pressure field at nddendq); is the basis function that is unity at node
[ and zero at all other nodes. Note the summation over all nodigee domain due to the continuous
nature of the basis functions.

The discretised momentum equation gave\g,cdes X Nu_ nodes System of linear equations that

could be assembled and solved for the vectors of unknowriicieetsu andp:

ou
ME + Au+ Ku + Fiegggu = Cp + b + £, (10)

where the matriceM, A, K andC are the mass, advection, stress and gradient matricestieshe
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The matrixF.¢, contains the left-hand side part of the drag term. The vediandf,,,, represent
the buoyancy force and the right-hand side part of the drag. tEhese terms are defined in Appendix
B.

The solution to the discretised momentum equation needsatisfy the discrete continuity equa-
tion, also formed using the finite element method (see Apipedd

Nphases
(C;Tul — I'i) = 0, (11)
=1

wherer; is a surface integral term through which Dirichlet boundeawpditions can be applied.
The volume fraction fieldsy, and o were discretised separately using a node-centred control
volume approach (Wilson 2009) and advected with the veldigtds (once known). The face values

of each control volume were limited using the Sweby flux lenitSweby 1984).

4 SOLUTION METHOD

After the momentum equation was discretised, a method vemsresl to compute the numerical solu-
tion. Fluidity solves the single-phase incompressibleibla8tokes equations using a pressure projec-
tion method (see the work of Chorin (1968) and Gresho and 2800) for more details) which has
been extended to solve the multiphase model equations getpio this work.

The solution method began by considering the momentum iequtitat had been discretised in
space using the Galerkin finite element method, and in tinregguke backward Euler method. Each

time-step (from time: to n + 1) comprised a number of Picard iterations used to deal wamtim-
n+1

)

andanrl’ denoted byl{:ent andptent.

)

linearity in the system, yielding a set of tentative restdtsu
Therefore, within each time-step, the method sought a netatiee solution at each Picard iteration

to

u’
—— L+ AUl + Kul®™ o+ Fleg uf™ = C;p™™ + by + fright.i, (12)

such that the discrete continuity equation

Nphases

Z (C?u}em - rl-) =0, (13)
=1
was satisfied.

The main steps of the method are described briefly below, fuit description is given in Ap-

pendix C. To find a new tentative solution:
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() Compute non-linear approximations to the phase voluraetibn and velocity fields using the
latest (best available) tentative solutions.

(i) Make a ‘best guess’ fop'®™* by solving a pressure Poisson equation or by using the most
up-to-date pressure field available.

(iii) Solve (12) for each phase to obtain a set of intermeaiocitiesu; .

(iv) Since the set of intermediate velocities will not siti§l3) because of the guess used for
the pressure field, find the pressure correction té&ymthat enforces continuity by projecting the

intermediate velocities onto a divergence-free space alnd:s

Nphases Nphases

Y (m-Clup)=At| > ciM;'Ci | Ap. (14)
i=1 =1

(v) Correct the intermediate velocities to obtaiff™* by substituting the recently found pressure

correction term into:
W™ = uf + AtM; 'C; Ap. (15)

(vi) Advect all tracer fields (including the phase volumectian fields) using the new tentative

velocitiesu!®*.

Once a desired Picard iteration limit or convergence wasi‘mda,u?“ andp™t! took the values
of the final tentative solution and the time-step was deemeatptete. The above solution method was

then repeated until a desired time limit or steady state Wwasiad.

5 MODEL VERIFICATION

One rigorous indication of model correctness came from aergence analysis, which checked that
errors in the numerical solution decreased at the expeatedas the mesh resolution increased. The
method of manufactured solutions was used to obtain theiaolarror foru; andp by constructing

an analytical solution with which the numerical solutiorultbbe compared (Roache 2002), and can

be broken down into four steps:

(i) Choose an analytical solution for eaak, «; andp such thatzlj.\[:'”lhases V- (au;) = 0.

(i) Foreachphasé=1,2,..., Nphases:

(a) Substitutas;, «; andp into phase’s momentum equation. Since the analytical solution witl no
be the exact solution in general, a non-zero residual telhb&present on the RHS (i.e. a source
term).

(b) Form a new version of phage momentum equation which includes this source term, ddtiea
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residual will now be zero. In other words, the analyticaugioh that was chosen at the beginning

is now the exact solution for this new version of the momenéaguation.

(iii) Solve the new set of momentum equations which inclutegource terms.
(iv) Obtain the error for a range of characteristic elemengths, and plot this error to determine

the order of convergence.

A two-phase MMS test was created to verify the order of caymece when using the B&-
P2 element pair. The analytical solutions = [sin(z)cos(y), sin(y)sin(z) — cos(z)sin(y)]T,
u; = [0.25 cos(z) cos(y) — z cos(y), sin(y)]T andp = cos(x) cos(y) were used. The phase volume
fractionsay, = 0.2 anday = 0.8 were prescribed across the whole domain and remained obnsta
throughout time. For each velocity field, Dirichlet boundapnditions that agree with the analytical
solution were imposed along with the initial conditioy = u; = [0,0]T. The dimensions of the
domain were).0 < z < 7w and0.0 < y < 7. The physical parametefg = 1.0, p, = 2.5, j1y = 0.3,
iy = 0.3 andd, = 1.0 were chosen arbitrarily.

Four fixed unstructured meshes composed of triangular elftsmesre produced with Gmsh (Geuzaine
and Remacle 2009) using characteristic element lengths=0f.64, 0.32,0.16 and0.08. Decreasing
time-step sizes of 0.016, 0.008, 0.004 and 0.002 maintaaneshstant bound on the Courant num-
ber. All simulations were run until the steady state CODdEimax(\u?“ —uj|) < 1.0 x 1078,
max(Jupt!t —up]) < 1.0 x 107% andmax(|p" — p"|) < 1.0 x 10~% were attained.

Plots of the error in the velocity fields in Fig. 1 show suct@ssonvergence at second order as
expected. Since the B&-P2 element pair exhibits the same error scaling for thespresfield as an
element pair using piecewise linear or even piecewise anhbasis functions (Cottet al. 2009) the

second order convergence fowas also expected, providing confidence in the model impheatien.

