
A Graphical Tool for Event Refinement
Structures in Event-B

Dana Dghaym1, Matheus Garay Trindade2, Michael Butler1, and Asieh Salehi
Fathabadi1

1 University of Southampton, UK
{dd4g12, mjb, asf08r}@ecs.soton.ac.uk
2 Federal University of Santa Maria, Brazil

mtrindade@inf.ufsm.br

Abstract. The Event Refinement Structures (ERS) approach provides
a graphical extension of the Event-B formal method to represent event
decomposition and control-flow explicitly. In this paper we present an
improved version of the ERS plug-in, which provides a graphical en-
vironment for the ERS approach within the Event-B tool, Rodin. The
improved ERS plug-in is based on the available frameworks that are
developed to support Event-B with an EMF framework, language exten-
sions and generic diagram extensions.

1 Introduction

The ERS plug-in provides an automatic generation of part of the Event-B model
related to the ordering of events and their relationships at different refinement
levels. The ERS plug-in can generate additional variables, events, guards, actions
and invariants to an Event-B machine.

The ERS language is defined using the Eclipse Modelling Framework (EMF) [1]
meta-model, and then transformed into an Event-B EMF meta-model [2]. In
the earlier version of the tool [4], an ERS diagram was defined in an EMF tree
structure. The transformation from the ERS language to Event-B was performed
using the Epsilon Transformation Language (ETL) [3].

In the updated version of the ERS plug-in, we provide a graphical environ-
ment for ERS, and we apply a different approach to transform from the ERS
language to Event-B. The new approach followed is based on the generic Dia-
gram Extensions framework for Event-B [5]. The framework used, is built specif-
ically to support Event-B providing lots of helpful functionalities. In addition to
supporting model transformation to Event-B, the generic Diagram Extensions
framework provides graphical and validation support. Unlike, ETL which is a
generic model to model transformation language, and supporting a graphical
interface and validation requires other tools adding more learning efforts. More-
over, at the time we used ETL, we had technical problems related to debugging
and code auto-completion features, while the current approach simply uses Java.



2 Event Refinement Structures (ERS) Approach

The ERS approach provides a tree-like graphical representation of the events,
with an explicit representation of the events ordering and the refinement rela-
tionships. We illustrate the ERS approach using a small example of the order
workflow, Figure 1. The root of the tree, Order Workflow(o), represents the
name of the flow-diagram and the parameter “o” indicates multiple instances.
Multiple instances means different instances of a workflow may be executed in
an interleaved manner. If no parameter was provided, then the ERS diagram
will represent a single instance of the flow.

Fig. 1. Overall ERS Diagram of the Order Workflow

The leaves, Make Order, Receive Order etc., will be transformed into events
in the Event-B machine. The ordering of the leaf events is from left-to-right, so
Make Order can execute first, followed by Receive Order, etc. To describe the
control-flow of the events using Event-B, variables with the same name of the
leaf events are generated. We refer to these variables as control variables. The
type of the control variables is boolean in the case of single instance modelling,
and a set in the case of multiple instances modelling. These control variables
are used in the Event-B model to specify the control-flow of the events using
invariants and guards.

In ERS, the dashed lines indicate that the events are newly added events, and
they are not refining events. Therefore, the abstract level of Event-B, first row,
can only have dashed lines. ERS also allows the addition of different combinators
between events, represented within an oval shape. In Figure 1, we used two
different combinators, the and-combinator and the xor-combinator. The xor-
combinator indicates the exclusive choice between events, in this case either
Accept Order or Reject Order, but not both, can execute before enabling the
event Close Order.

In the first refinement, second row, Accept Order is the only refined event.
The solid line means a direct refinement of an event, indicated using the key-
word “refines” in Event-B. ERS requires that an event can be only refined by one



event, this is referred to as “single solid line rule”. The only case in ERS, where
an event can be refined by more than one event, is by introducing refinement
using the xor-combinator, which only allows the execution of one event with-
out requiring mutually exclusive guards. The event Accept Order is decomposed
into the sequence of events Accept Order followed by the interleaved execution
of the events Order Payment and Ship Order, as a result of applying the and-
combinator. Similarly at the second level of refinement, Order Payment is de-
composed into the sequence of events Send Invoice followed by Receive Payment,
where Receive Payment is the directly refining event and Send Invoice is a newly
added event.

In Figure 2, we present part of the ERS meta-model, showing the and-
combinator. The meta-model describes the different classes of an ERS diagram,
such as the FlowDiagram, Leaf, Child. Each class can have its own attributes,
for example a Child has the boolean attribute ref to determine whether it is
refining or not, this is reflected by the solid and dashed lines in the diagram.

Relationships and associations between classes can be represented by the
links between them. A link with solid diamond at the end represents a con-
tainment association between the two classes, for example a FlowDiagram can
contain one or more Children as indicated by the upper and lower bounds of
the association (1..*), and it can refer to a Child using the refine relation. A
link with a triangular end represents a specialisation relation, for example a Leaf
and a Constructor are special types of Child and they inherit all its properties.

