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Abstract 1 

Background 2 

Operational research (OR) is the discipline of using models, either quantitative or qualitative, to aid 3 

decision-making in complex implementation problems. The methods of OR have been used in 4 

healthcare since the 1950s in diverse areas such as emergency medicine, the interface between 5 

acute and community care; hospital performance; scheduling, management of patient home visits; 6 

scheduling of patient appointments; and many other complex implementation problems of an 7 

operational or logistical nature. 8 

Discussion 9 

To date there has been limited debate about the role that operational research should take within 10 

implementation science.  I detail three such roles for OR all grounded in upfront systems thinking: 11 

structuring implementation problems; prospective evaluation of improvement interventions; and 12 

strategic reconfiguration.  Case studies from mental health, emergency medicine and stroke care are 13 

used to illustrate each role. I then describe the challenges for applied OR within implementation 14 

science at the organisational, interventional and disciplinary levels. Two key challenges include the 15 

difficulty faced in achieving a position of mutual understanding between implementation scientists 16 

and research users; and a stark lack of evaluation of OR interventions.  To address these challenges, I 17 

propose a research agenda to evaluate applied OR through the lens of implementation science, the 18 

liberation of OR from the specialist research and consultancy environment, and co-design of models 19 

with service users. 20 

Summary 21 

Operational research is a mature discipline that has developed a significant volume of methodology 22 

to improve health services. OR offers implementation scientists the opportunity to do more upfront 23 

system thinking before committing resources or taking risks.  OR has three roles within 24 

implementation science: structuring an implementation problem; prospective evaluation of 25 

implementation problems; and a tool for strategic reconfiguration of health services.   Challenges 26 
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facing OR as implementation science include limited evidence and evaluation of impact; limited 1 

service user involvement; a lack of managerial awareness; effective communication between 2 

research users and OR modellers; and availability of healthcare data.  To progress the science a focus 3 

is needed in three key areas: evaluation of OR interventions; embedding the knowledge of OR in 4 

health services; and educating OR modellers about the aims and benefits of service user 5 

involvement. 6 

 7 

  8 
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1. Background 1 

Operational research (OR) is the discipline of using models, either quantitative or qualitative, to aid 2 

decision-making in complex problems [1].  The practice of applied healthcare OR distinguishes itself 3 

from other model based disciplines such as health economics as it is action research based where 4 

operational researchers participate collaboratively with those that work in or use the system to 5 

define, develop and find ways to sustain solutions to live implementation problems [2]. The methods 6 

of OR have been used in healthcare since the 1950s [3] to analyse implementation problems in 7 

diverse areas such as emergency departments [4-6], management policies for ambulance fleet [7]; 8 

acute stroke care [8-11], outpatient clinic waiting times [12] and locations [13]; cardiac surgery 9 

capacity planning [14]; the interface between acute and community care [15]; hospital performance 10 

[16]; scheduling and routing of nurse visits [17]; scheduling of patient appointments [18]; and many 11 

other complex implementation problems of an operational or logistical nature. 12 

Implementation science is the study of methods to increase the uptake of research findings in 13 

healthcare [19].  Given the volume of OR research in healthcare implementation problems, it is 14 

remarkable that limited discussion of the discipline has occurred within the implementation science 15 

literature. A rare example of debate is given by Atkinson and colleagues [20] who introduce the 16 

notion of system science approaches for use in public health policy decisions.  Their argument 17 

focused on two modelling methods, system dynamics and agent based simulation, and the potential 18 

benefits they bring for disinvestment decisions in public health.  To complement and extend this 19 

debate I define the overlap between implementation science and OR.  I have focused on the upfront 20 

role that OR takes when used as an implementation science tool.  Although some detail of method is 21 

given, the full breath of OR is beyond the scope of this article; a detailed overview of all the methods 22 

can be found elsewhere [21]. I describe three roles for OR within implementation science: 23 