6 MODEL VALIDATION

Laboratory-scale particle settling experiments wereicafgd to test the model’'s performance. In
experiment dsa#3 of Manville and Wilson (2004), siliconbide particles were introduced into a
water tank from above via a settling column, at an averages ritas of 6.31 x 1072 kgm~2s~!, for

25 seconds. The water had a linear salinity gradient withagosimflexion at a depth of approximately
0.25 m. Plumes that formed near the surface of the water tank @bserved to settle as vertical density
currents with velocities significantly greater than thedicted Stokes’ law velocity of a single particle.
Eventually the plumes impinged on the inflexion in the safigiradient and spread out horizontally,

which momentarily hindered the settling process. The gagithen continued their rapid descent to
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Figure 1. Convergence plots for (a)s, (b) u, and (c)p using the P}g-P2 element pair. The velocity and
pressure fields converged at second order as expected.
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the bottom of the tank. Video recordings were used to medkanglume frontal position as a function
of time. The salinity gradients before and after plume ipgttivere also measured.

The salinity inflexion clearly had a significant impact on theme dynamics. Although the effects
were relatively short-lived in the laboratory experimeht presence of a salinity gradient on a much
larger scale could greatly influence the timescale of garsettling, hence the need for accurate
and efficient numerical models. To validate the multiphaseleh presented here and evaluate the
effectiveness of mesh adaptivity, a suite of simulationsewmerformed in Fluidity which replicated
the conditions under which experiment dsa#3 was perforfeth fixed and adaptive meshes were

used.

6.1 The domain, initial conditions and boundary conditions

The domain was a rectangular box representing a crossautithe water tank used by Manville
and Wilson (2004), defined b§.0 < = < 0.61 m and0.0 < y < 0.45 m. A zero velocity field
was imposed at = 0 s for both phases, and an initial condition was also definedhi® particle
phase’s volume fraction; a value bf) x 10~7 was used throughout the domain, apart from the section
0.18 < x < 0.43 m of the top boundary where nodal values were randomly gegtusuch that
1.0 x 1077 < ap < 1.0 x 10~°. This section represented the diameter of the circularaioeit
through which particles fell onto the body of water belowcl@a perturbation encouraged plumes
to form, and a minimum value of.0 x 107 was used instead of zero to avoid singularities in the
system of linear equations. The following initial conditiavas used for the salinity field to give a
linear increase until a depth of 0.2441 m where an inflexiacuag;, after which the salinity gradient

becomes sharper (see Fig. 2):

17.45 +109.52(0.2059 — y) i y < 0.2059
S(z,y) = . (16)
7+42.81(0.45 —y) otherwise
No-normal flow boundary conditions,; - n = 0 andu, -n = 0, were enforced on each boundary
of the domain. A flux boundary condition fer, was used to represent the introduction of particles;

this boundary condition enforced

0 —
— / ap dV + / n, - u,a, dS = / r ds, a7
ot Ja, 992,109 092,N09

for all control volumesv on the boundary of2, and a given volumetric flux. A volumetric flux of
r = 2.034 x 10~°> ms~!, found by dividing the mass flux ¢£31 x 10~2 kgm~2s~! used by Manville
and Wilson (2004) by,, was applied along the top sectiori8 < z < 0.43 muntilt = 25 s; a zero
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Figure 2. Variation of salinity with depth at = 0 s. The inflexion occurs at a depth of 0.2441 m.

flux (i.e.r = 0 ms~!) was applied everywhere else 82 to prevent particles entering or leaving. For
t > 25 s, a zero flux was enforced everywheredsn so that no more particles were introduced. Note
also that the ternm, - u,, represents the flux af,, through each control volume but excludes the
contribution from the boundary condition which is providegparately by the term on the RHS.

The effects of representing the cylindrical particle idgta Cartesian geometry for the numeri-
cal simulations could not be quantified without running thedel in a three-dimensional domain and
comparing the results. However, possible differences ntayiroin the plume frontal speed, in the
spreading at the salinity inflexion, and in the developmédnhstabilities in the particle-water layer,
despite the constant flux of particles through the inletdpéie same in both two and three-dimensions.
If particles were to experience drag effects from anotheredision, this could cause differences in in-
stability growth and plume dynamics. Furthermore, in twoelnsions a plume only entrains particles
from the left or right of the plume’s tail, but in three dimémss there are more possible sources of
particles that can become entrained, resulting in diffeegtrainment rates which in turn affect the

frontal speed and longevity.

6.2 Physical parameters

The physical parameters used wepg:= 3,100kgm 3, ;i = 0.001 Pas, d, = 62 um (the mean
diameter of particles used in the experiments) gnek [0, —9.8]T ms—2. The particle phase was

assumed to be inviscid (i.@,, = 0 Pas). The fluid densityp; obeyed a linear equation of state:
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Table 1.Number of nodes in the fixed unstructured meshes.

l (m) Nvertices Nu_nodes Np_nodes Reference

0.02 820 4,602 924 F1
0.01 3,090 17,910 3,298 F2
0.005 12,799 75,528 13,219 F3
0.0025 50,943 303,120 51,787 F4

pr=po(1.0+B(S—S))) (18)

wherepg, Sy andg are the fluid reference density, reference salinity, aridesabntraction coefficient
respectively. For this workgy = 1,000kgm 3, Sy = 0, and$ = 7.2088 x 10~* (a generally accepted
test value from McDougall (1987)).

6.3 Spatial discretisation and time-stepping

Further to the discretisation of the model equations anddhene fraction fields described in Section
3, the salinity field was discretised using a node-centredrobvolume approach (Wilson 2009). Once
again, the Sweby flux limiter (Sweby 1984) was used.

The implicit backward Euler scheme marched the equationsaial in time for 180 s. After
an initial time-step of 0.001 s, Fluidity’s adaptive timegping method permitted larger time-steps
whilst enforcing a maximum Courant number of 0.5. Furtheenwithin each time-step, two Picard

iterations dealt with the non-linearity when solving thesgming equations.

6.4 Meshes
6.4.1 Fixed meshes

Gmsh (Geuzaine and Remacle 2009) was used to generatectmmstdumeshes composed of triangular
elements with a user-defined characteristic element ldn§thur different values dfwere used in the
fixed mesh simulations, listed in Table 1 with the correspamaumber of verticeV,ertices, VEloCity

NodesNy nodes @Nd pressure NOAeS, ;odes-
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6.4.2 Mesh adaptivity

Simulations using mesh adaptivity were supplied an initi@lsh withl = 0.0025 m, also generated
using Gmsh. The mesh was then adapted every 20 time-stegsthei libmba2d library (Vasilevski
and Lipnikov 1999).

