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Abstract 

The paper examines the potential of waste stabilisation ponds to provide water for reuse in extreme continental 

climates such as those of central Asia, where precipitation is low and summer evaporation rates are high. A simple 

model is used to predict water availability, BOD and faecal coliform removal for different configurations and 

operating regimes. The results show a significant proportion of flows could be saved for irrigation or aquifer and 

river replenishment; if standard designs can be modified to suit these climates, the system is likely to be both more 

robust and more flexible in terms of types of reuse. The paper concludes with 3 case studies of evaporation pond 

systems in Kazakhstan, assessing their potential for conversion to full biological treatment systems for water 

conservation and reuse.  
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INTRODUCTION 

The Central Asian region has a sharply continental climate characterised by cold winters, hot 

summers and very low precipitation, making water a precious resource. Despite this, evaporation 

ponds are widely used as a means of wastewater disposal, for both industrial and domestic 

effluents. In Kazakhstan alone more than 500 such pond systems are believed to be in operation. 

In comparison with evaporation ponds, waste stabilisation pond (WSP) systems offer major 

advantages: they can provide treated water for a variety of uses, including irrigation through 

summer and high-quality water for top-up of rivers or aquifers in autumn. Under certain 

conditions they may also retain water within a catchment, which would otherwise be lost during 

the winter period. Design guidelines for continental WSPs are less developed than for tropical or 

temperate areas, however, and in most cases appear to be based on cold climate systems, without 

taking into account the greater importance of reuse and the significance of high evaporation 

losses. This paper looks at some aspects of the design and operation of pond systems in 

Kazakhstan and Central Asia, and considers their implications for water conservation and reuse. 

 

For ponds subject to seasonal ice cover, a widely-adopted design and operating regime is that of 

intermittent discharge, consisting of treatment plus storage for 6-12 months (US EPA, 1983; 



Prince et al., 1995). Pond working depths are specified, and the surface loading rate on the first 

pond is limited. In cold regions this produces a high-quality effluent that can be discharged in a 

short period, usually in autumn. This approach is robust but may be conservative in warmer 

continental climates, where the spring warm-up is rapid and treatment capacity in summer 

months is greater. To determine the impact of some potential design and operational changes on 

water availability, a simple model was constructed and operated under different scenarios.  

 

 

MATERIALS AND METHODS 

The model simulates a WSP system in central Kazakhstan, consisting of a facultative pond (FP) 

and one or more storage/maturation ponds (SMP). The wastewater flow rate was taken as 1000 

m
3
 day

-1
, with a biochemical oxygen demand (BOD) of 200 mg l

-1
 and a faecal coliform (FC) 

concentration of 4 x 10
8
 l

-1
. 

 

Model construction. The model calculates mass balances for wastewater volumes, BOD and FC 

using a one-day time-step. Wastewater volumes are calculated taking into account inflow, 

outflow, evaporation and precipitation and assuming a lined system with no infiltration. The 

ponds are assumed to be simple rectangles in plan, with no allowance made for the variation of 

area with depth and side slope. BOD and FC concentrations are calculated assuming first-order 

decay kinetics. The decay constant k is assumed to follow an Arrhenius equation of the form kT = 

k20θ
(T-20)

, where kT and k20 are values of k at temperatures of T 
o
C and 20 

o
C respectively. 

Parameter values used were θBOD = 1.08 and k20 BOD = 0.25 (Mara, 1976); and θFC = 1.19 and k20 

FC = 2.6 (Marais, 1974).  

 

The FP is modelled by specifying a BOD surface loading rate and a working depth, thus fixing 

the surface area, volume and mean hydraulic retention time for a given inflow and influent BOD 

concentration. Once the surface area is known, daily and total outflows are calculated based on 

inflow minus evaporation and precipitation. The mass of BOD or FC in the pond is calculated 

based on the initial value, inputs, decay and discharge, and the daily effluent concentrations are 

obtained by dividing the total mass of BOD or FC by the pond volume. 

