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Abstract: 
 
The majority of human genes that encode proteins undergo alternative pre-mRNA splicing 

and mutations that affect splicing are more prevalent than previously thought.  The 

mechanism of pre-mRNA splicing is highly complex, requiring multiple interactions 

between pre-mRNA, snRNPs and splicing factor proteins.  Regulation of this process is 

even more complicated, relying on loosely defined cis-acting regulatory sequence 

elements, trans-acting protein factors and cellular responses to varying environmental 

conditions.  Many different human diseases can be caused by errors in RNA splicing or its 

regulation.  Targeting aberrant RNA provides an opportunity to correct faulty splicing and 

potentially treat numerous genetic disorders.  Antisense oligonucleotide therapies show 

particular promise in this area and, if coupled with improved delivery strategies, could open 

the door to a multitude of novel personalised therapies.   
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Introduction: 
 
Among the diverse repertoire of mechanisms by which an organism can achieve gene 

regulation, differential pre-mRNA splicing stands out as a particularly powerful yet subtle 

mediator.  RNA also presents an attractive target for therapeutic interventions.  On an in 

vivo cellular basis mRNA is more accessible than DNA and the presence within the cell of 

multiple different RNA processing pathways (e.g. splicing, nonsense-mediated decay, 

RNA interference etc.) means that there is much scope for influencing its control at 

different levels.  Targeting and manipulating RNA avoids many of the risks and concerns 

associated with DNA-based gene therapy such as random gene insertion.  The dynamic 

nature of RNA turnover also means that therapeutic interventions can be time-limited, 

dose-titrated and modified according to response, adding further levels of control.  

 
This review sets out to explain some of the ways in which the complex process of pre-

mRNA splicing can lead to disease.  It will also discuss a number of the different 

approaches currently in development that hope to rectify splicing where it goes wrong, with 

the ultimate goal of therapeutic clinical applications. 

 
 
 



 

 

Pre-mRNA splicing: 
 
When a protein-coding gene is transcribed, the initial transcript (pre-mRNA) must undergo 

a series of post-transcriptional processing events prior to its translation.  Aside from 5’ 

capping and polyadenylation, the most significant modification is that of intron removal and 

exon ligation through splicing.  The major effector of the splicing reaction is the 

spliceosome, a complex of hundreds of interacting proteins and small nuclear RNAs 

(snRNAs) including the 5 small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, U5 and 

U6 [1].  In order to perform accurate splicing, the spliceosome must recognise exon/intron 

boundaries.  At a basic level, this occurs through the presence of consensus sequence 

elements at the 5’ and 3’ splice sites of introns and through the presence of a branch point 

sequence near to the 3’ end of an intron (see Figure 1). 

 
The splicing reaction itself is mediated via a sequence of carefully controlled interactions 

between snRNPs, proteins and the pre-mRNA transcript [2, 3].  U1 first binds via 

complementary base-pairing to the 5’ splice site, while U2 binds the intron branch point.  A 

‘triple’ snRNP complex consisting of U4, U5 and U6 then moves in to associate with the 

assembling spliceosome.  U4 leaves the complex allowing U6 to replace U1 at the 5’ 

splice site.  U6 then interacts with U2 to bring the branch point into close proximity with the 

5’ splice site. At this point a transesterification reaction cleaves the 5’ end of the intron 

from the upstream exon and attaches it to the branch point, forming a loop-like lariat 

structure.  Further interactions mediated by U5 then bring the 3’ end of the upstream exon 

and the 5’ end of the downstream exon into close proximity with each other. This allows a 

second transesterification reaction to cleave the remaining 3’ end of the intron and join the 

two exons together.   

 
The splice site sequences that allow this reaction to take place are sufficient to maintain 

the accuracy of exon-exon junctions.  However, splice sites are only loose consensus 



 

 

sequences and on their own they cannot provide the degree of control needed for correct 

exon selection, particularly where alternative splicing is involved.  In order to allow this, 

exon recognition requires interactions between trans-acting factors (proteins and 

ribonucleoproteins) and cis-acting elements (pre-mRNA sequences). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1. The basic splicing process.  A. Exons are represented by boxes and introns by 

lines.  The invariant GU and AG nucleotide sequences of the 5’ and 3’ splice sites are 

shown.  Also shown is the branch point (A) and the nearby polypyrimidine tract (YYYY).  

B. The first transesterification reaction creates a lariat structure joined at the branch point.  

The second transesterification reaction releases the lariat intron and ligates the exons 

together. 

 
 
Alternative splicing 
 
In alternative splicing, the cell can ‘choose’ different combinations of exons to use in the 

final mRNA transcript of a gene.  This creates different splicing isoforms of a single gene 

despite the original DNA sequence being the same in each case.  75% of exons that are 

alternatively spliced have been shown to be protein-coding [4].  In addition, the majority of 

known alternative exons map to the surface regions of protein structures, making them 

more likely to affect protein function [5].  The process of alternative splicing thus creates 

different protein isoforms which differ in their functional capacities. 