Fluidity seeks an accurate representation of the dynanyicgtimising the mesh; this process is

driven by three main components:

(i) Topological operationsEach element is considered individually and may be impidtaeough
a series of topological operations; edges can be split todate new elements and refine the mesh,
or collapsed to remove elements and coarsen the mesh, fopéx@Piggottet al. 2009).

(i) Quality functional The decision to improve an element or not, and how, is gulded qual-
ity functional Q which considers an element’s size and shape. The adagthiries optimise this
functional by seeking an ideal element, defined as havingeatdge length with respect to a given
metric.

(iii) Metric: The quality functional is evaluated using a metric basethercurvature of a solution
field of interest (in this casey,) and a user-defined weigh{Painet al. 2001). Areas of high solution
field curvature will attract more resolution, and less sewlsere. The weight stems from interpola-
tion error theory; decreasinggenerally yields finer resolution because of the tightesraimlerance,
while increasing it provides coarser resolution (Hiestieal. 2011).¢ therefore controls the extent to

which elements are refined.

After each adapt, the solution field required interpolatietween the pre- and post-adapt meshes;
this work used a linear interpolation scheme called comsishterpolation (Farrell 2009). The upper
and lower bounds on the element size were séttp= 0.00001 m andi,,.. = 0.1 m throughout the
domain, apart from the region defined ® = < 0.61 m and0 < y < 0.02 m wherel,,;, = 0.0025
m; this was to prevent Fluidity from over-resolving the builp of a particle layer that was not as
important as the dynamics elsewhere in the tank.

Four different values oé were used in the adaptive mesh simulations, listed in TablEh2se
were absolute values of,, rather than relative values (i.e. the weight was defineénms of a fixed

volume fraction and not a percentage of the volume fractield)fi

6.5 Results

The high particle influx caused the build-up of a particleelaglong the surface of the tank which
quickly became unstable because of the rapid increase kndaurisity. Small plumes formed after

approximately 3—4 s, most of which eventually became emdrhin the flow to form one large plume
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Table 2. Solution field weights for the adaptive unstructured mestutations.

€ Reference

9.5 x 1075 Al
7.5 % 1075 A2
6.0 x 1075 A3
5.0 x 1075 A4

which descended with a velocity of around 0.01-0.02 Inshis is greater than the predicted Stokes’
law velocity of 0.0044 ms! for a single particle, as expected. After 15-20 s the plunael rpinged
on the salinity inflexion and spread out laterally becauseplume reached a point where its bulk
density was no longer greater than that of the underlyintjgbexfree water. Such buoyancy effects
caused a small amount of rebound also visible in the expetsnd&he particles then continued their
descent to the bottom of the tank. Numerical model time fiast®wing plume evolution compare
well with the experimental results (see Fig. 3; time framithe experiment are taken from Manville
and Wilson (2004)).

The numerical model accurately predicted the position efgglume front as a function of time,
including the subtle change around 20 seconds when the pilapieged on the salinity inflexion (see
Fig. 4). Throughout the simulation, the plume’s passagddeshtrainment of less saline water which
in turn caused significant changes to the salinity profiléeAthe plume settled, however, the salinity

gradient in the water returned to its initial state as obsgim the experiments.

6.5.1 Plume speed comparison

To quantitatively assess the accuracy of the fixed and agapiesh approaches, and to further validate
the numerical model, each simulation was repeated five tandghe results were averaged. A linear
least squares fit was applied to the averaged data pointeéetw= 4 s (when plumes had formed)
andt = 15 s (when the plume head first hit the salinity inflexion), arsbdbetweert = 15 s and
t = 31 s. The gradients of these two linear fits gave an average pitontal speed to be used as a
measure of accuracy. A similar procedure was performed erexiperimental data points to give a
benchmark value with which to compare the numerical resigésnst.

Figure 5 presents the average plume frontal speed agamavtrage number of velocity nodes,
for the two separate time intervals, using results from alirBulations. Vertical error bars represent

the margin of error found from computing a 95% confidenceriatiefor the slope of each linear fit.
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Figure 3. Simulation of particle settling through a salinity gradiemt = 10, 15, 20, 25,30 and 180 s. Data
taken from simulation A4. From left to right: video stills tfe experiment from the article by Manville and
Wilson (2004); visualisation of the phase volume fractigy) the adaptive unstructured mesh. Note that the
colour bar is saturated at= 180 s due to the build up of a dense particle layer on the surfaitle asmaximum

ap Value of~0.4. All visualisations show the whole 0.61 m by 0.45 m domain



18

0.00

Plume depth (m)

C. T. Jacobst al.

XX " ¢+ |X X Numerical results
; © |* % Experimental results
0.05f------ ot S PR FRERREEEE .- - Pe -
>:< . N .
20 uk ...... ~ ......... ..............................
DX !
ok :
25 X*. ......... T T
X u .
%X*XXI
030 f+reemrbor b P e
L
: : . L Xk .
L e e g P
: : : ’.“XéX :
. . . . . g X
040 (@1 B FERERE B FARSERRE o
. . . . . *
0as i i i i i i
0 5 10 15 20 25 30 35
Time (s)

0.00

0.05 [---

Depth (m)

T T T T
X X Numerical salinity profile at7 = 180 s
% % Experimental salinity profile atz =180 s
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In general, the plume frontal speeds from the adaptive mieshlaions closely matched the

experimental data whilst requiring fewer nodes than thedfixesh runs to attain the same solution

accuracy. For example, the accuracy of simulation F4 is evaipe to that of simulation A4 in the first
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Figure 5. Average plume frontal speed against average number ofitielumdes, betweeh=4 s andt =15 s
(a), and also betweers 15 s and =31 s (b).
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Table 3. Number of velocity nodes required for the fixed and adaptiestmes front = 0 stot = 180 s.

