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In t his paper we report the results of investigations into the efficient parameterization of 

blunt leading edge shapes for hypersonic aircraft geometries. The investigations mostly 

revolve around waverider geometries generated with inverse design techniques, such as the 

osculating cones waverider forebody design method. The shapes presented however, can be 

utilized to introduce bluntness to any wedge-like geometry with sharp leading edges. 

Initially, we present detailed descriptions of three different variations of the rational Bézier 

curve based parameterization that was developed, and the variety of shapes that can be 

obtained is demonstrated. Afterwards their performance is evaluated utilizing 2D CFD 

analysis. In our simulations, the rational Bézier curve leading edges outperform circular 

ones when it comes to minimizing both drag and peak heating rates or peak temperatures. 

Additionally, with higher order rational Bézier leading edge shapes, higher levels of 

geometric continuity can be achieved at the interface between the blunt part and the original 

wedge-like geometry, resulting in a smoother transition. Preliminary results indicate that 

this can potentially affect the receptivity and hence transition mechanisms. Finally, the 2D 

geometry formulations are extended to full 3D waverider forebody geometries. 

Nomenclature 

Cd    = drag coefficient         R   = circular leading edge radius 

CFD   = Computational Fluid Dynamics     RBLE  = rational Bézier leading edge 

d    = local blunt section thickness      t   = parametric curve parameter [0,1] 

 k    = thermal conductivity        Uinf  = freestream velocity 

M inf   = freestream Mach number       vari  = design variable 

n    = Bézier curve order        wi   = rational Bézier weight 

Pi    = parametric curve control point      

pinf    = freestream pressure        ε   = wall emissivity 

p′w    = wall pressure fluctuation amplitude    λ   = local sweep angle 

p′inf   = freestream pressure fluctuation amplitude  μinf   = freestream dynamic viscosity 

q    = wall heat flux          ρ   = local radius of curvature 

q′w    = heat flux fluctuation amplitude     ρinf   = freestream density 

I. Introduction  

AVERIDERS are a class of aircraft geometries that keep the shockwave generated by the oncoming 

hypersonic flow attached to their leading edge. The result of this is superior lift values when compared to 

conventional designs, rendering waveriders one of the most promising configurations for hypersonic flight. There 

are a number of inverse design methods to generate waverider geometries, from very simple ones to much more 
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sophisticated and flexible ones1-4, that have the advantage of being computationally cheap while based on inviscid 

flowfields. These methods however are only able to provide a baseline shape that needs to be further adapted and 

refined in order to obtain more realistic aircraft geometries. Additionally, a distinctive characteristic of hypersonic 

aircraft designs is the level of integration between the airframe and propulsion system, making optimization studies 

more complex and emphasizing the need for efficiently parameterized geometry models. 

 One of the first issues that need to be addressed when departing from the simplicity of inviscid designs is that of 

the aerodynamic heating effects that, along with manufacturability constraints, preclude the use of sharp leading 

edges at hypersonic speeds. Two early examples of non-ballistic high-speed vehicle geometries that needed blunt 

leading edges are the space shuttle and the X-15 research plane. Waverider shapes, however, rely on the sharpness 

of their leading edge in order to keep the shock attached to it, and for this reason the performance of such aircraft is 

more sensitive and is expected to degrade with the use of finite radius leading edges. It is, therefore, of great interest 

to investigate methods to optimally introduce bluntness to the leading edge of such vehicles. 

 Over the years, a number of approaches to introducing bluntness to leading edges of slender bodies have been 

proposed. Most common are circular leading edge shapes that have been widely used and studied due to their 

simplicity. There are however benefits in looking into more sophisticated shapes than a constant radius of curvature 

for the leading edge bluntness, and a number of studies have looked into different geometry parameterizations for 

this purpose. Power-law shapes have been considered in a number of studies that explored potential advantages of 

having more control over the shape of the blunted part5-6. More recently, parametric curves able to achieve a wide 

variety of shapes have also been considered with promising results7-8. 

 The aim of this work is to devise efficiently parameterized geometries for hypersonic aircraft components. In 

Ref. 9 we briefly presented a parametric geometry model for introducing bluntness to the leading edge of waverider 

forebodies. It is a geometric formulation able to achieve a wide variety of shapes with desirable characteristics, 

while keeping the number of associated design variables low. Here, we will have a more detailed look into those 

rational Bézier curve based leading edge (RBLE) shapes, starting from their purely geometrical characteristics and 

how to efficiently control them, to evaluating their aero-thermal performance characteristics. This will be backed up 

with CFD analyses of the geometries, where their performance is also compared to the more common circular 

leading edges. We will also present some preliminary results on receptivity and turbulent transition mechanism 

investigations conducted to examine the effect of the increased geometric continuity of the proposed geometries. 

Finally, we show a method to integrate these 2D shapes onto 3D waverider forebody geometries. 