 
Another variant of this is that different splice sites may be selected by the spliceosome, 

resulting in longer or shorter exons.  Entire introns can also be retained in this way through 

‘exonisation’.  These ‘choices’ are made depending on the relative ‘strength’ of competing 

splice sites.  How well a splice site matches the consensus sequence will determine how 

well spliceosome components can bind to it and this influences whether or not it is used.  

Splice site strength also depends on the presence of nearby sequence elements known as 

splicing enhancers and silencers.  These cis-acting elements can be located both in exons 

and/or in introns and exert their effects by facilitating the binding of various splicing factors, 

which in turn positively or negatively regulate inclusion of a particular exon (see Figure 2). 

Positive factors bind to enhancers and include a family of proteins rich in serine and 



 

 

arginine (SR proteins).  Negative factors bind to silencers and include the family of 

heterogeneous nuclear ribonucleoproteins (hnRNPs).  This, however, is an 

oversimplification.  In some instances SR proteins are known to repress splicing.  In 

adenovirus infection, the SR protein SF2/ASF binds an intronic repressor element near the 

branchpoint of adenovirus pre-mRNA [6].  This prevents U2 snRNP recruitment and 

prevents use of the 3’ splice site.  Likewise, hnRNPs can also act to stimulate rather than 

suppress splicing [7].  SR proteins and hnRNPs possess protein- and RNA-binding 

domains and through these they bind with low specificity to regulatory sequences and to 

each other.  The unique arrangement of protein interactions a particular pre-mRNA makes 

forms part of the so-called ‘splicing-code’ [8].  

 
Enhancer and silencer sequences are much more variable than splice site sequences and 

much remains unknown about how changes to these sequences affect splicing factor 

binding.  Splicing factors are examples of trans-acting factors and their up- or 

downregulation within a cell provides a clear opportunity for splicing regulation to be 

influenced by independent pathways and external factors.  Indeed the variability of these 

sequences is indicative of the fact that the individual RNA-protein interactions involved in 

splicing factor binding are weak and of only low affinity.  While this makes enhancer and 

silencer characterisation more difficult, it is precisely this property of low affinity binding of 

multiple interacting factors that allows for fine regulation and control [3].   

 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
Figure 2: Control elements regulating splicing.  U1 and U2 snRNPs bind via 

complementary base pairing to loose consensus sequences at the 5’ splice site and 

branch point respectively.  U2AF (U2 auxillary factor) recognises and binds to the 

polypyrimidine tract and facilitates correct U2 binding.  SR proteins bind to exonic splicing 

enhancers (ESEs) and increase splice site use, while heterogeneous nuclear 

ribonucleoproteins (hnRNPs) bind to exonic splicing silencers (ESSs) and exert a negative 

effect on splice site use.  Other splicing factor proteins bind to intronic splicing enhancers 

(ISEs) and silencers (ISSs). 

 
 
Additional factors governing splicing 
 
Other factors including the rate of transcription and epigenetic factors such as chromatin 

conformation and histone modifications are known to play important roles in regulating 

splicing [9].  Much work is ongoing to help define the precise mechanisms by which such 

regulation occurs.  It has been known for some time that splicing is coupled to the 

transcription process.  RNA pol II recruits spliceosome components via its C-terminal 



 

 

domain and this allows cotranscriptional initiation, though not necessarily completion, of 

splicing or at least the commitment to use specific splice sites [10].  The rate of transcript 

elongation can also affect the splicing process and promoter structure influences the 

outcome of alternative splicing [11].  Chromatin structure appears important for correct 

spliceosome assembly and the positioning of nucleosomes within genes has been found to 

be non-random with particular enrichment at intron-exon junctions, suggesting a role in 

exon definition [12, 13].  Similarly, histone modifications have been found to be non-

randomly enriched at exons, even taking into account relative nucleosome 

overrepresentation [14]. 

 

In addition, pre-mRNA secondary structure can influence selection of splice sites [15].  For 

example, a stem-loop structure at the 5’ splice site of exon 10 in the gene for tau protein 

regulates usage of the exon.  Another example of this is alternative exon usage in the 

fibronectin gene, where pre-mRNA secondary structure affects the availability of an 

enhancer element [16].  In this case, splicing of the EDA exon of fibronectin is dependent 

upon the presence of an ESE displayed within the exposed part of an RNA stem loop 

structure.  Disruption of this secondary structure prevents recognition of the exon.  

 
Small nucleolar RNAs (snoRNAs) have also been found to regulate splice site selection.  

For example, the snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 

by binding to an alternative exon [17].  Interestingly, this same snoRNA, HBII-52, is not 

expressed in Prader-WIlli syndrome (PWS) and this is thought to contribute to the disease. 

