
BASIC SCIENCE REVIEW ARTICLE

Analysis and Interpretation of the Human Microbiome
James J. Ashton, BMBS,*,† R. Mark Beattie, FRCPCH,* Sarah Ennis, PhD,† and David W. Cleary, PhD‡,§

Abstract: Microbiome research has experienced an unprecedented level of growth over the last decade. This is largely due to revolutionary
developments in, and accessibility to, DNA sequencing technologies that have enabled laboratories with even modest budgets to undertake projects.
Study of the human microbiome in particular has seen a surge in interest, and although a lot of time and money has been focused on health and disease,
the clinical interpretation of these data and the ability of clinicians to understand these studies in the context of disease are less straightforward.
Conditions such as inflammatory bowel disease, asthma, and cancer have seen a huge increase in research focused on the role of microbiome in disease
pathogenesis, but the ability of clinicians to appraise and use these data is largely lacking. The purpose of this article is to provide an introduction for
clinicians and nonclinicians wishing to learn about and engage in microbiome research. It details the background of microbiome research and discusses
the process of generating 16S rRNA sequencing data, the most commonly used method for microbiome analysis. We discuss the interpretation of results
in a clinical context, commonly used metrics for analysis and discuss future impact and direction for microbiome research. The meteoric rise of genomic
medicine to the brink of routine clinical use should be seen as a blueprint for the microbiome; the ability for physicians to understand and interpret these
data is vital to this growth and aiding clinicians (and researchers) to participate in further microbiome research.

(Inflamm Bowel Dis 2016;0:1–10)
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T he advent of high-throughput next-generation sequencing has
revolutionized genetic research; since the completion of the

human genome project in 2003, a whole human genome can now
be sequenced for a fraction of the cost and in a fraction of the time.
Over the last 5 to 10 years, this technology has begun to be applied
to bacteria, with coining of the term microbiome to describe “the
collective genomes and gene products of all microbes residing
within an organism.”1

Study of the human microbiome in the context of disease
has seen a surge in interest. Although a lot of time and money
has been focused on several disease areas, the clinical
interpretation of these data and the ability of clinicians to
interpret these studies in the context of understanding and

management of disease has lagged behind. To address this gap,
this review is targeted at those wanting to understand and
interpret microbiome results and data; we discuss basic science
aspects, techniques for investigation, analysis, and interpreta-
tion of data.

The virome and mycobiome are, respectively, the viral and
fungal equivalent of microbiome,2,3 details of which are beyond
the scope of this review.

WHAT IS THE MICROBIOME AND WHY IS
IT IMPORTANT?

The microbiome is “the collective genomes and gene
products of the microbiota residing within an organism.”1 In
normal healthy individuals, microbiota exists on all parts of
the body that come into contact with “the outside world.” Bac-
teria at certain body sites have long been believed to be involved
in immune modulation/programming, in the development of dis-
ease,4,5 and in maintaining health.6,7 Currently, 16S rRNA
sequencing for microbiome analysis has been used solely as
a research tool. The potential to use rapid sequencing to char-
acterize and understand the impact of bacteria on diseases (not
classical infectious disease) is huge, and a parallel to the rapid
emergence of human genetics and genomics in a clinical setting
cannot be overlooked.

The Human Microbiome Project is an attempt by the
National Institute of Health to characterize microbial communities
at various sites on the human body.1 This project has been ongo-
ing since 2007 and has widely published on health and disease.
There is an aim to produce reference data alongside detailing the
role that the microbiome has in disease.
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Definitions

1. The Human Microbiome Project a National Institutes of
Health (NIH) project centered on sequencing and identifi-
cation of the microbiome from all body sites.8

2. Microbiome: the collective genomes and gene products of
the microbiota residing within an organism.1

3. Microbiota: a collective term for a group of microscopic
organisms of any (specific) region.

4. Metagenomics: analysis of microorganisms by direct
extraction of DNA from all genomes within a sample.9

5. 16S ribosomal RNA: bacterial small ribosomal subunit; the
DNA coding for this contains highly conserved areas situ-
ated between 9 highly variable regions (V1–9).10 A number
of sequence repositories are available, such as Greengenes,
which is a comprehensive collection of regularly updated
freesource 16S rRNA gene databases.11

6. Dysbiosis: an imbalance or shift in microbiota at a given
body site to an altered state.12

7. Taxonomy: classification of organisms into groups based
on their characteristics (for bacteria, this is often their
genetic similarity).

8. Phylogeny: a description of evolutionary relatedness
among a group of organisms.

9. Operational taxonomic unit (OTU): microbial 16S sequen-
ces are grouped together at a level of similarity (variable) to
indicate a single “taxonomic unit.” For example, all se-
quences with 94% similarity are grouped together into a sin-
gle genus.13,14

10. Next-generation sequencing: a catch-all term used to
describe several modalities of high-throughput sequencing
technologies.15

11. Primer sequence: in the context of microbiome sequenc-
ing, these are the DNA primer sequences used to amplify
a specific variable region(s) within the 16S rDNA gene.

12. FASTQ file: text-based format containing multiple nucle-
otide sequences each with a per-base quality scores.

13. Barcode sequence: a sample-specific DNA sequence
(code or tag) that is incorporated into the DNA to be
sequenced at the point of amplification. It allows linking
of output sequences back to their samples of origin.

14. LINUX/UNIX: a modular operating system that uses a sin-
gle “kernel” for all processes. Additional devices/pro-
grams can be added as modules. It used a command-line
interface (or graphical user interface). LINUX is an exam-
ple of an open-source software operating system.

WHAT SAMPLES CAN YIELD
MICROBIOME DATA?

