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Abstract

We construct a manifestly diffeomorphism invariant Wilsonian (Exact) Renormalization

Group for classical gravity, and begin the construction for quantum gravity. We demonstrate

that the effective action can be computed without gauge fixing the diffeomorphism invariance,

and also without introducing a background space-time. We compute classical contributions both

within a background-independent framework and by perturbing around a fixed background, and

verify that the results are equivalent. We derive the exact Ward identities for actions and ker-

nels and verify consistency. We formulate two forms of the flow equation corresponding to the

two choices of classical fixed-point: the Gaussian fixed point, and the scale invariant interacting

fixed point using curvature-squared terms. We suggest how this programme may completed to

a fully quantum construction.
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1 Introduction

In this paper, we develop a manifestly diffeomorphism invariant Wilsonian exact RG (Renormal-

ization Group) for classical gravity. Such a construction involves a diffeomorphism invariant gener-

alisation of a momentum cutoff Λ, allowing short distance modes with wavelength . 1/Λ to be ‘in-

tegrated out’ exactly (in a manner that will be made precise later) while respecting diffeomorphism

invariance at all stages, resulting in an effective action S that incorporates these short-distance

fluctuations. S can then be used as an exact alternative action to describe the dynamics of gravity

on distance scales larger than 1/Λ. Even at the classical level such a construct may be important,

for example applied to “cosmological back-reaction” (see e.g. [1–4], and since the transformation is

exact may help settle some recent controversy [5–7]). However our main motivation is that this is

a stepping stone to a fully quantum manifestly diffeomorphism invariant exact RG for use in quan-

tum gravity. On the one hand the renormalization group structure of quantum gravity is surely

of importance [8–11] and on the other hand one would hope that conceptual and computational

advances would result from a framework which allows computations to be done while keeping exact

diffeomorphism invariance at every stage, i.e. without gauge fixing. Furthermore, as we will see,

the framework allows these computations to be done without first choosing the space-time manifold

and in particular without introducing a separate background metric dependence.

The framework we propose is an adaptation of the methods developed in gauge theories over a

number of years, which allow continuum computations without fixing the gauge. This is achieved by

utilising the freedom to design manifestly gauge invariant versions of the continuum realisation of

Wilson’s renormalization group (christened exact RG in ref. [12]). Such manifest gauge invariance

was first incorporated into the exact RG in ref. [13], however in the limited context of pure U(1)

gauge theory. Following ref. [14] it was generalised and extensively studied first for SU(N) Yang-

Mills theory, then QCD [15] and QED [16,17]. For these gauge theories, regularisation is based on

gauge-invariant higher derivatives supplemented by gauge invariant Pauli-Villars fields [18], which

it was later realised could be simply understood as arising from a spontaneous breakdown of an

SU(N |N) super-Yang-Mills theory [19,20]. The regularisation structure was separately studied in

refs. [21–23] and proven to work to all orders in perturbation theory. The computational methods

were generalised in refs. [24–28] so that universal results could be extracted in a way which was

manifestly independent of the detailed form of the regularisation structure, and such that general

group invariants could be handled [29]. Using these techniques, the initial computation of the

one-loop β function at infinite N [14] was generalised to finite N [25, 28, 30, 31], then to two
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loops [29, 32–35], extended to all loops in refs. [36, 37] and to computation of gauge invariant

operators in refs. [38, 39]. For reviews and further advances see refs. [40–42].

When these ideas are applied to gravity a further advantage of the formalism is immediate. In

continuum approaches to quantum gravity, the first step has been to express the full metric gµν

in terms of a background metric ḡµν in a fixed coordinate system (for example flat ḡµν = δµν)

and fluctuations hµν about this, essentially so that a propagator can be defined for hµν after

appropriate gauge fixing. This means that, from the beginning, the formulation actually depends

on two metrics gµν and ḡµν . Extra conditions are then required in order to ensure that ultimately

results are background-independent. But these can be difficult to implement exactly and may be too

restrictive (for example requiring hµν to be on shell to obtain background-independence through

gauge fixing independence).1 Since, in the manifestly gauge invariant exact RG, the rôle of the

propagator is played by a gauge invariant kernel whose form is part of the freedom allowed in

designing the Kadanoff blocking, the problem of inverting a propagator does not arise. As we will

see this allows computations to be done entirely in terms of the full quantum metric gµν . In this

way a background metric ḡµν is never introduced and the issue of background independence thus

never arises.

In fact, since the flow equation is designed to ensure that the Wilsonian action remains quasi-

local, i.e. such that the effective Lagrangian can be expanded in powers of space-time derivatives,

we will see that (to any finite order in this expansion) it is not necessary to make any a priori

assumptions about the space-time manifold (beyond its smoothness). The entire computation

can be phrased in terms of manipulations of covariant derivatives. The resulting Lagrangian can

be computed iteratively in terms of (covariant derivatives of) curvature invariants of increasing

dimension, as we will see explicitly in this paper at the classical level.

Nevertheless, more insight can be gained by organising the result as an expansion in n-point

vertices for fluctuations hµν about a particular background. As an example, we choose ḡµν = δµν

and show that in this way the full momentum dependence of the n-point vertices can be computed

iteratively about this background (i.e. from the already-solved m < n point vertices). It will be

clear that the same Lagrangian is being computed in these alternative approaches, however we

also confirm this through some consistency checks. When expanded in fluctuations in this way the

diffeomorphism invariance is obscured, but is nevertheless present and verified through exact Ward

identities that we also derive.

1From the asymptotic safety literature see for example refs. [43–45].
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As we will recall, an infinitessimal step in the flow of the exact RG is just an exact change of

field variables. At the quantum level, the partition function is unchanged by the exact RG. At

the classical level the effective action satisfies the same equations of motion as the original (bare)

action, albeit now in terms of effective field variables.

The current paper is limited to classical computations. If we were to attempt quantum cor-

rections with the current set-up we would find ultraviolet divergences. A research direction for

furnishing the extra structure necessary to provide full regularisation is described in sec. 10.

One aspect of a fully quantum flow is necessarily anticipated in the structure of the flow equation

itself. Yang-Mills theory (in four space-time dimensions) has a well defined continuum limit given

by constructing the theory around the Gaussian fixed point (i.e. with vanishing Yang-Mills cou-

pling). Therefore the flow equation should be adapted for use around this fixed point, as was done

in our earlier papers. Gravity as described with the Einstein-Hilbert action is not perturbatively

renormalisable as a quantum theory, meaning in Wilsonian language that Newton’s constant G is

irrelevant, and that the continuum limit results in non-interacting (linearised) gravitons. Neverthe-

less much can be learned from the effective field theory description organised in terms of increasing

powers of G ∼ 1/M2
Planck [46], therefore in this paper we construct a manifestly diffeomorphism

invariant flow equation that naturally develops such an expansion while allowing for the fact that

G becomes a running coupling in general.

If an asymptotically safe fixed point exists [10, 11, 47] both the classical and quantum parts

of the flow equation would be equally important. Since we keep only the classical part, it is not

entirely clear what the best adapted structure for the flow equation is in this case. Instead we

supply a form of the flow equation adapted to the renormalisable O(∂4) gravity as developed in

refs. [8, 9], which has problems with unitarity, but which might reasonably be expected to be a

closer classical analogue.

The paper is structured as follows. In the next section we review the elements of the construction

of manifestly gauge invariant flow equations that we will need, and then in sec. 3 adapt these to the

construction of a diffeomorphism invariant and background-independent flow equation for gravity.

We see that as well as introducing the differentiated “effective propagator” ∆̇(−∇2) part of the

kernel, which we choose to take the simple covariantisation indicated, we need to introduce two

trace structures and a corresponding DeWitt parameter j. We point out the special cases associated

with conformally reduced gravity and unimodular gravity. In sec. 3.1 we use dimensional analysis

firstly in D dimensions for further insight into why the (now dimensionful) gauge coupling g appears

as discussed in sec. 2.3. We then to adapt this to discuss the rôle of Newton’s coupling (and the
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cosmological constant) in the gravity case and their relation to couplings in the effective action.

We also provide a first discussion of the two schemes: the Weyl scheme and the Einstein scheme,

and constrain the form of ∆ in these two schemes. This in turn leads us to introducing classical

Lagrangians with dimension ` = 4 and 2 respectively. In sec. 4 we describe in general terms how the

classical effective action can then be computed iteratively as an expansion in local diffeomorphism

invariant scalar operators Od. In secs. 4.1 and 4.2 we then apply this to the computation of

the fixed point effective action and determination of the seed action in the Weyl and Einstein

schemes. In both schemes renormalisation conditions are required to define them precisely; these

fix certain couplings. In secs. 4.1.1 and 4.2 we also point out the relevant operators at the classical

level, and compute the exact classical flow equations for these. The seed action is determined by

the requirement that it and the fixed point effective action have the same two-point vertex when

expanded around a flat background. This also determines the form of the kernel and fixes the value

of j (up to a further discrete choice in the Einstein case). In sec. 5 we introduce the expansion

around flat background, which means that the actions are best expressed in terms of n-point vertices

in momentum space. Exact diffeomorphism invariance still governs the equations but through exact

Ward identities, which we derive for the action in sec. 6.1 and for the kernel in 6.2. We provide

a consistency check on these equations in sec. 6.3, and in sec. 7 demonstrate how to compute the

n-point kernel vertices. In sec. 6.1 we also derive the differential Ward identities to demonstrate

that the classical effective action can be computed iteratively in terms of increasingly higher n-

point vertices, and to demonstrate that the two-point vertex splits into a momentum independent

cosmological constant part (with support by the expansion in app. A) and a transverse part. In

sec. 8 we provide the linearly independent transverse two-point momentum structures, and finally

these are put to use in sec. 9 to compute the form of the classical fixed-point two-point vertices in

the two schemes, thus finally determining also the effective propagator and the simplest form for

the seed action in the two schemes. Sec. 10 further discusses the construction, in particular where

there are choices and where there are not (with support from app. B), and outlines a possible route

to a fully quantum manifestly diffeomorphism invariant exact RG.

2 Mini review of manifestly gauge invariant exact RGs

In this section we review the main ideas that we will need to adapt for construction of a manifestly

diffeomorphism invariant exact RG.
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2.1 Kadanoff blockings

We begin the derivation of the exact RG with a Kadanoff blocking procedure [48]. Kadanoff

blockings are averaging schemes used to infer the macroscopic behaviour of a system from its

microscopic physics. The original formulation envisages a large lattice of spins. The method

assumes that correlations between spins can be completely attributed to interactions between close

neighbours. This notion of locality is an essential feature of the scheme.

The blocking scheme groups lattice sites into blocks, with each block averaged to a single spin

state. In general, these spins have different interaction strengths with their neighbours than the

original, microscopic spins do with theirs. There are an infinite number of different Kadanoff

blockings, and so in turn there are an infinite number of different Wilsonian RGs [49].

Adapting the method from statistical mechanics to field theory requires a continuum definition of

Kadanoff blockings for continuous fields [50,51]. Instead of averaging blocks of spins, one integrates

out momentum modes down to some smooth cutoff set by some Lorentz invariant momentum scale,

Λ [12,52,53]. Actually, an immediate requirement to maintain a notion of locality is that the metric

should be rotated into a Euclidean signature. This is because light-like separations in a Lorentzian

metric can have arbitrarily large coordinate separations for a zero invariant interval.

Consider an effective (i.e. macroscopic) scalar field ϕ whose physics is described by an effective

action S[ϕ]. Given a bare (i.e. microscopic) field ϕ0 and a bare action Sbare[ϕ0], the standard

definition for a Kadanoff blocking is via

e−S[ϕ] =

∫
Dϕ0 δ [ϕ− b [ϕ0]] e−Sbare[ϕ0]. (2.1)

The blocking functional is, in turn, a scalar field with a position argument. A simple linear example

of a blocking functional in a D-dimensional field theory is

b[ϕ0](x) =

∫
y
B(x− y)ϕ0(y), (2.2)

where B(z) is a kernel that provides a smooth infrared cutoff such that B(z) decays rapidly towards

zero once |z|Λ > 1. This allows us to integrate out the higher momentum modes while keeping our

effective action as an expansion in local operators. We use a shortened notation for a D dimensional

integral over a set of spatial coordinates, x, such that
∫
x ≡

∫
dDx for convenience.

