Contribution of heritability and epigenetic factors to skeletal muscle mass variation in UK twins
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Abstract 
Background Skeletal muscle mass (SMM) is one of the major components of human body composition, with deviations from normal values often leading to sarcopenia. Confirmed genetic polymorphisms explain only a minor part of SMM variation. Our major aim was to conduct a genome-wide DNA methylation study in an attempt to identify potential genomic regions associated with SMM variation. 
Methods Venous blood DNA samples of over 1,500 mono- (MZ) and dizygotic (DZ) twin females (age 17-82 years) assessed for appendicular lean mass using DXA technology, were subjected to MeDIP-seq DNA methylation profiling genome-wide. Epigenetic analysis was conducted in three sequential stages based on three non-overlapping samples, selected from the total available sample. First, 292 individuals with longitudinal methylation measurements (≥3 years apart) were selected from the sample, and correlations between the longitudinal DNA methylation levels were computed, with 500bp genomic bins displaying significant intra-individual correlations considered as longitudinally stable (lsBINs).  Secondly, an SMM epigenome-wide association scan (EWAS) was performed at lsBINs in a discovery sample of 50 pairs of SMM-discordant MZ twins. Third, SMM-associated lsBINs were replicated in an independent sample of 1,196 individuals. The replicated SMM-association epigenetic signals were followed up using functional genomic annotations.
Results Strong evidence for heritability of SMM was obtained using variance decomposition analysis (h2=0.809±0.050 for SMM). After quality control and analysis of longitudinal stability, the DNA methylation data comprised of 723,029 500bp genomic lsBINs, with positive correlations between repeated measurements (Rrepeated range = 0.114-0.905). Correlations between MZ and DZ twins were 0.51 and 0.38 at a genome-wide average, respectively, and as expected increased with Rrepeated. Testing for DNA methylation association with SMM in 50 discordant MZ twins revealed 36,081 nominally significant results, of which the top-ranked 134 signals (P<0.01 and Rrepeated>0.40) were subjected to replication in an independent sample of 1,196 individuals. Seven SMM-methylation association signals replicated at a false discovery rate <0.1, and these were located in or near genes DNAH12, CAND1, CYP4F29P, ZFP64, TP63, GUSBP11, and TSKU, of which four have previously been highlighted in muscle-related studies. Adjusting for age, smoking and blood cell heterogeneity did not alter significance of these associations. 
Conclusion This epigenome-wide study, testing longitudinally stable methylation sites discovered and replicated a number of associations between DNA methylation at CpG loci and skeletal muscle mass. Four replicated signals were related to genes with potential muscle functions, suggesting that the methylome of whole blood may be informative of SMM variation. 
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1 Introduction

Lean body mass (LBM), in particular skeletal muscle mass (SMM) is one of the three major components of body composition, which includes also body fat (FBM) and bone mass (BBM). As the other two components, it is highly important for normal physiology and metabolism, and deviations from normal values are often associated with various pathological conditions. Of these, the major one is probably sarcopenia, particularly in women [1]. Sarcopenia is as a rule defined as age-related reduction in muscle mass and muscle strength, and affects women more than men with the prevalence as high as 30% for those above 60 years old [2,3]. In the elderly, the loss of LBM is correlated with profound physical impairment and disability with severe clinical consequences, including mobility loss, osteoporosis, increased fracture risk, dyslipidemia, insulin resistance, and increased mortality [4]. 

Despite the clinical significance and despite the fact that strong familial component in LBM variation is well-established [5-8], replicated and confirmed specific genetic polymorphisms are rare and are able to explain only a minor part of the muscular mass variation [9-12]. As such, no solid evidence currently exists supporting an “unfavorable” genotype associated with accelerated sarcopenia or frailty, or a combination of molecular-genetic factors explaining the significant part of the inter-individual variation in SMM. 

