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Summary
Sound propagation in complex non-uniform mean flows is an important feature of turbofan exhaust
noise radiation. The Linearised Euler Equations are able to represent the strong shear layer refraction
effects on the sound field, as well as multiple length scales. Frequency domain solvers are suitable
for tonal noise and considered a way to avoid linear instabilities, which may occur with time domain
solvers. However, the classical Finite Element Method suffers from dispersion error and high memory
requirements. These shortcomings are particularly critical for high frequencies and for the Linearised
Euler Equations, which involve up to five unknowns. In this paper, a high-order Finite Element
Method is used to solve the Linearised Euler Equations in the frequency domain in order to overcome
those issues. The model involves high-order polynomial shape functions, unstructured triangular
meshes, numerical stabilisation and Perfectly Matched Layers. The acoustic radiation from a straight
circular semi-infinite hard-wall duct with several mean flow configurations is computed. Comparisons
with analytic solutions demonstrate the method accuracy. The acoustic and vorticity waves are well
represented, as well as the refraction of the sound field across the jet shear layer. The high-order
approach allows to use coarse meshes, while maintaining a sufficient accuracy. The benefits in terms
of memory requirements are significant when compared to standard low-order Finite Element Method.

PACS no. 43.28.-g, 02.60.-x

1. Introduction

The International Civil Aviation Organisation direc-
tives are becoming more restrictive for aircraft noise.
Accurate sound control tools are needed in order to
respect these recommendations. In that context, ef-
ficient Computational AeroAcoustics prediction tech-
niques are an alternative to costly large-scale mea-
surements [1]. When dealing with turbofan exhaust
noise, several physical aspects must be taken into con-
sideration. Jet shear layers and boundary layers are
responsible for sound refraction. In addition, vortic-
ity and entropy waves may propagate and interact
with acoustic waves. Numerical models must be able
to represent both length scales.

Several mathematical models exist to represent
those physical phenomena. The Linearised Potential
Theory is developed for irrotational mean flows. Al-
though it seems to hold with more general unsteady
flows [2], it does not capture the vorticity/entropy
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waves. For complex mean flows where viscosity effects
are not significant, the Linearised Euler Equations are
a good compromise to represent acoustic propagation
[3, 4]. Their solutions support acoustic, vorticity, en-
tropy waves [5], and their interactions. Linear instabil-
ities which may pollute the solution are also supported
[6, 7].

Several numerical methods have been proposed to
solve the Linearised Euler Equations, either in time
domain or in frequency domain [8]. Time domain
solvers are preferred for their low-memory require-
ments and potentiality to parallelisation. Since a sin-
gle simulation can provide results over large frequency
range, they are also suited for broadband noise. The
Discontinuous Galerkin Method has been applied for
solving the Linearised Euler Equations [9]. However,
issues related to impedance boundary conditions [10]
and linear instabilities [11] are still under investiga-
tion.

By definition, frequency domain solvers are suit-
able for tonal noise. They are also an approach to
avoid linear instabilities [8, 11]. Since the stability
criterion indicates that instabilities appear below a
critical Strouhal number [6, 12], frequencies may be
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selected beyond the instability range. The Linearised
Euler Equations have been solved in the frequency
domain with structured and unstructured grids, us-
ing finite difference [13], discontinuous Galerkin [14]
and linear Lagrangian finite element [15] methods. In
the latter, the pressure gradients were neglected in
the momentum equations which allowed to decouple
the continuity equation and to solve only the momen-
tum and energy equations. The main drawback of fre-
quency domain approach is the high-memory require-
ments which constrain problems size and frequency.

In this paper, a high-order Finite Element Method
(p-FEM, with p polynomial order) is presented for
solving the axisymmetric Linearised Euler Equations
in the frequency domain. The p-FEM approach al-
lows to reduce the memory requirements by relying
on high-order polynomials. In addition, a stabilised
Galerkin formulation is used in order to suppress
convection-related numerical instabilities [16].

This paper is structured as follows: the physi-
cal model is described in Section 2. The numerical
method is then explained in Section 3. Finally, Sec-
tion 4 describes the numerical results for sound radi-
ation from a straight circular semi-infinite hard-wall
duct with several mean flow velocity configurations.

