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A METHOD FOR CONSTRAINED MULTIOBJECTIVE
OPTIMIZATION BASED ON SQP TECHNIQUES∗

JÖRG FLIEGE† AND A. ISMAEL F. VAZ‡

Abstract. We propose a method for constrained and unconstrained nonlinear multiobjective
optimization problems that is based on an SQP-type approach. The proposed algorithm maintains a
list of nondominated points that is improved both for spread along the Pareto front and optimality
by solving single-objective constrained optimization problems. These single-objective problems are
derived as SQP problems based on the given nondominated points. Under appropriate differentia-
bility assumptions we discuss convergence to local optimal Pareto points. We provide numerical
results for a set of unconstrained and constrained multiobjective optimization problems in the form
of performance and data profiles, where several performance metrics are used. The numerical results
confirm the superiority of the proposed algorithm against a state-of-the-art multiobjective solver and
a classical scalarization approach, both in the quality of the approximated Pareto front and in the
computational effort necessary to compute the approximation.
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1. Introduction. In this paper we address the following inequality and equality
constrained multiobjective optimization problem:

(1.1) min
x∈Ω

f(x) = (f1(x), . . . , fm(x))T

with

(1.2) Ω = {x ∈ Rn : gj(x) ≤ 0, j = 1, . . . , p, hl(x) = 0, l = 1, . . . , q} ,

where fi : Rn → R (i = 1, . . . ,m) are assumed to be twice continuously differentiable
objective functions all bounded from below, and gj : Rn → R (j = 1, . . . , p) and hl :
Rn → R (l = 1, . . . , q) are assumed to be once continuously differentiable constraint
functions. We allow p = 0 and q = 0, in which case problem (1.1) is unconstrained.

Although applications for this type of problem can be found in many fields of
engineering and science (see, for example, in [5, Part III] and [16]), implementations
of available algorithms are somewhat limited to evolutionary algorithms or similar
heuristics, or deterministic single point algorithms based on, for example, scalariza-
tion approaches (see, e.g., [7, 11, 13] or the various scalarization methods described
and analyzed in [10]). The former lack a convergence proof and have a low rate of
convergence, but usually provide an approximation to the Pareto front. The latter
rely on a multistart procedure in which different scalarization parameters are used
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in different restarts to obtain an approximation to the Pareto front and consequently
often have difficulties in finding an approximation to the Pareto front that is of good
quality in all areas of the front. Our algorithm is independent of any scalarization
parameters and does not need any complex initialization procedures.

Herein we propose an algorithm for constrained multiobjective optimization that
tracks and updates a finite set of points Xk from one iteration k to the next, in
contrast to standard algorithms for single-objective optimization where just one point
xk ∈ Rn is used. The proposed mechanism, based on two main stages, allows the
algorithm to compute a high-quality approximation to the Pareto front. The first
stage is used to enrich the set of points Xk with additional nondominated points,
while the second stage is used to drive each element in the given set of points to
optimality. Both stages rely on standard derivative based optimization subproblems,
allowing the overall algorithm to enjoin many of the good properties of derivative
based optimization algorithms.

The remainder of this paper is as follows. In the next section, we introduce some
definitions and motivate the proposed algorithm. Within this motivation, we develop
appropriate techniques on how to handle constraints, how to improve a nondominated
set of points, and how to drive each element of a given set of points to local Pareto
optimality. Section 3 describes optimization subproblems that will be used to compute
search directions in both algorithmic stages, setting the stage for the description of
the full algorithm in section 4. Convergence of the algorithm is addressed in section
5, while section 6 describes details of the implementation. Finally, section 7 presents
extensive numerical results, before we conclude with section 8.

2. Definitions and motivation for the algorithm. When several objective
functions are present, as it is in our case for problem (1.1), obtaining a point that
simultaneously minimizes every function is usually not possible, since it is common
that the objectives conflict with each other. There are several approaches to address-
ing such a problem, such as those reported in [5], for example. Our approach relies
on the Pareto dominance concept for comparing two points. To briefly describe the
concept, we make use of two orders induced by the cones

Rm
+ = {z ∈ Rm : zi ≥ 0 (i = 1, . . . ,m)} and Rm

++ = {z ∈ Rm : zi > 0 (i = 1, . . . ,m)},

defined by

f(x) �f f(y) ⇔ f(y)− f(x) ∈ Rm
+

and

f(x) ≺f f(y) ⇔ f(y)− f(x) ∈ Rm
++.

Given two points x, y in Ω, we say that x ≺ y (x dominates y) if and only if
f(x) ≺f f(y). We further say that x weakly dominates y (x � y) if and only if
f(x) �f f(y). A set of points X ⊆ Ω is said to be nondominated (or indifferent)
when no point in the set is dominated by any other point in the set, i.e.,

∀x ∈ X : �y ∈ X : f(y) ≺f f(x).

The concept of Pareto dominance is also used to characterize global and local
optimality, by defining the Pareto front. For this, we need the following definition.
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Definition 2.1. A point x∗ ∈ Ω is said to be a global Pareto minimizer of f in Ω
if there does not exist a y ∈ Ω with f(y) �f f(x∗) (i.e., y � x∗) and f(x∗) �= f(y).
If there exists a neighborhood N (x∗) of x∗ such that the previous property holds in
Ω ∩ N (x∗), then the point x∗ is called a local Pareto minimizer of f .

The global Pareto front is the image of the set of global Pareto minimizers un-
der the function f . Likewise, the Pareto front is the image of the set of all Pareto
minimizers, global or local under the function f .

The goal of our algorithm is to determine a set of Pareto optimal points of f , i.e.,
to determine a set X∗ where each x∗ ∈ X∗ is such that there exists a neighborhood
N (x∗) of x∗ with

�y ∈ Ω ∩N (x∗) : f(y) �f f(x∗) and f(y) �= f(x∗)

and where X∗ serves as a good approximation of the full set of Pareto points.
We next provide a necessary condition for Pareto optimality, i.e., a notion of

criticality. The criticality definition presented herein is an extension of the criticality
definition for unconstrained multiobjective optimization used in [14]. This criticality
condition for a given feasible point x̄ can be seen as the nonexistence of a feasible
direction d ∈ Rn along which all the objective functions are decreasing. We can
formalize this as follows. Define the linearized cone at x̄ as usual, i.e.,

L(x̄) := {d ∈ Rn : ∇gj(x̄)
T d ≤ 0, j ∈ A(x̄), ∇hl(x̄)

T d = 0, l = 1, . . . , q},

where A(x̄) = {j ∈ {1, . . . , p} : gj(x̄) = 0} is the index set of the inequality constraints
active at x̄. Then we say that a point is Pareto critical if for all d ∈ L(x̄) there exists
an i = i(d) ∈ {1, . . . ,m} such that

∇fi(x̄)
Td ≥ 0.

Likewise, we call a Pareto critical point x̄ strongly Pareto critical if for all d ∈ L(x̄)
we either have ∇fi(x̄)

T d = 0 for all objectives i, or there exists an index i = i(d) ∈
{1, . . . ,m} such that

∇fi(x̄)
Td > 0.

Denote the set of local Pareto points by P , the set of all Pareto critical points
by PC, and the set of all strongly Pareto critical points by SC. Clearly, we have

SC ⊆ PC.

The relationship between Pareto points and Pareto critical points is given in the next
theorem.

Theorem 2.2. Let x̄ be a local Pareto point, and let Abadie’s constraint qualifi-
cation hold at x̄. Then x̄ is also a Pareto critical point. Thus, if Abadie’s constraint
qualification holds at all Pareto points, we have

P ⊆ PC.

Proof. Let x̄ be a local Pareto point. Suppose that x̄ is not Pareto critical. Then
there exists a d ∈ L(x̄) with ∇fi(x̄)

T d < 0 for all objectives i. Under Abadie’s
constraint qualification, L(x̄) is equal to the tangent cone of the set of feasible points
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at x̄, and thus there exist sequences xk ∈ Ω and tk > 0 such that d = limk→∞(xk −
x̄)/tk, limk→∞ tk = 0, and limk→∞ xk = x̄. Accordingly, ∇fi(x̄)

T (xk − x̄) < 0 for all
objectives i and all k large enough. Now fi(xk) = fi(x̄)+∇fi(ξi,k)

T (xk − x̄) with ξi,k
a point on the line segment between xk and x̄. A standard continuity argument shows
that fi(xk) < fi(x̄) for all objectives and all sufficiently large k, a contradiction.

An elementary example shows that not all Pareto points are strongly Pareto
critical: in the unconstrained case, let m = 2, n = 1, and f1(x) = x2 as well as
f2(x) = (x − 1)2. Obviously, P = [0, 1]. For x = 0 ∈ P , the Jacobian of f = (f1, f2)
is [0,−2], and so clearly x /∈ SC, as ∇f2(x)d = −2d < 0 for any d > 0. We will show
below that, under certain conditions, one can show that missing critical points of
particular objective functions is the worst that can happen when considering strongly
Pareto critical points instead of Pareto critical points.

Let C be the set of points which are critical in the classical sense for at least
one of the objective functions; i.e., x ∈ Ω is critical if and only if there exists an
i ∈ {1, . . . ,m} such that for all directions d �= 0 with d ∈ L(x) we have ∇fi(x)

T d ≥ 0.
In case Abadie’s constraint qualification holds at the optimal point x, then x is a
KKT point. This shows that if Abadie’s constraint qualification holds at all points
in C, then the set C is closed, as the set of KKT points is closed, and C is a finite
union of such sets.

We will make use of the set of Geoffrion-optimal points, characterized in the usual
way, i.e.,

G =

{
x ∈ Rn | ∃w ∈ Rm

++ : x ∈ argmin
x∈Ω

m∑
i=1

wifi

}
.

Pareto optimality and criticality are related as follows.

Theorem 2.3. Let x ∈ Ω be a point such that there exists a w ∈ Rm
++ such that x

is a KKT point for the problem of minimizing
∑m

i=1 wifi over Ω. Then x is also
Pareto-critical.