From equation (2.1), we can integrate the effective Boltzmann factor over the effective field

to obtain the partition function. On the right hand side, because of the delta function, we can

integrate out the effective field to get the same partition function we would obtain using the bare
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field and the bare action i.e. the partition function is invariant under change of cutoff scale and the

blocking procedure has not changed the physics:

Z =

∫
Dϕ e−S[ϕ] =

∫
Dϕ0 e

−Sbare[ϕ0]. (2.3)

To obtain an exact RG, we differentiate the effective Boltzmann factor with respect to ‘RG

time’:

Λ
∂

∂Λ
e−S[ϕ] = −

∫
x

δ

δϕ(x)

∫
Dϕ0 δ [ϕ− b [ϕ0]] Λ

∂b[ϕ0](x)

∂Λ
e−Sbare[ϕ0] (2.4)

In the above equation, the functional integral over the bare field thus yields some function of x and

functional of ϕ, which we write as −Ψ(x)e−S[ϕ], where −Ψ(x) can be thought of roughly as the

rate of change of the blocking functional with respect to RG time. We thus have:

Λ
∂

∂Λ
e−S[ϕ] =

∫
x

δ

δϕ(x)

(
Ψ(x)e−S[ϕ]

)
, (2.5)

from which we of course obtain

Λ
∂

∂Λ
S =

∫
x

Ψ(x)
δS

δϕ(x)
−
∫
x

δΨ(x)

δϕ(x)
. (2.6)

This is now the general form for constructing an exact RG flow equation for a single scalar field.

Since there are infinitely many blocking functionals, there are infinitely many possible flow equations

that leave the partition function invariant under change of cutoff. The invariance can now be seen

simply by noticing that this form is a total functional derivative in ϕ, which can be functionally

integrated with respect to ϕ to give the rate of change of partition function, and which is zero for

suitably well behaved Boltzmann factor. Furthermore for later purposes note that the change in

the effective action δS induced by flow from Λ to Λ − δΛ is just the result of the change of field

variable ϕ to ϕ−ΨδΛ/Λ, the δΨ/δϕ term coming from reparametrising the measure in (2.3).

It will be convenient from now on to represent differentiation with respect to RG time by an

over-dot such that, for some function f(Λ), ḟ(Λ) := Λ ∂
∂Λf(Λ). It is also conventional to introduce

the following notation, as used e.g. in refs. [40, 54]:

f ·W · g :=

∫
x
f(x)W

(
−∂2

)
g(x), (2.7)

where W is a (Lorentz invariant) momentum kernel, and as we will see, usually is related to a

term that can be thought of as an effective propagator at a fixed point. As such, by dimensions

it can be written as a dimensionful part depending on −∂2 only, times a dimensionless function

of −∂2/Λ2. (To simplify notation, we will usually leave implicit the dependence of the kernel and

effective action on Λ.)
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2.2 Flow equations for massless scalar fields

We now wish to specialize (2.5) to give us the Polchinski form for the flow equation of a scalar

field [55]. The rate of change of the blocking functional can in this case be expressed as

Ψ(x) =
1

2

∫
y

∆̇(x, y)
δΣ

δϕ(y)
, (2.8)

where ∆ = c(p2/Λ2)/p2 is indeed the effective propagator, which has been regulated with an

ultraviolet cutoff function, c(p2/Λ2), and Σ is in the form of an action. More specifically, Σ = S−2Ŝ,

where Ŝ is a functional of fixed form, called the ‘seed action’, and is an action whose only scale is Λ.

There is a great deal of freedom in the choice of the seed action, without changing the underlying

physics. This is part of the freedom of choice of how we implement Kadanoff blocking. As we will

see shortly, the required notion of locality in this context is implemented by insisting that c(p2/Λ2)

has a Taylor expansion to all orders and that Ŝ similarly has a derivative expansion to all orders,

i.e. is quasi-local [18]. As will become apparent, a useful choice for Ŝ is simply the regularized

kinetic term in the effective action; it is given in position representation by

Ŝ =
1

2
∂µϕ · c−1 · ∂µϕ, (2.9)

where we use the notation introduced in (2.7) and there is an implicit summation over the index,

µ, remembering that the metric has been rotated into Euclidean signature. This choice of seed

action leads us to the Polchinski form of the flow equation. However, we can add further 3-point

and higher corrections to this seed action without altering the continuum physics [24,27,40].

For canonical normalisation of the effective propagator and the kinetic terms (2.9), we require

c(0) = 1. Actually, as we will see, requiring that we can canonically normalise simultaneously both

the kinetic terms and ∆, determines the factor of half in (2.8); saying it differently the integrated

kernel turns out to be normalised as 1/2p2 for small p, which we then express as 1
2∆ so that ∆ has

the canonical normalisation of the propagator. This observation will be useful later for the gravity

flow equation.

Substituting (2.8) into (2.5), we obtain the flow of the action in position representation with

respect to RG time:

Ṡ =
1

2

δS

δϕ
· ∆̇ · δΣ

δϕ
− 1

2

δ

δϕ
· ∆̇ · δΣ

δϕ
. (2.10)

Since ∆̇ = −2c′(p2/Λ2)/Λ2 has a Taylor expansion and Ŝ has a derivative expansion, we see that

an effective action S that is quasi-local to begin with, remains quasi-local under the flow for any

finite RG time [18].
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One obtains the flow equations for n-point functions from this by taking n functional derivatives

with respect to ϕ of both sides and taking the ϕ→ 0 limit. This can be illustrated digrammatically

as in Figure 2.1, adapted from [40].

Figure 2.1: Diagrammatic illustration of a generalised flow equation for scalar fields

In Figure 2.1, n-point functions are represented by solid circles labelled with the name of the

action inside, effective propagators and external legs are represented by solid lines coming out of the

n-point functions, and the over-dots represent differentiation of individual actions and propagators

with respect to RG time. An advantage in this diagrammatic view is that it provides an intuitive

picture of the flow equation. For example, while the first term on the right hand side has a classical

part, it is clear that the second term has no classical part, since there is a propagator linked to Σ

at both ends, forming a loop. Thus the tree-level part of the RG flow equation does not require

the second term.

Let us now consider the 2-point part of the tree-level flow equation in momentum representation

for a single component scalar field theory invariant under ϕ → −ϕ. Since this scalar theory has

no 1-point functions and both the action and the seed action have the same 2-point function, the

tree-level 2-point flow equation is easily expressed only in terms of the tree-level 2-point function,

denoted here by Sϕϕ,

Ṡϕϕ = −Sϕϕ∆̇Sϕϕ. (2.11)

We see that this is consistent with the choice ∆ = (Sϕϕ)−1 that we already made. Later we will

use such an equation to determine the form of ∆ given the form of the effective two-point vertex.

Since ∆ inverts the 2-point function, it can be identified as the effective propagator. For massless

scalar fields, the classical 2-point function comes purely from the kinetic term, which is the same

in S as in Ŝ. Higher-point modifications to Ŝ do not impact on the 2-point function at the classical

level and indeed do not affect any physics at the classical or quantum level, as has been checked

explicitly in [24,27]. This is because these modifications are nothing more than reparametrizations

of the field as the high energy modes are integrated out [49].

Since we are working with dimensionful quantities, a fixed point action is characterised by the
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fact that the only scale appearing in it is Λ. To see this, note that if we had also performed the

rescaling step part of the Wilsonian RG by redefining all dimensionful quantities to be dimension-

less, using the appropriate power of Λ, the action would then no longer contain any functional

dependence on Λ. In other words it would indeed be a fixed point action under evolution in Λ.

By choosing Ŝ to be only the kinetic term as in (2.9), we have enabled a closed solution S = Ŝ

for the fixed point action. According to the standard Wilsonian construction, the continuum limit

is then constructed by adding relevant perturbations to this (see for example ref. [54]). One

then discovers the infamous triviality problem, namely that all interactions are either irrelevant or

marginally irrelevant. However nevertheless it is useful to work with the effective theory with a

marginally irrelevant four-point coupling (the Higgs sector of the Standard Model being just one

example).

2.3 Application to Yang-Mills theories

Now let us put aside the scalar field ϕ and consider a gauge field Aµ (valued in some Lie algebra).

Manifest gauge invariance requires that the connection can have no wavefunction renormalization.

The gauge field itself inherits this property if the covariant derivative is defined as:

Dµ := ∂µ − iAµ. (2.12)

To see that we require there to be no wavefunction renormalization, note that the gauge transfor-

mation of the field is

δAµ = [Dµ, ω(x)]. (2.13)

Changing our variable to a renormalized field, ARµ = Z−1/2Aµ, the transformation becomes

δARµ = Z−1/2∂µω − i[ARµ , ω]. (2.14)

Thus gauge invariance is preserved only if we fix Z = 1. This conclusion cannot be made in the

more conventional approach, which fixes a gauge, because ω is replaced by a ghost field [56–59]

thus the second term becomes a composite operator which requires its own renormalisation. The

field strength is Fµν := i[Dµ, Dν ]. The action is written in a form where the coupling is seen as an

overall scaling factor:

S[A](g) =
1

4g2
tr

∫
x
Fµν c

−1

(
−D

2

Λ2

)
Fµν +O(A3) + · · · (2.15)

We have organised the expansion in terms of the minimum number of fields. Without loss of gener-

ality, we can write the higher-covariant derivative terms in the O(A2) term as above, defining what
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we mean by the cutoff profile c. Note that quasi-locality then requires that c is Taylor expandable

and c(0) 6= 0. In fact it is natural to insist c(0) = 1 again, this time as the renormalisation con-

dition to define g. The g expansion is covered in more detail in the literature highlighted in the

introduction, and it and the analogous issues for gravity will be also be discussed in more detail

later in secs. 3.1 and 4.2. Notice also that, like in massless scalar field theory, only the regularized

kinetic term then contributes to the 2-point function. The effective action can be expanded out

loopwise as

S =
1

g2
S0 + S1 + g2S2 + · · · (2.16)

where Si is the contribution at the i-loop level and the factors of g2 also count powers of ~. Similarly,

the β functions can be written as the following loopwise expansion:

β := Λ∂Λg = β1g
3 + β2g

5 + · · · (2.17)

We wish to ensure that our flow equation is gauge invariant, but this property would be broken

by the kernel, ∆̇(−∂2). To restore gauge invariance, we need to covariantize the kernel. There are

an infinite number of ways to do this, but a simple method is to replace the partial derivatives with

covariant derivatives, modifying the kernel to ∆̇(−D2). For some choice of covariantization, we can

write a gauge invariant flow equation as

Ṡ =
1

2

δS

δAµ
· {∆̇} · δΣg

δAµ
− 1

2

δ

δAµ
· {∆̇} · δΣg

δAµ
. (2.18)

where we use the notation in (2.7), except that the braces indicate some fixed choice for how to

covariantize the kernel, and as a consequence of scaling out the coupling as in (2.15), we now have

Σ replaced by

Σg = g2S − 2Ŝ . (2.19)

Covariantizing the kernel has introduced a series expansion in the field into the kernel and thus the

kernel has non-zero functional derivatives with respect to the field. Diagrammatically, this means

that the kernel can now have external legs. This property is now important when calculating the

n-point functions of Ṡ. This can be illustrated digrammatically as in Figure 2.2, adapted from [40].

Again, the classical level only uses the first term in (2.18), which corresponds to the first diagram

on the right hand side of fig. 2.2. Since g2 now also counts ~, equivalently it can be obtained by

taking the g → 0 limit. At the risk of causing some confusion, we now drop the subscript 0 on the

classical action, thus returning to Σ ≡ S − 2Ŝ notation as in the scalar case, but retain only the
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Figure 2.2: Diagrammatic illustration of a gauge invariant flow equation for gauge fields

first term in (2.18). As before, we set the 2-point part of Ŝ equal to the 2-point part of S at the

classical level. It can be written in momentum representation as

SAAµν = (δµνp
2 − pµpν) c−1

(
p2

Λ2

)
. (2.20)

Gauge invariance and Poincaré invariance are sufficient to force the 2-point function to take this

form, which is transverse. The flow equation now reads

ṠAAµν = −SAAµα ∆̇SAAαν . (2.21)

Knowing that SAAµα S
AA
αν = (p2c−1)SAAµν , the solution can be taken to be ∆ = c/p2, as with massless

scalar field theory (with the normalisation assured by the overall factor of 1/2 in (2.18). Unlike in

scalar field theory, the gauge invariance prevents ∆ from inverting the 2-point function, thus it is

no longer a true effective propagator, but rather it satisfies the condition that

∆SAAµν = δµν − pµpν/p2. (2.22)

Instead of having unity on the right hand side, we have the transverse projector.

Equating the two-point vertices of S and Ŝ at the classical level in a theory with no 1-point

functions also has the benefit that Ṡ can be determined at the classical n-point level entirely in

terms of (n − 1)-point and lower functions from S, given some Ŝ that one is essentially free to

choose [40]. This happens because all contributions to the n-point part of Ṡ from n-point functions

in S are cancelled in the classical flow equation.