2. Physical Model

2.1. Linearised Euler Equations

The Linearised Euler Equations represent sound wave
propagation in non-uniform media for inviscid fluid
and adiabatic process [17]. Each variable is expressed
as the sum of a steady mean flow component (de-
noted by the subscript 0) and of a small amplitude
unsteady perturbation (denoted by the superscript ′).
The equations are written for the conservative vari-
ables: the density ρ, the momentum ρu, and the modi-
fied pressure pc = (p/p∞)1/γ introduced by Goldstein
[18] (where u is the velocity vector, p is the pressure,
p∞ is a reference pressure, and γ is the specific heats
ratio). The variables vector is noted Q′.

The cylindrical coordinate system (r, θ, z) is con-
venient since mean flows and geometries are often
axisymmetric. For time-harmonic perturbations, a
Fourier decomposition of the solution yields:

Q′(r, θ, z, t) = q′(r, z)e−jmθejωt, (1)

where t is the time, m ∈ Z is the azimuthal order and
ω is the angular frequency.

The resulting Linearised Euler Equations read:

jωq′−j
m

r
Aθq

′+
1

r
Acq

′+
∂Azq

′

∂z
+

1

r

∂rArq
′

∂r
= 0, (2)

where the matrices Ar, Aθ, and Az contain the equa-
tions coefficients and characterise the fluxes in the r-,
θ- and z-directions. The matrixAc also contains some

equations coefficients. The matrices specific expres-
sions are as follows:

Aθ =


0 0 1 0 0
0 0 u0r 0 0

0 0 0 0
ρ0c

2
0

pc0
0 0 u0z

0 0
0 0 pc0

ρ0
0 0

 , (3)

Ac =


0 0 0 0 0

0 0 0 0 −ρ0c
2
0

pc0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (4)

Az =


0 0 0 1 0

−u0zu0r u0z 0 u0r 0
0 0 u0z 0 0

−u2
0z

0 0 2u0z

ρ0c
2
0

pc0
−pc0ρ0 u0z

0 0 pc0
ρ0

u0z

 , (5)

Ar =


0 1 0 0 0

−u2
0r

2u0r
0 0

ρ0c
2
0

pc0
0 0 u0r

0 0
−u0z

u0r
u0z

0 u0r
0

−pc0ρ0 u0r

pc0
ρ0

0 0 u0r

 . (6)

2.2. Duct modes

Acoustic sources can be described as duct modes,
which form a complete basis for the duct incident wave
[19]. A uniform mean flow is considered in the duct
with axial velocity u0 = u0z

. For cylindrical ducts,
each modified pressure duct mode can be written:

p′cm,n
(r, θ, z) = am,nUm,n(r)e−jkzm,nze−jmθ, (7)

where n ∈ N∗ is the radial order, am,n is the ampli-
tude, Um,n is the radial shape function, and kzm,n

is
the axial wavenumber. The resulting density and mo-
mentum components are obtained from the Linearised
Euler Equations and have a form similar to Eq. 7.

The radial shape function for circular ducts is given
by: Um,n(r) = Jm(krm,nr), where Jm is the mth-order
Bessel function of the first kind. The radial wavenum-
ber krm,n

= αm,n/rd depends on the nth zero αm,n of
the characteristic equation and on the duct outer ra-
dius rd. The characteristic equation is: J ′m(αm,n) = 0,
where the prime denotes the derivative with respect
to the argument.

3. High-order finite element method

3.1. Formulation

The physical problem defining the Linearised Euler
Equations in Eq. 2 is transformed into an equivalent
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integral Galerkin formulation [20]:∫
Ω

jωrwTq′ − jmwTAθq
′ +wTAcq

′

− r ∂w
T

∂z
Azq

′ − r ∂w
T

∂r
Arq

′dzdr

= −
∫

Γ

rwT (nzAz + nrAr) q
′dΓ, (8)

where Ω is the computational domain, w is the test
function, (nz, nr) are the components of the unit nor-
mal vector n to the boundary Γ. The superscript T

denotes the Hermitian transpose. The matrix F =
nzAz + nrAr characterises the fluxes along n, which
points toward the domain exterior.

