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Abstract

The application of computational modelling to wave propagation problems is hindered by the dispersion error in-
troduced by the discretisation. Two common strategies to address this issue are to use high-order polynomial shape
functions (e.g. hp-FEM), or to use physics-based, or Trefftz, methods where the shape functions are local solutions
of the problem (typically plane waves). Both strategies have been actively developed over the past decades and both
have demonstrated their benefits compared to conventional finite-element methods, but they have yet to be compared.
In this paper a high-order polynomial method (p-FEM with Lobatto polynomials) and the wave-based discontinuous
Galerkin method are compared for two-dimensional Helmholtz problems. A number of different benchmark prob-
lems are used to perform a detailed and systematic assessment of the relative merits of these two methods in terms of
interpolation properties, performance and conditioning. It is generally assumed that a wave-based method naturally
provides better accuracy compared to polynomial methods since the plane waves or Bessel functions used in these
methods are exact solutions of the Helmholtz equation. Results indicate that this expectation does not necessarily
translate into a clear benefit, and that the differences in performance, accuracy and conditioning are more nuanced
than generally assumed. The high-order polynomial method can in fact deliver comparable, and in some cases su-
perior, performance compared to the wave-based DGM. In addition to benchmarking the intrinsic computational
performance of these methods, a number of practical issues associated with realistic applications are also discussed.

Keywords: Comparison, High-order Finite Element Method, Wave-based Discontinuous Galerkin Method,
Helmholtz problems

1. Introduction

Numerical dispersion is the main source of inaccuracy in the conventional finite element method when solving
Helmholtz problems at high frequencies. For instance with linear elements the numerical error scales like k2h with
wavenumber k and elements of size h. As k increases, the number of elements per wavelength must also increase to
maintain the same level of accuracy, which rapidly becomes prohibitively expensive. A number of different strategies
have been explored to address this issue [1, 2]. The present paper provides a detailed comparison of two of the most
common techniques: high-order polynomial methods and wave-based methods.

High-order finite element methods replace the standard, low-order Lagrange polynomials with higher-order func-
tions providing superior interpolation properties. Different families of polynomials have been considered such as
Bernstein, Hermite or Lobatto polynomials (comparisons of these can be found in [3, 4]). Fourier series or Tcheby-
chev polynomials are also used with spectral methods [5]. In this work, the framework of p-FEM is used to construct
a continuous, high-order approximation with Lobatto shape functions for solutions of the Helmholtz equation [6, 7].
With this method the dispersion error is drastically reduced [8] and it has been shown to be a valid approach to address
the pollution effect and tackle large-scale problems [9, 10]. The p-FEM approach provides exponential convergence
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when increasing the polynomial order p. It is also well-suited for p-adaptivity where the polynomial order is ad-
justed locally in the computational domain [11]. Finally, the hierarchic nature of the Lobatto shape functions leads to
efficient algorithms for solving the same model over a range of frequencies [10].

Wave-based methods represent another category of methods developed to remedy the pollution problem (a detailed
review of these methods can be found in [12]). The rationale is to incorporate a priori knowledge about the local
behaviour of the solution into the numerical method. This is generally achieved by using local canonical solutions of
the governing equations to build an approximation basis and these methods are therefore also called Trefftz methods.
For the Helmholtz equation, the local solutions are generally plane waves, but other alternatives can be used, such
as Bessel functions [13]. The central argument for using a basis of plane waves is that it follows directly from the
governing equations and thus it allows embedding key features of the underlying physics into the numerical method.
It is generally assumed that a plane-wave basis naturally provides better accuracy compared to polynomials since the
latter bears no relation with the governing equations. One of the objectives of this paper is to assess this assumption.

A number of wave-based methods rely on discontinuous formulations where the solution is approximated with
plane waves in each element and the continuity between elements is imposed weakly. This includes the Ultra
Weak Variational Formulation (UWVF) [14, 15, 16], the least square method [17], and the wave-based discontin-
uous Galerkin method [18]. They differ in the way the inter-element continuity is formulated but it is now recognised
that these methods are all variants of the same discontinuous Galerkin method using different numerical fluxes to
ensure continuity between elements [19]. The DGM framework is particularly well suited for adaptivity since it is
straightforward to change the number of plane waves in each element. A number of theoretical analyses have also
been reported for this particular method [20, 21, 22, 23]. Results from [24] indicate that the wave-based DGM ex-
hibits exponential convergence with respect to the number of degrees of freedom for very general element shapes,
including in the presence of strong mesh refinements. This paves the way to for the development of fully automatic
hp-adaptive versions of the method and a posteriori error estimators are being investigated [25]. In this work, the
wave-based DGM from [18] is used. Numerical results in [19, 26] indicate that it is more efficient than the UWVF
and least-square methods.

The Discontinuous Enrichment Method (DEM) is another example of methods using discontinuous interpolations
[27]. Enrichment functions are added to the set of conventional shape functions to construct the approximate solution
in each element. Lagrange multipliers defined on the edges between elements enforce the continuity of the solution.
This method has been used to solve the Helmholtz equation [28] and extended to other fields such as fluid-structure
interactions [29]. Removing the conventional shape functions from the DEM leads to a wave-based discontinuous
Galerkin method with Lagrange multipliers [28]. The DEM leads to a significant reduction of the number of DOFs
when compared to linear, quadratic and quartic Lagrange finite elements for a fixed accuracy in 2D [28, 30] and 3D
[31].

Other Trefftz methods relying on discontinuous interpolations include the wave-based method [32] and the varia-
tional theory of complex rays (VTCR) [33], but these two methods cannot be formulated in the DG framework [12].
Results in [34] indicate that the UWVF tends to outperform the VTCR for simple Helmholtz problems.

The Partition of Unity FEM (PUFEM) constructs an approximation of the solution by multiplying enrichments
functions with the standard FEM shape functions [35]. The benefit of this approach is that the resulting approximation
space is naturally continuous. The downside is the calculation of the element matrices, which can be costly because
it involves highly-oscillatory integrals with products of exponentials and polynomials. Elements of comparisons of
PUFEM with the UWVF can be found in [36, 37] and the UWVF is relatively better conditioned and generally more
efficient.

Both high-order polynomial FEM and wave-based methods have seen sustained developments over the past
decades and have been applied to a wide range of disciplines (acoustics, aero-acoustics, linear elasticity, water waves,
electromagnetism, porous materials). While partial elements of comparison exist in the literature [28, 30, 31], there
hasn’t been a systematic and detailed assessment of their relative merits for Helmholtz problems. This is the focus of
the present paper. Using a number of two-dimensional benchmark problems it provides a detailed comparison of the
accuracy, cost and conditioning of two of these methods: p-FEM and the wave-based discontinuous Galerkin method.

The structure of the paper is as follows. Section 2 describes the two numerical methods and the benchmark
problems are presented in Section 3. Section 4 discusses the different metrics used to assess the cost and accuracy
of the numerical methods. The interpolation properties of each basis (polynomial and wave-based) are compared in
Section 5. This is followed in Section 6 by the convergence and relative performance of the two methods to achieve a
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given accuracy. Practical aspects of the two computational methods are then discussed in Section 7.

2. Presentation of the methods

We consider the propagation of harmonic, linear sound waves in a uniform, quiescent medium within a bounded
domain Ω. Throughout this paper an implicit time dependence e+iωt is assumed, where ω is the angular frequency.
In the absence of volume sources, the complex amplitude u of the acoustic pressure is governed by the homogeneous
Helmholtz equation:

− k2u − ∇2u = 0 , (1)

where k = ω/c0 is the free-field wavenumber and c0 is the speed of sound. The boundary ∂Ω of the domain is equipped
with an outward unit normal n. To generate a given solution uex inside the computational domain an inhomogeneous
Robin condition is applied on Γr:

∇u · n + iku = g , (2)

where the source term is given by g = ikuex + ∇uex · n. On the remainder of the boundary Γd = ∂Ω\Γr, a Dirichlet
boundary condition is imposed:

u = uex . (3)

2.1. High-order FEM

This section describes the formulation of the high-order, polynomial finite-element method (p-FEM) for solving
the Helmholtz equation.