Thus, the potential molecular genetic mechanisms regulating SMM remains almost completely terra incognita. On the other side, during the last decade twin studies have made a remarkable contribution to the understanding of the molecular basis of human complex traits variation implementing modern high-throughput genetic and genomic analyses, and recently epigenetics approaches [13,14]. The contribution of epigenetic methods to clarification of carcinogenesis was in particular remarkable [15,16], however, was also important in other fields, such as psychiatric diseases [17], rheumatoid arthritis [18,19], and others. However, we are not aware of studies exploring the epigenetics of muscular mass variation, although there are repeated suggestions that “EWAS studies should investigate the role of this inter-individual variation in DNA methylation, in the age-associated diseases of sarcopenia and dementia” [20] and recent work has focused on characterizing age-related differential methylation signatures in human skeletal muscle [21].

The major aim of this study was therefore to conduct a genome-wide DNA methylation study of a large sample of UK twins, using methylated DNA immunoprecipitation sequencing (MeDIP-seq) in an attempt to identify potential genomic regions where DNA methylation levels are associated with SMM variation.
2 Material and Methods

2.1 Study sample  
The data examined in the present study were from the TwinsUK Adult Twin Registry, described in detail elsewhere [22]. The sample had been collected from the general population through national media campaigns in the UK and without ascertainment for any of the individual characteristics, diseases or traits.  In the present study, 1196 individuals (119 dizygotic (DZ), 428 monozygotic (MZ) twin pairs and 102 singletons - 56 MZ and 46 DZ twins without sibling measurements) were included having all measurements of interest. All studied individuals were females with age range between 17 and 82 years, and average 51.8±13.7 years. The mean BMI was 25.2±4.7 kg/m2, and LBM ranged between 26.0 and 60.9kg, with mean LBM=39.9±5.4 kg. All participants gave written informed consent before entering the study and the St. Thomas’ Hospital research ethics committee had approved the project.

2.2 Muscle mass phenotype  
All three major body composition components, i.e. bone mineral density (BMD), FBM and LBM were measured by using standard whole body DXA method [5], following manufacturer’s recommendations (QDR 4500W system, Hologic Inc, Bedford, MA). Briefly, at installation, the manufacturer's engineer calibrated the instrument, and then daily quality control scans were performed using the spine phantom. Intra-scanner reproducibility, expressed as a coefficient of variation from duplicate measurements in healthy volunteers 1 week apart, was 0.8% at the lumbar spine. Both twins within a pair were scanned on the same day. For the purposes of this study, we defined SMM as the sum of LBM measurements at the four limbs (appendicular lean mass), and not total LBM, which is biased by measurement of non-muscular soft tissue, in particular viscera. 
2.3 Smoking scores
The present sample included 1100 individuals for whom the information on smoking habits was available. Of these, in 446 individuals were smokers, which included 320 current smokers and 126 ex-smokers. 

Blood cell composition. Whole blood cell (WBC) subtype counts were obtained for 441 individuals from the replication sample (n=1196) using FACS of peripheral blood [23]. WBC subtype cell counts were available for four cell types: neutrophils, eosinophils, monocytes and lymphocytes.
2.4 DNA extraction and MeDIP-sequencing
Whole blood samples (6 ml) were collected and stored at -80°C in EDTA tubes. Genomic DNA was extracted using the BACC3 Genomic DNA Extraction Kit (Nucleon) and stored in TE Buffer at -20°C. 1.5 (g of genomic DNA was fragmented to a smear of 200-500bp with the Bioruptor NGS System (Diagenode) and was subsequently end-repaired, adenylated and adapter ligated using the Paired-End DNA Sample Prep kit (Illumina). Methylated DNA was immunoprecipitation using the Magnetic Methylated DNA Immunoprecipitation Kit (Diagenode) as previously described [24]. After efficiency and sensitivity assessment by qPCR, MeDIP-seq libraries were prepared by amplification (Platinum pfx DNA Polymerase kit – Invitrogen), purification (Agencourt Ampure Beads - Beckman Coulter) and validation (Agilent BioAnalyzer analysis) followed by high-throughput sequencing (Illumina HiSeq2000) that generated (50million, 50bp single-end reads.
2.5 MeDIP-seq DNA methylation quantification
After adapter and base quality trimming sequencing reads were mapped to hg19 using BWA v0.5.9 [25]. Alignments with low quality scores (Q<10) and duplicates were filtered, which resulted in an average of 15,684,723 uniquely mapped reads that were subsequently extended to 350bp to represent the average MeDIP fragment size. Fragments per kilobase per million (RPKM) ([Number of mapped, extended reads per bin]/[million uniquely mapped reads per sample]) were quantified in bins of 500bp (250bp overlap) genome-wide using MEDIPS v1.6 [26]. 

