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ABSTRACT 10 

Extreme rainfall is quantified in engineering practice using Intensity–Duration–11 

Frequency curves (IDF) that are traditionally derived from rain-gauges and more 12 

recently also from remote sensing instruments, such as weather radars. These 13 

instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at 14 

the point scale while weather radar averages precipitation on a relatively large area, 15 

generally around 1 km2. As such, a radar derived IDF curve is representative of the mean 16 

areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In 17 

this study, we quantify subpixel variability of extreme rainfall by using a novel space-18 

time rainfall generator (STREAP model) that downscales in space the rainfall within a 19 
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given radar pixel. The study was conducted using a unique radar data record (23 years) 20 

and a very dense rain-gauge network in the Eastern Mediterranean area (northern 21 

Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves 22 

representing the radar subpixel extreme rainfall variability, were developed fitting 23 

Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found 24 

that the mean areal extreme rainfall derived from the radar underestimate most of the 25 

extreme values computed for point locations within the radar pixel (on average, ~70%). 26 

The subpixel variability of rainfall extreme was found to increase with longer return 27 

periods and shorter durations (e.g. from a maximum variability of 10% for a return 28 

period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min 29 

duration). For the longer return periods, a considerable enhancement of extreme 30 

rainfall variability was found when stochastic (natural) climate variability was taken into 31 

account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can 32 

be of a major importance for different applications that require very local estimates of 33 

rainfall extremes. 34 
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Extreme rainfall is often quantified using Intensity (or Depth)–Duration–Frequency 41 

curves (IDF or DDF). IDF curves are essentially cumulative distribution functions of 42 

rainfall intensity maxima conditioned on duration, linking the rainfall maximum intensity 43 

recorded for a given duration with its return period (Coles et al., 2001; Katz et al., 2002; 44 

Koutsoyiannis et al., 1998). The recent availability of relatively long records of rainfall 45 

measurements from weather radars in a spatial and temporal resolution of ~1 km2 and 46 

~5 min, gives the possibility to explore the inter-gauge scale patterns and variability of 47 

extreme rainfall over large areas. A few contributions have been devoted to the use of 48 

weather radars for analyzing rainfall extremes (e.g. Allen and DeGaetano, 2005; Durrans 49 

et al., 2002; Lombardo et al., 2006; Overeem et al., 2010) and for developing IDF curves 50 

based directly on radar rainfall estimates (e.g. Eldardiry et al., 2015; Marra and Morin, 51 

2015; Overeem et al., 2009; Paixao et al., 2015). 52 

 Rain-gauges and weather radars are recording precipitation at different spatial 53 

scales. While the former is essentially a point scale measurement, the latter refers to a 54 

volume integral scale. In fact, in most cases, the ratio between observation scales (for 55 

standard C-band radar and a standard rain-gauge) is in the order of 107. This means that 56 

differences between rainfall intensity for a given duration and return period are 57 

expected when comparing IDF curves developed by a rain-gauge or by a weather radar 58 

(gauge-IDF and radar-IDF from here on). 59 

A radar-IDF curve for a given location represents the extreme of mean areal 60 

rainfall over a particular radar pixel. A single value is therefore assigned for given 61 

duration and return period to the radar pixel. The extreme rainfall expected in any 62 
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single point within the radar pixel cannot be estimated directly from the radar data. At 63 

the same time, quantifying the uncertainty range of the radar subpixel variability of 64 

extreme rainfall around the radar-IDF curve can be of major importance for applications 65 

requiring local estimates of rainfall extremes; for example, the managing and designing 66 

of urban drainage systems (Gires et al., 2012; Gires et al., 2013; Gregersen et al., 2013; 67 

Ochoa-Rodriguez et al., 2015; Willems et al., 2012). 68 

 One way to estimate the extreme rainfall variability is to set a large number of 69 

point-scale measuring devices (i.e., rain-gauges or disdrometers) within a weather radar 70 

pixel domain, recording at the same temporal resolution of the weather radar. 71 

Unfortunately this approach of recording the entire “true” extreme rainfall variability is 72 

not a realistic option as numerous gauges will be required. Alternatively, the “true” 73 

rainfall can be assessed using a limited number of rain-gauges interspersed within the 74 

subpixel domain. The number and setup of these rain-gauges can be determined using 75 

reduction methods such as the Variance Reduction Factor (Krajewski et al., 2000; 76 

Morrissey et al., 1995; Peleg et al., 2013; Rodríguez-Iturbe and Mejía, 1974b; Villarini et 77 

al., 2008). However, dense rain-gauge networks should have been installed a priori 78 

within the area of interest, recording the same period as the weather radar. 79 

Unfortunately, no such dense rain-gauge networks exist today (Krajewski et al., 2010).  80 

An alternative is to estimate the ratio between the areal average rainfall and a 81 

point rainfall using Areal Reduction Factors (Rodriguez-Iturbe and Mejía, 1974a; 82 

Sivapalan and Blöschl, 1998; Svensson and Jones, 2010; Veneziano and Langousis, 2005). 83 

The reciprocal of the reduction factor may allow a good estimation of the mean extreme 84 
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rainfall in one point from weather radar, but it cannot assess the extreme rainfall spatial 85 

variability.    86 

 In this study, we explicitly quantify the radar subpixel variability of extreme 87 

rainfall by using the STREAP (Space-Time Realizations of Areal Precipitation) model to 88 

downscale recorded radar rainfall over a given pixel. STREAP is a novel stochastic rainfall 89 

generator able to simulate high-resolution rainfall fields while preserving the rainfall 90 

spatio-temporal structure and statistical characteristics (Paschalis, 2013; Paschalis et al., 91 

2014; Paschalis et al., 2013). While the model is conceived as a precipitation generator, 92 

here it is essentially used only for spatial-disaggregation since the external storm 93 

properties are prescribed from observations. The STREAP model is calibrated and 94 

validated using a dense rain-gauge network covering the typical scale of remote-sensing 95 

devices (~4 km2). Afterwards, we use the STREAP model to downscale the radar rainfall 96 

record from the pixel scale (1 km2) to subpixel scale (10-4 km2) and we estimate the 97 

extreme rainfall variability of subpixels. Finally, we compute how well the temporal 98 

variability of extreme rainfall that was simulated starting from the radar observations 99 

represents the current stochastic (natural) climate variability by applying a 100 

bootstrapping technique on the simulated record. Throughout this study we consider 101 

the radar data to represent the “true” mean areal rainfall. The instrumental errors 102 

related to weather radar and dense rain-gauge network data were discussed previously 103 

by Peleg et al. (2013) and by Marra and Morin (2015) and are not further analyzed here. 104 