2.1.1. Variational formulation
Using the Galerkin method, equations (1), (2) and (3) can be combined into a weak variational statement. It

consists in finding the solution u ∈ U such that:∫
Ω

(
−k2vu + ∇v · ∇u

)
dΩ =

∫
Γr

v (g − iku) dΓ , ∀v ∈ V , (4)

where U = {u ∈ H1(Ω), u = uex on Γd}, V = {v ∈ H1(Ω), v = 0 on Γd} and v denotes the complex conjugate of v.
To define a finite-element approximation of the variational formulation (4), the domain Ω is partitioned into a set of
conforming non-overlapping triangular finite elements Ωe of typical size h.

2.1.2. High-order shape functions
The approximate solution uh and the associated test function vh are constructed using the classical H1-conforming

hierarchical polynomial shape functions. This section provides a summary of the definitions of these shape functions.
A detailed description can be found in Šolı́n et al. [6]. The interpolation of the solution is constructed on the reference
triangular element defined as

{
(ξ, η) ∈ R2;−1 < ξ, η; ξ + η < 0

}
. This reference element is equipped with the following

affine coordinates:
λ1(ξ, η) =

η + 1
2

, λ2(ξ, η) = −
η + ξ

2
, λ3(ξ, η) =

ξ + 1
2

. (5)

The construction of the higher order shape functions rely on the Lobatto polynomials

l0(x) =
1 − x

2
, l1(x) =

x + 1
2

, lq(x) =

√
2q − 1

2

∫ x

−1
Lq−1(s) ds , for − 1 6 x 6 1 , (6)

with Lq the Legendre polynomial of order q ≥ 2. These functions verify the following orthogonality property:∫ 1

−1

∂li
∂ξ

∂l j

∂ξ
dξ = 0 , for i , j , (7)
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which ensures an optimal conditioning of the stiffness matrix for Helmholtz problems [38]. It is also necessary to
introduce the so-called kernel functions

Φq(x) = lq+2(x)/[l0(x)l1(x)] . (8)

In each physical triangular element Ωe, the numerical solution uh is sought as a sum of contributions from nodal,
edge and bubble shape functions. Nodal shape functions are equal to unity at their node of definition and vanish at all
other nodes:

φv1 = λ2 , φv2 = λ3 , φv3 = λ1 . (9)

Edge functions are equal to the Lobatto polynomials on the edge they are associated to, and vanish on the other edges
of the element:

φe1
q = λ2λ3Φq−2(λ3 − λ2) , φe2

q = λ3λ1Φq−2(λ1 − λ3) , φe3
q = λ1λ2Φq−2(λ2 − λ1) , (10)

with 2 ≤ q ≤ p. Finally, the bubble shape functions vanish on the boundaries of the element but are non-zero inside
the element:

φb
q1,q2

= λ1λ2λ3Φq1−1(λ3 − λ2)Φq2−1(λ2 − λ1) , (11)

with q1, q2 > 1 and q1 + q2 6 p − 1.
On a given triangular element Ωe, the discrete solution of order p is then expressed as:

uh(ξ, η) =

3∑
r=1

φvr (ξ, η)uvr +

p∑
q=2

3∑
r=1

φer
q (ξ, η)uer

q +

p∑
q1=2

p−1−q1∑
q2=2

φb
q1,q2

(ξ, η)ub
q1,q2

, (12)

where uvr , uer
q and ub

q1,q2
are the degrees of freedom (DOFs) associated to the nodal, edge and bubble functions respec-

tively. On a given triangular element of order p, there are therefore 3 nodal functions, 3(p − 1) edge functions and
(p − 1)(p − 2)/2 bubble functions.

An important property of the family of Lobatto shape functions is their hierarchic structure. The shape functions
for order p are retained to construct the set of shape functions at order p + 1. As a consequence, the orders of the
elements can easily be varied across the mesh without requiring any specific treatment to ensure continuity between
elements, which is particularly useful for p-adaptive and hp-adaptive finite-element methods [6, 7]. In this study,
however, the focus is on the performance of the p-FEM method at fixed order, and p is considered constant across the
whole domain.

For the evaluation of the integrals in the p-FEM formulation (4), Gauss–Legendre quadratures are used [6]. For
the application cases considered in this paper, all these quadratures are exact, except for the integrand involving g,
which may be non-polynomial. For this particular line integral, the order of the numerical quadrature is fixed to
2p + 2. A large number of tests have also been performed using quadrature orders up to 2p + 10, without inducing any
significant change in the results, thereby indicating that the resulting integration error can be considered negligible.

2.1.3. Static condensation
The bubble functions defined in (11) vanish on the element boundaries and are therefore not coupled to the neigh-

bouring elements. These internal degrees of freedom can be eliminated at the element level prior to assembly and do
not appear in the global system matrix. This static condensation procedure does not affect the final solution and is
a very effective technique to reduce the size and improve the conditioning of the global system matrices [6, 7]. The
internal values of the solution are recovered during the post-processing stage by solving small linear systems for each
element. The benefits of condensation tends to become more significant as the polynomial order p increases because
the number of bubble functions scales like p2 whereas the number of edge functions scales like p. Note however that
linear and quadratic triangular elements do not involve bubble functions and cannot benefit from static condensation.

2.1.4. Error estimates
It is useful to recall some theoretical results on the performance of high-order finite elements so as to support

the discussion of the results. For the hp-version of the finite element method for smooth solutions of the Helmholtz
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equation, Ihlenburg and Babuška [39] have obtained upper bounds for the global relative error in H1 semi-norm

E ≤ C1

(
kh
2p

)p

+ C2k
(

kh
2p

)2p

,

where C1 and C2 are independent of k and h and are weak functions of the order p. The first term in this expression
represents the interpolation error and has a dependency of order p with kh. This error can be controlled by using a
sufficient number of elements per wavelength, given by 2π/(kh). The second term is associated with the dispersion
error and the pollution effect. The dispersion error is the difference between the theoretical wavenumber and the
wavenumber actually observed in the numerical model. From this error estimate, the advantages of resorting to
higher order shape functions appears clearly for smooth solutions. Exponential convergence rates are obtained with
p-refinement, while convergence with h-refinement is only algebraic.

At high resolution (i.e at low values of kh), the interpolation error dominates and the H1-norm error converges
asymptotically as O (kh/2p)p. In the L2-norm, the actual rate of convergence of the interpolation error is increased by
one level and follows O (kh/2p)p+1 [40]. These theoretical error estimates are found to match closely with numerical
experiments, see for instance [41].

2.2. Wave-based DGM
This section describes the formulation of the wave-based DGM [18] for solving the Helmholtz equation. Only the

key aspects of the method that are required for the discussion of the results are described here. The reader is referred
to [19] for a more detailed presentation.

2.2.1. Governing equations
The Helmholtz equation (1) is first reformulated as a set of linear, first-order equations of the form:

iωu +
∂(Au)
∂x

+
∂(Bu)
∂y

= 0 , (13)

by defining

u =

 ρ
′

ρ0u′

ρ0v′

 , A =

 0 1 0
c2

0 0 0
0 0 0

 , B =

 0 0 1
0 0 0
c2

0 0 0

 , (14)

where ρ0 is the mean density of the fluid. The unknowns ρ′, ρ0u′ and ρ0v′ are the linear perturbations of density,
x-momentum and y-momentum respectively. The acoustic pressure is simply retrieved in the post-processing phase
using the relation u = c2

0 ρ
′. The numerical method is described here for constant coefficient matrices but it could be

extended to the case where the matrices are functions of x and y [18] by approximating them as piecewise constant
functions.

