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In this paperwe report the results of investigationsinto the efficient parametrization of
blunt leading edge bkapes for hypersonic aircraft geometries. e investigations mostly
revolve around waverider geometries generated withnverse design techniques, such dke
osculating conesvaverider forebody design method. e shapes presentetiowever,can be
utilized to introduce bluntnessto any wedgelike geometry with sharp leading edges.
Initially, we presentdetailed descriptions ofthree different variations of the rational Bézier
curve basedparameterization that was developed and the variety of shapes that can be
obtained is demonstrated Afterwards their performance is evaluated utilizing 2D CFD
analysis In our simulations, the rational Bézier curve leadng edgesoutperform circular
ones when it comes to minimizindoth drag and peak heating ratesor peak temperatures
Additionally, with higher order rational Bézier leading edge shapes higher levels of
geometric continuity can be achieved at the interface between the blunt part and the original
wedgelike geometry, resulting in asmoother transition. Preliminary results indicate that
this can potentially affect the receptivity and hencetransition mechanisms.Finally, the 2D
geometry formulations are extendedo full 3D waverider forebody geometries.

Nomenclature

Ca = drag coeficient R = circular leading edge radius
CFD = Computational Fluid Dynamics RBLE = rational Bézier leading edge
d = local blunt section thickness t = parametriccurve parameter [0,1]
k = thermal conductivity Uint = freestream velocity

Mint = freestream Mach number var; = design variable

n = Bézier curve order Wi = rational Bézier weight

P = parametric curve control point

Pin = freestream pressure € = wall emissivity

P'w = wall pressure fluctuation amplitude A = local sweep angle

P'int = freestream pressure fluctuation amplitude pint = freestream dynamic viscosity
o} = wall heat flux p = local radius of curvature

qw = heat flux fluctuation amplitdie Pint = freestream density

I. Introduction

AVERIDERS are a class of aircraft geometries that keélke shockwave generated by the oncoming
hypersonic flow attached to their leading edge. The result of this is superior lift values when compared to
conventional designs, rendering waveriders one of the most promising configurations for hypersonithitigght.
are a number of inverse design methods to generate waverider geqnfietniesery simple ones to much more
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sophisticated and flexible origls that have the advantage of being computationally cheap while based on inviscid
flowfields. These methods lever areonly able toprovide abaseline shapthat needs to be further adaptt
refined in order to obtain more realistic aircraft geometreklitionally, a distinctive characteristic of hypersonic
aircraft designs is the level of integration betwélge airframe and propulsion systemeaking optimization studies
more complex and emphasizing the need for effibjgrarameterizegeometry models.

One of the first issues thaeedto be addressed when departing from the simplicity of inviscid desighat of
the aerodynamic heating effects thalong with manufacturability constrainisrecludethe use of sharp leading
edges at hypersonic speedsvo early examples of nepallistic high-speedvehicle geometries that needed blunt
leading edges arhe space shuttle and thel% research plan&Vaverider shapefiowever rely on the sharpness
of their leading edge in ordew keep the shock attached toaihd for this reasothe performace of such aircraft is
more sensitive and is expected to ddgraith the use of finite radius leading eddéss, therefore of great interest
to investigate methods to optimally introduce bluntness ttetiding edge of such vehicles.

Over the yearsa number of approaches to introducing bluntness to leadiggseaf slender bodies have been
proposed.Most common arecircular leading edge shapésat have been widely usednd studieddue to their
simplicity. There are however benefits in looking into msophisticategdhapes than a constant radius of curvature
for the leading edge bluntness, and a number of studies have looked into different geometry parameterizations for
this purpose. Powdaw shapes have been considered in a numbstudies that explored potenti@flvantages of
having more controbver the shape of the blunted FartMore recently, parametric curves able to achieve a wide
variety of shapes have also been considered with promising fésults

The aim of tlis work is to deviseefficiently parametézed geometries fonypersonic aircraft components
Ref. 9 we briefly presentedmarametric geometry modfdr introducing blintness to the leading edgewaverider
forebodies It is a geometric formulatiomble toachieve a wide variety of shapesthwdesirable characteristics
while keeping the number @ssociatedlesign variables lowHere we will havea more detailed look into Hose
rational Bézier curve basdeading edg€¢RBLE) shapesstarting from their purely geometaiccharacteristics and
how to efficiently control them, to evaluating their a¢ihermal performance characteristi¢éis will be backedip
with CFD analysesof the geometrieswhere their performance @lso compared to the more commoincular
leading edge We will also present some preliminary results on receptivity and turbulent transition mechanism
investigations conducted to examine the effect of the increased geometric continuity of the proposed geometries.
Finally, we show a method tmtegrate thes2D shapesnto 3D waveriderforebodygeometries.