As remarked in the scalar case, the continuum limit (and thus the quantum field theory) needs

now to be constructed by adding relevant perturbations to the fixed point action. As is well known,

the coupling g will turn out to be marginally relevant (otherwise known as asymptotically free) and

is the only relevant direction. The fixed point action is given by the formal g → 0 limit of (2.16),

i.e. effectively by S0 (now renamed S). Unlike in the scalar case, there is no closed solution for this

fixed point action however. It has an infinite number of vertices. Since we are free to choose the
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seed action we can at least insist it takes a closed form, for example:

Ŝ[A] =
1

4
tr

∫
x
Fµν c

−1

(
−D

2

Λ2

)
Fµν . (2.23)

3 Background-independent gravity flow equation

We adopt sign conventions such that the Ricci tensor Rµν = Rαµαν and

Rµνρσ = 2 ∂[ρΓ
µ
σ]ν + 2 Γµλ[ρΓ

λ
σ]ν , (3.1)

where the Levi-Civita connection is defined in the usual way:

Γµνρ =
1

2
gµα(∂νgρα + ∂ρgνα − ∂αgνρ) . (3.2)

To maintain quasi-locality, we Wick rotate such that the metric, gµν , has Euclidean signature.

In analogy to the manifestly gauge invariant exact RG for Yang-Mills, we now wish to construct

a manifestly diffeomorphism invariant exact RG for gravity. Manifest diffeomorphism invariance

gives us the opportunity for studying two formalisms: one that maintains a strict background

independence and one that defines our metric as a given background ḡµν plus a perturbation hµν .

The latter formalism has had to be used for continuum studies in quantum gravity, since gauge-

fixing requires a fixed background (and coordinates). The typical choice is ḡµν = δµν , which we will

also use. In fact for a diffeomorphism invariant exact RG, the two formalisms are straightforwardly

related, as we will see. In this section and in sec. 4, we will outline the background-independent

formalism and then develop the fixed-background formalism from sec. 5 onwards.

We begin the manifestly diffeomorphism exact RG by defining a Kadanoff blocking functional,

bµν [g0](x), which is itself a covariant tensor field, via the Boltzmann factor:

e−S[g] =

∫
Dg0 δ [g − b [g0]] e−Sbare[g0], (3.3)

where g0µν is the bare metric.2 This is directly analogous to equation (2.1). As with scalar and

gauge theories, cf. eqn. (2.3), the partition function is invariant under change of cutoff. We obtain

the exact RG flow equation as done in (2.4) by differentiating the Boltzmann factor with respect

to RG time:

Λ
∂

∂Λ
e−S[g] = −

∫
x

δ

δgµν(x)

∫
Dg0 δ [g − b [g0]] Λ

∂bµν(x)

∂Λ
e−Sbare[g0], (3.4)

2We suppress tensor indices inside functional arguments and in the functional integral for notational convenience.
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In analogy with equation (2.5), we thus obtain a general exact RG for gravity in terms of the rate

of change of blocking functional, Ψµν(x):

Λ
∂

∂Λ
e−S[g] =

∫
x

δ

δgµν(x)

(
Ψµν(x)e−S[g]

)
. (3.5)

To achieve a form of exact RG flow equation applicable to gravity, analogous to (2.8), we now

specify the form of Ψµν :

Ψµν(x) =
1

2

∫
y
Kµνρσ(x, y)

δΣ

δgρσ(y)
, (3.6)

where as in the scalar and gauge field cases, we anticipate the need for a factor 1/2 to allow canonical

normalisation, and where the kernel, Kµνρσ(x, y), is a covariant bitensor which can be chosen to

be symmetric. The µ and ν indices of Kµνρσ are associated with the position argument x and the

ρ and σ indices are associated with the position argument y. Just as in the scalar or gauge theory

cases, we set Σ = S−2Ŝ, where Ŝ is the “seed action” that we are essentially free to choose, whose

only length scale is Λ. This gives us an adaptation of the Polchinski flow equation, which we had

in (2.10) for a pure scalar theory and (2.18) for a pure gauge theory, that now applies to gravity:

Ṡ =
1

2

∫
x

δS

δgµν(x)

∫
y
Kµνρσ(x, y)

δΣ

δgρσ(y)
− 1

2

∫
x

δ

δgµν(x)

∫
y
Kµνρσ(x, y)

δΣ

δgρσ(y)
. (3.7)

As is the case with scalar and gauge theories, the second term has no tree-level part. We will be

focussing on the tree-level, so we will mostly neglect this term from here on.

As we noted in the introduction and below (2.5), the full exact RG flow just induces an exact

reparametrisation of the effective action, as is again clear from (3.5). The physical equivalence of

the effective action at different scales Λ is then clear. Since we will be focussing on the classical

evolution only, it is worth pointing out that it is also straightforward to see the equivalence directly

at the classical level. Indeed, keeping only the classical part of (3.7) means, by (3.6), that

Ṡ =

∫
x

Ψµν(x)
δS

δgµν(x)
, (3.8)

in other words

SΛ−δΛ[gµν ] = SΛ[gµν −Ψµν δΛ/Λ] . (3.9)

Let us also for convenience in what follows expressKµνρσ(x, y), as a covariant derivative operator

acting on a space-time delta function, δ(x − y), allowing the integral over y to be done trivially.

One respect in which gravity differs from scalar and gauge theories is that we have two possible

index structures for the flow equation. Let us illustrate this with just the classical component of
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(3.7), recognising that this in turn defines the kernel Kµνρσ and thus also the quantum part of

(3.7). First, we have the “cross-contracted” form:

Ṡ|c.c. =
1

2

∫
x

δS

δgµν

gµ(ρgσ)ν√
g

∆̇(−∇2)
δΣ

δgρσ
. (3.10)

Next we have the “two-traces” form:3

Ṡ|t.t. =
1

2

∫
x

δS

δgµν

gµνgρσ√
g

∆̇(−∇2)
δΣ

δgρσ
. (3.11)

In general, we expect that the full flow equation is a linear combination of both index structures:

Ṡ = Ṡ|c.c. + jṠ|t.t., (3.12)

where j is a dimensionless parameter. In other words the kernel is set to

Kµνρσ(x, y) =
1
√
g
δ(x− y)

(
gµ(ρgσ)ν + jgµνgρσ

)
∆̇(−∇2) (3.13)

(where ∇2 acts on the y dependence to the right). Note that we need only one parameter here since

we can absorb an overall factor into ∆̇. The remaining parameter, j, thus distinguishes different

ways of integrating out the metric. It appears for the same reason as in the DeWitt supermetric [60],

where it is part of the apparent freedom in choice of quantization, however we will see that in the

present context the other constraints we place on the form of the flow equation will determine its

value.

To see how the value of j affects the balance of modes propagating in the flow equation, let

us briefly consider two special cases. Firstly, a value of j → ∞ corresponds to only the conformal

mode propagating in the RG flow.4 Secondly, a value of j = −1/D allows only traceless fluctuations

to propagate in the RG flow.

To see why j → ∞ only carries the conformal mode in the RG flow, let us rewrite the metric

to bring a scale factor, eσ, outside of a fixed-scale metric, g̃µν :

gµν = g̃µνe
σ. (3.14)

We now see that
δS

δσ
= gµν

δS

δgµν
. (3.15)

3The 1/
√
g is required in order to ensure an overall density of weight −1. The metric factors commute with the

covariant derivatives and thus with the kernel ∆̇, so can be placed anywhere in these expressions.
4By renormalising ∆̇ this corresponds to dropping the cross-contracted piece.
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This tells us that, if we only use the two-traces structure, then only the conformal mode propagates

in the flow equation. Therefore this limit for the flow equation is the so-called conformal truncation,

or conformally reduced gravity model [45,61–64].

Conversely, since any symmetric two-tensor can be split uniquely into its trace and trace-free

part:

T ρσ = gρσT/D + T ρσtrace−free , (3.16)

and since (
gµ(ρgσ)ν + jgµνgσρ

)
gρσ = gµν(1 + jD) , (3.17)

the pure trace part of any variation is excluded from the flow for j = −1/D. This choice therefore

decouples the cosmological constant from the flow equation at the classical level, leaving it as a

pure integration constant that does not mix with other scales. Therefore this limit for the flow

equation is related unimodular gravity [65–68]. We will not discuss these special cases further.

Finally, it will be helpful to note that the flow equation at the classical level, (3.12), can be

written compactly as [14]

Ṡ = −a0[S,Σ] , (3.18)

where a0 is symmetric bilinear. Writing S =
∫
x

√
gL, where the Lagrangian density L is a scalar

(and likewise relate Ŝ to L̂), we can alternatively write this as a symmetric bilinear map between

Lagrangians:

L̇ = −a0[L,L − 2L̂] . (3.19)

3.1 Dimensional analysis

Further insight into the gravity flow equation can be gained from dimensional analysis (using the

usual so-called engineering dimensions). First consider the scalar case. The (mass) dimension of

a scalar field is (D − 2)/2, from (2.9) for example. Since the action must be dimensionless, ∆̇

expressed as a differential operator (or in momentum space) then has dimension −2, from (2.10)

for example, consistent with regarding ∆ as an effective propagator.

Next, consider the gauge theory case. Expressing the covariant derivative as Dµ = ∂µ − igAµ,

in the way appropriate for perturbative quantum field theory with canonically normalised kinetic

term, the dimensional assignments in D space-time dimensions are the same. However expressing

the covariant derivative as (2.12) already leads to a difference outside D = 4 dimensions, which

as we will see is instructive to understand. Now the gauge field must always have dimension 1

and thus to keep the action dimensionless we recover from (2.15) that [g2] = 4 − D. If we tried
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to use the definition Σ = S − 2Ŝ that we used in scalar field theory, we would have to have

[∆] = 2 − D to balance dimensions in (2.18). This is actually consistent with regarding ∆ as

an effective propagator since indeed g2c/p2 has this dimension, the factor of g2 coming from the

non-canonical normalisation of the kinetic term in (2.15). Once g runs with Λ however the flow

equation will no longer be consistent because ∆̇ then has a 1/p2 pole so is no longer quasi-local.

This is a problem because the non-locality will in turn be inherited by solutions S for the Wilsonian

action. The change in definition of Σ to Σg, as in (2.19), not only ensures a sensible gauge invariant

perturbative expansion but also makes [Σg] = 4 − D (and [Ŝ] = 4 − D consistent with the fact

that it does not contain g), and thus from (2.18) allows [∆̇] = −2 consistent with it playing the

rôle of a canonically normalised effective propagator, and ensuring that the flow equation remains

quasi-local.

Finally let us return to the gravity flow equation. Since [gµν ] = 0, and the actions are dimen-

sionless, the putative “effective propagator” in (3.10) and (3.11) has dimension

[∆] = −D . (3.20)

Again, this is to be expected. In D = 4 dimensions we see that the effective propagator will have

to take the form

∆(p2) =
c(p2/Λ2)

p4
, (3.21)

for some function c, at a fixed point, recovering the fact that classically this will involve a four-

derivative R2-type action around the Gaussian fixed point (a.k.a. free gravitons). Perturbative

quantum gravity based on such an action can be renormalisable and asymptotically free but suffers

from problems with unitarity [8,9,69]. In order to implement universality as widely as possible we

want to avoid having to restrict the form of the cutoff profile function c(p2/Λ2) beyond normali-

sation c(0) = 1, smoothness (that is being infinitely differentiable) and the requirements that will

eventually be placed on its asymptotic behaviour to ensure UV finiteness of the flow equation at the

quantum level. In this case, for ∆̇ to remain quasi-local however, we will need to restrict the cutoff

profile to satisfy c′(0) = 0. We will pursue this solution for the flow equation in sec. 4.1. Since

it can be arranged that there is one asymptotically free coupling λW which is proportional to the

inverse coefficient of the square of the Weyl curvature (and another coupling ω → ω∗ ≈ −0.0228 in

the Λ→∞ limit) [69–72] we will refer to this approach to the flow equation as the “Weyl scheme”.

(The running of these couplings follow from logarithmic UV divergences and thus can be expected

to be universal, independent of regularisation and renormalisation scheme.)
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If the Lagrangian contains the Einstein-Hilbert term −R/(16πG) then Newton’s constant has

dimension [G] = 2 − D. If we want the effective propagator to be derived from this term, it will

now be ∆ ∼ Gc/p2, and indeed again has dimension −D. Once G runs with Λ however, such

a term is once more unacceptable. Again this problem is avoided by redefining Σ, this time to

Σ = 4S/M2 − 2Ŝ where M is the reduced Planck mass: M2 = 1/(8πG), and allowing

∆(p2) =
c(p2/Λ2)

p2
, (3.22)

corresponding to a canonically normalised kinetic term. The classical limit corresponds to M →∞

such that we retain only S = M2S0/4 in the expansion (4.28), and again we then relabel S0 as

S. Again this corresponds to building the theory around the Gaussian fixed point (for canonically

normalised kinetic term, in the limit M →∞, it again describes free gravitons), however this time

with the irrelevant perturbation, parametrized by G = 1/(8πM2), built in. Note that the actions

however then have mass dimension [S0] = [Ŝ] = −2. We will refer to this form of flow equation as

the “Einstein scheme” and give more detail on this in sec. 4.2.

