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Abstract

The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this
genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we
generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus
Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus,
and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further
characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses,
NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the
NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary
relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most
likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be
too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data,
including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation
leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4
Million years ago (Mya).
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Introduction

The family Equidae, along with Rhinocerotidae and Tapiridae,

is one of the three extant families of odd-toed ungulates

(Perissodactyla, Mammalia). The Equidae are richly represented

in the fossil record throughout the past 55 Million years (My),

starting with dog-sized taxa from the North American Eocene [1].

Equid lineages then spread globally and experienced successive

episodes of radiations and extinctions during the early Miocene,

the late Miocene, and at the end of the Pleistocene [2], becoming

adapted to a variety of environments with remarkable variations in

body size [1].

While several dozen extinct equid genera have been described

[2], all extant equid species are classified in the same genus, Equus.

It includes the African wild ass, Equus africanus, which is the

progenitor of the Domestic donkey, E. asinus [3], and three living

species of zebra, all endemic to Africa. The zebras include the

Plains zebra, also called Burchell’s zebra, E. quagga (previously E.

burchellii); Grevy’s zebra, E. grevyi; and the Mountain zebra, E. zebra

(with two subspecies, E. z. zebra of South Africa, and E. z.

hartmannae of Namibia and Angola) [4]. The genus also includes

the Asian wild asses (subgenus Hemionus), E. hemionus and E. kiang,

with various recognized subspecies of E. hemionus (e.g E. h. kulan

and E. h. onager). Together, the zebras, donkeys, and Asiatic asses

make up the non-caballine lineages. The remaining extant

lineages, the domesticated horses (Equus caballus) and wild

populations sometimes referred to as E. ferus (Tarpan and/or the

Przewalski horse E. przewalskii), are classified as caballine horses.

While the phylogenetic relationships among modern equids

have received considerable attention in the past few years [3–14],
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no phylogenetic study has been undertaken using complete

mitochondrial sequences of all seven extant species of Equus.

Complete mitochondrial genome (mitogenome) data is currently

available for only three species: domestic (142 individuals) and

Przewalski (seven individuals) horses, [5–7,15–17], one Tibetan

Kiang [18], and one domestic donkey [19]. A nearly complete

mitochondrial sequence has also been made available recently for

one wild donkey individual [6]. Using second-generation sequenc-

ing technologies we generate complete mitogenome sequences

from 2–4 individuals of all other living equid species. This results

in a comprehensive dataset of 14 novel and complete mitogenomes

comprising all of the taxonomic diversity of extant equids.

Additionally we sequence complete mitogenomes from three

extinct equid lineages: the New World Stilt-Legged horses

(NWSLH), the Sussemionus (E. ovodovi), and the Quagga.

NWSLH refer to a group of equids that were endemic to North

America. Despite having gracile limbs similar to the Asiatic wild

asses, partial mitochondrial DNA sequences revealed no particular

genetic affinity with hemiones, instead the NWSLH were nested

within caballine horses [20]. Sussemiones (subgenus Sussemionus)

consist of a lineage of Eurasian equids that survived until the Late

Pleistocene, at least up to 46 thousand years ago (Kya) [21,22]. No

particular genetic relationship with any of the living equid lineages

was supported by partial mitochondrial sequences [22], and their

evolutionary origin is still debated [21,22]. The Quagga, E. quagga

quagga, a morphological variant of the Plains zebra found in South

Africa, became extinct in the wild in the late 1800 s [23], and is

now commonly accepted as a southern variant of the Plains zebra

[4,24].

Inferring the evolutionary relationships among extinct and

living equids is an active area of research. So far, analyses have

used mainly short fragments of mitochondrial DNA, with highly

controversial results suggesting that previously defined lineages

should be collapsed into single taxa [20,22,25–27]. In this study we

aim to (1) resolve the phylogenetic relationships among all of the

extant as well as three extinct lineages of equids, and (2) to

investigate the evolutionary timing of lineage radiation within the

genus Equus.

Materials and Methods

Overall Experimental Design
We isolated one partial and 17 complete mitogenomes

representing all extant species within the genus Equus (14 modern

samples), including three extinct lineages (four ancient samples)

(Table 1). For five out of the 14 modern samples, mitogenomes

were generated by PCR amplification followed by a combination

of Sanger and GS FLX sequencing. The DNA extracts from the

remaining nine modern samples and three of the ancient samples

were converted into sequencing libraries and shotgun-sequenced

using the Illumina HiSeq2000 platform. The mitogenome of the

remaining ancient sample (NWSLH sample MS272) was re-

covered from a genomic library using the MySelect in solution

target enrichment kit (MYcroarray, USA) and sequenced on the

Illumina HiSeq2000 platform.

Ethics Statement
Tissue samples were collected by Hans Siegismund [28], or

provided by the Smithsonian Institution (Washington D.C.), the

Musée des Confluences (Lyon), the Russian Academy of Sciences,

the Government of Yukon, or zoological gardens following official

agreements with the Natural History Museum of Denmark in the

framework of the COSE certificate DK003 of the host institution,

which covers CITES-protected species. Permission was obtained

from all museums and institutions to access the collections and all

samples were on loan for scientific purposes.