Il. Leading Edge Geometry Parameterization

Sharp leading edgeof waverider forebodies cagenerally be describeas wedgédike geometries orthe
vehicl e’ s S8uclosedion prefites allofon & parametric curve asmple as a quadratiBézier curve to
be used to generatecarvedblunt leading edgahapeafter truncating the original geometrysing a quadratic
Bézier curve however fixes the shape of the leadinggl rendering it noparametric.The twoend points would
be placed at the edge of the truncated, parthe original geometrand the intermediate one is restricted in order to
satisfy first order continuity at the interfaces of the curve and the ariggometryTwo flexible alternatives to this
app oach can be either using higher order curves’, with
or by using rational Bézier curves whose shape can be further adjusted with weights. The latter of the two
approaches has been followed in thizrk and this is what we discuss next.

A. Quadratic rational Bézier leading edge.

A guadratic RBLE is the simplest one that can be used. As seen in Figuredigiiha wedgeike geometry is
truncated and replaced with a quadratic rational Bézier cihee. p a r a me tend pointPuandvB} areson
the interface with theriginal truncated geometryvhile the middle control pointP,) is essentiallyfixed to satisfy
continuty conditions at the interfacesince the curve is tangent ts tontrolpolygonat its end pointsvVarying the
weightw; of the middle point then controls the shap#ile the weights of the end pointgs; and w, are fixed at a
value of 1.

Rational Bézier curves are described by:
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Figure 1. Rational quadratic Bézier curve applied to a2D wedgelike sharp leading edge with different
weightswa.

The geometries that are expected to be of most interestaanedaerahermal characteristics thatitperform the
circular arc leading edges are those that have a larger radius of curvature at the stagnation point and tighter ones
closer to the edges, d1d better distributes the heat load across the bluntedAragxample of such a shapetle
bluntestof the family shown irFigure 1 with av; value of around 0.1.

These shapesan becontrolled with two parameterd)d truncation length (or the thickss at the interface) and
the weight of the middle pointiwThe first @n bea design variabl@self since it directly contis the scale of the
blunted regionHowever, \arying the weight directlyproduces what could be called a Horear variation okhapes
for the range of values of wThis is best illustrated in Figure 2, where theight is directly linked to thelesign
variablethat is ranging from 0 to i the firstcase,andequal tothe square of the design varidblealuein the
second caselhe second methodffers a more intuitive variatiorof shapes across the design variable ranggh
slightly increased resolution &iw valueswheregeometries with better aetbermal characteristics are expected

Movement of the tip for evgr

/ 0.1 incremenof van \
varn =1 & var = 0.1 var = 1

0 Ui 0 Ui

Figure 2. Leading edge shape range for wdirectly linked a design variable (left) and linked to the square
of a design variable (right) ranging from Q1 to 1.0 with equal spacing.

B. Cubic rational Bézier leading edge.

With the quadraticRBLE shapesa variety of whaintuitively seems like manindul shapes can be obtained.
There couldhowever be bemwfits in having more control ovethe shape of the blunted geometry by using
parameterizations that provide more flexibili simple amnl elegant way to accomplish thigthout adding too
much complexiy with movable control points, is by duplicating the intermediate point. This way the ordex of th
curve increases by one and ti® intermediate control points are on topeath otherThey are still fixed to satisfy
continuity conditions but there are now tweights that can be controlleihe parameterization can be seen in
Figure 3.
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Figure 3. Cubic rational Bézier curve leading edge.

Once again, for more intuitive control, we implement a-lio@ar mapping between the weights and the design
variables. Te square of thdirst varable definegshew e i g mdars value and the second dseised to balance
them.
0 OWi p LI
0 VO p LI
with the variable range® O™ mfp ,0 O  php .
The mean value of the two weights is therefore equal to the square of the first design variable and mostly has
control over how far thé&tip’ will extend The second design variable balances the two weights without essentially
moving the tip of the geometry in the direction of the fldwt shifts the balance of the shape upwards or

downwardsThis is best demonstrated by the example georselrdt are given in Figure fér varying values of the
design variables

van = 0.26 van = 0.16

. =
o L=

var =0 var=0

var =1

(]

varz =-0.8

Figure 4. Leading edge shape examples of the cubic rational Bézier parameterization.

Apart from the increased level of control over the shep@pared to the first scheme we descrjtstbther
advantage is the increased level of geometric continuity that carhieed at the interface between the original
wedgelike geometry and the parametric curdémost all the approaches that have been considered so far, from the
simple circular leading edge shapes, some power law shapes and even parametric curve sheptseguatiratic
RBLE described earlier, only achieve first order geometric contir{@ty at the interface of the blunted part. To the
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human eye this seems smooth enougbwidver the flow propertiesmay be sensitive to themp in the radius of
curvatue of the surfacepotentially affecing the receptivity andurbulent transition mechanismbhe cubicRBLE
shapes thadrepresentedhere however can achieve continuity of the radius of curvat(@é) at the interface of the
blunted part.

The radius oturvature at the endpoints of a rational Bézier curve can be calculated as'follows

Whentheinitial sharp leading edgeonsistof straight linesof infinite radius of curvature, the parametric shape
described above matches that infinite radius of curvature at the end, pgsirtitsO for ¢ and t. The numerically
calculated radius of curvature at statiateng the curve ofucha leading edge geomegtis shown in Figure 5.
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Figure 5. Radius of curvature along cubic rational Bézier leading edge.