 

The design of the SMP is determined by choosing a maximum working depth and a discharge 

period. The SMP is assumed to be empty at the end of the discharge period. The procedure is to 

guess an appropriate surface area for the SMP, from which total and daily values of evaporation 

and precipitation are calculated. The outflow from the SMP is equal to inflow (corresponding to 

outflow from the FP minus any direct discharges), minus evaporation and plus precipitation; 

daily outflows are obtained from the total outflow divided by the discharge period. The 

maximum volume stored in the SMP is equal to the total outflow, plus evaporation during the 

discharge period, and minus precipitation in the same period. From the maximum volume and 

chosen area a depth is calculated. If this depth is greater than the preferred maximum working 

depth for the SMP, the area must be increased and the calculation repeated. Once a satisfactory 

result is obtained, daily values are used to calculate pond depth and effluent BOD and FC 

concentrations. Under some operating regimes a SMP may stand empty for some time, for 

example if inflow is diverted elsewhere and evaporation exceeds precipitation. In this case total 

outflow is adjusted by the theoretical contribution from evaporation and precipitation during the 

period while the pond is empty.  



 

Climate data. Mean monthly climate data were taken for Astana weather station located at 51.2
o
 

N, 71.4
o
 E (Hong Kong Observatory, 2005) and are summarised in Table 1. Evaporation was 

calculated for a reference surface using CROPWAT software (Clarke et al., 1998), and increased 

by 10% to give values for an open water surface. Daily evaporation and air temperatures were 

obtained from mean monthly values by polynomial interpolation. Water temperature was 

assumed to equal air temperature down to 0 
o
C, and to remain at zero for lower air temperatures. 

Daily precipitation values were obtained by dividing the mean monthly value by the number of 

days in the month.  

 

Table 1 Climate data used in standard model (based on Astana weather station) 

Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

Mean temperature 
o
C -15.8 -15.9 -8.1 4.9 13.1 19.0 21.3 17.7 12.0 2.8 -5.9 -12.6 2.7 (mean)

Precipitation mm 17.4 13.7 14.3 22.0 33.4 34.8 49.5 39.7 24.0 29.6 21.7 17.3 317.4 (sum)

Evaporation* mm 4.4 7.1 18.8 80.2 156.9 196.0 193.0 150.4 101.3 41.3 10.2 3.8 963.3 (sum)

Mean daily sunshine hours 3.3 5.2 6.2 7.9 9.7 11.2 10.8 9.5 7.7 4.4 3.3 3.0 6.9 (mean)

*Based on calculated ETO for grass surface  
 

Model validation. BOD concentrations predicted by the model were tested using BOD and 

chemical oxygen demand data from experimental ponds in Almaty, Kazakhstan (Heaven et al., 

in review;). The model was run with both mean daily air temperatures obtained from monthly 

values as above, and with actual mean air temperatures.  

 

Modelling scenarios. Options considered are summarised in Table 2 and included: 

- A conventional design based on a 2-stage system of a 1 m deep FP and a 2 m deep SMP. The 

loading rate on the FP is limited to 40 kg BOD ha
-1

 day
-1

 due to seasonal ice cover and the 

system operates with a single autumn discharge (1-30 September). 

- Increasing the loading rate on the FP pond to 100 kg BOD ha
-1 

day
-1

, thus reducing the surface 

area and hydraulic retention time 

- Increasing the depth of the SMP from 2 to 4 m, to reduce surface area.  

- Increasing both FP loading rate and SMP depths. 

- As above but replacing a single SMP with two ponds in parallel that store and discharge water 

in alternate years. Effluent treated to a high standard by the end of the summer is stored over 

winter without any further addition of incoming wastewater, and is available for irrigation from 

early spring, thus maximising its economic usefulness.  

 

Table 2 Options considered 

Case Facultative Storage/maturation Total

BOD load Depth Area Depth Area Area

Single storage/maturation pond kg ha
-1

 day
-1

m ha m ha ha

1a Standard design 40 1.0 5.00 2.0 11.80 16.80

1b Standard with discharge July-August 40 1.0 5.00 2.0 11.80 16.80

1c Increased loading rate FP 100 1.0 2.00 2.0 12.30 14.30

1d Increased depth SMP 40 1.0 5.00 4.0 6.44 11.44

1e Increased loading rate FP and depth SMP 100 1.0 2.00 4.0 6.71 8.71

Parallel storage/maturation ponds

2a Parallel SMPs 40 1.0 5.00 2.0 12.60 30.20

2b Increased loading rate FP 100 1.0 2.00 2.0 13.35 28.70

2c Increased depth SMPs 40 1.0 5.00 4.0 7.17 19.34

2d Increased loading rate FP and depth SMPs 100 1.0 2.00 4.0 7.59 17.18  
 

 