The method of characteristics provides a framework
to formulate the boundary conditions for hyperbolic
problems [21, 22]. The flux matrix F is diagonalised
like: F = WΛW−1, where Λ is the eigenvalues di-
agonal matrix andW is the eigenvectors matrix. The
eigenvectors define the amplitude vector q̂ of the char-
acteristic waves travelling along n: q̂ = W−1q. The
eigenvalues represent each eigensolution phase veloc-
ity (λ1 = λ2 = λ3 = u0 · n, λ4 = u0 · n − c0,
λ5 = u0 · n + c0), and indicate whether the char-
acteristics are incoming or outgoing. Only the incom-
ing waves must be imposed on a boundary [21]. For
subsonic mean flows, λ4 is strictly negative (incoming
acoustic wave) and λ5 is strictly positive (outgoing
acoustic wave). The sign of u0 · n indicates whether
the vorticity and entropy waves enter or leave the do-
main.

In practice, the flux vector Fq′ can be decomposed
like: Fq′ = WΛRW−1q′+ ŝ, where R is a reflection
matrix and ŝ is a source term. The boundary integral
in Eq. 8 is rewritten like:∫

Γ

rwTFq′dΓ

=

∫
Γ

rwTWΛRW−1q′dΓ +

∫
Γ

rwTŝdΓ. (9)

Within that scheme, the boundary conditions are
imposed. Assuming hermetic acoustically rigid duct
walls, the waves are completely reflected and no flow
is transmitted through the wall. Slip hard-wall bound-
ary conditions are applied with the normal velocity:
u′ · n = 0 and u0 · n = 0.

Since the problem is axisymmetric, parity condi-
tions constrain the variables continuity along the axis
at r = 0. For a cylindrical problem, the conditions are
[23]:

u′r = u′θ = 0 , if m = 0,

ρ′ = 0;u′r = ±ju′θ;u
′
z = 0; p′ = 0 , if m = ±1,

ρ′ = 0;u′r = u′θ = u′z = 0; p′ = 0 , if |m| > 1.

(10)

3.2. Finite element method

In the finite element method, the continuous do-
main Ω is discretised into a finite number ne of non-
overlapping linear elements Ωi. The solution vector
q′i on each element splits up in terms of shape func-
tions S(j)

i and of degrees of freedom q
(j)
i such that:

q′i(x) =
∑nsf

j=1 q
(j)
i S

(j)
i (x), where x is the position

vector and nsf is the number of shape functions. The
test functions w use the same approximation basis.

Each element integral is evaluated by means of nu-
merical quadrature [24], with accuracy order corre-
sponding at least to the highest polynomial order in
the integrand. For a single angular frequency ω, the
elementary integrals are assembled to produce a dis-
crete global system of the form: Kd = f , where K is
a square, sparse, complex matrix of size ndof × ndof .
The number of degrees of freedom ndof is equal to
5nsf , where the number 5 corresponds to the number
of variables. f is the complex right-hand side vec-
tor. The linear system is solved with the multifrontal
massively parallel sparse direct solver MUMPS [25],
through the LU factorisation method which provides
the unknown degrees of freedom.

The novelty in this work is that high-order shape
functions are utilised to solve the Linearised Euler
Equations. The standard FEM suffers from numerical
dispersion and the so-called pollution effect [26]. The
dispersion error increases with the frequency, which
results in mesh refinement to obtain a reasonable ac-
curacy. An alternative consists in using the p-FEM
and incrementing the polynomial basis interpolation
order. The enriched polynomial basis leads to lower
resolution requirements and smaller number of de-
grees of freedom for a given problem, which results
in lower memory usage [27, 28].

Although the high-order nodal Lagrange shape
functions may be used, the high-order modal Lo-
batto shape functions are implemented in this work
[29]. With modal shape functions, the (p + 1)-degree
polynomial basis is obtained as a correction of the
p-degree polynomial basis. This hierarchic property
makes modal shape functions a suitable choice for
adaptivity. In addition, the Lobatto shape functions
present good conditioning properties. The approxima-
tion basis contains not only vertex functions, but also
edge and bubble shape functions. The vertex functions
are linear and nodal. For p ≥ 2, the basis is enriched
with the edge functions: these functions are non-zero
along a given edge and vanish along the others. For
p ≥ 3, the bubble functions are internal and vanish
along the edges of the element.