2.2.2. Variational Formulation
As for the p-FEM presented above, the computational domain Ω is divided into a collection of elements Ωe but

unlike p-FEM the solution is allowed to be discontinuous across the element edges. After integration by parts in each
element the variational formulation for equation (13) reads:∑

e

∫
Ωe

(
iωvTu −

∂vT

∂x
Au −

∂vT

∂y
Bu

)
dΩ +

∑
e

∫
∂Ωe

(
vTAunx + vTBuny

)
dΓ = 0 , (15)

where T denotes the conjugate transpose. v is the test function associated to the solution u and ne = (nx, ny) is the
outward unit normal to ∂Ωe.

After introducing the flux matrix F = Anx +Bny and rearranging terms in the first integral, equation (15) becomes:

−
∑

e

∫
Ωe

(
iωv + AT ∂v

∂x
+ BT ∂v

∂y

)T

u dΩ +

∫
∂Ω

vTFu dΓ +
∑

e

∑
e′<e

∫
Γe,e′

(vTFu)e + (vTFu)e′ dΓ = 0 , (16)
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where Γe,e′ is the edge between the element e and e′. The continuity of the normal flux across the edge between the
elements e and e′ is directly enforced by writing:

Feue = −Fe′ue′ = fe,e′ (ue,ue′ ) , (17)

where fe,e′ is the so-called numerical flux which is discussed below. In the wave-based DGM, the solution in each
element is assumed to satisfy the homogeneous equation:

iωu + A
∂u
∂x

+ B
∂u
∂y

= 0 . (18)

In addition, the test function v in each element is taken to be a solution of the adjoint equation which can be easily
identified from (16):

− iωv − AT ∂v
∂x
− BT ∂v

∂y
= 0 . (19)

This particular choice of test function is crucial as it allows to remove the element integrals from the formulation and
the variational formulation finally reads:∑

e

∑
e′<e

∫
Γe,e′

(ve − ve′ )Tfe,e′ (ue,ue′ ) dΓ +

∫
∂Ω

vTFu dΓ = 0 . (20)

2.2.3. Numerical flux
The efficiency of a discontinuous Galerkin method depends to a large extent on the choice of the numerical flux.

The different categories of numerical fluxes available will not be reviewed here and the reader is referred to [42]. In
the current formulation, the upwind flux-vector splitting method is used. The flux on the edge between two elements
is expressed in terms of characteristic waves in the direction normal to the edge [43]. These characteristic waves can
be obtained by diagonalising the flux matrix F = WΛW−1. The matrix of eigenvalues Λ contains the phase velocity
of the characteristic waves and W is the matrix of eigenvectors. They are used to split the flux matrix F into the
incoming and outgoing flux terms by writing

F = F+ + F− , with F± = WΛ±W−1

where Λ± is the diagonal matrix of the positive or negative eigenvalues. For a given edge, the outgoing flux is
calculated using the inner solution while the incoming flux is calculated using the outer solution, resulting in the
following expression for the numerical flux:

fe,e′ (ue,ue′ ) = F+ue + F−ue′ , (21)

The variational formulation reads:∑
e

∑
e′<e

∫
Γe,e′

(ve − ve′ )T(F+ue + F−ue′ ) dΓ +

∫
∂Ω

vTFu dΓ = 0 . (22)

In the case of the Helmholtz equation formulated with (13–14) the calculation of Λ yields one incoming acoustic
wave and one outgoing acoustic wave, with c0 and −c0 as respective phase speeds. The expressions for Λ and W are
available in [19] and are not repeated here.

2.2.4. Boundary condition
A variety of boundary conditions can be formulated within the wave-based DGM and a systematic approach for

this is presented in [44]. In the present paper, ghost cells and Dirichlet boundary conditions are used.
In the context of finite volume methods and DG methods, the use of ghost cells is a standard technique to generate

a prescribed solution within the computational domain [42]. This technique follows naturally from the numerical flux
presented above and the idea is to treat the outer boundary of the computational domain as an internal edge between
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two elements. The same flux splitting as in equation (21) is used to write

Fu = F+u + F−u = F+u + F−gr .

The key difference with an internal edge is that the outer solution is known and will be denoted gr. The incoming flux
is therefore expressed in terms of this prescribed solution by writing F−u = F−gr. It should be noted that this approach
is equivalent to the Robin boundary condition (2) used for the p-FEM. The forcing term gr for the wave-based DGM
can in fact be expressed in terms of the target solution uex for the p-FEM:

gr =
−1
iω

−iωuex/c2
0

∂uex/∂x
∂uex/∂y

 . (23)

For the Dirichlet boundary condition (3), the method outlined in [44] is used to modify the variational formulation
accordingly. Imposing the pressure on the boundary amounts to specifying a relation between the outgoing and
incoming characteristic waves. The flux term on the boundary can then be written Fu = Fdu + gd with the following
definitions [44]:

Fd =

c0 nx ny

0 0 0
0 0 0

 , gd =

−uex/c0
uexnx

uexny

 . (24)

The variational formulation finally becomes:∑
e

∑
e′<e

∫
Γe,e′

(ve − ve′ )T(F+ue + F−ue′ ) dΓ +

∫
Γr

vTF+u dΓ +

∫
Γd

vTFdudΓ = −

∫
Γr

vTF−gr dΓ −

∫
Γd

vTgddΓ . (25)

2.2.5. Interpolation basis
With Trefftz methods the solution is approximated using local, canonical solutions of the governing equations.

Various choices of approximating functions are available: propagating plane waves [35, 14, 17, 27], evanescent plane
waves [29, 45, 46], Bessel functions [13], Green’s functions [47]. Some elements of comparisons of these methods
can be found in [48, 36, 49, 19, 37].

In the wave-based DGM the approximate solution uh
e and test function vh

e in each element Ωe are constructed as
sums of propagating plane waves:

uh
e(x) =

Nw∑
n=1

ae
nrn exp(−iknθn · x) , vh

e(x) =

Nw∑
m=1

be
mlm exp(−ikmθm · x) . (26)

With this approximation the degrees of freedom in each element are the complex wave amplitudes ae
n and be

m. While
the amplitudes ae

n and be
m are different, the same sets of wave directions θn and wavenumbers kn are used for the

solution and the test function.
The unit vectors θn represent the directions of the plane waves. In the framework of the DGM, the number and the

orientations of the plane waves can easily be chosen independently in each element. For simplicity, in this study the
same number Nw of plane waves is used in every element and the wave directions are evenly distributed on the interval
[0, 2π[. In the literature, both theoretical results and numerical evidence indicate that Nw = 2n and Nw = 2n−1 (where
n ∈ N∗) provide the same order of convergence, see for instance [50, 21]. This implies that using an odd number of
plane waves offers a gain in performance [15, 20]. Therefore, for the sake of conciseness, only odd numbers of plane
waves will be shown in this study, with Nw varying form 3 to 25. While not shown here, results for even numbers
of plane waves have also been calculated and the performance and conditioning of the wave-based DGM was indeed
found to be slightly below those obtained with odd values of Nw.

