

Storage and sharing of large 3D imaging datasets

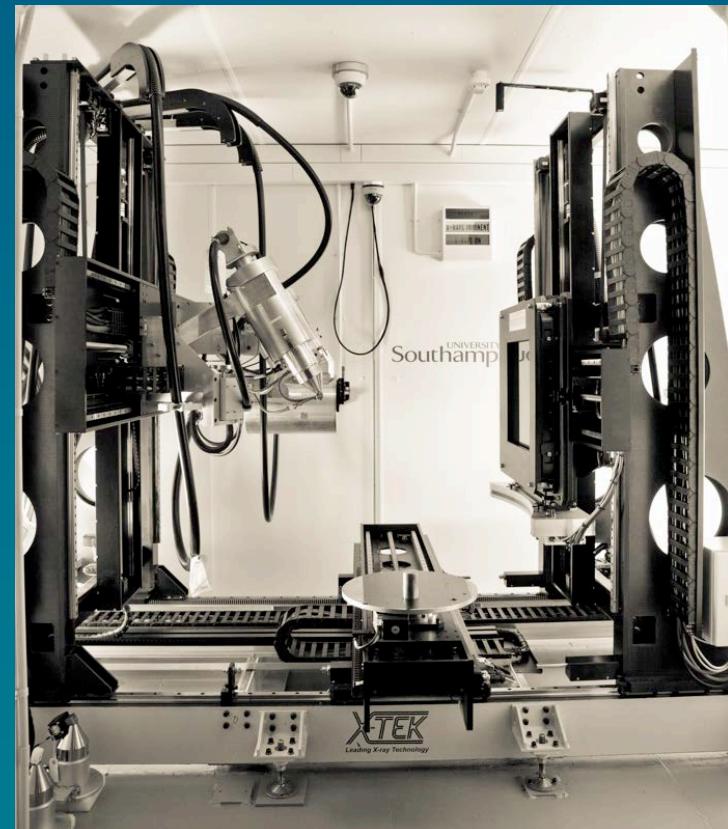
Richard Boardman¹, Ian Sinclair¹, Simon Cox¹, Philippa Reed¹,
Kenji Takeda^{1,2}, Jeremy Frey¹ and Graeme Earl³

¹μ-VIS X-ray Imaging Centre
www.southampton.ac.uk/muvis
muvis@soton.ac.uk

² Microsoft Research Connections, Cambridge, UK

³ Computational Archaeology, Southampton, UK

Content


- Overview
 - Background
 - Delineation of scope & roles
 - Metadata quality
- Example engineering activities
- Metadata & database strategies
- Archiving practicalities
- Final thoughts

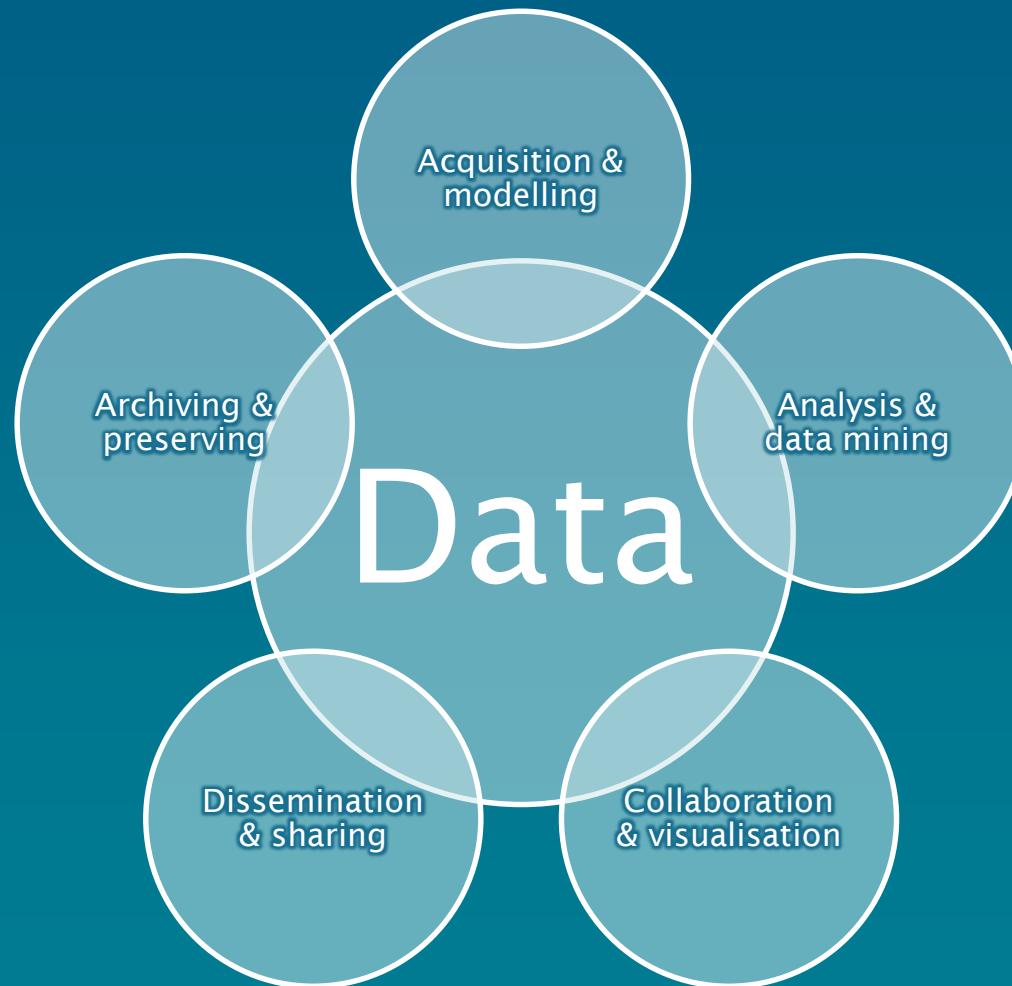
Motivation

- Significant investments in the generation of large voxel datasets (projects, scanning devices...)
 - High fidelity, large 3D datasets almost inevitably contain more potential than the original researcher/project intended
- To keep value, it is essential to retain the data and record parameters surrounding their acquisition and processing
 - Scientific diligence (e.g. experimental reproducibility...)
 - Sharing: extending the data life cycle
 - Funding body requirements
- Unshared data is a loss to science and engineering