Since they vanish along the reference element edges,
the bubble shape functions are only local and have no
connectivity with their neighbouring elements. Static
condensation consists in expressing their correspond-
ing degrees of freedom in terms of the remaining ones
(vertex and edge degrees of freedom) within each el-
ement. These degrees of freedom are eliminated from
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the global system before assembly. Post-processing
formulae permits to recover the solution internal de-
grees of freedom. This procedure translates into the
reduction of the global system size, the conditioning
improvement and the further decrease of the memory
requirements [30]. Those effects become even more im-
portant for higher polynomial orders, since the num-
ber of bubble functions increases in p2, making the
use of static condensation crucial for high orders.

3.3. Numerical stabilisation

The finite element method experiences numerical in-
stability for convection-dominated problems. The con-
ventional Galerkin formulation introduced in Eq. 8
lacks stability for the Linearised Euler Equations [16].
This issue leads to the presence of spurious oscillations
in the numerical solution. A stabilisation technique
consists in adding artificial diffusion in each element:∫

Ω

jωrwTq′ − jmwTAθq
′ +wTAcq

′

− r ∂w
T

∂z
Azq

′ − r ∂w
T

∂r
Arq

′dzdr

+

ne∑
i=1

∫
Ωi

D(w)Tτ iL(q′)dΩi

= −
∫

Γ

rwT (nzAz + nrAr) q
′dΓ, (11)

where D(w) is a stabilisation operator, τ i is a stabili-
sation parameter and L(q′) is the differential operator
in the left-hand side of Eq. 2 [31].

Several stabilisation operators have been used
in the literature [32]. In the following, the
Galerkin/Least-Squares (GLS) technique is applied
with:

D(w) = jωw − j
m

r
AT
θw +

1

r
AT

c w

+
∂AT

zw

∂z
+

1

r

∂rAT
r w

∂r
. (12)

The matrices Hermitian transposes are used, provid-
ing better results, as observed for solving the Euler
equations [33] and the Linearised Euler Equations
[14]. The stabilisation parameter given by Rao and
Morris is used [14]: τ i = max(αhi,l/ρl)I, where α is a
stabilisation coefficient, hi,l is the ith-element size in
the lth-direction (z or r), ρl is the spectral radius of
the matrixAl and I is the identity matrix. In the sim-
ulations, α is chosen equal to 1/(2p) in order to take
the high-order shape functions into consideration [16].

3.4. Perfectly matched layer

The physical domain truncation requires suitable non-
reflecting boundary conditions to absorb outgoing
waves. The Perfectly Matched Layer (PML) is a com-
mon technique based on the construction of an extra

damping zone around the computational domain [34].
In that damping zone, the real physical coordinates
are transformed into the complex plane:

z̃(z) = z +
fz(z)

jk0
, (13)

where z̃ is the modified coordinate, fz is a stretch-
ing function and k0 = ω/c0 is the standard acous-
tic wavenumber. The logarithm function proposed by
Bermúdez et al. is used [35]:

fz(z) = −nz ln

(
1− nz

z − zint

d

)
, (14)

where zint denotes the interface coordinate and d is
the PML width. Analogous expressions are used for
the absorption in the radial direction.

With flow, inverse upstream waves may propagate.
These waves have positive group velocity but nega-
tive phase velocity, which complicates their absorp-
tion in the PML. The time dependency is transformed
from ejωt to ejωt̃ in the PML, allowing to translate the
wavenumbers in the complex plane [36]:

t̃(z, t) = t− λz
ω

(z̃(z)− zint) , (15)

where λz is a correction coefficient. The most appro-
priate value of that parameter is shown to be [36]:

λz =
k0M

1−M2
, (16)

with M = u0/c0 the axial Mach number.
Applying the aforementioned space-time transfor-

mations, the Linearised Euler Equations in the PML
read [15]:

jωq′ − j
m

r̃
Aθq

′ +
1

r̃
Acq

′ + jλzAzq
′

+
1

γz

∂Azq
′

∂z
+

1

r̃γr

∂r̃Arq
′

∂r
= 0, (17)

where r̃ is the modified coordinate in the r-direction,
γz = dz̃/dz and γr = dr̃/dr. Note that in the formu-
lation a homogeneous Dirichlet boundary condition is
applied at the PML outlet, such that q′ = 0.