structuring an implementation problem; prospective evaluation of an intervention; and strategic 24 

reconfiguration of services.  For each role I provide a case study to illustrate the concepts described.  25 
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I then describe the challenges for OR within implementation science at the organisational, 1 

interventional and disciplinary levels.   Given these, challenges I derive a research agenda for 2 

implementation science and OR. 3 

2. Discussion 4 

2.1. OR to structure an implementation problem 5 

The first role for OR in implementation science is to provide a mechanism for structuring an 6 

implementation problem.   Within OR, problem structuring methods provide participatory modelling 7 

approaches to support stakeholders in addressing problems of high complexity and uncertainty [22].   8 

These complex situations are often poorly defined and contain multiple actors with multiple 9 

perspectives and conflicting interests [23]. As such, they are unsuitable for quantitative approaches.  10 

Problem structuring methods aim to develop models that enable stakeholders to reach a shared 11 

understanding of their problem situation and commit to action(s) that resolve it [23].  Approaches 12 

might serve as a way to clearly define objectives for a quantitative modelling study [24], 13 

systematically identify the areas to intervene within a system [25] or may be an intervention to 14 

improve a system in its own right.    15 

A case example – understanding patient flow in the mental health system 16 

A mental health service provider in the UK provided treatment to patients via several specialist 17 

workforces.  Here I focus on two psychology and psychiatric talking therapies (PPT) and recovering 18 

independent life (RIL) teams.   Waiting times to begin treatment under these services were high (e.g. 19 

for RIL teams median = 55 days, inter-quartile range = 40 – 95 days) and treatment could last many 20 

years once it had begun.  The trust’s management team were eager to implement new procedures 21 

to help staff manage case load and hence reduce waiting times to prevent service users, here 22 

defined as patients, their families and carers, from entering a crisis state due to diminishing health 23 

without treatment.  Management believed that reasons for delays were more complex than lack of 24 

staff, but the exact details were unclear and there was much disagreement between the senior 25 
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management.  The implementation science intervention I detail was conducted as an OR problem 1 

structuring exercise. 2 

Methods 3 

A system dynamics (SD) model was constructed to aid management target their interventions.  SD is 4 

a subset of systems thinking - the process of understanding how things within a system influence 5 

one another within the whole.  SD models can be either qualitative or quantitative.  In this case a 6 

purely qualitative model was created.  Figure 1 illustrates stock and flow notation that is commonly 7 

used in SD.   The example is the concept of a simple waiting list for a (generic) treatment. It can be 8 

explained as follows.  General Practitioners (GPs) refer service users to a waiting list at an average 9 

daily rate, while specialist clinicians treat according to how much daily treatment capacity they have.  10 

The variable waiting list is represented as a rectangular stock: an accumulation of patients.   The 11 

waiting list stock is either depleted or fed by rate variables, referring and treating, represented as 12 

flows (pipes with valves) entering and leaving the stock.  Figure 1 also contains two feedback loops 13 

that are illustrated by the curved lines.  The first loop is related to the GPs reluctance to refer to a 14 

service with a long waiting time.  As the waiting list for a service increases in number so does the 15 

average waiting time of service users and so does the pressure for GPs to consider an alternative 16 

service (lowering the daily referral rate).  The second loop is related to specialist clinicians reacting 17 

to long waiting lists by creating a small amount of additional treatment capacity and increasing 18 

admission rates. 19 

A preliminary version of the SD model was created using a series of interviews with clinicians and 20 

managers from the three services.  This was followed by a Group Model Building workshop that 21 

involved all senior management.  Group model building is a structured process that aims to create a 22 

shared mental model of a problem [26].  The workshop began with a nominal group exercise.  The 23 

group were asked to individually write down what they believed were the key factors that affected 24 

patient waiting times.   The group were specifically asked to focus on strategic issues as opposed to 25 
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detailed process based problems. After all individual results had been shared, the group were asked 1 