Data: ownership & management

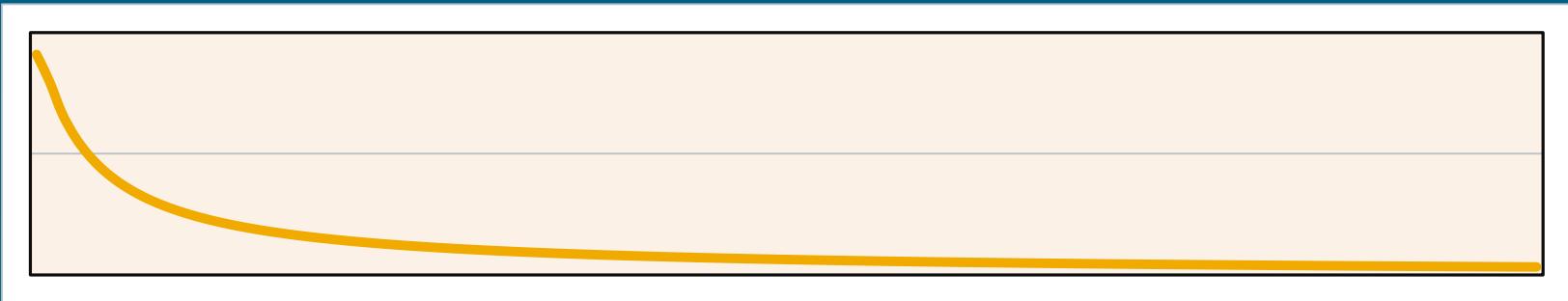
- The roles that are involved
 - Data authors & users
 - Supervisors
 - Facility managers
 - Computer scientists
 - Institutional leaders
 - Funders (government/others)
 - Open access ‘evangelists’
 - Salesmen
 - Legal aspects

μ-VIS X-ray Imaging Centre
www.southampton.ac.uk/muvis


Early Developments

- www.digimorph.org
 - XCT data
 - >1000 bio/palaeo samples
- www.digitalfishlibrary.org
 - MRI data
 - >300 samples (fish!)
- Data reduced to 2D and animations
 - <5Mb
- Raw voxels not available as yet
- Recent example
 - 3D Materials Atlas

Island Kelpfish: MRI & CT data:
DigiMorph & Digital Fish Library

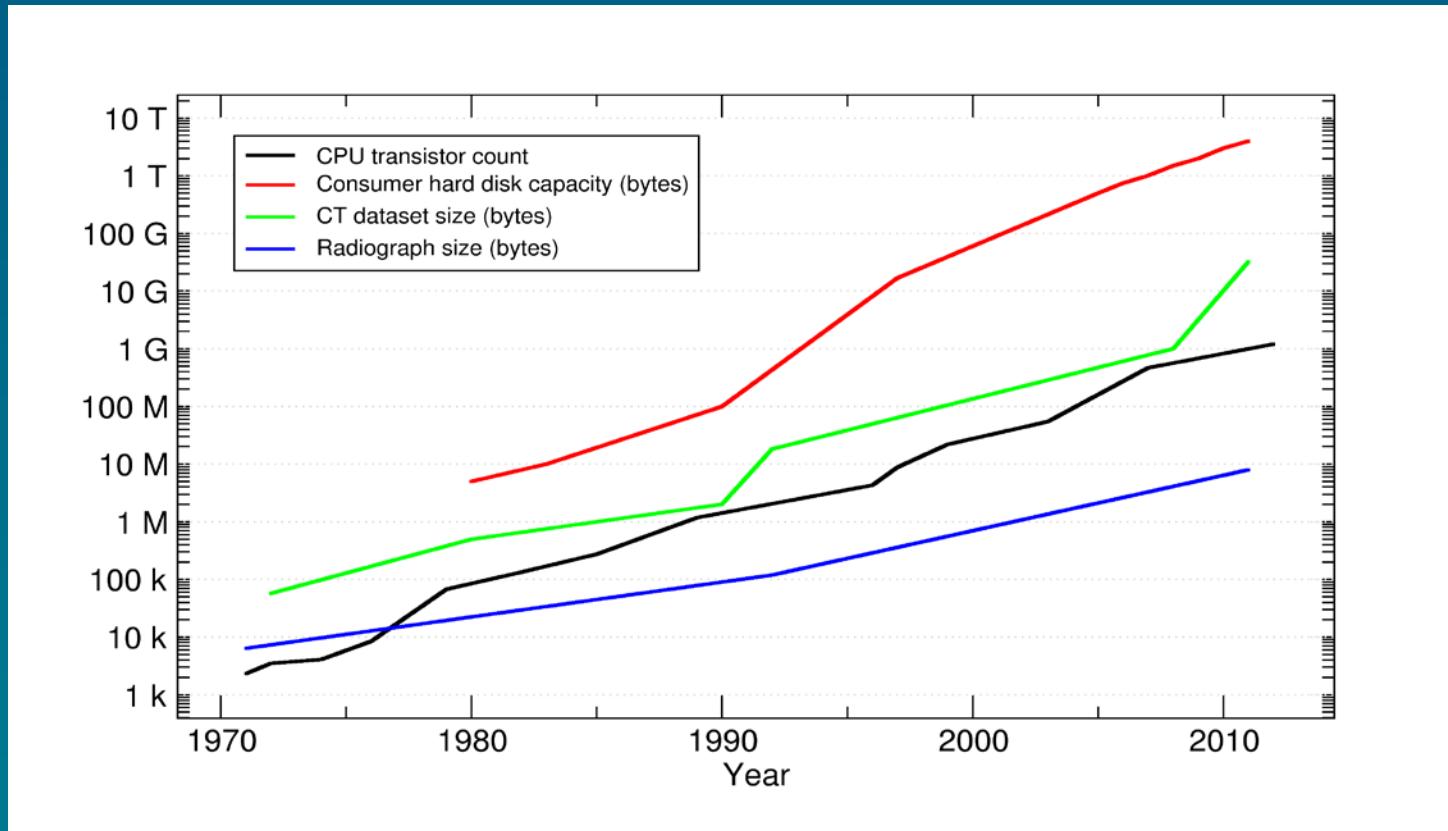

Data-intensive science

Acquisition: The data deluge

- We can generate data faster than we can consume it
 - Rate of generation now exceeds physical storage capacity (Feb. 2011)*
- Synchrotrons: terabytes per day
 - SLS: ~5TB/day (fast acquisition)
 - AS: 200TB/year (growing to 400TB/year with new beamlines)
 - ESRF (*ca.* 2010): O(100TB) 30-day storage, O(PB) for backups
- μ -VIS lab facility: up to two terabytes per day (robotic operation)
 - 20GB projections + 30GB reconstruction = 50GB in as little as 10-15 minutes
 - Plus O(10MB) metadata
- *LHC* $\sim 50\text{-}100\text{PB/yr}$, $\sim 20\text{PB stored}$

Long-tail science

- Small numbers of major projects/facilities responsible for a lot of output
 - Formal data management policies & resources
- Large number of smaller projects/facilities also do a lot!
 - Data management policies & resources very variable


What do we mean by “large”

- For our purposes, right now we will say that it is datasets which are $O(1\text{GB} - 100\text{GB}+)$
- They won't necessarily fit on CDs, DVDs, Blu-rays
- They will fit on hard drives
- Transferring them around even in isolation may present a challenge (portable drives, institutional networks, FTP/rsync/GridFTP?)
 - ➔ Grid/Cloud capabilities & tools, e.g. Globus, MS Azure, Amazon S3, **Dropbox**
 - ➔ ‘Never underestimate the bandwidth of a stationwagon full of tapes hurtling down the highway’?

