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Acoustic streaming fields in two-dimensional rectangular enclosures that have structured 

boundaries are simulated and the effects of surface profile amplitude on a boundary-driven 

acoustic streaming field are numerically investigated. The standing wave fields in the enclo-

sures are generated by excitation of a boundary and a sine-wave shaped profile on a boundary 

parallel to the particle oscillations is considered. This surface profile is found to have a large 

influence on the magnitude of both outer and inner streaming velocities. In terms of stream-

ing pattern, it is found that the number of inner streaming vortices is dependent on the wave-

length of profile while this profile has a less significant effect on the outer vortex pattern. 

1. Introduction 

Acoustic streaming is a steady current in a fluid driven by the absorption of high amplitude 

acoustic oscillations. It can be generally regarded as any flow generated by the Reynolds stress aris-

ing from the presence of gradients in the time-averaged acoustic momentum flux in a fluid.  

In acoustofluidic systems, acoustic streaming is usually associated with acoustic particle/cell 

manipulation, a technique in which ultrasonic standing waves are used to manipulate or pattern par-

ticles/cells to desired planes or positions. In these systems, particles will be subjected to both acous-

tic radiation force and acoustic streaming induced drag force. Acoustic streaming in ultrasonic par-

ticle manipulation devices is generally regarded as a ‘disturbance’ which disrupts the predictable 

particle movements driven by the primary acoustic radiation force. On the other hand, acoustic 

streaming has been found to be an excellent tool in many active applications, such as heat/mass 

transfer, fluid mixing, fluid pumping, particle/cell/droplet sorting and many others.
[1]

 Therefore, 

while it is undeniably a problematic phenomenon in some circumstances, it can be an extremely 

useful tool if used correctly.
[1]

 In order to optimise the use of this phenomenon, the first vital step is 

to understand the underlying mechanisms of diverse acoustic streaming patterns in various acousto-

fluidic systems, which is essential in the control of the acoustic streaming field and can provide 

effective guidance for microfluidic device designs for a variety of applications. 

It has previously been demonstrated that boundary-driven streaming in standing wave fields 

can be effectively solved from the limiting velocity method provided that the curvature of the rigid 

boundary is large compared to the thickness of the viscous boundary layer, v .
[2, 3]

 In this work, we 

investigate the acoustic streaming field in systems that have structured boundaries to explore the 

effects of surface profile on the boundary-driven acoustic streaming field. While the surfaces in 

systems do not satisfy the condition stated above, the acoustic streaming field can be solved using 

an alternative method based on a Reynolds stress body force.
[4, 5]
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2. Numerical method 

The finite element package COMSOL 4.3a
[6]

 was used to implement the numerical simula-

tions, which can be split into two steps.  

Firstly, the first-order acoustic fields were simulated using the ‘pressure acoustics’ physics 

module, which solves the harmonic, linearized acoustic problem which takes the form: 
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where   is the angular frequency, c  is the sound speed, and p  is the complex pressure defined at 

position r  using the relation, 
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In the second step, the ‘creeping flow’ physics module was used to simulate the second-order 

acoustic streaming fields as a response to the Reynolds stresses which can be calculated from the 

first step. This approximates the fluid as incompressible, and neglects inertial terms (Stokes flow) as 

the Reynolds numbers are much smaller than one in the devices presented in this paper. The gov-

erning equations for the streaming velocity field, 2u , and associated pressure field, 2p , are 

 Fpu  22

2 , (3) 

 02  u , (4) 

where   is the kinematic viscosity, and the driving term F

 

is the Reynolds stress force which 

can be derived from the first order acoustic velocity field.
[5]

  

3. Models, results and discussion 

Figure 1(a) shows the model: a two-dimensional rectangular chamber with dimensions 
37.4 10l   m and 54.24 10w   m is considered. It satisfies the condition for the generation of 

classical Rayleigh streaming
[7]

 and Schlichting streaming
[8]

, vwl  . Figure 1(b) shows the 

magnified view of A on the top wall of the fluid chamber, where a sine wave shaped boundary is 

considered (this profile is also present in Figure 1(a), however due to its fine scale is not apparent). 

It is determined by two parameters, 0h  and s , which are respectively the amplitude and wave-

length of this sine wave. The standing wave field in this chamber is generated by the vibration of its 

left wall, which is driven at 1f MHz thus a half-wavelength resonance in the x  direction of fluid 

chamber is established (for the fluid properties of 4.1481c m/s, 62.999 kg/m
3
). Only half of 

the chamber is modelled for the numerical efficiency so in both steps the bottom wall of the fluid 

chamber is considered as a symmetric boundary. In this work, all the results presented are for 

3.3s μm unless otherwise stated. 