to (i) hypothesise how these factors influenced each other; and (ii) propose any missing variables 2 

that may mediate influence.  For example, available treatment capacity is reduced by non-clinical 3 

workload.  Non-clinical workload is increased by several other factors (discussed below in results) 4 

and so on. 5 

Results  6 

Figure 2 illustrates one of the qualitative SD models developed in collaboration with the mental 7 

health trust.  It uses the same stock and flow notation illustrated in Figure 1.  The model shown is 8 

focussed on the RIL teams.  Several insights were gained in its construction.  First, it was clear to all 9 

parties that that this was not a simple demand and treatment capacity problem.  For example, a 10 

great deal of non-core work takes place due to monitoring of ‘discharged’ service users within social 11 

care.   The fraction of service users who undergo monitoring is determined by the degree of trust 12 

between clinicians and social care teams.   When trust is low, the fraction of service users monitored 13 

increases and vice versa.  A similar soft issue can be found in the discharge of complex patients, i.e. 14 

those that require a combination of medication, management by GPs in the community and social 15 

care input.  In this case there is a delay while GPs build confidence that it is appropriate for a patient 16 

to be discharged into their care.  While this negotiation takes place a patient still requires regular 17 

monitoring by a mental health clinician.    Other systemic issues are also visible.  For example, the 18 

long delays in beginning treatment lead to clinicians spending time contacting patients by phone 19 

before they were admitted.  This all takes time and reinforces the delay cycle.  20 

The results of the modelling were used to inform where interventions could be targeted.  For 21 

example, a more detailed qualitative SD study to identify the trust issues between clinicians, social 22 

services and general practitioners.   23 

<insert Figure 1> 24 

<insert Figure 2> 25 
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 1 

2.2. OR as a tool for prospective evaluation 2 

The second role of OR within implementation science is as a prospective evaluation tool.  That is, to 3 

provide a formal assessment and appraisal of competing implementation options or choices before 4 

any actual implementation effort, commitment of resources or disinvestment takes place.   5 

Informally this approach is often called what-if analysis [21].  A mathematical or computational 6 

model of a health care system is developed that predicts one or more measures of performance. For 7 

example, service waiting times, patients successfully treated, avoided mortality, or operating costs.  8 

The model can be setup to test and compare complex interventions to the status-quo.  For example, 9 

decision makers may wish to compare the number of delayed transfers of care in a rehabilitation 10 

pathway before and after investment in services to prevent hospital admissions and disinvestment in 11 

rehabilitation in-patient beds.  The approach has been applied widely in the areas outlined in the 12 

introduction to this article. 13 

A case example – Emergency medicine capacity planning  14 

As a simple case example of prospective evaluation, consider the emergency department (ED) 15 

overcrowding problems faced by the United Kingdom’s (UK) National Health Service (NHS).  The 16 

performance of NHS EDs is (very publically) monitored by recording the proportion of patients who 17 

can be seen and discharged from an ED within four hours of their arrival.  The UK government has 18 

set a target that 95% of service users must be processed in this time.  In recent years many NHS EDs 19 

have not achieved this benchmark.  The reasons for this are complex and are not confined to the 20 

department [27] or even the hospital [15].  However, given the high public interest, many EDs are 21 

attempting to manage the demands placed on them by implementing initiatives to reduce waiting 22 

times and optimise their own processes.   23 

Our case study took place at a large ‘underperforming’ hospital in the UK.  The management team 24 

were divided in their view about how to reduce waiting times.  One option was to implement a 25 
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clinical decision making unit (CDU).  A CDU is a ward linked to the ED that provides more time for ED 1 

clinicians to make decisions about service users with complex needs.  However, at times of high 2 

pressure a CDU can also serve as buffer capacity between the ED and the main hospital.  That is, a 3 