Either way at the classical level the flow equation will reduce to (3.18), i.e. (3.12), where the

individual terms are defined in (3.10) and (3.11). From here on, we will exclusively consider space-

time dimension D = 4. Since the classical action can be dimensionless or dimension -2 depending

on whether we use the Weyl or Einstein scheme, the dimension of the Lagrangian is respectively

[L] = [L̂] = ` = 4 or 2.

4 Background-independent expansion of the effective action

In the background-independent computation, L (and likewise L̂) can be organised by expanding in

a basis of local diffeomorphism invariant scalar operators Od of increasing even engineering mass

dimension d = 2i:

L =
∞∑
i=0

∑
αi

g2i,αi O2i,αi , (4.1)

where the operators contain only the metric and space-time derivatives,5 and the αi are extra labels

which we usually suppress, but which are needed when there is more than operator of the given

dimension. The couplings gd are therefore of dimension `− d.

Note that since the metric has dimension zero, the operator dimension just counts the number

of space-time derivatives required to construct it. Thus the lowest dimension operator is just the

5N.B. we use position space, since a momentum space only makes sense in a translation invariant background.
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unit-operator, O0 = 1, whose associated coupling g0(Λ) we can loosely regard as associated to

the effective cosmological constant. (In general this coupling runs with Λ. It therefore does not

correspond to the cosmological constant λC until the functional integral is completed by sending

Λ → 0. Furthermore since the coefficient of
√
g is actually λC/(8πG), in the Weyl scheme we

must still also compute the effective Planck mass, then finally λC = g0(0)/M2.) The next higher

dimension operator is O2 = −2R. We include the minus sign gained through Wick rotation from

Minkowski signature and the factor two for canonical normalisation of the graviton kinetic term.

In the Weyl scheme its coupling g2 will provide the effective Newton coupling or Planck mass in

the limit Λ → 0, through g2 = 1/(32πG) = M2/4. In the Einstein scheme we already have a

(running) reduced Planck mass M but which we so far have not defined precisely. To do this a

natural refinement of the scheme is to define M2(Λ) to be the coefficient of −R/2 at cutoff-scale

Λ.6 Thus in the Einstein scheme, recalling that we have defined the classical part of the action by

S = M2S0/4, defining M in this way, we impose that g2 = 1. At dimension 4, there are two linearly

independent operators which may be taken to be O4,1 = R2 and O4,2 = RµνRµν .7 At dimension

6, for the first time we have operators with explicit covariant derivatives appearing (for example

R∇2R), and also for the first time we have operators containing more than two curvature factors

that thus do not contribute to the two-point vertex (for example R3).

Given the quasi-local form of the flow equation, whatever quasi-local form we choose for Ŝ, we

can solve for the general form of the classical action iteratively, starting from the lowest dimension

operators.

Let us illustrate this with the specific forms (3.10) and (3.11).8 In this case the requirement of

quasi-locality enforces that the kernel inserts a Taylor series in ∇2:

∆̇(−∇2) =

∞∑
k=0

1

k!
∆̇(k)(0)

(
−∇2

)k
, (4.2)

(the coefficients ∆̇(k)(0) depend on the scheme and are examined in more detail in secs. 4.1 and

4.2). We first note that a0[Od,Od′ ] can also be expanded in operators of definite dimension. Indeed,

given that
δ

δgµν

∫
x

√
gOd

6For further discussion of schemes in Wilsonian, and also holographic contexts, see ref. [73].
7Since we tacitly assume a space with no boundary throughout the paper, the third possibility RµνρσR

µνρσ is

linearly related to the other two up to the generalized Gauss-Bonnet topological invariant (in D = 4 dimensions)

which thus decouples from the other terms in the flow equation. We will not consider it further in this paper.
8However, we keep the discussion at a general level. In secs. 4.1 and 4.2 we will give concrete examples.
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is also dimension d, we see that a0 in the flow equation (3.19) has the property that

a0[Od1 ,Od2 ] =
∞∑
k=0

ak0[Od1 ,Od2 ] , (4.3)

where ak0[Od1 ,Od2 ] is a linear combination of operators Od with dimension d = d1 + d2 + 2k, and is

proportional to ∆̇(k)(0). Since d, k ≥ 0, a coupling gd can only appear in the flow of couplings gd′

where d′ ≥ d. Therefore, as claimed, we can solve iteratively for all the couplings ordered according

to the dimension of the associated operator.

In particular, the effective cosmological constant g0 obeys a closed equation:

ġ0 = g0(2ĝ0 − g0) a0
0[1, 1] , (4.4)

which is readily solved. (a0
0[1, 1] ∝ ∆̇(0) is just a number times a power of Λ.) Plugging g0(Λ) into

the flow of g2:

ġ2 = 2(g0ĝ2 + ĝ0g2 − g0g2)
a0

0[O2, 1]

O2
, (4.5)

allows this to be solved, yielding g2(Λ). (Note that the final term again is proportional to ∆̇(0)

and is a number times a power of Λ.) Note the dimension-two term ∝ a2
0[1, 1] which would have

been a priori expected, vanishes. In fact

ak0[Od, 1] = 0 ∀k > 0 , (4.6)

since ∇µgαβ = 0. Armed with g0 and g2, the two couplings g4,1 and g4,2 can now be solved for etc.

As we will see now, the seed action couplings ĝd are subject to some constraints, which turn out

to be sufficient to determine the ĝd,αd (up to a binary decision in the Weyl scheme) for all d ≤ 4.

As remarked at the end of sec. 2.2, we want to be able to construct a fixed point action S

and then flow out of this to form the continuum limit (or in the effective field theory context flow

into this to form an approximate description valid at energies less than the Planck mass). This is

only possible if the seed action contains no scale apart from Λ. Therefore by dimensions ĝd ∝ Λ`−d

where the coefficients are pure numbers.

For convenience we impose that when expanded around a flat background, the Ŝ and S two-

point vertices are equal at the fixed point. Thus the fixed point values of the gd,αd are subject to

constraints. For d ≤ 4, this is simply that the fixed point values gd,αd = ĝd,αd . (For d > 4, this

is only true for the operators containing only two curvature factors.) From the flow equation this

imposes further constraints on the ĝd,αd .
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Before turning to the computations in the two different schemes, it is helpful to note that

a0[Od, 1] = a0
0[Od, 1] =

1

8
(d− 4)(1 + 4j)∆̇(0)Od . (4.7)

To see this, we note that from (3.18), (3.12), (3.10) and (3.11), we have

a0

[
S,

∫
x

√
g

]
= −1

4
(1 + 4j)∆̇(0)

∫
x
gµν

δS

δgµν
. (4.8)

But from (3.15) we know that the last factor just counts powers of gµν . Equations (4.6) and (4.7)

provide explicit values for all the bilinears involving O0.

4.1 Effective action in the Weyl scheme

We start by solving the constraints on the seed action couplings ĝd, and thus through the flow

equation also compute the fixed point action. Since the fixed point values gd = ĝd for d ≤ 4, and

since, in the Weyl scheme, we have ġd = (4 − d)gd, (4.4) and (4.5) already determine ĝ0 and ĝ2.

From (4.4) and (4.7) we find ĝ0 = 0 or ĝ0 = −8/(1 + 4j)∆̇(0). Both these solutions in (4.5) imply

that ĝ2 = 0.

The couplings ĝ4,α are pure numbers that at first sight are undetermined. From (3.19) and

(4.6), the g4,α satisfy at the fixed point:

ġ4,1R
2 + ġ4,2R

µνRµν = 4g2
2a

0
0[R,R] + 2g0g4,1a

0
0[R2, 1] + 2g0g4,2a

0
0[R2

µν , 1] . (4.9)

Since ġ4,α = 0 the left hand side vanishes. One would usually expect this to force constraints,

however, remarkably, the right hand side vanishes already for any g4,α, as follows from (4.6) and

g2 = 0. Thus so far the fixed point couplings g4,α = ĝ4,α can be any pure number.

(If the right hand side had not vanished, for example if g2 6= 0, we would have found ġ4,α = −2r,

where r is a non-vanishing pure number. This has been disallowed by the fixed point condition

and quasi-locality. Indeed ġ4,α = −2r would imply g4,α = r ln(µ2/Λ2). However at a fixed point µ

cannot be a separate scale. Neither can µ inherit a scale from modifying the operators themselves,

for example by replacing R2 by R2 ln(R/Λ2) or R ln(−∇2/Λ2)R, without violating quasi-locality. )

In fact, in order to fully develop the Weyl scheme, we would have to isolate the asymptotically

free coupling λW and perform an expansion as in (2.16) (again to avoid the problems with quasi-

locality that would follow from ∆ ∝ λW once λW runs with Λ). Then in order to define λW through

the renormalisation scheme we would have to fix the numerical value of g4,2. The normalisation

implied by the definition of λW used in refs. [69, 72] results in g4,2 = 1, however in order to
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canonically normalise the effective propagator and kinetic term of the graviton (in sec. 9.1) we

choose a different normalisation and set instead g4,2 = 2. Following the fixed point analysis in

refs. [69,72] the ratio of the ĝ4,α is determined by ω∗. In this way both the ĝ4,α are in fact already

determined.

Thus the couplings ĝd for d ≤ 4 are all determined up to a binary decision for ĝ0. Choosing the

simplest possibility ĝ0 = 0, we have thus shown that the seed action is given by

Ŝ = 2

∫
x

√
g
(
RµνR

µν + sR2 + · · ·
)
, (4.10)

where s is a number determined by ω∗ (in fact s = −(1 + ω∗)/3 [69, 72]) and the ellipsis stands

for operators of higher dimension with their associated couplings; those with only two curvature

factors will be needed in order to ensure equality of the two-point vertex with the (classical) fixed

point S when expanded around a flat background.

In fact as we will see in sec. 9.1, this determines the seed Lagrangian to be

L̂ = 2Rαβ c
−1(−∇2/Λ2)Rαβ + 2sR c−1(−∇2/Λ2)R , (4.11)

where c−1 is the inverted ultraviolet cutoff function. We have the option (by universality) to include

more operators providing they contain at least three curvature factors, however we stick with this

simplest possibility. The classical fixed point Lagrangian L takes the same form as (4.11) for the

quadratic curvature terms, but is complemented by an infinite series of further operators which

include at least three curvature factors.

Plugging (4.10) for the fixed point S and Ŝ back into the flow equation (3.18), equivalently

(3.19), we derive

L̇ = 4 a0[RµνR
µν , RαβR

αβ] + 8s a0[RµνR
µν , R2] + 4s2a0[R2, R2] + · · · , (4.12)

where now the ellipsis stands for terms where a0 contains at least one operator of dimension d > 4.

Thus we see from (4.3), that (4.10) will induce operators Od of dimension d = 8, 10, 12, · · · and in

fact uniquely determine the fixed point couplings g8,α8 and g10,α10 . (The couplings associated to

higher dimension operators, starting with g12,α12 , receive contributions from these d = 4 operators

but also contributions from d ≥ 8 operators.)

To calculate these fixed point couplings we use the functional derivatives of the action terms:

δ

δgµν

∫
x

√
gRαβR

αβ =
√
g

(
1

2
gµνRαβR

αβ − 2RµαR
να

−∇2Rµν − 1

2
gµν∇2R+ 2∇α∇(µRν)α

)
, (4.13)

22



δ

δgµν

∫
x

√
gR2 =

√
g

(
1

2
gµνR2 − 2RRµν + 2∇µ∇νR− 2gµν∇2R

)
(4.14)

(where we have used the Bianchi identity ∇µRµν = 1
2∇

νR). Thus we find

2a0[RµνR
µν , RαβR

αβ] = RαβR
αβ∆̇RγδR

γδ − 4RαβR
α
γ∆̇RγδRβδ − 4RαβR

α
γ∆̇∇2Rβγ

+8RαβR
α
γ∆̇∇δ∇βRγδ −∇2Rαβ∆̇∇2Rαβ −∇2R∆̇∇2R (4.15)

+4∇2Rαβ∆̇∇γ∇αRβγ − 4∇α∇(βR
α

γ) ∆̇∇δ∇βRγδ − 4j∇2R∆̇∇2R ,

2a0[R2, R2] = R2∆̇R2 − 2R2∆̇∇2R− 4RRαβ∆̇RαβR+ 8RRαβ∆̇∇α∇βR

−4∇α∇βR∆̇∇α∇βR− 8∇2R∆̇∇2R− 36j∇2R∆̇∇2R , (4.16)

and

2a0[RµνR
µν , R2] = R2∆̇RαβR

αβ − 4RRαβ∆̇RαγR
βγ − 2RRαβ∆̇∇2Rαβ

+4RRαβ∆̇∇γ∇αRγβ −∇
2R∆̇RαβR

αβ + 4∇α∇βR∆̇RαγRβγ

+2∇α∇βR∆̇∇2Rαβ − 4∇α∇βR∆̇∇γ∇αRγβ − 3∇2R∆̇∇2R

−12j∇2R∆̇∇2R . (4.17)

These expressions need to be quasi-local since they are part of the Wilsonian flow (4.12). If we

have the “effective propagator” (3.21) discussed in sec. 3.1, then from

∆̇(p2) = − 2

Λ2p2
c′(p2/Λ2) , (4.18)

we see that we require the cutoff profile to be restricted so that c′(0) = 0 as claimed. Since only ∆̇

depends on Λ in the above expressions, integrating up (4.12) amounts to replacing ∆̇ by∫
dΛ

Λ
∆̇(p2) =

c(p2/Λ2)− 1

p4
=

1

p4

∞∑
k=2

c(k)(0)

k!