What about Moore's Law?

- Integrated circuit transistor count doubles every two years
- Broadly applicable to many areas of technology, including hard disk capacity
- Perhaps we can just wait a while and Moore's Law will help us store data?
- Unfortunately, our large 3D datasets also "obey" Moore's Law
 - This large 3D dataset problem will always be with us

What about Moore's Law?

Sources: Kalendar, W (2011); µ-VIS X-ray Imaging Centre; IBM; AMD; Intel; DEC; Seagate; Western Digital

- Solution? Greater allocation of resources to storage/archiving – who pays?

Southampton data sharing projects

- data.gov.uk – “Opening up Government”
 - Founded by Nigel Shadbolt and Tim Berners-Lee
- Open Data Service
 - data.southampton.ac.uk
- Research data access
 - datapool.soton.ac.uk
 - 10 year roadmap
 - *Recognising need for new services, policy framework and data management support*

Open Data Service beta

Open Data Homepage

- [5* Data](#)
- [Frequently Asked Questions](#)
- [Apps](#)
- [Data Catalogue](#)
- [Places](#)
- [Phonebook](#)
- [Academic Programmes](#)
- [Organisation](#)
- [Research Facilities](#)
- [Events](#)
- [Jargon](#)
- [Points of Service](#)
- [Products & Services](#)
- [Bus Routes](#)
- [SPARQL Endpoint](#)
- [Feedback](#)
- [Suggestions](#)
- [Report a Problem](#)
- [Register an App](#)
- [Credits](#)

Facility: CT Centre

Homepage: <http://www.southampton.ac.uk/muvis/>

Building: Eustice

Facility of: University of Southampton

Facility of: Engineering Science Unit

A dedicated centre for computed tomography (CT) at Southampton, providing complete support for 3D imaging science, serving Engineering, Biomedical, Environmental and Archaeological Sciences. The centre encompasses five complementary scanning systems supporting a wide range of sample sizes (imaged volumes up to 1.5 x 1 x 1m) and resolution (down to ~200nm). Both academic and industrial consultancy services are provided.

Contact: Ian Sinclair I.Sinclair@soton.ac.uk [+442380595095](tel:+442380595095)

The data used to generate this page is created and published as part of the [Research facilities and equipment sharing project](#) funded by EPSRC. If you have additions, or corrections to the facilities and equipment database, please contact the project manager at facshare@soton.ac.uk.

University of Southampton > Open Data > Facilities > Facility: CT Centre

Share

Facility: CT Centre

http://d.southampton.ac.uk/facility/F0025 ← This is the URI

©2010 François-Xavier Beckers (CC-BY)

Google Maps © 2010 University of Southampton. All rights reserved. The Google logo is a trademark of Google Inc.

Bus Routes

SPARQL Endpoint

Feedback

Suggestions

Report a Problem

Register an App

Credits

CT Centre

EM Centre

Upcoming Events

Saturday 7th July

11:00 - Graphic Arts (including Photography)

11:00 - Graphic Arts (including Photography)

11:00 - Fashion & Textile Design

11:00 - Fashion & Textile Design

Google Maps © 2010 University of Southampton. All rights reserved. The Google logo is a trademark of Google Inc.

View Larger Map (Full Screen)

12

Southampton data sharing projects

- Data grades (stars)
 1. Anything/‘stuff’
 2. Structured data, e.g. Excel file instead of jpeg of a data table
 3. Open format, e.g. CSV vs. Excel files
 4. Provide persistent link
 5. Links to others data/information, to provide context
- 1* is great, but must aim for 5*

The screenshot shows a data sharing platform interface. At the top, there are navigation links: Home, Map Search, Publishers, Tags, Public Roles & Salaries, and Spend Browser. On the right, there are 'Log in or sign up' buttons and sections for 'Licence' (UK Open Government Licence (OGL)) and 'Contact' (Enquiries: transparency@defra.gsi.gov.uk, FOI Contact: informationrights@defra.gsi.gov.uk). The main content area displays a dataset record for 'Estimated emissions of 1,3-butadiene by UNECE source category: 1990 - 2010'. The record includes a 'View' button, a 'Resources (1)' dropdown, and a 'History' button. Below this is a 'Description' section with the text 'estimated emissions of 1,3-butadiene by UNECE source category: 1990 - 2010'. The 'Data Resources (1)' section shows a link to 'Estimated emissions of 1,3-butadiene by UNECE source category: 1990 - 2010' with 'CSV', 'Preview', and 'Download' buttons. The 'Additional Information' section provides metadata: Openness Score (3 stars), Geographic coverage (United Kingdom (England, Scotland, Wales, Northern Ireland)), Date added (04/04/2011), Date updated (06/07/2012), Precision (to the nearest tonne), Update frequency (annual), Temporal granularity (year), Theme (No value), Mandate (No value), Temporal coverage (No value), and Geographic granularity (No value). The 'Developer Tools' section provides a JSON endpoint: /api/2/rest/package/estimated-emissions-of-13-butadiene-by-unece-source-category. It also links to the CKAN API and a permanent URI: <http://data.gov.uk/dataset/estimated-emissions-of-13-butadiene-by-unece-source-category>. The right sidebar contains sections for 'Tags' (Environment, air, atmospheric, defra, department-for-environment-and-rural-affairs, emissions, energy, environment, environmental-protection, environmental-statistics-service, pollution) and 'Social' (Twitter, Facebook, Google+). The 'Developer tools' section links to JSON, API, and URI. The 'Do more with this data' section links to Share your app, Share an idea, and Request new data.

If only I knew exactly
how she did this
experiments

I wish I had
recorded things at
the start the way I
do now.....

I wish I could get
the numbers from
this graph - the pdf
is not much use.

I know all this supplementary
information could be useful but
will people really remember the
format? Is it worth all the hassle?

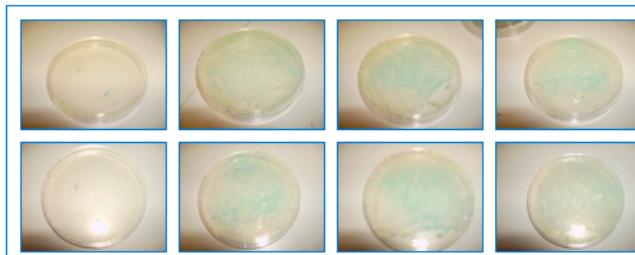
Typical laboratory
conversations?