Proof. Farkas’s lemma provides us with
∑m

i=1 wi∇fi(x)
T d ≥ 0 for all d ∈ L(x),

which means that for each d ∈ L(x) there must be an i with ∇fi(x)
T d ≥ 0, i.e.,

Pareto criticality holds at x.

Theorem 2.4. If Abadie’s constraint qualification holds at each point in G \ C,
we have

G \ C ⊆ SC ⊆ PC.

Moreover, if all functions fi, gj are convex and h is affine linear, we have

G \ C ⊆ P \C ⊆ cl(G) \ C = cl(G) \ cl(C) ⊆ cl(G \ C) ⊆ cl(SC) ⊆ cl(PC).

Proof. Now let x ∈ G\C and assume that Abadie’s constraint qualification holds
at x. Then there exists a w ∈ Rm

++ such that x minimizes
∑m

i=1 wifi over Ω. Let
d ∈ L(x). Then

m∑
i=1

wi(∇fi(x))
T d ≥ 0.

As such, we either have (∇fi(x))
T d = 0 for each term of the sum, or there must be

at least one index ī with (∇fī(x))
T d > 0. As a consequence, x ∈ SC.

For the rest of the proof, note that

G ⊆ P,
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and, due to Theorem 2.2, thus also G ⊆ PC (see also, e.g., [15]). In addition, if all
functions fi, gj are convex and h is affine linear, we have

P ⊆ cl(G);

see, e.g., [20, p. 76].

Due to Theorems 2.3 and 2.4 we can thus, under appropriate assumptions, con-
centrate on the sets PC and SC, and we will make use of this in the next subsection.
Additionally, the proposed algorithm relies on two different mechanisms that are de-
scribed in the two subsections that follow. The first one consists of improvements of
a set of nondominated points in the sense that points will be further spread along the
Pareto front (instead of being clustered in a particular area), while the second con-
sists in driving a given set of nondominated points to local Pareto optimality. Both
mechanisms can be seen as improvement techniques for a particular notion of Pareto
optimality that also handles constraints, to be introduced in the next subsection.

2.1. Handling constraints. Each inequality and equality constraint can be
seen as an additional objective to optimize. While objective functions are to be
minimized, constraint functions must achieve a specific value or stay in a certain
range of values. Defining

c+ = max{0, c},

for arbitrary real numbers c ∈ R we have that each feasible point x satisfies

g+j (x) = 0, j = 1, . . . , p, and |hl(x)| = 0, l = 1, . . . , q.

For constrained optimization problems we further extend the concept of weak
Pareto dominance by saying that x weakly dominates y (x � y) if and only if

f̄(x) �f̄ f̄(y) ⇔ f̄(y)− f̄(x) ∈ R(m+p+q)
+

with
f̄(x)T := (f(x)T ,Φ(x)T ) and Φ(x)T := (g+(x)T , |h(x)T |).

The strong dominance concept is defined in a similar way.
Clearly, for points x and y feasible for (1.1)–(1.2) we have that

f(x) �f f(y) ⇔ f̄(x) �f̄ f̄(y),

while a point infeasible for (1.1)–(1.2) never weakly dominates a point feasible for this
problem, whilst a feasible point can weakly dominate an infeasible point.

This Pareto dominance concept extension for constrained multiobjective opti-
mization allows the proposed algorithm to deal with points infeasible for (1.1)–(1.2)
during the optimization process.

In what follows we need the concept of a merit function that will measure the
progress over a sequence of iterates. We will use the following variant of the classical �1
merit function:

(2.1) φ(x, σ) =

m∑
i=1

fi(x) + σ

⎛
⎝ p∑

j=1

(gj(x))
+ +

q∑
l=1

|hl(x)|

⎞
⎠ ,

where, as usual, σ is a positive penalty parameter.
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In a single-objective case, in which we want to minimize, say, the ith objective
function (i ∈ {1, . . . ,m}), we will use

φi(x, σ) = fi(x) + σ

p∑
j=1

(gj(x))
+ + σ

q∑
l=1

|hl(x)|,

with σ playing the same role as above.
Note that φ as well as all φi are usually nondifferentiable, although directional

derivatives φ′(x, σ; d) at x in any direction d �= 0 exist. See Lemma 16.4 in [3] for
additional details.

2.2. Improving a nondominated set of points. Let X be a set of nondom-
inated points, with points in X feasible or infeasible for (1.1)–(1.2), and let d ∈ Rn

be a direction of descent for at least one objective function at one point in X that,
locally, forces feasibility; i.e., given some x ∈ X , there exists an i such that

(2.2a) ∇fi(x)
T d < 0,

(2.2b) gj(x) +∇gj(x)
T d ≤ 0, j = 1, . . . , p,

(2.2c) hl(x) +∇hl(x)
T d = 0, l = 1, . . . , q,

and there exists t̄ > 0 such that for all t ∈ ]0, t̄] we have

(2.2d) φi(x + td, σ) ≤ φi(x, σ) + μtφ′
i(x, σ; d)

for some μ ∈]0, 1[ and some σ > 0.

Theorem 2.5. Given xk ∈ X and a descent direction d satisfying equations (2.2),
there exists a t0 > 0 such that

(2.3) f̄(xk) �f̄ f̄(xk + td) ∀t ∈ ]0, t0],

i.e., xk + td is not dominated by xk. Define a ∈ Rp and b ∈ Rq by

aj :=

{
1 : gj(x) = 0,
0 : otherwise,

bl :=

{
1 : hl(x) = 0,
0 : otherwise

(j = 1, . . . , p, l = 1, . . . , q), and r := (aT , bT )T . Then for all ε > 0 there exists a
t0 > 0 such that we have Φ(xk)− Φ(xk + td) + εr ∈ Rp+q

+ for all t ∈ ]0, t0].

Proof. The proof for (2.3) follows from the differentiability of fi and (2.2a), since
we have

lim
t→0

fi(xk + td)− fi(xk)

t
= ∇fi(xk)

Td < 0,

implying that there exists t1 > 0 such that

fi(xk + td) < fi(xk) ∀t ∈ ]0, t1]

holds, and by this we conclude that f̄(xk) �f̄ f̄(xk + td).
We prove the second statement by considering each constraint type individually

for a given j = 1, . . . , p or l = 1, . . . , q.
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• Suppose gj(xk) > 0. Since we have ∇gj(xk)
T d ≤ −gj(xk), we arrive at

∇gj(xk)
T d < 0, and by the differentiability of gj we see that there exists a

t2 > 0 such that gj(xk+ td) ≤ gj(xk) for all t ∈ ]0, t2] (d is a descent direction
for gj), i.e., we have g+j (xk + td) ≤ g+j (xk) for all t ∈]0, t2].
If gj(xk) < 0, we have gj(xk + td) < 0 for all t > 0 smaller than some t3 > 0,
and thus g+j (xk + td) = g+j (xk) = 0 for all t ∈ ]0, t3].
Finally, suppose gj(xk) = 0, which results in

lim
t→0

gj(xk + td)

t
≤ 0.

If the limit attains a negative value, then we have gj(xk + td) < 0 for all
t ∈]0, t4] and g+j (xk+td) = g+j (xk) = 0 for all t ∈ ]0, t4]. It remains to consider
the case where gj(xk + td) approaches zero from above, i.e., limt→0 gj(xk +
td) = 0 and gj(xk + td) > 0. For this case, recall that for all ε there exists a
t5 > 0 such that |gj(xk + td)| < ε for all t ∈ ]0, t5], resulting in g+j (xk + td)−
g+j (xk) < ε for all t ∈ ]0, t5].

• As above, we consider three cases for the equality constraints as well. From
(2.2c), we have ∇hl(xk)

T d = −hl(xk), resulting in

lim
t→0

hl(xk + td)− hl(xk)

t
= −hl(xk).

If hl(xk) > 0, then there exists a t6 > 0 such that hl(xk + td) − hl(xk) < 0
for all t ∈ ]0, t6], resulting in hl(xk + td) < hl(xk). We may further assume,
without loss of generality, that t6 is such that hl(xk+ td) ≥ 0 for all t ∈ ]0, t6],
resulting in |hl(xk + td)| < |hl(xk)| for all t ∈ ]0, t6]. If hl(xk) < 0, then
there exists a t7 > 0 such that hl(xk + td) − hl(xk) > 0 for all t ∈ ]0, t7],
resulting in hl(xk + td) > hl(xk). We may further assume, without loss of
generality, that t7 is such that hl(xk + td) ≤ 0 for all t ∈ ]0, t7], which results
in |hl(xk + td)| < |hl(xk)| for all t ∈ ]0, t7].
Finally, if hl(xk) = 0, then

lim
t→0

hl(xk + td)

t
= 0,

and for all ε > 0 there exists t8 > 0 such that |hl(xk+td)| < ε for all t ∈ ]0, t8],
resulting in |hl(xk + td)| − |hl(xk)| < ε for all t ∈ ]0, t8].

By considering all cases above and taking t0 = min{t1, t2, t3, t4, t5, t6, t7, t8}, the result
follows.

The computation of a particular search direction that satisfies conditions (2.2) is
described in the next section.

By taking each point in X and computing, for each individual objective function,
a search direction d that locally improves this point with respect to that objective, we
can update the set X by all newly computed nondominated points; i.e., the set X is
enriched with new nondominated points. It is easy to see that this procedure is indeed
a heuristic to spread feasible points along the Pareto front, instead of allowing the
set X to cover a small part of the front only: let xk and xk + td be feasible for (1.1),
let xk be nonstationary for the ith objective function, and let t ∈]0, t̄]. Then we have
from (2.2d) that ‖f(xk) − f(xk + td)‖ ≥ −μt∇fi(xk)

T d > 0, i.e., as long as xk + td
is not dominated by any other point in the set X , the vector f(xk + td) is not close
to f(xk), and in this sense the spread of the set X is improved.
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2.3. Driving a nondominated set of points to local Pareto optimality.
The previous section provided us with a strategy to enrich a given set X with new
nondominated points. However, there is of course no guarantee that after this en-
richment the set X is formed of Pareto points only. While the search direction d
considered in the previous section is a sufficient descent direction for at least one ob-
jective function, there is no control over what happens with the remaining objective
function values. In order to drive a point x ∈ X to Pareto optimality we now need to
compute a search direction d that satisfies the following conditions.