Modern Samples
For PCR amplified mitogenomes, we collected 30–50 mg of

hair or dried alcohol-preserved tissue and extracted DNA using

the DNeasy Blood and Tissue kit (Qiagen, USA) following the

manufacturer’s instructions except that 360 ml of Buffer ATL and

40 ml Proteinase K were used, and samples were left to lyse

overnight at 55uC. We performed PCR amplification using three

to six overlapping primer sets (Table S5; [16,17]) as in Vilstrup

et al. [29] (Table S4). We pooled purified PCR products from

each sample, except for a 1.5 kb fragment, in equimolar amounts

and nebulized for 1 min at 2.1 bar to get approximately 600 bp

fragments. We then built the fragmented DNA samples into

tagged dA-tailed libraries using NEBNext Quick DNA Library

Prep Master Mix set for 454 (New England BioLabs, ref: E6090)

using a final adaptor concentration of 8 nM. We then pooled the

tagged libraries in equimolar amounts and distributed them on

one eighth of a plate on the GS FLX. We followed a similar

procedure for PCR amplicons from primer sets Pr1 and Pr2,

which span the hypervariable region. All tagged reads were sorted,

trimmed and mapped to both a donkey and a horse reference

genome (Accession Nb. NC001788 and NC001640, respectively)

using GS Reference Mapper with default parameters (454 Life

Sciences). We allowed for a maximum of one mismatch during

index sorting and a minimum size of 80 bp was required during

sequence assembly. Consensus sequences were aligned to a refer-

ence using Sequencher v4.8 (Genes Code Corporation, Ann

Arbor, MI, USA), and the resulting mitogenomes aligned by eye

using SE-AL v2.0a11 Carbon (A. Rambaut, Univ. of Oxford).

Sanger sequencing of the short 1.5 kb fragment was performed at

the Macrogen facility (Seoul, South Korea) with several primers

(Table S4).

For shotgun-sequenced mitogenomes, we collected 2 ml blood

samples and extracted DNA using the QIAamp DNA Blood Midi

kit (Qiagen, USA) following the manufacturer’s protocol except

that blood digestion was performed with Proteinase K for 30 min

at 70uC, and the final product was eluted into 150 ml EB buffer.

We then sonicated the DNA extracts for seven cycles of 15 secs/

90 secs (ON/OFF cycles) on mode High (H) using a Bioruptor XL

(Diagenode, Belgium). We selected fragments of 200–300 bp using

the EZNA Gel Extraction Kit (Omega Bio-Tek, ref: D2500) and

converted each sample into an Illumina library using the

NEBNext Quick DNA library prep Master mix set for 454 (New

England BioLabs, ref: E6090). We amplified the libraries in a 50 ml

volume reaction, with two parallel PCR set-ups per library using

half (16 ml) of each DNA library. The final PCR reaction consisted

of 5U Taq Gold (Invitrogen, Life Technologies), 4 mM MgCl2,

1 mg/ml BSA, 1 mM dNTPs, 1 mM of Primer inPE1.0, 20 nM of

Primer inPE2.0, and 1 mM of an Multiplexing Index Primer

containing a unique 6 nucleotide index tag (Illumina Inc.). PCR

cycling conditions consisted of initial denaturation for 10 min at

92uC, followed by 10–15 cycles of 30 secs denaturation at 94uC,

30 secs annealing at 60uC, and 40 secs elongation at 72uC, and

a final elongation step at 72uC for 7 min. We QIAquick (Qiagen,

USA) purified each amplified library and then quantified them on

an Agilent 2100 Bioanalyser. The libraries were then pooled in

equimolar ratios, and sequenced in paired-end mode (26100 bp)

on the Illumina HiSeq2000 platform at the Danish National High-

throughput Sequencing Centre.

We trimmed the Illumina reads using default settings in

AdapterRemoval [30], except using a minimal read length of

25 bp, and aligned reads against both published mitogenomes and

Mitochondrial Phylogenomics of Equids
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those generated here via PCR amplification using BWA [31],

disabling the seed and relaxing the edit distance (option –n 0.03) as

suggested by Schubert et al. [32]. We removed reads that mapped

to multiple positions and with mapping quality scores ,25 using

SAMtools [31]. We removed sequence duplicates using both read

start and read end coordinates for collapsed paired-end reads, and

we used only the read start coordinates for filtering potential

sequence duplicates for uncollapsed read pairs as implemented in

MarkDuplicates from the Picard package (http://picard.

sourceforge.net). A final alignment was generated for each

mitogenome and visually corrected for potential local misalign-

ments. Finally, we called the sequence of each mitogenome using

a consensus approach requiring a minimum base coverage of 2

and over 50% of sequence match among reads.

Ancient Samples and Museum Specimens
We extracted three ancient samples (JW328, ACAD2304, QH1)

and two museum-preserved dried tissue specimens (CGG10086

and CGG10096) at the Centre for GeoGenetics in laboratory

facilities dedicated to the analysis of fossil material and geo-

graphically separated from laboratories with amplified PCR

products. We used three different extraction protocols depending

on the tissue type, and all extractions were accompanied by

appropriate controls.

We extracted the two bone samples JW328 (20 mg) and sample

ACAD2304 (464 mg) following the silica-based protocol described

in Orlando et al. [22]. We extracted the two tissue specimens

(CGG10086 and CGG10096) as described in Gilbert et al [33],

adding 2 mg/mL Proteinase K (New England Biolabs) to the

extraction buffer, which we digested overnight at 37uC, followed

by QIAquick purification and elution into 50 ml. We extracted

,50 mg of the hair sample (QH1) as in Gilbert et al. [33] except

digestion occurred at room temperature (RT) over three days,

after which undigested hair was removed and incubated at RT for

an additional three days with more digestion buffer. We

concentrated both digests to ,50 ml using 30 KDa centricons

and purified the extracts using QIAquick columns, and eluted the

concentrated DNA into 50 ml after a five-minute incubation in

elution buffer at RT.