 

Figure 1. Illustration of the model: (a) excitation, coordinates and dimensions of the model; (b) showing a 

magnified view of A in (a), where s  and 0h  represent respectively its wavelength and amplitude. 
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In the first step the linear wave equation, Eq. (1) is solved in the frequency domain. Then, the 

Reynolds stress force can be calculated and with it the driving force for the second step, creeping 

flow, Eq. (3), solved by the stationary solution. A series of surface profiles with diverse 0h  ranging 

from 111 10 m to 52 10 m were studied. The modelled results in two cases respectively with 
10

0 1 10h   m and 7

0 5.3 10h   m are shown and compared in Figure 2. The modelled acoustic 

pressure field, acoustic streaming field and a magnification of acoustic streaming field near the vis-

cous boundary are presented. It can be seen from Figure 2 (a) and (c) that half wavelength reso-

nances are formed in the x  direction of the fluid chamber for both cases and the pressure magni-

tudes of them are similar, which means that the amplitude of the surface profile has little effect on 

the first-order acoustic pressure field. However, a huge difference is found for these cases on both 

magnitudes of acoustic streaming velocities and streaming patterns. Firstly, as is well known, Ray-

leigh-Schlichting streaming in devices with flat boundaries have some evident features, such as four 

vortices within each half wavelength in opposing directions (this number will decrease to two when 

the channel is sufficient narrow
[9]

). It is found that in cases where the amplitude of profile is small, 

e.g. Figure 2 (b), the modelled streaming field is the classical Rayleigh-Schlichting streaming. 

When the amplitude reaches to a certain value (around 10 nm), the number of inner vortices 

(Schlichting streaming) is found to be dependent on the wavelength s  of this profile such that 

there are two inner streaming vortices within each wavelength, Figure 2 (f). The mechanism under-

lying this might be attributed to the periodic structure of the acoustic velocity field near the struc-

tured boundaries, which thus creates a corresponding periodic Reynolds stress. However, there is 

less impact on the pattern of outer streaming (Rayleigh streaming), Figure 2 (d). 

 

Figure 2. Modelled acoustic pressure and acoustic streaming fields: (a) acoustic pressure field in an enclo-

sure with 
10

0 1 10h   m; (b) acoustic streaming field in an enclosure with 
10

0 1 10h   m; (c) acoustic 

pressure field in an enclosure with 
7

0 5.3 10h   m; (d) acoustic streaming field in an enclosure with 

7

0 5.3 10h   m; (e) magnification of A in (b) with arrow plot of streaming velocity field; (f) magnification 

of B in (d) with arrow plot of streaming velocity field, where A and B are local areas close to the boundary. 
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Figure 3. The relationship between maximum streaming velocity and the amplitude of the surface profile, 

where the red diamonds are the simulated streaming velocities, and 
in

u2  shown in (a) and 
out

u2  shown in 

(b) are respectively the maximum inner streaming velocity and maximum outer streaming velocity. 

The spatial amplitude of the surface profile has a large influence on the magnitude of stream-

ing velocities. Figure 3 (a) & (b) plot respectively the relationship between the maximum inner 

streaming velocity and the outer streaming velocity with the amplitude of the profile. It can be seen 

that a global growth trend is obtained for the maximum inner streaming velocity with the increase 

of 0h . The maximum inner streaming velocity grows less quickly after the amplitude of roughness 

exceeds v , which is approximately 0.53 μm at water with a driving frequency of 1 MHz. More 

interestingly, with the increase of 0h , the maximum outer streaming velocities firstly increase rapid-

ly to its peak when 0h  is approximately half of v , 0.25 µm and then decreases to the maximum 

streaming velocity in an enclosure with flat boundaries when 0h  reaches close to v . With the fur-

ther increase of amplitude of roughness, the maximum outer streaming velocity will further de-

crease and then reverses in direction. 

The mechanism underlying these changes is still to be analysed. But it might be attributed to 

the dramatic increase of Reynolds stress force in the y  direction, yF , from the structured surfaces 

within the viscous boundary layer, which might turns the dominant driving force for the Rayleigh-

Schlichting streaming from xF  (Reynolds stress force in the x  direction) in systems with flat 

boundaries to yF  in systems with this kind of structured surfaces. 

4. Conclusions 

The effects of surface profile on a boundary-driven acoustic streaming field have been numer-

ically investigated for the case of a sine wave shaped profile on the boundary that is parallel to the 

direction of acoustic oscillations in rectangular enclosures. It was found that this kind of surface has 

huge influences not only on the magnitude of streaming velocities, but also on the streaming pat-

terns.  

The dramatic increase of inner vortices and magnitude of streaming velocity could signifi-

cantly enhance mass transfer in acoustofluidic devices, which has huge potential in applications 

where acoustic streaming has a positive effect, such as microfluidic mixing, fluid-pumping and bat-

tery systems that are diffusion limited.  

An important next step is to obtain an experimental verification of these numerical simula-

tions. 

(a) (b) 
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