Fig. 2. Part of the ERS Meta-Model

3 The ERS Plug-in

Using the ERS plug-in, we first need an Event-B machine, then we can add
an ERS flow-diagram to the machine. We can start from an empty machine,



but we need to define the “sees” relationship to a context, if parameters are
needed. Figure 3 presents an image of the tool interface for the abstract level of
the ERS diagram in Figure 1. Overview and Parameters, panels on the left, are
properties of the ERS flow-diagram that can be updated by the user. The palette
on the right shows the different combinators available for an ERS diagram such
as the xor, while the leaf, e.g. Make Order(o), will be translated to an event in
Event-B. Figure 4 shows part of the generated Event-B from the ERS diagram

Fig. 3. The ERS Diagram of the Order Workflow at the Abstract Level

of Figure 3. In the ERS plug-in we also support some validation of the diagram,
such as the single solid line rule mentioned above. We only show the invariants
and some of the events generated, but the complete generated Event-B also
includes control variables to support the control-flow of events, initialisations of
the control variables and events for every single leaf. In ERS if the leaf does not
already exist in the machine, a new event will be generated with the same name
of the leaf. Otherwise, we add the generated guards and actions to the existing
events.

When refining a machine, the ERS diagram at the previous level will be
copied to the refined machine. Then the user can right click and refine the re-
quired leaves. After refining an ERS diagram, all the old generated parts of the
Event-B will be deleted and updated according to the new refinement. For exam-
ple after the first refinement, the sequencing guard of the Close Order event will
be updated to ((o ∈ Order Payement ∧ o ∈ Ship Order) ∨ o ∈ Reject Order)
as a result of applying and-refinement to the preceding event.

Generating the Event-B elements from the ERS diagram is based on the gen-
erator framework which is part of the generic Diagram Extension framework [5,
6]. Each rule transforming an ERS element to an Event-B element implements
the Irule and defines the methods enabled, dependenciesOK, and fire. The en-
abled method checks when the translation rule should be applied, e.g. the rule
transforming a leaf to a variable is enabled if the ERS source element is a leaf



Fig. 4. Part of the Generated Event-B at the Abstract Level of the Order Workflow

that is not a child of a loop. The dependenciesOK method checks if there are
any dependencies required like other elements that need to be generated first,
e.g. generating a sequencing guard to an event requires the event to be generated
first or already existing in the machine, so if dependencies are not satisfied firing
the rule will be postponed until all dependencies are satisfied. The fire method
is the main method where the mapping of ERS elements to Event-B elements
takes place. The fire method returns a list of GenerationDescriptors describing
what should be generated, e.g. an ERS leaf is mapped to an event in Event-B.

Every element generated from the ERS diagram is read-only except for the
generated events. They are editable so that users can add application-specific
guards and actions using an Event-B editor. The GenerationDescriptor has the
option whether to mark a generated element as editable or not. In ERS, when
refining a leaf, all the elements that are not generated, e.g. the manually added
guards and actions, will be passed over to the solid leaf.

4 Conclusions

ERS is a graphical approach that explicitly describe the control-flow of the
Event-B events and helps to structure refinement. UML-B [7] is one of the im-
portant approaches that provides Event-B with a graphical front-end. UML-B
supports class and state-machine diagrams. Similar to ERS, the UML-B state-
machine can explicitly describe control-flow in Event-B and supports hierarchical
decomposition. The main difference between the two approaches is that UML-B
state-machines focus on the state transitions, whereas ERS diagrams focus on
the events. depending on the problem one can decide which approach is more ap-
propriate. In many cases both approaches can complement each other, especially
after the introduction of the new integrated form of UML-B, iUML-B [8].



The new ERS plug-in provides a graphical environment for the ERS ap-
proach, and also supports the validation of the ERS diagrams. Applying the
tool in modelling a complex case study resulted in having more consistent and
systemic models, faster modelling and the graphical front-end made understand-
ing and validating the model easier.

Using frameworks that directly support Event-B made the development of
the plug-in easier and more systematic, by providing different functionalities
for defining transformation rules, Event-B generators and graphical editors. In
addition to providing various convenience classes and methods for Event-B, like
making and finding Event-B elements. In the future, we would like to add more
validations to the diagrams, enhance some of the translation rules and allow the
users to add application-specific guards, actions and invariants from within the
ERS graphical environment without the need to switch to the Event-B editor.

References

1. Steinberg D., Budinsky F., Paternostro M. and Merks E.: EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley Professional, (2008)

2. Snook C., Fritz F. and Illisaov A.: An EMF Framework for Event-B. In: Workshop
on Tool Building in Formal Methods, ABZ Conference, Orford, (2010)

3. Kolovos D., Rose, L., Garcia-Dominguez A. and Paige R.: The epsilon Book.
Eclipse.org, (2014). http://www.eclipse.org/epsilon/doc/book/

4. Salehi Fathabadi A., Butler M. and Rezazadeh A.: Language and Tool Support for
Event Refinement Structures in Event-B. Formal Aspects of Computing, (2015)

5. Savicks V. and Snook C.: A Framework for Diagrammatic Modelling Extensions in
Rodin. In: Rodin Workshop, Fontainbleau, (2012)

6. Wiki.event-b.org: Generic Event-B EMF extensions - Event-B. http://wiki.event-
b.org/index.php/Generic Event-B EMF extensions, (2016)

7. Snook C. and Butler M.: UML-B and Event-B: an integration of languages and
tools. In: The IASTED International Conference on Software Engineering - SE2008,
(2008)

8. Snook C.: iUML-B Statemachines: New Features and Usage Examples. In: Pro-
ceedings of the 5th Rodin User and Developer Workshop,(2014)