A child with a microdeletion encompassing HBII-438A, the HBII-85 cluster and a portion of 

the HBII-52 snoRNA cluster exhibited features of PWS [18].  Although snoRNPs exist in 

the nucleolus and splicing occurs in the nucleoplasm, evidence suggests that snoRNPs 

are transported though the nucleoplasm as they are being assembled, allowing an 



 

 

opportunity for them to influence splicing [19].  This may occur through interactions 

between snoRNP associated proteins and splicing factors such as hPrp31 [20].    

 
Alternative splicing is frequently regulated in response to external stimuli [21].  Signal 

transduction pathways can lead to phosphorylation of trans-acting factors such as SR 

proteins.  Targeted phosphorylation of RS-domains (characteristic arginine/serine rich 

domains at the C-terminal end of SR proteins) can affect a protein’s ability to bind to and 

interact with its usual protein partners [22].  Splicing factors can also be dephosphorylated 

by phosphatases and phosphatase modulation affects alternative exon usage [23].  

 
 
Pseudoexons 
 
The same nucleotide sequence can, under different conditions, be defined as an exon or 

an intron [24, 25].  Attempts to design exons using current knowledge have yielded 

unexpected results and have proved the underlying complexity of the spliceosome’s 

functions [26].  In silico analysis reveals the abundant presence of sequences lying within 

the intronic domains of many genes that look like exons and have both 5’ and 3’ 

consensus splice sites, yet are not used as such [27].  These sequences are known as 

pseudoexons.  The exclusion of these pseudoexons is thought to be mediated through 

intrinsic sequence defects, splicing silencers and inhibitory RNA secondary structures [28-

30].  Looking at the splicing process more globally, rather than on an individual gene basis, 

will help to clarify what makes an exon an exon and what differentiates pseudoexons, 

allowing a fuller understand how the splicing machinery distinguishes between them. 

 
 
The scope of splicing in disease: 
 
Over 90% of human protein-coding genes are alternatively spliced [31].  However, since in 

fact every intron-containing gene requires splicing, any mutation affecting a canonical 



 

 

splice site in such a gene can lead to gene dysfunction and potentially to disease.  Such 

splice site mutations are a common finding in clinical diagnostic laboratories and it is 

estimated that they may account for some 10% of all pathogenic mutations [32].  However, 

this does not include mutations affecting splicing enhancers, silencers or trans-acting 

factors.  Many such mutations will have been overlooked historically, either because they 

appear to be silent synonymous changes with no effect on amino acid sequence, or else 

because of their apparently innocent intronic location.  Ever increasing numbers of these 

mutations are now being identified in patients with genetic disease and according to some 

estimates up to 50% of all pathogenic mutations may affect splicing in some way [33]. 

 
 
Familial dysautonomia - a splice site mutation 
 
Familial dysautonomia (FD) is a rare recessively inherited disorder affecting both the 

autonomic nervous system and somatic sensory neurones.  It is caused by mutations in 

IKBKAP, which encodes a transcription factor component of the elongation complex 

known as IKAP.  In nearly all cases (99.5%) of FD the pathogenic mutation is found to be 

an intronic T>C substitution at position 6 of intron 20 [34].  This disrupts binding of U1 to 

the 5’ splice site of exon 20, causing exon skipping and resulting in a frameshift and 

premature termination codon.  IKBKAP appears to promote expression of genes involved 

in oligodendrocyte formation and so this could explain the demyelinating phenotype 

observed in FD [35]. 

 
 
SMA and MCAD deficiency - disrupted regulatory elements 
 
Spinal muscular atrophy (SMA) is the second most common recessive disorder in humans 

and is the most common inherited cause of infant mortality.  It is caused by mutations in 

the SMN1 gene which encodes the survival motor neurone (SMN) protein [36].  SMN is 

required for snRNP synthesis and its loss of function leads to degeneration of motor 



 

 

neurones particularly evident in the spinal cord.  In humans there has been a gene 

duplication event of SMN1 that has given rise to an almost identical gene called SMN2.  

However, SMN2 contains a silent C>T substitution in the sixth nucleotide of exon 7.  This 

causes skipping of exon 7 and ineffective protein production, with the result that SMN2 is 

unable to compensate for the loss of function of SMN1 [37].  The SMN2 mutation both 

destroys an ESE by abolishing a binding site for the SR protein SF2/ASF and also creates 

an ESS by allowing a binding site for hnRNPA1 [38, 39]. 

 
A very similar mechanism to this occurs is medium-chain acyl-CoA dehydrogenase 

(MCAD) deficiency.  MCAD is required for the degradation of medium chain length fatty 

acids and MCAD deficiency is the most common defect of mitochondrial beta-oxidation.  