CDU provides space for service users at risk of breaching the four-hour target  Once admitted, 4 

service users are no longer at risk of breach.  The question at hand was if a CDU were implemented, 5 

how many beds are required in order for the ED to achieve the 95% benchmark?  6 

Methods 7 

Figure 3 illustrates the logic of a computer simulation model that was developed to evaluate the 8 

implementation of a CDU on ED waiting times.  A computer simulation model is a simplified dynamic 9 

representation of the real system that in most cases is accompanied by an animation to help 10 

understanding.  In this case the simulation mimicked the flow of patients into an ED, their 11 

assessment and treatment by clinicians and then flow out to different parts of the hospital or to 12 

leave the hospital entirely.  The scope of the modelling included the hospital’s Acute Medical Unit 13 

(AMU) that admits medical patients from the ED.  In Figure 3, the rectangular boxes represent 14 

processes, for example assessment and treatment in the ED.  The partitioned rectangles represent 15 

queues, for example patient waiting for admission to the AMU.  The model was setup to only admit 16 

patients to the CDU who had been in ED longer than 3.5 hours and only then if there was a free bed.  17 

Once a patient’s CDU stay was complete they would continue on their hospital journey as normal i.e. 18 

discharged home, admitted to the AMU or admitted to another in-patient ward. 19 

<insert Figure 3> 20 

 21 

In the model the various departments and wards are conceptualised as stochastic queuing systems 22 

subject to constraints.  This means that the variability we see in service user arrival and treatment 23 

rates (e.g. sudden bursts in arrivals combined with more complex and hence slower treatments) 24 

combined with limited cubicle and bed numbers result in queues.  There are three reasons why 25 
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prospective evaluation is appropriate for these systems.  First, capacity planning for such complex 1 

systems based on average occupancy fail to take queuing into account and will substantially 2 

underestimate capacity requirements [28].  Second, the processing time, i.e. the time taken to 3 

transfer a patient to a ward and then to make a clinical decision, within a CDU is uncertain; although 4 

it is likely to be slower than the high pressure environment of the ED.   Third, as the same ED and 5 

AMU clinicians must staff the CDU, the (negative or positive) impact on their respective processing 6 

times is uncertain.  7 

The model developed was a discrete-event simulation [29] that mimics the variation in service user 8 

arrival and treatment rates in order to predict waiting times.  The uncertainty in CDU processing 9 

time was treated as an unknown and varied in a sensitivity analysis.  The limits of this analysis were 10 

chosen as two and seven hours on average, as these were observed in similar wards elsewhere.    11 

Results 12 

The model predicted that the number of CDU beds would need to be between 30 and 70 in order to 13 

achieve the ED target (for reference the ED had 10 cubicles for minor cases and 18 cubicles for major 14 

cases).  This result illustrated that even if a decision was made in 2 hours on average with no 15 

negative effect on ED or AMU processing time, the CDU would need to be at least the same size as 16 

the ED overall.  It also highlighted that the CDUs impact on ED performance was highly sensitive to 17 

processing time.   18 

The benefit of evaluating the CDU implementation upfront was that it ruled the CDU out as a 19 

feasible intervention before any substantial resource had been mobilised to implement it.  The 20 

hospital could not safely staff a 30 bedded CDU or indeed provide space for that size of ward. As 21 

such the modelling helped the management team abandon their CDU plan and consider alternative 22 

solutions with minimal cost and no disruption to the service.   23 

 24 
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2.3. OR as a tool for strategic reconfiguration 1 

The previous section described an implementation science approach to evaluate a small number of 2 

competing options at an operational level.  In some instances, particularly in healthcare logistics and 3 

estate planning, a more strategic view of a system is needed to shortlist or choose options for 4 

reconfiguration.  In such implementation problems there may be a large number of options reaching 5 

into the hundreds, if not hundreds of thousands of competing alternatives.  To analyse these 6 

problems mathematical and computational optimization techniques are required.  For example, if a 7 

provider of sexual health services wanted consolidate community clinics from 50 to 20 and there are 8 