2.6 Design of the Study and Statistical Analysis
The analysis of the data included the following stages and corresponding methods and was based on three non-overlapping samples, selected from the total available sample. 
1. The first sample was used for identification of longitudinally stable DNA methylation regions for downstream association analysis. For the selection of these methylation regions, we computed Pearson correlations between the all-available longitudinal measurements of the methylation within the individual. The bins displaying significant intra-individual correlations were considered as longitudinally stable, and from now on will be called, “lsBIN”. We assumed that the lsBINs would also show significant correlation between twins, which could be regarded as an additional confirmation of their non-sporadic nature.  To this end, 292 individuals having sequential measurements of methylation with the same processing batch were selected from the entire available sample (385 individuals having at least two methylation measurements each). Five of them had two pairs of appropriate sequential measurements each (4 individuals had 4 measurements and one 3 measurements with the same batch), the rest two measurements only. The measurements were taken with at least three years' time interval (mean=7.0, SD=1.2, range: 3.4 – 10.8). For the intra-pair correlation, 104 pairs of MZ twins’ (219 pair of measurements) and 63 pairs of DZ twins (129 pair of measurements) with methylation measured at the same date and within the same batch, were selected from the same total sample.
2. The second sample was used for initial identification of the bins potentially associated with SMM variation.  For this aim we selected 50 the most discordant in SMM pairs of MZ twins, implementing simple formula dSMMi = (dSMMi1- dSMMi1)/0.5(dSMMi1+ dSMMi1). The obtained 50 dSMMi were contrasted the corresponding methylation differences, dMTLi.  Only lsBINs were used in this analysis. The DXA scans and methylation were taken with ≤12 months between both types of assessment.
3. The third sample was used for validation in an extended dataset. At this stage, lsBINs identified above were examined in the remaining sample including 1196 individuals in total (see above, p. 4). We tested correlation between SMM and methylation level and used multiple regression analysis where SMM was considered a dependent variable, methylation level, age, and smoking as covariates. In a subset of this sample (N=441) with available WBC, we also considered WBC subtype proportions for association with DNA methylation levels at the seven top-ranked SMM-associated methylation signals, and found no differences in pattern of their association.
To evaluate the contribution of the additive genetic factors (heritability estimates, h2) to variation and covariation of SMM and methylation levels of the significantly associated bins, we carried out uni- and bi-variate variance decomposition analysis, based on a classical polygenic concept of the quantitative trait inheritance (Falconer and Mackay, 1996). The analysis was conducted by MAN statistical package for family-based samples (Malkin and Ginzburg, 2014). 