Implementation of e-lab book

- Blog based format
- Purpose built engine
- Fully flexible system with arbitrary metadata
- Full record of changes

Transformation of plasmid JRH4712/66 into BW25141 by electroporation

11th December 2006 @ 14:31


Transformations were set up according to the following protocol: LB Ampicillin arabinose plates and SOC medium were warmed to 37 °C briefly before the arabinose plates were spread with X-glu (80 µL, 1:1 X-glu and LB) and allowed to continue warming.

BW25141 cells, plasmid JRH4712/66, p042, and electroporator cuvettes were cooled on ice. Items were added to the cuvettes as follows

-	1	+ve ctrl	-ve ctrl
BW25141	40 µL	40 µL	40 µL
plasmid 4712/66	4 µL	0 µL	0 µL
p042	0 µL	4 µL	0 µL

Cuvettes were electroporated at 1.75 kV, immediately had SOC medium (950 µL) added and the transformant transferred to eppendorf. The transformants were incubated at 37 °C for one hour with shaking. The transformants were diluted 1 in 20 with LB and 100 µL added to LB amp arabinose plates and incubated at 37 °C overnight.

Data

Jennifer Hale | Beta-glucuronidase | Comments (3)

Archives

[January 2007](#) (24)
[December 2006](#) (11)
[November 2006](#) (5)

Sections

[beta-galactosidase preparation and assays](#) (18)
[Beta-glucuronidase](#) (18)
[Data \(Formatting\)](#) (1)
[Software discussions](#) (2)
[Starting materials and reagents](#) (1)

Lab Book Ref

[JRH4712-63](#) (1)
[JRH4712-64](#) (2)
[JRH4712-66](#) (1)
[jrh4712-76](#) (1)
[jrh4712-77](#) (1)
[jrh4712-78](#) (1)
[jrh4712-80](#) (1)
[jrh4712-81](#) (1)
[jrh4712-83](#) (1)
[jrh4712-82](#) (1)
[jrh4712-84](#) (1)
[jrh4712-85](#) (1)
[4712-88](#) (1)
[jrh4712-89](#) (1)
[4712-86](#) (1)
[jrh4712-87](#) (1)
[4712-90a](#) (1)

Product

[jrh4712-74](#) (1)
[jrh4712-76](#) (1)
[jrh4712-76a](#) (1)

Sample Parent

[jrh4712-74](#) (1)
[jrh4712-76](#) (1)
[jrh4712-76a](#) (1)
[jrh4712-77](#) (1)
[jrh4712-79](#) (1)

Implementation of e-lab book

- “Facebook for Scientists” ...but different to Facebook!
- A repository of research methods
- A community social network of people and things
- Machinery for coordinating the execution of (scientific) services and linking together (scientific) resources
- Open source (BSD) Ruby on Rails application with HTML, REST and SPARQL interfaces

The screenshot shows the myexperiment beta website interface. The top navigation bar includes links for About, Mailing List, Publications, Log in, Register, Give us Feedback, and Invite. The main content area displays a 'Workflow Entry: SigWin-detector Config-Basic'. The entry was created on 30/10/08 at 14:26:17 by Adambel. It is a Chemistry Plan workflow. The 'Version 1 (of 1)' section shows a complex graph of nodes and connections, representing the workflow logic. Below the graph, the 'Description' section states: 'Detects significant windows in a sequence.' The 'Output' section provides a detailed explanation of the file format: '(1) A file containing the detected significant windows for each label. Each data row represents a stretch of consecutive significant windows. Column 1 gives the window size and columns 2 and 3 give the first and last significant windows in the stretch.' The right sidebar contains various navigation and user-related links, including 'New/Upload', 'Workflow', 'Log in / Register', 'Popular Tags', and 'Ratings'.

www.myexperiment.org

Preserving the record

- Key goal: record the whole experimental process prior to and during, rather than after
 - Ensures we efficiently generate a traceable, complete record of the work
 - Foundation for high quality sharing & reuse of data, extending data life
 - Scalable from a single lab to whole communities

TAGtivity

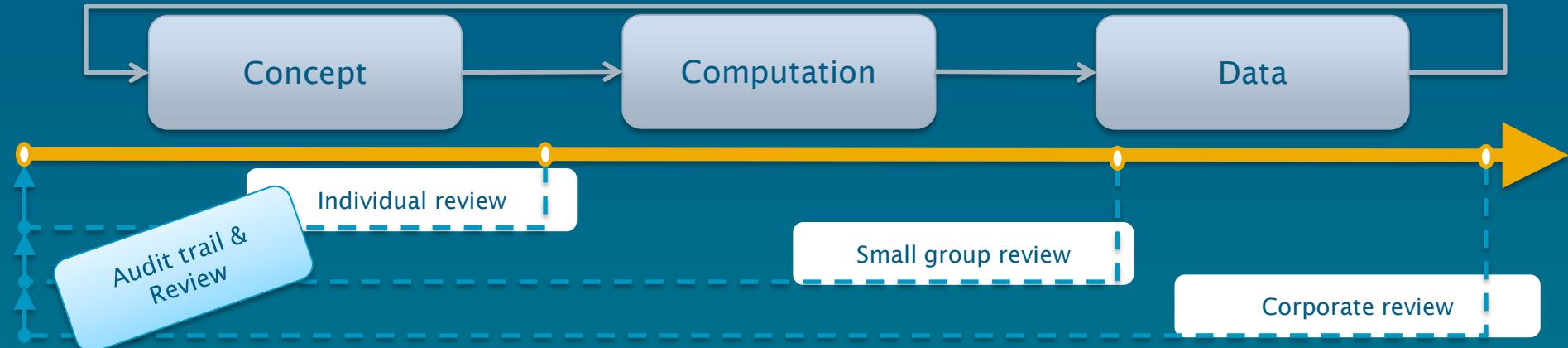
Organizing thoughts and reference material... experience