There exists an i0 such that

(2.4a) ∇fi0(xk)
T d < 0,

(2.4b) ∇fi(xk)
T d ≤ 0, i ∈ {1, . . . ,m} \ {i0},

(2.4c) gj(xk) +∇gj(xk)
T d ≤ 0, j = 1, . . . , p,

(2.4d) hl(xk) +∇hl(xk)
Td = 0, l = 1, . . . , q,

and there exists an t̄ such that for all t ∈ ]0, t̄ ],

(2.4e) φ(xk + td, σ) ≤ φ(xk, σ) + μtφ′(xk, σ; d)

with some μ ∈ ]0, 1[ and some σ > 0.

Theorem 2.6. Given xk ∈ X and a descent direction d satisfying equations (2.4),
define w ∈ Rm by

wi :=

{
1 : ∇fi(xk)

Td = 0,
0 : otherwise

(i = 1, . . . ,m), and r̄ ∈ Rm+p+q by r̄ := (wT , aT , bT )T , with a, b defined as in Theorem
2.5. Then for all ε > 0 there exists a t0 > 0 such that

(2.5) f̄(xk + td) �f̄ f̄(xk) + εr̄ ∀t ∈ ]0, t0].

Proof. The proof is similar to that of Theorem 2.5. Equation (2.4a) results in
fi0(xk+ td) < fi0(xk). Equations (2.4c) and (2.4d) result in Φ(xk)−Φ(xk+ td)+ εr ∈
Rp+q

+ . From (2.4b) we obtain that for i = {1, . . . ,m} \ {i0},

lim
t→0

fi(xk + td)− fi(xk)

t
= ∇fi(xk)

Td ≤ 0.

If ∇fi(xk)
T d < 0, then there exists a t9 > 0 such that

fi(xk + td) < fi(xk) ∀t ∈ ]0, t9].

But if ∇fi(xk)
T d = 0, then for all ε > 0 there exists a t10 > 0 such that

|fi(xk + td)− fi(xk)| ≤ ε ⇒ fi(xk + td)− fi(xk) ≤ ε,

and the proof follows.

A particular technique to compute the search direction d that satisfies equa-
tions (2.4) is described in the next section.
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3. The search directions. There are several possibilities to obtain a search di-
rection with properties described in equations (2.2) and (2.4). The strategy described
herein consists in using quadratic approximations to the objective functions and linear
approximations to the equality and inequality constraints, as in an SQP method.

A search direction in equations (2.2) with respect to the ith objective function
can be obtained by solving the following quadratic optimization problem:

min
d∈Rn

∇fT
i (xk)d+

1

2
dTHid

subject to (s.t.) gj(xk) +∇gj(xk)
T d ≤ 0, j = 1, . . . , p,

hl(xk) +∇hl(xk)
Td = 0, l = 1, . . . , q,

(3.1)

where Hi is a symmetric positive definite matrix.
The following results relate problem (3.1) to the search direction (2.2) and the

merit function in use. Note that item 5 of the theorem below, showing that the solution
of the quadratic program above is a direction of descent for the merit function φi, is
a direct consequence of known results for SQP methods.

Lemma 3.1. For each i = 1, . . . ,m, let d̄ be an optimal solution to problem (3.1).
Then d̄ satisfies the following conditions:

1. If xk is feasible for problem (1.1), then ∇fi(xk)
T d̄ ≤ 0.

2. Let xk be infeasible for problem (1.1), and let r be defined as in Theorem 2.5.
Then for all ε > 0 there exists a t̄ > 0 such that Φ(xk)−Φ(xk+td̄)+εr ∈ Rp+q

+

for all t ∈ ]0, t̄ ].
3. Let d̄ �= 0, let r be defined as in Theorem 2.5, and define r̂ ∈ Rm+p+q by

r̂ := (0Tm, rT )T , with 0m = (0, . . . , 0)T ∈ Rm. Then for all ε > 0 there exists
a t̄ such that

f̄(xk) ⊀f̄ f̄(xk + td̄)− εr̂ ∀t ∈ ]0, t̄ ].

4. If d̄ = 0, then xk is feasible for (1.1) and there does not exist a d feasible
for (3.1) such that ∇fi(xk)

T d < 0; i.e., no further improvement for the
objective function fi is possible along feasible directions.

5. If d �= 0, then there exists a t̄ such that for all t ∈ [0, t̄ ] and σ > 0 sufficiently
large, we have

φi(xk + td, σ) ≤ φi(xk, σ) + μφ′
i(xk, σ; d)

for all μ ∈ ]0, 1[.

Proof.
1. This result follows by noting that if xk is feasible to problem (1.1), then d = 0

is a feasible point for problem (3.1), and∇fi(xk)
T d̄ ≤ ∇fi(xk)

T d̄+ 1
2 d̄

THid̄ ≤
∇fi(xk)

T d+ 1
2d

THid = 0, since Hi is a positive definite matrix.
2. If xk is infeasible to problem (1.1), then there exists a j or a l such that

gj(xk) > 0 or hl(xk) �= 0. By using a similar reasoning to that in the proof of
Theorem 2.5, it follows that for all ε > 0 there exists a t̄ such that gj(xk+td̄) <
gj(xk) or |hl(xk + td̄)| < |hl(xk)| for all t ∈ ]0, t̄ ].

3. The result follows from item 1, item 2, and Theorem 2.5 as follows. If d̄ �= 0
and xk is feasible for problem (1.1), then d̄THid̄ > 0, since Hi is positive
definite. Using item 1 results in ∇fi(xk)

T d̄ < 0; i.e., there exists a t̄ such
that f(xk+ td̄) < f(xk) for all t ∈ ]0, t̄ ]. The result follows by noting that the
case where d̄ �= 0 and xk is infeasible falls under the case described in item 2.
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4. Clearly, if d̄ = 0, then gj(xk) ≤ 0, j = 1, . . . , p, and hl(xk) = 0, l = 1, . . . , q,
and thus xk is feasible for problem (1.1). We show the remaining claim by
contradiction. Suppose that there exists a feasible d̃ such that∇fi(xk)

T d̃ < 0,
with d̃ �= 0. Then d̃ is such that gj(xk) + ∇gj(xk)

T d̃ ≤ 0 and hl(xk) +

∇hl(xk)
T d̃ = 0. Noting that xk is feasible for problem (1.1), we have that for

0 ≤ t ≤ 1 the vector td̃ is feasible for problem (3.1) and there exists a t̃ > 0
such that t̃ 12 d̃

THid̃ < −∇fi(xk)
T d̃, resulting in t̃

(
∇fi(xk)

T d̃+ t̃ 12 d̃
THid̃

)
< 0,

which contradicts d̄ = 0, since t̃d̃ is feasible and attains a smaller objective
function value.

5. By noting that problem (3.1) corresponds to the standard SQP step with
respect to the ith objective function (see [3, equation (17.2)]), the result
follows directly from Proposition 17.1 in [3]. Note also that d �= 0 implies the
noncriticality of xk, Hi is symmetric positive definite by construction, and
by σ large enough we mean that σ is no smaller than the absolute value of
the largest Lagrange multiplier associated with the problem of minimizing fi
over Ω.

Consider now the following optimization problem:

min
x∈Rn

m∑
i=1

fi(x)

s.t. gj(x) ≤ 0, j = 1, . . . , p,

hl(x) = 0, l = 1, . . . , q.

(3.2)

For a given feasible point xk, a direction v fulfilling (2.4) can be obtained by
considering the SQP problem to (3.2),

min
v∈Rn

m∑
i=1

∇fi(xk)
T v +

1

2
vTHiv

s.t. gj(xk) +∇gj(xk)
T v ≤ 0, j = 1, . . . , p,

hl(xk) +∇hl(xk)
T v = 0, l = 1, . . . , q,

(3.3)

where Hi are symmetric positive definite matrices.
In a certain sense, problem (3.3) tries the simultaneous minimization of quadratic

approximation to all objective functions, while feasibility is maintained. Some prop-
erties of solutions v̄ to problem (3.3) are addressed in the following lemma. Let
ϑi(v) = ∇fi(xk)

T v + (1/2)vTHiv, ϑ̄i ≡ ϑ̄i(v̄), i = 1, . . . ,m, and ϑ̄ =
∑m

i=1 ϑ̄i.

Lemma 3.2. Let v̄ be a solution to problem (3.3). Then the following assertions
hold:

1. If xk is feasible to problem (1.1), then ϑ̄ ≤ 0.
2. Let xk be infeasible for problem (1.1), and define r ∈ Rp+q as in Theorem 2.5.

Then for every ε > 0 there exists a t̄ > 0 such that Φ(xk)−Φ(xk + tv̄) + εr ∈
Rp+q

+ for all t ∈ ]0, t̄ ].
3. Let v̄ �= 0, let r be defined as in Theorem 2.5, and define r̂ ∈ Rm+pq+q by

r̂ := (0Tm, rT )T , with 0m = (0, . . . , 0)T ∈ Rm. Then for all ε > 0 there exists
a t̄ such that

f̄(xk) ⊀f̄ f̄(xk + tv̄)− εr̂

for all t ∈ ]0, t̄ ].
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4. Let r̂ ∈ Rm+p+q be defined as above. If v̄ �= 0 and xk is feasible for prob-
lem (1.1), then for all ε > 0 there exists a t̄ such that

f̄(xk + tv̄)− εr̂ �f̄ f̄(xk)

for all t ∈ ]0, t̄ ].
5. If v̄ = 0, then xk is feasible for problem (1.1) and there does not exist a

v ∈ L(x) such that ∇fi(xk)
T v < 0, i = 1, . . . ,m; i.e., xk is Pareto critical.