2.7 Functional genomic and CpG island (CGI) annotations 
Annotations were obtained from UCSC
 (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cpgIslandExt.txt.gz). CGI shores were subsequently defined as 2kb regions up- and downstream of CGI boundaries. Promoter (active, weak and poised) and enhancer (strong and weak) chromatin states predicted by ChromHMM [27] for GM12878 (a lymphoblastoid cell line derived from blood) [28] were also obtained from UCSC
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/wgEncodeBroadHmmGm12878HMM.bed.gz). Distribution of the methylation signals by the levels of their longitudinal stability, and extent of twin correlations amongst CpG islands, promoters and enhancers was compared using standard ANOVA and t-tests.
3 Results

3.1 Heritability of SMM
The crude SMM measurements showed modest, but statistically significant inverse correlation with age (r=-0.097, p=0.006), which was quite substantial when the ratio of SMM to body weight was considered (-0.32, p<0.001). The intra-class correlations of MZ and DZ twins for the age-adjusted SMM were high and significant: RMZ=0.799, p=0.0001 and RDZ=0.366, p=0.0008 respectively, suggestive of genetic influence. Indeed heritability estimate obtained using variance decomposition analysis yielded h2 = 0.809±0.050.

3.2 Identification of longitudinally stable methylation signals
First, from the total 11,524,145 bins quantified genome-wide, those displaying zero methylation levels in >20% of the individuals were excluded, leaving 6,501,931 bins (56.4%) for further analysis (Table 1). Of these, only a minor portion of 723,029 bins (6.3% of the initial 11,524,145 bines) showed significant positive correlation between the longitudinal MeDIP-seq measurements within individuals, ranging between 0.114 and 0.905, with nominal P< 0.05. 
Next, we computed intra-pair correlations between all 6,501,931 bins, for MZ and DZ pairs separately, i.e. RMZ and RDZ. To explore whether the correlation between the twins depends on the bin longitudinal stability, we computed the correlation through all selected bins on each chromosome between the repeated measurements (Rrepeated) and the correlation coefficients between the twin pairs for the corresponding bins, according to their zygosity (RMZ and RDZ), i.e. Rrepeated was contrasted with RMZ (or RDZ). 
The correlation between the RMZ and Rrepeated was at a genome-wide average 0.51 (ranging between 0.41 and 0.58 per chromosome) and was consistently greater than the corresponding correlation between the RDZ and Rrepeated, which was at a genome-wide average of 0.38 (and varied from 0.32 to 0.41 per chromosome). The corresponding results for each chromosome are provided in Table 1, and exemplifying scatterplots for chromosomes of different size are shown in Fig.1 (A & B).  Figure 1C demonstrates clear significant positive correlations between the RMZ and RDZ for the corresponding bins, with obvious tendency, RMZ > RDZ. This relationship, expressed as RMZ/RDZ (considering bins with positive and significant RDZ) shows substantial (0.46-0.53, depending on chromosome) and highly significant (p<0.0001) correlation with Rrepeated (Fig 2). This finding suggests that genomic regions with evidence for genetic heritability are more likely to be longitudinally stable (have greater Rrepeated), as expected.

The statistical significance (P-value) of the correlations of Rrepeated with RMZ (as well as with RDZ) per specific bin varied widely, depending on bin and chromosome.   However, when only bins with Rrepeated>0 and P<0.05 were selected, all the aforementioned correlations (i.e. correlations between Rrepeated and RMZ, or RDZ) became highly significant (P<10-8) for all chromosomes. 

3.3 Identification of the methylation association with SMM variation in MZ twins
We tested whether the lsBINs were associated with SMM variation in the sample of SMM discordant MZ twins using paired t-test to compare methylation levels per lsBIN in 50 discordant twins.  Of 723,029 bin comparisons, 36,081 showed nominally significant (P<0.05) association with SMM, which corresponds closely to 5% expected from type 1 error. These results could not be considered as entirely random, in particular for the estimating of the possible rate of the false positive association signals. The present analysis was conducted on the small fraction of bins (6.3%), selected by quality control and longitudinal stability tests. We therefore opted not to apply statistical correction technique to estimate the rate of false discovery, at this stage, as this approach would at the same time also increase the probability of type-2-error, i.e. losing true results. Instead, of the above lsBINs we selected only those that showed in paired t-test for discordant MZ twins p<0.01 and Rrepeated>0.4. In total, 134 autosomal bins fitted the selection criteria, and were tested them in our replication sample. The distribution of the p-values per chromosome is shown on Figure 3, and the lsBINs from the most significant t-tests (p<0.001) with their genomic positions are listed in supplementary table S1.