Reference Npin = Nmax o~ N2VHEC Time steps % time in adaptivity
F1 4,602 4,602 4,602 798 —
F2 17,910 17,910 17,910 2,023 —
F3 75,528 75,528 75,528 4,624 —
F4 303,120 303,120 303,120 11,246 —
Al 9,705 303,102 21,024 13,618 10% (680 adapts)
A2 9,894 303,102 32,972 16,270 13% (813 adapts)
A3 9,303 303,102 53,966 20,027 7% (1,001 adapts)
A4 10,410 303,102 76,506 22,009  11% (1,100 adapts)

time interval, and to that of simulation A3 in the second. dttbcases, the adaptive meshes contain at
least 4 times as fewer velocity nodes on average.

While a certain amount of variability in the fixed mesh reswame from randomly perturbing
the initial value ofay, along the top boundary, the most likely cause of increaseidhiéty in the
adaptive mesh results was the further numerical pertunbaind diffusion introduced by altering the
mesh throughout each simulation which in turn encouraggddbidifferences in plume evolution.

However, this did not greatly alter the overall behaviour.

6.5.2 The effectiveness of mesh adaptivity

The computational savings from using fewer nodes should ladsweighed up against the cost of
adaptivity. As a percentage of the total runtime, Fluidipgst around 10% in the adaptivity routines
(as shown in Table 3) which included the assembly of the matid the interpolation as well as the
mesh optimisation itself. The cost of one adapt was appratdiy the same as that of two time-steps
for all adaptive mesh simulations. Despite this, since tesmonly adapted every 20 time-steps, the
extra cost was insignificant when taking the benefits of uémger nodes without significant loss of
accuracy (if any) into account.

The other extra cost, although not directly related to mektptvity, came from the presence of
smaller elements which generally caused Fluidity’s adagtme-stepping method to enforce smaller
time-steps to prevent the CFL condition from being breachddch explains why the adaptive mesh
simulations required more time-steps than those using d fixesh.

To evaluate both of the costs described above, the elapdetme per time-step and per adapt
was obtained from simulation A3; the results are given in Big

Simulations F4 and A3 gave comparable accuracy for the setioe interval and, on average,
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Figure 6. Wall time against number of velocity nodes.

used 303,120 and 53,966 velocity nodes respectively. Ei§ehows that approximately 10 seconds
of wall time were spent per time-step when using 53,966 ndagssince A3 took around twice the
number of time-steps, a measure of the overall cost rel&tived was found by multiplying the 10
seconds of wall time by 2 and adding on the 7% extra time takethé adaptivity routines. This
gave 21 seconds of elapsed wall time in total — a saving ofrat@©% when compared with the 55
seconds of wall time required for one time-step in simufafi@. It is worth noting that this overall
computational saving was achieved for simulations of pliseitling in a restricted, laboratory-scale
domain. In this case, a large amount of resolution was placte: majority of the domain at= 30 s

to resolve the laterally-spreading plume. If a similar ptusettling problem was applied to the ocean
scale, the area requiring high resolution would be much Ismeglative to the overall size of the
domain. The potential advantages that mesh adaptivity ffantberefore become more apparent with
problems requiring resolution on a range of scales in largere complex domains, especially when
three-dimensional domains are considered and when morputationally-demanding setups (e.g.

multiple particle phases with different particle diamsjeare desired.

7 MODEL APPLICATION

The laboratory experiments by Carey (1997) studied themjesgof tephra particles in water by intro-
ducing them into a tank from above using a delivery systemeguatticle disperser, at an average mass
flux of 4.72 x 10~* kgm—2s!. In these experiments, two stages of particle settling wbserved. At

early times when the concentration of particles was lowpidrticles abruptly decelerated upon their
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entry to the water and settled individually under Stokes’ & an average velocity of 0.002 mis(for
experiment 96-1), forming a layer of particle-rich wateattincreased in particle concentration with
time. However, after about 30—60 seconds, gravitationafigtable particle-laden plumes grew from
this layer as Rayleigh-Taylor instabilities, transpagtparticles to the bottom of the tank at speeds 10
times greater than that of single particles.

To measure the success of the numerical simulations pesséetein, the model predictions of
the onset time of pluming and the speed of the plumes were amdpvith estimates from the exper-

iments.

7.1 Simulation setup

The domain was a rectangular column representing the waikrused by Carey (1997), defined by
0.0<x2<0.3m,0.0 <y <0.7mand0.0 < z < 0.3 minthree dimensions. For the two-dimensional
simulations presented in this work, a cross-section froetly plane was used.

A zero velocity field was imposed at time= 0 s for both phases, and an initial condition was
also defined for the particle phase’s volume fraction; aevalti.0 x 10~7 was used throughout the
domain, apart from along the top boundary where nodal vakere randomly perturbed such that
1.0x 1077 < ap < 1.0 x 10~°. This perturbation was done to encourage plumes to form,aand
minimum value of1.0 x 10~7 was used instead of zero to avoid singularities in the sysielnear
equations.

No-normal flow boundary conditionsyy - n = 0 andu, - n = 0, were enforced on each
boundary of the domain. Along the top boundary a flux boundanydition, defined in Section 6,
enforced a constant volumetric flux 8f018 x 10~7 ms~! which corresponded to a mass flux of
4.72 x 107* kgm 251,

The physical parameters used werg= 2,340kgm 3, p; = 1,000kgm 3, uis = 0.001 Pas, and
g = [0,—9.8]T ms=2. The particle diameted,, varied between simulations, but ranged fréénum
to 64 pm inclusive (within the range used by Carey (1997)). The plertphase was assumed to be
inviscid (i.e.y, = 0 Pas).

The setup of the time-stepping method was the same as that givSection 6, except the simu-
lation was performed only until= 120 s.

The unstructured mesh, composed of triangular and tetraheléments in two and three dimen-
sions respectively, was produced with Gmsh (Geuzaine antbBle 2009). For fixed mesh simula-
tions, the characteristic element lengdtlvas fixed at 0.0025 m unless stated otherwise. This setup
produced a mesh containing 39,512 vertices, 234,678 ¥gloodes and 40,308 pressure nodes. Sim-

ulations using mesh adaptivity were supplied an initial Im&&h [ = 0.0025 m, also generated using
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Gmsh. The mesh was then adapted every 20 time-steps usitigprtitea2d library (Vasilevski and
Lipnikov 1999). The mesh was not refined below a fixed minimlement length of,,,;, = 0.00001

m nor coarsened above a fixed maximum element length.@f= 0.1 m. After each adapt, the solu-
tion fields were interpolated using consistent interpotaijFarrell 2009) as in Section 6. The weight
e was set tal.0 x 102 in the section defined b§.0 < = < 0.3 and0.0 < y < 0.05 to prevent the
build-up of a particle layer on the bottom which was not intpot in this study. Elsewhere was set
t05.0 x 1075,

7.2 Results

Results from the tephra settling simulations are showndnFiA near-surface layer of tephra particles
formed during the first 15 s in the case whége= 26 ;m, and during the first 30 s faf, = 48 ym. In
these early stages, the particles in the layer settledidhhilly at the predicted Stokes’ law velocity,
as expected. From Stokes’ law, the predicted settling wedscfor particles withd, = 26 pm and

d, = 48 pm are 0.00049 ms! and 0.00168 n1s' respectively, and the numerical results in Fig. 8
agree well with this.