 105 
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2 Data 106 

2.1 Dense rain-gauge network 107 

A dense rain-gauge network covering an area of 4.41 km2 was deployed in November 108 

2011 near Kibbutz Galed (Israel), about 15 km east of the Mediterranean coastline (Fig. 109 

1). The network has been fully described by Peleg et al. (2013) and here a brief summary 110 

is given. The network consists of 26 tipping bucket rain-gauges located at 13 different 111 

stations maintained by the Hydrometeorology Lab of the Hebrew University of 112 

Jerusalem. At each station two gauges separated by a distance of 1 m, as suggested by 113 

Ciach and Krajewski (1999) and Krajewski et al. (2003), were installed to maintain good 114 

quality control (QC). The rain-stations are non-uniformly distributed, due to the terrain 115 

limitations, with intra-distances between 57 and 2,672 m. The sampling resolution of 116 

the gauges is 1 minute, aggregated from a resolution of 0.1 mm per tip (accuracy of 3% 117 

up to 50 mm h−1). To the best of our knowledge, this is the only rain-gauge network 118 

located in a Mediterranean climate, with such a high gauge density, although a few 119 

similar spatially distributed networks are located in other climates (Ciach and Krajewski, 120 

2006; Fiener and Auerswald, 2009; Jaffrain and Berne, 2012; Jensen and Pedersen, 121 

2005; Pedersen et al., 2010). 122 

In this study, rainfall records collected from 1 November 2011 to 1 May 2015 are 123 

used; the total spatially averaged rainfall accumulation was 1,191 mm divided into 137 124 

rain events. Separation between rain events was done considering a minimum of 6 hour 125 

dry period. Rain events with cumulative rainfall depth less than 0.5 mm or with fewer 126 
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than 9 stations recording rain (out of 13) are excluded. An inherent problem with 127 

tipping-bucket-gauges is that only the time at which the bucket is completely filled is 128 

recorded and no information is available on the actual period of time necessary for the 129 

filling. To overcome this problem, a backward linear interpolation to the previous 130 

recorded tip was applied (Peleg et al., 2013). 131 

Strict QC procedures are conducted to minimize the measurement errors. Every 132 

minute the rainfall intensities measured by the two rain-gauges of each station are 133 

compared; if the difference exceeds 0.2 mm (two ticks per minute), the entire record of 134 

the station for the specific rainfall event is considered to be corrupted and is removed. 135 

The root mean square error of the rain-stations is found by 136 

2

1 21

1 N i i
i

RMSE g g
N

                (1) 137 

where N is the sample size and 1
ig  and 2

ig  are the i-th rain-gauge measurements of the 138 

two gauges at each rain-station, while recording rain. The RMSE found for all stations 139 

after QC is very small, in a range between 0.0278 mm min-1 and 0.0312 mm min-1 (out of 140 

the maximum error possible of 0.2 mm min-1). 141 

2.2 Weather radar 142 

The E.M.S company weather radar system, a C-Band (5.35 cm wavelength) non-Doppler 143 

instrument, located about 63 km south of the dense rain-gauge network, is used in this 144 

study; data from this radar have been extensively used for climatological and 145 

hydrological studies in the past (Karklinsky and Morin, 2006; Marra and Morin, 2015; 146 
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Morin et al., 2001; Morin and Gabella, 2007; Peleg et al., 2013; Peleg and Morin, 2012; 147 

Peleg and Morin, 2014; Rozalis et al., 2010). The system was deployed in the late '80s 148 

and archives data since October 1990, providing almost continuous data records for 23 149 

years (1990-2013). Small data gaps exist due to short periods of radar malfunction and 150 

regular maintenance. The radar observation geometry is characterized by a spatial 151 

resolution of 1.4° x 1 km and a temporal resolution of 5 min per volume scan.  152 

Radar quantitative precipitation estimation (QPE) is obtained applying a 153 

combination of (1) physically based corrections, accounting for errors due to antenna 154 

pointing, ground echoes, wet radome attenuation, beam blockage, attenuation, vertical 155 

profile reflectivity and (2) quantitative adjustments based on the comparison with rain-156 

gauge measurements of the official Israel Meteorological Service network, i.e. excluding 157 

gauges from the network presented above (Marra and Morin, 2015; Marra et al., 2014; 158 

Morin and Gabella, 2007). A fixed reflectivity to rain rate conversion Z–R relationship of 159 

Z=316R1.5 (Z in mm6 m-3, R in mm h-1), which follows previous radar studies over the area 160 

(Morin and Gabella, 2007; Peleg and Morin, 2012), is used and the radar data are 161 

converted to a 1-km2 Cartesian grid. A detailed description of the correction procedure 162 

and assessment of the accuracy of the QPE can be found in Marra and Morin (2015). 163 

The analysis was conducted on a single radar pixel partly covering the area 164 

sampled by the dense rain-gauge network (Domain B in Fig. 1). A total of 14,231 mm of 165 

rainfall were recorded between the years 1990 and 2013 and are divided into 585 rain 166 

events, i.e. an average of 24.3 mm per event. 167 
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 168 

3 Methods 169 

The gap between the remote sensing scale (weather radar or satellite) and the point 170 

scale (disdrometer or rain-gauge) can be bridged using downscaling approaches. Here, 171 

we take advantage of the STREAP model (sub-section 3.1), a high-resolution space-time 172 

rainfall generator, to stochastically downscale the observed radar rainfall. The subpixel 173 

extreme rainfall variability is estimated constructing IDF curves based on the ensemble 174 

of downscaled rainfall time series in multiple points. Two domains are set up for the 175 

downscaling procedure (Fig. 1). Domain A is used for training, i.e., for the calibration and 176 

validation of the STREAP model. This domain is composed of a network of 44,100 virtual 177 

rain-gauges (simulated using the STREAP model) by discretizing the 2.1 x 2.1 km2 178 

domain into 10 x 10 m2 pixels, covering the same domain of the actual dense rain-gauge 179 

network (nearly 4 years of observations) . Domain B is used for the downscaling of 180 

rainfall from the radar pixel scale to nearly point scale (Figs. 1 and 2); it is the nearest 181 

radar pixel covering the gauge network. A network of 10,000 virtual rain-gauges is 182 

simulated discretizing the 1 x 1 km2 radar pixel (23 years of observations) into 10 x 10 183 

m2 pixels. A spatial scale of 10 x 10 m2 can be considered point scale because below this 184 

resolution changes in the spatial correlation of the rainfall are very small (e.g. ~0.5% for 185 

a 1 min time scale, see Peleg et al., 2013) and the rainfall spatial variability is 186 

substantially suppressed. The ensemble of downscaled point rainfall time series, i.e. 187 

virtual rain-gauges that are simulated using the STREAP model in Domain B, is used to 188 

compute the IDF curves (Fig. 2), and represents a quantitative estimate of the subpixel 189 
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rainfall variability (sub-section 3.2). Last, bootstrapping is applied to the simulated 190 

rainfall record in order to generate samples representing the stochastic (natural) climate 191 

variability, which is then compared with the single realization recorded by the radar 192 