We built indexed Illumina libraries for samples JW328,

CGG10086, CGG10096, and QH1 using the NEBNext Quick

DNA Library Prep Master Mix set for 454 (New England BioLabs,

ref: E6090) following the manufacturer’s instructions, except that

SPRI bead purification was replaced by Qiagen MinElute DNA

purifications. The libraries were amplified in two steps, as

described in Kampmann et al. [34]. We purified the resulting

libraries through QIAquick columns, quantified them using an

Agilent 2100 Bioanalyser, and pooled them in equimolar ratios for

Illumina sequencing performed in single-read mode (75 bp) on an

Illumina HiSeq2000 platform at the Danish National High-

throughput DNA Sequencing Centre.

We built two independent DNA libraries using 21 ml each of

DNA extract for sample ACAD2304 using the NEBNext DNA

library prep Master mix set for 454 (New England BioLabs, ref:

E6070) and following Meyer and Kircher [35], except working

with 25 ml reaction volumes and using a final concentration of

0.5 mM Illumina multiplex blunt-end adaptors. At the end of the

final fill-in reaction, Bst Polymerase was inactivated following

20 min incubation at 80uC. We then amplified the two libraries

for 12 cycles using PCR conditions as described above for the

seven modern samples. We purified the PCR products through

QIAquick columns and re-amplified them in four parallel

reactions (5 ml each) for ten additional cycles. The four amplifi-

cation products generated per library were QIAquick purified,

quantified using an Agilent 2100 Bioanalyser and pooled in

equimolar amounts before sequencing in single-read mode

(100 bp) on a HiSeq2000 Illumina platform at the Danish

National High-throughput DNA Sequencing Centre.

A second Quagga library was also enriched for mitochondrial

fragments following the procedure described by Maricic et al. [36]

and using 1.5 mg of library as input. Mitochondrial baits consisted

of a mix of fragmented, amplified mitogenomes of a Grevy’s zebra,

a Somali wild ass, and a Kiang (SF, LF and Primer1 primer sets;

Table S4). The captured library was purified through MinElute

columns and 16 ml was amplified for 12 cycles in a 50 ml volume

under the same PCR conditions as the seven modern samples

using 0.2 mM postCap primer inPE1.0 and 0.2 mM post index

primer. The captured library was sequenced in single-read mode

(75 bp) on an Illumina HiSeq2000 platform at the Danish

National High-throughput DNA Sequencing Centre.

We assembled complete mitogenomes following the procedure

described for assembling Illumina reads from modern equid

specimens, except that for sample JW328 we also attempted to

map reads against previously reported partial mitochondrial

sequences of hippidiforms (accession numbers: GQ324601,

GQ324596 and AY152859) and the complete nucleotide sequence

of another NWSLH generated in this study following library

target-enrichment (see below). The authenticity of our ancient

DNA data was then assessed using the mapDamage package [37]

(Figure S3).

The NWSLH sample MS272 was processed separately in

a dedicated ancient DNA laboratory at the Pennsylvania State

University, USA. We powdered ,500 mg of bone using

a Mikrodismembrator (Braun) and extracted DNA using the

column based silica extraction protocol as described in Rohland

et al. [38]. DNA was eluted into 60 ml of 16TET (16TE

including 0.05% Tween20). We prepared an indexed Illumina

library using 15 ml of the ancient DNA extract according to the

protocol described in Meyer and Kircher [35] with 40 ml reaction

volumes. We amplified the library for 25 cycles using a unique

indexing primer, and subsequently purified the library using the

Agencourt AMPure XP PCR purification kit. We eluted the

library in 30 ml of 16TET as described in Meyer and Kircher

[35]. We then enriched the indexed library for the mitogenome

using the MYselect (now called MYbaits) target enrichment kit

from MYcroarray (USA) following the manufacturer’s instruc-

tions. Custom bait molecules were designed based on the modern

Equus caballus mitogenome sequence (horse genome version

equCab2.0 http://genome.ucsc.edu/cgi-bin/

hgGateway?db = equCab2 provided by The Broad Institute,

Cambridge, USA) at 2X tiling (where each base is covered by

two unique bait molecules). To provide enough input DNA for the

capture reaction, the library was amplified for another 30 cycles

using Phusion Hot Start polymerase (New England BioLabs) and

primers IS5_reamp.P5 and IS6_reamp.P7 [35]. The target

capture itself was performed to the manufacturer’s specifications.

We then amplified the enriched libraries once more using the same

Phusion Hot Start polymerase setup including primers IS5_-

reamp.P5 and IS6_reamp.P7. Following a purification using the

Agencourt AMPure XP PCR purification kit, we eluted the final

library in 30 ml of 16TET and visualized the results on a 2%

agarose gel.

The post-capture library enriched for the NWSLH mitochon-

drial DNA was then sequenced as part of a larger pool containing

47 additional libraries at equimolar ratios on one lane of an

Illumina HiSeq2000 platform. Raw reads were used for read-

merging using Kircher’s MergeReadsFastQ_cc.py script [39],

resulting in 8.2 millions of reads that were mapped to the horse

Mitochondrial Phylogenomics of Equids
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genome version equCab2.0 http://genome.ucsc.edu/cgi-bin/

hgGateway?db = equCab2 using BWA [31] and SAMtools [40].

The final consensus sequence was called using SAMtools [40]

requiring a minimum coverage of 26.

Data Partitioning and Model Selection
We included 13 previously published mitogenomes in our

analyses (Table S1), and used the online Sequence Manipulation

Suite [41] to partition protein-coding genes into first, second, and

third codon positions. Two additional partitions were generated:

one comprising the two rRNA genes (16S and 12S) and another

limited to the control region. A highly variable and repetitive

section of the control region consisting of tandem repeats was

disregarded (from position 16,125–16,368 on horse ref genome

JN398398). Phylogenetic analyses were run independently for

each gene as well as on the five partitions data set (15,262 bp), the

four partitions data set (14,006 bp; excluding the control region),

and on the whole unpartitioned data set. Analyses were run both

with and without outgroups consisting of six species of rhinoceros

and the lowland tapir (Table S1).