6. If v̄ �= 0, then there exists a t̄ such that for all t ∈ ]0, t̄ ] and all σ > 0
sufficiently large, we have

φ(xk + td, σ) ≤ φ(xk, σ) + μtφ′(xk, σ; v̄)

for all μ ∈ ]0, 1[.

Proof.
1. If xk is feasible for problem (1.1), then (v̄, ϑ̄) = 0 is feasible for problem (3.3).

Since we are minimizing the sum of all ϑi, i = 1, . . . ,m, the result follows.
2. This item follows by using the same reasoning as in item 2 of the proof of

Lemma 3.1 and taking v̄ as d̄.
3. This item follows by using a reasoning similar to that of item 3 of the proof of

Lemma 3.1. More precisely, if v̄ �= 0 and xk is feasible for problem (1.1), then
∇fi(xk)

T v̄ + 1
2 v̄

THiv̄ ≤ 0, i = 1, . . . ,m, and, since Hi is positive definite, we
have ∇fi(xk)

T v̄ < 0, i = 1, . . . ,m, resulting in the existence of a t̄ such that
fi(xk+ tv̄) < fi(xk), i = 1, . . . ,m, for all t ∈ ]0, t̄ ]. Noting that the case when
xk is infeasible for problem (1.1) is the case discussed in item 2, the result
follows.

4. From the previous item we have that if v̄ �= 0 and xk is feasible for prob-
lem (1.1), then there exists a t1 > 0 such that fi(xk + tv̄) < fi(xk), i =
1, . . . ,m, for all t ∈ ]0, t1]. Noting that for all ε > 0 there exists a t2 > 0
such that Φ(xk + tv̄) − ε ≤ 0 for all t ∈ ]0, t2], the result follows by taking
t̄ = min{t1, t2}.

5. If v̄ = 0, then we have that gj(xk) ≤ 0, j = 1, . . . , p, and hl(xk) = 0,
l = 1, . . . , p, i.e., xk is feasible for problem (1.1). Clearly, v̄ = 0 results in
ϑ̄i = 0, i = 1, . . . ,m. The remaining claim is shown by contradiction. Suppose
that there exists a feasible ṽ such that ∇fi(xk)

T ṽ < 0 for at least one i ∈
{1, . . . ,m}. Then we have that for 0 ≤ t ≤ 1, the vector tṽ is also feasible for
problem (3.3). Thus, there exists a t̃ > 0 such that t̃ 12 ṽ

THiṽ < −∇fi(xk)
T ṽ,

resulting in t̃
(
∇fi(xk)

T ṽ + t̃ 12 ṽ
THiṽ

)
< 0. The contradiction results from

noting that there exists a ϑ̃i such that ∇fi(xk)
T t̃ṽ + 1

2 t̃ṽ
THi t̃ṽ ≤ ϑ̃i < 0,

i.e., t̃ṽ is feasible and attains a lower objective function value than v̄. Pareto
criticality arrives from the fact that there is no feasible search direction that
can locally improve at least one objective function without increasing other
objective function values.

6. Using the same reasoning as in Lemma 3.1, item 5, we arrive at

φ′(xk, σ; v̄) < 0

from Proposition 17.1 in [3], and the result follows immediately.

4. A multiobjective SQP-type algorithm. In this section we present the full
algorithm that takes advantage of the previous described techniques for spreading and
improving a given set of nondominated points.
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Since the algorithm deals, iteratively, with a set of points Xk (k = 0, 1, 2, . . .),
a point xk ∈ Xk is labeled as stopped when no further progress is possible for xk.
This is the case when xk has already been used to compute new candidate points and
has reached criticality, or further progress towards optimality is no longer possible.
Details are found in the algorithm below.

The solution of problem (3.2) is a Pareto critical point, as can be shown by taking
wi = 1, i = 1, . . . ,m, in Theorem 2.3. However, performing SQP steps using points in
Xk as initial guesses may destroy the spread already obtained in the previous stage,
especially in cases where problem (3.2) has, e.g., a unique solution. To overcome this
issue, we introduce a reference point x̂k for each point in the set Xk and consider the
following optimization problem:

min
x∈Rn

m∑
i=1

fi(x)

s.t. fi(x) ≤ fi(x̂k), i = 1, . . . ,m,

gj(x) ≤ 0, j = 1, . . . , p,

hl(x) = 0, l = 1, . . . , q.

(4.1)

Vectors f(x̂k) can be seen as worst case acceptable outcomes of the optimization
problem considered, while the problem itself drives towards Pareto optimality via its
objective

∑m
i=1 fi(x). The SQP problem of (4.1) at an arbitrary point xk is

min
v∈Rn

m∑
i=1

∇fi(xk)
T v +

1

2
vTHiv

s.t. fi(xk)− fi(x̂k) +∇fi(xk)
T v ≤ 0, i = 1, . . . ,m,

gj(xk) +∇gj(xk)
T v ≤ 0, j = 1, . . . , p,

hl(xk) +∇hl(xk)
T v = 0, l = 1, . . . , q.

(4.2)

Proposition 4.1. Let v̄ be a solution to (4.2); then item 1 and items 3–6 of
Lemma 3.2 hold for v̄.

As mentioned in the introduction, our algorithm improves several different points
xk ∈ Xk in a parallel fashion. In what follows, we will use the notation σ(xk) to
indicate that we use different penalty parameters for different points xk. Computing
a σ̄ > 0 such that φ′(x, σ; d) < 0 for all σ ≥ σ̄ is somewhat nontrivial: typically, σ̄
has to be larger than the largest absolute Lagrange multiplier’s absolute value. There
exist several strategies to compute such σ(xk) (see, e.g., [3, 18]), but below we have
chosen to keep our algorithm as general as possible by not specifying details on how
to compute such values.

We are now able to describe our full algorithm.

Algorithm 4.1 (multiobjective SQP method).
1. Initialization. Define μ ∈ ]0, 1/2[ and β ∈ ]0, 1[. Set k = 0.
2. First stage (Initialization)

Choose a nonempty, finite set of points X0 ⊂ Rn. Let n̄ be the number of
points in X0. Consider all point in X0 as nonstopped.

3. Second stage (Spread)
Perform a finite number of iterations on the set Xk as follows.
(a) Set T = ∅.

For each point xk ∈ Xk not stopped do
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i. For each i = 1, . . . ,m do
A. Compute the search direction d̄ that corresponds to an SQP step

for objective function i by solving the quadratic problem (3.1).
B. If ‖d̄‖ is small, go to step 3aiG.
C. Compute σ(xk).
D. Find the largest α ∈ {1, β, β2, . . . } such that we have

φi(xk + αd̄, σ(xk)) ≤ φi(xk, σ(xk)) + μαφ′
i(xk, σ(xk); d̄).

E. If α is small, go to step 3aiG.
F. Set T = T

⋃
{xk + αd̄}.

G. Continue with the next i.
ii. Set xk as a stopped point. Continue with the next point in Xk.

(b) Set all points in T as nonstopped points and Xk+1 as the set of nondom-
inated points in Xk

⋃
T . Set k = k + 1. Continue with step 3a if the

prespecified finite number of iterations has not been reached.
4. Third stage (Optimality—refining stage)

Set all points in Xk as nonstopped.
For each point xk ∈ Xk, set x̂k := xk as the reference point to be considered
for problems (4.1).
While not all points in Xk are stopped do:
(a) For all nonstopped points xk ∈ Xk do

i. Compute v̄ by solving the optimization problem (4.2).
ii. If ‖v̄‖ is small, then set xk as stopped and go to step 4avii.
iii. Compute σ(xk).
iv. Find the largest α ∈ {1, β, β2, . . . } element such that

φ(xk + αv̄, σ(xk)) ≤ φ(xk, σ(xk)) + μαφ′(xk, σ(xk); v̄).

v. If α is small, set the point xk as a stopped point and go to step 4avii.
vi. Replace xk by xk + αv̄ in the set Xk.
vii. Continue with the next point in Xk.

(b) Set Xk+1 as the set of all nondominated points in Xk. Set k = k + 1.
Continue with step 4a.

Phase 2, the initialization stage, is entirely concerned with providing some initial
guesses for Pareto points in the set X0. We provide details for a generic procedure
for providing such guesses in our section on implementation details. Obviously, a user
can use domain-specific knowledge to provide such guesses.

Note that in the spread stage the algorithm computes a set of points Xk such that
the set of images {f(x) | x ∈ Xk} is spread along the Pareto front. The “spread” does
not try to construct a converging sequence of points, as this task is solely referred to
as the third stage.

5. Convergence. Lemmas 3.1 and 3.2 provide further justification for our choices
of stopping criteria (small ‖d̄‖ and small ‖v̄‖, or small α) in the second and third stages
of Algorithm 4.1.

Algorithm 4.1 first solves a finite number of single-objective optimization prob-
lems in the first stage and then performs a finite number of iterations in the second
stage. We have then computed a set Xk of nondominated points that are used as
initial guesses for the third stage. Step 4 is coupled with a strategy to address some
numerical difficulties that can arise in computing the search direction for the next
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iterate. Nondominated points will be saved in the set Xk+1. Step 4 can be considered
as a standard SQP algorithm applied to individual points in the set Xk. Convergence
results follow immediately by considering an SQP framework as described in [3]. We
provide details in what follows.

Step 4 of Algorithm 4.1 can be described as follows. For each given xk ∈ Xk,
problem (4.2) is considered, and iterations of an SQP-type method for this problem
are carried out, with xk as a starting point.

Denote by (x
(ζ)
k )ζ the sequence of points thus generated (ζ = 0, 1, 2, . . .) with

x
(0)
k = xk. The corresponding subproblems, solved in each step, are of the form

min
v∈Rn

m∑
i=1

∇fi(x
(ζ)
k )T v +

1

2
vTH

(ζ)
k v

s.t. fi(x
(ζ))− fi(x̂k) +∇fi(x

(ζ)
k )T v ≤ 0, i = 1, . . . ,m,

gj(x
(ζ)
k ) +∇gj(x

(ζ)
k )T v ≤ 0, j = 1, . . . , p,

hl(x
(ζ)
k ) +∇hl(x

(ζ)
k )T v = 0, l = 1, . . . , q.