The formulation of the wave-based DGM requires that the solution in each element is an exact solution of equation
(18). It follows that the wavenumbers kn and vector amplitudes rn introduced in (26) have to be solution of the
following eigenvalue problem:

(A cos θn + B sin θn)rn =
ω

kn
rn . (27)
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This equation represents the dispersion relation of the waves propagating in the θn direction.
Similarly, the test function vh has to satisfy the adjoint equation (19) and it follows that the wavenumbers kn and

vector amplitudes ln are solution of the adjoint dispersion relation:

(A cos θn + B sin θn)Tln =
ω

kn
ln . (28)

In the case of the Helmholtz equation formulated with (13–14), for a given direction θn one finds two acoustic
waves propagating in opposite directions with wavenumbers ±ω/c0. The expressions for the vectors rn and ln are
available in [19] and are not repeated here.

The wavenumbers kn and the vector amplitudes rn and ln are exact solutions of the dispersion relations (27–28).
By construction the approximate solution will directly include these properties.

It can be noted that, using this particular wave basis, the variational formulation (25) only involves integrals of
exponentials on the edges between elements, which are inexpensive to compute. This is in contrast with the PUFEM,
for instance, which involves costly integrals of polynomial-exponential products [35]. The integrals on the boundaries
Γd and Γr involving the source terms are evaluated in closed form whenever possible, or using Gauss–Legendre
quadrature rules with a large number of integration points to ensure the results are independent of this numerical
quadrature.

2.2.6. Error estimates
Theoretical error estimates for the h-version of the UWVF are given in [51], for the Helmholtz equation. It is

shown that for smooth solutions, the global discretization error measured in the L2-norm behaves asymptotically like
h(Nw−1)/2−1. However numerical tests carried out for different frequencies and number of plane waves indicate that this
expression under estimates the actual convergence rates. The convergence rates obtained from numerical experiments
reported in [51] are found to be close to h[(Nw+1)/2], where [x] denotes the integer part of x. Similar error estimates are
also derived for h-refinement by Cessenat et al. in [14], although for a slightly different error norm.

In a series of papers, Hiptmair et al. [20, 22, 23] discussed the behavior of the p and the hp-version of the wave-
based DGM. The main result that, for a fixed mesh, the L2-norm of the discretisation error converges exponentially
in the square root of the number of degrees of freedom, including in the presence of strong mesh refinements [23].
Concerning the dispersion error, likely to dominate in the lower resolution regime, it is analyzed for both triangular
and quadrilateral meshes in 2D in [50]. The relative dispersion error is shown to behave asymptotically like (kh)(Nw−1)

for large values of kh, hence exhibiting an exponential decrease as the number of plane waves is increased.

3. Description of the test cases

In this section, the test cases used to assess the p-FEM and the wave-based DGM are introduced. The performance
of high-order methods are known to be problem dependent [12], therefore a total of four different benchmark problems
are used to assess the ability of these methods to tackle a large variety of problems. In all computations, all quantities
are non-dimensionalised, the speed of sound c0 and the density ρ0 are set to unity. Examples of solutions for each of
the four problems are shown in Figure 1.

The first test case is a simple plane wave propagating on a square domain (see Fig. 1(a)). This rudimentary
scenario allows for a detailed analysis of the dispersion properties of the numerical methods such as the anisotropy
(i.e. the variation in numerical accuracy depending on the angle of propagation). It has been used in previous studies
to examine the performance of the wave-based DGM [18], the Partition of Unity method [35] and the Discontinuous
Galerkin method with Lagrange multipliers [28].

The computational domain is a square of size a and is represented by an unstructured mesh of triangular elements
of typical size h (see Fig. 2(a)). A single propagating plane wave with direction θ0 is generated inside the domain:

uex = e−ikθ0·x ,

where θ0 = (cos θ0, sin θ0). For the p-FEM this is achieved using the Robin condition (2) and for the wave-based
DGM the ghost cells are used with (23).
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(a) Propagating plane wave (θ0 = 45◦). (b) Propagating spinning wave (m = 10).

(c) Evanescent spinning wave (m = 19) (d) Corner solution.

Figure 1: Examples of analytical solutions (real part) of the four benchmark problems (kL = 50).

(a) Plane wave problem (h/a = 0.15). (b) Spinning wave problem (h/R = 0.50). (c) Corner problem (h/b = 0.25).

Figure 2: Examples of unstructured meshes used for the test cases.
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While providing insight into the accuracy of the numerical schemes, this plane wave solution is not representative
of realistic applications where the sound fields typically contain a wide range of wave directions. In addition, realistic
problems can also involve evanescent waves in addition to propagating waves, and these can be difficult to capture by
some numerical methods [36, 13].

This motivates the introduction of a second test case which is the simulation of a single cylindrical harmonics of
order m which will be referred to as the spinning wave problem. Examples of such solutions are shown in Figures 1(b)
and 1(c) and it can be seen that all wave directions are equally represented in this problem. The analytical solution is
given in cylindrical coordinates:

uex(r, θ) = H(2)
m (kr)e−imθ , (29)

where H(2)
m is the Hankel functions of the second kind of order m which determines the number of spiral waves around

the circumference.
This test case is solved on an annular computational domain with inner and outer radii R and 2R, respectively.

The exact spinning waves (29) are enforced on the inner and on the outer boundary using the Robin condition (2)
for p-FEM or the ghost cell formulation with (23) for the wave-based DGM. An example of unstructured triangular
mesh used for this test case is shown in Figure 2(b). In order to avoid introducing any additional source of error in the
model, the circular geometry is represented exactly. For p-FEM, this is achieved by using a linear coordinate mapping
between the reference element and the cylindrical coordinates r and θ (instead of Cartesian coordinates x and y). For
the wave-based method the edges of the elements on the boundaries are defined as arcs rather than straight lines. For
both methods, this leads to an exact representation of the cylindrical boundaries of the domain.

It is worth noting that this test case is closely related to the well-known problem of a plane wave scattered by a
cylinder since the solution for the latter is a sum of cylindrical harmonics, see for instance [37, 44]. It is preferable to
consider different cylindrical harmonics individually. For m < kR the sound field decays slowly like 1/

√
r away from

the inner boundary. However for m > kR there is a region near the inner boundary where the sound field decays at a
much faster rate 1/rm. These harmonics represent creeping waves that propagate along smooth convex surfaces (see
Section 9-5 in [52]). While creeping waves do radiate sound to the far field, they play the same role as evanescent
waves radiating from a flat surface. As will be shown below, the large gradients present in the solutions for m > kR
lead to a change in the performance of the numerical methods. For this reason both propagating (Fig. 1(b)) and
evanescent (Fig. 1(c)) spinning wave harmonics will be considered and are referred to as the second and third test
cases, respectively.

All the benchmark problems described above involve smooth solutions, but the performance of high-order schemes
is known to deteriorate significantly when dealing with non-smooth solutions, including the p-FEM [53] and the wave-
based DGM [36]. Therefore, the fourth test case involves a corner solution. This test case, shown in Figure 1(d), was
also used in previous studies [36, 9]. The analytical expression for the pressure field is given by

uex(r, θ) = J2/3(kr) sin
(

2
3
θ

)
, for 0 < θ <

3
2
π , (30)

where J2/3 is the Bessel function of the first kind. While uex itself remains bounded, its gradient is singular at the
corner. This will allow to illustrate how these methods cope with non-smooth solutions.

As shown in Figure 1(d) an L-shaped computational domain is used for this test case. On the two edges of length
b which meet at the origin, a homogeneous Dirichlet condition is enforced: u = 0. This is done using the Dirichlet
boundary condition (3) for p-FEM and the formulation (25) with (24) for wave-based DGM.