It is also possible to match relatively larf@®mpared tothe thickness of the blunted reg)amadii of curvature of
the original geometry ahe interfaceeven when the radiusf curvature is finite. That usually the case for the
lower surface of waverider geometries or afterphing and further shapingf the upper surfacelf, for example
the radius of curvaturis finite onlyon the bwer surface one of the contrgboints can be moved t position with
"Q Tttwith respect to one end of the curde example is shown in Figure @hereP2 can essentially move along
the line defined by P1 and P3 to obtain the desired radius of curvateéandile maintaining an infinite radius of
curvature at P3The parameterization at this point becomes more complex as the control point needs to move
according to the values of the weights to keep the radius of curvature constant.

i " . L J 0 01 0z 03 s 05 06 07 08 03 1
5 4 3 ) 1 0

Figure 6. Cubic rational Bézier leading edge with a finite radius of curvature on one end (P0)
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C. Fourth order rational Bézier leading edge.

To achieve even greater flexibilitg, third intermediateontrol point caralsobe placed ortop of the two of the
previous method. The order of the curve is now four, and the number of adjustable weights for the parameterization
increases to thre@he addition of a third gdstable weight opens up a widange of potential shapes that can now
be generatedlhe weightsw,, w. and w, controlthe top, middle and lower part of the shape respectively (when the
control points are ordered as seen in Figure 7). Balancing them to obtain meaningful shapes for a range of design
variable valuesthough is a little more delicate than for the previous two approaches. The refdpishstween the
design vaiables and weights were chosen hasdollows:

6 0Qip =0 ®i
o
0 0®ip =0 K
LY 0 A) LAY
0 DLWl TPL Wi
with the variable rargs:0 @8 TP ,0 O  pfp ,0 O TP .
P1 PO

P2

=4

wi = 0.1225
w2 =-0.090
ws = 0.1225

P3

P4
Figure 7. Fourth order rational Bézier curve leading edge.

With the above reparameterization, each of the variables is gimeore specific role. The first and the second
ones, similar to the cubi&kBLE case, control the mean value of the weights at the sidemdwg, and the balance
between the two respectivellihe weight of the middle pointavcontrols how blunt the middlgart of the shape is,
with its lowest value beingoughly the limit where the geometsyarts becoming concavEhe endresultis a shape
parameterization where each design variable has a specific role and the characteristics it gives to the final geometr
are retained when the other design variables are altered. This is best illustrated in Figleee8a number of
example geometries are given for different values of the design variables.

~
( van=0.5 van = 0.3 ‘ var=0.8
| var =0 var=0 var =0
C van = 0.5 (" van=03 ( van=0.7
var=0.4 \ vap=04 var,=0.2

vars=0

vars=0 vars=0.2

= —
van =0.5 ( van =0.3 /varl =0.2
var=0.4 var=0.4 [ var=-0.2

Figure 8. Leading edge shape examples of the fourth order rational Bézier parameterization.
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The fourth ordeRBLES when used on a wedge geometry consisting of straight timesretically provide third
order (G) geometric continuity at the interfad@ough in practice this is of limited significance in both geometrical
and flow dynamics termg&ffectively thoughjt canprovide an even smoother transition to zero curvature or infinite
radius of curvaturevhen compared with the cubic rational Béziargmeterizationf Section B as seen in Figure 9.

1
T BB
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XXX,

Figure 9. Radius of curvature across fourth order rational Bézier leading edge.

The variety of shapes obtained with this last approach is significaittr, while we can also see thaten for a
fixed value of the initial truncation length or thickness at the interface, the parameterization is able to drive itself to
shapes oéssentiallylower thicknesslt should be noted that because balancing the weights is more delicate in this
case, it is harder to match finite radii afreature at the end points ass done for the previous approach. It can be
attempted by moving P2 accordingly, but careful reparameterization of the weights and design variables is required,
something that wilhot be overed in this paper.

The extento which it is beneficial to havihis muchcontrol over the shape of the leading edge will be examined
in more detail in the following sectioné&s far as manufacturability of such shapes goes, it is somethibg tha
strongly depends on the scale of the bluntness needed. Finattynow on each shape will be descritmetdy by
the values of the design variables as they wefmedin this section, and not the values of the weights.

lll. 2D CFD Analysis of Shapes

The utimate goal of being able to look into a variety of different shapes for the blunt leading afdge
hypersonic aircraft is to enable thesig to get the best out of thedeoff between the aerodynamic performance
characteristics and tHamits of the materials andthermal protection systemBlunter leading edges arequired to
cope with thencreasingaerodynamic heatingf higher velocitiesAs the bluntnessicreaseso does the dragvhile
the lift can decreasdue tothe highpressure flow athe urderside ofwaveridershapesio longerbeingcompletely
“ t r a,pmghetlte’ shock standing further awaphe shape of the leading edge essentially affects the flowfield
around the entire aircraffss the bluntnessnducel drag and pak temperatureat the eading edge are something
that can be examined locallye initially run a series of 2D CFBimulations to study théocal aerethermal
propertiesof the shapes described earlier