II.  Leading Edge Geometry Parameterization 

Sharp leading edges of waverider forebodies can generally be described as wedge-like geometries on the 

vehicle’s cross sections. Such section profiles allow for a parametric curve as simple as a quadratic Bézier curve to 

be used to generate a curved blunt leading edge shape after truncating the original geometry. Using a quadratic 

Bézier curve, however, fixes the shape of the leading edge, rendering it non-parametric. The two end points would 

be placed at the edge of the truncated part, on the original geometry, and the intermediate one is restricted in order to 

satisfy first order continuity at the interfaces of the curve and the original geometry. Two flexible alternatives to this 

approach can be either using higher order curves with more movable control points, as is the case in Rodi’s work7, 

or by using rational Bézier curves whose shape can be further adjusted with weights. The latter of the two 

approaches has been followed in this work and this is what we discuss next. 

A. Quadratic rational Bézier leading edge. 

A quadratic RBLE is the simplest one that can be used. As seen in Figure 1, the original wedge-like geometry is 

truncated and replaced with a quadratic rational Bézier curve. The parametric curve’s end points (P0 and P2) are on 

the interface with the original truncated geometry, while the middle control point (P1) is essentially fixed to satisfy 

continuity conditions at the interfaces since the curve is tangent to its control polygon at its end points. Varying the 

weight w1 of the middle point then controls the shape, while the weights of the end points, w0 and w2, are fixed at a 

value of 1. 

 

 Rational Bézier curves are described by: 
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Figure 1. Rational quadratic Bézier curve applied to a 2D wedge-like sharp leading edge with different 

weights w1. 

 

 The geometries that are expected to be of most interest and have aero-thermal characteristics that outperform the 

circular arc leading edges are those that have a larger radius of curvature at the stagnation point and tighter ones 

closer to the edges, as this better distributes the heat load across the blunted part. An example of such a shape is the 

bluntest of the family shown in Figure 1 with a w1 value of around 0.1. 

 These shapes can be controlled with two parameters, the truncation length (or the thickness at the interface) and 

the weight of the middle point w1. The first can be a design variable itself since it directly controls the scale of the 

blunted region. However, varying the weight directly produces what could be called a non-linear variation of shapes 

for the range of values of w1. This is best illustrated in Figure 2, where the weight is directly linked to the design 

variable that is ranging from 0 to 1 in the first case, and equal to the square of the design variable’s value in the 

second case. The second method offers a more intuitive variation of shapes across the design variable range, with 

slightly increased resolution at low values where geometries with better aero-thermal characteristics are expected. 

 

 

  
ύ ὺὥὶ             ύ ὺὥὶ 

 

Figure 2. Leading edge shape range for w1 directly linked a design variable (left) and linked to the square 

of a design variable (right) ranging from 0.1 to 1.0 with equal spacing. 

B. Cubic rational Bézier leading edge. 

With the quadratic RBLE shapes, a variety of what intuitively seems like meaningful shapes can be obtained. 

There could however be benefits in having more control over the shape of the blunted geometry by using 

parameterizations that provide more flexibility. A simple and elegant way to accomplish this without adding too 

much complexity with movable control points, is by duplicating the intermediate point. This way the order of the 

curve increases by one and the two intermediate control points are on top of each other. They are still fixed to satisfy 

continuity conditions but there are now two weights that can be controlled. The parameterization can be seen in 

Figure 3. 
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Figure 3. Cubic rational Bézier curve leading edge. 

 

 Once again, for more intuitive control, we implement a non-linear mapping between the weights and the design 

variables. The square of the first variable defines the weights’ mean value and the second one is used to balance 

them. 

ύ ὺὥὶ ρ ὺὥὶ 
ύ ὺὥὶ ρ ὺὥὶ 

 

with the variable ranges: ὺὥὶɴ πȟρ , ὺὥὶɴ ρȟρ. 

 

 The mean value of the two weights is therefore equal to the square of the first design variable and mostly has 

control over how far the ‘tip’ will extend. The second design variable balances the two weights without essentially 

moving the tip of the geometry in the direction of the flow, but shifts the balance of the shape upwards or 

downwards. This is best demonstrated by the example geometries that are given in Figure 4 for varying values of the 

design variables. 

 

       

          

       
Figure 4. Leading edge shape examples of the cubic rational Bézier parameterization. 
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advantage is the increased level of geometric continuity that can be achieved at the interface between the original 

wedge-like geometry and the parametric curve. Almost all the approaches that have been considered so far, from the 

simple circular leading edge shapes, some power law shapes and even parametric curve shapes such as the quadratic 
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human eye this seems smooth enough. However, the flow properties may be sensitive to the jump in the radius of 

curvature of the surface, potentially affecting the receptivity and turbulent transition mechanisms. The cubic RBLE 

shapes that are presented here, however, can achieve continuity of the radius of curvature (G2) at the interface of the 

blunted part. 