For all the other boundaries the Robin condition (2) is used for p-FEM and the ghost cells (23) are used for the
wave-based DGM. Unstructured triangular meshes will be used and an example is shown in Figure 2(c). Local grid
refinement near the corner will also be considered to improve the accuracy of the numerical methods. This issue will
be addressed in more details when discussing the results for this test case in Sections 5 and 6.

4. Measures of accuracy and costs

For all the test cases described above a number of parameters can be varied: the angular frequency ω, the element
size h and the approximation order (that is the polynomial order p for the p-FEM and the number of plane waves Nw for
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the wave-based DGM). Since the sizes and shapes of the computational domains vary between the different test cases
it is more representative to define the frequency in terms of the Helmholtz number kL. The length L =

√
area(Ω)

is indicative of the size of the domain and different test cases solved with the same Helmholtz number kL can be
expected to be as demanding.

With high-order methods the element size h is not a valid indicator of the resolution of a given numerical method,
since the order p or the number of plane waves Nw can be varied independently of h. In this work the resolution is
measured by calculating the number of degrees of freedom per wavelength, which is defined as follows

Dλ =
2π
kL

( √
NDOF − 1

)
. (31)

This definition is constructed by analogy with a regular Cartesian grid on a square domain of side L and involving
NDOF degrees of freedom (more details are provided in [18]). Unless explicitly stated the mesh resolution will be
measured using Dλ instead of the element size h.

The accuracy of the numerical solutions is assessed by calculating the relative L2 error

EL2(Ω) =
‖uh − uex‖L2(Ω)

‖uex‖L2(Ω)
, with ‖ · ‖L2(Ω) =

(∫
Ω

| · |2 dΩ

)1/2

. (32)

The L2 norm is evaluated using high-order Gauss–Legendre quadrature rules on each element, with orders 2p + 10
for the high-order FEM and Nw + 10 for the wave-based DGM method, respectively. The H1 relative error was also
measured, but it leads to the same conclusions and will not be reported here for conciseness.

Once assembled, both p-FEM and wave-based DGM lead to a sparse global system of equations with complex-
valued symmetric coefficients. The latter can be solved either using a direct or an iterative approach.

In this study, only direct solution procedures are considered. The development of robust iterative solvers for
Helmholtz problems discretised by the standard FEM is undergoing active research [54]. However, the indefiniteness
of the operator tends to hinder their performance at higher frequencies. Furthermore, the matrices arising from a
high-order discretisation typically exhibit higher condition numbers than that of the linear FEM, which renders the
problem even more challenging (high-order bases designed to address this issue have been proposed [55, 56]). For
these reasons, iterative solutions will not be considered here and are left for further investigations. Instead, all sys-
tems are solved using the Cholesky factorisation algorithm of the multi-frontal sparse direct solver MUMPS (version
4.10.0) [57].

This operation represents the most expensive part of the solution procedure. The cost of solving the global system
is monitored in a number of ways:
• The total number of degrees of freedom NDOF is a first indicator, but in practice it does not necessarily correlate

directly with the cost of a numerical method, see for instance [10].
• The number of non-zero entries NNZ in the sparse global matrix is another measure of cost. In particular the

memory required to store the matrix before the factorisation is directly proportional to NNZ.
• The factorisation memory, as reported by the solver MUMPS, is a crucial parameter because it is generally the

bottleneck in solution procedures based on direct solvers. In real-world applications it is often the amount of
memory available that dictates the size of the problems that can be solved on a given platform.

• Although this is more dependent on the platform used for the calculations, the time taken by the factorisation
will also be reported.

• Finally, it is important to monitor the condition number of the system (here using the 1-norm) as the accuracy,
or even success, of the direct solver can be affected by poor conditioning. In addition it is often reported in the
literature that wave-based methods are poorly conditioned and this aspect will be carefully examined in the next
sections.

Note that for p-FEM, when static condensation is applied, NDOF and NNZ do not take into account the degrees of
freedom corresponding to the internal bubble functions, which are eliminated before the global system is assembled.
Unless otherwise stated, the cost of solving the linear system will be reported with static condensation. However, its
effects on computational cost and conditioning will also be addressed.
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Figure 3: Relative L2 error associated with the best interpolation plotted against the direction of the incident plane wave with h/a = 0.1, kL = 20.
Black solid lines: p-FEM, red dashed lines: wave-based DGM. Numbers indicates the polynomial order or the number of plane waves.

5. Comparison of the interpolation properties

Before trying to solve the test cases previously defined using the two methods, a first analysis is performed to assess
the interpolation properties of their respective approximation bases. Independently of the numerical formulations, this
section discusses the ability of the continuous polynomial basis on the one hand, and the discontinuous plane-wave
basis on the other hand, to approximate the solutions of the four different test cases.

This is done by calculating the best interpolation uh
opt that minimises the L2 error∫

Ω

|uex − uh
opt|

2 dΩ , (33)

relative to a known exact solution uex. The best interpolation is written uh
opt =

∑
n anφn with φn the shape functions.

Finding the degrees of freedom an that minimise the L2 error defined above involves a simple least-square problem
which amounts to solving the linear system Xa = y with

Xi j =

∫
Ω

φiφ j dΩ , yi =

∫
Ω

φiuex dΩ . (34)

These two integrals are also evaluated using high-order Gauss–Legendre quadrature rules, with orders 2p+10 and
Nw+10 for the p-FEM and the wave-based DGM methods, respectively. The relative error on the optimal interpolation
is denoted by

Eopt
L2(Ω) =

‖uh
opt − uex‖L2(Ω)

‖uex‖L2(Ω)
. (35)

It is worth noting that the results for the wave-based DGM presented in this section also apply to a number of
other wave-based methods: UWVF, least-squares method and wave-based DGM with Lagrange multipliers, since all
of these methods rely on the same plane-wave approximation basis defined in Section 2.2.5.

5.1. Anisotropy
The anisotropy of the two different approximating bases is best shown using the test case of the single plane wave

by varying the incident wave direction θ0 from 0 to 2π. The relative L2 error of the optimal interpolation is plotted
against θ0 in Figure 3 for various approximation orders and with element size h/a = 0.1 and Helmholtz number
kL = 20.

As expected, both methods exhibit exponential convergence with respect to the order p or the number of plane
waves Nw. However, the behaviour of the two bases with respect to the propagation angle θ0 is very different.
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(a) Plane wave.
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(b) Propagating spinning wave (m = 10).
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(c) Evanescent spinning wave (m = 19).
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(d) Corner solution.

Figure 4: Relative best L2 interpolation error (%) against Dλ at kL = 50; red dashed lines: wave-based method; black solid lines: p-FEM (with
static condensation). For each curve, Dλ is increased by refining the mesh while p or Nw is fixed.

The polynomial basis is rather insensitive to the plane wave direction and, for a given order p, only small variations
of accuracy are observed when varying θ0. This is due to the use of an unstructured mesh (a structured mesh would
result in a more pronounced anisotropy governed by the topology of the mesh [41]).

In contrast, the plane-wave basis is very sensitive to the orientation of the incident plane wave. When it is aligned
with one of the waves in the basis, the error drops to zero since the exact solution belongs to the interpolation basis
[18]. The error reaches its maximum precisely halfway between two wave directions in the basis. Therefore, for the
remainder of the paper, for this particular test case, the incident wave direction θ0 will be taken halfway between two
plane waves of the basis. This strong anisotropy of the wave-based DGM also justifies the introduction of the spinning
wave test case (Figure 1(a)) where all wave directions are equally represented.

5.2. Convergence properties

The interpolation properties of the two approximation bases are now examined with respect to order and mesh
resolution. In Figure 4, the relative error of the best interpolation is plotted against the number of degrees of freedom
per wavelength Dλ. This is done for each value of p or Nw by fixing the frequency kL = 50 and varying the mesh
resolution.