Wiki

Semantic structure, search and reasoning

BAE Systems

Software + Services for connecting engineers and experts to users and data


Rolls-Royce

Orchestration of gas turbine design calculations

Airbus

Robust, reliable and scalable data intensive collaboration

Centre for Fluid Dynamics Simulation Project

Data sources

Tagtivity database
Filesystem

Wiki database
Workflow database
Knowledge database
Corporate database

Task database
Conversation database
Workflow tracking
Simulation database

Workflow templates
Workflow tracking
Filesystem

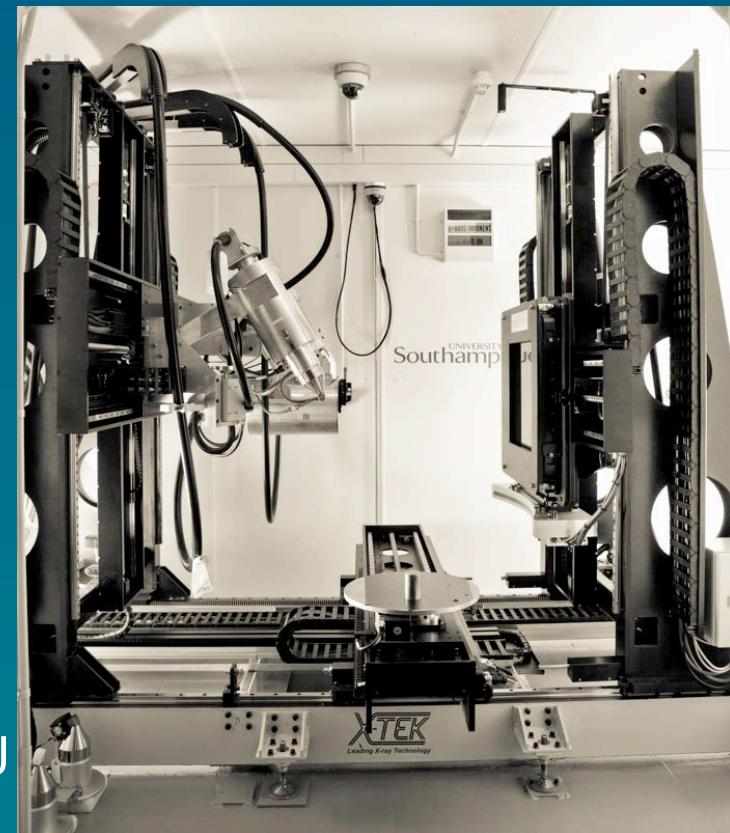
Sharepoint database
Active Directory

Technology

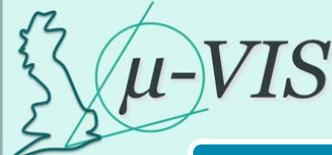
Microsoft Office 2007
SQL Server 2005/ 2008
Windows Presentation Foundation; Matlab

MediaWiki
SQL Server 2008
D2R Server
ARQ/SPARQL

Windows Server 2008
Hyper-V RC0
Windows HPC Server 2008
Beta2
SQL Server 2008 CTP6
Office Communication Server


Windows Workflow Foundation
Windows CCS 2003
Linux (Interop)
Visual Studio 2005
SQL Server 2005

Sharepoint Server
Active Directory
HP-UX (Interop)
Windows Communication Foundation
18


μ -VIS X-ray Imaging Centre

- Five CT scanners, including

- 225/450kV custom “hutch”, imaging up to 1x2m, panel shift and line detector
- 225kV Nikon/Metris HMX with rototic sample exchange
- Largest single scan >1TB
- 60TB online data store, 10GbE connectivity
- Workstations up to 32 CPU cores/128GB RAM/nVidia Tesla GPU rack
- >100 users/year

μ -VIS X-ray Imaging Centre
www.southampton.ac.uk/muvist

Concept

Execution

Data

Beamtime
application

Experiment design
(*e.g.* custom
mounts, scan
condition control)

Scheduling,
acquisition and
reconstruction

Data analysis

Long term
archiving and
sharing

Data sources/targets

IMAP email
Bugzilla
database

Bugzilla database
Wiki database
Metadata database

Google calendar
10GbE central
filestore

10GbE central
filestore
Wiki database

Shared 10GbE
filesystem
Hard disks
Dropbox
Metadata DB

Technology

HTML/PHP
Perl
Apache web
server
Bugzilla

Bugzilla
MediaWiki
Perl
Apache

CTPro (FBP)
Digisens (ART)
Windows Server
2008R2
Linux

VGStudio MAX
Avizo
Simpleware
ImageJ
Matlab
IDL

Python
MySQL
SMB/NFS/FTP

What data storage and sharing means

Data storage: database, central file store

Machine acquired

Radiographs

Sinograms

Shading corrections

Machine generated

Analyses

Reduced datasets

Photographs

Scan metadata

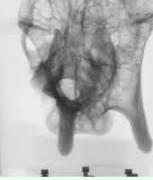
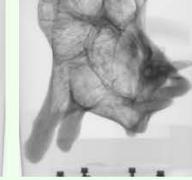
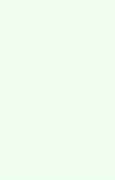
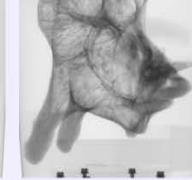
Enquiry metadata

Environmental
information (e.g.
radiation levels,
temperature)

Volume reconstructions

Visualisations

... many more





What metadata are relevant?

- In CT, a sensible minimum is:
 - Two projections (at 0 and 90 degrees)
 - A central slice of the reconstructed volume
 - All the available acquisition condition metadata (filters, kV, μ A, source to detector distance &c.)
- For one CT scan, this might be 30 or 40MB; much more manageable than 50GB
- Once metadata are stored, a web interface provides tools to review and search

Further metadata

- In our case, if a user adds something “extra” to a CT scan directory, then this is also captured
 - Photographs of the sample, special sample mounting rigs, documentation, charts, videos, anything else
- ... and “Smart Pen” output (operator notes) is added (→ searchable pdf file)
- E-lab books TBC

Metadata: browsing and searching

ID	Data ID	Scan ID	Index date	Name	kV	μA	Exposure (ms)	Projections	0°	90°	XY slice	First extra image?
2077	1104	338	2012-05-30 23:05:55	20120530_HUTCH_338_NS_Giraffe_craniun_1	380	800	125	1901				
2078	1104	338	2012-05-30 23:05:57	20120530_HUTCH_338_NS_Giraffe_craniun_1	380	800	125	1901				

Web browser interface

- 2 projections & central slice
- Extensive metadata
- Dataset names, IDs, times
- NetApp/archive location
- Original proposal, emails...