(5.1)

The theorem below provides a justification for this strategy.

Theorem 5.1. The following hold:
1. Let x∗ be a (global) minimum of (4.1). Then x∗ is a (global) Pareto point of

problem (1.1).
2. Let x∗ be a KKT point of problem (4.1). Then x∗ is a Pareto critical point.

Proof.
1. This follows directly from Theorem 2.21 of [15].
2. Let λ, μ, ν be relevant Lagrange multipliers, i.e., λ, μ ≥ 0 and

m∑
i=1

∇fi(x∗) +
m∑
i=1

λi∇fi(x∗) +
p∑

j=1

μj∇gj(x∗) +
q∑

l=1

νl∇hl(x∗) = 0.

Define w ∈ Rm
++ by wi := 1+λi > 0. Then x∗ is a KKT point for the problem

of optimizing
∑m

i=1 wifi over Ω, and the result follows with Theorem 2.3.

As long as a point x
(ζ)
k is not dominated by another feasible point, it is included in

the next set Xk+1. While not strictly necessary, this helps excluding points converging
to local but not global Pareto optima.

Step 4 deals simultaneously with several SQP steps induced by the possible many
points in the set Xk. Since the number of iterations performed for each point xk

may differ, we consider points to be stopped whenever optimality or a sufficient good
approximation is obtained. Therefore, step 4 either generates a finite number of
iterations, proving a set of approximate Pareto critical points, or it generates an
infinite number of iterations, constructing at least one infinite sequence of points,
whose convergence is now analyzed. Convergence analysis may concentrate on the

single sequence of points (x
(ζ)
k )ζ generated for each point in Xk.

The main convergence result follows readily from standard convergence results in

the theory of SQP methods: let (x
(ζ)
k )ζ be an arbitrary infinite sequence of points

generated in step 4.

Theorem 5.2. Consider some xk ∈ Xk and the sequence (x
(ζ)
k )ζ (ζ = 0, 1, 2, . . .)

generated in step 4 of Algorithm 4.1 with x
(0)
k = xk. Suppose the following assumptions

hold:
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1. The functions f, g, h are twice continuously differentiable on Rn.
2. The update rule for σζ(xk) fulfils the following conditions:

(a) Let 
(ζ)
k = (λ

(ζ)
k , μ

(ζ)
k , ν

(ζ)
k ) be an optimal Lagrange multiplier for problem

(5.1), and let σ̄k > 0 be a constant. Let σζ(xk) ≥ ‖(ζ)k ‖ + σ̄k hold for
all ζ.

(b) There exists an index ζ̄ such that if ζ ≥ ζ̄ and σζ−1(xk) ≥ ‖(ζ)k ‖ + σ̄k,
then σζ(xk) = σζ−1(xk).

(c) If the sequence (σζ(xk))ζ is bounded, then σζ(xk) is modified finitely
often.

3. The problems (5.1) are feasible for all ζ.

4. The matrices H
(ζ)
k are positive definite for all ζ, and the sequences (H

(ζ)
k )ζ

and ((H
(ζ)
k )−1)ζ are bounded.

Then one of the following holds:
1. The sequence (σζ(xk))ζ is unbounded. In this case, the corresponding sequence

of Lagrange multipliers (
(ζ)
k )ζ is also unbounded.

2. There exists an index ζ̄ such that for ζ ≥ ζ̄ we have σζ(xk) =: σk constant.
In this case, one of the following holds:

(a) limζ→+∞ φ(x
(ζ)
k , σk) = −∞.

(b) Every cluster point of the sequence (x
(ζ)
k )ζ is a Pareto critical point.

Proof. The assumptions allow one to invoke Theorem 17.2 of [3], by which one of
the following holds:

1. limζ→+∞ φ(x
(ζ)
k , σk) = −∞.

2. The distance between x
(ζ)
k and the set of nondifferentiable points of the prob-

lem functions f , g, h converges to zero.
3. Let Lk be the Lagrangian of problem (4.1), and recall Φ(x) = (g+(x), |h(x)|).

Then limζ→+∞ ∇xLk(x
(ζ)
k , 

(ζ)
k ) = 0, limζ→+∞ Φ(x

(ζ)
k ) = 0, and

lim
ζ→+∞

max{0, fi(x(ζ)
k )− fi(xk)} = 0 (i = 1, . . . ,m).

Moreover, if μ
(ζ,j)
k denotes the Lagrange multiplier to the constraint gj(x

(ζ)
k )+

∇gj(x
(ζ)
k )T v ≤ 0 in (5.1) and ν

(ζ,�)
k denotes the Lagrange multiplier to the

constraint hl(x
(ζ)
k ) +∇hl(x

(ζ)
k )T v = 0 in (5.1), then

lim
ζ→∞

μ
(ζ,j)
k gj(x

(ζ)
k ) = 0 and lim

ζ→∞
ν
(ζ,�)
k h�(x

(ζ)
k ) = 0.

The second assertion cannot hold, as we have assumed that f , g, h are sufficiently

smooth everywhere. The third assertion means that every cluster point of (x
(ζ)
k )ζ is

a KKT point of problem (4.1). The result then follows with Theorem 5.1.

Note that an update rule for σζ(xk) fulfilling the conditions of the theorem is easy
to implement; see, e.g., [18] for details.

The last stage of the proposed algorithm can be seen as a mechanism akin to a
multistart procedure, using all the points available in the set Xk at the end of the
spread stage. For the nonconvex case we can also expect convergence to local Pareto
points or merely Pareto critical points of problem (4.1), and not to global Pareto
points. Recall also that Algorithm 4.1 is not described as a primal-dual method in the
sense that we do not address the computation of any Lagrange multipliers. However,
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it is straightforward to include such a mechanism and thus to implement a strategy
to properly handle the penalty parameter σ. Estimates of Lagrange multipliers are
available from problems (3.1) and (4.2), and a possible strategy for updating the merit
function parameter σ based on estimates of Lagrange multipliers is described in [3,
p. 294].

6. Implementation details. A prototype implementation of Algorithm 4.1 is
available in MATLAB [17] from http://www.norg.uminho.pt/aivaz/mosqp. The im-
plementation is able to address both constrained and unconstrained optimization
problems. While the purpose of our contribution is to provide a solver for nonlinearly
constrained multiobjective optimization problems, we also report numerical results
for simple bound constrained problems separately.

In our implementation, we use the fmincon MATLAB solver for nonlinear con-
strained optimization problems for solving the subproblems described in (6.1) and fea-
sibility restoration, which is described below. Since the subproblems (4.2) and (3.1)
are quadratic optimization problems, quadprog is the MATLAB solver of choice. Fur-
thermore, exitflag is used to decide whether a corresponding subproblem has been
solved successfully or not and when to enter a feasibility restoration procedure.

The first stage (Initialization) is entirely concerned with providing an initial set
of points for the overall procedure. Our implementation allows users to provide an
initial set of points that are used to initialize the set X0. Since the set X0 is a
set of nondominated points, some user-provided points might be discarded in the
initialization procedure. We provide two strategies to initialize the remaining points
for problems with −∞ < �i, ui < +∞, i = 1, . . . , n. The line strategy initializes
the remaining points by considering the line segment between � and u, i.e., points of
the form xi = � + iu−�

2n̄ , i = 1, . . . , 2n̄. The rand strategy initializes the remaining
point using a uniform random distribution on each of intervals [�i, ui], i = 1, . . . , n,
generating at most 2n̄ random points. Additionally, our implementation computes all
the “extreme” Pareto front points by solving the following single-objective problems
for each i = 1, . . . ,m:

(x∗)i ∈ arg min
x∈Rn

fi(x)

s.t. gj(x) ≤ 0, j = 1, . . . , p,

hl(x) = 0, l = 1, . . . , q.

(6.1)

The second stage of Algorithm 4.1 is performed for a maximum of 20 iterations
or until all points in the set Xk are considered to be stopped. Points in Xk are
declared as stopped if ‖d̄‖ or ‖v̄‖ is small, as justified by Lemmas 3.1 and 3.2. In
our implementation, we use a tolerance parameter τ ∈ ]0, 1[ and check for ‖d̄‖ < 4

√
τ ,

α <
√
τ , and ‖v̄‖ < τ , respectively, as each stage has it own purpose: the second

stage to obtain points that are spread over the Pareto front and the third stage to
obtain Pareto critical points. This approach seems to work well on the set of problems
considered. A value of τ = 10−5 has been used for our numerical tests.

The second stage in Algorithm 4.1 computes a new set of nondominated points T .
The updated set Xk+1 can grow to (m + 1)n̄ points (n̄ points already in Xk and an
additional mn̄ new points). However, in order to keep the set Xk at a reasonable size,
one should consider a Cleanup procedure whenever the cardinality of Xk reaches a
certain upper bound. Cleanup consists in the computation of the crowding distance [8]
for each point and the removal of the 10 points with the smallest crowding distances.
The crowding distance provides an estimate of the density of solutions surrounding a

http://www.norg.uminho.pt/aivaz/mosqp
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given point, taking the average distance of the two closest neighboring points. Points
with a small crowding distance are positioned in a crowded region and are good
candidates to be eliminated from the set under consideration. In our implementation,
Cleanup is performed whenever the cardinality of Xk reaches n̄+ 1.

For the single-objective problems in (6.1) we consider the starting point x0. If
the constraints include bound constraints of the form −∞ < �i ≤ xi ≤ ui < +∞,
then (x0)i := (ui + �i)/2. If the constraints include a lower bound −∞ < �i ≤ xi but
no upper bound on xi, then (x0)i := �i. Likewise, if the constraints include an upper
bound xi ≤ ui < +∞ but no lower bound on xi, then (x0)i := ui. In all other cases,
set (x0)i := 0.

We consider d = 0 and (v, ϑ) = 0 as the initial guesses for subproblems (3.3)
and (3.1), while xk is used as an initial guess for the feasibility restoration problem.