The PML can also be used to impose the incident
wave. In practice, the PML equations are applied to
the reflected field only [13, 15]: q′re = q′ − q′in, where
q′in is the incident field and q′re is the reflected field.
The Linearised Euler Equations for incident wave in-
jection in the PML are:

jωq′ − j
m

r̃
Aθq

′ +
1

r̃
Acq

′ + jλzAzq
′

+
1

γz

∂Azq
′

∂z
+

1

r̃γr

∂r̃Arq
′

∂r

= jωq′in − j
m

r̃
Aθq

′
in +

1

r̃
Acq

′
in + jλzAzq

′
in

+
1

γz

∂Azq
′
in

∂z
+

1

r̃γr

∂r̃Arq
′
in

∂r
. (18)
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4. Application

4.1. Test case

The numerical model is verified for the acoustic radi-
ation from a straight circular semi-infinite duct [37].
The duct radius is rd = 1 m. The duct wall is in-
finitely thin and hard-wall boundary conditions are
applied on both sides. The mean flow velocity is ax-
ial, with Mach number Md in the duct and Mo in the
outer region. The mean flow density, speed of sound
and specific heats ratio are uniform over the domain:
ρ0 = 1.225 kg/m3, c0 = 340.27 m/s and γ = 1.4. Fig-
ure 1 shows the test case configuration.

Md

Mo

rd

z

Figure 1. Straight circular duct geometry.

The computational domain extends from z = 0 to
5 m and from r = 0 to 2.5 m. The duct exit plane is lo-
cated at zd = 2.5 m (see Figure 2). Acoustic modes are
injected inside the duct through a PML of length dd.
In the outer region, the computational domain is sur-
rounded by a PML of width do. Axisymmetric bound-
ary conditions are applied along the axis at r = 0. The
discretisation uses triangular elements, with a struc-
tured mesh inside the PML and an unstructured mesh
elsewhere. The mesh is refined at the duct trailing
edge in order to take the geometric singularity into
account.

The numerical solution is compared to a reference
solution [38], which is able to enforce the Kutta con-
dition at the duct trailing edge. This analytic model
reproduces the mean flow effects on the sound field, as
it is seen in Sections 4.2.2 and 4.2.3. The solutions are
compared on a 2 m-radius circle centred on the point
(zd, 0). The angle Φ along that circle is measured from
the positive z-direction.

4.2. Numerical results

Three configurations are considered: the no-flow con-
dition, the uniform flow condition and the non-
uniform flow condition.

4.2.1. No-flow condition
The incoming acoustic wave is the time-harmonic
plane wave (m,n) = (0, 1) with the angular frequency
ω = 6805 rad/s, corresponding to the Helmholtz num-
ber k0rd = 20. The duct mode amplitude is a0,1 = 1.

The characteristic mesh size is 0.4 m inside the duct
and in the outer region, which corresponds to less
than 1 element per wavelength. The element size at
the duct trailing edge is 0.1 mm. The PML are one-
element wide, both in the outer region and inside the
duct (dd = do = 0.4 m). Figure 2 shows the compu-
tational domain, the mesh and the control circle for
comparison to the reference solution. The PML are
shown with thicker lines, in blue for the outer region
and in green for the duct mode injection. The duct
wall is also represented with a thicker line.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

z
r

Figure 2. Computational domain, triangular mesh and
control points. No-flow condition.

Figure 3 displays some numerical results with the
variables fluctuations contours: the real parts of the
modified pressure, the axial momentum and the radial
momentum. These results are obtained with p = 9.
The solution shows the acoustic waves propagating
inside the duct and radiating to the far field. The
outgoing waves are properly absorbed inside the PML,
with no noticeable reflections.

The numerical and analytic solutions are checked
along the control circle. Figure 4 shows the Sound
Pressure Level (SPL), calculated for a reference pres-
sure pref = 2 × 10−5Pa. The agreement is excellent.
To further verify the numerical solution, the nodal er-
ror is integrated over the control circle. It is defined
as the relative difference between the numerical and
analytic solutions:

Eχ =
‖χn − χa‖
‖χa‖

, (19)

where χ is the variable, the subscripts n and a re-
fer to the numerical and analytic solutions, and ‖·‖
is the 2-norm. For p = 9, the numerical errors are:
Epc = 1.3 %, Eρuz = 0.21 % and Eρur = 4.5 %, which
confirms the accuracy of the model. The maximum
difference between the numerical and analytic SPL is
0.46 dB.