The radius of curvature at the endpoints of a rational Bézier curve can be calculated as follows10: 
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 When the initial sharp leading edge consists of straight lines of infinite radius of curvature, the parametric shape 

described above matches that infinite radius of curvature at the end points, as h=0 for t0 and t1. The numerically 

calculated radius of curvature at stations along the curve of such a leading edge geometry is shown in Figure 5. 

     
Figure 5. Radius of curvature along cubic rational Bézier leading edge. 

 

It is also possible to match relatively large (compared to the thickness of the blunted region) radii of curvature of 

the original geometry at the interface, even when the radius of curvature is finite. That usually is the case for the 

lower surface of waverider geometries or after morphing and further shaping of the upper surface. If , for example, 

the radius of curvature is finite only on the lower surface, one of the control points can be moved to a position with 

Ὤ π with respect to one end of the curve. An example is shown in Figure 6, where P2 can essentially move along 

the line defined by P1 and P3 to obtain the desired radius of curvature at P0 while maintaining an infinite radius of 

curvature at P3. The parameterization at this point becomes more complex as the control point needs to move 

according to the values of the weights to keep the radius of curvature constant. 

 
 

Figure 6. Cubic rational Bézier leading edge with a finite radius of curvature on one end (P0). 
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C. Fourth order rational Bézier leading edge. 

 To achieve even greater flexibility, a third intermediate control point can also be placed on top of the two of the 

previous method. The order of the curve is now four, and the number of adjustable weights for the parameterization 

increases to three. The addition of a third adjustable weight opens up a wider range of potential shapes that can now 

be generated. The weights w1, w2 and w3, control the top, middle and lower part of the shape respectively (when the 

control points are ordered as seen in Figure 7). Balancing them to obtain meaningful shapes for a range of design 

variable values, though, is a little more delicate than for the previous two approaches. The relationships between the 

design variables and weights were chosen here as follows: 

ύ ὺὥὶ ρ
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with the variable ranges: ὺὥὶɴ πȟρ , ὺὥὶɴ ρȟρ , ὺὥὶɴ πȟρ. 

 
Figure 7. Fourth order rational Bézier curve leading edge. 

 

With the above reparameterization, each of the variables is given a more specific role. The first and the second 

ones, similar to the cubic RBLE case, control the mean value of the weights at the sides, w1 and w3, and the balance 

between the two respectively. The weight of the middle point w2, controls how blunt the middle part of the shape is, 

with its lowest value being roughly the limit where the geometry starts becoming concave. The end result is a shape 

parameterization where each design variable has a specific role and the characteristics it gives to the final geometry 

are retained when the other design variables are altered. This is best illustrated in Figure 8, where a number of 

example geometries are given for different values of the design variables. 

 

 

  
 

Figure 8. Leading edge shape examples of the fourth order rational Bézier parameterization. 
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 The fourth order RBLEs, when used on a wedge geometry consisting of straight lines, theoretically provide third 

order (G3) geometric continuity at the interface, though in practice this is of limited significance in both geometrical 

and flow dynamics terms. Effectively though, it can provide an even smoother transition to zero curvature or infinite 

radius of curvature when compared with the cubic rational Bézier parameterization of Section B, as seen in Figure 9. 

 

   
Figure 9. Radius of curvature across fourth order rational Bézier leading edge. 

 

 

The variety of shapes obtained with this last approach is significantly wider, while we can also see that, even for a 

fixed value of the initial truncation length or thickness at the interface, the parameterization is able to drive itself to 

shapes of essentially lower thickness. It should be noted that because balancing the weights is more delicate in this 

case, it is harder to match finite radii of curvature at the end points as was done for the previous approach. It can be 

attempted by moving P2 accordingly, but careful reparameterization of the weights and design variables is required, 

something that will not be covered in this paper. 

The extent to which it is beneficial to have this much control over the shape of the leading edge will be examined 

in more detail in the following sections. As far as manufacturability of such shapes goes, it is something that 

strongly depends on the scale of the bluntness needed. Finally, from now on each shape will be described only by 

the values of the design variables as they were defined in this section, and not the values of the weights. 

III.  2D CFD Analysis of Shapes 

 The ultimate goal of being able to look into a variety of different shapes for the blunt leading edges of 

hypersonic aircraft is to enable the design to get the best out of the tradeoff between the aerodynamic performance 

characteristics and the limits of the materials and thermal protection system. Blunter leading edges are required to 

cope with the increasing aerodynamic heating of higher velocities. As the bluntness increases so does the drag, while 

the lift can decrease due to the high-pressure flow at the underside of waverider shapes no longer being completely 

‘trapped’, with the shock standing further away. The shape of the leading edge essentially affects the flowfield 

around the entire aircraft. As the bluntness-induced drag and peak temperatures at the leading edge are something 

that can be examined locally, we initially run a series of 2D CFD simulations to study the local aero-thermal 

properties of the shapes described earlier. 