100 candidate locations then there are in the order of 1020  configurations to consider.  OR’s 9 

implementation science role is to provide tools that identify options that help meet a strategic 10 

objectives.  For example, this might be maintaining equitable patient access to services across 11 

different demographics groups or modes of transportation while increasing service quality and 12 

reducing cost.   13 

A case example - where should TIA outpatient clinics be located?  14 

As a simple exemplar, consider a rural region in the UK that provided a seven-day Transient Ischemic 15 

Attack (TIA) service through outpatient clinics in the community.  Clinics ran at five locations, but 16 

with only one location open per day. Magnetic resonance imaging (MRI) was available at three 17 

locations.  Service users attending clinics without imaging, but who require access to an MRI make 18 

an additional journey to the closest location with imaging capacity.  19 

Service users are booked into clinic appointments across the week as they are referred to the TIA 20 

service by their diagnosing clinician, typically the patients local GP or an attending emergency 21 

department physician.  The diagnosing clinician risk stratifies service users as high or low risk of a 22 

major stroke. High risk service users require to be seen within 24 hours of symptom onset and low 23 

risk patients within seven days[30].  24 
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The healthcare providers had concerns that splitting the clinics across five sites increased the 1 

variation in care received by service users and wished to consolidate to one to three clinic locations.  2 

Hence there were two complicating factors when assessing equitable access: how many locations 3 

and which ones.  There were also concerns that one location – clinic X - on the coast of the region 4 

was extremely difficult for high risk TIAs to reach on the same day as diagnosis. There would also be 5 

political implications for any closure at clinic X.  In total there were 25 combinations of clinics for the 6 

providers to consider for both the low and high risk TIA groups i.e. 50 options to review.  7 

Methods 8 

A discrete-choice facility location model was developed to evaluate the consequences of different 9 

TIA clinic configurations and inform the decision making process for the reconfiguration of the 10 

service. Location analysis is a specialised branch of combinatorial optimisation and involves solving 11 

for the optimal placement of a set of facilities in a region in order to minimise or maximise a 12 

measure of performance such transportation costs, travel time or population coverage [31].    In this 13 

case an analysis was conducted separately for high risk and low risk TIAs.  The analysis of high risk 14 

TIAs aimed to minimise the maximum travel time of a service user from their home location to the 15 

closest clinic (as these services users must be seen the same day).  The low risk analysis minimised 16 

the weighted average travel time to their closest clinic.  The weighted average measure allows for 17 

locations with the highest level of demand to have the greatest impact on results; diminishing the 18 

impact of outlying points.  In general, if there are n demand locations and on a given day the travel 19 

time 𝑥 from locations 𝑖 to the nearest clinic then the weighted average travel �̅� time is given by the 20 

simple formula depicted in equation (1).  Table 1 illustrates the use of the equation with two 21 

fictional locations.  For each location the number of patients who travel and the travel time for 22 

patients to a hospital is given.  In table the weighted average is compared to the more familiar mean 23 

average. 24 

 25 
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 1 

<insert Table 1> 2 

Results 3 

The model demonstrated that clinics most central to the region were all good choices to provide 4 

equitable patient access.  A three-clinic solution provided the most equitable solution for service 5 

users.   The problematic clinic X on the coast of the region was not included in an optimal 6 

configuration; however, it could be included in a three-clinic solution without substantial effect on 7 

travel times if scheduled infrequently.  This latter result allowed the decision makers to move on 8 

from the strategic debate about location and focus on the more detailed implementation issues of 9 

scheduling and capacity planning for clinics.  This was again addressed upfront using a computer 10 

simulation study to evaluate a small number of competing options for scheduling the clinics. 11 

2.4. Lessons for implementation science 12 

Each of the three roles emphasises the use of OR to conduct implementation science upfront before 13 

any action to alter a care pathway or service has been taken.  Many OR scholars argue that the 14 

benefit of constructing a model upfront is that it forces decision makers to move from a world of 15 

imprecise language to a world of a precise language (sometimes referred to as a common language 16 