Just as Carey (1997) witnessed, as more tephra entered tbeama the particle concentration
increased the layer eventually became gravitationallytalohs and plumes began to form, descend-
ing with velocities more than ten times greater than thosmdif/idual particles. Each plume was
characterised by a vertical current of particles. As thecigl of the plume increased downwards, it
displaced fluid that flowed around it with an equal and oppos#ocity. This return flow caused drag
effects that gave a variety of sharp and bulbous plume heads;aused the longest plumes to entrain
smaller plumes either side of them, thus furthering plumgtdand longevity.

The smaller particle diameter df, = 26 ;m caused the system to become unstable much sooner
because the slower Stokes’ law settling caused the nefacsdayer concentration to build up quicker.
The smaller layer thickness initially resulted in decrelgsieime length and diameter, when compared
to the simulation withd, = 48 pm. Furthermore, a significant amount of particle entrainnmeas
observed as the plumes grew from the layer and travelledrttsnthe bottom of the water tank.

It is worth considering the differences between the devalent of Rayleigh-Taylor instabilities
at the interface between two stratified immiscible fluids] plume development in the tephra-water
mixture. In the former case, if the denser fluid is lying on tdghe lighter fluid then instabilities
will form immediately and grow at an exponential rate (Raytel883; Duffet al. 1962). In the latter
case, at early times the individual particles settle at &blaw velocity through the water as they are
denser. However, finger-like instabilities may form at theeiface between the upper, particle-laden

layer and the lower, particle-free layer, if the concemraof particles in the upper layer builds up high
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Figure 7. Visualisation of a two-dimensional adaptive mesh simafatvith d, = 48 pm, att = 10, 30, 50, 80
and 120 s (from left to right). Warmer colours represent a higheuweé fraction of the particle phase. All

visualisations show the whole 0.3 m by 0.7 m domain.

enough for the particles to start having an effect on eacbrdthrough drag reduction and drifting).
If the collective settling velocity is much faster than thk&s’ law velocity, the initial instability
growth is likely to be similar to the case of two stratified imsgible fluids. On the other hand, as
particle concentration within the plume changes with tibex,ause of mixing and/or additional influx
of particles, the buoyancy and hence the settling veloditthe plume also change with time, in a
more complex manner than the idealised case of two immeséiiids.

Experiments of the settling of a sand-water mixture throaghunderlying water layer (Lange
et al. 1998), with similar physical parameters to the simulatiprssented in this article, showed an
initial instability growth rate consistent with that pretiid by linear stability analysis applied to two

immiscible fluids (Rayleigh 1883). However, after only 208 of instability growth, the growth rate
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Figure 8. Maximum velocity of tephra particles against time, flgr= 26 ym andd, = 48 ym. Tephra particles
initially settle at the predicted Stokes’ law velocity (&s more tephra fluxes in, the layer becomes unstable

and plumes begin to form, resulting in settling velocitigsral0 times greater than that of an individual particle

(b).

deviated from the ideal growth rate, reflecting the fact thatsystem rapidly became too non-linear
for the stability analysis to hold.

An additional complexity of multiphase instability growiththat, unless the particle concentration
remains high as a result of continual particle influx, emimant of particle-free water into the plume
reduces the buoyancy of the plume, slowing its descent. derethe relative buoyancy of the plume
may be further reduced by any increase in the fluid densith détpth. As already seen in Section
6, plume settling was hindered when the surrounding watearbe denser than the plume due to
an increasing salinity with depth, causing the plume toealisp. Running further simulations might
allow the formulation of an empirical correlation to preidice onset of Rayleigh-Taylor instabilities
as a function of layer concentration, particle diametafiix rates and density contrasts.

Throughout each simulation the particle Reynolds nuntbgrremained small@(10~1)) when

considering a single particle with diametés. At the onset of plume formation, a new Reynolds

afpfdplume|up—uy] ;
T , wheredpiyme >> dp, is

the diameter of the plume. As the instabilities rapidly gréw,;,m. became much greater than unity

number was defined at the plume scaleRy,jyme =

because of the larger length scale. This implied that idd&i particle settling was in the laminar
flow regime, while plumes were in the turbulent flow regimejakhis consistent with the behaviour
reported in the literature (Manville and Wilson 2004).

Plume formation occurred after 60 s for experiment 96-1 ¢iwhised a mean particle diameter of
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Table 4. Number of nodes in the fixed unstructured meshes.

l (m) Nvertices Nu_nodes Np_nodes Reference

0.02 608 3,354 704 F1

0.01 2,423 13,944 2,619 F2
0.005 9,770 57,426 10,166 F3
0.0025 39,512 234,678 40,308 F4
0.00125 155,661 929,172 157,257 F5

d, = 48 pm), and after 30 s for experiment 96-5 (which used a mean padiameter ofl, = 26 ;um)
(Carey 1997); this qualitatively agrees with the behav&egn in both simulations. Fap, = 26 pm,
the wavelength of the growing instabilities was smaller paned to thel, = 48 ym case, and the
resulting plumes were initially shorter and thinner butaily merged via entrainment into larger
plumes that settled with a velocity of around 0104~ ! after 120 s. This was also expected because the
spacing between growing instabilities and their diameteesrelated to the thickness of the particle-
rich layer (Marsh 1988; Manville and Wilson 2004).

Eventually the particles were deposited at the bottom ofdhk. Some particles were picked up
by the return flow of fluid and recycled, feeding other plunied tire making their way to the bottom,

while other particles remained stationary as expected.