A. Cold wall simulations. 

 ANSYS Fluent11 was used for the simulations at this stage and a number of different case setups were 

considered. The first set of cases was set up with a cold wall (Tw=300K) and flow conditions matching Mach 8 flight 

at 100,000ft. While similar investigations were done for Mach 6 and varying dynamic pressures, the majority of the 

results presented here are for the Mach 8 case mentioned earlier unless otherwise stated. For all cases laminar flow 

was assumed around this part of the leading edge and therefore no turbulence model was used. The two values of 

interest were the drag and the peak heat flux. Grid independence was achieved with a 500x120 (along wall x wall-

normal) initial structured C-type mesh, and three levels of adaptive mesh refinement in areas of high pressure 

gradient for better shock capturing. From this point we will consider a circular leading edge with radius R to be 

equivalent to the parametric shapes described earlier with thickness 2R for convenience, as a thickness cannot be 
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defined the same way for circular leading edges due to the two interface points not being in the same streamwise 

position. 

 In Figure 10 we can see how the drag coefficient and peak heat flux vary for a 1cm thick quadratic RBLE, for a 

range of 0.15 to 0.3 of the shape variable. The equivalent circular leading edge data point is also plotted. The wedge 

angle for this and most of the geometries that are presented was 9.5o, which is the deflection angle that results in a 

~15o shock angle under the given flow conditions. All drag coefficient values are for the geometries extended 

downstream up to the point where the wedge thickness is 1.67cm. 

 

  
 

Figure 10. Drag coefficient and peak heat flux of a quadratic rational Bézier curve of 1cm thickness, 

Tw=300K, M inf=8, pinf=1090Pa. 

 

 From Figure 10 we observe that, first of all, the parametric shapes can come close to the circular leading edge 

both in geometry and performance characteristics. As the geometry gets more blunt the drag increases while the 

peak heat flux at the stagnation region decreases and can reach values up to ~20% lower than the equivalent circular 

leading edge. For geometries that become too blunt the 

heat flux around the sharply curved part close to the 

interface overcomes that of the stagnation point and the 

peak heat flux therefore increases again. The way to 

utilize these geometries if, for example, the initial goal 

was to replace the equivalent 0.5cm radius circular 

leading edge is to adjust their thickness as well. This 

will enable the shape to have a lower drag coefficient 

for the same peak heat flux, something that will be 

demonstrated later on. It is also worth noting that, for 

cold wall cases of the same wall temperature, we 

observe the same pattern between the characteristics of 

the geometries for different flow conditions, something 

that was also observed by Rodi7-8. An example of the 

distribution obtained for a Mach 6, 75,000ft altitude 

case is shown in Figure 11.  

 To more quickly obtain the sets of optimal geometries (Pareto front) of shapes controlled by multiple design 

variables such as the cubic and 4th order RBLE parameterizations, meta-models were constructed using the kriging 

approach12-13. The meta-models were based on a latin hypercube-obtained initial sample of 20 CFD calculations for 

the 2 design variable controlled cubic RBLEs and 40 for the 3 design variable controlled 4th order RBLEs. 

 

Figure 11. Drag coefficient and peak heat flux for 

Tw=300K, Minf=6, pinf=1090Pa. 
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Figure 12. Contours of the kriging meta-model for drag and peak heat flux of the cubic RBLE with the initial 

sample as white squares, generated using QstatLab13. 

 

 The values obtained using the meta-model in this case are good approximations of the value of the CFD 

calculations although their accuracy can be further improved with more data points. Contours of the meta-models 

can be seen in Figure 12. Utilizing the kriging models we are then able to more densely populate the Pareto fronts of 

the 2 and 3 design variable controlled parameterizations using a brute force approach. The result can be seen in 

Figure 13. 

 
Figure 13. Sets of optimal solutions for the three different RBLE parameterizations, Tw=300K, M inf=8, 

pinf=1090Pa. 

 

 In Figure 13 we observe that while the solutions given by the more complex 4th order RBLE shapes have a clear 

advantage over the quadratic ones, the cubic ones seem to be performing very similarly to the latter. Additionally, 

for the cubic RBLE all the optimal solutions seem to consist of a fixed value of the second design variable (that 

shifts the balance to the upper or lower part), while varying the other variable populates the Pareto front. Therefore, 

in case the extra design variable is fixed, the complexity of the parameterization would not be higher than the 
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quadratic one, while, as was explained in Section II, it is a formulation that can provide G2 continuity of the 

geometry. 