RESULTS AND DISCUSSION 

 

Water quantity  

Table 3 shows the amount of water potentially available for reuse, based on the results of 

modelling. The greatest gain comes simply from replacing evaporation ponds with WSPs: in 

comparison with a theoretical 100% loss, the standard design with a single autumn discharge 

(1a) allows use of 70% of the original inflow. Experience in Canada and the northern USA 

shows effluent quality in this period can be extremely high (Prince et al., 1995), making it 

potentially suitable for aquifer or river replenishment. The water is of greater economic value if 

it is available in the growing season, which in central Asia can run from April-October 

depending on crop, latitude and altitude: a more usual period is May-August, but pre-irrigation of 

the soil in April or May is also common to make up the previous year's moisture deficit. If the 

water is of a suitable quality for reuse between July-August, it is available for at least the later 

part of the irrigation period (1b). 

  

Table 3 Water available for reuse under different scenarios 

Case Net loss as % of original inflow Water available for re-use

FP SMP Total % of inflow  Main discharge Possible uses

1a Standard design 9% 21% 30% 70% September River/aquifer replenishment

1b standard but disch July-Aug 9% 21% 30% 70% July-August Late irrigation, river/aquifer

1c Increased loading rate FP 4% 22% 26% 74% July-August Late irrigation, river/aquifer

1d Increased depth SMP 9% 12% 21% 79% July-August Late irrigation, river/aquifer

1e Increased loading FP and depth SMP 4% 12% 16% 84% July-August Late irrigation, river/aquifer

2a Parallel SMPs 9% 52% 61% 39% April-August All

2b Increased loading rate FP 4% 49% 53% 47% April-August All

2c Increased depth SMPs 9% 34% 43% 57% April-August All

2d Increased loading FP and depth SMPs 4% 30% 33% 67% April-August All  
 

The volume of water available can be increased by increasing the loading rate on the FP (1c): 

experimental work on pilot-scale ponds in Kazakhstan suggests this is possible without adversely 

affecting performance (Heaven et al., in review). A more significant impact is produced by 

increasing the depth of the SMP. This may be justifiable as its primary function is storage, and 

light penetration is less important than in a FP, although playing a role in disinfection. An 

increase in depth implies higher construction costs, although in practice SMPs are sometimes 

located in natural depressions. If both of these design modifications can be adopted (1e), the 

amount of available water rises to 84%. In the standard design with two SMPs, availability falls 

to 39%; but this covers the whole growing season, and all types of reuse. Economic assessment 

is needed to determine whether the higher capital costs for construction of two ponds are 

outweighed by the value of the water. If it is possible both to increase the depth of the SMPs and 

to load the FP more heavily (2b-d), the available volume rises to as much as 67%. The scale of 

the potential savings for reuse indicates the need for larger studies to confirm whether these or 

other modifications live up to their promise in practice.  

 

Water quality 

BOD. The model fitted the Almaty data moderately well: at high loadings in particular, effluent 

BOD fell too rapidly in early spring; while summer BOD values tended to be overestimated in 

FPs and underestimated in SMPs. These discrepancies may be explained by a wide range of 

factors not included in the model: e.g. effects of nutrient release from pond sediments, existence 

of a lag phase before the spring algal bloom, higher water temperatures in late summer, and 

changes in pond population characteristics during the year. More complex models exist, but 

problems often arise in obtaining parameter values, especially for lower temperature ranges. 
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Better fitting can be achieved by choosing different parameter values for each dataset and 

season, but this is to overstretch both the model and the available data. While the output is thus 

indicative rather than exact, the model was considered adequate for its purpose. Figure 1 shows 

some results from the Almaty ponds. The data also revealed significant year-to-year variability, 

which may be directly due to temperature variations in a given year (e.g. an early spring or hard 

winter), or to more complex ecosystem interactions.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Real and modelled Almaty pond results for a) mean and actual temperature at 250 mg l
-

1
 influent BOD and b) mean temperature at 160, 320, 640 mg l

-1 
influent COD 

 

All the single SMP options modelled (1a-e) achieved low BODs (<5 mg l
-1

) from July onwards. 

While actual values should be viewed with caution, this matches the observation by Prince et al. 

(1995) that loading rate has little effect on final effluent quality in intermittent discharge ponds. 