(
p2

Λ2

)k
, (4.19)

where the integration constant c(0) = 1 is determined by maintenance of quasi-locality. To compute

the couplings of the dimension d = 8 and 10 operators Od, we therefore replace ∆̇ by∫
dΛ

Λ
∆̇ =

1

2Λ4
c′′(0)− 1

6Λ6
c′′′(0)∇2 +O(∇4) . (4.20)

In order to compare with (4.11), we combine covariant derivatives in the two-curvature terms in

(4.15) – (4.17), recognising that commutators of covariant derivatives yield curvature terms and
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thus contribute operators containing at least three curvature factors. Thus we deduce that both L̂

and the fixed point L have the following couplings for their respective d = 8, 10 operators:9

−{1 + 4j + 4s(2 + 3s)(1 + 3j)}
[

1

Λ4
c′′(0)R

(
−∇2

)2
R+

1

3Λ6
c′′′(0)R

(
−∇2

)3
R

]
− 1

Λ4
c′′(0)Rµν

(
−∇2

)2
Rµν − 1

3Λ6
c′′′(0)Rµν

(
−∇2

)3
Rµν . (4.21)

Since

c−1
(
−∇2/Λ2

)
= 1− 1

2Λ4
c′′(0)

(
−∇2

)2 − 1

6Λ6
c′′′(0)

(
−∇2

)3
+O(∇8) , (4.22)

(recalling that c(0) = 1 and c′(0) = 0), we see that (4.21) agrees with (4.11) already for the R2
µν

terms, and agrees also for the R2 terms providing

1 + 4j + 4s(2 + 3s)(1 + 3j) = s , (4.23)

which determines

j = −1

4

1 + 4s

1 + 3s
. (4.24)

We will see that this constraint indeed arises, in the fixed background computation in sec. 9.1.

Setting s = −1/3, with j a free parameter, would also have solved (4.23), however we have fixed s to

the value set by ω∗, as below (4.10). The remaining d = 8, 10 operators coming from (4.15)–(4.17)

after using (4.20), have at least three factors of curvature and thus appear in the fixed point S but

not in Ŝ.

4.1.1 Flowing away from the fixed point with dimensionful couplings

Any operator added to S with a coupling containing a dimensionful parameter other than Λ,

will perturb the theory away from the fixed point. At the classical level two such operators are

distinguished, namely O0 = 1 and O2 = −2R, since they are relevant eigenoperators and thus

generate flow away from the fixed point. We already have the corresponding flow equations in (4.4)

and (4.5). Using the fact that the corresponding fixed point and seed-action couplings vanish, we

have for the general flows

ġ0 = α g2
0/Λ

4 , ġ2 = α g0g2/Λ
4 (4.25)

where, using (4.7), (4.24) and (4.18), we compute the dimensionless parameter α = s c′′(0)/(1+3s).

At the linearised level, the couplings g0 and g2 do not flow. Since they have dimension 4 and 2

9The first line combines contributions from all three (4.15) – (4.17). The second line has only one contribution,

coming from (4.15).
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respectively the dimensionless couplings g̃0 = g0/Λ
4 and g̃2 = g2/Λ

2 therefore do indeed correspond

to relevant directions shooting out from the fixed point. In the limit Λ → 0, and at the classical

level in which we are working, g0 and g2 should provide the physical cosmological constant, and

physical Newton constant or Planck mass, as already discussed in sec. 4.

In general, the fact that the fixed point and seed-action couplings coincide for d ≤ 4 means that

the flow equation for perturbations in these couplings contains no linear terms (or equivalently cross-

terms between these and the fixed point values). To see this, let ∆L contain such perturbations

away from the fixed point solution, then from (3.19),

2∑
i=0

∑
αi

ġ2i,αi O2i,αi ∈ −a0[L+ ∆L,L+ ∆L − 2L̂]

∈ a0[L,L]− a0[∆L,∆L] . (4.26)

Since at the fixed point ġ4,α = 0, using (4.9) we thus read off the flow for the d = 4 couplings away

from the fixed point:

ġ4,1R
2 + ġ4,2R

µνRµν = −4g2
2a

0
0[R,R] = 2∆̇(0) g2

2

(
RµνR

µν + jR2
)
, (4.27)

while from (4.18) we see that ∆̇(0) = −2 c′′(0)/Λ4.

Note that it is straightforward to solve the g0 flow equation in (4.25). Substituting the result

into the flow for g2 allows g2 to be straightforwardly solved for. Substituting g2 into the above

equation then allows us to solve straightforwardly for g4,1 and g4,2. Continuing in this way we can

iteratively construct and solve the flows for operators Od up to any desired dimension d.

Note that if g2 6= 0 then (4.27) implies in particular that the coupling g4,2 now runs even at the

classical level. In fact as we discussed above (4.10), in a full development of the Weyl scheme we

would set g4,2 = 2, and expand in a power series in the coupling λW . The running would then be

accounted for in a classical contribution to the running of λW . However inclusion of an Einstein-

Hilbert term adds an O(p2) term to the graviton propagator and therefore it would be more natural

to generalise the flow equation to incorporate an “effective propagator” of form ∼ 1/(p4 + aM2p2)

(where a is some dimensionless coefficient). We leave this line of investigation for future research.

4.2 Effective action in the Einstein scheme

As already sketched in sec. 3.1, in order to build a flow equation adapted to the Einstein-Hilbert

action, we need to scale out Newton’s constant G so that it does not appear in the “effective
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propagator” ∆. The action then has the following weak coupling expansion, similar to (2.16):

S =
1

κ̃
S0 + S1 + κ̃S2 + κ̃2S3 + · · · (4.28)

where κ̃ = 32πG also counts powers of ~, and since κ̃ = 4/M2 it also an expansion in 1/M2, where

M is the reduced Planck mass. Thus again Si is the contribution at the ith loop level, with S0

being purely classical. The coefficient of O2 = −2R in S is set at g2 = 1 thus defining precisely

what we mean by G(Λ), equivalently M(Λ), but with the consequence that these run with Λ (in

general and certainly at the quantum level). Therefore the physical values are only assured in the

limit Λ → 0. Notice that the actions Sn thus have mass dimension 2n − 2, and corresponding

Lagrangian densities Ln have mass dimension 2n + 2. The flow equation is still (3.18) but now

we set Σ = κ̃S − 2Ŝ. Therefore Σ and Ŝ have mass dimension -2. Let us briefly also consider the

quantum part of the flow equation (3.7); it is a linear operator a1 acting on Σ, thus the full flow

equation can be written compactly as [14]

Ṡ = −a0[S,Σ] + a1[Σ] . (4.29)

Substituting (4.28) we see that

1

κ̃
Ṡ0 + Ṡ1 + κ̃Ṡ2 + κ̃2Ṡ3 + · · ·+ β

(
− 1

κ̃2
S0 + S2 + 2κ̃S3 + · · ·

)
= −1

κ̃
a0[S0, S0 − 2Ŝ]

−2a0[S0 − Ŝ, S1] + a1[S0 − 2Ŝ] + κ̃
(
−2a0[S0 − Ŝ, S2]− a0[S1, S1] + a1[S1]

)
+ · · · . (4.30)

The classical equation is recovered in the limit κ̃→ 0, equivalently the M →∞ limit, where we do

not expect it to run. Therefore we find for the classical flow

Ṡ0 = −a0[S0, S0 − 2Ŝ] . (4.31)

The quantum corrections at the nth loop level can be consistently separated by equating coefficients

of κ̃n−1. At the same time we see that the beta function must therefore take the general form

β := Λ∂Λκ̃ = β1Λ2κ̃2 + β2Λ4κ̃3 + · · · . (4.32)

The powers of Λ are included by dimensions so that the βi are dimensionless. In the case that κ̃

is the only independent dimensionful parameter, the βi will be pure numbers. The formula (4.32)

concurs with perturbative expectations (as can be confirmed by expanding −√gR/(16πG) about

a flat background as in (5.1), normalising the kinetic term by writing hµν = h̃µν
√
κ̃, and drawing

Feynman diagrams). Writing in dimensionless terms by introducing κ = κ̃Λ2 = 4Λ2/M2, the beta
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function inherits the expected classical term reflecting the fact that it is dimensionally an irrelevant

coupling:

β(κ) = Λ∂Λκ = 2κ+ β1κ
2 + β2κ

3 + · · · . (4.33)

Now we again consider only the classical limit. Dropping the subscript 0 on S in (4.31) we

return to the form of the original flow equation (3.18) as promised, with the only difference being

that the actions now have mass dimension -2 (and thus Lagrangian densities have dimension 2).

As discussed in sec. 3.1, we can now take the form (3.22) for the “effective propagator”, giving

automatically a quasi-local kernel since

∆̇(p2) = − 2

Λ2
c′(p2/Λ2) . (4.34)

We now deduce the form of the couplings gd = ĝd for d ≤ 4. Recall that g2 = 1 is fixed as

a normalisation condition. Thus since we then have ĝ2 = 1, and we maximise universality by

avoiding having to impose ∆̇(0) = 0, we deduce from (4.5), that ĝ0 = 0 (and thus at the fixed point

g0 = 0 also). From (4.3), we see we now have enough information to determine the couplings g4,α.

Indeed,

g4,1R
2 + g4,2R

µνRµν = 4

∫
dΛ

Λ
a0

0[R,R] = −2
c′(0)

Λ2

(
RµνR

µν + jR2
)
, (4.35)

where we have used the last equality in (4.27), and noted by (4.34) that now∫
dΛ

Λ
∆̇(0) =

c′(0)

Λ2
(4.36)

(since dimensionful integration constants are not allowed at the fixed point).

These terms form the beginning of the tower of curvature-squared operators that contribute to

the regularised graviton kinetic term when expanded around a fixed background. In sec. 9.2, we will

see that they continue to appear in the same proportions as in (4.35) and thus the seed-Lagrangian

takes the form:

L̂ = −2R+
2

Λ2
Rµν d(−∇2/Λ2)Rµν +

2

Λ2
jR d(−∇2/Λ2)R . (4.37)

So far, we have shown that d(0) = −c′(0). As before, we have a choice of whether to include

operators containing at least three curvature factors, but take the simplest choice and exclude

them.

In pure gravity, the only relevant perturbation is now O0 = 1, generating a cosmological con-

stant. From (4.4), (4.7) and (4.34) we obtain for this flow,

ġ0 = −(1 + 4j)
c′(0)

Λ2
g2

0 . (4.38)
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Notice that the flow equation (4.5) is still consistent with the normalisation requirement g2 = 1,

since this together with the seed action couplings ensures that ġ2 = 0 even with g0 6= 0.

5 Gravity flow equation expanded around fixed background

In the fixed-background approach, we define a metric perturbation as the difference between the

metric and a Euclidean background:

hµν(x) := gµν(x)− δµν . (5.1)

This metric perturbation corresponds to the graviton field. The inverse metric is then an expansion

around a flat background:

gµν(x) = δµν − hµν(x) + hµρ(x)hνρ(x) + · · · . (5.2)

On the right hand side (and from now on) indices are raised and contracted using the background

metric δµν . Although we could continue to use position representation, we will find it more useful

to Fourier transform into a momentum representation:

hµν(x) =

∫
d̄p e−ip·xhµν(p) . (5.3)

where we use the shortened notation that

d̄p :=
dDp

(2π)D
. (5.4)

It is also convenient to define

δ̄(p) := (2π)Dδ(p). (5.5)

The action is now defined as an expansion in n-point vertices

S =

∫
d̄p δ̄(p)Sµν(p)hµν(p) +

1

2

∫
d̄p d̄q δ̄(p+ q)Sµνρσ(p, q)hµν(p)hρσ(q)

+
1

3!