 Now, to provide a more direct comparison between the parameterized shapes and the simple circular leading 

edge, we will compare the drag and peak heat flux of circular leading edges of varying radii with quadratic RBLE 

shapes of variable thickness as well. As in this case the quadratic RBLE is controlled with two design variables, the 

thickness and one shape parameter (var1), a similar use of meta-models was followed. The set of optimal solutions 

can be seen in Figure 14, where it is also compared with circular leading edges. It is worth noting that the Pareto 

front was dominated by geometries whose shape parameter had a value of around 0.182 with only the thickness 

varying along the distribution. What we also see in Figure 14, is that a circular leading edge with a radius of 0.5cm 

can be replaced with a thinner quadratic RBLE with the same peak heat flux that will have a drag coefficient around 

20% lower. This RBLE would be ~30% thinner, i.e. 0.7cm thick in this case. Finally, in Figure 15 we see a 

comparison of the heat flux distribution around the blunt part of the geometry of the quadratic RBLE, with 

var1=0.182, that dominates the aforementioned Pareto front and the equivalent circular leading edge. 

 
Figure 14. Circular leading edge and quadratic RBLE comparison, Tw=300K, M inf=8, pinf=1090Pa. 

 
Figure 15. Heat flux distribution for the dominant quadratic RBLE and the equivalent circular leading edge, 

Tw=300K, Minf=8, pinf=1090Pa. 
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B. Equilibrium temperature simulations.  

 The next series of simulations were set up to calculate equilibrium temperatures along the wall, using conditions 

that are more representative of the operation of a thermal protection system intended for hypersonic cruising. A first 

set of cases was run with a radiative equilibrium temperature condition at the wall, and a second set with conductive 

heat transfer within the solid leading edge tip as well. The flow conditions in the results presented were again set to 

match Mach 8 flight at 100,000ft. The emissivity of the wall is set to 0.9 and any radiation originating from the hot 

gases around the geometry is neglected, so only the wall radiates energy. For the second set of cases a relatively 

high thermal conductivity of 200W/mK was assumed for the heat conduction calculations within the solid leading 

edge. The values of interest are now the drag coefficient and the peak wall temperature. 

 The results that follow are for a set of quadratic RBLE shapes for values of the design variable (var1) ranging 

from 0.15 to 0.325 and a thickness of 1cm, also compared with the equivalent (0.5cm radius) circular leading edge. 

In Figure 16 we can see the drag coefficient and peak temperatures that were calculated for the different shapes for 

both case setups. 

  

 
Figure 16. Peak temperature and drag coefficient for radiative equilibrium temperature conditions (top) and 

radiative and convective equilibrium conditions (bottom) for different values of var1, Ů=0.9, k=200W/mK, 

M inf=8, pinf=1090Pa. 
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 A first observation is that the distributions shift significantly when radiation and thermal conduction is accounted 

for, while different distributions were also observed for different values of the thermal conductivity of the leading 

edge material. Even for the radiative equilibrium temperature set of cases, that are equivalent to a case with 0 

thermal conductivity, the shape that shows the lowest peak temperature is different from the one where the lowest 

peak heat flux was observed (see Figure 10). Moreover, as expected, the range of temperatures around the leading 

edge becomes narrower with increasing thermal conductivity, something that significantly drives down the peak 

temperatures, illustrated in Figure 17. 

 
Figure 17. Temperature distributions around circular leading edge for radiative equilibrium conditions and 

radiation with heat conduction, Ů=0.9, k=200W/mK, Minf=8, pinf=1090Pa.  

 
Figure 18. Heat flux and temperature around circular leading edge (left) and temperature distribution within 

the solid (right, mesh visible), Ů=0.9, k=200W/mK, Minf=8, pinf=1090Pa. 

 

Apart from being interesting from an aerodynamics perspective, these observations indicate that the optimal 

shapes strongly depend on the specific conditions of each case, with the differences in the distributions seen in 

Figures 16 and 10 supporting that. To elaborate, even if for cold wall conditions a Mach number independence has 

been observed when it comes to the optimum shapes, it is the nature (active, passive etc.) and specific characteristics 

of the thermal protection system that will direct any design process on a case by case basis. That is where such 

geometry models, parameterized with low numbers of design variables and able to achieve a wide range of 

meaningful shapes, assist in making higher fidelity and multi-physics design studies affordable. 

IV.  Receptivity ï Transition Effects 

The boundary layer turbulent transition can have a profound effect on a hypersonic vehicle’s design and 

performance. With the leading edge being where the boundary layer starts developing, even small changes in its 

shape can potentially affect the transition mechanism. In this section we present some preliminary results of 

investigations into the effect of using a geometry with increased geometric continuity at the wedge interface. A 

numerical simulation, aimed at studying the leading edge receptivity process to fast acoustic waves, was carried out 

using a fourth-order accurate direct numerical simulation code. This was for a hypersonic flow at Mach 7.3 over a 

20o half-angle blunt wedge, where the 0.1mm circular nose radius has been replaced with a fourth order rational 

Bézier curve. This leading edge shape, as described in Section II, provides second order geometric continuity of the 
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wall geometry at the wedge junction. The specific geometry was designed to be roughly close to the geometry of a 

circular leading edge in the area around the stagnation point, attempting to keep an almost constant radius of 

curvature in that section, and a smoother transition to infinite radius of curvature towards the interface with the 

wedge, as seen in Figure 20. The main reason for this is that the investigation is intended to study the effect of the 

increased geometric continuity and not just a different geometry. 