We used jModelTest v0.1.1 [42,43] and the corrected AIC to

select the most appropriate evolutionary model for each gene and

each partition. We used seven substitution schemes, base

frequencies +F, rate variation +I and +G with eight categories,

and ML optimized base tree for likelihood calculations (Table

S3a–b). Variable sites and nucleotide composition frequencies

were retrieved from MEGA 5 [44].

Phylogenetic Analyses
Phylogenetic analyses were run using PhyML online [45,46].

The topology and branch lengths were optimized, and support

nodes were estimated using both 500 bootstrap pseudo-replicates

and an approximate Likelihood Ratio Test (SH-like) [47].

Topological tests (Approximate Unbiased, AU; and Kishino

Hasegawa, KH) were performed using CONSEL v0.3 [48] and

site likelihood estimates recovered from PhyML with the –

print_site_lnl option. A total of 12 topologies were tested and

sorted according to the p-values recovered from AU tests.

RaxML GUI 1.0 [49] was used to compute maximum

likelihood analyses on the four and five partitioned data sets using

500 bootstraps. In cases where the best model chosen by

jModelTest was not available in RaxML or PhyML the next best

model implemented was chosen instead (Table S3a–b). Bayesian

phylogenetic analyses were performed using MrBayes v3.1.2 [50].

Two runs of 50 million generations were used for each dataset,

and the first 25% of samples from each run was excluded as burn-

in.

Figure 1. Phylogenetic RAxML trees (GTR+G+I) with 500 bootstraps and MrBayes (GTR+G+I) 50M generations on the full data set.
Posterior probabilities are given in proportions and bootstrap support as a percentage on each branch of interest. * Branch is supported by maximum
posterior probability and bootstrap (1/100). A: Including outgroups and based on 5 partitions. B: Excluding outgroups and based on 4 partitions.
doi:10.1371/journal.pone.0055950.g001

Table 2. Average node ages from BEAST.

Node With outgroup Without outgroup

Root 5.43E+07 (5.37E+07–5.47E+07) N/a

Plains zebra 1.06E+06 (7.09E+05–1.87E+06) 6.86E+05 (6.852E+05–6.858E+05)

Grevy’s+Plains (B) 2.80E+06 (1.90E+06–3.60E+06) 1.46E+06 (1.42E+06–1.51E+06)

Grevy’s zebra 7.41E+05 (5.17E+05–1.1E+06) 3.93E+05 (3.84E+05–4.01E+05)

Horses (J) 6.37E+05 (4.13E+05–8.45E+05) 3.64E+05 (3.36E+05–3.89E+05)

Horses+NWSLH 5.91E+06 (4.31E+06–8.56E+06) 2.59E+06 (2.39E+06–2.89E+06)

Mountain zebra 8.86E+05 (5.81E+05–1.1E+06) 4.84E+05 (4.66E+05–4.99E+05)

Rhino+Tapir 4.40E+07 (4.24E+07–4.65E+07) N/a

Rhinos 2.08E+07 (1.7E+07–2.6E+07) N/a

Sum.+Wool. 1.01E+07 (8.43E+06–1.24E+07) N/a

Donkey (H) 1.24E+06 (3.19E+05–2.10E+06) 7.13E+05 (7.06E+05–7.23E+05)

Equids 9.38E+06 (6.72E+06–11.86E+06) 4.27E+06 (3.97E+06–4.73E+06)

Non-caballines 5.91E+06 (4.41E+06–7.54E+06) 2.92E+06 (2.81E+06–3.11E+06)

Kiang (E) 6.91E+05 (4.67E+05–1.08E+06) 3.69E+05 (3.55E+05–3.80E+05)

Kulan/onager (G) 1.11E+06 (7.46E+05–1.68E+06) 5.94E+05 (5.67E+05–6.20E+05)

Asses (F) 1.24E+06 (8.29E+05–1.59E+06) 6.72E+05 (6.49E+05–6.88E+05)

Sussemione 6.39E+06 (3.86E+06–9.37E+06) 2.92E+06 (2.79E+06–3.10E+06)

Zebras (A) 4.74E+06 (3.33E+06–6.05E+06) 1.75E+06 (6.65E+05–2.49E+06)

Zeb+Don+Ass (C) 5.92E+06 (3.75E+06–8.75E+06) 2.87E+06 (2.75E+06–3.05E+06)

Donkey+Ass (D) 5.42E+06 (3.43E+06–7.89E+06) 2.62E+06 (2.49E+06–2.80E+06)

Analyses run with and without outgroups (see Table S9a–b). All dates are in years with 95% confidence interval given in parentheses. N/a = not applicable.
Sum = Sumatran rhino; Wool = woolly rhino; Zeb = zebras; Don = Donkey; Donkey = E. africanus and E. asinus; Asses = E. hemionus and E. kiang; Ass = Asses. Node letters
in parentheses as in Figure 1.
doi:10.1371/journal.pone.0055950.t002
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Molecular Dating
To place the estimated phylogeny on a calendar time-scale, we

ran several additional phylogenetic analyses using the software

package BEAST v.1.5.4 [51]. For each analysis, we assumed the

relaxed uncorrelated lognormal molecular clock, first with Birth

and Deaths, and then with Yule speciation. We ran separate

analyses for the four- and five-partition data sets both with and

without a non-equid outgroup (see above). MCMC chains were

run for 250–500 million generations with 25% burn-in, and with

convergence to stationarity determined by visual inspection using

Tracer v1.5 [52].