For the single plane wave and the propagating spinning wave test cases, the expected behaviour is observed, with
an algebraic convergence with element size h and an exponential convergence with p or Nw.
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For p-FEM, the L2 error scales asymptotically as D−(p+1)
λ , which is in agreement with theoretical [40], and nu-

merical [41] results from the literature (see Section 2.1.4). For the wave-based DGM the error scales like D−[(Nw+1)/2]
λ

where [x] denotes the integer part of x, which is consistent with the orders of convergence reported in [14] and [51]
(see Section 2.2.6). Note that these are rates of h-convergence as they have been identified by varying the element
size while keeping the order or the number of plane waves constant.

For the wave-based method the interpolation error is not able to go beyond 10−5. This is due to the poor condi-
tioning of the system solved to obtain the best interpolation. The condition number of the matrix X systematically
exceeds 1012 when the relative L2 error of the best interpolation is below 10−4 %.

The overall conclusion from Figures 4(a) and 4(b) is that, for smooth solutions, there is no significant gap between
the two bases in terms of interpolation error. Using reasonably high polynomial orders or numbers of plane waves,
it is possible to achieve similar levels of accuracy with the same number Dλ of degrees of freedom per wavelength.
For instance for the plane wave test case, the polynomial basis with order p = 10 matches closely the accuracy of the
plane wave basis approximation with Nw = 21.

Results for the evanescent spinning wave test case are shown in Figure 4(c). For the p-FEM basis, the same
convergence behaviour as in Figure 4(b) is observed, with only a slight increase in interpolation error. However for
the wave basis, the interpolation error does not converge fully at the expected asymptotic rate. Instead, a region of slow
convergence is observed. An inspection of the interpolation error in the domain reveals that the error is concentrated
in the region close to the inner cylinder. As explained previously, the solution in this reg ion decays very rapidly with
r (as r−19 in this case) and this decay is difficult to represent with a plane-wave basis.

As explained above the solution to the well-known test case of a plane wave scattered by a cylinder can be
expressed as a combination of propagating and evanescent cylindrical harmonics. Although not reported here for the
sake of brevity, a similar comparison has been performed for this test case and the results are consistent with those
reported here. Namely, the accuracy for p-FEM is very similar to figure 4(b) and 4(c). For the wave-based DGM the
numerical error is found to be concentrated close to the cylinder which is consistent with the evanescent part of the
solution being less accurately resolved by the plane-wave basis, as shown in figure 4(c).

Finally figure 4(d) shows the results for the corner solution obtained with a uniform mesh. The exponential
convergence with p and Nw is lost for both methods. The interpolation error still decreases but at the same slow rate
for all orders. This behaviour is expected when dealing with solutions that are not sufficiently regular (in this case
the derivative of the solution is singular), see for instance [12, 40]. The use of local h-refinement is a valid option to
improve both the FEM and the wave-based DGM solutions and will be used in the next section.

For problems with singular solutions or evanescent waves, Trefftz methods can benefit from the introduction
of additional ad hoc functions in their approximation basis. The use of evanescent plane waves in the basis is for
instance examined to represent the transmission and reflection of sound at an interface between two media in [46]
for the UWVF and in [45, 29] for the DEM. However, this approach obviously requires a detailed knowledge of the
solution behaviour before the numerical method is even formulated. Such practical considerations will be discussed
in more detail in Section 7.

6. Performance of the numerical methods

In this section, the efficiency of the two numerical methods is compared. The convergence with respect to p- and
h-refinements is firstly considered, followed by the study of the conditioning properties of the underlying system of
equations. Finally, the computational cost at fixed accuracy is assessed.

6.1. Convergence

Figure 5 shows the relative L2 error defined in (32) plotted against the number of degrees of freedom per wave-
length for the four benchmark problems at kL = 50.

For the plane wave and the spinning wave test cases, these convergence results follow, at least qualitatively, the
results in Figure 4 for the best interpolation error. Algebraic and exponential convergence rates are also observed
for h-refinement and p-refinement, respectively. For the wave-based method, it is not possible to reach levels of
error below 10−6 due to poor conditioning (this is discussed in the next Section). Again, the overall conclusion is
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(a) Plane wave.
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(b) Propagating spinning wave (m = 10).
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(c) Evanescent spinning wave (m = 19).
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(d) Corner solution with uniform mesh.

Figure 5: Relative L2 error (%) against Dλ at kL = 50; red dashed lines: wave-based DGM; black solid lines: p-FEM with condensation. For each
curve, Dλ is increased by refining the mesh while p or Nw is fixed.
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Figure 6: Optimality coefficient against Dλ for the propagating spinning wave with kL = 50; red lines: wave-based DGM; black lines: p-FEM with
condensation. For each curve, Dλ is increased by refining the mesh while p or Nw is fixed.

that the two methods are able to achieve similar levels of accuracy with the same number of degrees of freedom per
wavelength.

In order to provide a more quantitative comparison with the best interpolation error, it is useful to calculate the
optimality coefficient Copt = EL2(Ω)/E

opt
L2(Ω) which is the ratio between the numerical solution accuracy EL2(Ω) and

the best interpolation error Eopt
L2(Ω). This parameter indicates the efficiency with which the numerical formulation can

exploit the interpolation properties of the underlying approximation basis.
An example for the propagating spinning wave test case is provided in Figure 6. A large increase in Copt is

observed for both methods in the pre-asymptotic regime, corresponding to low values of Dλ. This increase can be
attributed to the pollution effect, corresponding to the presence of large dispersion errors in the model, which typically
dominate for poor resolutions. High-order methods allow to mitigate the pollution effect and this is indeed observed in
Figure 6. Increasing the order p or the number of plane waves Nw leads to a significant improvement in the optimality
of the methods (i.e. a reduction of Copt). It can be noted that, overall, p-FEM exhibits slightly better optimality
coefficients. In the asymptotic regime where the interpolation error dominates (large Dλ), the optimality coefficient
for p-FEM varies between 1.2 and 2 whereas it varies between 2 and 10 for the wave-based DGM. The difference is
particularly visible for low orders. For Nw = 3 and 5, the DGM formulation is far from optimal.

The results obtained for the evanescent spinning wave and the corner solution, depicted respectively in Figures
5(c) and 5(d), follow qualitatively those obtained for the optimal L2 interpolation error given in Figure 4. For the
corner solution the loss of exponential convergence with p or Nw is again clearly visible. An additional observation
is that for a relative error below 1% the same convergence rate is observed for all orders p. It is interesting to note
that for this test case the optimality coefficient is much larger than for the other test cases (Copt varies between 5 and
25). This indicates that not only is the corner solution an issue in terms of interpolation but the expected convergence
properties of high-order methods are also lost. A summary of these aspects can be found in [48, Section 5.3].

As illustrated for the same corner solution in [48, 36] for wave-based methods and in [9] for p-FEM, h-refinement
is required to obtain accurate solutions. Results obtained with local mesh refinement are now presented to compare its
impact on the accuracy of the two methods. To this end an element size hmax is enforced along the boundaries x = ±1
and y = ±1. The element size at the corner x = y = 0 is given by hmax/Cr where the refinement factor Cr is varied
from 1 to 400. Three examples of locally refined meshes are given in Figure 7.