The acoustic waves have been inserted in the domain with 10 frequencies ranging from 50 kHz to 500 kHz, with 

random phase, and constant amplitude equal to 1.0E-04 at each frequency (with reference to the freestream density 

fluctuation amplitude). The receptivity results are compared with those obtained for the case of a cylinder-wedge 

with circular leading edge and nose radius of 0.1 mm with the same flow conditions (shown in the work of 

Cerminara and Sandham15, presented at the 45th AIAA Fluid Dynamics Conference, Dallas, June 2015). In 

particular, a direct comparison is provided for the pressure and heat flux fluctuation amplitude spectra at three 

different positions along the wedge. Table 1 shows the flow conditions for both the cases. 

 
Table 1. Flow conditions of the numerical simulations 

Minf Unit Re (1/m) T0 (K) Tinf (K) pinf (Pa) Tw/Tinf 

7.3 4.4×106 2740 234.034 2004.301 1.273 

 

The following figure shows a sketch of the two different leading edge geometries in non-dimensional coordinates. 

 

 
 

Figure 19. Sketch of the two leading edge geometries in non-dimensional coordinates: circle (red line), and 

rational B®zier curve (blue line). The radius of the circle (R) is the characteristic length scale for both the 

geometries. 

 

As can be seen in Figure 19, the length scales are normalised with respect to the radius, R, of the circle (which in 

the case of the Bézier curve represents the distance between the wedge junction point and the origin of the 

coordinate system), so that in the numerical simulations the Reynolds number, computed using the nose radius of the 

circle (Re = (ρinfUinfR)/µinf, where ρinf, Uinf and µinf are the freestream density, velocity and dynamic viscosity of the 

flow respectively), is the same for both the cases and equal to 440. The following figure shows the variation of the 

radius of curvature along the wall for the two geometries, between the two wedge-junction points. 
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Figure 20. Radius of curvature at different positions along the leading edge curves: circle (red line), B®zier 

curve (blue line). 

 

Figure 20 highlights the difference in radius of curvature between the two leading edge curves. In particular, in 

the case of a circular leading edge the radius of curvature keeps constant (red line) and equal to 1 (in non-

dimensional coordinates) along the curvilinear part of the wall, while becoming equal to infinity on the wedge, thus 

resulting in a curvature discontinuity at the circle-wedge junction. In contrast, the rational Bézier curve leading edge 

shape is characterised by a radius of curvature (indicated by a blue line in Figure 20) that gradually varies from a 

value of 0.95 at the area around the stagnation point to infinity at the interface with the wedge, thus providing 

curvature continuity at the wedge junction. The rational Bézier curve-based leading edge results in a slightly more 

slender body, with the radius of curvature at the stagnation point 5% lower than that of the circular leading edge. 

Figure 21 shows a comparison of the results for the mean wall pressure in the wedge junction region between the 

two cases with different leading edge geometries (the x variable in Figure 21 is the non-dimensional coordinate 

along the body symmetry axis in the Cartesian reference system, while the pressure pw is normalised with the 

freestream reference value ρinfUinf2). As is evident in the figure, the wall pressure profile for the rational Bézier curve 

leading edge has a smoother gradient at the wedge interface than the case of circular leading edge shape, due to the 

curvature continuity. 

 
Figure 21. Mean pressure profiles along the wall (stagnation point of RBLE shape is ~0.1 R upstream of the 

circular one). 
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Figure 22 shows the results for the density fluctuation field obtained by imposing fast acoustic waves in the 

freestream, for the case of a blunt wedge with rational a Bézier curve leading edge, and the length of the body 

extending up to about 400 R downstream. 

 

 
Figure 22. Instantaneous density fluctuation field (ɟô/ɟinf). 

 

 

The density fluctuation field shows that the wave structure behind the shock consists in general of a series of two 

fluctuation peaks of the same sign (one located in the boundary layer and the other just behind the shock) travelling 

downstream (this trend is evident in particular in the last portion of the wedge, for x>250). This pattern is 

qualitatively in good agreement with results found in literature (e.g. Kara et al.16), and shows the presence of 

boundary-layer flow structures developing downstream. 