[32]) and ultimately develop a shared understanding of the problem; although as I will argue later 17 

there is very limited empirical evidence supporting this proposition.  Such a shared understanding 18 

increases the likelihood of if implementation will actually go ahead and importantly if it will be 19 

sustained or normalised.  20 

It is important to emphasise that the three case studies illustrate the simpler end of what can be 21 

achieved in using OR for upfront implementation science.  This is partly a stylistic choice in order to 22 

aid reader understanding, for example, many optimisation problems are hugely complex, but also 23 
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because in my experience simpler models tend to be accepted and used more in healthcare.  Simpler 1 

models also need less input data and hence can be built and run quickly.  2 

Along with the three case studies, OR is in general grounded in the use of models to improve upfront 3 

decision making in complex implementation problems.  Although there is a significant overlap 4 

between OR and implementation research, there are differences.  For example, OR would not 5 

provide the rich contextual information collected in a process evaluation. 6 

2.5. Implementation science challenges for OR 7 

Implementation science poses a number of challenges for OR.  I propose that these lie at three 8 

levels:  disciplinary; organisational; and interventional. Table 2 summarises these key challenges. 9 

<insert Table 2> 10 

2.5.1. Challenges at a disciplinary level 11 

This article describes three roles for OR within implementation science.  An irony is that OR 12 

interventions themselves are poorly understood with barely any published evaluation of practice or 13 

impact [33-36]. Limited examples can be found in Monks et al.[37], Pagel et al. [38], and Brailsford et 14 

al [39].  The explanation for this can be found at a disciplinary level.  That is, academic OR is 15 

predominately driven and rewarded by the development of theory for modelling methodology as 16 

opposed to understanding interventions and the issues they raise for practice.  As such a discipline 17 

that promotes the use of evidence for decision making in healthcare cannot confidently answer the 18 

question does OR in health work?   I am regularly challenged on this point by healthcare 19 

professionals.  20 

A second disciplinary challenge is to systematically involve service users in the co-design of OR 21 

interventions.  To date evidence of service user involvement is limited (see Walsh and Holstick [40] 22 

for an example).  There is also confusion between service users framed as research participants 23 

(typically treated as a data source to parameterise models with behavioural assumptions) and co-24 
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designers of research objectives and methods; although there has been an effort to clarify the 1 

important difference [41].    2 

2.5.2. Challenges at the Organisational level 3 

The three roles of OR outlined above are widely applicable across health care implementation 4 

problems.  However, before OR can be used within practice, users of the research, in this case health 5 

care managers, clinicians and service users, must be aware of the approaches. This is currently a 6 

substantial barrier to wide scale adoption in health services [42-44] and stands in stark contrast to 7 

domains such as manufacturing and defence where it is used frequently to generate evidence before 8 

action [45].  The implication of low awareness of OR in health is that it is often difficult to engage 9 

senior decision makers in the complex operational and logistical problems that matter the most for 10 

service users.  11 

2.5.3. Challenges at an Interventional level 12 

Fifty years ago Churchman and Schainblatt [46] wrote about a ‘dialectic of implementation’ in the 13 

journal management science.  In this paper the two authors advocated that a position of mutual 14 

understanding between a researcher and manager was necessary in order to implement results of a 15 

study.  That is, the researcher must understand the manager’s position, values and implementation 16 

problem in order to tackle the correct problem in the right way. The manager must understand the 17 

method that the researcher has applied, at least at the conceptual level, in order to scrutinise, 18 

challenge and implement results.   The concept of mutual understanding is an elegant one, but in 19 

practice achieving it is a challenge for both sides.  As a simple example from a researcher 20 

perspective, it is difficult to assess if the users of a model understand why a model is producing 21 

certain results [42]. That is, do users understand how the model works or are they simply accepting 22 

the results based on some heuristic, such as ‘these are the results I want’ or ‘I trust the person telling 23 

me the results’.  Given the disciplinary challenge outlined above, to date there is limited validated 24 

guidance about how to manage such complex interventions within OR.    25 
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The computer software used in the three case studies have been available for considerable time, but 1 

appropriate data to parameterise the quantitative models used to illustrate the second and third 2 

roles are potentially not collected routinely.  All models require data from the system studied.  The 3 