Medium chain acylcarnitines accumulate in the urine and this can be detected 

diagnostically.  One particular missense mutation in exon 5 of MCAD (c.362C>T) causes 

exon skipping and degradation by nonsense-mediated decay [40].   Exon skipping occurs 

because of disruption of a splicing enhancer that is nearly identical to the enhancer in exon 

7 of SMN2. 

 
 
Hutchinson-Gilford progeria syndrome - activation of a cryptic splice site 
 
Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disorder characterised by 

features of premature aging.  There is postnatal growth retardation, premature 

atherosclerosis, bone dysplasia, and a distinctive facial appearance with micrognathia, 

alopecia, narrow nasal bridge and pointed nasal tip [41].  HGPS is caused by mutations in 

the lamin A/C gene (LMNA).  LMNA codes for two proteins, lamin A and C, dependent on 

alternative splicing of the transcript.  Lamins A and C are members of the nuclear lamin 

family of structural proteins that form intermediate filaments and constitute the nuclear 

lamina, a meshwork structure which supports the inner nuclear membrane in eukaryotic 



 

 

cells [42].  HGPS is most commonly caused by a recurrent mutation in exon 11 

(c.1824C>T) [43].  This point mutation does not alter the coding amino acid sequence 

(p.Gly608Gly) but instead activates a cryptic splice site 5 nucleotides upstream.  The 

single base change turns the sequence GGTGGGC into GGTGAGT and this altered 

sequence is recognised as a splice donor site.  The effect of the mutation is production of 

a truncated protein that lacks the last 50 amino acid residues encoded by exon 11.  This 

means the mutant protein, known as ‘progerin’, is missing an 18 amino acid C-terminal 

domain needed for a number of post-translational modifications such as farnesylation. 

 
 
Menkes disease - splicing as a modifier of disease 
 
Disease severity can be influenced by alterations in splicing.  One example is Menkes 

disease, an X-linked disorder of copper metabolism caused by mutations in ATP7A [44].  

This encodes an ATPase that transports copper across intestinal mucosa into blood.  A 

significant proportion of ATP7A mutations involve the conserved dinucleotide sequences 

at 5’ and 3’ splice sites.  Mutations at these sites severely disrupt normal splicing and the 

result is the severe phenotype of Menkes disease, which includes severe neurological 

impairment, kinked brittle hair, dysmorphic features, failure to thrive and death usually 

before the age of three years.  However, mutations affecting the less well-conserved more 

degenerate sequences surrounding the invariant dinucleotides tend only to partially 

abrogate normal splicing.  The result of these “weaker” mutations is a clinically distinct and 

milder condition known as occipital horn syndrome [45].  This is a disorder of the 

extracellular matrix leading to skeletal and cutaneous manifestations. 

 
 
Altered splice isoform ratios 
 
Disrupting the relative abundance of alternatively spliced RNA isoforms can lead to 

disease.  Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) 



 

 

arises when mutations occur in the gene MAPT.  This gene encodes tau protein, which is 

needed for microtubule assembly and stability.  Mutations within regulatory elements of 

MAPT exon 10 that promote its inclusion, increase the ratio of a tau isoform containing 

four microtubule-binding sites (4R) relative to the three (3R) site isoform.  This causes 

disease by precipitating tau aggregation [46].  Alzheimer’s disease also involves tau 

aggregations in the brain but investigation of 4R to 3R ratios has not shown a consistent 

pattern related to this disease.  However, other splicing factors influencing exon 10 splicing 

such as clk2 and tra2-beta1 have themselves been found to have altered splicing patterns 

in Alzheimer’s, suggesting that disordered splicing may indeed be playing a role in this 

disease [47].  

 
 
Myotonic dystrophy - splicing factor sequestration 
 
Myotonic dystrophy (DM) is an autosomal dominant condition characterised by progressive 

myopathy, delayed relaxation of muscle contractions (myotonia), cardiac conduction 

defects, cataracts and a characteristic myopathic facies with frontal balding.  Two forms of 

DM occur, known as type 1 (DM1) and type 2 (DM2).  DM1 is due to a CTG expansion in 

the 3’ untranslated region of the DMPK gene [48].  DM2 is clinically milder and is caused 

by a CCTG expansion in intron 1 of the ZNF9 gene [49].  DM is an example of a disease 

where microsatellite expansions cause RNA gain of function.  When these expansions are 

transcribed, the RNA contains many CUG or CCUG repeats and these have a high affinity 

for the splicing factor MBNL1.  Depletion of MBNL1 from the nucleoplasm causes a 

functional loss of this protein [50].  In DM1, another protein called CUGBP1 becomes 

upregulated because of hyperphosphorylation and stabilisation mediated by protein kinase 

C [51].  This action is induced by RNA containing CUG repeats.  MBNL1 depletion and 

CUGBP1 upregulation together cause widespread disruption of alternative splicing.  This 

directly leads to many of the clinical features seen in DM, including myotonia, where 



 

 

aberrant splicing of the muscle-specific chloride channel gene CLNC1 causes impaired 

chloride conductance in muscle [52]. 