Since the numerical model uses high-order polyno-
mials, their impact is assessed in Figure 5. The errors
along the control circle are plotted against the poly-
nomial order. The low orders from p = 1 to 4 are
unable to solve the problem because the mesh is too
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−2 −1 0 1 2

·10−2

Figure 3. Contours of the variables perturbations, for the
plane wave in the no-flow condition. k0rd = 20, p = 9.
Top: <(pc). Middle: <(ρuz). Bottom: <(ρur).

coarse. The solution convergence is observed since the
numerical accuracy increases with the polynomial or-
der, from p = 4 to 9. The errors stagnate for p ≥ 9.
This can be explained by the limited refinement at the
duct trailing edge singularity. Moreover, the accuracy
levels are different for the variables. The error on the
z-momentum can be up to 20 times lower than the
error on the r-momentum. This is due to the solution
shape along the control circle: the radial momentum
solution has more oscillations than the pressure and
axial momentum solutions.

Concerning the performance, the memory usage to
compute the numerical solution is 649 Mb with p = 9.

Figure 4. Sound Pressure Level against the position angle
Φ along the control circle, for the plane wave in the no-
flow condition. k0rd = 20, p = 9. Black solid line: reference
solution. Red dots: numerical solution.

1 2 3 4 5 6 7 8 9 10
10−1

100

101

102

p
E

(%
)

Figure 5. Relative error along the control circle against
the polynomial order, for the plane wave in the no-flow
condition. k0rd = 20. Solid line: Epc . Dashed line: Eρuz .
Dotted line: Eρur .

The number of degrees of freedom is 54, 100, for 818
triangular elements. For comparison, a simulation is
ran for p = 2 with a characteristic mesh size of 0.05 m
inside the duct and in the outer region. This mesh cor-
responds to a number of 63, 200 triangular elements.
The numerical errors are: Epc = 3.0 %, Eρuz = 0.84 %
and Eρur = 11 %, which is still not as accurate as
the simulation with p = 9 and the coarse mesh. The
memory usage is 4.5 Gb, which is about 7 times higher
than for the simulation with p = 9. The number of de-
grees of freedom is 636, 595, i.e. almost 12 times the
number found for the simulation with p = 9.

4.2.2. Uniform flow condition
In the second configuration, the incoming duct mode
(5, 1) propagates at the angular frequency ω =
2892 rad/s. The Helmholtz number is k0rd = 8.5. The
mean flow Mach number is uniform in the whole do-
main: Md = Mo = 0.3. The mean flow convects a
vorticity wave from the duct trailing edge, which de-
velops as a vortex sheet along the duct wake. The
shortest acoustic wavelength is 0.57 m and the vor-
ticity wavelength is 0.22 m. In order to capture both
effects, the mesh is refined accordingly. The charac-
teristic mesh size is 0.4 m inside the duct and in the
outer region. For the vorticity wave, the element size
along the duct wake is 0.01 m. Also in this case the
PML are one-element wide, both in the outer region
and inside the duct (dd = do = 0.4 m). In addition
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to those located along the 2 m-radius circle, control
points are placed along the duct wall and its wake.
Figure 6 shows the corresponding mesh.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

z

r

Figure 6. Computational domain, triangular mesh and
control points. Uniform flow condition.

The variables perturbations contours are shown in
the following pictures, with p = 9. The pressure fluc-
tuations are observed in the top picture in Figure 7:
the noise propagates along the duct, radiates to the
far field and is absorbed by the PML. The momentum
fluctuations contours reveal the vortex sheet which de-
velops from the duct trailing edge, as seen in the mid-
dle and bottom pictures in Figure 7 for the axial and
for the radial components. The vortices are generated
at the duct lip and are convected in the duct wake.
The disparate acoustic and vorticity wavelengths are
also observed. The axial momentum presents a very
steep gradient across the vortex sheet, which requires
a significant mesh refinement along the duct wake.