∫
d̄p d̄q d̄r δ̄(p+ q + r)Sµνρσαβ(p, q, r)hµν(p)hρσ(q)hαβ(r) + · · · (5.6)

We do not include a 0-point function because it has no physical significance. Since there is only

one type of 1-point function, which always has zero for its momentum argument, it is convenient,

unless otherwise stated, to write it as

Sµν(0) = Sδµν , (5.7)
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where S is a constant. The n-point functions are obtained by functional differentiation:

Sα1β1···αnβn(p1, · · · , pn) =
δ

δhα1β1(p1)
· · · δ

δhαnβn(pn)
S
∣∣∣
h=0

. (5.8)

The n-point functions are symmetric under exchange of pairs of indices and the associated momen-

tum arguments together, and under exchange of the indices within a pair. We can re-express the

flow equation (3.10), (3.11) and (3.12), which uses the kernel given in (3.13), in fixed-background

form by noting that
δ

δgµν(x)
=

δ

δhµν(x)
. (5.9)

Fourier transformed into the momentum representation, the flow equation becomes

Ṡ =
1

2

∫
d̄q d̄r

δS

δhµν(−q)
Kµνρσ(q, r)

δΣ

δhρσ(−r)
. (5.10)

where S, Σ and K are all separately momentum conserving. One then obtains the flow equations

at the n-point level by functionally differentiating n times, then setting hαβ = 0. Not only the

actions, S and Σ, but also the kernel, K, consist of an infinite expansion in metric perturbations,

in a spirit similar to (5.6). The n-point structure of the kernel differs from that of the actions since

there are n+2 momentum arguments for each n-point function. Also, the kernel n-point expansion

begins with n = 0 rather than n = 1.

Expanding the flow equation in powers of hαβ thus gives a diagrammatic form that looks

exactly like that of fig. 2.2, the only difference being that the action terms now generically have

one-point vertices, as we noted above. At first sight, that means that the classical flow of n-point

functions is no longer closed but rather receives a contribution from a one-point vertex (tadpole)

attached to an (n+1)-point vertex. This is actually not the case, since such an (n+1)-point vertex

has a zero momentum argument and can thus be related back to n-point vertices via differential

Ward identities as we show in the next section. In fact, a one-point vertex can only arise from a

cosmological constant (i.e. O0) term as we will also demonstrate explicitly in the next section, and

we have already seen in the background-independent computation, namely (4.7), that attaching

such a term just multiplies the other operator Od by a d-dependent factor.

Thus the classical n-point vertices can be solved for iteratively, i.e. once the (m < n)-point

vertices have been determined.

6 Ward identities

The diffeomorphism invariance of the action allows us to relate the (n+1)-point functions of the

action to their respective n-point functions via Ward identities. Since the kernel is a diffeomorphism
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covariant bitensor, it is also possible to derive Ward identities for it separately. The Ward identities

for Ṡ in the flow equation can then be consistently derived either using the usual Ward identity for

an action or by the more laborious method of using the Ward identities of S, Σ and K separately in

the flow equation. We have verified explicitly that the results are the same, providing a non-trivial

consistency check on our derivations. In sec. 6.3 we give an example of such a consistency check.

6.1 Ward identities for an action

The variation under diffeomorphisms of the metric perturbation is given by the Lie derivative of

the total metric:

δhαβ = £ξ (δ + h)αβ = 2(δ + h)λ(α∂β)ξ
λ + ξ · ∂hαβ . (6.1)

Writing this in momentum space and requiring the variation in the total action (5.6) to be zero

gives us the action Ward identities:

−2p1µ1Sµ1ν1···µnνn(p1, · · · , pn) =
n∑
i=2

π2i

{
pν12 S

µ2ν2···µnνn(p1 + p2, p3, · · · , pn) (6.2)

+2p1αδ
ν1(ν2Sµ2)αµ3ν3···µnνn(p1 + p2, p3, · · · , pn)

}
,

where π2i is the transposition operator effecting the substitution p2, µ2, ν2 ↔ pi, µiνi, and momen-

tum conservation p1 + · · ·+ pn = 0 is assumed. The 2-point Ward identity is thus

2pµSµνρσ(p,−p) = Spµδµνδρσ − 2Spµδµ(ρδσ)ν , (6.3)

which is only non-zero if the 1-point function, which is momentum-independent, is non-zero.

The 2-point function can thus be split into a transverse momentum-dependent part and a

non-transverse momentum-independent part. Here we determine the form of the momentum-

independent part by solving the Ward identities, and confirm that they reproduce the cosmological

constant part of the action. In secs. 8 and 9 we can thus concentrate on transverse two-point

functions.

To extract the momentum-independent part of the Ward identity, we first compute the differ-

ential Ward identity, for example by putting n 7→ n + 1 in (6.2) and choosing the momenta to be

ε, p1 − ε, p2, · · · , pn. It is easy to see that in the limit ε → 0, both sides of (6.2) vanish. The O(ε)

piece then gives:

−2Sαβµ1ν1···µnνn(0, p1, · · · , pn) =

(
n∑
i=1

pβi ∂
α
i − δαβ

)
Sµ1ν1···µnνn(p1, · · · , pn)

+2
n∑
i=1

π1i δ
β(ν1Sµ1)αµ2ν2···µnνn(p1, · · · , pn) , (6.4)
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(where in this context, ∂αi denotes differentiation with respect to piα). Thus, as we claimed at the

end of the last section, a vertex with a zero momentum argument is related to vertices with one

less leg through the differential Ward identity.

In fact the tadpole term will involve contraction of α and β through the attachment of (5.7).

Then the above equation simply becomes:

S αµ1ν1···µnνn
α (0, p1, · · · , pn) =

(
2− n− 1

2

n∑
i=1

pi · ∂i

)
Sµ1ν1···µnνn(p1, · · · , pn) . (6.5)

The differential operator just counts momentum, in the sense that, if we Taylor expand the n-point

vertex, the differential operator counts the overall power d of momentum in any given term, i.e. the

dimension of the associated operator Od. Thus we recognise that the operator is simply multiplied

by a factor involving (d − 4) as in (4.7). (Matching the n dependence requires also the m-point

vertices from
√
gO0 and the kernel.)

To extract the momentum-independent part of the Ward identity, we just set all momenta to

zero in (6.4):

2Sµ1ν1···µnνn(0) = δµ1ν1Sµ2ν2···µnνn(0)− 2
n∑
i=2

π2i δ
ν1(ν2Sµ2)µ1µ3ν3···µnνn(0) . (6.6)

These momentum-independent Ward identities allow us to derive the unique form of the zero-

momentum part of the action, starting from the 1-point function. Thus we find the 2-point function

at zero momentum is found to be

2Sµνρσ(0, 0) = Sδµνδρσ − 2Sδµ(ρδσ)ν . (6.7)

The momentum-independent 3-point function can be written as

2Sµνρσαβ(0, 0, 0) = 2Sδ(α|(µδν)(ρδσ)|β) − Sδµνδρ(αδβ)σ − 2S(µ|αρσ(0, 0)δβ|ν) + Sµνρσ(0, 0)δαβ . (6.8)

This can then be iterated to any desired n-point level. These structures correspond to the n-point

structure of
√
g by itself (see app. A), the cosmological constant part of the action.

6.2 Ward identities for a kernel

The same principle applies to the kernel, except that the kernel is not diffeomorphism invariant,

but rather a covariant bitensor, Kµνρσ(x, y). The Lie derivative for the kernel is therefore

£ξKµνρσ(x, y) = ξ(x) · ∂xKµνρσ(x, y) + ξ(y) · ∂yKµνρσ(x, y)

+2Kλ(µ|ρσ(x, y)∂x|ν)ξ
λ(x) + 2Kµνλ(ρ|(x, y)∂y|σ)ξ

λ(y) . (6.9)
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The two position coordinates are Fourier transformed separately into momentum space:

Kµνρσ(x, y) =

∫
d̄q d̄r e−iq·x−ir·yKµνρσ(q, r). (6.10)

The kernel is itself an expansion in metric perturbations subject to momentum conservation:

Kµνρσ(q, r) = Kµνρσ(q, r) +

∫
d̄p1 δ̄(p1 + q + r)Kα1β1

µνρσ(p1, q, r)hα1β1(p1) + · · · (6.11)

The Ward identities for the kernel then follow in the same way as the Ward identities for the action,

except that the right hand side of (6.9) is not zero. Thus we modify (6.2) to

2p′γKγδα1β1···αnβn
µνρσ(p′, p1, · · · , pn, q, r) =

−(p′ + q)δKα1β1···αnβn
µνρσ(p1, · · · , pn, q + p′, r)

−(p′ + r)δKα1β1···αnβn
µνρσ(p1, · · · , pn, q, r + p′)

+2δλδp′(µ|K
α1β1···αnβn

|ν)λρσ(p1, · · · , pn, q + p′, r)

+2δλδp′(ρ|K
α1β1···αnβn

µν|σ)λ(p1, · · · , pn, q, r + p′)

−
n∑
i=1

πi1

{
pδ1Kα1β1···αnβn

µνρσ(p′ + p1, p2, · · · , pn, q, r)

+2p′λδ
δ(α1Kβ1)λα2β2···αnβn

µνρσ(p′ + p1, p2, · · · , pn, q, r)
}
. (6.12)

The first four terms on the right hand side of (6.12) come from the right hand side of (6.9).

They ensure that all terms in the Ṡ Ward identities are momentum-conserving by cancelling the

momentum-violating contributions originating from the action Ward identities. In the same way

as for the action, we can also extract a differential Ward identity, and Ward identity for the

momentum-independent part of the kernel:

Kγδα1β1···αnβn
µνρσ(0) = −1

2
δγδKα1β1···αnβn

µνρσ(0) + δλ(γδ
δ)

(µ|K
α1β1···αnβn

|ν)λρσ(0) (6.13)

+δλ(γδ
δ)

(ρ|K
α1β1···αnβn

µν|σ)λ(0)−
n∑
i=1

πi1

{
δ(γ|(α1Kβ1)|δ)···αnβn

µνρσ(0)
}
.

The momentum-independent part of the kernel describes the n-point structure for linear combina-

tions of
gµ(ρgσ)ν√

g and
gµνgρσ√

g , starting with the 0-point function.

6.3 Consistency of Ward identities

We can demonstrate the consistency of these Ward identities by applying them in two different

ways using the fact that the action Ward identities, (6.2), also apply to Ṡ. Consider the 2-point
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flow equation for Ṡ:

2pα1 Ṡα1β1α2β2(p,−p) = pβ1 Ṡα2β2(0)− 2pλδ
β1(α2 Ṡβ2)λ(0). (6.14)

We can use the flow equation to expand out Ṡ. Keeping index and momentum structure explicit

for clarity, the 1-point tree-level flow equation can be written as

Ṡαβ(0) =
(
S
∣∣∣αβµν(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0) + Sµν(0)Kαβµνρσ(0, 0, 0)Σρσ(0), (6.15)

where the large round brackets indicate anticommutation:(
S
∣∣∣αβ···µν(p, · · · ,−q)Kµνρσ(q, r)

∣∣∣Σ)γδ···ρσ (p′, · · · ,−r) =

Sαβ···µν(p, · · · ,−q)Kµνρσ(q, r)Σγδ···ρσ(p′, · · · ,−r) +

Σαβ···µν(p, · · · ,−q)Kµνρσ(q, r)Sγδ···ρσ(p′, · · · ,−r). (6.16)

We can substitute (6.15) into (6.14) to get

2pα1 Ṡα1β1α2β2(p,−p) = pβ1
(
S
∣∣∣α2β2µν(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

+pβ1Sµν(0)Kα2β2
µνρσ(0, 0, 0)Σρσ(0)

−2pλδ
β1(α2

(
S
∣∣∣β2)λ(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

−2pλδ
β1(α2|Sµν(0)K|β2)λ

µνρσ(0, 0, 0)Σρσ(0). (6.17)

We can test the kernel Ward identity by applying the 2-point flow equation to the left hand side

of (6.17) and showing that both sides match after further use of action and kernel Ward identities.