A. Cold wall simulations.

ANSYS Fluent! was used for the simulations at this stage and a number of different case setups were
consideredThe first set of cases was set up with a cold Wal=B00K) and flow conditionsnatchingMach 8 flight
at 100,000ftWhile smilar investigations were dorfer Mach 6 and varying dymaic pressures, theajority of the
results presented here are for the Mach 8 case mentioned earlier unless otherwideostallechses laminar flow
was assumed around this part of the leading edge and therefore no turlbubeletevas usedlhe two values of
interest were the drag and the peak heat find independence was achieved with a 500x120 (alongxwadll-
normal) initial structuredC-type mesh, and three levels of adaptive mesh refinement in areas of high pressure
gradient for better shock capturingrom this pointwe will consider a circular leading edge with radius R to be
equivalent to the parametric shapes described earlier with thickness 2R for convenience, as a thickness cannot be
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defined the same way forrcular leading edges due to the two interface points not being in the same streamwise
position.

In Figure 10 we can see how the drag coefficient and peak heataflyxor a 1cm thick quadratieBLE, for a
range of 0.15 to 0.3 of the shape variable. &teivalent circular leading edglata poinis also plottedThe wedge
angle for this and most of the geometries that are presented Waal8icdh is the deflection angle that results in a
~15 shock angle under the given flow conditiordl drag coeffigent values are for the geometries extended
downstream up to the point where the wedge thickness is 1.67cm.
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Figure 10.Drag coefficient and peak heat flux of a quadratic rational Bézier curvef 1cm thickness
Tw=300K, Mint=8, pnt=1090Pa

1.45

From Figure 10 we observe that, first of all, the parametric shapes can come close to the circular leading edge
both in geometry and performance characteristics. As the geometry gets more blunt the drag increases while the
peak heat flux at the stagnation region decreasdsxan reach values up to ~20% lower than the equivalent circular
leading edgeFor geometries thidecome too blunt the 2108
heat flux around the sharply cew part close to the [ <03
interface overcomethat of the stagnation point and th
peak heat flux therefore increases again. The way <. 14|
utilize these geometrig§ for example, the initial goal
was to reface the equivalent 0.5cm radius circuli
leading edge is to adjust their thickness as well. T
will enable the shape to have a lower drag coefficie
for the same peak heat flusomething that will be
demonstratedater on It is also worth noting thatfor 12} X022 cors
cold wall cases of the same wall temperature, =~ ;45| '
observe the same pattern between the characteristic
the geometries forifferent flow conditions something
that was also observed by Ro6Hi An example of the . -
distribution obtaied for a yMa:h 6, 75,0005 altitude Figure 11. Drag coefficient and peak heat flux for
case isshown in Figure 11 TW:300K, Minf:6, pinf=1090Pa

To more quickly obtain the sets of optimal geometries (Pareto front) of shapes controlled by multiple design
variablessuch as the cubic and'4rder RBLE parameterizationsnetamodels wereconstructedusing the kriging
appro&h?3, Themetamodels were based on a latin hypercobéainedinitial sample of 20 CFD calculations for
the 2 design variable controlled cubic RBLEs and 40 for the 3 design variable contttdisted RBLES.

—
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Figure 12 Contours of the kriging metamodel for drag and peak heat flux of the culi RBLE with the initial
sample as white squares, generated using QstatLsb

The values obtained using tmeetamodel in this case argyood approximations of the value of the CFD
calculationsalthough their accuracy can be further improved with more data pGatgours of the metmodels
can beseen in Figure 12Jtilizing the kriging models we are then able to more dgrsepulate the Pareto fronts of
the 2 and 3 design variable controlled parameterizatisitgy a brute force approachheresult can be seen in
Figure 13
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Figure 13 Sets of optimal solutions for the three different RBLE parameterizationsTw=300K, Mint=8,
pinr=1090Pa

In Figure 13we observe thawhile the solutions given by the more complékatder RBLE shapes have a clear
advantage over the quadratioes, thecubic ones seem to be performing very similaidythe latter Additionally,
for the cubic RBLE all the optimal solutions seem to consist of a fixed value of the second design variable (that
shifts the balance to the upper or lower part), while varyingther variablgpopulates thé@aretofront. Therefore,
in case the extra design varialitefixed, the complexity of the parameterization would not be higher than the
9
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guadratic one, whileas was explained in Section I, it isfarmulation that can provide &continuity of the
geometry.