7.3 Plume onset

To be confident that instabilities formed because of the iphyand were not numerical artefacts, a
convergence analysis was performed using both fixed andiegl@ippvo-dimensional) meshes up until
the onset of plume formation. The integral of the kineticrggedensity of the particle phase was
measured as a function of time and was expected to converg@acticular value as the mesh was
refined. Five fixed mesh simulations were run using decrgadiaracteristic element lengths, given
in Table 4. Similarly, five decreasing valuescofrere used for the adaptive mesh simulations, given in
Table 5.

The simulation setup was as before apart from three modditatFirstly, the initial particle phase
volume fraction was perturbed along the top boundary usisigefunction (instead of randomly) to
avoid any stochastic effects between the data sets. Spdlgiftbe volume fraction at nodealong the
top boundary was defined ag(z;) = 1077 4+ 107° sin(4 ) such that only half a period was used to
ensure the initial condition is independent of the meshluéism. Otherwise, coarser meshes would

poorly resolve (or miss out) higher frequencies which mayuim affect the dynamics. Secondly,
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Table 5. Solution field weights for the adaptive unstructured mesfuttions.

€ Reference
5.0 x 1075 Al
2.5 x 1075 A2
1.25 x 105 A3
6.25 x 10~ A4

3.125 x 1076 A5

the frequency of an adapt was increased to once every 10stigps: since there are higher levels
of numerical diffusion in cases whetds relatively large, adapting more frequently will prevéimé
already-diffused tephra from moving too far out of the arédighest resolution between adapts,
thus limiting further numerical diffusion. Finally, the pizle diameter was set to 64m to increase
the stability of the system, as it can be very difficult to ittignconvergence if instabilities form
and become non-linear and turbulent too quickly. As the nreshlution is increased, even a small
difference in the perturbation of the particle phase voldraetion field can yield plumes of widely
varying shape, size and position due to their chaotic nalums means that there is no unigue solution
to converge to. Only the development of the particle layeunii the point at which instabilities start
to form may be suitable to check for convergence becauseytientcs are in the laminar flow regime
and relatively linear. Quantitative values with which cergence can be judged were therefore only
considered up until this point.

The integral of the kinetic energy density of the particlegd over a subsection ©f defined
by 0.0 < 2z < 0.3 and0.05 < y < 0.7, was plotted throughout time only up until the point where
instabilities noticeably form at around 30 s; the dynamiesdme too turbulent and non-linear to show
convergence after this time for the reasons explained iprindgous sub-section. This upper subsection
of Q was used in order to make a fair comparison between fixed amptiae meshes, becauselas
decreases in the fixed mesh simulations the particle lagefdhms on the bottom of the domain will
become better resolved, whereas the resolution will alvetgg coarse and remain the same in the
adaptive mesh simulations despite a decreasing vala@dhe upper subsection.

Convergence was observedtat 30 s, for both fixed and adaptive meshes, as shown in Figs 9
and 10 respectively. The error in Fig. 9 is the absolute wfiee of the integral of the kinetic energy
density between simulation F5 and simulations F1 to F4 8iedy aftert = 30 s. Similarly, the error
in Fig. 10 is the absolute difference of the integral of theekic energy density between simulation

A5 and simulations Al to A4 inclusive.
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Figure 9. (a): Integral of the particle phase’s kinetic energy dgrsgainst time, on fixed unstructured meshes

with different values of. (b): Error in the integral of the kinetic energy densityeaft= 30 s.

A plot of the error against a common quantity — the number dbaity nodes — in Fig. 11

shows faster convergence with adaptive meshes whilst ugpgoximately an order of magnitude

fewer nodes.
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meshes with different values ef (b): Error in the integral of the kinetic energy densityeaft = 30 s.
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Figure 11. Convergence plot for fixed and adaptive meshes. Note thataB0 s, the integral of the kinetic
energy density i4.927 x 1078 kgms~2 for F5 and1.9347 x 10~® kgms™2 for A5, which are close enough

together for a reasonable comparison of errors to be madeebatthe fixed and adaptive mesh simulations.

8 CONCLUSION

This work described the development of a dispersed mukipliaw model, implemented in the Flu-
idity CFD code, which used an adaptive unstructured mestoapp. The governing equations were
introduced along with their discretisation via the finiterakent method. A pressure projection method
was used to solve the resulting system of equations, and teardPiterations dealt with the non-
linearity. The model implementation’s correctness wagieerwith the method of manufactured so-
lutions, which showed second order convergence for thecitgland pressure fields as expected from
the P1-P2 element pair.

Experiment dsa#3 by Manville and Wilson (2004), which cdestd particle settling in a tank of
water with a salinity gradient, was simulated to demonstthat plume descent is hampered by the
presence of a salinity (and therefore density) gradienhaotn fixed and adaptive mesh simulations,
the plumes that formed in the first 4-5 seconds later impirggethe salinity inflexion after approx-
imately 15-20 seconds and spread out laterally, after wihielparticles continued their descent to
the bottom. The salinity profile at= 180 s showed that it remains mostly unchanged by the passage
of the plume, agreeing well with experimental observatidiie numerically predicted frontal speed
of the plumes was also obtained from plume depth data duvingitme intervals: 4 to 15 seconds,
and 15 to 31 seconds; the same was done using the experirdatdalThe fixed and adaptive mesh
simulations converged towards the two values derived fimeneixperiment, thereby providing a first

step towards model validation, but the adaptive mesh appraiowed the use of at least 4 times as
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fewer velocity nodes when compared with a fixed unstructanedh simulation. This provided an ap-
proximate computational saving of around 60% when comptredfixed mesh simulation, without
loss of solution accuracy. The benefits of mesh adaptividyeapected to be even more pronounced
when simulating plume settling through a large-scale oosdumn.