 
 
Mutations of the splicing machinery 
 
Mutations in genes encoding fundamental components of the splicing machinery are 

relatively rare, presumably because the effects are incompatible with life.  However, a few 

such mutations are seen in several diseases.  In SMA, the SMN protein is involved in 

snRNP assembly and a deficiency of functional SMN protein results in multiple splicing 

defects across many tissues [53].  Motor neurones appear to be particularly affected, 

giving rise to the classic phenotypic picture of SMA.  Autosomal dominant retinitis 

pigmentosa can also be caused by mutations in splicing factors PRPF31/U4-61k and 

PRP8 [54-56].  

 
TDP43 (TAR DNA binding protein 43 kDa) is a member of the hnRNP family and contains 

two RNA-binding domains, one of which binds to UG repeats.  It has been found to bind to 

a 12 UG repeat in the CFTR gene, causing exon 9 skipping resulting in cystic fibrosis [57].  

It has also been implicated in neurodegenerative disorders such as ALS and 

frontotemporal dementia, where it has been found in ubiquinated protein aggregates 

forming cytoplasmic inclusions [58, 59].  Interestingly TDP43 mutations have been found in 

both sporadic and familial forms of ALS [60, 61].  Sequestration and depletion of this 

splicing factor from the nucleus could be contributing to splicing abnormalities and 

neurodegeneration.  

 
 
Splicing and cancer 
 
Alternative splice variants, which may be tumour-specific, can significantly influence 

cellular processes in cancer, including proliferation, motility and drug response [62].  



 

 

However, the degree to which aberrant splicing is involved in carcinogenesis and how 

much is just a reflection of the generally disordered cell processes present in tumours, 

remains largely uncertain. 

 
Notwithstanding this, splicing mutations can affect tumour suppressor genes and 

oncogenes just as they can affect any other type of gene.  KLF6 is one such tumour 

suppressor gene that inhibits cell growth through various mechanisms including activation 

of p21, a cyclin-dependent kinase inhibitor [63].  A variant splice isoform of KLF6 is formed 

by use of an alternative 5’ splice site in exon 2.  This isoform (KLF6-SV1) antagonises 

KLF6 and acts in a dominant negative fashion, promoting cell proliferation [64].  A single 

nucleotide polymorphism (SNP) near the exon 2 intron/exon boundary leads to 

upregulation of the KLF6-SV1 isoform because of binding of SRp40, an SR protein [65].  

This particular SNP has been associated with prostate cancer and studies have shown 

that overexpression of KLF6-SV1 accelerates prostate cancer progression [66].   

 
Another example is CDKN2A, a gene that encodes two separate tumour suppressor 

proteins p14ARF and p16INK4a through the use of alternate reading frames.  Loss of 

these proteins is associated with increased risk of melanoma.  A particular mutation in the 

intron 1 splice acceptor site that leads to skipping of exon 2 in both p14ARF and p16INK4a 

has been seen in a family with melanomas and neurofibromas [67]. 

 
Oncogenes are also subject to mis-splicing.  The receptor tyrosine kinase KIT is a proto-

oncogene that can be activated by gain of function mutations resulting in aberrant splicing.  

Such mutations are found in gastrointestinal stromal tumours (GISTs).  Deletions of the 3’ 

splice site of intron 10 activate a new 3’ splice site within exon 11.  The deleted portion is 

critical to KIT inhibition and so the mutant aberrantly spliced KIT kinase remains 

constitutively active [68]. 



 

 

 
The upregulation of particular splice isoforms in preference to others has been implicated 

in several cancers.  The apoptotic regulator Bcl-X is one example where two isoforms 

have opposing effects on apoptosis [69].  Bcl-XS is pro-apoptotic while Bcl-XL is anti-

apoptotic.  This difference in function depends on use of an alternative 5’ splice site in the 

first coding exon. 

 
In addition to cis-acting mutations, specific alterations in trans-acting factors such as 

splicing factor expression have also been found in cancer.  SR proteins are, for example, 

frequently upregulated in tumours.  SF2/ASF, an archetypal splicing factor, is known to 

regulate alternative splicing of the Ron oncogene and this modulates cell motility, which is 

related to metastatic formation [70].  Overexpression of SF2/ASF can generate tumours in 

vivo and in this way it can be thought of as a proto-oncogene [71]. 

 
 
 
Therapeutic approaches: 
 
 
Small molecule modulators of splicing  
 
Factors governing alternative splicing are modulated in response to various cell signaling 

pathways.  Post-translational modification of splicing factors is one such mechanism.  SR 

protein phosphorylation alters the protein’s ability to enhance exon recognition [72].  