Figure 23 shows a comparison between the two cases at three different points along the wedge, corresponding to 

the x non-dimensional coordinate values x=297.3, x=319.4 and x=347.5. Here, the pressure and heat flux fluctuation 

amplitude spectra, computed with a Fast Fourier Transform approach, are presented on the three different positions 

on the wall. In particular, the pressure fluctuation amplitudes are given at all three positions, while the heat flux 

fluctuation amplitude spectrum is given only at the position  x=347.5 (see Cerminara and Sandham15 for more 

details). Note that the wall pressure fluctuation amplitude (p′w) is normalised with the freestream pressure 

fluctuation amplitude (p′inf), while the heat flux fluctuation amplitude (q′w) is normalised with the freestream 

reference quantity for the energy flux (ρinfUinf3). 
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Figure 23. Pressure (left) and heat flux (right) fluctuation amplitude spectra at three different points along 

the wall. 

 

The results in Figure 23 reveal that the fluctuation trend at the different frequencies is qualitatively similar 

between the two cases, for both the pressure and the heat flux, with the fluctuation amplitude increasing at 

increasing frequencies. However, in the case of the rational Bézier curve leading edge the receptivity is in general 

lower than the case with a circular leading edge. This difference in fluctuation amplitude between the two leading 

edge geometries seems, in turn, to increase with the frequency and with the x distance along the wall, for both 

pressure and heat flux spectra, up to a maximum reached around 350 kHz - 400 kHz . In particular, the maximum 

difference is obtained at 400 kHz and x=347.5 (where the pressure and heat flux fluctuation amplitudes for the 

circle-wedge case are respectively about 20% and 14% higher than for the rational Bézier curve leading edge case).  

The difference in the receptivity levels between the two different leading edge geometries may be due in general 

to the slightly stronger shock formed in front of the circular leading edge (with higher radius of curvature at the 

stagnation point), which produces a higher amplification of the acoustic waves behind the shock in the nose region, 

and hence higher wall pressure fluctuation levels transmitted downstream. However, part of this difference may be 

also a consequence of the curvature continuity in the case of the rational Bézier leading edge, which guarantees a 

gradual variation of the wall pressure at the wedge junction (as shown in Figure 21), and might produce differences 

in the mechanism through which the external waves are internalised into the boundary layer. 

In conclusion, from the results shown above, the fourth order rational Bézier leading edge geometry that provides 

G2 continuity, seems to have a slightly stabilizing effect on the wall receptivity to fast acoustic waves, in particular 
at the higher frequencies. However, in order to quantify the effect of the different shock curvature and strength due 

to the different stagnation point radius, and the effect of the curvature continuity, further investigation is needed. 

Moreover, the study needs to be complemented with the receptivity to slow acoustic waves, which lead to the 

generation of the dominant unstable mode inside the boundary layer in hypersonic flows, as evident by results 

available in the literature (e.g. Kara et al.16, Malik and Balakumar17). 

V. Integration on 3D Waverider Geometries 

There are a number of different approaches when it comes to integrating the 2D geometry formulations 

described earlier on 3D waverider forebody geometries. In this last section we will present our preferred method and 

provide some general remarks on the subject as evaluating and quantifying the merits of each different approach 

requires complex and computationally expensive case studies. 

It is common to truncate the sharp leading edge geometry perpendicular to the leading edge in order to 

accommodate the bluntness. There are, however, some benefits in truncating the geometry and positioning each 

RBLE section along the osculating planes in the case of an osculating cones/osculating flowfield generated 

waverider forebody or along the planes on which the streamlines were traced in axisymmetric or wedge shock-based 

inverse design methods. In this way, maintaining geometric continuity at the interface of the blunt leading edge 

shape with the waverider’s upper and lower surface becomes more straightforward, especially when 2nd order 
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geometric continuity (which can be achieved with the parameterization described in this work) is desirable. 

Moreover, even if the original geometry was not G2 continuous in the spanwise direction due, for example, to the 

shape of the leading edge, G2 continuity will be maintained along the general direction of the streamlines (were 

general direction hints at the fact that bluntness in swept parts will generate cross-flow to adjacent osculating 

planes). Both approaches are illustrated in Figure 24. To obtain the desired thickness when truncating the geometry 

with the second method (II), the truncation length has to be adjusted according to the local sweep angle and 

inclination of the osculating planes when truncating along them. 

 

 

 
Figure 24. Top view of a sharp leading edge waverider forebody with illustrations of truncation options to 

accommodate the bluntness. 

 

At this stage, apart from the thickness and shape of each section, it is also meaningful to control how those 

characteristics are distributed along the leading edge, from the symmetry plane at the front to the wing tip. While the 

2D evaluations will be valid for the symmetry plane section, swept sections are subject to reduced aerodynamic 

heating. More specifically, the stagnation point heating of circular swept leading edges can be related to the non-

swept one using the empirical equation18: 
ή

ή
ÃÏÓ‗ Ȣ 

 

Therefore, in order to optimally utilize the thermal protection system’s limits, the thickness can be reduced as the 

local sweep increases. The relation for the heating rate of two circular leading edges with different radii is19: 

 

ή

ή
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Using these empirical relations and substituting the radius with the thickness of the RBLE shapes, we can 

distribute the thickness across the leading edge in order to obtain roughly the same peak heating rate as the 
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symmetry section. This will result in lower drag while utilizing the thermal protection system to its limits across the 

entire leading edge. The same approach was also followed in Ref. 8. 