Now, to provide a more direct comparison between the parameterized shapls aidple circular leading
edge, we will compare the drag and peak heat flux of ciréedating edges of varying radiiith quadratic RBLE
shapes of variable thickness as well. As in this case the quadratic RBLE is controlled with two design variables, the
thickness and one shape parameterifvarsimilar use ofmetamodelswas followed The set of optimal dotions
can be seein Figure 14 where it is also compared witircular leading edgest is worth noting that théareto
front was dominated bygeometriesvhose shape parameter hadadue of around 0.182 withnly the thickness
varying along the distributionVhat we ale see in Figure 14s that a circular leading edge with a radius of th5c
can be replaced withthinnerquadratic RBLE with the same peak heat flux that will have a drag coefficient around
20% lower.This RBLE would be ~30% thinner, i.€.7cm thick in his case.Finally, in Figure 15we see a
comparison of the heat flux distribution around the blunt part of the geometry of the quadratic RBLE, with
van=0.182, that dominates the aforementioned Pareto front and the equivalent circular leading edge.
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Figure 14. Circular leading edge and quadratic RBLE comparison Tw=300K, Min=8, pnr=1090Pa
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Figure 15 Heat flux distribution for the dominant quadratic RBLE and the equivalent circular leading edge
Tw=300K, Min=8, pnt=1090Pa.
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B. Equilibrium temperature simulations.
The next series of simulationsreset up to calculate equilibim temperatures along the wall, usicwnditions
that are more representative of the operation of a thermal protection system intended for hypersonicAcfinising
set of cases wasin with a radiative equilibrium temperature condition at the,\aalll a scond set witltonductive
heat tansfer vithin the solid leading edge tip as wélhe flow conditiondn theresults presented weegain set to
match Mach 8 flight at 100,000ft. The emissivity of the wall is set to 0.9 and any radiation originating from the hot
gases around the geometsyneglected, so only the wall radiates energy.thersecond set of casagelatively
high thermal conductivity of 200W/mK was assunfedthe heat conduction calculations within the solid leading
edge.The values of interest are now the drag coefficend the peak wall temperature.
The results that follow are for a set of quadratic RBLE shapes for values of the design variaplarfgarg
from 0.15 to 0.325 and a thickness of 1cm, also compared with the equiiatam radiuf circularleadingedge.
In Figure B we can see the drag coefficient and peak temperatures that were calculated for the different shapes for
both case setups.
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Figure 16. Peak temperature and drag coefficient for radiative equilibrium temperature conditions (top) and
radiative and convectiveequilibrium conditions (bottom) for different values of vari, (:0.9, k=200W/mK,

Mint=8, pnt=1090Pa
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A first observation is that the distributions shift significantly wihadiation andhermal conduction is accounted
for, while different distributions were also observed for different values of the thermal conductivity of the leading
edge materialEven for the radiative equilibrium temperatuset of cases, that are equivalent to a case with 0
thermal conductivitythe shapehat show the lowespeak temperature is different frotime onewhere the lowest
peak heat flux wasbserved §eeFigure 10).Moreover, as expected, the range of temperatures around the leading
edge becomes narrower with increasing thermal conductivity, something that significantly drives down the peak
temperaturedllustrated in Figure 17
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Figure 17. Temperature distributions around circular leading edge for radiative equilibrium conditions and
radiation with heat conduction, 0.9, k=200W/mK, Mint=8, pnt=1090Pa.
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Figure 18.Heat flux and temperature around circaular leading edge (left) and temperature distribution within
the solid (right, mesh visiblg, U=0.9, k=200W/mK, Mint=8, pnt=1090Pa

Apart from being interesting from an aerodynanpesspectivethese observationsdicate that the optimal
shapes strongly depend on the specific conditions of each wilehe differences in the distributions sei@n
Figures 16 andlO suppoling that To elaborate, even if for cold wall conditions a Mach number independence has
been observedvhen it comes to the optimum shapes, it is the nature (active, passive etc.) and specific characteristics
of the thermal protection system that will direct afgsignprocess on a case by case babimat is wheresuch
geometry modelsparametdred with low numbes of design variablesand able to achieve a wide range of
meaningful shapesssist in makindpigher fidelity and multiphysics design studies affordable.

IV. Receptivity i Transition Effects

The boundary | ayer tuabwplredftoubhdamrdifteica n ' ®9aams hhaywee a 5 @
performance. With the | eading edge being where the boi
shape can potentially alffiethi $d heedtiammseilwiermi nnrameg e hréensisishnt
i nvestigationfs usitrmg tdhegedrmhagterbynewiri o coaot éeaseddy at t he
numerical asmemd| ati eadyirgegethpfe vity proceswacborfadtoato
using -arfeurabcurate direcThinsfmemsaahypéemsbaitcohl cwdet
20haadMmghlleunt , wavhigeenmt ke r@ullar nose radius has been rep
Bézcervel eddigmg shape, as descr isbeecdo nidne rS egcetoi noent tliHe& cpornot vi
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wabkeometry at tHWéhewespeeijfumrmctgiemmetry was designed to &
circul ar |l eading edge i mpothet, amthemptoiumg tdhhekesdmgant i
curvatun thaandeatisomoother transition to infinite rad
wed,geas seen.Tihe FMaguwr e e2aGon for tmhitendedt hat sthheyi hhes
i ncreased geoamed rnot cjonstti nauidiyf f er ent geometry