Inhibition of specific protein kinases could be a means of modulating SR protein-mediated 

splicing events.  Such an inhibitor could take the form of a small molecule [73].  However, 

targeting such fundamental processes is likely to result in widespread off-target effects.  

Blanket inhibition of SR protein phosphorylation would probably cause far-reaching global 

changes in splicing profiles.  In addition, intracellular signalling pathways involving kinases 

and phosphorylases often have multiple and diverse effects, many of which remain 



 

 

unknown.  Inhibition of specific enzymes could therefore have effects on entirely different 

cellular mechanisms other than splicing. 

 
Myotonic dystrophy presents a potential target for small molecule therapy.  Since the 

pathogenesis of this disorder is thought to involve RNA gain of function through 

sequestration of splicing factors such as MBNL1 and CUGBP1, an agent that antagonised 

this process could potentially be used therapeutically.  Screening of small molecule 

libraries has shown that the drug pentamidine is able to block MBNL1 binding the CUG 

repeats present in DM1 [74]. 

 
 
Antisense oligonucelotides 
 
A more target-specific approach to splicing modulation can be achieved through the use of 

antisense oligonucleotides (AONs).  Short oligonucleotides can be synthesised that are 

complementary to a particular RNA sequence transcribed from a specific gene.  The 

sequence specificity of oligonucleotides means that only the RNA sequence of interest will 

be targeted.  By designing AONs that bind to splice sites or to enhancer or silencer 

elements within the transcript, the splicing mechanism can be manipulated in a precise 

and reproducible way (see Figure 3).  Blocking splice sites and/or regulatory sequences 

prevents snRNPs and splicing factors such as SR proteins and hnRNPs from binding to 

the RNA transcript.  This allows directed exon skipping or inclusion depending on the 

sequence blocked [75].   

 
The most advanced use of this technology in terms of therapeutic development has been 

for Duchenne muscular dystrophy (DMD).  This is an X-linked disorder of muscle 

characterised by progressive muscle weakness in childhood, cardiomyopathy and death in 

early adulthood [76].  The molecular defect is due to out-of-frame mutations affecting the 

dystrophin gene, leading to absence of functional dystrophin protein.  Normal dystrophin 



 

 

consists of two terminal functional domains joined by a central repetitive, non-essential rod 

domain.  The majority of causative mutations occur in the central rod domain.  The 

functionality of dystrophin can be restored by restoration of the RNA reading frame [77].  

This can be achieved by selective exon skipping within the section of RNA transcript 

encoding the rod domain.  Since the beginnings and ends of exons are not defined by 

reading frame or codon position and since exon lengths do not adhere to being in multiples 

of three nucleotides, different exon-exon junctions within a given gene can lie at different 

positions within a codon: i.e. after position 1, 2 or 3.  Thus, by using a targeted AON to 

inhibit the inclusion of a specific exon during the splicing process, the reading frame of 

mutated frameshifted pre-mRNAs can be restored.  In the case of dystrophin, although the 

resulting mRNA is internally shortened, the functionally important terminal domains are 

retained.  Clinical trials using AONs have been carried out in human patients with DMD 

with promising results confirming restoration of dystrophin expression after local 

intramuscular injection [78, 79].  The challenge now is to develop an effective method to 

deliver oligonucleotides systemically.   

 
In order to achieve lasting effect, AONs need to be able to resist degradation by 

endogenous nucleases, particularly RNase H.  A number of different oligonucleotide 

chemistries have been developed to address this problem.  In all cases this entails making 

modifications to the molecular structure of the sugar-phosphate backbone found in 

naturally occurring nucleic acids while maintaining the molecule’s ability to perform 

Watson-Crick base-pairing with native RNA.  The most common examples currently in use 

include 2’-O-methyl phosphorothioates, locked nucleic acids (LNAs), peptide nucleic acids 

(PNAs) and phosphorodiamidate morpholinos (PMOs) (see Figure 4). 

 

 



 

 

 

 
AONs can be designed to block cryptic splice sites and prevent pseudoexon inclusion.  

AONs targeting activated cryptic splice sites have been used to restore normal splicing in 

beta-thalassaemia (β-globin) and cystic fibrosis (CFTR) [80-82].  In both examples 2’-O-

methyl phosphorothioate AONs were used.  Another related AON chemistry, 2’-O-(2-

methoxyethyl) phosphorothioate AON, has been used to upregulate exon 7 inclusion in 

SMN2 and this rescues the phenotype in a transgenic mouse model of SMA [83].  The 

same approach has been tested in primates [84].  In beta-thalassaemia, splicing defects 

have also been corrected by engineering U7 snRNA to target aberrant splice sites [85].  