3.4 Replication of the association results in the extended population sample
At this stage, correlations of the methylation levels of the 134 aforementioned autosomal lsBINs with SMM (dependent variable) were examined in the remaining 1196 individuals. Results for 20 of them as an illustration are presented on left hand side of Table S2 as unadjusted Pearson correlations, and are arranged in the descending order for p-values. The correction for multiple testing shows that 7 upper results (p-values ranging between 0.0037 and 0.0003) are significant with FDR=0.1 (marked with bold) and are given in Table 2.  
We next tested whether the inclusion of the additional potential covariates, specifically age and smoking status (available for 1,100 individuals) affects the aforementioned association results. The results are given in right hand side of Table 2 and provide partial regression coefficients and their corresponding p-values. As seen, inclusion of the additional covariates did not change significantly the results, although age was a consistently nominally significant covariate for all the tested bins, while smoking did not show significant effects. 
Whole blood is heterogeneous collection of cells and DNA methylation levels may reflect cellular composition. We therefore considered if the seven top-ranked SMM-association signals with evidence for replication (Table 2) were also associated with blood cell subtypes in a subset of individuals from the replication sample, where WBC data were available. We did not observe evidence for association at nominal significance (P = 0.05) between DNA methylation levels at these regions and the proportion of lymphocytes, neutrophils, basophils and eosinophils. 
We explored these SMM-methylation results in more detail, to clarify whether the corresponding correlations between methylation and SMM were likely caused by common genetic and/or environmental factor in SMM. We therefore conducted classical bivariate variance component analysis that allows evaluation of the nature of this correlation, via estimation of contribution of pleiotropic genetic factors (genetic correlation, rG) and shared environmental effects (environmental correlation, rE). A brief summary of the analysis results is given in Table S3 (supplementary material). It provides univariate estimates of heritability (contribution of additive genetic factors) to SMM and each of the seven top methylation signals, and pairwise estimates of rG and rE between each of the bins and SMM. The heritability estimates for all bins were significant and varied between 0.271±0.181 and 0.753±0.091. Interesting, by LRT genetic correlations for all pairs, but two were statistically significant, with p-values from 0.0477 to 0.0002. The remaining bins on chromosome 21(15253001-15253500) and 3(189366751-189367250), showed non-significant rG and rE, when each of them were tested separately. However, by LRT both correlations could not be constrained to zero, with p=0.0068 and 0.0293. Other findings of interest concerned the environmental correlations (rE) for DNA methylation, which were all statistically non-significant (p-values ranged between 0.752 and 0.068), despite the fact that initially those bin were selected in the sample of discordant MZ twins.
3.5 Distribution of methylation signals among the CpG rich and poor genomic regions Selected lsBINs (723,029 in total) relatively to initial total number of bins (11,524,145) were sorted as belonging to (1) CpG islands, (2) CpG shores or (3) not belonging to any of these two regions (CpG sea). Table 3 presents the summary of these data suggesting that there is a significant loss of lsBIN portion in CpG islands (0.0017 vs 0.0032) vs clear enrichment in CpG shores (0.0525 vs 0.0285). 
However, when the distributions of Rrepeated in these three regions were compared, we found that on average significantly (p=2.2-21- 7.6-16) higher values were observed on islands (0.1857±2.4E-03) in comparison to both CGI shores (0.1630±3.1E-04) and open seas (0.1666±8.0E-05). With respect to RMZ, there were no statistically significant difference between the CpG islands and shores, but both had significantly (p=3.5-36 - 1.0-300) higher RMZ in comparison to CpG seas. 
3.6 Distribution of methylation signals among functionally different genomic regions: predicted enhancers and promoters
We conducted a comparative analysis of the distribution of lsBINs mapped to predicted enhancers and promoters (Table 4). We observed statically significantly lower levels of Rrepeated in enhancers (average Rrepeated = 0.1634 ± 0.0004, N=53357) in comparison to promoters (average Rrepeated = 0.1698 ± 0.0013, N= 8412) (t= -7.84, p= 4.7-15), as expected in line with lower observed DNA methylation variability in promoter regions in comparison to enhancers. Within enhancers the percentage of lsBIN decreases (from 8.56% to 2.29%) almost monotonically (Spearman’s rho = -1.0, p<0.0001) with the average longitudinal stability (Rrepeated) of the bin, that is, DNA methylation bins with strong evidence for longitudinal stability are less likely to fall in enhancer regions compared to DNA methylation bins with weaker evidence for longitudinal stability. The relationship with promoters, excluding the last category (where Rrepeated>0.7) shows the opposite trend (Spearman’s rho = 0.94, p<0.005), but the trend became non-significant statistically if the last category is included. A similar test of the lsBIN distribution in CpG islands and shores reveals a significant trend concerning the islands. In CpG islands the content of lsBIN increases with their longitudinal stability, from 0.17% at Rrepeated>0.11 to 1.83% at Rrepeated>0.70 (by Spearman’s rho=0.945, p=0.00048), and this trend is similar to that observed for promoter regions, as expected. 
4 Discussion