XraykV	380
XrayuA	800
Stack	0
Slice	0
SinogramOffsetX	0
SinogramBandSampling	1
SliceThreshold	0
SliceAreaStartX	125
SliceAreaEndX	875
SliceAreaStartY	125
SliceAreaEndY	875
Version	V2.2.4182.18577 (Date:1
Product	Product:[XT: CT Pro 3D],
Filter_ThicknessMM	3
Filter_Material	Copper

Metadata standards: DICONDE

- Direct mapping of DICOM to industrial CT
- Firmly established approach, detailed

ASTM No.	Title	Description	Status
E2339	Digital Imaging and Communication in Nondestructive Evaluation (DICONDE)	Data and metadata that applies to ALL NDE methods.	Issued 2004
E2663	Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) for Ultrasonic Test Methods	Data and metadata that are relevant only to ultrasonic test methods	Issued 2008
E2767	Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) for X-ray Computed Tomography (CT) Test Methods	Data and metadata that are relevant only to x-ray computed tomography test methods	Issued 2010
E2699	Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) for Digital Radiographic (DR) Test Methods	Data and metadata that are relevant only to digital radiographic test methods	Issued 2010
WK20537	Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) for Eddy Current Test Methods	Data and metadata that are relevant only to eddy current test methods	Waiting on Public Attributes
E2738	Digital Imaging and Communication Nondestructive Evaluation (DICONDE) for Computed Radiography (CR) Test Methods	Data and metadata that are relevant only to computed radiography test methods	Issued 2009

Heterogeneous Data Centre

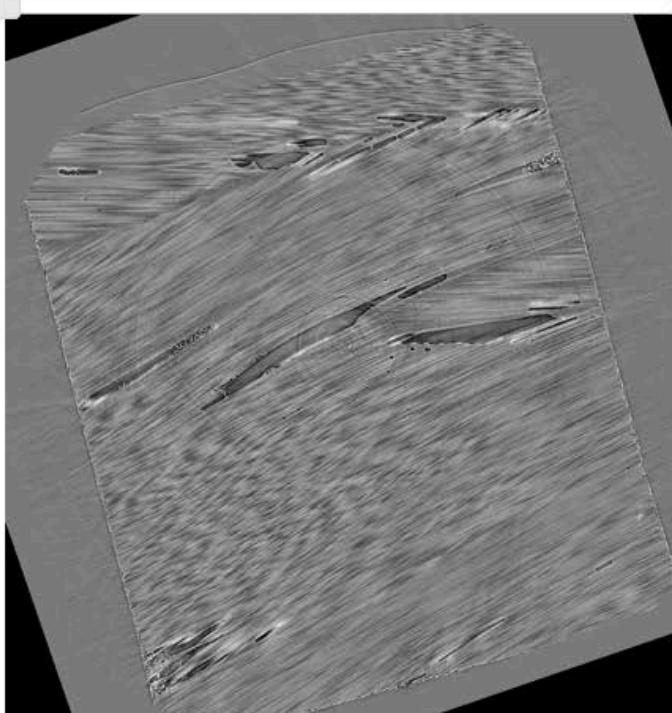
- To provide a user-centric software system for users to store and share their data and metadata in a usable way
- The user decides their own metadata structures
 - Stored as name-value pairs and can be hierarchical, providing a flexible approach to data management
- To support a wide variety of data, from small text files to large voxel data files.
- Provide the ability for users to tag data sets with any relevant metadata

CT Dataset browsing in HDC

Data Files
Experiment Parameters – My Visual WebPart

Select	Filename	Description	Base Path
Select	prepg_aligned_innerhelical_1677_1770_1772.raw	3D voxel	m:\mdc\ctscan data

Experiment Parameters


Parameter entry not supported in a web part. [Use experiment details page instead.](#)

[Manage ctscan experiment details](#)
[Print report for experiment ctscan](#)

CT Data Viewer

X Size: 1677 XY
Y Size: 1770 XZ
Z Size: 1772 YZ
Slice: 1 Auto contrast image

[Load Image](#)

Heterogeneous Data Centre

- Data can be uploaded via EPrints with the EP2DC service or directly

Home

ePrints Soton

- Policies
- Latest Additions
- Browse by Year
- Browse by Subject
- Browse by School

EPrints Search

Login

Home > Research > EPrints

Microstructure variation effects on room temperature and thresholds in Udimet 720Li Ni-base alloy

Pang, H.T. and Reed, P.A.S. (2009) Microstructure variation effects on and thresholds in Udimet 720Li Ni-base alloy. *Fatigue & Fracture of Eng Mater & Struct*, 32, 685-701. ([doi:10.1111/j.1460-2695.2009.01685.x](https://doi.org/10.1111/j.1460-2695.2009.01685.x))

 PDF - Pre print
265Kb

Official URL: <http://dx.doi.org/10.1111/j.1460-2695.2009.01685.x>

Description/Abstract

An assessment of the effects of microstructure on room temperature fatigue behaviour has been carried out on microstructural variants of U720Li, i.e. grain variant) and U720Li-LP (large intragranular coherent γ' variant). Fatigue behaviour using a 20Hz sinusoidal cycling waveform at an R-ratio=0.5, ΔK (ΔK_{th}), whilst U720Li-LP showed the lowest ΔK_{th} value. U720Li-LP was in the near-threshold regime and at high ΔK (although at higher ΔK levels the rates of U720Li and U720Li-LG were relatively similar both in the near-threshold regime and at high ΔK), showed crystallographic stage I type crack growth in the near-threshold regime. U720Li-LG showed crystallographic facets on the fracture surface while U720Li-LP and U720Li

EP2DC

Home | About | Browse by Year | Browse by Subject | Browse by Division | Browse by Author | [Login](#) | [Create Account](#) Search

test
francois, s test. dasd . (Submitted)

 [Image \(JPEG\)](#)
2447b

EP2DC - data management and collation for EPrints

The following data is available to support this item:

You must [login](#) to download this data.

[+ Show details](#) [- Hide related items](#)

 [specimen_1_full.xml](#)
[specimen_1_full.xml](#)
[specimen_1_full.xml](#)
[test-file.xml](#)
[test-file.xml](#)

Item Type: Article
Subjects: [A General Works > AC Collections, Series, Collected works](#)
ID Code: 19
Deposited By: EPrints Services
Deposited On: 14 Dec 2009 14:53
Last Modified: 14 Dec 2009 14:53