TIA clinic study had relatively low requirements: individual service user level data detailing date of 4 

clinic attendance, clinic attended, the risk classification of patient and a home location of the patient 5 

– much of which is collected routinely by a health system for financial reporting purposes.  6 

Simulation modelling studies such as that described in the emergency department case study have 7 

high data requirements, including fine-grained timings of processes such as triaging and doctor 8 

assessment.  It is unlikely such data are collected routinely as they have no use in financial reporting.    9 

2.6. An agenda for OR in implementation science 10 

Given the organisational, interventional and disciplinary issues outlined in section 5, I propose the 11 

following agenda for OR within implementation science. 12 

Priority 1: Creating the evidence base  13 

At the forefront of the research agenda is the need to evaluate the impact of OR on complex 14 

interventions.  The focus here should be on the consumers of research as opposed to the modellers 15 

and the process they follow [47, 48].  There is a need to understand how stakeholders make sense of 16 

an OR intervention and how the results of studies are used to assist decision making.   Recent 17 

research offers some promise in progressing this aim.  PartiSim [49] is a participative modelling 18 

framework that aims to involve stakeholders in structured workshops throughout a simulation 19 

study.  Structured frameworks like PartiSim provide an opportunity to study the user side of OR 20 

more efficiently, as the modelling steps are known upfront.  Another area showing promise is the 21 

recent emergence of Behavioural OR [50].  One of the core aims of Behavioural OR is to analyse and 22 

understand the practice and impact of OR in context [e.g. 51, 52, 53].    23 

Priority 2: Raising demand and the liberation of OR  24 
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Much of the challenge in the use of OR as an implementation science technique that I outline is 1 

rooted in the lack of organisational awareness and experience of the approach.  But what if this 2 

challenge were to be resolved?  To examine this further consider a counterfactual world where all 3 

health service users, managers, and clinicians are well versed in the three implementation science 4 

roles of OR and all have free access to a substantial evidence base detailing the efficacy of the 5 

approach.   In this world, where OR is an accepted implementation science approach, the constraint 6 

has now moved from demand to supply of modelling services.  Current supply is predominately 7 

provided by the (relatively) small specialist consultancy and research communities.  There is a great 8 

need to liberate OR from its roots as the tool of the ‘specialist’ and transfer knowledge to research 9 

users.  Two initial efforts to achieve this priority include the Teaching Operational Research for 10 

Commissioning in Health (TORCH) in the UK [54] and the Research into Global Healthcare Tools 11 

(RIGHT) Project [55].   TORCH successfully developed a curriculum for teaching OR to commissioners; 12 

although it has yet to be implemented on a wide scale or evaluated.  The RIGHT project developed a 13 

pilot web tool to enable health care providers select an appropriate OR approach to assist with a 14 

implementation problem.  Both of these projects demonstrate preliminary efforts at liberating OR 15 

from the traditional paradigm of specialist delivery. 16 

The liberation of OR has already taken place in some areas in the form of Community OR. The three 17 

case studies illustrated interventions where the collaboration puts the emphasis on a modeller to 18 

construct the model and provide results for the wider stakeholder group.  Alternatively service users 19 

could develop or make use of OR methods to analyse a problem themselves.  Community OR 20 

changes the role of an operational researcher from a modeller to a facilitator in order to aid those 21 

from outside of OR to create appropriate systematic methodology to tackle important social and 22 

community based issues.   In a rare example of community OR in healthcare [40], two examples 23 

illustrate where service users take the lead.  In the first example, users of mental health services 24 

used system methods to produce a problem structuring tool to evaluate the impact of service users 25 

on NHS decision making.   In the second example, service users developed and applied an idealised 26 