This is the first DNA methylation study to focus on skeletal muscle mass (SMM) in a general human population to our knowledge. Implementing the MeDIP-seq technology, we carried out a genome-wide association analysis of DNA methylation levels with SMM variation in a dataset of 1,550 middle-aged females. Our aims were two-fold. Due to the burden of multiple testing incorporating over 10 million tests, our first aim was to attempt to restrict the methylome to the methylation signals that were minimally prone to fluctuations over the scale of few years in middle aged individuals, as these changes may in part be caused by stochastic noise. To this end, we first performed longitudinal analyses to identify methylation signals that were longitudinally stable. The second aim was to use the selected longitudinally stable bins (lsBIN) in an association study with SMM in two independent samples, to identify methylation signals linked to SMM that showed robust results across multiple samples.
After quality control and analysis of longitudinal stability, our data comprised of 723,029 bins showing statistically significant correlations between repeated measurements over time. Interestingly, and as expected - the magnitude of these correlations (Rrepeated) correlated significantly with the correlations between twins regardless of their zygosity, although correlations between MZ twins very clearly tended to be higher than DZ twins (Fig 1). Moreover the ratio of these correlations, RMZ/RDZ also increased linearly with Rrepeated, suggesting that familial, likely genetic factors determined this stability, as expected. This idea was further confirmed in our family-based variance component analysis of the bins most significantly associated with SMM (Table S3), where the additive genetic component of variation, heritability, which could be as high as 0.753± 0.091.