The acoustic waves have been inserted in the domain w
random phase, and cdndDtEBa nat aengpc hi tfurdeeq veegnucayl (twi t h r ef er ¢
fluctuation amplitude). The receptivity redewédgeare co
with circetilge hepddinmge radius of n@ili ooms w{showrmei msam
Cerminara adahdpsSesdhtetdAAt Fltthied 4BynamiDas$ | £oanf dueec 2,01 ¢
particul ar, a direct comparison is provided for the p
di f fepa=intti ons al ong the wedge. Table 1 shows the flow c
TablkRl dw conditions of the numeri cal si mul 8

M nt Uni t Re To( K) Ti i K) pi (i Pa) Twl Tt

7.3 4 xu0 2740 234.03 2004 . 3 1.273
The foll oswnonvgs d& gsukreet he t woe ddgief fgeeroemmett irlmeeasd iing anlonc oor di r

1.5

Bezier curve

0.51 Circle

-1.5+

Figa®xketch of tbhdgewgebeamadi mgesionadéncoordinates: <cir
ratiB@zaderve (bluei s nef re)idief Rtalde chasaatlterfotri bolt &ng
geometries.

Assan be isgeuerne iln9 ,F the | ength scal es ,Rofe tntoe mail i cslead (ww
the caskRézodartvlee represents t heedgci sjtuanncctei olme tpaoeiemnt tahred w
coordinate system), so that in the nusingc alossi muldd tuiso |
circl éiplf Re/sg WiDgrieldn|di nar e the freestredmndemnsi vyscoel ¢
flow respectively), is the same for both the cases and
radius of curvature along the woalweuiget i oine powatgeomet r |
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10°

i Wedge junction Wedge junction

o °
10k

& @

& a
103§ s

I Stagnation point
10'f

100 p

.10-1 L L 1 L 1

Fi gurRad®iOus of curewmdt proesidti odisfefaldgren g utr ve sl. eE@aricdire (r e c
curve (blue line)

Figure 20 highlights r rtvlaeg udief foert evre med gteh er udrdviceusd. ed fchi cpya r
the case of a dgier ctunlea rr alde audsi nayf curvature keeps const
di mensi onal coordinates) along the curvilinear part of
resulting imnaiouwivywatgedhisoctricbrat iBEkrrammtviead tqati ng
shape is characteri sed eldy by raa dil guser d fi h@)drutad grtyr & a(rii redsi c
valofe 0. 95 at the satpghamtrioemmdi nfi ni ttyheatwetdhgee, i nttheursf apcre
curvature conti nui Thys attiBenhaele Mreebtpeda fdmet ir @rd.u lgths |iyn mor
sl ender thhoedyr,advivhdhuaofe at t Hhebt swamnththiaon opotmeEdgei rcul ar

Figure 21 shows a comparison of the results for the n
two cases withedpgktf granhet & ciedli lgeg rien 21-di snembeacmomndi nat e
along the body symmetry axis in the wCa&r tneoginemnd i sefde rwa
freestream pefder eAsevidene inpthesfirgupepfBdaee doratd t he
leadedge has a smoother gradi ehte atsthefdyged gehwmlpeet, e tdeuaed €
curvature continuity.

1 T

=— Bezier curve - wedge
=—circle-wedge

Pu

wedge junction

-1 -0.5 0 0.5 1 15 2 2.5 3

FigurMeanepsure profil(esaghabhgonhepowat!l of RBLE shape i
circul.ar one)
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Figwrehows the results for theéydmepnossiitnyg fflausctt uac a wst ifci
freestream, abount hewe d g 8 @aBvéA tha rrvaet idodngad jt migemwigt h of the b
extepgdup to aboea.m400 R downstr

-3
250 X410
3
200 | 7
’ 2
11
150 |
- p _-l
=
/ -2
50 | | /
F | 3
/I/I. -
0 -+ | ‘ I I ‘ ‘ I ‘ 4
0 50 100 150 200 250 300 350 —
T

Figurlens2tzZzansadeaoasity f(lfuyg4 uati on field

The density fluctuation fiel dholk&kws atnlgdeta etslad wdv ea sterr
fluctuation peaks of the same sign (one |l ocated in the
downstream (this tremd tihse dwaisde npo riftoxe2p5a0rotf iTdtunsas pvaeitdtgesr
gualitatively in good agreement etwitfah. amdubhoweg otsthd pn
boundlayerstfrlucwures developing downstr eam.