The main gains in water availability would result from increasing SMP depths and FP loading 

rates: the model indicates this may be possible, but again there is insufficient real data for design 

guidelines. The cases with two SMPs (2a-d) all had very low BODs throughout the 'rest' period, 

making water available for all reuse options. Actual results from SMPs may be higher and more 

variable, but the two-pond system is clearly robust, and may have additional benefits in 

balancing out the nutrient load from sediments. Figures 2 and 3 present key parameters for cases 

1a and 2a, clearly showing the extended period of low BOD in case 2a. 

 

  

 

 

 

 

 

 

 

 

 

Figure 2 BOD and depth for Case 1a   Figure 3 BOD and depth for Case 2a 

 

FC. For reuse in irrigation, microbiological quality parameters are critical. WHO guidelines 

suggest values of 10
3 

FC per 100 ml for unrestricted irrigation and 10
5
 FC per 100 ml for 

restricted irrigation (WHO, in review). Modelling of FC gave results similar in form to those for 



BOD, but with more rapid winter die-off in the SMP. Reductions in the FP were typically of one 

order. The single SMP pond achieved levels below 10
5
 FC per 100 ml from end April to end 

August (end September for 1a); and below 10
4
 from mid May to mid August for lower FP 

loadings (1a, 1b and 1d), and early June to late July at higher loadings (1c and 1e). In systems 

with two SMPs (2a-d), FC concentrations were below 10
3
 per 100 ml from November and 

negligible from May onwards in the 'rest' year. 

 

Results for FC should be viewed with even more caution than those for BOD. Unfortunately no 

local data were available for model testing, as the Almaty pilot ponds were fed with a synthetic 

wastewater. Values of kFC and θFC were taken from Marais (1974), and are said to be valid from 

2-21 
o
C; but they assume aerobic conditions with complete mixing, and were derived from ponds 

with a 12-day retention period. There is evidence from both laboratory studies and field 

sampling, however, of extended survival of pathogen indicator organisms in storage ponds at low 

temperatures (Environment Canada, 1985; Torrella et al., 2003). Once again, more studies are 

needed to provide an adequate basis for design. Marais (1974) noted that single large ponds for 

winter storage are a practical solution in cold climates due to the limited pathogen reduction; 

while above 21 
o
C there is an apparent reduction in kFC, leading to lower die-off rates. In 

continental climate areas, which can move relatively rapidly from one temperature range to the 

other, special guidelines may be needed to ensure both safe and efficient reuse.  

 

 

CASE STUDIES 

Case study 1. The industrial site in this study is located in north-east Kazakhstan, where mean 

monthly temperatures range from -13 
o
C in January to +23 

o
C in July, with an annual mean of 5 

o
C. Annual precipitation is 302 mm and evaporation 957 mm. Domestic-type wastewater flows 

of 55 m
3
 day

-1
 are generated by the site's administrative block. The wastewater receives primary 

sedimentation and biological treatment in a package plant, followed by rapid sand filtration and 

final discharge into a storage/ evaporation pond with a capacity of 20000 m
3
. In the Soviet period 

it was planned to use the treated wastewater for irrigation, but no infrastructure was set up; the 

land nearby is not very suitable for agriculture and it is now unlikely this will happen. Due to 

problems with equipment and operator training the package plant does not work well. 

Performance is assessed on the quality of the discharge into the storage/evaporation pond, which 

fails to meet a number of the parameters set by the local Environmental Protection Department 

(EPD). The site operators are coming under pressure to replace the treatment plant, and to line 

the pond to prevent seepage and potential groundwater contamination. The capacity of the 

present pond taking into account precipitation, evaporation and infiltration is about 5 years; 

without infiltration this would be reduced to 18 months. The influent wastewater BOD is 

extremely low at 60 mg l
-1

, however, and one alternative would be to modify the pond into a full 

biological treatment system. If loading on the first FP is limited to 40 kg BOD ha
-1

 day
-1

, an area 

of 825 m
2
 is required. The existing pond is 2 m deep, giving an HRT of 30 days; if desired this 

could be reduced to 1 m, as heavy earth-moving equipment and spoil materials are available on 

site. Using the model and climate details above, a SMP with once-per-year discharge would 

require an area of approximately 6600 m
2
. An FP and SMP could be constructed by subdividing 

the existing pond: in practice it would be preferable to add more FPs. A small river runs through 

the site, with high seasonal variations in its flow. The treated water could potentially be 

discharged to the river in late summer and autumn, when effluent quality is expected to be high, 



to support increased biodiversity and provide some aquifer recharge. 