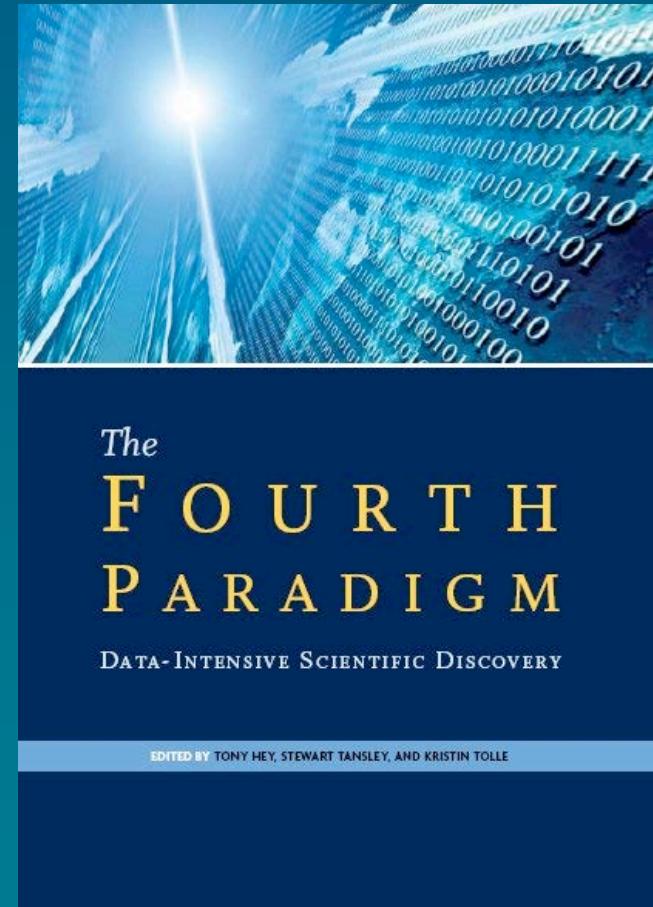
Archiving practicalities

- Many options available: carefully indexed disks or tapes, online NAS, cloud storage
- It is impossible to *100% guarantee* that data will never be lost
 - We can get close (90%, 99%, 99.9%...)
- Cost scales with reliability

Archiving practicalities (*continued*)

- One copy on one hard disk: ~10-20% chance of data loss over 5 years
 - Approximate cost in 2012: ~\$10/TB/year
- Two copies on two separate disks: ~1-4% chance of data loss over 5 years
 - Approximate cost in 2012: ~\$20/TB/year
- “Enterprise” class storage (*e.g.* NetApp): <1% chance of data loss over 5 years
 - Approximate cost in 2012: ~\$500/TB/year

Cloud storage

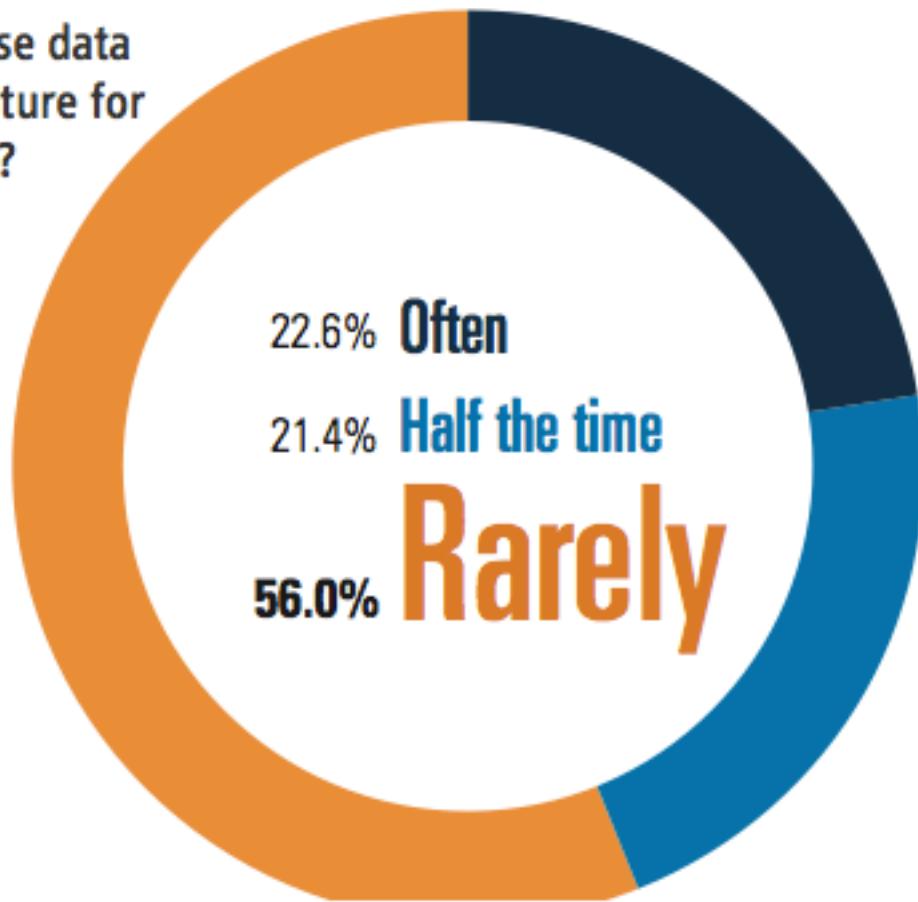
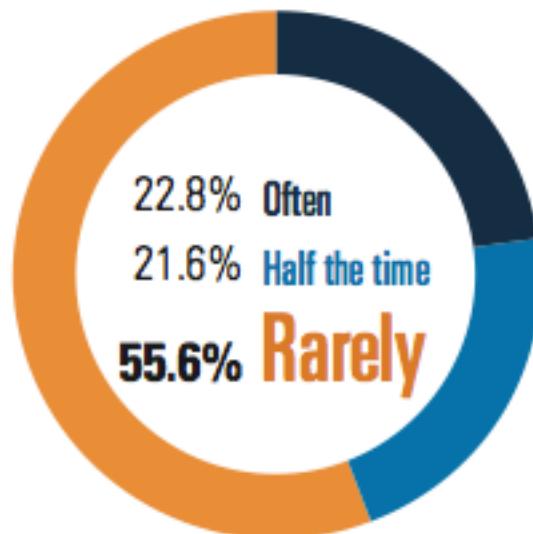

- Provides a scalable and reliable option to store data, e.g. Amazon S3
 - ‘11 nines’ reliability levels
- Typical pricing is $O(\$0.10)/\text{GB/month}$ (2012)
 - around $\$1200/\text{TB/year}$; additional charges for uploading and downloading
- Recently, providers have been waiving upload charges
 - 30GB download $O(\$5)$
 - May make storing large amounts of data with relatively few downloads more attractive