Figure 23 shows a comparison between the two cases at

t hxem o-thi mensi onal cxoP 9 & BRI edkB8avAiBs Her e, the pressure a

amplitude spethra, Fasmpbbadi wi Transform approach, ar e
on the wall. I n particul ar, the pressure fluctuation ¢
fluctuation amplitude o9peéedt-BWi. 5s (gieee rCeo mifypaaamoaed P
detail s) . Note that t he way)l i pgr ensosruntael i Slewc twiatthi othh ea m
fluctuati ony)ysamphi it edd hep heat flwuxi &1 oowiobaht iteheed afnrpd @ « tu
reference quanti(ipyhdf.or the energy fl ux
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v X=297.3, circle-wedge
v x=319.4, circle-wedge
v x=347.5, circle-wedge N 10—7
40 *  ¥=297.3, Bezier curve-wedge 4 " \ 5 . 5
*  x=319.4, Bezier curve-wedge : : :
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Fi gurRr e2s3sure (l eft) and heat flux (right) fluctuation
the .wall

The riesiugrurse 23 revealtrtehmmd athet Hd udit ufaern emt frequen
bet ween the two cases, for both the pressure and the
i ncreasing frequencitelseat HBodeetVeerrv,e idrk dqutdlheen gceacseeptadfvi ty i s
| owearn tthhe @ aeskl evalbige . This diffeplintede nbdtl wedm at he n:
edge geometries seems, in turn, xdoi sitramrceea sael omigt ht hteh ewa
pressure and heat flux spectra,-40p kblza. mari mamtieathe
di fference i s obx=a3idn7e.d5 a(twhded O kKHz gmdessure and heat f
ci rweldege case arbeo urte 202 tainvde 11y4 %oa h iBgleedtertviea @ cefpan cmtgbe) .

The difference intwédenrthte ptt vod digyd fl cevermmdest lbieas i mgy be
e slightly isnt rfornognetr obfh atdhidagdeooir(rmeeudl mrhi gher radi us
ation point), which produces a higher amplificati
ence higher wall predeswnet féeamt udoweweld evepadist tofan
a consequence of thet breartviBotrmarle a &kidmde i nwihti ¢ hi guahar
a
e

Q ~+
o5

ual vari ati can dafhet hwee gl I$ bpvars @wr2dn) ghan produce dif
h mechani sm t hrough whi dh hteh & oauntdearrryall awaewes ar e |
I n concl usi ons howno ma ik anvee ,r etsloadBiéezri eraattidigegen ag ¢ dvmae t Py ovi des
G°’cont isneuciiBya, ¥ e a slightly stabilizing effect on the wa
at the higher frequencies. However, in ordeengdgdahequant i

to the differemtdi ssagrmatdi arhep eifrftecfturdfnetelsd i gat vanurn e
Mor eroovet he study needswtobhbeheomptemehvity to slow ac
generation of the domi nant auynesrt aibrd eh ynmoedres oinnisci dfel otwhse, be
available in theet filtMal akumaeld( Bad akkamaa

V. Integration on 3D Waverider Geometries

There are a number of different approaches when it comes to integrating the 2D geometry iémsnulat
described earlier on 3D waverider forebody geomethiethis last section we will present our preferred method and
provide some general remarks on the subject as evaluating and quantifyingritseofneach different approach
requires complex angomputationally expensivease studies.

It is common to truncate the sharp leading edge geometry perpendicular to the leadirig eddgr to
accommodate the bluntness. Thare however some benefits in truncating the geomediyd positioning each
RBLE sectionalong the oscalting planes in the case of an osculating cones/osculdtmgidid generated
waverider forebodwr along the planes on which the strdiaes were traced in axisymmetric or wedge sHoaged
inverse desigmethods In this way, maintaining geometric continuity at the interfacahef blunt leading edge
shape witht h e wa v @pper and tower surfadeecomes more straightforward, especiallgen 2¢ order
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geometric continuity (whichcan be achieved withhé parameterization dagbed in this work) is desirahle
Moreover, even if the original geometry was néta@ntinuous in the spanwise direction df@r example, to the

shape of the leading edg&? continuity will be maintained along the general direstof the streamlinesnvgre

general direction hints at the fact tHatintness in swept parts will generate cfflew to adjacent osculating
planes). Both approaches are illustrated in Figure 24. To obtain the desired thickness when truncating tlye geometr
with the second method (JIXhe truncation length has to be adjusted according to the local sweepaadgle
inclination of the osculating planes when truncating along them

Wing tip

-l-
Truncation perpendicular
to the leading edge

| —intermediate point

Il —intermediate point \

End points

Symmetry plane

/

-11-
Truncation along
streamlines/osculating plane==—

Top-view of Bézier
curve sections:
|

Y

L—»x

Figure 24.Top view of a sharp leading edge waverider forebody with illustrations of truncation options to
accommodate the bluntness.

At this stage, apart from the thickness and shape of each section, it is also meaningful to control how those
characteritics are distributed along the leading edge, from the symmetry plane at the front to the W\ftgléghe
2D evaluations will be valid for the symmetry plane section, swept sections are subject to reduced aerodynamic
heating. More specifically, the stagfion point heating of circular swept leagliadges can be related to the nhon
sweptone using the empirical equatién .
- 1 Al_O®
n
Therefore, in order to optimally ut iebksicande rédhcedasttheer ma l
local sweep increases. The relation for the heating rate of two circular leading edges with differeft radii is

nox
n Yp

Using these empirical relations and substituting the radius with the thickness of the RBLE, stapmn
distribute the thickness across the leading edge in order to alowaghly the same peak heating rate as the
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symmetry section. This will result in lower drag while utilizing the thermal protection system to its limits across the

entire leading dge.The same approach was also followed in Ref. 8.