The Sound Pressure Level along the control circle
shows the agreement between the numerical and ana-
lytic solutions. The sound directivity is seen in Figure
8 and the agreement between the solutions is very
good. The nodal errors attest to the numerical model
accuracy: Epc = 0.32 %, Eρuz = 2.2 % and Eρur =
1.3 %. The maximum difference between the numeri-
cal and analytic SPL is 0.3 dB, for SPL ≥ 30 dB.

The top picture in Figure 9 represents the radial
momentum real part along the control circle, in linear
scale. The axial momentum discontinuity at Φ ≈ 150◦

corresponds to the values on both sides of the duct
wall, where the radial momentum is zero since the
hard wall boundary condition is imposed. At Φ ≈ 30◦,
the momentum components present a peak, which
corresponds to the vorticity shedding. The bottom
picture shows the radial momentum real part along
the duct wall and its wake, also in linear scale. As
expected, the normal velocity is zero along the duct
wall (z < 2.5) and the oscillations along the vortex
sheet are observed (z > 2.5). The solution continuity
at z = 2.5 is verified. The numerical solution matches
the reference solution.

The numerical results converge to the analytic so-
lution with the Kutta condition: the normal acoustic

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

z

r

−1 −0.5 0 0.5 1

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

z

r

−0.1 −5 · 10−2
0 5 · 10−2 0.1

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

z

r

−0.1 0 0.1

Figure 7. Contours of the variables perturbations, for the
uniform flow condition. k0rd = 8.5, (m,n) = (5, 1), p = 9.
Top: <(pc). Middle: <(ρuz). Bottom: <(ρur).

Figure 8. Sound Pressure Level against the position angle
Φ along the control circle, for the uniform flow condition.
k0rd = 8.5, (m,n) = (5, 1), p = 9. Black solid line: refer-
ence solution. Red dots: numerical solution.
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Figure 9. Radial momentum fluctuations, for the uniform
flow condition. k0rd = 8.5, (m,n) = (5, 1), p = 9. Black
dots: reference solution. Red solid line: numerical solution.
Top: along the control circle. Bottom: along the duct wall
and its wake.

velocity vanishes at the duct trailing edge and the so-
lution is continuous at the trailing edge. The numer-
ical solution naturally verifies that condition, which
is implicitly imposed inside the numerical model: the
Linearised Euler Equations support the pressure and
velocity fields, and the shape functions continuity is
ensured over the computational domain.

4.2.3. Non-uniform flow condition
The final configuration focuses on the non-uniform
flow condition. Turbofan exhaust noise is charac-
terised by mean flow shear layers with strong gra-
dients. An analytic mean flow shear layer is built, in
order to reproduce those features. The Mach number
flow profile outside the duct is given by:

M(r, z) = M

(
1 + tanh

(
rd − |r|
ζδ(z)

))
, (20)

where M = (Md + Mo)/2, ζ = 2/5 cos2(β/2) is a
parameter to control the shear layer profile, β is the
spreading angle and δ is the shear layer thickness. The
latter reads:

δ(z) = 2 (z − zd) tan(β/2). (21)

The following parameters are used:Md = 0.5,Mo = 0
and β = 20◦. Within each finite element, the mean
flow velocity profile is imposed directly on each Gauss
point of the quadrature. Figure 10 shows the mean
flow Mach number contours.
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Figure 10. Contours of the mean flow Mach number, for
the non-uniform flow condition. Md = 0.5, Mo = 0.

The incoming acoustic wave is the duct mode (10, 1)
with the angular frequency ω = 5785 rad/s. The
Helmholtz number is k0rd = 17. The corresponding
shortest acoustic wavelength is 0.18 m, and is equal to
the vorticity wavelength. The computational domain
is discretised with the mesh depicted in Figure 11.
The mesh size is 0.4 m in the outer region. Inside the
duct, the mesh is refined with a characteristic size of
0.2 m. The refinement along the duct wake is 0.01 m,
in order to capture the vorticity shedding from the
duct trailing edge in the axial direction. The PML are
one-element wide, with dd = 0.2 m and do = 0.4 m.
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Figure 11. Computational domain, triangular mesh and
control points. Non-uniform flow condition.