(sub-section 3.3).  193 

 194 

3.1 Space-time stochastic rainfall model 195 

The STREAP  model is a rainfall generator designed for simulating high-resolution rainfall 196 

fields while preserving the rainfall spatio-temporal structure and statistical properties 197 

(Paschalis, 2013; Paschalis et al., 2014; Paschalis et al., 2013). It is a substantial 198 

improvement of the previous works of Bell (1987) and Kundu and Bell (2003) and mainly 199 

of the String of Beads model (Pegram and Clothier, 2001a; Pegram and Clothier, 2001b). 200 

It is composed of three hierarchical modules: (a) a storm arrival process; (b) temporal 201 

evolution of the mean areal intensity and fraction of wet area during a storm; and (c) 202 

evolution of the space–time structure of rainfall during a storm.  203 

3.1.1 General setting of the STREAP model 204 

The STREAP model and its calibration process using weather radar products were 205 

discussed in detail by Paschalis (2013) and Paschalis et al. (2013). Here we present only 206 

the modifications that are made to tailor the model structure to the specific case study 207 

and to set the model to a finer spatial resolution than the original application.  208 
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In contrast to the original STREAP model, the storm arrival process (i.e., rainfall 209 

event duration and timing) is not stochastically generated as the goal here is to 210 

downscale rainfall of observed storms rather than generating an ensemble of new 211 

storms. We used the storm arrival sequence obtained either by the dense rain-gauge 212 

network, for the domain A, or by the weather radar for the domain B.  213 

The statistics of the mean areal rainfall during a storm is defined by two 214 

variables: the mean areal rainfall intensity (image mean flux, IMF) and the wet area 215 

fraction (WAR). Throughout the paper we use the notation introduced by Pegram and 216 

Clothier (2001a) and adopted by Paschalis et al. (2013). Originally, the IMF and WAR 217 

time series are simulated as a bivariate autocorrelated stochastic processes that depend 218 

also on the storm duration. Here, the observed IMF time series are used as model 219 

inputs, taken as the mean of the 1-min rainfall recorded by the dense rain-gauge 220 

network (domain A) or as the rainfall intensity recorded by a single radar pixel (domain 221 

B). As the weather radar data recorded rainfall in time intervals larger than the rain-222 

gauges (i.e., 1 min intervals), a simple linear interpolation of the rainfall intensity from 223 

the radar interval to 1 min was applied. The WAR was stochastically generated using the 224 

data derived from the dense rain-gauge network as explained below. This change from 225 

the original model is made due to the fact that a much denser rain-gauge network is 226 

required in order to estimate the WAR autocorrelation function. 227 

The following changes were applied to module (b) of the original STREAP 228 

scheme: (i) a variable WARg was generated using a Gaussian distribution ,WAR WAR ; 229 
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(ii) WAR autocorrelation function was defined using AR(1) model; and, (iii) WAR time 230 

series were stochastically generated following a distribution anamorphosis 231 

transformation (see for details Schleiss et al., 2009 and Schleiss et al., 2011), which 232 

couples the stochastically generated WARg time series to the observed IMF time series 233 

as: 234 

1 2 1( ) ( ) 1 ( )WAR IW w IW g WARWAR t F U IMF t F U WAR t          (2) 235 

where IW is the correlation between WAR and IMF observed time series, ( )wU IMF t  236 

is the Weibull quantile function for the IMF time series transformed using the two 237 

parameters of the IMF distribution ,IMF IMF , ( )gU WAR t  is the Gaussian quantile 238 

function for the WAR time series which was generated using the AR(1) model and 239 

transformed using (1) (1),AR AR  and 1F  is the Gaussian inverse cumulative probability 240 

distribution function ~ (0,1)N . The observed WAR was estimated by applying Thiessen 241 

polygons to every rain-station i.e., if a rain-station was recording rainfall at a given 242 

minute, its polygon was considered wet and was added to the total wet area fraction. 243 

The correlation term IW is estimated using the mean intensity field from rain-gauge 244 

data. 245 

The spatial rainfall field is simulated as a probability transformation of an 246 

isotropic Gaussian random field characterized by a simple one-parameter exponential 247 

autocorrelation function. Commonly, a three-parameter exponential function is used to 248 

quantify the spatial structure of rainfall at small spatial scales (Krajewski et al., 2003; 249 
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Villarini et al., 2008). The rainfall spatial correlation function for the radar subpixel scale 250 

was estimated using the dense rain-gauge network by Peleg et al. (2013), who obtained 251 

values of C1=0.923, C2=3 and C3=1  for the three-parameter exponential function at  the 252 

1-min scale. In this study, a simple one-parameter exponential function can be used 253 

instead of the three-parameter one, as the C3 parameter is equal to 1 and the C1 254 

parameter, that represents the measurement errors for each side-by-side rain-gauge, is 255 

not accounted for and therefore is equal to 1. Additional details regarding the spatial 256 

structure of rainfall in the study area and a comparison between the observed and 257 

modeled spatial structures are given in Appendix A and Supplementary Material S1. The 258 

equations describing the generation of the Gaussian fields using Fast Fourier Transform 259 

method and the calculation of the 2-D spectrum, assuming an exponential decay of the 260 

autocorrelation, can be found in Paschalis et al. (2013). 261 

As in the original scheme, a lognormal function was applied to convert the 262 

generated Gaussian field to the final rain field; we assume that the non-zero part of the 263 

subpixel spatial rainfall distribution follows the observed lognormal distribution that is 264 

recorded by the weather radar for this region (Karklinsky and Morin, 2006; Peleg and 265 

Morin, 2012 and Fig. S2). The information needed for this transformation is the IMF, 266 