Regarding the quadratic approximations to the objective functions, we consider
three cases. In the first case we simply consider Hi = Im, i = 1, . . . ,m, in both stages
of the algorithm, where Im is the identity matrix of dimension m. The second case
uses Hi = ∇2fi(xk) + Ei in both stages of the algorithm, where Ei is obtained by a
modified Cholesky algorithm as proposed in [12, 21]. The matrix Ei is diagonal and
ensures that Hi is positive definite; note that Ei = 0 if ∇2fi(xk) is already positive
definite. Finally, the last case uses Hi = Im in the second stage of the algorithm and
Hi = ∇2fi(xk) + Ei as in the second case for the third stage.

Note that the quadratic problems (3.1) and (4.2) may fail to provide us with a
direction of sufficient decrease, and a robust implementation of our algorithm needs
to deal with possible failures after steps 3aiA and 4ai. As such, after step 3aiA, if
problem (3.1) has no feasible solution, we enter a feasibility restoration procedure.
If the restoration procedure obtains a point x̄k feasible for (3.1), then we set T =
T
⋃
{x̄k}. Otherwise, problem (3.1) has no feasible solution, a feasible x̄k was not

obtained, or numerical difficulties prevent us from solving problem (3.1). In any of
these cases we proceed to step 3aiG. Likewise, after step 4ai, if problem (4.2) has
no feasible solution, we also enter a feasibility restoration procedure. If a feasible
point x̄k is found during such a restoration procedure, we replace xk by x̄k. Otherwise,
problem (4.2) has no feasible solution, a feasible x̄k was not obtained, or numerical
difficulties prevent us from solving problem (4.2). We then set xk as a stopped point.
In both cases we proceed to step 4avii.

A typical restoration procedure consists in the minimization of an infeasibility
measure, for example the sum of the violated inequality constraints at the current
point, plus the sum of squares of the violated equality constraints, plus a regular-
ization term. Further numerical difficulties may also arise in solving this nonlinear
optimization problem. In that case, we consider the current point as stopped. While
other more complex restoration procedures could be considered, we chose to include
this simple procedure before giving up on the current point to provide progress to the
algorithm. See [23] for a discussion of a more complex restoration procedure.

7. Numerical results. In this section we report on the numerical results of
our implementation. We use a set of multiobjective test problems collected from the
literature and modeled in AMPL [2]. AMPL allows us to obtain, through automatic
differentiation, first and second derivatives for objectives and constraints (although
second derivatives of the constraints are not used in our implementation). Approx-
imations to Pareto fronts computed are used to compare performance with other
solvers via performance profiles and data profiles. In the next subsection we describe
test problems used as well as the performance profiles by which we will ascertain the
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Table 1

Bound constrained multiobjective problems.

Problem m n Problem m n Problem m n Problem m n
BK1 2 2 DTLZ3 3 12 Jin4 a 2 2 MOP6 2 2
CEC09 1 2 30 DTLZ3n2 2 2 KW2 2 2 MOP7 3 2
CEC09 10 3 30 DTLZ4 3 12 lovison1 2 2 SK1 2 1
CEC09 2 2 15 DTLZ4n2 2 2 lovison2 2 2 SK2 2 4
CEC09 3 2 30 DTLZ5 a 3 12 lovison3 2 2 SP1 2 2
CEC09 7 2 30 DTLZ5n2 a 2 2 lovison4 2 2 SSFYY1 2 2
CEC09 8 3 30 DTLZ6 3 22 lovison5 3 3 SSFYY2 2 1
CL1 2 4 DTLZ6n2 2 2 lovison6 3 3 TKLY1 2 4
Deb41 2 2 ex005 2 2 LRS1 2 2 VFM1 3 2
Deb513 2 2 Far1 2 2 MHHM1 3 1 VU1 2 2
Deb521a a 2 2 Fonseca 2 2 MHHM2 3 2 VU2 2 2
Deb521b 2 2 GE2 2 40 MLF1 2 1 ZDT1 2 30
DG01 2 1 GE5 3 3 MLF2 2 2 ZDT2 2 30
DG02 a 2 1 IKK1 3 2 MOP1 2 1 ZDT3 2 30
DTLZ1 3 7 IM1 2 2 MOP2 2 4 ZDT4 2 10
DTLZ1n2 2 2 Jin1 2 2 MOP3 2 2 ZDT6 a 2 10
DTLZ2 3 12 Jin2 a 2 2 MOP5 3 2 ZLT1 3 10
DTLZ2n2 2 2 Jin3 2 2

overall performance of the implementation. After that, we present numerical results
obtained on our set of test problems as well as on real-word applications.

7.1. Test problems and profiles.

7.1.1. Test problems. We consider those test problems available in [6] that
are sufficiently smooth. These problems are available by following the instructions
at http://www.mat.uc.pt/dms. We enrich the test problem database with further
test problems provided in [8, 11, 14, 24] as well as those available in the MacMOOP
database (http://wiki.mcs.anl.gov/leyffer/index.php/MacMOOP). The full test set
is presented in Table 1 for bound constrained problems, i.e., for problems where the
feasible set is Ω = {x ∈ Rn : � ≤ x ≤ u} for some � ∈ (R ∪ {−∞})n, u ∈ (R ∪ {∞})n,
and in Table 2 for nonlinearly constrained optimization problems. In both tables, m
is the number of objective functions, n is the number of variables, “Linear” is the
number of linear constraints, and “Nonlinear” is the number of nonlinear constraints.
We provide our full problem database at www.norg.uminho.pt/aivaz/mosqp.

The test set includes problems with both a convex and a nonconvex Pareto front.
About 50% of the unconstrained or simple bound constrained biobjective problems
have a convex Pareto front. Four biobjective problems with nonlinear constraints
exhibit a nonconvex Pareto front.

7.1.2. Performance profiles. We provide most of our numerical results in the
form of performance profiles. Performance profiles were first proposed for single-
objective optimization problems in [9] and later adapted to multiobjective optimiza-
tion in [6]. Performance profiles are defined by a cumulative function ρ(τ) presenting
a performance ratio with respect to a given metric for a given set of solvers. Given
a set of solvers SO and a set of problems P , let tp,s be the performance of solver s
on solving problem p. Usually, the metric tp,s is an algorithmic performance metric
like the number of iterations needed to attain a solution. The performance ratio is
then defined as rp,s := tp,s/mins̄∈SO tp,s̄. The cumulative function ρs(τ) (s ∈ SO) is
defined as the percentage of problems whose performance ratio is below or equal to τ ,
i.e., ρs(τ) := |{p ∈ P : rp,s ≤ τ}|/|P|. For a solver s, we can interpret ρs(τ) as the

http://www.mat.uc.pt/dms
http://wiki.mcs.anl.gov/leyffer/index.php/MacMOOP
www.norg.uminho.pt/aivaz/mosqp
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Table 2

Linear and nonlinearly constrained multiobjective problems.

Problem m n Linear Nonlinear Problem m n Linear Nonlinear
ABC comp 2 2 2 1 KW1 2 5 2 3
BNH 2 2 0 2 liswetm 2 7 5 0
CEC09 C10 3 10 0 1 MOLPg 001 3 8 8 0
CEC09 C3 2 10 0 1 MOLPg 002 3 12 13 0
CEC09 C9 3 10 0 1 MOLPg 003 3 10 12 0
ex001 2 5 2 3 MOQP 0001 3 20 10 0
ex002 2 5 0 4 MOQP 0002 3 20 9 0
ex003 2 2 0 2 MOQP 0003 3 20 10 0
ex004 2 2 2 0 OSY 2 6 4 2
GE1 2 2 0 1 SRN 2 2 1 1
GE3 2 2 0 2 TNK 2 2 0 2
GE4 3 3 0 1 WeldedBeam 2 4 1 3
hs05x 3 5 6 0

probability of the performance of s on an arbitrary problem to be within a factor of τ
of the best performance. We compare the values of ρs(1) for all solvers s ∈ SO when
looking for the most efficient solver, while we consider ρ(τ) for τ → ∞ to compare
solvers with respect to robustness, as the solver that attains a larger ρ(τ) for large τ
is the one able to solve a larger percentage of problems.

Multiobjective optimization problems pose a particular challenge to the notion of
performance profiles, as it is not a priori clear what an appropriate metric for quality
of solution is. In general, the output of a multiobjective optimization solver is a set
of points, and not just one point, and one of the tasks of the solver is to compute
a set of points serving as an approximation of the full Pareto set. Here we consider
the following metrics: the Purity metric [6], two spread metrics [6], and the popular
hypervolume metric [26].

Purity metric. Let Fp,s be the approximation to the Pareto front computed by
solver s for problem p. Let Fp be the approximation to the Pareto front obtained
by the union of all individual Pareto approximation, ∪s∈SFp,s, where all dominated
points are removed. Since the true Pareto front is not known for all problems in our
problems database, we consider Fp in place of the true Pareto front. We define the
purity metric as the number of points in Fp divided by the number of points solver s
is able to compute that are not dominated by any other point computed, i.e.,

tp,s =
|Fp|

|Fp,s ∩ Fp|
.

The purity metric measures the inverse of how many nondominated points a
solver is able to compute from the set of all nondominated points computed. In our
version of the metric, small values are better, as necessitated when using performance
profiles. In case |Fp,s ∩ Fp| = 0 we set tp,s := ∞, meaning that solver s was unable
to provide even a single nondominated point for problem p. See [6] for further details
and discussions.