In Figure 8, the convergence of the solution is plotted against the value of Cr for a fixed mesh size hmax and a fixed
frequency (kL = 50). Two different regimes can be observed. For moderate refinements (i.e. low values of Cr) the
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Figure 7: Examples of unstructured non-uniform meshes used for the non-smooth test case with hmax/b = 0.17.
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Figure 8: Relative L2 error (left) and condition number (right) against Cr at kL = 50 with hmax/b = 0.17 for the non-smooth problem with locally
refined meshes; red dashed lines: wave-based DGM; black solid lines: p-FEM with condensation.

error due to the singularity dominates the overall numerical error and hence refining allows to improve the relative L2

error. It is worth noting that the convergence rate with Cr in this regime is nearly independent of the approximation
order p or Nw and is similar for both methods. For large values of Cr, a plateau is reached and the error stagnates
because the overall numerical error is dominated by the approximation of the wave propagation in the rest of the
domain.

Figure 8 also shows the impact of mesh refinement on the condition number. For p-FEM, modifying Cr has
little effect on the conditioning. In contrast, it has a large impact on the behaviour of the wave-based DGM. The
introduction of small elements in the neighbourhood of the corner and a large number of plane waves in the basis
leads to a rapid growth of the condition number [14, 58] . As a consequence, the number of plane waves cannot be
arbitrarily increased and in this example values above Nw = 15 could not be considered.

These results illustrate that h-refinement has a significantly different impact on the behaviour of the two methods.
While it consistently improves p-FEM results when the singularity error dominates, it should be used with caution
for the wave-based DGM, where it can lead to stability issues. Two options can be considered to further modify the
wave-based method for this situation. First, locally adapting the number of plane waves to the element size would
control the conditioning by reducing the number of plane waves in small elements. Secondly, the introduction of local
ad hoc functions would also be appropriate, for instance by combining plane waves with Bessel functions [13].
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Figure 9: Propagating spinning wave case with kL = 50 and m = 10. Left: Condition number with respect to Dλ (For each curve, Dλ is increased
by refining the mesh while p or Nw is fixed). Right: relative L2 error with respect to the condition number. Black solid lines: p-FEM with
condensation, blue dotted lines: p-FEM without condensation, red dashed lines: wave-based DGM.

6.2. Conditioning

In Figure 9 the condition numbers are plotted against Dλ for the propagating spinning wave test case. The results
obtained for the plane wave test case are very similar and are not repeated here.

For well-resolved models (i.e. large values of Dλ), the conditioning of p-FEM tends to increase slowly with Dλ.
In this regime, the polynomial order has a weak effect on the conditioning. Conversely, for poorly resolved models
(typically Dλ < 10) there is a visible effect of the order, with a progressive deterioration of the conditioning when p
increases. Also shown in Figure 9 is the conditioning of the p-FEM model without static condensation. In this case,
the global system includes the degrees of freedom corresponding to the bubble shape functions in each element. The
impact of static condensation on the conditioning is very significant. Without static condensation, the conditioning of
the p-FEM model deteriorates very rapidly when the polynomial order is increased. For this test case, each increment
of p results in a growth of one order of magnitude for the condition number. For instance for p = 10, there is a
difference of 5 or 6 orders of magnitude between the models with and without static condensation. The effect of
the resolution rate Dλ remains comparatively limited. This explains why the use of static condensation is generally
recommended to improve the performance of direct [59] as well as iterative [60] solving procedures.

In comparison with p-FEM, the conditioning of the wave-based method varies more significantly with the mesh
resolution and the order Nw [14, 58]. In particular, for a large number of plane waves, the condition number grows
very steeply with the mesh resolution. When plotting the relative error against the condition number (see Fig. 9),
the two appear to be closely related. Independently of Nw, the results collapse on a single curve indicating that the
condition number scales like E−2

L2 . Hence, for reasonable levels of accuracy, say for instance 1%, the conditioning
of the wave-based method is not problematic, and is in fact equivalent to the p-FEM with static condensation. The
conditioning of the wave-based method only becomes an issue when targeting very high levels of accuracy.

For both methods different techniques can be used to improve the conditioning, in particular by selecting other
approximation bases. For the wave-based method, the use of Bessel function improve the conditioning [13], while
Bernstein polynomials have a similar impact on p-FEM [4].

6.3. Comparison of computational costs

Given the large number of parameters involved, it is convenient to compare the two methods for a fixed accuracy
and frequency. In this way, one can assess the requirements needed for the two methods to solve for a particular
problem with a given error threshold. In a second stage, we will discuss to which extent the conclusions drawn are
applicable to other frequencies and other levels of accuracy. For a given test case and for every order p or number
of plane waves Nw, the mesh size h is varied until the numerical error reaches the target precision, then the cost and
conditioning of this model are recorded. The test case of the spinning wave is used here but the conclusions are
equally applicable to the plane-wave test case.
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(a) Propagating spinning wave (m = 10).
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(b) Evanescent spinning wave (m = 19).

Figure 10: Factorisation time (s) against the element size required to obtain a numerical error of 1% at kL = 50. Red dashed lines: wave-based
DGM; Blue dotted lines: p-FEM without condensation; Black solid lines: p-FEM with condensation.

6.3.1. Fixed accuracy and frequency
The frequency is fixed to kL = 50 and a target accuracy of 1% is considered, which is regularly suggested as

relevant for industrial applications.
Figure 10 shows the link between the mesh size and the factorisation time. The timing was measured on an Intel

Xeon E5-2670 processor (2.6 GHz) using a single core. Every data point in Figure 10 achieves the same relative error
of 1% but the mesh resolution required to do so varies with p or Nw. As one would expect, low-order models (e.g.
p = 2 or Nw = 5) require very fine meshes to meet the target accuracy and result in longer factorisation times. When
using higher-order models it is possible to maintain the same error level with larger elements, and the factorisation
time is also reduced significantly. The benefit of increasing the polynomial order or the number of plane waves tends
to level off for large values of p and Nw.

Also shown in Figure 10 is the reduction in factorisation time obtained from static condensation (the mesh resolu-
tion remains the same with and without static condensation). This benefit is however balanced by the fact that, when
using static condensation, the degrees of freedom associated with the bubble functions have to be calculated after the
factorisation. From experience, the use of static condensation does not necessarily reduce the overall runtime of the
solution procedure, unless the recovery of the internal degrees of freedom in each element is parallelized.

Figure 11 shows the evolution of the condition number and the factorisation memory when p and Nw are varied
(but the element size h is adjusted to maintain the error at 1%).

For the propagating spinning wave, see Figure 10(a), increasing Nw for the wave-based method leads to a consis-
tent reduction in the memory required to solve the problem but the conditioning does not vary significantly. This is
consistent with the results in Figure 9 showing that for a fixed accuracy the conditioning is only weakly influenced
by the number of plane waves. For p-FEM with static condensation, increasing the polynomial order also reduces
the factorisation memory and induces a moderate increase in conditioning, although the condition number remains
comparable to that of the wave-based method. It can be seen that the two methods are able to achieve the same level of
accuracy with similar cost and conditioning. Without static condensation, the cost of p-FEM does not greatly decrease
with p (except between p = 2 and 3) and the conditioning is significantly higher.

For the evanescent spinning wave, Figure 10(b), the results for p-FEM are very similar to those for the propagating
wave. However for the wave-based method, the condition number and the memory requirements have both increased.
The benefit of using more plane waves therefore tends to level off. Again, this is due to the strong gradient in the
solution close to the inner boundary of the computational domain.

The behaviour of the factorisation memory can be related to the properties of the sparse, global system matrices
generated by the two methods. Figure 12 shows the evolution of the number of non-zero entries (NNZ) against the
number of degrees of freedom (NDOF). Note that the ratio NNZ/NDOF provides an indication of the average number of

19



Condition number
105 1010

Fa
ct

or
is

at
io

n 
m

em
or

y 
(M

B
)

100

101

102

 2

 3
 4

 5  6
 7

 8
 9

10

 2

 3
 4

 5  6
 7  8  9

10

 5

 7

 9
11

13 15 17
19

2123
25

(a) Propagating spinning wave (m = 10).
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(b) Evanescent spinning wave (m = 19).