WAR and a rainfall coefficient of variation (CV), which is a model parameter. The spatial 267 

rainfall fields are correlated in time by imposing the Fourier coefficients of the Gaussian 268 

fields to follow an ARMA process (i.e., temporal correlation in the Lagrangian system of 269 

reference). Ideally, both the CV and ARMA parameters should be estimated using the 270 

rain-gauge network, however, the rain-stations are too sparse. Therefore, the 271 
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parameters were estimated from the weather radar data and scaled to higher resolution 272 

as described in Supplementary Material S2. 273 

The advection of the rain field is also simulated by the STREAP model. Here, we 274 

fixed the direction component to match the westerly winds, the most frequent wind 275 

direction detected for this region (Peleg and Morin, 2014), assuming that small scale 276 

structure is driven by the general flow. The speed component of the advection was 277 

generated using the Kappa distribution (Appendix B) based on the statistics presented 278 

by Peleg and Morin (2012) for this region. 279 

3.1.2 Example of a simulated rain event 280 

As an example of the STREAP model capability, we consider the first rain event that was 281 

recorded by the dense rain-gauge network. It started on November 15th, 2011 at 05:58 282 

and lasted till 09:37. The total duration of the event was 220 min, during which an 283 

average of 5.6 mm of rainfall was accumulated according to the gauges. The maximum 284 

1-min rain intensity recorded by the spatially averaged rain gauges during this event was 285 

84 mm h-1. The event is characteristic of an abrupt transition from no-rain to 50 mm h-1 286 

intensity in a few minutes; typical of convective cell activity for this region (Sharon and 287 

Kutiel, 1986). 288 

Three consecutive rainfall fields generated using the STREAP model for the first 289 

three minutes are presented in Fig. 3. The observed IMF (simulated IMF is imposed), 290 

simulated and observed max rainfall intensity (MRI) and WAR are presented in Fig. 4a. 291 

The MRI is well simulated by the model. The WAR parameter is not perfectly captured 292 
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but this is expected as there is a large uncertainty around the WAR estimation from 293 

Thiessen polygons. An example of the variability of the maximum point rain intensity 294 

that was “potentially” recordable by the 44,100 virtual rain-gauges for this event is 295 

presented in Fig. 4b. 296 

3.2 IDF curves computation 297 

The generalized extreme value (GEV) distribution (Appendix C) is used worldwide to 298 

model rainfall extremes since theoretically it is the limit distribution of block maxima of 299 

iid distributed random variables following the Gumbel, Fréchet and Weibull distributions 300 

(Katz et al., 2005). Following previous rainfall frequency studies based on radar data 301 

(Eldardiry et al., 2015; Marra and Morin, 2015; Overeem et al., 2009; Overeem et al., 302 

2010; Paixao et al., 2015), we developed IDF curves fitting a GEV distribution to the 303 

series of annual maxima. In order to keep consistency with (Marra and Morin, 2015), we 304 

derive IDF curves over a single radar pixel (i.e. Domain B), corresponding to the pixel 305 

overlapping with the dense rain-gauge network, focusing on 20 min, 1 h and 4 h 306 

durations.  307 

 In this study IDF curves are developed from two different sources: (1) weather 308 

radar (single pixel) representing the extremes of the areal mean precipitation; and (2) 309 

each 10 x 10 m2 grid cell corresponding to downscaled time series of rain intensity (i.e., 310 

“virtual” rain-gauges; VG from here on) representing the rainfall variability at radar 311 

subpixel scale. No condition is imposed on the time concurrency of the radar and VG 312 

maxima (i.e. radar maxima are not necessarily also point maxima and vice versa). 313 
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 In total, 100 downscaled scenarios are stochastically generated using the STREAP 314 

model, simulating the radar subpixel rainfall variability (domain B) for the 23-years of 315 

data. We considered 100 replicates sufficient to average out the randomness of the 316 

downscaling approach. For each replicate 10,000 IDF curves representing the VG are 317 

calculated, i.e. one for each VG. Thus, for each duration (20 min, 1 h and 4 h) a total of 318 

1,000,001 IDF curves are finally available: one representing the real weather radar and 319 

1,000,000 representing the virtual gauges.  320 

 321 

3.3 Bootstrapping 322 

A bootstrapping procedure (Efron, 1979) is applied to estimate the spatio-temporal 323 

stochastic variability of the subpixel rainfall maxima. A single realization is in fact 324 

insufficient to fully analyze the stochastic (natural) climate variability of the current 325 

climate, especially for extremes. Bootstrapping has been applied many times in the past 326 

to resample natural variability (e.g., Alexander and Arblaster, 2009; Hänggi and 327 

Weingartner, 2011; Köplin et al., 2014). Bootstrapping is based on the assumption that 328 

the 23-years of data are just one possible realization out of a larger population. Here, 329 

1,000 realizations of 23-years each are generated out of the original sample by block 330 

bootstrapping of the entire years, sampling with replacement, meaning that a specific 331 

year from the sample can appear numerous times or never in each realization. Finally, 332 

for each of the 1,000 bootstrapped realizations, 10,000 VG-IDF curves were computed. 333 

 334 
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4 Rainfall intensity validation 335 

The STREAP model was validated using the point variability of a 1-min rain intensity as 336 

observed from the 13 pairs of real rain-gauges. For simplicity, results from one 337 

realization only are presented here. 338 

The point variability of a 1-min rain intensity (Weibull distributed) was validated 339 

in domain A. The rain intensity distributions of the 26 observed rain-gauges and the 340 

maximum—minimum range for the rain intensity distribution that is simulated over the 341 

44,100 virtual rain-gauges with the STREAP model across quantiles is presented in Fig. 5. 342 

For the largest part of the distribution (quantile larger than 0.3), the observed rain 343 

intensity variability was larger than the corresponding simulated one, indicating that the 344 

STREAP model slightly underestimates the rainfall variability over the domain (Fig. 5a). 345 

As a matter of fact, only one or two rain-gauges are falling outside of the simulated 346 

range. The part of the distribution representing the rainfall extreme in the domain 347 

(0.95—0.99 quantile range), which is the main interest in this study, is well represented 348 

(Fig. 5b). The only two rain-gauges which are outside the simulated range are marked in 349 

Fig. 5b along with their companion 1-m away rain-gauges, which are within the 350 

simulated range. Ideally, the two side-by-side rain-gauges should have reproduced the 351 

exact same distribution, but even after a strict QC there are small differences between 352 

the two gauges that reflect in the CDFs. This implies that the true underestimation of 353 

the STREAP rainfall variability is very small, if exists at all, and we conclude that the 354 

simulated point rainfall variability is well within the observed rainfall variability taking 355 

into account the errors in measurements of the tipping-buckets. For this reason, the 356 
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following results obtained with STREAP simulations should be regarded as a very good 357 

proxy of the real system.   358 

 359 

5 Results and discussion 360 

The results concerning the radar subpixel variability of extreme rainfall are presented in 361 