Other notable conditions involving pseudoexon inclusion and for which AON therapeutic 

approaches are being investigated include congenital disorders of glycosylation (PMM2) 

[86] and afibrinogenaemia (FGB) [87].  AONs are also being developed to treat myotonic 

dystrophy [88].  By designing oligonucleotides that bind to CUG repeats in DM1, the 

expanded region is prevented from binding to  and sequestering proteins such as MBNL1.  

This disrupts the toxic gain-of-function mechanism thought to account for pathogenesis in 

DM1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure 3: The principle of exon skipping using antisense oligonucleotides.  A. In the top 

figure, consecutive exons are spliced together through recognition of consecutive 5’ and 3’ 

splice sites.  B. In the bottom panel, an antisense oligonucleotide (AON) hybridises to the 

3’ splice site of the first intron, preventing its recognition by the splicing machinery.  

Instead, the next available 3’ splice site (in the following intron) is used, resulting in 

exclusion of the intervening exon.  AONs may be targeted to other regulatory sequences 

such as ESEs, ESSs, ISEs or ISSs in order to achieve the desired effect. 

 
 
 
 
 
 
 
 
 
 
 
 



 

 

Figure 4: Chemical structures of commonly used antisense oligonucleotides.  A. 2’-O-

methyl phosphorothioates.  This chemistry resembles RNA but has a methyl group at the 

2’-O position and has a phosphorothioate rather than a phosphate group linking the ribose 

molecules.  B. Locked nucleic acids (LNAs).  This closely resembles RNA but incorporates 

an extra carbon linker between the 2’-O and the 4’ carbon.  C. Phosphorodiamidate 

morpholinos (PMOs).  The ribose molecules are replaced by morpholine ring moieties and 

the phosphodiester bonds are replaced by phosphorodiamidate linkers.  D. Peptide nucleic 

acids (PNAs).  The entire sugar-phosphate backbone structure has been replaced by a 

repeating aminoethylglycine backbone and acetyl linkers carry the bases. 

 
 
Bifunctional oligonucleotides  
 
Bifunctional oligonucleotides are a variant on the theme of AONs.  They contain an 

antisense-targeting domain at one end and a effector domain at the other which contains 

binding sites for known splicing factors [89].  Bifunctional oligonucleotides have been used 

to facilitate the inclusion of SMN2 exon 7 by acting as an ESE.  Chimeric effectors have 

also been designed which again contain an antisense domain but also have a peptide 

effector domain such as RS repeats that mimic the effects of SR proteins [90].      



 

 

 
 
Trans-splicing 
 
The majority of naturally occurring splicing occurs between exons of a single pre-mRNA.  

Occasionally splicing can take place between two separate pre-mRNA transcripts, which 

may be from different genes.  This process is known as trans-splicing and offers a 

potential route for the ‘correction’ of aberrant RNAs [91].  Trans-splicing is mediated by the 

spliceosome and specific pre-mRNAs can be targeted by designing sequence-specific pre-

trans-splicing molecules (PTMs).  PTMs are oligonucleotides that consist of a binding 

domain complementary to part of the target intronic sequence, a splicing domain 

incorporating the required splicing sequence elements and a coding domain that carries 

the exon(s) to be trans-spliced (see Figure 5).  The complementarity between the PTM 

binding domain and the intronic sequence of interest enables targeting of specific pre-

mRNAs.  Typically the binding domain includes the branchpoint region of the native pre-

mRNA and this has the effect of preventing the usual splicing reaction from taking place.  

By designing strong splice sites in the PTM, the spliceosome can be ‘tricked’ into using the 

PTM splice site in preference over that of the endogenous transcript.  By using this 

principle and different conformations of PTM design, it is theoretically possible to 

effectively reprogramme the 5’ or 3’ ends of an mRNA, or even to selectively replace a 

single internal exon.  Such approaches have been used in models of cystic fibrosis, 

haemophilia A and SMA [92-94]. 

 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Trans-splicing.  A. Example of a pre-trans-splicing molecule (PTM).  B. The 

binding domain of the PTM hybridises to its target pre-mRNA.  Strong splice sites within 

the PTM encourage preferential trans-splicing to generate a ‘reprogrammed’ mRNA. 



 

 

 
 
Challenges: 
 
 
Delivery 
 
The traditional concept of gene therapy entailed restoring the function of a defective gene 

by introducing the correct DNA sequence of a particular gene into the relevant cells.  With 

the advent of RNAi and antisense technologies, the emphasis of gene therapy has 

increasingly moved towards modulation of RNA rather than DNA.  However, irrespective of 

approach, the primary difficulty that still arises is one of delivery.   