Spread metrics. While the purity metric measures how well a solver is able to
compute nondominated points, the purity metric is unable to provide any information
about how points are spread over the Pareto front. In order to understand whether a
given solver is able to provide an approximation to the Pareto front whose points are
“well distributed,” we consider two additional metrics for our performance profiles.
Let the approximated Pareto front computed by solver s for problem p be formed
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of N points x1, . . . , xN , and let these points be sorted by objective function j, i.e.,
fj(xi) ≤ fj(xi+1) (i = 1, . . . , N). Furthermore, let x0 and xN+1 be the extreme values
for objective j; i.e., x0 is the best known approximation to a global minimum of fj ,
and xN+1 is the best known approximation to a global maximum of fj, computed
over all Pareto front approximations obtained. Define δi,j = |fj(xi+1)− fj(xi)|, and
let δ̄j (j = 1, . . . ,m) be the average of the distances δi,j . The Γ > 0 and Δ > 0
metrics are then defined as

Γp,s = max
j∈{1,...,m}

max
i∈{0,...,N}

δi,j

and

Δp,s = max
j∈{1,...,m}

(
δ0,j + δN,j +

∑N
i=1 |δi,j − δ̄j |

δ0,j + δN,j + (N − 1)δ̄j

)
.

Including x0 and xN+1 in the above is important, as f(x1) and f(xN ) may be close to
each other but far away from the true Pareto front extremes. This inclusion ensures
that the metric Γ is always well defined, while Δ is not defined in the case N = 1,
x0 = x1 = xN+1.

While the Γ metric measures the largest gap in the Pareto front, the Δ metric
measures the scaled deviation from the average gap in the Pareto front. Further details
on these metrics are available in [6]. We set tp,s = Γp,s or tp,s = Δp,s depending on
the selected metric.

Hypervolume metric (S-metric). The hypervolume metric proposed in [26, 25]
corresponds to the volume of the dominated space, enclosed by the nondominated
points and the origin. A more detailed description is available in [4].

We use the code from ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c to
compute the hypervolume metric, and we have interfaced this code with MATLAB
for the performance profile generation.

Using the hypervolume as defined in [26] may result in an invalid value for the
metric, since the hypervolume measure is zero for a Pareto front formed by only one
point. The performance profile modification used in [22] was used to address this
possibility. This modification corresponds to defining tp,s := tp,s + 1 − mins̄∈SO tp,s̄
when mins̄∈SO tp,s̄ < 0.001 and leaving tp,s unchanged in all other cases.

7.1.3. Data profiles. Data profiles were originally proposed for derivative-free
single-objective optimization algorithms [19] and later extended to derivative-free mul-
tiobjective optimization algorithms in [6]. A data profile can be interpreted as a cu-
mulative distribution function ds(σ) that reports the percentage of problems solver s
is able to solve, given a budget of σ objective function evaluations. Since data profiles
allow us to discuss the computational resources an algorithm needs to solve a problem,
we describe further numerical results using this approach.

Formally, the data profile function is defined as follows:

ds(σ) =
|{p ∈ P : hp,s ≤ σ}|

|P| ,

where hp,s is the number of function and gradient evaluations needed to solve prob-
lem p by solver s.

A further issue in multiobjective optimization arises from the lack of a simple
definition for having solved a particular multiobjective optimization problem. Again,

ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c
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this stems from the fact that we have to approximate a whole set of points, and do
not just need to compute one point, as in single-objective optimization. As in [6], we
use the following notion. A solver s is said to have solved problem p with accuracy
ε if the following holds. Let Fp be a set of points that we consider as a high-quality
approximation of the Pareto front. In our numerical experiments, the set Fp is com-
puted by running the solver s for a limit of 5000 function evaluations, ignoring any
other stopping criteria. The solver s has then solved problem p with accuracy ε if

|Fp,s ∩ Fp|
|Fp|/|SO| ≥ 1− ε.

7.2. Numerical results. As described in the last subsection, we present our
numerical results in the form of performance and data profiles. We compare our
implementation with the NSGA II solver [8] (C version 1.1) for all test problems and
with a classical scalarization approach for biobjective test problems. A population of
100 points was used for NSGA II. To generate the corresponding performance profiles
for this solver, we used 200 generations, corresponding to a total of 20,000 objective
and constraint function evaluations, since objectives and constraints are evaluated
for each point in each generation. Each objective function evaluation corresponds
to an evaluation of the vector function f , and each constraint function evaluation
corresponds to an evaluation of all the linear and nonlinear constraint functions.

Further, a scalarization approach for biobjective optimization was implemented in
MATLAB, allowing us to compare our implementation against a widely used deriva-
tive based approach. For this, we solve problems of the form

(7.1) min
x∈Ω

wf1(x) + (1− w)f2(x)

for w = k/100, k = 1, . . . , 100, using fmincon for each of the problems (7.1). First and
second derivatives are provided to the solver through AMPL, although the selected
SQP algorithm within fmincon only uses first derivatives. We denote this solution
strategy by MOScalar. While this weighted-sum approach represents a rather elemen-
tary scalarization strategy, and more sophisticated methods exist, weighted-sum is
widely popular in practice and thus represents a baseline approach against which all
practical methods have to be compared.

Let us further denote solvers based on our proposed algorithm with the prefix
MOSQP. We consider six variations of our solver, which correspond to the combi-
nations of the initialization strategy and the selected Hi, as described above. For
example, MOSQP (H = ∇2f, rand) corresponds to the rand initialization strategy
where the true objective function Hessian is considered in both stages, while MOSQP

(H = (I,∇2f), line) corresponds to the line initialization strategy where the iden-
tity matrix is used in the second algorithmic stage and the true objective Hessian is
used in the third algorithmic stage. Since NSGA II is a stochastic algorithm and we
provide an implementation with a stochastic initialization, we have performed 10 runs
for each solver with a stochastic element, namely for NSGA II, MOSQP (H = I, rand),
MOSQP (H = ∇2f, rand), and MOSQP (H = (I,∇2f), rand). For each stochastic
solver we computed the best and worst Pareto fronts, i.e., the best Pareto front for
a given stochastic solver is the computed Pareto front that has the higher number of
nondominated points when compared with the approximated Pareto front Fp, while
the worst is the one with the smallest number of nondominated points when compared
with Fp.
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Fig. 1. Pareto fronts obtained with the MOSQP and MOScalar for problem CL1. Note that MOScalar
finds only one Pareto point here.

As such, we are considering a significant number of performance and data profiles.
To keep matters succinct, we will discuss in what follows only the most important
findings. The interested reader can access the full set of profiles and Pareto front
plots at the solver webpage http://www.norg.uminho.pt/aivaz/mosqp.

7.2.1. Approximate Pareto fronts. Before discussing the performance and
data profiles obtained, we set the stage by providing illuminating examples of Pareto
front approximations computed by the solvers considered. Pareto front approxima-
tions obtained by MOSQP (H = (I,∇2f), line) and MOScalar for the CL1 problem
are depicted in Figure 1. As can be clearly seen, MOSQP (H = (I,∇2f), line) is
able to capture the overall front well, while MOScalar finds only a single point. The
weighted-sum objective for problem CL1 is

200w(2x1 +
√
2x2 +

√
x3 + x4) + 10−2w

(
2

x1
+

2
√
2

x2
− 2

√
2

x3
+

2

x4

)

with constraints 1 ≤ x1, x4 ≤ 3 and
√
2 ≤ x2, x3 ≤ 3. For parameters w = k/100,

k = 1, . . . , 100, the optimal solution of all these parameterized problems is always
x = (1,

√
2,
√
2, 1). While this might appear to be a somewhat extreme example,

subsection 7.3 shows a real-world test case exhibiting exactly the same phenomenon;
see especially Figure 8. Further depictions of Pareto front approximations can be
found in subsection 7.3. As a final illustrative example, Figure 2 shows a case where
the MOSQP solver has difficulties in computing a good approximation to the Pareto
front for the given budget of iterations and function evaluations.

7.2.2. Solver performance. We discuss the performance of our approach in
three separate parts: the use of computational resources (number of function evalu-
ations), the quality of the approximation found (purity metric, spread metrics, and
hypervolume metric), and data profiles (number of problems solved per solver).

Computational resources. First we discuss the computational resources needed
by various solvers to solve multiobjective optimization problems. We measure the

http://www.norg.uminho.pt/aivaz/mosqp
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Fig. 2. Pareto fronts obtained with the MOSQP and MOScalar for problem CEC09 1. MOSQP has
difficulties computing a good approximation to the Pareto front.

Table 3

Number of objective function, gradient, and Hessian evaluations for the bound constrained test
set. Note that in our experiments, NSGA II always uses 20, 000 function evaluations but no gradient
or Hessian evaluations.

#f #∇f #∇2f

MOSQP version max Avg min max Avg min max Avg min

H = ∇2f , line 3639.5 643.7 207.0 1489.0 218.4 6.0 1483.0 209.8 2.0

H = I, line 3782.0 945.4 207.0 1544.0 266.7 6.0 0.0 0.0 0.0

H = (I,∇2f), line 3643.5 757.2 207.0 1163.5 249.3 6.0 1041.0 130.9 0.0

H = ∇2f , rand 4013.5 598.9 203.0 1309.0 157.5 3.0 1303.0 149.0 2.0

H = I, rand 12241.5 857.9 203.0 1578.0 235.5 3.0 0.0 0.0 0.0

H = (I,∇2f), rand 11564.0 712.5 203.0 1544.0 199.2 3.0 652.0 102.8 0.0

MOScalar 33568.0 3383.9 200.0 15383.0 1360.7 100.0 0.0 0.0 0.0

resources needed by objective and constraint function evaluations, as well as their
derivatives. Tables 3 and 4 present the maximum, average, and minimum numbers
of function evaluations (#f), the number of objective gradient function evaluations
(#∇f), the number of objective Hessian function evaluations (#∇2f), the number of
nonlinear constraint function evaluations (#c), and the number of nonlinear constraint
gradient evaluations (#∇c) that variants of MOSQP need on the bound constrained and
the linearly and nonlinearly constrained test sets, respectively. The same figures are
presented for the MOScalar solver, considering only biobjective optimization prob-
lems. We do not provide information on the number of linear constraint evaluations
performed, as the corresponding computational effort is negligible. Tables 3 and 4
show in each entry the number of function, gradient, and Hessian evaluations divided
by the number of objective functions, since the solvers report the number of individ-
ual objective function evaluations. Note that in our setting NSGA II always performs
20,000 function evaluations and 20,000 constraint evaluations on each problem. As
can be seen, all variants of MOSQP consistently outperform both MOScalar and NSGA

II.
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Table 4

Number of objective function, gradient, and Hessian evaluations for the linearly and nonlinearly
constrained test sets. Note that in our experiments, NSGA II always uses 20, 000 function evaluations
but no gradient or Hessian evaluations.