Adaptive unstructured mesh simulations of the experimbyt€arey (1997), which considered
different size ranges of tephra particles, were also peréarfor48 ;m and26 pm particle diameters.
Particles fluxed in and began settling individually at therect velocity predicted by Stokes’ law, but
once the bulk density of the tephra-water mixture was larmgmugh, plumes formed with the help
of the small perturbations randomly seeded in the partiokse volume fraction field. The velocities
increased to over 10 times those of individual particledisgtat Stokes’ law velocity. Faf, = 26 ym
andd, = 48 pm this happened after approximately 30 s and 60 s respegtivalgh closely matched
experimental observations. A convergence analysis shtiwetdhe adaptive unstructured mesh used
approximately one order of magnitude fewer nodes than tleel fimiform unstructured mesh would
to reach the same level of accuracy, further illustratireyfibtential advantages that mesh adaptivity

can bring to the numerical modelling community.
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APPENDIX A: NON-DIMENSIONAL SCALING ANALYSIS

To non-dimensionalise (2), the scaling parameters in TAbleere first defined.
Non-dimensional variables were then defined in terms oftlsealing parameters and the dimen-

sional variables in (2):

~ 1

= — Al
=t (A.1)
=+ (A2)
p - Pp7 .
i = iu (A.3)

(2 UZ' (3 -
.1 (A.4)
g - Gg’ -
f = if. (A.5)
T E 15 '
V =LV. (A.6)

Substituting the non-dimensional variables into (2) gave:
U; 0w, U? . = P U - - .

i~ 2 o - Vi = —o—VD 0G4+ —V - -V Ff.. A7

Qipiy e iU Vi, aszP+ a;p;Gg + LQV (azquuz> + Ff; (A.7)
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This equation was non-dimensionalised by dividing eaahn t@r# which has dimension\f L =272,
yielding:

on; o - 1
Oéz‘a—tf +aiu; - Va; = —a; Vp + oig + Re

A (aﬁﬁi) +f, (A.8)

7

whereRg; is the Reynolds number of phasdefined asouﬂ

APPENDIX B: DISCRETISATION
B1 Weak form of the momentum equation

A discrete version of the continuous model equations wasédrusing the Galerkin finite element
method which began by considering the weak form of the moumeiquation, derived by multiplying
(2) through by a vector-valued test functianc H'(Q)? (whereH'(Q) is the first Hilbertian Sobolev

space) and integrating over the domg&ims follows (Elmaret al. 2005):

/ -(apaa > dV+/w apu-Vu) dV = — /w (aVp) dV +

3 —
/w apg) dV+/w - (auVu)) dV—/QW-ZCM (u—uy) dvV. (B.1)

Note that the subscriptedindexing a particular phase has been dropped in this appéodclarity.
The particle phase form of the drag term has also been assoenedor simplicity, but the derivation
of the weak form for the fluid phase follows the same methagiplo

Integrating the advection and stress terms by parts angtiagghe divergence theorem yielded

/Qw-< gt) dv — /Qu-(ozpuv-w) dV—/Qu-(wV-(a,ou)) dv
[ w-apu) - nas = = [ we@Vp) av+ [ w(ape) avB2)

| (9w - (auvu ouva) - n 3wu_u
%) (euvw) av+ [ weopw) nas— [ w : ) av,

wheren denotes the unit normal vector pointing outwards fi@ In this weak form a solution to the
velocity fieldu € H'(Q)? was sought such that it is valid for at € H'(Q)3. Dirichlet or Neumann

boundary conditions fon could be enforced via the surface integrals.

B2 Basis functions

Instead of searching the whole (infinite) function spatg )3 for a solution, the space of test func-
tions and solutions were restricted to a finite-dimensisudispaced} () ¢ H'(Q)? such that the
test function and solution were represented by a linear auatibn of interpolating basis functions

{¢k}ff;-f°des (Elmanet al. 2005), whereNy nodes IS the number of velocity solution nodes. These
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basis functions can be continuous or discontinuous achessrhall subdomains of the mesh, called
elements, where two basis functions overlap. Furthermmasis functions have limited support be-
tween nodes, such thaj, has a value of unity only at node and a value of zero at all other nodes
(Elmanet al. 2005) in order to perform the interpolation. Hence, the tiatuis essentially formed by
piecing together the interpolating polynomials and thdfaents across each element in the domain.
This work used discontinuous piecewise linear basis fanstialso known as Rt basis func-

tions) for the velocity field such that solution nodes weresimred between elements; each element
was essentially an independent problem. Within an eleméhte test function and solution were

therefore given by

Nu_nodes,e

w= Y ¢w (83)

j=1

u = Z | qﬁkuk, (B'4)

whereNy nodes,e IS the number of velocity solution nodes in elemenandw; anduy, are the values
of the test function and solution at nogl@nd node: respectively. Note that in the summatighand

k are the local node index with respect to the elemenbt the global node index with respect to the
entire domair(?, because each element was considered individually whewg ascontinuous basis

functions.

When seeking the coefficients,, the pressure field also needed to be solved for. In this work
Np_nodes

p was represented by its own set of continuous piecewise gtiadrasis functiongv; },"; C

H'(Q) (also known as P2 basis functions) such that

Np_nodes

p= Z Vipi, (B.5)
I=1

wherep; are the values of the pressure field at nbdéote the summation over all nodes of the domain
due to the continuous nature of the basis functions. Thécpat choice of basis functions used for
the velocity and pressure fields formed théepc-P2 element pair, which was chosen because of its
desirable LBB stability property. Further details can berfd in the article by Cottest al. (2009).
Substituting (B.3), (B.4) and (B.5) into (B.2), and using fact that the vectors ; were arbitrary

(Zienkiewicz and Taylor 2000), yielded the discretisedsi@ar of the weak form:
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Nu. nodes,e Ny_ nodes e

> | esovonav Sk - / Vo, - apusy AV uy

u nodes,e Nu nodes,e

- X [ oV emadvut 3 / (65uap) - g, dS
k=1 e
Nu_nodes,e Nu nodes,e

+ > wj apV ¢y dV uy, — Z / pjaum, (Vu) g0, dYB.6)
k=1

u nodes,e p nodes

3 arapslu—u
n Z Cwmd\/uk Z /@awzdwﬁ/ ¢jopg AV

d
/ %3 afapf\u \uf av,

for all ¢; in each element. The integrals involving the velocity field were restrictedhe domain and

e

boundary of element, denoted?2, and 952, respectively, because of the discontinuities in the basis
functions used. However, in order for the surface integralbe well-defined, this work evaluated
u|sq, using upwinding (see the work by Wilson (2009) for more infation) and the derivative

(Vu) |aq, using the scheme of Bassi and Rebay (1997).