The 2-point tree-level flow equation for Ṡ is

Ṡα1β1α2β2(p,−p) =
(
S
∣∣∣α1β1µν(p,−p)Kµνρσ(p,−p)

∣∣∣Σ)α2β2ρσ
(p,−p) +(

S
∣∣∣α1β1µν(p,−p)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0) +(

S
∣∣∣α2β2µν(p,−p)Kα1β1

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0) +

Sµν(0)Kα1β1α2β2
µνρσ(p,−p, 0, 0)Σρσ(0) +(

S
∣∣∣α1β1α2β2µν(p,−p, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0). (6.18)

We contract (6.18) with 2pα1 and apply the action and kernel Ward identities as appropri-

ate. The first four terms on the right hand side of (6.12) are used to cancel momentum-violating

contributions from the action Ward identities. We will demonstrate the cancellation of momentum-

violating terms explicitly in this example. The first two terms on the right hand side of (6.18) only
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contribute momentum-violating terms from the 2-point Ward identity for an action, which are

pβ1
(
S
∣∣∣α2β2µν(−p, p)Kµνρσ(p,−p)

∣∣∣Σ)ρσ (0)

−2pλδ
β1(µ

(
S
∣∣∣ν)λ(0)Kµνρσ(p,−p)

∣∣∣Σ)α2β2ρσ
(p,−p)

+pβ1
(
S
∣∣∣µν(0)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0)

−2pλδ
β1(µ

(
S
∣∣∣ν)λ(0)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0). (6.19)

The next two terms give us contributions from the 1- and 2-point kernel Ward identities. After

some rearranging of contracted indices, the cancelling contributions are

−pβ1
(
S
∣∣∣α2β2µν(−p, p)Kµνρσ(p,−p)

∣∣∣Σ)ρσ (0)

+2pλδ
β1(µ

(
S
∣∣∣ν)λ(0)Kµνρσ(p,−p)

∣∣∣Σ)α2β2ρσ
(p,−p)

+2pλδ
β1(µ

(
S
∣∣∣ν)λα2β2(−p, p)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

−pβ1
(
S
∣∣∣µν(0)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0)

+2pλδ
β1(µ

(
S
∣∣∣ν)λ(0)Kα2β2

µνρσ(−p, p, 0)
∣∣∣Σ)ρσ (0). (6.20)

The non-cancelling contributions are

pβ1Sµν(0)Kα2β2
µνρσ(0, 0, 0)Σρσ(0)− 2pλδ

β1(α2|SµνK|β2)λ
µνρσ(0, 0, 0)Σρσ(0). (6.21)

Since the 1-point kernel Ward identity only gives cancelling terms, the non-cancelling contributions

come from the the 2-point kernel Ward identity in this example. This just leaves the final term in

(6.18), which gives us

pβ1
(
S
∣∣∣α2β2µν(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

−2pλδ
β1(α2

(
S
∣∣∣β2)λµν(0, 0)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0)

−2pλδ
β1(µ

(
S
∣∣∣ν)λα2β2(p,−p)Kµνρσ(0, 0)

∣∣∣Σ)ρσ (0), (6.22)

of which only the last term is a momentum-violating term, coming from the 3-point action Ward

identity. Putting all these terms together, we can match both sides of (6.17). Thus we see

how momentum-violating contributions from the action Ward identities are cancelled exactly by

momentum-violating contributions from the kernel Ward identities, which in turn come from the

non-zero Lie derivative of the kernel, as seen in (6.9).
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7 Functional derivatives of the covariantized kernel

Like the kernel for gauge theories, the gravity kernel expands out as a series of n-point functions.

Since we have specified the general form (3.13), we can compute these exactly in terms of the

function ∆̇. It is easy to expand out the momentum-independent part of the kernel as a series in

metric perturbations, following app. A. For ∆̇, we use the 1-point level as an example.

We start by extracting the O(h) term from −∇2 acting on a contravariant tensor, T ρσ. In

momentum representation, our expression at the 1-point level is

(−∇2)(p, r)T ρσ(−r) = Hαβ ρσ
γδ (p, r)T γδ(−r)hαβ(p) , (7.1)

where Hαβ ρσ
γδ (p, r) is defined by

Hαβ ρσ
γδ (p, r)T γδ(−r)hαβ(p) = −

(
hαβ(p)rαrβ − p(αrβ)h

αβ(p) +
1

2
p · rh(p)

)
T ρσ(−r)

+
(

(p2 − 2p · r)h (ρ|
λ (p) + pλ(pα − 2rα)hα(ρ|(p)− p(ρ|(pα − 2rα)hαλ(p)

)
T |σ)λ(−r). (7.2)

Since (−∇2)mT ρσ is still a contravariant tensor, we can similarly pull out the O(h) part from:

(−∇2)n(p, r)T ρσ(−r) =
n−1∑
m=0

|p− r|2(n−1−m)Hαβ ρσ
γδ (p, r) |r|2m T γδ(−r)hαβ(p) , (7.3)

Summing the geometric progression:

n−1∑
m=0

|p− r|2(n−1−m)|r|2m =
(p− r)2n − r2n

(p− r)2 − r2
, (7.4)

and using (4.2) we find the form of ∆̇ at the 1-point level to be

∆̇(−∇2)(p, r)T ρσ(−r) =
∆̇
(
|p− r|2

)
− ∆̇(r2)

|p− r|2 − r2
Hαβ ρσ

γδ (p, r)T γδ(−r)hαβ(p) . (7.5)

After expanding the overall kernel to the desired order in h, one can take functional derivatives in

the usual way to obtain n-point functions. We will not dwell on this further because we will only

need the 0-point function of the kernel in the remainder of this paper.

8 Transverse 2-point functions

The 2-point Ward identities (6.3) and (6.7) tell us that the momentum-dependent part of the 2-point

function is transverse. Although we can obtain the unique form of the momentum-independent part
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through (6.7), we cannot use the Ward identities alone to obtain the momentum-dependent part. In

this section, we demonstrate that there exist two linearly independent transverse 2-point structures

that respect the required diffeomorphism invariance of the action. Momentum conservation tells

us that there is only a single momentum argument, p, at the 2-point level. Structures that are of

odd order in the momentum are forbidden by Lorentz invariance, so let us begin with quadratic

structures. The most general structure that is at quadratic order in the metric perturbation and

momentum is

a1hp
2h+ a2hαβp

2hαβ + a3hpαpβh
αβ + a4h

αβpαpγh
γ
β , (8.1)

where the ai are numerical coefficients. Performing a linearized diffeomorphism δhαβ → 2p(αξβ)

and requiring this to vanish gives a1 = −a2 = −a3/2 = a4/2. Thus we have only one allowed

structure that is quadratic in the momentum:

L(2)
EH =

1

2

(
hµνp

2hµν − hp2h+ 2hµνpµpνh− 2hµνpµpρh
ρ
ν

)
. (8.2)

This corresponds to the Einstein-Hilbert action since∫
x

√
gO2 = −2

∫
x

√
gR =

∫
d̄p L(2)

EH +O(h3) . (8.3)

We have a more general structure with quartic terms in momenta:

b1h
αβp4hαβ + b2hp

4h+ b3h
αβp2pαpβh+ b4h

αβp2pαpγh
γ
β + b5h

αβpαpβpγpδh
γδ . (8.4)

Requiring this to vanish under linearised diffeomorphisms gives us b5 = b1 + b2, b4 = −2b1, b3 =

−2b2, and thus leaves only two linearly independent transverse structures:

L(2)
a =

1

2

(
hµνp4hµν − 2hµνp2pµpρh

ρ
ν + hµνpµpνpρpσh

ρσ
)
, (8.5)

L(2)
b =

1

2

(
hp4h− 2hµνp2pµpνh+ hµνpµpνpρpσh

ρσ
)
. (8.6)

These are now the most general index structures for O(h2), since higher orders in momentum would

have to be contracted into p2 factors. Therefore the general form of the transverse two-point vertex

at O(p4) and higher is given by the linear combination aL(2)
a + bL(2)

b , where a(p2/Λ2) and b(p2/Λ2)

are Taylor expandable functions. On the other hand, the Einstein-Hilbert structure (8.2) is also

reproduced by setting a = −b = 1/p2.

The choice of b = 2, a = 0 gives the 2-point part of the R2 term in the action. Similarly a = 2,

b = 0 gives the 2-point part of the RµνρσR
µνρσ term. Also, a = b = 1/2 gives the 2-point part
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of the RµνR
µν term. (The linear relation between these three 2-point vertices is of course the one

implied by the Gauss-Bonnet topological invariant.)

We can express these structures explictly as 2-point functions as follows:

SµνρσEH (−p, p) = p2(δµ(ρδσ)ν − δµνδρσ) + pµpνδρσ + pρpσδµν − 2p(µ|p(ρδσ)|ν) , (8.7)

Sµνρσa (−p, p) = p4δµ(ρδσ)ν − 2p2p(µ|p(ρδσ)|ν) + pµpνpρpσ (8.8)

=
(
p2δ(µ|(ρ − p(µ|p(ρ

)(
p2δσ)|ν) − pσ)p|ν)

)
,

Sµνρσb (−p, p) = p4δµνδρσ − p2pµpνδρσ − p2pρpσδµν + pµpνpρpσ (8.9)

=
(
p2δµν − pµpν

) (
p2δρσ − pρpσ

)
.

9 Tree-level 2-point functions at fixed points

Since neither choice of fixed point and seed Lagrangian, (4.11) or (4.37), involves the unit operator

(a.k.a. cosmological constant) term, the two-point vertex will be transverse for both schemes.

Using the linearly independent structures from the previous section, we can now derive their exact

classical fixed point 2-point graviton vertices through the flow equation (3.18), thus relating these

consistently to the form of ∆̇ and the cutoff profile c.

9.1 Weyl scheme 2-point vertex

As anticipated in sec. 4.1, we can set the seed Lagrangian to be (4.11). Since we want the 2-point

vertex of the classical fixed point action to coincide with this, we have for both actions that

Sαβγδ = c−1Sαβγδa + (1 + 4s) c−1Sαβγδb , (9.1)

using the notation for 2-point functions in (8.8) and (8.9). From (3.11) we get the “two-traces”

part of the flow

− 16(1 + 3s)2c−2p4∆̇Sαβγδb (p,−p) , (9.2)

and from (3.10) the “cross-contracted” part

− 4(1 + 2s)(1 + 6s) c−2p4∆̇Sαβγδb − c−2p4∆̇
(
Sαβγδa + Sαβγδb

)
. (9.3)

and thus comparing (3.12) to the RG-time derivative of (9.1):

˙(c−1) = −p4c−2∆̇ , (9.4)

s ˙(c−1) = −p4c−2∆̇
[
4j(1 + 3s)2 + (1 + 2s)(1 + 6s)

]
. (9.5)
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Requiring (9.5) to be consistent with (9.4) determines j = −(1 + 4s)/4(1 + 3s) i.e. the value (4.24)

determined in the background-independent calculation, while eqn. (9.4) itself is solved by the

normalised choice (3.21) already put forward for the effective propagator.

9.2 Einstein scheme 2-point vertex

As anticipated in sec. 4.2, we will see that we can set the seed Lagrangian to be (4.37). Since we

want the 2-point vertex of the classical fixed point action to coincide with this, we have for both

actions that

Sαβγδ =

(
1

p2
+

d

Λ2

)
Sαβγδa +

(
− 1

p2
+ (1 + 4j)

d

Λ2

)
Sαβγδb . (9.6)

From (3.11) we get the “two-traces” part of the flow

− 4p4

(
1

p2
− 2(1 + 3j)

d

Λ2

)2

∆̇Sαβγδb , (9.7)

and from (3.10) we get the “cross-contracted” part:

4(1 + 2j)p4 d

Λ2

(
2

p2
− (1 + 6j)

d

Λ2

)
∆̇Sαβγδb − p4

(
d

Λ2
+

1

p2

)2

∆̇
(
Sαβγδa + Sαβγδb

)
. (9.8)

Thus comparing (3.12) to the RG-time derivative of (9.6):

Λ∂Λ

(
d

Λ2

)
= −p4∆̇

(
d

Λ2
+

1

p2

)2

, (9.9)

jΛ∂Λ

(
d

Λ2

)
= −p4∆̇

(
j

p4
+ (1 + 12j + 36j2 + 36j3)

d2

Λ4
− 2(1 + 4j + 6j2)

d

p2Λ2

)
. (9.10)

The first equation is solved by the assumed effective propagator (3.22), providing we identify

c =
1

1 + d p2/Λ2
. (9.11)

First order expansion confirms the relation c′(0) = d(0) we found from the background-independent

calculation, cf. below (4.37). On the other hand (9.9) and (9.10) are consistent if and only if

j = −1/2 or j = −1/3. From (9.6), we see that the latter solution implies that the index structure

of the regularised 2-point vertex is not identical to the Einstein-Hilbert term. If we choose the

j = −1/2 solution however the classical fixed point and seed-action 2-point vertex is simply

Sαβγδ(p,−p) = c−1SαβγδEH . (9.12)
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10 Discussion and Conclusions

In this paper we have constructed a manifestly diffeomorphism invariant continuum Wilsonian RG

(a.k.a. exact RG) at the classical level (by which we mean precisely the ~→ 0 limit cf. e.g. the dis-

cussion in sec. 4.2), and sketched the first steps for quantum gravity. As addressed at the beginning

of the Introduction, already the classical construction could be useful. Indeed, since gravity is very

weakly coupled at currently accessible scales, the classical level applies to all currently observed

gravitational physics. The formulation allows computations to be done by phrasing the problem in

terms of computing the Wilsonian effective action S[g] at some diffeomorphism preserving effective

momentum cutoff scale Λ. Although we have not discussed this here, the formulation allows in

principle to compute exactly the expectation of any diffeomorphism invariant operator, along the

lines of refs. [38,39] for example. It is important to emphasise that the effective action S is arrived

at by an exact transformation from the original “bare” action. At the quantum level, this was

demonstrated in general in sec. 2.1. We gave an independent demonstration of this for classical

gravity in eqn. (3.9). Therefore no information is actually lost by “integrating out” modes down

to the effective cutoff Λ.