In the analyses including the non-equid outgroup, the molecular

clock was calibrated using a normal prior of 5565 Mya [12,20,53]

on the root of the Perissodactyl tree. In addition, we ran separate

analyses using a second normal prior calibration of 0.760.1 Mya

for the emergence of the Plains zebra [22] and based on the fossil

record of E. mauritanieus [54,55]. In analyses excluding outgroups,

only the Plains zebra calibration was used. In the absence of

precise carbon dating information, ages for both the NWSLH and

the Sussemione were sampled from a uniform prior spanning 12 to

100 Kya.

Monophyly was constrained for species represented in the

analysis by more than one individual. The subspecies E. h. kulan

and E. h. onager were not constrained to a single clade. However,

following the results of the ML and Bayesian analyses above, we

constrained monophyly on the clade comprising all the zebras, the

clade comprising all horses (E. caballus and E. przewalskii), the clade

Figure 2. Node ages as estimated from BEAST analyses given in years and with 95% HPD. Shown is the averaged results from the three
analyses excluding outgroups (Table 2).
doi:10.1371/journal.pone.0055950.g002

Table 3. Mean substitution rate averaged across the whole
tree for each analysis run in BEAST with 95% HPD and 25%
burn-in.

Analysis Mean rate Lower and upper 95% HPD of mean rate

4pBD1d 1.96E-08 1.56E-08–2.38E-08

4pBD2d 2.04E-08 1.68E-08–2.40E-08

4pBDn1d 3.55E-08 1.76E-08–5.71E-08

4pY1d 1.17E-08 6.46E-09–1.69E-08

4pY2d 1.80E-08 1.43E-08–2.18E-08

4pYn1d 3.96E-08 1.94E-08–6.31E-08

5pBD1d 1.82E-08 1.48E-08–2.19E-08

5pBD2d 1.95E-08 1.63E-08–2.27E-08

5pY1d 1.52E-08 1.17E-08–1.87E-08

5pY2d 1.77E-08 1.45E-08–2.10E-08

5pYn1d 3.57E-08 1.92E-08–5.47E-08

Given in number of substitutions per site per million years 4p = 4 partitions;
5p = 5 partitions; BD = Births and deaths model; Y = Yule model; 2d = 2
calibration dates (Perissodactyla and Plains zebra); 1d = 1 calibration date
(Perissodactyla); n = no outgroup (1d = Plains zebra).
doi:10.1371/journal.pone.0055950.t003
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comprising the African asses (E. africanus somalicus and E. asinus),

and the clade containing all equids.

Branch Tests for Natural Selection
To identify regions of the mitogenome that may be under

selection in any given lineage, we performed branch tests for each

individual protein-coding gene as implemented in PAML v4.5

[56]. Based on the branch test results, branch-site tests were also

run for the NADH dehydrogenase 4 protein gene (ND4) to test the

caballine (E. caballus and NWSLH) branch for sites under positive

selection.

Results and Discussion

We successfully recovered the complete mitogenome of three

extinct equid taxa (NWSLH, Sussemione, and Quagga). We also

characterized partial mitochondrial contigs (11–288 bp in length,

for a total of 7,108 bp) for a second NWSLH (JW328). Of the

modern equids we sequenced 14 full mitogenomes (Table 1). The

complete mitogenomes of the NSWLH, Sussemione, E. hemionus

kulan, and the three species of zebra plus the Quagga had not been

sequenced prior to this study. The average depth-of-coverage is

387.3 for modern samples and 57.2 for ancient samples (Table 1).

Minimal pairwise distances were observed between conspecific

individuals, suggesting that the sequences reported here are in

agreement with the known sequence diversity among equids

(Table S8). We evaluated nucleotide misincorporation patterns

through comparison of Illumina reads with the horse reference

mitogenome following the procedure described in Ginolhac et al.

[37]. In contrast to modern samples, typical accumulation of C to

T and G to A mismatches were observed at sequence ends in the

ancient samples, suggesting that the latter were affected by

significant levels of post-mortem DNA damage, in particular cytosine

deamination (Figure S3). This, together with the base composition

of our sequences (Table S6), higher substitution rates at third

codon positions over first and second codon positions respectively

(data not shown), and the blank experimental controls used during

the whole laboratory procedure highlights the quality our

sequence data.

Topological Relationships
Mitogenome alignments were used to perform phylogenetic

analyses under a Bayesian and a Maximum Likelihood framework.

All methods and sequence partitions considered supported the

same topology (Figure 1a–b; Table S2; Figure S2), where all nodes

except C, D and G received maximal support (Figure 1a–b).

Interestingly, the mitochondrial topology appeared very similar to

a study based on 22 partial mitochondrial and nuclear genes [57]

and one reconstructed from ca. 55,000 nuclear SNPs [8]. This

appears in strong contrast to other recent cases reported among

mammals where the phylogenetic signal retrieved from nuclear

and mitochondrial genes were in conflict (e.g for brown and polar

bears, [58]; for Denisovans and Neanderthals, [59]).

Rooted phylogenetic analyses supported a major division

between caballine horses and non-caballine equids, where horses

and NWSLH appeared as sister species within caballine horses, in

agreement with previous results based on partial mitochondrial

sequences [20,22]. This suggests that Asiatic wild asses and

NWSLH did not originate from a single ancestral population with

gracile limbs, but instead that similarities in their post-cranial

skeleton [25,60] derive from convergent evolution. However,

another possibility is that gracile limbs is the ancestral state which

has been preserved in the Asian asses, while it has been lost in all

other lineages, resulting in limb states derived from a more gracile

one.