Figure 11: Factorisation memory against condition number for a numerical error of 1% at kL = 50. Red dashed lines: wave-based DGM; Blue
dotted lines: p-FEM without condensation; Black solid lines: p-FEM with condensation.

terms in each row of the matrix. For p-FEM with static condensation, increasing the polynomial order leads to a rapid
reduction in the number of degrees of freedom. The same applies to the wave-based method when increasing Nw.
For both methods the sparsity of the global matrices is reduced when increasing p or Nw, but the wave-based method
generates denser matrices (i.e. with more non-zero entries). This difference is further accentuated when considering
the evanescent spinning wave.

6.3.2. Influence of the target accuracy
So far, a fixed accuracy of 1% on the relative L2 error was considered, but it is also interesting to examine other

levels of target accuracy. Figure 13 shows the factorisation memory and the conditioning as a function of the number
of degrees of freedom per wavelength Dλ. The target error is varied from 10% to 10−4%. The test case of the
propagating spinning wave is used, but the results for the plane wave and the evanescent spinning wave test cases are
similar.

For the factorisation memory, the two methods follow the same trends: the memory increases when the target
error level is reduced and when Dλ increases. The fact that the wave-based method requires slightly more memory
than p-FEM is observed at all error levels, confirming that this observation is not specific to the 1% target accuracy
used above.

The conditioning of the p-FEM model tends to increase slightly when the target error level is lowered, mostly for
lower resolutions (i.e. Dλ < 10). However, for the wave-based method, the condition number increases very rapidly
to reach levels that are problematic. Again, this is consistent with the results in Figure 9 which shows that it is only
for very accurate solutions that the conditioning of the wave-based method becomes a real issue.

6.3.3. Influence of the frequency
Finally, it is important to assess whether the trends described above are also observed for other frequencies. To this

end, Figure 14 shows the factorisation memory and the conditioning for Helmholtz numbers ranging from kL = 25
to 200 for the propagative spinning wave test case (the azimuthal order m is adjusted at each frequency to ensure the
wave is propagating). A target error level of 1% is used.

The computational cost is found to scale like k2, which is the expected behaviour for two-dimensional problems.
As the polynomial order or the number of plane waves is increased, the two methods are able to achieve 1% error
with less memory. For every frequency, the wave-based method requires a larger amount of memory than p-FEM,
although the difference is relatively small for the lowest frequency (kL = 25).

The evolution of the condition number with respect to the frequency is more complex and does not follow a simple
trend. For Dλ > 5, p-FEM appears to be better conditioned, but the opposite is generally true for Dλ < 5.
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(a) Propagating spinning wave (m = 10).
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(b) Evanescent spinning wave (m = 19).

Figure 12: Number of non-zero entries against the number of degree of freedom for a numerical error of 1% at kL = 50. Red dashed lines:
wave-based DGM; Blue dotted lines: p-FEM without condensation; Black solid lines: p-FEM with condensation.
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Figure 13: Propagating spinning wave test case (kL = 50, m = 10); factorisation memory (left) and condition number (right) against Dλ to achieve
different levels of accuracy; red dashed lines: wave-based DGM, solid black lines: p-FEM with static condensation.

7. Practical considerations

So far, the discussion has focused on the intrinsic computational performance of the numerical schemes. To offer
a broader perspective on the use of these two methods, it is also useful to consider more practical aspects.

The performance of the wave-based method, and other Trefftz methods in general, is obviously directly linked to
the selection of canonical solutions used to construct the basis, and this has a number of practical consequences:
• As already mentioned above, when dealing with evanescent waves, wave-based methods require the introduc-

tion of ad hoc interpolating functions directly associated with these types of solutions. On the other-hand, the
performance of p-FEM is not significantly altered by the presence of evanescent waves.

• Both methods lose p-convergence when dealing with singular solutions. For p-FEM, local h-refinement is
sufficient to reach a good level of accuracy, but due to conditioning issues, the use of special functions should
be preferred for wave-based DGM [13].

• For problems involving non-uniform coefficients, which have not been considered here, individual plane waves
are not solutions of the governing equations. Defining a basis of simple local solutions for this class of problems
is not trivial but the recent work of Imbert-Gérard et al provides a way forward [61, 62]. On the other hand,
p-FEM can accommodate non-uniform coefficients without additional treatment.
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Figure 14: Propagating spinning wave problem. Factorisation memory (left) and condition number (right) against Dλ to achieve 1% of accuracy at
different frequencies; red dashed lines: wave-based DGM, solid black lines: p-FEM with static condensation.

• The presence of source terms in the domain also requires special techniques to address the fact that the plane
waves are solutions of the homogeneous equations. The p-FEM can tackle such problems ‘out-of-the-box’ and
a number of techniques have been proposed for wave-based methods [14, 63, 18].

It is therefore needed to adjust the Trefftz interpolation basis locally, on a case-by-case basis, which requires a detailed
a priori knowledge of the solution. While this is acceptable for applications to academic test cases, it is difficult to
envisage for real-world applications where robust, fully automated solvers are required.

In typical applications, it is often needed to repeat a simulation over a range of frequencies. In such situations,
the wave-based method requires calculating and assembling the element matrices again for each frequency due to the
dependence of the shape functions on frequency, which represents a significant overhead. By contrast, with p-FEM
the use of hierarchic shape functions allows to store and reuse the element matrices for other frequencies [10].

8. Conclusions

A detailed comparison of a high-order polynomial method (p-FEM) and a wave-based method (DGM) has been
presented in terms of interpolation properties, performance and conditioning. The main objective was to put in per-
spective the relative merits of these two categories of discretisations. Given the large number of parameters available
in these high-order methods, and the different metrics of performance that can be considered, this paper also aimed
at providing an example of methodology to conduct a systematic and thorough comparison of high-order schemes for
frequency-domain analysis.

The general argument for the use of wave-based methods is that plane waves are canonical solutions of the under-
lying equations and are therefore better suited than polynomials to construct an approximation basis. They incorporate
key properties of the exact solution such as the wavenumber (and polarisation for electromagnetism for instance) and
the expectation is that they provide a more accurate and efficient family of functions to interpolate the solution. The
results presented here indicate that this intuitive expectation does not necessarily translate into a clear benefit in terms
of interpolation accuracy (for a fixed resolution Dλ) or performance (for a fixed numerical error). Rather surprisingly,
the high-order polynomial method is able to achieve comparable, and in some cases superior, results compared to
a wave-based method for solving two-dimensional Helmholtz problems. This observation was found to hold for a
range of frequencies and error levels. It should be noted that the use of static condensation is crucial to obtain good
performance and conditioning from p-FEM. The conditioning of the wave-based method was found to be acceptable
and comparable to that of p-FEM for an error level of 1%. It is only when very high levels of accuracy are targeted
that the conditioning deteriorates significantly.

The general outcome of this comparison is that there is still significant benefits in using polynomial methods, both
in terms of performance and robustness, and that more work is required on wave-based methods to fully realize their
potential.
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It should be noted that the present work used the wave-based DGM as an example of Trefftz method and other
wave-based methods should also be considered. The wave-based DGM is closely related to a number of other methods,
in particular the UWVF [14] and the least-squares method [17]. Both methods can be recovered in the DG framework
by using different numerical fluxes. Existing results indicate that the change of numerical flux is unlikely to change the
performance of the methods sufficiently to alter the conclusions in this paper [19]. But other categories of wave-based
methods, such as DEM and PUFEM remain to be compared systematically with high-order polynomial methods.
Extending these comparisons to three-dimensional problems would also be useful.
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