Figs. 6 and 7. Radar-IDF curves and the 5—95 quantile range of the VG-IDF representing 362 

the subpixel variability as computed from STREAP are presented in the main panel of 363 

Fig. 6. Cumulative distribution functions of the VG-to-radar ratio are presented for the 2, 364 

10 and 50 years return period (upper panel of Fig. 6) and for the 20 min, 1 h and 4 h 365 

durations (right panel of the Fig. 6). In addition, the 5—95 quantile range of the ratio of 366 

the VG-to-radar IDF value for a given duration and for a given return period is presented 367 

in the lower panel of Fig. 6. Two scores are calculated for each of the cumulative 368 

distribution functions: (1) percentile of the transition point from cumulative 369 

underestimation to overestimation of the local extreme rainfall compared to the areal 370 

extreme rainfall (i.e., VG/radar equals one); and (2) interquartile range (IQR), 371 

representing the scatter of the distribution for the 25—75 quantile.  372 

The inflection point is found to be positively dependent on the duration, 373 

increasing from a percentile value of 0.23 for the 20 min to 0.32 for the 4 h durations. A 374 

positive dependency is also noticed between the inflection point and the return period. 375 

Percentile values of 0.24, 0.28 and 0.37 are computed for the 2, 10 and 50 years return 376 

periods, respectively. Those results indicate that the extreme mean areal rainfall 377 
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intensities tend to underestimate the extreme point rainfall intensities within the 378 

subpixel area. This is the case for all durations and for all return periods and it is more 379 

evident for the lower return periods and shorter durations. In other words, comparing a 380 

randomly selected single gauge-IDF curve to a radar-IDF curve, one should expect the 381 

gauge-IDF to be higher than the radar-IDF in most of the cases. For example, for a 2-year 382 

return period there is a 76% chance for an IDF curve developed from a single rain-gauge 383 

to overestimate the radar-IDF. Overestimation (Eldardiry et al., 2015), underestimation 384 

(Marra and Morin, 2015) or “reasonable agreement” (Overeem et al., 2009; Paixao et 385 

al., 2015) relationships between a gauge-IDF and a radar-IDF are therefore all possible 386 

outcomes. The sensitivity to the selection of a rain-gauge or to its random positioning is 387 

quite large due to the considerable spatial variability of extreme rainfall at the subpixel 388 

scale. Further amelioration of radar QPE and reducing radar-gauge biases (Eldardiry et 389 

al., 2015; Marra and Morin, 2015) will likely improve the relationships between the 390 

radar-IDF and a single gauge-IDF, but of course will not eliminate the uncertainty due to 391 

the spatial (subpixel) rainfall variability. 392 

A negative dependency is found between the IQR and the duration. The IQR 393 

values decreases from 0.081 to 0.048, comparing the 20 min and the 4 h durations. 394 

Moreover, a positive dependency between the IQR and the return period is found. The 395 

IQR values increase from 0.066 to 0.087, comparing the 2 and 50 years return periods. 396 

The IQR score directly reflects the subpixel scatter in extreme rainfall; the higher the IQR 397 

is, the higher the variability of extreme rainfall is. For example, the tails of the CDF for 398 

the 50-years return period (IQR=0.087) are much wider than the tails of the 2-years 399 
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return period (IQR=0.066), thus the probability of a randomly selected gauge-IDF to 400 

over- or under-estimate the radar-IDF by 20% is much larger for the 50-years return 401 

period. In general, the subpixel spatial scatter of extremes was found to be larger for 402 

long return periods and for short durations. 403 

The VG-IDF curves computed taking into account the stochastic (natural) climate 404 

variability are presented in Fig. 7. This figure contains the VG-IDF curves that were 405 

calculated from 100 realizations based on the annual maxima downscaled with STREAP 406 

for the 23-years radar data, as in Fig. 6 (spatial stochastic variability from here on), and 407 

the 1,000 realizations generated from the bootstrapped data (spatio-temporal 408 

stochastic variability from here on). The rationale is to compare the subpixel spatial 409 

stochastic variability with the spatio-temporal stochastic variability related to the fact 410 

that IDF curves estimated from a single climatic realization, even of 23 years, are 411 

expected to be relatively uncertain. 412 

As in Fig. 6, the 5—95 quantile range of the subpixel variability of rainfall 413 

extremes is presented for both cases (Fig. 7b). The VG 5—95 quantile range derived 414 

from the spatio-temporal stochastic variability is always larger than the corresponding 415 

quantile range of the spatial stochastic variability, as the spatial stochastic variability 416 

represents only part of the stochastic (natural) climate variability. A simple way to 417 

quantify how well the extreme subpixel rainfall variability is represented by the spatial 418 

stochastic variability is by comparing the contribution of the extreme rainfall variability 419 

derived from the spatial stochastic variability to the one derived from the spatio-420 
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temporal stochastic variability. This was done using a spatial-to-temporal ratio score 421 

(STR): 422 

0.95 0.05
,

0.95 0.05 ,

S S

RP D T T
RP D

q qSTR
q q

                (3) 423 

The STR is computed from IDF values for each return period (RP) and duration (D) by 424 

finding the ratio between the range of the VG 5—95 quantile generated using the 425 

spatial stochastic variability ( 0.95 0.05
S Sq q )and the same range derived from the spatio-426 

temporal stochastic variability ( 0.95 0.05
T Tq q ). 427 

 The STR score (an example relative to the 20 min duration is presented in Fig. 7a) 428 

is found to decrease for higher return periods. This is observed for all durations. The STR 429 

decrease starts around the 6 year return period, which is about one quarter of the 430 

sample size (23 years). Up to this point the spatio-temporal stochastic variability of 431 

extreme rainfall is well represented by the spatial stochastic variability (STR values of 432 

0.95—0.99 are computed for all durations). For the 30 and 50 year return period STR 433 

values of 0.74, 0.71 and 0.77, and 0.67, 0.63 and 0.71 are found for the 20 min, 1 h and 434 