B3 System of linear equations

The discretised momentum equation (B.6) gaveMcdes X Nunodes System of linear equations

that could be assembled and solved for the vectors of unkroefiicientsu andp:

ou
M~ + Au+ Ku+ Fieru = Cp + b + frigie, (B.7)

where the matriceM, A, K andC are the mass, advection, stress and gradient matricectieshe
The matrixFi.; contains the left-hand side part of the drag term. The vedi@ndf,.,; represent

the buoyancy force and the right-hand side part of the dmag. t€Ehese terms are defined as

My = [ djapoav. (B.8)

—/ Vo, - apug, dV — / iV - (apu) ¢y, dV
Qe Qe

4 /8  (éyuap) neulon, dS (B.9)

K, = / Vo;-auVe, dV — /(9 pjopm, (Vu) |aq, dS, (B.10)
Qe Qe



36 C.T. Jacobst al.

3 arapsla —
Fleft,]k / (b] ! pf| |¢ dv7 (Bll)
Cjr = —/ pjaViy, dV, (B.12)
Q
b; :/ pjapg dV, (B.13)
Qe
3 araprlu —
fright.j = / 9j e f’ asapn=usl, gy, (B.14)
The solution to the discretised momentum equation alsoatktmsatisfy the discrete continuity
equation
Nphases
> (Cfui—1) =0, (B.15)

=1
which is the discretised version of the weak form of (1) afiemng integrated by parts. It can be
shown that the matriC™ acts as a divergence operator (Gresho and Sani 2000). Thaeesimtegral
resulting from the integration by parts formed the veettinrough which Dirichlet velocity boundary

conditions could be applied:

rj = —/ apju-ndS. (B.16)
o0

The volume fraction fieldsy, and o were discretised separately using a node-centred control
volume approach (Wilson 2009) and advected with the veldigtds (once known). The face values

of each control volume were limited using the Sweby flux lenitSweby 1984).

APPENDIX C: SOLUTION METHOD

The solution method began by considering the momentum iequisiat had been discretised in space

using the Galerkin finite element method, and in time usirgoickward Euler method:

n+1

At
FFiea(a) = Cia )+ bi(al ) + g (07w ) (C.0)

n

+ A a4+ K (o Thup

2

Ml(an-i—l) -

2

K3 (3

whereug”rl andp™*t! are to be found. The arguments of the matrices and vectonigti¢ the non-
linearity coming from the dependence on the volume fractéom also the velocity in the advection
and drag terms, at time + 1.

Each time-step (from time to n + 1) was broken down into a series of Picard iterations to deal

with the non-linearity in the system. This yielded a set otagive results fon? ™ andp”*!, denoted
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by ut*" andp*"*. Therefore, instead of seeking a solution to (C.1) for a whiohe-step, the method

sought a new tentative solution at each Picard iteration to

1 0 —u? 1 1 1
MZ(&?JF ) 7 A —|—A( n+ ﬁ:LJr ) tent —|—K( n+ )ugent
P (@2 L G = Gy () 4 by (a0 + g (@, L ), (C.2)

K3 K3

such that the discrete continuity equation

phases

Z CT n+1 tent ri(dlfb-l-l)) _ 07 (C3)
=1

was satisfied. At the beginning of an iteration, the latess{(lavailable) tentative solution was used to
compute the non-linear approximations to the phase voluawtién, velocity of phaséand velocity

of the fluid phasef, denoted by, @;*! and@} ! respectively, as follows:

a7t = g ulet 4 (1 — 6y)u?, (C.4)

()

@ = gl o+ (1 - fa)ul, (C.5)

At = gatet 4 (1 — 0,)al.

: : (C.6)
Initial values foruj*™, u’™ and oj** were set at the beginning of each time-stef™* = u,
uf" = u} andaj*" = of'. For all the simulations described in this artialg, = 0.5. Note also that
from this point on the arguments of the matrices and vectdrdedropped for clarity.

To find the new tentative solution, the method first made at‘gesss’ forp*®t, denotedp*,
either by solving a pressure Poisson equation or by usingitiet up-to-date pressure field available.

Equation (C.7) was then solved for each phase to obtain & sgeanediate velocities” .

* n

* u’ N » i} i}
Mi 1 7 t o4 IAzuZ + I<zuZ + Fleft,iui = Czp + bz + fright,i' (C7)

In general, the intermediate velocitiag do not satisfy the continuity equation (B.15)
(e > Nphases (Clu; —r;) # 0) because of the guess used for the pressure. However, ihe-vel
ties ute™ which, by definition, should satisfy"""*** (CTut*™ —r,) = 0 could be found from a
Helmholtz decomposition af; this split the vector up into a divergence-free and a awé-compo-

nent:

uf = ul 4+ v, (C.8)



38 C.T. Jacobst al.

whereV ); is an unknown vector. By choosing the foXm\; = %V (ptet — p*), (C.8) was rear-

ranged and discretised as follows:

utent —u*

N A (atent %
M, —————=Ci(p p). (C.9)

The next step of the projection method sought the pressureation termAp = (p*™ — p*).

Inverting M; in (C.9) and multiplying both sides by the divergence ma@ik gave

C} (ul*™ —u}) = AtCIM; 'C;Ap. (C.10)
Using the fact thad~, Nphases (Cluf™ —r;) = 0 (from the discrete continuity equation)p was

obtained by solving

phasex Nphases
Yo (mi—clu)=at| > cfMm;'c; | Ap. (C.11)
i=1 1=1
Hence,Ap was found by projecting the intermediate velocities ontivardence-free space.
The velocitiesu; could now be corrected (to obtairf**) by substituting in the recently found

pressure correction term into

i = uf + AtM; 'C;Ap. (C.12)
Once these new tentative resultstr;fr+1 andp™*! were found, the Picard iteration was complete. Any
tracer fields (including the phase volume fraction fieldsjamben advected using the new tentative
velocitiesu{®, thus providing the best available solutions for all fieldstie next iteration.
It is important to note that although the corrected velesitii*"* satisfied the continuity equation,

they only satisfied the following version of the momentumaapn:

lei_ul + Au) + Kiul + Fiegiu) = Cip'™ + by + fright.i- (C.13)
because the advection, stress and drag terms were not tetkeacicount in the correction from;
to u!®™*. This momentum equation is not quite the same as (C.2), whiathy Picard iterations are
required to converge to a set of velocities that satisfy §6t&) and (C.3).
Once a desired Picard iteration limit or convergence wasi‘mda,u?“ andp™*! took the values
of the final tentative solution and the time-step was deemeatptete. The above solution method was

then repeated until a desired time limit or steady state Wwasad.