The perturbations contours are shown in Figure 12
for the modified pressure, the z-momentum and the
r-momentum, with p = 8. The sound propagation, re-
fraction and radiation to the far field are visible. The
shear layer is responsible for the generation of the hy-
drodynamic Kelvin-Helmholtz instability, which de-
velops as a vorticity shedding along the duct wake
and decays after a finite distance.

The Sound Pressure Level along the control circle
is shown in Figure 13. The analytic solution avail-
able without vorticity shedding is also represented,
as an element of reference. It shows that the numeri-
cal solution is very similar, and that the vortex sheet
does not significantly impact the acoustic directivity.
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Figure 12. Contours of the variables perturbations, for the
non-uniform flow condition. k0rd = 17, (m,n) = (10, 1),
p = 8. Top: <(pc). Middle: <(ρuz). Bottom: <(ρur).

Around the angle Φ = 30◦, a peak corresponding to
the vortex sheet is observed. This peak is not visible
on the reference solution, since the Kutta condition is
not applied. The non-uniform mean flow is responsible
for the wave refraction outside the duct.

The solution convergence is assessed in Figure 14
which displays the variables real parts along the duct
wall and its wake, for p = 2, 3, 7 and 8. Along the
duct wall, the solution has already converged with
p = 2: the oscillations are visible on the pressure and
z-momentum plots, while the normal velocity along
the hard wall is verified to be zero on the r-momentum
plot. The longest acoustic wavelength 0.55 m domi-

nates there and the resolution with p = 2 is already
sufficient to solve it. The reference solution obtained
with no vorticity shedding is identical to the numeri-
cal solution, which means that the solution along the
duct wall is not affected in this test case. At the duct
trailing edge, the Kelvin-Helmholtz instability wave is
generated: it grows exponentially and then decreases
[6, 7]. This instability is not supported by the refer-
ence solution. Some vorticity wave with constant am-
plitude is still present on the momentum plots, but its
effect on the pressure field is less significant. Those os-
cillations, which characterise the vorticity wavelength
0.18 m, are not well represented by the orders p < 6.
The coupling between acoustic and vorticity waves is
visible on the pressure plot. It is mainly limited to
the instability range (from z = 2.5 to 3), even though
some oscillations of significantly lower amplitude are
present outside that range. These oscillations seem to
be of a similar nature as those observed in the uni-
form flow condition, which amplitude remains con-
stant along the duct wake. The mathematical model
does not take into consideration the non-linear effects
and the viscosity which may attenuate these oscilla-
tions in real cases. With the classical linear Finite El-
ement Method, a much finer mesh should be used in
order to solve this problem. The high-order finite ele-
ment method is able to reproduce the features of the
pressure field but also the strong oscillations present
in the momentum field.

Figure 13. Sound Pressure Level against the position an-
gle Φ along the control circle, for the non-uniform flow
condition. k0rd = 17, (m,n) = (10, 1), p = 8. Black solid
line: reference solution (no vorticity shedding). Red dots:
numerical solution.

5. Conclusion

A novel frequency domain approach based on a high-
order Finite Element Method is developed to solve
the Linearised Euler Equations. As a verification,
the acoustic radiation from a straight circular semi-
infinite hard-wall duct is successfully computed for
several mean flow conditions.

The comparison with an analytic solution shows
that the numerical solutions accurately describe the
sound propagation, as well as the vorticity waves
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Figure 14. Variables fluctuations along the duct wall and
its wake, for the non-uniform flow condition. k0rd = 17,
(m,n) = (10, 1), p = 2, 3, 7 and 8. Top: <(pc). Middle:
<(ρuz). Bottom: <(ρur). Black dots: reference solution
(no vorticity shedding).

and their interaction with the acoustic field. With a
mean flow shear layer, the Kelvin-Helmholtz instabil-
ity wave grows with the flow and then decays. A lower
amplitude vorticity wave still propagates downstream
of that instability. The refraction of the sound field
through the shear layer is observed.

The high-order Finite Element Method is con-
firmed to be more efficient than the low-order Finite
Element Method. The memory requirements are
significantly reduced with the p-FEM, with a factor 7
for the no-flow condition test case. The convergence
of the method is verified when p is increased. Mesh
refinement is however necessary to deal with local
geometrical singularities and steep-gradient solu-
tions. Local p-adaptivity may further improve the
performance.
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