Final thoughts

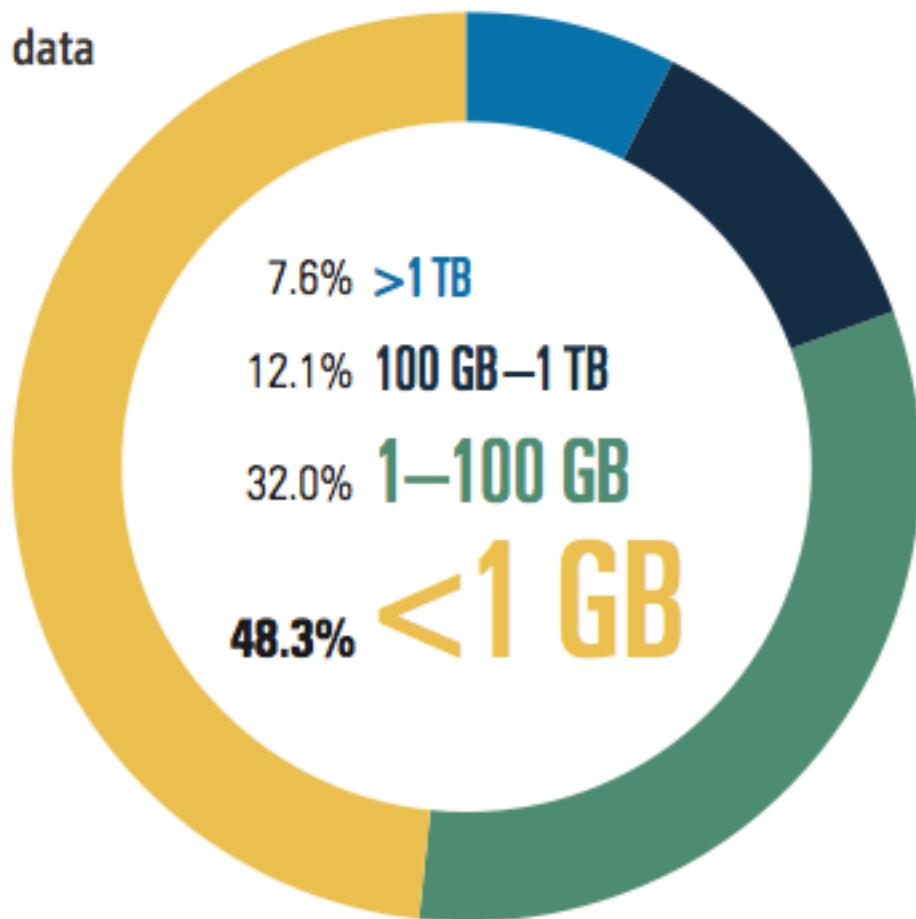
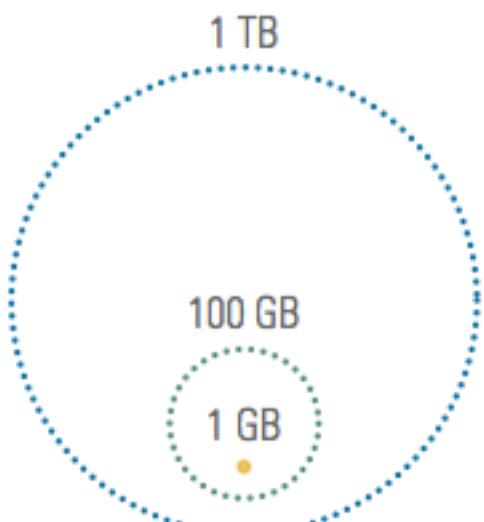
- Local behaviour – what's going on in your lab? Are people carefully looking after their datasets?
 - The generation of quality data and metadata is best done *concurrently*
 - If we look after it, we can make better use of it
- Look for technology that will work well with your, requirements, current systems and budgets
 - *Many* strategies & tools are already in place
 - BioSimGrid, ROOT...
- The first step is, start now...
 - The sooner, the better

Final thoughts

- Contribution to the ‘4th Paradigm’?
 - Science driven by the capture, curation, analysis of large data
 - All data becomes publically **available** and **usable**, like books in the library
- 1st: *Empirical description of nature* (~1000 yrs ago)
- 2nd: *Mathematical theory* (~100yrs)
- 3rd: *Large simulation* (~30 yrs)

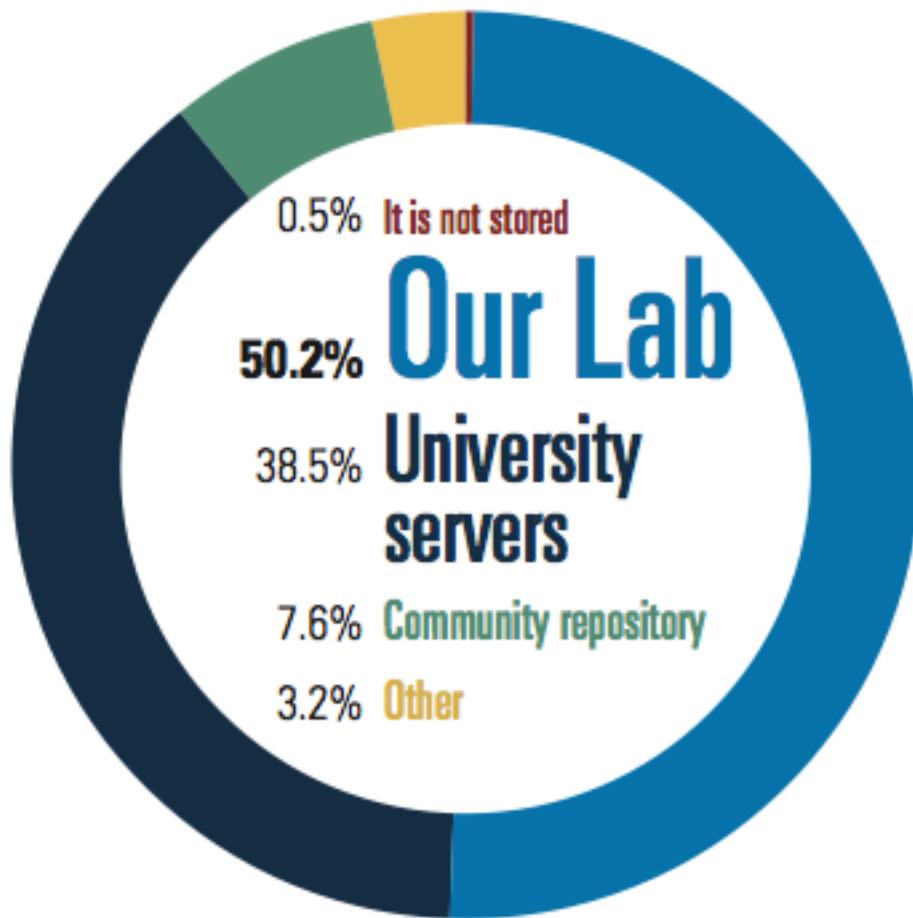



Acknowledgements



- The μ -VIS team
- Mark Scott (HDC)
- Oliver Bunk (Swiss Light Source)
- Uli Felzmann (Australian Synchrotron)

How often do you access or use data sets from the published literature for your original research papers?

From archival databases?



What is the size of the largest data set that you have used or generated in your research?

Where do you archive most of the data generated in your lab or for your research?

“ Even within a single institution **there are no standards for storing data**, so each lab, or often each fellow, uses ad hoc approaches. ”