4 h durations (respectively). The lower estimates of the subpixel extreme rainfall 435 

intensity (0.05 quantile) were very similar when the spatial and spatio-temporal 436 

stochastic variability were compared (Fig. 7b). The difference between samples was 437 

expressed mainly by the upper (0.95) quantile. For example, for the 50 year return 438 

period a difference of 31.8, 11.4 and 1.8 mm h-1 was found between the spatial and the 439 

spatio-temporal stochastic variability for the 20 min, 1 h and 4 h durations 440 
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(respectively). This implies that the role of stochastic (natural) climate variability is very 441 

important and must be considered especially for long return periods and short 442 

durations. The good correspondence between spatial and spatio-temporal stochastic 443 

variability for short return periods suggests that a dense rain-gauge network can 444 

eventually substitute a long gauge record to account for the radar subpixel variability of 445 

rainfall extremes. In other words, for “ordinary” extremes (i.e., short return periods) the 446 

gauge-to-gauge variability in a given radar pixel is not much dissimilar from the year-to-447 

year variability in a given long-recording gauge. However, for “infrequent” extremes 448 

(i.e., long return periods) a denser spatial sampling cannot substitute for a long 449 

observational period because these extreme rain intensities are likely related to very 450 

specific weather patterns occurring so rarely that only a long-continuous monitoring can 451 

detect their occurrence. 452 

 From the above results we can conclude that the subpixel variability of extreme 453 

rainfall is an important feature when estimating rainfall extremes using remote sensing 454 

instruments such as weather radars. In the presented case study, for a 50-year return 455 

period and a 20 min duration, an extreme rainfall intensity of 150.7 mm h-1 would be 456 

computed based on the radar-IDF only. However, a range of 133.9—194.6 mm h-1 457 

represents the actual variability of extreme rainfall that is expected in any specific 458 

location within the radar pixel. This range is even larger (133.9—226.5 mm h-1) when 459 

taking the stochastic climate variability into account. 460 

Explicitly addressing the extreme rainfall variability over a small spatial scale is 461 

important for local impact studies. This may include studies for designing of urban 462 
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drainage systems that require rainfall in a higher spatial resolution than recorded by a 463 

common C-band radar (Gires et al., 2012; Gires et al., 2013; Gregersen et al., 2013; 464 

Ochoa-Rodriguez et al., 2015; Willems et al., 2012). Drainage system effectiveness is 465 

evaluated to face extreme rainfall events using “design storms” that are typically based 466 

on gauge-IDF curve data derived from a nearby location (for an extensive review see 467 

Marsalek and Watt (1984) and Watt and Marsalek, 2013). Short-duration extremes are 468 

often linked to small-scale convective events (García-Bartual and Schneider, 2001) that 469 

are difficult to capture by a single or even with a relatively dense rain-gauge network 470 

(Marra et al., 2014; Nikolopoulos et al., 2015; Nikolopoulos et al., 2014) but can be 471 

captured by a weather radar (Peleg and Morin, 2012). With this analysis, we show that 472 

an ensemble of design storms representing the variability of short-duration extreme 473 

rainfall over a potential urban catchment can be derived by analyzing the overlying 474 

radar pixels (using similar methods and tools as presented here) and using stochastic 475 

rainfall generators such as STREAP to quantify uncertainties. Such a procedure will likely 476 

lead to a better assessment of the drainage system effectiveness.  477 

  478 

6 Conclusions 479 

In this study we explicitly simulated the variability of extreme rainfall intensity at the 480 

radar subpixel scale by applying the stochastic rainfall generator STREAP to simulate rain 481 

fields with an unprecedented high spatial and temporal resolution (i.e., 10 x 10 m2 and 1 482 

min). The model was tested using a dense network of rain-gauges. IDF curves were 483 
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computed using the radar data and the downscaled values in order to compare rainfall 484 

extremes at two different scales: the radar pixel scale (1 km2) and the point scale (virtual 485 

rain-gauges represented by the 10 x 10 m2 gridded downscaled data). The uncertainty in 486 

the variability of extreme rainfall has been fully evaluated using a bootstrapping 487 

technique to address the space-time stochastic variability. 488 

The key findings of this study are: 489 

 Extreme rainfall derived from radar underestimates extreme rainfall computed 490 

for point locations within the radar pixel for most of the pixel area. On average, 491 

about 70% of the area within the radar pixel is likely underestimated using radar 492 

IDFs. This underestimation is smaller for longer return periods.  493 

 The subpixel variability of extreme rainfall is found to increase with longer return 494 

periods and shorter durations. The maximum error in computing extreme rainfall 495 

for a point location from radar for a return period of 2 years and a duration of 4 496 

h can be of 10%; this error increases to 30% for 50 years return period and 20 497 

min duration.  498 

 The uncertainty in computing subpixel variability of extreme rainfall increases 499 

when natural climate variability is taken into account. For a 23-years record, we 500 

found that estimates of extreme rainfall variability for return period of 6 years or 501 

less (1/4 of the radar sample) are marginally affected by natural climate 502 

variability (spatial and spatio-temporal stochasticity are comparable). However, 503 

for longer return periods, natural climate variability can increase uncertainty by 504 

up to 16% of the estimate. 505 



 

25 
 

Neglecting radar subpixel variability of extreme rainfall can present a serious 506 

shortcoming, as the extreme rainfall in a given point within the radar pixel is on average 507 

at least 10% larger than the extreme rainfall estimated using the weather radar. This 508 

effect can be amplified if natural climate variability is properly accounted for. We 509 

therefore suggest that IDF curves directly derived from radar observations should be 510 

used carefully since they do not include important sources of uncertainty, which must 511 

be considered for applications requiring rainfall extremes at scales finer than the ones 512 

supplied by the weather radar. In this study, we show that this can be achieved by 513 

means of stochastic rainfall generators such as STREAP, which are useful tools to bridge 514 

the gap between the radar and point scales and also to explore nature climate 515 

variability. 516 
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Appendix A – Rainfall spatial correlation 527 

The three-parameter exponential function for a spatial correlation  at a separation 528 

distance h  is described as: 529 

3

1
2

( ) exp
C

hh C
C

            (A.1) 530 

where 1C  represents the zero-distance correlation, 2C  is the correlation distance and 531 

3C  is the shape factor. The spatial correlation function for the dense rain-gauge 532 

network in Israel was studied by Peleg et al. (2013) and values of C1=0.923, C2=3 and 533 