By utilising the freedom to design the Kadanoff blocking (see the review in sec. 2 and appli-

cation to gravity in sec. 3) it is actually straightforward to ensure that the flow equation respects

diffeomorphism invariance. More surprising perhaps is the fact that the effective action can then

be explicitly computed without gauge fixing. One way to do this is to start by following standard

practice, and pick a space-time manifold and convenient coordinates, e.g. flat, and perturb about

a “background” metric e.g. ḡµν = δµν . The difference here is that no gauge fixing step is required

and thus the (differential) Ward identities expressing exact diffeomorphism invariance, are obeyed.

These confirm that the momentum-independent piece becomes the cosmological constant term, and

that the remaining two-point vertex is transverse. They also show how to relate the (n+1)-point

vertex with one zero momentum argument to an n-point vertex, thus closing the flow equations at

the classical level and allowing the n-point vertices to be computed iteratively in terms of the lower

point vertices. We developed this approach in the latter half of the paper, secs. 5 – 9.

However it is not necessary to introduce a background metric, nor particular coordinates, nor

even to pick a particular space-time manifold in order to compute S. It is a fundamental requirement

that the flow equation, and also the solution S, be quasi-local i.e. have vertices that are Taylor

expandable to all orders in momenta.10 This encodes the requirement that the Kadanoff blocking

10A different notion of locality for quantum gravity has recently been discussed in ref. [74].

39



effectively operates only on a local patch of the manifold. Nevertheless it is important to recognise

that the implementation does not require flat space, or to be somehow close to flat space, rather

the size of the patch is controlled in a diffeomorphism invariant and background-independent way

by 1/Λ, through the cutoff function c(−∇2/Λ2), where ∇ is the full quantum covariant derivative.

In practical terms, it means that S can be computed in terms of the full metric gµν simply by

manipulating covariant derivatives. The computation proceeds iteratively as an expansion in local

diffeomorphism invariant operators of increasing engineering dimension. We pursued this approach

in secs. 3 and 4. Although we do not do so here, it would require only minor modifications to

phrase the computation in this framework entirely in coordinate free language.

It should be clear that it is the same effective action that we are computing by either fixed

background or background-independent methods. We do however confirm this in a number of

examples. In sec. 4.1, we demonstrate (by obtaining the same value of j) that, in the Weyl scheme

background-independent computation, the same two-curvature ∇4 and ∇6 terms arise as in the

fixed background computation in sec. 9.1. We derive the same behaviour of the differential Ward

identity (6.5) from the background-independent computation (4.7) as explained at the end of sec.

5. Finally, in the Einstein scheme, we demonstrate in secs. 4.2, 9.2 that the coefficients of the

curvature-squared operators are the same in the two approaches.

As stated already, it is actually quite straightforward to incorporate exact diffeomorphism in-

variance. Essentially one replaces the kernel ∆̇xy as it appears in the scalar flow equation (2.10) by

some appropriate covariantization {∆̇}xy. There is a great deal of freedom in this. Following the

treatment in gauge theory [14,18, 19], we could have kept this general. We could have represented

this as a weighted functional integral over path ordered integrals between x and y using the con-

nection Γµαβ. Instead we made perhaps the simplest choice which was to express ∆̇ as a differential

operator and replace the partial differentials by covariant derivatives.

As we emphasised, there still remains a great deal of freedom in designing the exact RG,

equivalently in the choice of Ψ in (2.5). However while any choice of Ψ that is quasi-local generates

a quasi-local exact reparametrisation of the theory, as sketched below (2.5), it is not true that

any choice leads to a valid exact RG. The key extra property we look for in the latter is that

momenta are indeed effectively cutoff by Λ. For a fully quantum exact RG we can expect that

extra structure is required, beyond the covariant higher derivatives introduced here, just as it was

for gauge theory [18–23]. But even before we consider this extra structure, it is still not true that

there is complete freedom in choice of Ψ. For example Ψ must depend on the effective action itself,

otherwise the flow is linear inhomogeneous in (2.6) and cannot lead to fixed point behaviour. A
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slightly less straightforward example is given by discarding the seed action, i.e. setting Ŝ = 0. In

that case, in (2.10), Σ = S, so the flow is non-linear and at first sight is a valid starting point.

However as we see in app. B, the tree-level corrections then do not take the right form for the

momentum integrals in the quantum corrections to be properly regulated.

To avoid such dangers, we chose to mimic what has already proved to work well for scalar and

gauge theory: the significant choice being to require that the two-point vertex of the seed action

be equal to the two-point vertex of the fixed point effective action. This in turn determines the

form of the kernel ∆̇. As we have seen we can then arrange for sensible intuitive results in the

sense that ∆ comes out as might be expected for an effective propagator for graviton fluctuations,

mimicking the successful construction for gauge theory. However note that these requirements,

which guide the construction of the exact RG, mean that there remains some association with a

preferred background (here flat) and indeed preferred expansion (5.1), in the sense that it is this

expansion about such a background that defines the two-point vertices of the fixed point and seed

actions, which are then required to coincide.

Even after making these choices, there is still freedom. In particular, we set up two different

versions which we called the “Einstein scheme” (secs. 4.2, 9.2) and the “Weyl scheme” (secs. 4.1,

9.1). The Einstein scheme gives a privileged rôle to Newton’s constant G(Λ), as an expansion in

this irrelevant coupling around the Gaussian fixed point, equivalently an expansion in 1/M2(Λ)

where M is the running Planck mass. The Weyl scheme is also an expansion around the Gaussian

fixed point, but adapted to four-derivative gravity, a renormalisable theory with asymptotically

free couplings but which has issues with unitarity [8, 9].

A further apparent freedom appears in the index structure for the kernel (3.13), where it is

parametrised by j. While this has the same origin as the DeWitt supermetric [60] we find that

for both schemes it is actually determined by the other choices we make (and for the Weyl scheme

also by the fixed-point ratio s(ω∗) of the couplings). We only touched briefly on the special values

j = ∞ and j = −1/D, which correspond to the conformal truncation [45, 61–64] and unimodular

gravity [65–68] respectively. Since these variants can thus be naturally incorporated, it would be

very interesting to develop them further.

As we noted in the introduction, quantum corrections are not yet sufficiently regulated. These

are generated by the second term in (3.7). If it is treated perturbatively, using the expansion around

a fixed background, developed in the second half of this paper, we would find that the loop integrals

suffer ultraviolet divergences. The problem that has to be faced is that the diffeomorphism invariant

cutoff function c(−∇2/Λ2), which is effectively covariant higher derivative regularisation, is not
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sufficient to regulate all ultra-violet divergences. One loop divergences slip through just as they do

for gauge theories [75,76]. Therefore extra ultraviolet regularisation needs to be incorporated into

the exact RG flow equation.

As we briefly reviewed in the introduction, for a gauge theory this extra regularisation is provided

by generalising the gauge group from SU(N) to SU(N |N) and then spontaneously breaking the

fermionic gauge fields at the effective cutoff scale Λ. The resulting massive fields behave as gauge

invariant Pauli-Villars fields with masses set by Λ and interactions that are naturally incorporated

into the flow equation [14,18–20]. The reason these provide the needed extra regularisation can be

understood as follows. The extra structure introduces as many wrong-statistics fermionic fields as

there are bosonic degrees of freedom.11 For the gauge fields themselves, the original gauge field A1
µ is

joined by a copy gauge field A2
µ and complex pair of fermionic gauge fields Bµ, B̄µ. At high energies

these degrees of freedom cancel each other, as happens with Parisi-Sourlas supersymmetry [77], at

least sufficiently that, together with appropriately chosen covariant cutoff functions, the theory is

then regularised to all orders in perturbation theory [21–23].

Given the developments just described it is natural to conjecture that the extra regularisation

for gravity can be incorporated by introducing wrong-statistics fermionic components to the metric

in a way that extends the diffeomorphism invariance along fermionic directions. We are therefore

led naturally to consider extending the coordinates themselves to

xA = (xµ, θa) , (10.1)

where, in Euclidean signature, the D dimensional bosonic coordinates run from µ = 1, · · · , D, while

an equal number of real fermionic coordinates run from a = D + 1, · · · , 2D. Writing the invariant

interval as

ds2 = dxAgABdx
B , (10.2)

we have introduced D2 wrong-statistics fermionic degrees of freedom gµa = −gaµ, which is the

right number to cancel the D2 bosonic degrees freedom, namely the D(D+1)/2 degrees of freedom

in the original metric gµν and the D(D − 1)/2 bosonic degrees of freedom in the antisymmetric

components gab. We see that we are led to construct a particular type of supermanifold, what

we might call a Parisi-Sourlas supermanifold. Fortunately, supermanifolds in general have been

extensively developed [78].

11Actually for the counting to work exactly at finite N , it is first necessary to extend the group to U(N |N) after

which one sees that two vector bosons decouple [23].
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Of course it remains to demonstrate whether this structure can indeed provide the missing

regularisation and then also how to decouple the extra degrees of freedom at energies lower than Λ.

Again, following the hints from gauge theory, we would expect to incorporate a running spontaneous

symmetry breaking. Possible strategies for the latter would be to consider extra fields, or particular

structures in the Lagrangian or maybe even just particular solutions for gAB.
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A Expansion of the metric determinant

The momentum-independent part of the action has the same n-point structure as
√
g, meaning

that it corresponds to a cosmological constant-like term. All actions carry a factor of
√
g, whereas

the kernel carries a factor of 1/
√
g. Here, we list the first few n-point functions from the lth power:

det l/2(gµν) = e
l
2

tr(ln(δµν+hµν)) . (A.1)

Expanding out the logarithm gives the trace as h− 1
2hµνh

µν + 1
3hµνh

µρhνρ − · · · . Then we expand

the exponential to get

√
g l = 1 + l

h

2
− lhµνh

µν

4
+ l2

h2

8
+ l

hµνh
µρhνρ
6

− l2hµνh
µνh

8
+ l3

h3

48
+ · · · (A.2)

We can then obtain n-point functions by differentiating with respect to metric perturbations:

Sµνc =
l

2
δµν , (A.3)

Sµνρσc =
l2

4
δµνδρσ − l

2
δµ(ρδσ)ν , (A.4)

Sµνρσαβc =
l3

8
δµνδρσδαβ + lδ(µ|(ρδσ)(αδβ)|ν)

− l
2

4

(
δµνδρ(αδβ)σ + δρσδµ(αδβ)ν + δαβδµ(ρδσ)ν

)
. (A.5)

The choice of l = 1 gives the n-point functions implied by the momentum-independent Ward

identities in (6.6), as seen by explictly comparing (6.7) and (6.8) to (A.3), (A.4) and (A.5).
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B Why the seed action cannot be set to zero

We demonstrate that the choice Ŝ = 0 does not lead to an acceptable exact RG. For this purpose

we can work with the ϕ ↔ −ϕ invariant scalar field theory treated in sec. 2.2. Setting Ŝ = 0 in

(2.10) means that the classical flow equation is simply

Ṡ =
1

2

δS

δϕ
· ∆̇ · δS

δϕ
. (B.1)

Then instead of (2.11) we have

Ṡ(2) = ∆̇
(
S(2)

)2
. (B.2)

(In this appendix we will use S(n)(p1, · · · , pn) to denote the effective action n-point vertex with the

momentum conserving δ-function factored out.) Thus we are now led to the choice ∆ = −1/S(2).

From (B.1), the four-point vertex satisfies the flow equation:

Ṡ(4)(p1, · · · , p4) = S(4)(p1, · · · , p4)

4∑
i=1

∆̇(pi)S
(2)(pi) , (B.3)

where S(2)(p) is short hand for S(2)(p,−p). Using (B.2) we see that this has solution:

S(4)(p1, · · · , p4) = S
(4)
0 (p1, · · · , p4)

4∏
i=1

S(2)(pi) , (B.4)

where the integration ‘constant’ is a Λ-independent Taylor-expandable four-point vertex S
(4)
0 .

(Standard RG considerations would lead us to set this simply to a four-point coupling λ.) The two-

point vertex decoration shown in (B.3) appears for any n-point vertex, for example the six-point

vertex flow takes the form:

Ṡ(6)(p1, · · · , p6) = S(6)(p1, · · · , p6)
6∑
i=1

∆̇(pi)S
(2)(pi)

+
1

2

∑
partitions π

S(4)(pπ1 , pπ2 , pπ3 ,−P )∆̇(P )S(4)(P, pπ4 , pπ5 , pπ6) , (B.5)

where P = pπ1 + pπ2 + pπ3 . Thus all tree-level interactions vertices have S(2) on their external legs,

as in (B.3), where they appear as integrating factors. Loop corrections follow from the second term

in (2.10). We see that the propagator in the loop thus appears with the factors:

S(2)∆S(2) = S(2) , (B.6)

which has the incorrect momentum dependence, since it takes the form of a 2-point function rather

than a UV regularized propagator, which would be its inverse.
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