Several studies undertaken during the past decade have estimated DNA methylation twin heritability to variation in DNA methylation at individual CpG sites across the genome (e.g. [29,30]). Comparing the correlations in DNA methylation levels in blood samples between monozygotic and dizygotic twins’ genome-wide (26,690 CpG-sites), Bell et al. [24] estimated mean heritability of 0.18 (95%CI: 0.168–0.185). In agreement with this also estimates obtained using Illumina HumanMethylation450 array on peripheral blood leukocytes in a family based sample (McRae et al., 2014). The narrow sense methylation heritability in a genome-wide analysis of four brain regions showed quite wide range of estimates in [31] study. The mean estimate of heritability for all available loci in the study was only 0.028. However, when only loci deemed heritable included, mean heritability estimate was 29.9%, ranging from almost 0 to almost 1.0. Remarkable was the fact that the distribution pattern of their heritability estimates was virtually identical in 15,469 loci in CpG islands and in 5531 loci mapped to non CpG islands.  Interestingly only about 4% of the tested loci, in this study were considered heritable. The accurate estimate of genome DNA methylation depends how exactly this proportion is calculated, but in general this estimate is of the same order of magnitude as that observed in our study. 
Our study also showed that the higher the heritability estimate, the more longitudinally stable is methylation cite (Fig 2), which is an expected pattern. Furthermore, in our study the correlations between MZ twins tended to be higher for bins located in CpG islands and CGI shores in comparison to “open sea” regions (Table 3), which has not been previously explored in depth due to the limited coverage of the Illumina 450k array on gene regions. In a similar vein, we observed trends with respect to the longitudinal stability of methylation bins that mapped to enhancers and promoters. The percentage of bins mapped to enhancers decreased almost monotonically with increase of Rrepeated, while promoters and CpG islands displayed an opposite trend, as expected. These observations are in line with the observed epigenetic variability and stability at enhancers and promoters, but also interestingly suggest that longitudinally stable methylation in enhancers is a rare phenomenon that does occur and deserves further study.
It is presently well established that enhancers serve as distal regulators of gene expression. The published data suggests that enhancer methylation is drastically altered in cancers and is closely related to altered expression profiles of cancer genes (e.g. [32]. More recent studies agree with this [33,34] suggesting that enhancer hypo- / hyper-methylation could be critical in transition from normal to aberrant status of the cells. Thus, it looks that the low content of longitudinally stable methylation sites mapped to enhancers play a protective role in transcription regulation of the structural genes.

Our primary aim was to assess the association between longitudinally stable regions of the blood methylome with SMM, with the idea that the findings can contribute towards improving our understanding of the molecular mechanisms involved in sarcopenia and related disease. We tackled this problem by comparing the longitudinal stable methylation signals to SMM using two study designs of epigenome-wide association analysis. First, we used a unique MZ discordant design to control for genetic difference and target methylation changes related to SMM that may mediate the effect of the environmental risk factors to SMM. In the second stage, we explored the association of the top-ranked SMM-methylation signals in a large population-based sample from the TwinsUK cohort, unselected for SMM. Our two-stage association analysis suggests that the methylation status of 5 to 7 bins is significantly associated with variation of SMM. The peak 7 regions mapped predominantly within gene bodies (4 of 7) and near to the gene transcription start site (within 10kb), with the exception of the intergenic signal nearest to the CAND1 gene (32kb to TSS). Of the 7 reported genes, the top-ranked SMM signal was located within the DNAH12 gene, which has previously been shown to be expressed in vastus lateralis muscle tissue upon 20 weeks of endurance exercise training [35]. Muscle-related literature has also been published for nearest genes of additional peak-ranked regions detected in the current study. In mice, Zfp64 has for example been demonstrated to participate in regulation of mesenchymal cell differentiation by suppression of myogenic- and promotion of osteoblastic cell fate through Notch signalling [36]. Tp63 has been shown to function as a marker for skeletal muscle differentiation [37] and is also used for defining subsets of muscle-invasive bladder cancers [38]. Finally, GUSBP11, has been listed in the C480 FANTOM5 co-expression cluster with numerous muscle-related top-ranked ontology terms such as skeletal muscle, contractile cell, myoblasts, striated muscle tissue, myotome etc. [39]. Hence, although the current study was conducted using whole blood, 4 of the 7 reported genes, had previously been recognized in muscle-related studies suggesting that the methylome of whole blood may indeed be informative of SMM variation. 
As mentioned in the Introduction, despite the fact that genetic factors make a significant contribution to SMM variation (>30% of the phenotypic variation), specific genes and polymorphisms underlying this genetic variation are largely unknown. Consistent results were currently obtained only within the FTO gene including our study [9], although it is possibly due to correlation of the SMM with adipose tissue. In our sample no significant differential methylation signals were observed in the proximity of its cytological location, 16q12.2. Currently, as far as we aware, no SNPs association at GWAS significant level (P<5x10-8) have been reported. Nevertheless, of the several recent studies, one by Guo et al. [40] provides the evidence of significant association of three SNPs (rs2507838, rs7116722, and rs11826261) in/near GLYAT (glycine-N-acyltransferase) gene in Chinese and in Caucasian populations. However, this gene is also mapped, 11q12.1 relatively far (~2,000Kbs) to consider as reliable candidate. Thus clearly additional GWAS and EWAS are needed to achieve definite conclusions concerning genomic governing of SMM variation.
There are certain limitations in the present study. The main one concerns the usage of blood that could be not the best surrogate for muscle. Whole blood includes a heterogeneous group of cells whose composition can change substantially in response to a variety of intrinsic and environmental factors, e.g. infection. We assessed the association between DNA methylation levels at the seven SMM-associated and replicated DNA methylation loci with blood cell counts available for the proportion of lymphocytes, neutrophils, basophils and eosinophils in a subset of the individuals in our sample. We found no evidence that variability in WBC subtypes has a major effect on the top-ranked muscle mass related signals in our study. The finding that we were also able to replicate the results in a large independent sample, suggests that whole blood may be informative of SMM variation. MeDIPseq provides a cost-effective approach to exploring broad methylation patterns over the genome, but the resolution of the signal is not at single base pair level CpG-sites. This is additional major limitation in interpreting the methylation signals, requires a follow up of the identified signals at greater resolution in future studies.  Additional limitations concern the fact that the results of this analysis maybe limited to female population only, since males were not examined in the present study. However, using only females, on the other hand may not necessarily be a limitation, but rather a possible advantage. This approach is not prone to potential sex differences in endocrine milieu, especially sex steroids, lifestyle factors, etc and their interactions with genotype and epigenotype, which are likely the rule rather than exception (Weiss et al., 2006; Vigé et al., 2008).  Physical activity level, other lifestyle factors, medications and other environmental factors were not taken into account in this study, while they may also affect the magnitude of the estimated effects. Finally, there are also some limitations related to the power of the analysis. To achieve EWAS significance accounting for multiple testing at millions of DNA methylation CpG-sites would require very large sample sizes or very large effects, which have not been observed to date. To this end our association analysis was based only the longitudinally stable fraction of the methylome (<6.5% of the initial methylome) and conducted in two stages: a discovery analysis in 50 pairs of discordant MZ twins and a replication study in an independent sample of 1196 individuals. 
5 Conclusions