C3=1 were computed for the 1-min scale. In this study, a simple one-parameter 534 

exponential function can be used instead of the three-parameter exponential function, 535 

as the C3 parameter is equal to 1 and the C1 parameter, that represents the 536 

measurement errors for each side-by-side rain-gauge (see Peleg et al. (2013) for 537 

additional information), is not accounted for and therefore can be also assumed to be 538 

equal to 1. The simulated correlation functions are not static but for each storm a new 539 

stochastic Gaussian field is generated with a different correlation. A comparison 540 

between the observed correlation function and 1,000 simulated correlograms, which 541 

were generated after calibration, are presented in Fig. A.1. The underestimation of the 542 

simulated spatial correlation for the 0—200 m distance range is due to the fact that we 543 

do not want to reproduce the correlation smaller than one at distance zero, which is 544 

most likely an artifact of the measurements error (C1). The simulated spatial correlation 545 

correspond to mean (± standard deviation) value of C2=2.48 (±0.31). The generated 546 
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fields result in a slightly faster decay than the observed spatial correlation; for example, 547 

for the 2-km distance the mean observed and simulated values were (2) 0.47obs and 548 

(2) 0.44sim , respectively. The rainfall spatial correlation function was calculated using 549 

the rainfall time series that was recorded by the stations. The Moran’s I and Geary’s C 550 

indices (see Supplementary Material S1) were applied to verify that the spatial 551 

correlation function is not influenced by the instantaneous rainfall intensity. By 552 

estimating the mean of both indices versus the instantaneous maximum rainfall 553 

intensity measured for 1-min time intervals (C≈0.6, I≈0), it was determined that no 554 

dependence exists between the instantaneous maximum rainfall intensity and the 555 

spatial structure of the rainfall. 556 

 557 

Appendix B – Kappa distribution 558 

The 4-parameter Kappa (KAP) distribution was presented by Hosking (1994). It is a 559 

generalization of many other distributions and includes as special cases the Generalized 560 

Logistic, GEV, and Generalized Pareto distributions. The KAP cumulative distribution 561 

function ; , , ,F U k h  are: 562 

1/1/
; , , , 1 1 /

hk
F U k h h k U          (A.1)  563 

where U is the wind speed,  is the location parameter,  is the scale parameter, and k 564 

and h are the two shape parameter of the distribution. The distribution parameters are 565 

estimated using L-moments following the method suggested by Hosking (Hosking and 566 
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Wallis, 1993; Hosking and Wallis, 1995; Hosking and Wallis, 2005). The KAP distribution 567 

was generally found to provide a good fit to the wind speed in comparison to other 568 

distributions (Morgan et al., 2011; Ouarda et al., 2015).  569 

 570 

Appendix C – GEV distribution 571 

The Generalized Extreme Values (GEV) distribution combines the Gumbel, Fréchet and 572 

Weibull asymptotic extreme value distributions (Types I, II and III, respectively) into a 573 

single one. The GEV cumulative distribution function ; , ,F U  was given by 574 

Jenkinson (1955): 575 

1

; , , exp 1 0

1; , , exp exp 0

F U U for

F U U for

         (B.1)  576 

where U is the rainfall intensity, μ is the location parameter, σ is the scale parameter 577 

and κ is the shape parameter of the distribution. The GEV distribution parameters were 578 

estimated using maximum likelihood method. 579 

 580 

  581 
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Figures caption 789 

Fig 1. Map of the 2100 m x 2100 m domain of the dense rain-gauge network deployed in 790 

northern Israel (Domain A). The 13 locations where two side-by-side rain gauges are 791 

installed (blue triangles) and the 210 x 210 grid are presented in the main frame; a 792 

magnification of the grid (pixel size of 10 m x 10 m) is presented in the yellow circle. Red 793 

area represents the location of the 1000 m x 1000 m domain (Domain B). A black star 794 

marks the study area’s location in Israel. 795 

Fig 2. A schematic diagram of the methods used to estimate the subpixel extreme 796 

rainfall variability. (1) Domain A is used for the calibration and validation of the STREAP 797 

model. (2)  Domain B is used for the downscaling of rainfall from the radar pixel scale to 798 

nearly point scale. (3) The downscaled point rainfall time series are used to compute the 799 

IDF curves. 800 

Fig 3. Three consecutive rainfall fields generated using the STREAP model. The field grid 801 

is composed of 210 x 210 pixels, the dimension of each pixel is 10 m x 10 m. The fields 802 

represent the first 3 time steps of the rainfall event presented in Fig. 4. 803 

Fig 4. Example of a rainfall event. (a) The max rainfall intensity (MRI) and the wet area 804 

ratio (WAR) simulated by STREAP (red lines) are compared with observed data (grey 805 

area); the mean areal rainfall intensity (IMF, red bars) is also shown.  (b) The histogram 806 

of the simulated maximum rain intensity, as recorded by each grid point (i.e. 44,100 807 

virtual rain gauges) for the given event is presented.  808 
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Fig 5. An inverse cumulative distribution function of the rain intensity that was recorded 809 

and simulated over domain A. The grey lines represent the 26 rain-gauges of the dense 810 

rain-gauge network. Yellow area marks the maximum and minimum rain intensity range 811 

of the 44,100 virtual rain-gauges that were simulated using one realization of the 812 

STREAP model. The 0.01—1 quantile is presented in (a) and the 95—99 quantile range is 813 

zoomed in (b). The blue lines in (b) represent the inverse-CDF of the rain intensity that 814 

were recorded by two rain-gauges located in the same station (separated by 1 m 815 

distance), representing the observed maximum rain intensity. The red lines in (b) 816 

represent the same, but for the minimum rain intensity range. 817 

Fig 6. Analysis of IDF curve for a given radar pixel. The return periods were calculated 818 

using the GEV distribution from a 23-years dataset derived from the weather radar for 819 

durations of 20 min, 1 h and 4 h (purple, orange and green line, respectively). Grey areas 820 

represent the 5—95 quantile range of virtual rain-gauges for each duration from 100 821 

realizations that were generated using the STREAP model. Cumulative distribution 822 

functions of the simulated VG-to-radar ratio for the 100 realizations are presented for 823 

the 2, 10 and 50 years return period (above panel) and for the 20 min, 1 h and 4 h 824 

durations (right panel). Red area represents gauge overestimation and blue area 825 

represents gauge underestimation in comparison with the radar. Orange arrow points to 826 

the percentile characterizing the inflection between the under- and over-estimation. 827 

The interquartile range (IQR) represents the scatter of the distribution for the 25-75 828 

quantile. The simulated VG-to-radar ratio for a given return period and for a given 829 

duration is also presented in the lower panel of the plot. 830 
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Fig 7. The subpixel variability of extreme rainfall for 100 realizations based on the 831 