18 
 

planning approach for the future structure of mental health services. These approaches are 1 

qualitative in nature, but are systematic and in-line with an OR implementation science approach.   2 

Priority 3: PPI education for OR modellers 3 

The first two priorities listed might be considered long term goals for the OR implementation science 4 

community.  An immediate priority that is arguably achievable over the short term is Patient and 5 

Public Involvement (PPI) education for OR modellers.   The co-design of health care models with 6 

decision makers is often held up as a critical success factor for modelling interventions [42]. For 7 

ethical and practical reasons co-design of OR modelling interventions should also include service 8 

users [41].  Education need not be complicated and could at first be done through widely read OR 9 

magazines and a grass roots movement delivered through master degree courses.   10 

3. Conclusions 11 

Operational research offers improvement scientists and individuals who work in complex health 12 

systems the opportunity to do more upfront system thinking about interventions and change.  ORs 13 

upfront role within implementation science aims to answer questions such as where best to target 14 

interventions, will such an intervention work even under optimistic assumptions, which options out 15 

of many should we implement, and should we consider de-implementing part of a service in favour 16 

of investing elsewhere.   As OR becomes more widely adopted as an implementation science 17 

technique, evaluation of the method through the lens of implementation science itself becomes 18 

more necessary in order to generate an evidence base about how to effectively conduct OR 19 

interventions.  It is also necessary to liberate OR from its traditional roots as a specialist tool.   20 

Summary 21 

Operational research (OR) is a mature discipline that has developed a significant volume of 22 

methodology to improve health services. OR offers implementation scientists the opportunity to do 23 

more upfront system thinking before committing resources and taking risks.  OR has three roles 24 



19 
 

within implementation science: structuring an implementation problem; upfront evaluation of 1 

implementation problems; and a tool for strategic reconfiguration of health services.   Challenges 2 

facing OR as implementation science include limited evidence or evaluation of impact; limited 3 

service user involvement; a lack of managerial awareness; effective communication between 4 

research users and OR modellers; and availability of healthcare data.  To progress the science a focus 5 

is needed in three key areas: evaluation of OR interventions; transferring the knowledge of OR to 6 

health services; and educating OR modellers about the aims and benefits of service user 7 

involvement. 8 
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 36 

Figures labels/legends and Tables. 37 

Figure 1: Example systems thinking for a waiting list – Stock and Flow Notation 38 

Notation guide.  Rectangles represent stocks which are acculations of quantity of interest; Pipes with valves represent 39 
flows which feed or deplete stocks; arrows represent how one aspect of a system positively or negatively influences 40 
another. 41 

 42 

Figure 2.  A simplified version of the RIL team patient flow model 43 

 44 

Figure 3. Emergency department and clinical decision-making unit model 45 
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Notation guide. Rectangles represent processes; partitioned rectangles represent queues; ellipses represent start and end 1 
points; arrows represent the direction of patient flow. 2 

 3 

 4 

Table 1: Difference between weighted and unweighted averages 

Location (𝒊) Patients (𝒘𝒊) Travel time (𝒙𝒊; minutes) 

1 1 30   
2 5 10 

 
Calculations 
 
Average travel time 
 

30+10

2
= 20 minutes 

Weighted average travel time (1×30)+(5×10)

1+5
= 13.3 minutes 

 5 

Table 2. Implementation science challenges for OR  

Level  Challenge 

Disciplinary  Evidence of impact and effectiveness; 

 Understanding of practice; 

 Involvement of service users in research; 
 

Organisational  Awareness of operational research; 

 Engagement of decision and policy makers; 
 

Interventional  Mutual understanding between stakeholders and researchers; 

 Parameterisation of models 
 

 6 