This large exploratory EWAS study confirmed statistically highly significant involvement of the genetic factors (heritability) to variation of skeletal muscle mass in general human population, and also suggested that methylation levels of some genomic regions could also be reliably associated with this variation.  Four of our 7 muscle mass associated methylation signals were in or near genes previously linked to muscle, and in particular the top-ranked DNAH12 gene. The study also showed that our approach based on a selection of the longitudinally stable bins reduces substantially the multiple testing problem, and proved to be effective in identification of the methylation sites potentially affecting SMM variation.
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Legends to Figures

Figure 1. Pairwise scatterplots of correlation coefficients between the Rrepeated, RMZ, RDZ for the chromosomes of different size. Rrepeated – longitudinal correlations between the repeated methylation measurements per bin.  RMZ and RDZ are intra pair correlations methylation levels/ per bin between the mono- and dizygotic twins. Columns A, B and C shows correlation of Rrepeated with RMZ, RDZ, and between RMZ and RDZ for theselected chromosomes.
Figure 2. Dependence of RMZ/RDZ ratio on RRepeated. 
Rrepeated – longitudinal correlations between the repeated methylation measurements per bin.  RMZ and RDZ are intra pair correlations methylation levels per bin between the mono- and dizygotic twins.

Figure 3. Results of discordance pairwise t-test for the sample of MZ twins, discordant on appendicular lean mass, in 22 chromosomes in accordance to bin start position for bins having R repeated > 0.4.   Rrepeated – longitudinal correlations between the repeated methylation measurements per bin.
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