STREAP downscaled annual maxima (spatial stochastic variability) and for 1,000 832 

realizations bootstrapped to account for stochastic natural climate variability (spatio-833 

temporal stochastic variability). (a) The spatial-to-temporal ratio score (STR) for 20 min 834 

duration and (b) IDF curves for the spatial (grey area) and for the spatio-temporal 835 

stochastic variability (green area) are shown. 836 

Fig A.1. The spatial correlation function (ρ) as a function of distance for 1-min temporal 837 

scale. Observed line (dashed red) was calculated using the dense rain-gauge network 838 

data (Peleg et al., 2013). Simulated lines (black) were calculated from 1,000 fields that 839 

were generated with the STREAP model. 840 
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Supplementary Materials 

S1 Rainfall spatial autocorrelation indices 

The focus in this study is on the rainfall extreme, thus it was of important to calculate the 

spatial autocorrelation for each 1-min interval and evaluate it as a function of the 

corresponding rainfall maxima i.e., validating that the spatial structure of the rainfall is 

not dependent on the instantaneous maximum rain intensity.  

Two indices were used to evaluate the spatial autocorrelation during a rainfall 

event: the Geary’s C index, which is sensitive to local spatial autocorrelation (i.e., 

comparing rainfall intensity between rain stations), and the Moran’s I index, which is 

sensitive to global spatial autocorrelation (i.e., comparing rain intensity between a rain-

station and the mean). A summary of the two indices was given by Goodchild (1986). 

The Geary’s C index was given by Geary (1954): 
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          (S2) 

where t is the time step, N is the number of rain stations that were recording at time t, Xi 

and Xj are the rainfall intensity recorded by stations i and j accordingly, X  is the mean 

rainfall intensity and wij is a matrix of spatial weights given in the form of the inverse 

distance between stations i and j. 

The Moran I index was given by Moran (1948): 
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where t, N, Xi, X  and wij are equal to the one in Eq (S.2). 

The value of Geary's C lies between 0 and 2, where 1 indicate no spatial 

autocorrelation, values smaller than 1 indicate positive spatial autocorrelation and values 

larger than 1 indicate negative spatial autocorrelation. The value of Moran’s I lies 

between -1 and 1, where 0 marks no spatial autocorrelation, values larger than 0 indicate 

positive spatial autocorrelation and values smaller than 0 mean negative spatial 

autocorrelation. 

The indices were calculated for the 1-min rainfall data derived from the dense 

rain-gauge network and then plotted against the corresponding maximum rain intensity. 

This was done in order to validate the assumption that the rainfall’s spatial structure is 

not depended in the instantaneous rain intensity. The mean and standard deviation of 

the indices were calculated and plotted in Fig. S1 (data was binned using 3 mm h-1 

intervals). It was found that the rainfall local spatial structure remains slightly negative 

(C≈0.6) while the global spatial structure indicates a spatial independence (I≈0) for the 

entire range of maximum rain intensities, thus no dependence was found between the 

instantaneous maximum rain intensity and the spatial structure of the rainfall.  

 

S2 Estimating small scale rainfall characteristics using the weather radar 
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The rainfall coefficient of variation (CV) and the temporal evolution of the rainfall fields 

(ARMA process of rainfall field in the Lagrangian system of reference) have parameters 

that could not be estimated directly from the dense rain-gauge network. For the CV 

estimation an even denser network of rain-gauges would be required within the domain 

to better represent the rainfall standard deviation, while for estimating the temporal 

evolution of the rainfall field a gridded rainfall data for the domain would be required. 

The parameters of the ARMA model and CV were estimated using the weather radar. 

The rainfall CV was calculated for domain areas ranging from 6-60 km2 around the 

rain-gauge network (Fig. S3). Using similar scaling concept as suggested by Schleiss et al. 

(2011), a power function of CV=0.13*Area0.38 was fitted to the data with an R2 value of 

0.95 and from this function an estimated CV of 0.13 was extrapolated for the 1 km2 

domain. Note that the sub-domain grid used to compute the spatial CV is the same for all 

domain areas and fixed by the radar resolution (1 km2). A similar decrease of rainfall CV 

as a function of domain area was presented by Sassi et al. (2014). Although the rain-

gauges are likely too sparse, an assessment of the CV derived directly from the rain-gauge 

network yield an estimated CV of 0.23. Therefore, the range of rainfall CV was set 

between 0.13 and 0.23. 

The temporal evolution of the rainfall field is following the field motion. Estimating 

the ARMA parameters is a difficult and uncertain task. The advection of the rainfall field 

(field velocity and direction) are not stationary over time and the rainfall field is prone to 

rotation, convergence and divergence. Paschalis (2013) suggested to use a storm tracking 

algorithm to identify storms that are moving approximately constantly and then to 
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estimate the ARMA parameters by using a constrained least square fitting procedure of 

the theoretical autocorrelation function of the ARMA process. Paschalis et al. (2013) used 

an ARMA(2,2) model for rainfall data analyzed in Switzerland, but stated that different 

orders of the ARMA model are expected in other locations. In order to estimate the ARMA 

process for the domains A and B (i.e., for 1-min and 4 km2 or 1 km2, respectively) we used 

Paschalis (2013) estimating procedure for the weather radar data (5-min temporal 

resolution and 16-57 km2 spatial resolution); the results of the first 5 spatial scales are 

presented in Fig. S3. Smaller scales cannot be examined, as not enough data would be 

available for a proper estimation. For the smallest scales that were examined (16-20 km2) 

an autocorrelation value of 0.9 for all spatial lags was computed. We therefore expect 

that the autocorrelation function will show similar or higher values for the smaller 

domains. Here, we assume an AR(1) model with correlation coefficient in the range  

0.85—0.95.    
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Figures caption 

Fig S1. Geary’s C and Moran’s I indexes as a function of 1-min maximum rain intensity. 

The value of Geary's C lies between 0 and 2 (1 - no spatial autocorrelation, <1 positive 

spatial autocorrelation and >1 negative spatial autocorrelation). The value of Moran’s I 

lies between -1 and 1 (0 - no spatial autocorrelation, >0 positive spatial autocorrelation 

and <0 negative spatial autocorrelation). The numbers above the points represent the 

number of observations in each bin. 

Fig S2. Lognormal distribution fitted to the rainfall intensity on a typical convective radar 

image [22/12/1999 22:50, data obtained from the analysis presented by Peleg and Morin 

(2012)].  

Fig S3. Rainfall coefficient of variation (CV) and temporal correlation coefficient (AR(1)) fit 

and prediction at different  spatial scales as obtained from the weather radar. 
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