Zebras were found to be monophyletic (node A, Figure 1a–b),

with the Mountain zebra (E. zebra) diverging before the Plains (E.

quagga) and Grevy’s (E. grevyi) zebras, which are sister species. This

topology is supported by other studies using a variety of genetic

markers [8,12,24,57,60,61]. The now extinct Quagga nests within

the Plains zebra clade, confirming their conspecific relationship

[24]. Asiatic wild asses (node F, Figure 1a–b) can also be

confirmed as monophyletic. The subspecies E. h. onager and E. h.

kulan clustered together (albeit with relatively low bootstrap

support) in a group divergent from E. kiang.

Sussemiones (as represented by E. ovodovi) were confirmed as

a distinct branch within non-caballine equids (Figure 1a–b; Figure

S2), as suggested by previous analyses based on partial mitochon-

drial sequence information [22]. The Sussemione lineage showed

greater genetic distance to caballine horses

(Mean = 0.055460.0036) than to non-caballine equids

(Mean = 0.042760.0026) (Table S2; Table S8). Approximately

Unbiased and Shimodaira-Hasegawa topological tests showed

significantly more support for a topology nesting Sussemiones

within non-caballine equids (Figure S2; item 8 in Table S2).

However, even though the full length of the mitogenome was

characterized, the exact placement of Sussemiones within non-

caballines could not be resolved with high confidence (Figure 1a–

b, Figure S2; and topological tests presented in Table S2),

suggesting that additional phylogenetic information from nuclear

genes and/or the identification of e.g rare genomic rearrange-

ments or insertion sites of transposable elements will be required

for unraveling the phylogenetic origin of this enigmatic equid

lineage [21,62].

In Bayesian analyses, African wild asses and domestic donkeys

were supported as a sister lineage to Asiatic wild asses, a pattern

compatible with various past suggestions that the subgenus Asinus

should incorporate both African and Asiatic asses; however this

relationship was not mirrored in ML analyses (node D, Figure 1a–

b). Therefore, the mitochondrial information should be regarded

as inconclusive with regards to the relationships between the main

non-caballine groups (Sussemiones, Asiatic wild asses, African wild

asses and donkeys, and zebras). Interestingly, SNP chip data

comparing .40K autosomal markers [8] and a study combining

nuclear and mitochondrial genes [57] could not resolve these

relationships with high support either. This suggests that non-

caballine equids have likely experienced an extremely rapid

radiation. Alternatively, incomplete lineage sorting within the non-

caballine ancestral population might explain the persistence of

donkey-like mitochondrial sequences in the Asiatic wild ass

lineage, resulting in spurious phylogenetic reconstructions.

The emergence of new approaches using NGS, including whole

exome capture, or even complete genome characterization, will

soon be available to determine whether the non-caballine

phylogeny corresponds to a hard or soft polytomy [63,64], or

incomplete lineage sorting [65]. For now, we note that many other

studies have also found a sister relationship between African wild

asses and Asiatic wild asses [8,57,66–69] (but see [12]).

Branch Tests for Natural Selection
We used the PAML package [56] to estimate non-synonymous

to synonymous rate ratios (dN/dS) along the main branches of the

topology (Figure S1) and compared this model to a null model that

assumes one conserved ratio across the whole phylogeny (Table 2).

For all genes except COX2, ND2, ND4 and ND5, the null model

was better supported and dN/dS ratios were found to be

significantly lower than 1 (Table S7), in agreement with the
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presence of purifying selection acting on mitochondrial genes. For

ND4 (NADH dehydrogenase 4), the dN/dS ratio of the ancestral

branch leading to caballine horses (horses and NWSLH) was

found to be significantly superior to 1 (Table S7), suggesting

positive selection for non-synonymous variation during the early

evolutionary history of that lineage. In order to identify which

amino acid(s) could have been functionally advantageous, we

performed branch-site tests in the branch ancestral to caballine

horses compared to the rest of the topology for gene ND4.

However, this analysis did not identify any amino acids that were

supported as having evolved under positive selection (p-value:

.0.25).

Divergence Times
We used relaxed molecular clock (log-uncorrelated) methods as

implemented in BEAST [51] to date recent lineage divergence

events along the evolutionary history of equids. A total of eleven

analyses were run including different data set partitions (4-way or

5-way partitioned), different calibration points (the origin of

Perissodactyla at 55 Mya, and/or a recent emergence of the Plains

zebra lineage at 0.7 Mya), and different models of speciation (Yule

versus Birth/Death). The resulting average estimated ages are

displayed in Figure 2, Table 2 and Table S9a–b.

The estimated mitochondrial TMRCA for the Equidae varied

considerably between our different analyses. When the two

outgroup taxa are excluded from the analysis and only the more

recent calibration point is used, we estimate the mitochondrial

TMRCA of all equids around 4.3 Mya (95% CI: 4.0–4.7 Mya).

When the outgroup taxa are included, the average mitochondrial

TMRCA increases to 8.6 Mya (95% CI: 6.7–11.9 Mya) (see Table

S9a–b). The younger TMRCA is similar to previously reported

divergence estimates for the Equidae (3.8 Mya: [12]; 3.9 Mya:

[60]; 4.0 Mya: [22]), however ages bracketing that range have also

been proposed (2.3 Mya: [10]; 5.8 Mya: [20]). We believe the

older age estimates likely result from the contrast between the deep

phylogenetic distance separating equids and other living perisso-

dactyls, and the relatively young origin of equids as a whole.

Evolutionary rate estimates have been shown to vary in a time-

dependent manner [70,71], with deep calibrations leading to

slower evolutionary rate estimates. The posterior distribution of

mutation rates recovered from our analyses show this trend

(Table 3). This may be due to a variety of effects, including

substitution saturation, purifying selection, and model mis-

specification, especially with regard to how rate heterogeneity

across sites is compensated [72,73]. The older calibration may

therefore be less appropriate for estimating recent divergence

times, such as those we aim to address here.