Q Q Al_O¢®

When this method is directypplied to geometries that haareas alonghe leading edge with sudden variations
in sweep anglethe planform shape of the angl geometry can be significantly alterekteas where the leading
edge is almost neswept and the sweep starts increasing rapidly are most serBitjuee 25 includes an example
of this, with the sweep starting to increasignificantly aroundy=0.2 The resulting geometry ends up with two

‘“bumps’ that are faced head on wsntudh lotvdr gnan the mominal zerg
sweep thickness that was defined.
Original sharp leading Truncation lengtlvarying
edge geometry 80 across leading edge

Y /

0.2 0.4 0.6 0.8 1
Y (from symmetry)

Figure 25.Planform deformation when varying truncation length acrosseading edge according to

original swepmetryods

To counter this issue at the front of the geometrycau applya limiter that will not allow the geometry to be
truncated less than whist needed in order prevent it from protruding in front of the sestefore it as we move
from the symmetry plane to the wing tiphe result of applying this limiter can be seen in Fig28etogether with

the modified truncation distribution.

symmetry
truncation

limiter applied
initial

/

wingtip

truncation

0 01 02 03 04 05 06 07 08 09
Y (distance from symmetry)

Figure 26. Truncation length distribution and resulting geometry with limiter applied.
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The limiter doesolvethe previous issyédowever it creates a shagplge at the point where it switche. To
remedy this, amoothing of the truncation length distributionthat areacan be performed, using, for exampe,
locally weighted scatterplot smoothingethod The results of this can be seen in Figure 27.

limiter applied
initial
limiter + smoothing

symmetry
truncation

wingtip
|| truncation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y (distance from symmetry)

Figure 27.Truncation length distribution and resulting geometry with limiter and smoothing applied.

An alternative to the latter is running an iterative meth
that will keep correcting the thickness distribution as t
planformshape of the geometry and effective swelanges,
until a convergd shape is reacheddditionally, instead of (

truncating thegeometryit can also be advantageousraise
the upper surface in order to accommodate the bluntnes|
the leading edgeas has been suggested in previous sttftie
This displacement can also be blended with the truncation
seen in Figure 28, sometig that leads to a variety o
additional options. Although this introduces an additior
design parameter for each section that also has to he_ .
distributed along the leading edge, it also opens opraber Figure 28. Blendgd dlsplapgment of upper
of possibilities. For example, it is now possililegenerate the surface and truncation of original geometry to
required thickness for the blunt leading edge without affect..y accommodate the bluntness.
the planform shape of the waverider by manipulating the truncation and displacement in order to keep the tip of the
geometry at each section in the same pledeat also need®tbe consideres that the equations described earlier
do not take into account any effects that the variations of sweep along the leading edge can have on aerodynamic
heating, as they generally apply for strajglinstansweep,leading edge segments.is, therefore, expected that
the optimal leading edge geometries can only be reached utilizing controlled distributions. The previous analysis
does however provide r@asonable basis for a seisigninggeometry, whichavoids the use of one or two more
design variables that would have to control thagtomdistribution.

Finally, it is worth noting that apart fromeh b |l unt | e ad i pitgcaneldogbe begeficialta vark thee s s
shape parameters that control the RBLE geometigesss the leadingdge.Aerodynamic heating considerations
apart, his can potentially further limit any losses in lift due to leakage of the high pressure flow from the underside
of the waverider around tHeading edgeas well Additionally, we may find that for swefgading edges we obtain
a different set of optimal shapes when it comes to drag and peak heating rates or temp&aatyrastify any
potential advantages though, a series of full 3D CFD simulatiofisbei required. This, together with the
dewelopment d more detailedyeometry parameterization schemes, will be the topic of future research activity.
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VI. Conclusions

An efficient and robust approach to designing blunt leadingsfigevaverider forebodies hagen developed
and investigatedThe parameterizaih is very robust and can provide a variety of meaningful shapes. The limited
number of variables that control the shape make it-sweted for use in largecale design optimization studies of
full waverider geometriesThe shapes are also able to achiesecond order@) geometric continuity at the
interface with theruncatedoriginal waverider geometry. Some preliminary results indicate that this can potentially
affect the receptivity and turbulent transition mechanisthe.geometriesan, dependingn the case, demonstrate
significantly better performance thaiircular leading edgessshownin Section IIFA. This, among other factors,
stronglydepend on the sale and thicknes®f the blunt part neededf, for example, aluntnessradius of only a
few millimetersis required, the ease of manufacturing would potentially outweigh the benefitsngf aiginore
sophisticated shapé&inally, we presented our preferred method and some renfarkimtegrating the parametric
shapes on 3D waverider forebagliwith 3D flow effects beingn area that can lerther investigated
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