 
A number of different delivery vectors, both viral and non-viral, are potentially available as 

means of transport for oligonucleotide-based splice-correction therapies [95].  Viral vectors 

including retroviruses, adenoviruses and adeno-associated viruses have long been used in 

laboratory settings but their inherent risks and immunogenicity has limited their clinical 

application [96].  Although modifications can be made to reduce the immunogenicity of 

viruses, it is perhaps worth considering that evolution of the complex adaptive immune 

system of higher organisms was likely driven for the most part by the need to prevent viral 

infection and propagation.  It is perhaps therefore no surprise that the therapeutic use of 

viral vector gene therapy has so far proved elusive and problematic.  Another widely 

studied approach has been the use of liposome vectors.  Complexing nucleic acids with 

cationic lipid particles can facilitate effective cellular uptake in vitro.  However, efficiency of 

in vivo uptake remains generally poor [97].   

 
One particularly intriguing and promising avenue of research involves the use of cell-

penetrating peptides (CPPs) to deliver conjugated oligonucleotide cargoes.  Such peptides 

include B-peptide and derivatives of Penetratin, a Drosophila protein rich in arginine 

residues.  The exact mechanism by which CPPs enter cells is not fully elucidated [98].  



 

 

However, ongoing studies involving peptide-conjugated AONs for the treatment of 

Duchenne muscular dystrophy are producing extremely promising results.  These studies 

show that conjugation to CPPs dramatically increases oligonucleotide uptake systemically 

in both skeletal muscle and heart [99, 100].  

 
 
Personalised medicine 
 
Mutations found in clinical practice, including those affecting splicing, are largely ‘private’ 

mutations, so called because they are only found in a single individual or in a single 

kindred.  Designing bespoke sequence specific therapies for such situations is 

personalised medicine in the truest sense of the term.  However, if each new 

oligonucleotide sequence designed is classed as a novel therapeutic agent, it will be 

unfeasible to subject each new agent to all the rigorous drug development tests and trials 

used in current pharmaceutical practice.  When the cohort of treatable patients consists of 

a single individual, there can be no prospect of a clinical trial.  This issue is one of the 

major challenges facing personalised medicine and it must be resolved if we are to derive 

the full benefit promised by oligonucleotide-based therapies. 

 
 
Predicting splicing 
 
A growing number of in silico software programs are available to help predict the effects of 

mutations on splicing.  While these can provide useful information regarding mutations 

close to canonical splice sites, their accuracy regarding more subtle sequence changes in 

poorly conserved elements such as splicing enhancers and silencers is much more 

variable.  In the clinical diagnostic setting, such predictions regarding unknown variants 

are generally not yet reliable enough to allow clinical decisions to be based upon them.  In 

such cases there is still a reliance on functional RNA studies to help elucidate the 

presence of aberrant splicing.  However, even this approach has limitations, since the 



 

 

studies are almost always done in blood and there can be no guarantee that the pattern of 

splicing in leukocytes will necessarily reflect that in other tissues. 

 
Predicting the effects that a particular sequence will have on splicing is currently one of the 

greatest challenges in molecular genetics.  As we have seen, the answer is likely to be 

complex, since variations in trans-acting factors can alter the splice isoform pattern and 

different cell types are likely to splice genes differently in response to both intra- and 

extracellular conditions.  Novel methods of global RNA analysis such as exon-junction 

microarrays and deep sequencing, together with detailed cataloguing of the targets of RNA 

binding proteins will lead to a fuller understanding of the complex regulatory networks that 

govern splicing and shed light on the effects of individual mutations on global patterns of 

splicing [101].  

 
 
Conclusions: 
 
The examples cited in this review are far from comprehensive.  However, they do serve to 

illustrate some of the many and varied ways in which splicing contributes to disease.  RNA 

splicing is one of the fundamental processes of cell biology.  The more that is learnt about 

it, the more can be appreciated about its multilayered complexity and its relevance in 

terms of health and disease.  Furthermore, by unpicking the mechanisms by which cells 

choose how to splice their RNA, a fuller picture is gradually emerging of how external 

factors of the cellular environment interact with internal genetic factors.  This 

understanding brings with it too increasing opportunities to manipulate the splicing 

mechanism and to correct it when it causes disease.  By advancement in areas such as 

oligonucleotide delivery, splicing prediction and the understanding of splicing in disease 

pathogenesis, the scientific and medical communities are equipping themselves with much 



 

 

of the knowledge and tools needed for the next rapidly approaching frontier of biomedical 

science, that of pesonalised genetic medicine. 

 
 
Key points: 
 
1.  Pre-mRNA splicing is a highly complex process regulated by cis-acting sequence 

 elements and trans-acting splicing factors. 

 

2.  Aberrant pre-mRNA splicing is a frequent cause of human genetic disease. 

 

3.  Therapeutic strategies to treat splicing diseases include small molecule modifiers of 

 splicing, trans-splicing and antisense oligonucleotides. 

 

4.  Current challenges in this field include effective delivery systems, accurate splicing 

 prediction and the development of personalised mutation-specific therapies. 
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