Assuming only the more recent calibration, we find that

caballine and non-caballine equids most likely diverged

,4 Mya. This estimate is older than the age of the oldest fossil

unambiguously identified as Equus in the paleontological record,

which has been dated to 2.1 Mya [74]. According to our estimates,

the mitochondrial TMRCA of the lineage leading to domestic

horses (E. caballus) is , 364 Kya (95% CI: 336–389 Kya). This is

older than that reported in Steiner and Ryder [12] (250 Kya),

Achilli et al. [5] (150 Kya), and Lippold et al. [7] (100 Kya), all of

whom assumed that the genus Equus emerged ,2 Mya. We should

caution that our estimates assume 700 Ky as a calibration date for

the TMRCA of Plains zebras. In the current dataset, the latter is

estimated based on only three lineages, which likely leads to an

under-estimation of the true phylogenetic distance among Plains

zebras, and consequently of the mutation rate. Therefore, our

molecular clock analyses are expected to provide upper bound

estimates for divergence times and TMRCA dates. Additional

complete mitochondrial genome data from modern Plain zebras

coupled with tip calibration based on a series of radiocarbon dated

ancient equid samples [75] will be needed to revisit the exact

timing of lineage radiation in equids. For now, we note that most

of the extant equid lineages radiate at the transition from the

Tertiary to the Quaternary at 2.6 Mya, with a TMRCA for

caballine horses estimated at 2.6 Mya (95% CI: 2.4–2.9 Mya)

(Table 2; Table S9b). The mitochondrial TMRCA for zebras

dates back to 1.75 Mya (95% CI: 0.7–2.5 Mya) with the Grevy’s

and Plains zebras diverging 1.5 Mya; this is similar to estimates by

Steiner and Ryder [12] of 1.2 Mya and George and Ryder [60] of

1.6 Mya. We estimate that African asses shared a TMRCA

713 Kya (95% CI: 706–723 Kya), in agreement with the date

Krüger et al. [3] estimated using nuclear data (0.5–1.5 Mya).

Finally, within Asiatic wild asses, we estimate that the mitochon-

drial divergence between the Kiang and Onager/Kulan lineages

occurred 672 Kya (95% CI: 649–688 Kya). This time depth

supports a separate species status for the Kiang, previously

proposed on the basis of morphological [76] and chromosomal

distinctions (2n = 51–52 in E. kiang versus 2n = 54–56 in E. hemi-

onus) [77].

Concluding Remarks
Here, we provide new data to assess the timing of the

appearance of extant and several Late Pleistocene equid lineages,

and to investigate their evolutionary relationships to one another

based on complete mitogenome sequences. Our results are

relevant to taxonomic boundaries: (1) While we confirm the

monophyly of zebras, we find a surprisingly deep evolutionary

divergence between the Mountain zebra and Plains zebra; (2) our

results support recognition of the Kiang as an evolutionarily

distinct species, rather than part of a single radiation that includes

the Onager and Kulan; (3) we confirm that New World stilt-legged

horses are closely related to caballine horses; (4) we show that the

enigmatic Late Pleistocene Sussemione is a non-caballine equid

that is only distantly related to extant equid lineages; and (5) we

confirm that the recently extinct Quagga of South Africa was

a subspecies of the widespread Plains zebra. Our study has also

revealed a rapid radiation within non-caballine equids, within

which details regarding order and pattern of diversification could

not be resolved from complete mitogenomes. The massive

throughput of current NGS platforms now enables the character-

ization of the complete nuclear genome of non-model organisms

[78]. Such genome-wide approaches will likely provide enough

information to resolve the nodes that are presently still problem-

atic.

Supporting Information

Figure S1 Constrained topology used for positive selec-
tion tests in PAML. Branch numbers are shown and are

equivalent to branch numbers used in Table S7.

(TIFF)

Figure S2 The 12 topologies tested in the topological
test. Topology number 1 to 12 is equivalent to item number in

Table S2. Suss = Sussemione (E. ovodovi); Burch = Plains zebra (E.

quagga); Grev = Grevy’s zebra (E. grevyi); Moun = Mountain zebra

(E. zebra); Ass = African wild ass and domestic donkey (E. africanus

and E. asinus); Ona/Kul =E. hemionus (Onager and Kulan).

(PDF)

Figure S3 DNA fragmentation and Nucleotide misin-
corporation patterns. Panel A: Ancient sample ACAD2304 E.

ovodovi. Panel B: Ancient sample QH1 E. quagga quagga (only
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shotgun reads are considered in order to avoid the base

composition bias resulting from the target-enrichment approach).

Panel C: MS272 E. sp. NWSLH Panel D: Modern sample H11 E.

zebra hartmannae. The base composition of the reads is reported for

the first 10 nucleotides sequenced (left: 1–10) as well as for the 10

nucleotides located upstream of the genomic region aligned to the

reads (left: 21 to 210). In addition, the base composition of the

last 10 nucleotides sequenced (right: 210 to 21) and of the 10

nucleotides located downstream from the reads (right: 1–10) is also

provided, all in relation to the mitochondrial horse reference

genome. Nucleotide positions located within reads are reported

with a gray frame. Each dot reports the average base composition

per position. The figure shows two parallel base compositions;

these correspond to the base composition of the two mitochondrial

DNA strands, one being relatively enriched in purines (H, heavy),

compared to the other one (L, light). The frequencies of all possible

mismatches and indels observed between the horse genome and

the reads are reported in gray as a function of distance from 59- to

39-ends (first 25 nucleotides sequenced) and 39- to 59- (last 25

nucleotides), except for C.T and G.A that are reported in red

and blue, respectively. These frequencies are calculated by

dividing the total number of occurrences of the modified base at

a given position in a read by the total number of the unmodified

base at the same position in the horse genome.