 

Case study 2. The study considers a similar plant in central Kazakhstan, where mean monthly 

temperatures range from -9 
o
C in January to +28 

o
C in July. The region is arid, with average 

annual precipitation less than 150 mm and evaporation around 1000 mm. The potable water 

supply comes from boreholes located several kilometres from the plant. Wastewater flows 

generated by on-site accommodation and offices for about 1000 staff are officially reported as 

245,000 m
3
 year

-1
, but flow measurement suggests a real value of around 45,000 m

3
 year

-1
. 

Wastewater is discharged into unlined holding ponds each 40 m x 60 m and 1.5 m deep: when 

one pond becomes full another is excavated. The company wishes to upgrade its wastewater 

management to provide an effective treatment system. Treated wastewater could be used to grow 

vegetables for on-site consumption, as the site is remote and deliveries are logistically complex. 

Microbiological quality is therefore critical, and it would be relatively simple to modify the 

existing layout to a series of ponds with retention times of approximately 30 days. The effect of 

seasonal variations in HRT due to evaporation is insignificant compared with variations in kFC. 

The system could generate sufficient water to irrigate approx 2 ha under local conditions. 

Construction costs for a lined pond system are comparable with those for a package plant, while 

operation and maintenance should be simpler.  

 

Case study 3. This study concerns a large process plant in western Kazakhstan, where the climate 

is modified by the nearby Caspian Sea, and temperatures are above 10 
o
C for 170-180 days per 

year. Workers living on the site produce domestic wastewater flows of 1200 m
3
 day

-1
, which are 

discharged without pre-treatment to a system of evaporation ponds. The system consists of two 

components: a single pond of 25 ha and 1 m depth, which began operation in 1985; and a 5 ha 

pond divided into four sections of 1.5 m depth, completed in 1999. Water depths in summer are 

typically no more than a few tens of centimetres. The local EPD regards the ponds as a means of 

disposal rather than a treatment system: stringent discharge standards are imposed and, since 

there is no outlet, these are assessed against samples taken from the inlet to the pond system. As 

a result, a number of parameters routinely exceed permitted concentrations. The system could be 

redesigned as above, to produce a flow of treated wastewater for on-site irrigation in the summer 

months; the creation of a defined discharge point might also allow re-negotiation of the discharge 

consent on a more rational basis. At present water for domestic use is piped 600 km from the 

Volga river, treated to potable standard and stored: some is used for site irrigation, and reuse 

would therefore represent a significant saving. In view of the high cost of water, however, and 

the existence of other year-round uses for it on the site, in this case it may be more effective to 

provide a conventional mechanical-biological treatment plant. In addition the plant produces 500 

m
3 

day
-1

 of heavily contaminated water, which is piped to separate treatment plant; and 1700 m
3 

day
-1

 of process water and storm drainage, sent to evaporation ponds. The evaporation ponds are 

undersized and cause periodic flooding: these too could be re-designed, but present a more 

difficult case for reuse because of potential chemical contamination. 

 

 

CONCLUSIONS 

Simply replacing evaporation ponds with intermittent discharge WSP systems may make a large 

proportion (70% or more) of wastewater flows potentially available for reuse. Standard designs 

and operating regimes for these systems are known to work well in cold climates, although the 



range of reuse applications may be limited by discharge timing. The guidelines may however be 

conservative for continental climates, where high levels of performance in the warm period may 

make it possible to reduce surface areas, leading to lower evaporation losses. Results from a 

simple model give at least qualitative support to these ideas. More complex models exist, but 

their use is limited by a lack of parameter and coefficient values for lower temperature ranges, 

and of fundamental understanding of the processes occurring in ponds subject to strong seasonal 

variation. Currently available information is not reliable enough as a basis for design, but 

strongly suggests that there may be advantages in developing design and operating protocols 

specifically for continental climate systems. Year-to-year variability in continental climates may 

mean that robust systems are needed, such as alternating storage ponds; in this case minimising 

surface area is vital to reduce losses and maximise the availability of water for reuse. Case 

studies support the idea that such changes could make an impact in practice. 
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