#f #∇f #∇2f

MOSQP version max Avg min max Avg min max Avg min

H = ∇2f , line 4013.0 1057.2 230.5 1641.5 351.6 23.5 1634.0 340.8 15.0

H = I, line 3962.0 1427.8 249.5 1826.5 472.4 29.5 0.0 0.0 0.0

H = (I,∇2f), line 3919.0 1281.2 245.5 1826.5 443.1 25.5 537.0 107.4 0.0

H = ∇2f , rand 4401.3 1009.8 224.5 1104.0 301.8 16.5 1073.0 291.0 8.0

H = I, rand 3823.0 1346.9 262.5 1629.5 458.5 27.5 0.0 0.0 0.0

H = (I,∇2f), rand 3745.0 1301.0 271.5 1639.5 436.7 30.5 427.0 100.1 0.0

MOScalar 49865.0 5316.9 600.0 15836.0 1813.5 300.0 0.0 0.0 0.0

#c #∇c

MOSQP version max Avg min max Avg min

H = ∇2f , line 4040.0 1160.8 0.0 1885.0 486.6 0.0

H = I, line 6751.0 1692.5 0.0 2803.0 614.0 0.0

H = (I,∇2f), line 6751.0 1528.3 0.0 2418.0 568.4 0.0

H = ∇2f , rand 9663.0 1108.3 0.0 2689.0 412.1 0.0

H = I, rand 14299.0 1553.9 0.0 5102.0 596.2 0.0

H = (I,∇2f), rand 16431.0 1555.7 0.0 5280.0 585.9 0.0

MOScalar 49865.0 5181.9 0.0 15836.0 1746.1 0.0

Quality metrics. Next, we turn our attention to the quality of solutions provided,
i.e., how good the set of points produced by various methods approximates the true
Pareto front, measured by the various metrics introduced above. All MOSQP solver
variations were able to perform well when compared with other approaches. Overall,
we found that MOSQP (H = (I,∇2f), line) provided the best performance, which
is the reason why in what follows we focus on comparing this variant against other
approaches.

Considering first classical scalarization techniques, we compare MOScalar against
MOSQP on biobjective optimization test problems. In terms of quality of solutions
provided, Figure 3 shows that MOSQP (H = (I,∇2f), line) outperforms MOScalar
robustness on biobjective problems with respect to the Purity metric while being
slightly outperformed with respect to efficiency on the same metric. The purity metric
is sensitive to the number of solvers considered in the profile, and only two solvers
should be compared with each other with this metric.

Next, we compare variants of MOSQP with NSGA II. We present in Figure 3 a
comparison between our implementation and NSGA II for all test problems from Ta-
bles 1 and 2, using the Purity metric in the performance profile. For the best NSGA
II run we conclude from Figure 3 that MOSQP (H = (I,∇2f), line) is able to solve
about 75% of the problems with the best metric, while NSGA II solves about 45%
of the problems with the best metric. Considering τ → ∞, we can further conclude
that MOSQP (H = (I,∇2f), line) is able to solve all problems, while NSGA II solves
about 90% of the problems given. Note also that the MOSQP implementations make
use of local approximation methods, and thus convergence to local optimal points is
guaranteed. In contrast to this, NSGA II is at best associated with a probabilistic
notion of convergence. This further favors the use of MOSQP in one of its variants.

Regarding the Δ and Γ spread metrics, we note that these metrics are independent
of any solver or any given approximation to any Pareto front. Therefore, all solvers can
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Fig. 3. Purity performance profiles. Left: bound constrained and linearly and nonlinearly
constrained biobjective test sets. Right: bound constrained and linearly and nonlinearly constrained
test problems, with the best Pareto front returned by NSGA II over 10 runs.
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Fig. 4. Spread average Δ (left) and Γ (right) performance profiles. Biobjective bound con-
strained and linearly and nonlinearly constrained test sets.

be included in a single profile and one can consider maximum, average, and minimum
values of these metrics if several runs of the same stochastic solver are given. However,
for ease of exposition, we have chosen to include only a limited number of solvers in
each performance profile depicted.

We present in Figure 4 performance profiles with the Δ and the Γ metric for the
bound constrained and constrained test sets. Note that the Γ metric is always well
defined and, therefore, we have ρ(τ) → 1 for τ → ∞ for all solvers. For these metrics,
it is clear that MOSQP variants do not perform as well as NSGA II, in particular for the
Γ metric. This can be explained by the fact that at present our implementation has no
implicit control of the spread metric during the optimization procedure, while NSGA

II uses certain measures to select offsprings with a better spread. Similar results
were obtained with the full test set for both metrics, not depicted here as a matter of
brevity.

Performance profiles for the hypervolume metric are provided in Figure 5. We
can observe that MOSQP (H = (I,∇2f), line) is again the most robust and efficient
solver, clearly outperforming the NSGA II solver for the full test set.
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Fig. 5. Average hypervolume performance profile for bound constrained and linearly and non-
linearly constrained test problems. Left: biobjective test problems. Right: all test problems.
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Fig. 6. Data profiles for biobjective test problems (left) and all test problems (right). NSGA II

results are reported for an average over 10 runs (ε = 0.99).

Data profiles. Let us now turn our attention to data profiles. We use again the
approximated Pareto front Fp previously described in section 7.1.3, which is computed
by running all solvers for 5000 function evaluations. We use ε = 0.99 as the parameter
which controls the accuracy to which a problem is considered to be solved. As we also
consider stochastic solvers, we provide data profiles based on the average number of
objective function evaluations over 10 runs.

Figure 6 depicts the relevant profiles. Clearly, MOSQP (H = (I,∇2f), line)

solves more problems than any other solver considered. Note also that all MOSQP
variants consistently outperform NSGA II and MOScalar.

7.3. Real-world applications. To complete our numerical test, we provide
results on difficult real-world problems from space engineering. We focus on two
problems from trajectory optimization, as trajectory optimization plays a substantial
role in overall mission design, and many trajectory optimization problems are known
to be exceptionally difficult in their numerical treatment.

First, we consider the Cassini-1 multiple gravity assist problem; see [1] for further
details. Here we adapt this problem for biobjective optimization. The first objective
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Fig. 7. Best Pareto front approximations for the Cassini problem obtained by MOSQP, MOScalar,
and NSGA II.

function, f1, is the total ΔV, a widely considered performance measure in space en-
gineering. For a given trajectory design, ΔV is the “change in velocity,” the amount
of impulse needed to perform the mission and as such a measure for the amount of
fuel needed. The second objective function, f2, is the squared total travel time to
reach the final destination, a Saturn orbit. The travel time has been squared to form
the objective to penalize exceptionally long trajectories. First derivatives of objective
function f1 and the constraints have been computed by finite differences. For the sec-
ond objective function, exact derivatives were readily available. All solvers were used
with the same algorithmic parameters as in the previous section. Again, stochastic
solvers have been executed 10 times and we are reporting results for their “best run,”
i.e., the run with the least number of points dominated by points produced by other
runs of the same algorithm. Figure 7 shows the Pareto fronts thus obtained. We
can observe that MOSQP (H = I, rand) provides high-quality Pareto points around
the “knee” of the Pareto front but does not provide an approximation with a broad
spread of points. Both NSGA II and MOSQP (H = I, line) provide approximations
to Pareto points with small f2 function values.

For the second real-word problem we consider the Rosetta space mission [1],
another spacecraft trajectory design problem with multiple gravity assists but with
the goal to reach a different celestial body (in this case Comet 67P/Churyumov-
Gerasimenko instead of Saturn). Objective functions are the same as for the Cassini
mission, with the same availability of derivatives. As before, all solvers were used
with the same algorithmic parameters as in the previous section.

As can be seen from Figure 8, good results are obtained by MOSQP (H = I,
line), whose approximation to the Pareto front computed is well spread, except near
what appears to be the minimum of f2, where MOSQP (H = I, rand) provides a bet-
ter approximation, and near what appears to be the minimum of f1, where MOScalar
computes a few good points. Interestingly, the situation appears to be similar to that
depicted in Figure 1, showing again the problematic behavior of MOScalar. NSGA II



2118 JÖRG FLIEGE AND A. ISMAEL F. VAZ

20 40 60 80 100 120
1

1.5

2

2.5
Rosetta Pareto fronts, solvers best run

f
1

f 2

 

 
MOSQP (H = I, line)
MOSQP (H = I, rand)
NSGA-II (C version)
MOScalar

Fig. 8. Best Pareto front approximations for the Rosetta problems obtained by MOSQP, MOScalar,
and NSGA II.

does not compute any point that is not dominated by another point computed by one
of the MOSQP variants.

For both problems, variants of MOSQP are able to approximate important parts
of the Pareto fronts when compared to MOScalar and NSGA II, thus showing their
competitiveness when addressing hard real-world problems.

8. Conclusions. We develop and analyze a novel method for constrained mul-
tiobjective optimization. Under appropriate differentiability assumptions on the ob-
jective and constraint functions we can show local and global convergence to local
Pareto critical points.

We provide a publicly available implementation of the proposed algorithm, which
we denote by MOSQP. The algorithmic framework is flexible enough to be investigated
further to improve algorithmic performance, including the use of quasi-Newton-type
methods and adaptive measures taken to improve the spread of the computed approx-
imation to the Pareto front.

Extensive numerical results are provided for our implementation, and we compare
several variants of our implementation with the state-of-the-art NSGA II solver and an
implementation of a classical scalarization approach for biobjective problems. Numer-
ical results indicate that our implementation performs well for a significant number
of test problems, making the proposed solver the preferred solution framework for
multiobjective optimization problems when derivatives of objective and constraint
functions are available.
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