(PDF)

Table S1 Published mitogenomes from Genbank used
in analyses. Includes both equids and non-equid outgroups.

(PDF)

Table S2 Topological test results. Table displaying results

of the 12 different topologies tested. The topologies are visually

illustrated in Figure S2. Item = Topology number (Figure S2).

(PDF)

Table S3 Selected models from jModelTest. The best

model selected by jModelTest per gene or codon is displayed

according to analysis. A: On full dataset. B: On dataset excluding

non-equid outgroup.

(PDF)

Table S4 Primer pairs used to amplify some of the
modern mitogenomes. Ta = annealing temperature, Ext. = ex-

tension time, Size = size of the amplicon generated by the primer

pair, Location = a rough estimate of the part of the mitogenome

the primers amplify based on the horse reference mitogenome

(JN398398). * SF and LF are universal mammalian mitogenome

amplifying primers (designed in-house by Sandra Abel Nielsen),

Pr1 and Pr2 are from study Xu et al. [17], and Pr3 was designed

in-house by Ludovic Orlando.

(PDF)

Table S5 Primer sets used to amplify 5 modern
mitogenomes for FLX sequencing. Primer set names as

from Table S4, primer sets from Pr3 to 14.3_Pr3 make up shorter

regions of the LF fragment. Pr1 and Pr2 are shorter primers to

cover the hypervariable region of the control region, while the last

four are to fill in gaps throughout the mitogenome.

(PDF)

Table S6 Nucleotide frequency composition of all
samples. Nucleotide frequencies in percent of total number of

nucleotides (excluding tandem repeats).

(PDF)

Table S7 Results from branch selection tests. dN/dS for

each branch given per gene, calculated from PAML under Model

2 (with Model 0 values in the second to last bottom row). Branch

numbers are as in Figure S1. Values superior to 1 are highlighted

in bold. P-values from LRT are given in the bottom row, with p-

values #0.02 highlighted in bold.

(PDF)

Table S8 Pair-wise Distance results. Uncorrected pairwise

distances observed between Sussemione (E. ovodovi) and other

equid species.

(PDF)

Table S9 Mean node ages estimated from BEAST. Total

number of states is measured in millions of states (M). Node letter

in parentheses corresponds to Figure 1. 4p = 4 partitions; 5p = 5

partitions; BD = Births and Deaths; Y = Yule model; Sum. = Su-

matran rhino; Woolly = woolly rhino; NWSLH = New World stilt-

legged horse; Asses =E. hemionus and E. kiang; Zeb = zebras;

Donkey =E. africanus and E. asinus, Don = Donkey. A: Results

are with a 25% burn-in for eight different datasets including

outgroup. 1d = 1 date (Perissodactyla); 2d = 2 dates (Perissodactyla

and Plains zebra). B: Results are with a 25% burn-in for 3 different

datasets without outgroup. 1d = 1 date (Plains zebra); n = no

outgroup.

(PDF)
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36. Maricic T, Whitten M, Pääbo S (2010) Multiplexed DNA sequence capture of

mitochondrial genomes using PCR products. PLoS One 5: e14004.

37. Ginolhac A, Rasmussen M, Gilbert MTP, Willerslev E, Orlando L (2011)

mapDamage: testing for damage patterns in ancient DNA sequences.

Bioinformatics 27: 2153–2155.

38. Rohland N, Siedel H, Hofreiter M (2010) A rapid column-based ancient DNA

extraction method for increased sample throughput. Molecular ecology

resources 10: 677–683.

39. Kircher M (2012) Analysis of high-throughput ancient DNA sequencing data.

Methods in molecular biology (Clifton, NJ) 840: 197–228.

40. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence

Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.

41. Stothard P (2000) The sequence manipulation suite: JavaScript programs for

analyzing and formatting protein and DNA sequences. Biotechniques 28.

42. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate

large phylogenies by maximum likelihood. Systematic biology 52: 696–704.

43. Posada D (2008) jModelTest: phylogenetic model averaging. Molecular biology

and evolution 25: 1253–1256.

44. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5:

molecular evolutionary genetics analysis using maximum likelihood, evolution-

ary distance, and maximum parsimony methods. Molecular biology and

evolution 28: 2731–2739.

45. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New

algorithms and methods to estimate maximum-likelihood phylogenies: assessing

the performance of PhyML 3.0. Systematic biology 59: 307–321.

46. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online–a web

server for fast maximum likelihood-based phylogenetic inference. Nucleic acids

research 33: W557–W559.

47. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches:

A fast, accurate, and powerful alternative. Systematic biology 55: 539–552.

48. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of

phylogenetic tree selection. Bioinformatics 17: 1246–1247.

49. Silvestro D, Michalak I (2010) raxmlGUI: a graphical front-end for RAxML.

Organisms Diversity & Evolution: 1–3.

50. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference

under mixed models. Bioinformatics 19: 1572–1574.

51. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by

sampling trees. BMC evolutionary biology 7: 214.

52. Rambaut A, Drummond A (2009) Tracer v1. 5: an MCMC trace analysis tool.

Available: http://beast.bio.ed.ac.uk/. Accessed 1 December 2009.

53. Prothero DR, Schoch RM (1989) The evolution of perissodactyls: Clarendon

Press New York.

54. Eisenmann V (1979) Evolutionary characters and phylogeny of the genus Equus

(Mammalia, Perissodactyla). Comptes Rendus Hebdomadaires Des Seances

De L Academie Des Sciences Serie D 288: 497–500.

55. Eisenmann V (1980) Les chevaux (Equus sensu lato) fossiles et actuels: crânes et
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