 

Ὠ Ὠ ÃÏÓ‗ Ȣ 

 

 When this method is directly applied to geometries that have areas along the leading edge with sudden variations 

in sweep angle, the planform shape of the original geometry can be significantly altered. Areas where the leading 

edge is almost non-swept and the sweep starts increasing rapidly are most sensitive. Figure 25 includes an example 

of this, with the sweep starting to increase significantly around y=0.2. The resulting geometry ends up with two 

‘bumps’ that are faced head on with the oncoming flow while their thickness is much lower than the nominal zero-

sweep thickness that was defined. 

 

 
Figure 25. Planform deformation when varying truncation length across leading edge according to 

original geometryôs sweep. 

 

 To counter this issue at the front of the geometry we can apply a limiter that will not allow the geometry to be 

truncated less than what is needed in order prevent it from protruding in front of the sections before it, as we move 

from the symmetry plane to the wing tip. The result of applying this limiter can be seen in Figure 26, together with 

the modified truncation distribution. 

 

 

       
 

Figure 26. Truncation length distribution and resulting geometry with limiter applied.  

Original sharp leading 

edge geometry 

 

Truncation length varying 

across leading edge 
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 The limiter does solve the previous issue, however it creates a sharp edge at the point where it switches off. To 

remedy this, a smoothing of the truncation length distribution in that area can be performed, using, for example, a 

locally weighted scatterplot smoothing method. The results of this can be seen in Figure 27.  

 

 
 

Figure 27. Truncation length distribution and resulting geometry with limiter and smoothing applied. 

 

An alternative to the latter is running an iterative method 

that will keep correcting the thickness distribution as the 

planform shape of the geometry and effective sweep changes, 

until a converged shape is reached. Additionally, instead of 

truncating the geometry it can also be advantageous to raise 

the upper surface in order to accommodate the bluntness of 

the leading edge, as has been suggested in previous studies20. 

This displacement can also be blended with the truncation, as 

seen in Figure 28, something that leads to a variety of 

additional options. Although this introduces an additional 

design parameter for each section that also has to be 

distributed along the leading edge, it also opens up a number 

of possibilities. For example, it is now possible to generate the 

required thickness for the blunt leading edge without affecting 

the planform shape of the waverider by manipulating the truncation and displacement in order to keep the tip of the 

geometry at each section in the same place. What also needs to be considered is that the equations described earlier 

do not take into account any effects that the variations of sweep along the leading edge can have on aerodynamic 

heating, as they generally apply for straight, constant sweep, leading edge segments. It is, therefore, expected that 

the optimal leading edge geometries can only be reached utilizing controlled distributions. The previous analysis 

does however provide a reasonable basis for a self-designing geometry, which avoids the use of one or two more 

design variables that would have to control that custom distribution. 

Finally, it is worth noting that apart from the blunt leading edge’s thickness, it can also be beneficial to vary the 

shape parameters that control the RBLE geometries across the leading edge. Aerodynamic heating considerations 

apart, this can potentially further limit any losses in lift due to leakage of the high pressure flow from the underside 

of the waverider around the leading edges as well. Additionally, we may find that for swept leading edges we obtain 

a different set of optimal shapes when it comes to drag and peak heating rates or temperatures. To quantify any 

potential advantages though, a series of full 3D CFD simulations will be required. This, together with the 

development of more detailed geometry parameterization schemes, will be the topic of future research activity. 

Figure 28. Blended displacement of upper 

surface and truncation of original geometry to 

accommodate the bluntness. 
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VI.  Conclusions 

An efficient and robust approach to designing blunt leading edges for waverider forebodies has been developed 

and investigated. The parameterization is very robust and can provide a variety of meaningful shapes. The limited 

number of variables that control the shape make it well-suited for use in large-scale design optimization studies of 

full waverider geometries. The shapes are also able to achieve second order (G2) geometric continuity at the 

interface with the truncated original waverider geometry. Some preliminary results indicate that this can potentially 

affect the receptivity and turbulent transition mechanisms. The geometries can, depending on the case, demonstrate 

significantly better performance than circular leading edges, as shown in Section III-A. This, among other factors, 

strongly depends on the scale and thickness of the blunt part needed. If, for example, a bluntness radius of only a 

few millimeters is required, the ease of manufacturing would potentially outweigh the benefits of using a more 

sophisticated shape. Finally, we presented our preferred method and some remarks for integrating the parametric 

shapes on 3D waverider forebodies, with 3D flow effects being an area that can be further investigated. 
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