Almost any biological sample can be used to derive bacterial
DNA.8 The most commonly used samples are biopsies (GI, skin,
and lung tissue), washings/scrapings (such as bronchoalveolar

lavage), and fluids/bodily products (such as faeces and sputum).
The source of sampling does not impact on the technology used for
subsequent 16S analysis, but all samples undergo specific process-
ing (dependant on their type) to extract bacterial DNA. Certain
samples with low bacterial biomass are likely to have low yields
of DNA; it is vital to be able to recognize this and interpret with
adequate controls in these scenarios.

Storage of samples before processing is critical; some
bacteria will lyse and their DNA will degrade, whereas some will
multiply after sampling, leading to misleading or incorrect results.
Generally, samples are frozen as soon as possible and some (such
as tissue samples) are stored in solutions to preserve DNA/RNA
(such as RNAlater [various manufacturers]).

WHICH DISEASES TYPES MAY BE OF INTEREST
TO MICROBIOME RESEARCHERS

Microbiome research has not focused on classical infectious
illnesses; most clinicians will be aware of targeted sequencing or
PCR testing for common infectious bacteria such as Neisseria men-
ingitidis. 16S sequencing is much broader and gives little or no
information about subspecies and antibiotic sensitivities that are
important to the clinicians. Most publications relate to disease in
which host–microbe interaction is likely to play a role in disease
pathogenesis and ongoing disease flare; these are mostly chronic
conditions such as inflammatory bowel disease (IBD),4,16–18

asthma,19–21 skin conditions,22 and cancers.23–25

The immunomodulatory effect of the microbiome seems
likely to hold a key to understanding several diseases, and
correlation of host gene expression (transcriptome) with the
microbiome and microbial gene expression may yield useful
insights.16,18,26 Trials have begun to look at the effect of specific
modulatory diets on the gut microbiome, largely in the context
of IBD17,27 and IBS.28 These have revealed initial dysbiosis with
changes in diversity through treatment and have started to under-
stand the functional impact, such as on short-chain fatty acid
synthesis. This uses additional software (such as PICRUSt) after
initial microbiome analysis.28,29

Increasingly, there is interest in the role the microbiome may
play in the development of obesity and type 2 diabetes,30,31 and
alongside this, there has been a small amount of work into acute
conditions such as necrotizing enterocolitis in preterm infants look-
ing for evidence of a role of bacteria in such conditions.32–35

NEXT-GENERATION SEQUENCING (NGS)
NGS is a catch-all term used to describe several modalities

of high-throughput sequencing technologies that were developed
in mid 2000s.15 Classical DNA sequencing (Sanger sequencing36)
was developed in the 1970s and uses chain termination by dideox-
ynucleotides and detection of fluorescence of these molecules. It
was this technology that led to our first insights into the human
genome,37 although at great cost in both time and expense. The
lack of throughput made this technology less than ideal for studies
of complex microbial communities, and it was technical advances
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in sequencing chemistry that led to the widespread adoption of
NGS as a tool for microbiome research. Two recent reviews by
Land and Loman in 2015 provide excellent insights into the
development of bacterial genetic sequencing over the last
20 years.38,39

Illumina
Illumina sequencing by synthesis is the most widely used

sequencing technology for microbiome research.40 The method
works by a reversible dye terminator technology; DNA is ligated
into short sections with the addition of identification and primer
sequences at either end and attached to a lane (flow cell); it is ampli-
fied using polymerase-forming DNA clusters. Fluorescently labeled
reversible terminator bases (1 color for each base) are added, which
fluoresce when added to the sequence. A camera captures each base
as it is added and can relate this to the location of the DNA on the
lane. For each sequence, several 100 reads are generated.40 The
Illumina MiSeq is typically used and has a single read length of up
to 300 bp and can produce up to 50 million paired-end reads per run.

For microbiome research, primers are used in presequencing
PCR to amplify a specific region of the 16S rRNA sequence. These
primers include the additional primer and identification sequences
mentioned above, and thus, when loaded into the instrument, this
PCR product becomes the target for the sequencing reaction
generating many 16S rRNA gene-specific reads that then can be
related to individual bacteria.

Roche 454
Originally an incredibly popular sequencing technology for

microbiome studies, the iterative increases in read length by
Illumina (longer reads being the original benefit of using 454)
have largely rendered it redundant.41

Others—IonTorrent, PacBio, and MinIon
The overwhelming majority of 16S sequencing has been done

using Illumina and 454 technologies. Several other companies have
their own sequencing technology; some, such as PacBio and MinIon,
are real-time single-molecule platforms that may, in time, become
highly useful for 16S rRNA sequencing for microbiome analysis.42

HOW SEQUENCING 16S rRNA ALLOWS
BACTERIA TO BE IDENTIFIED?

The ubiquitous and phylogenetically stable bacterial 16S
rRNA offers a very useful target for the identification bacteria
down to species level in some instances. The 16S ribosomal

subunit in encoded for by DNA that has highly conserved regions
(very similar sequences) between all bacterial species. Between
these areas are highly variable regions (V1-9) that can be used to
identify a specific genus or species of bacteria through the
sequence.43–45 Universal primers are designed to amplify a specific
variable region of the 16S rRNA sequence. Based on a combina-
tion of best primer sites and information gathered from variable
regions, the most commonly targeted regions are V3, V4, and
V6.46 Different primer sets exist for amplification of variable
regions,47 and the choice should be based on the sample type
and importance of taxonomy or phylogeny.48,49 See Figure 1 for
the structure of 16S rDNA.

After sequencing, each read of a 16S rRNA gene is
clustered together with others by computer analysis into opera-
tional taxonomic units (OTUs) based on how similar the
sequences are. It is prudent to remember that grouping together
bacteria based on their genetic similarity is somewhat arbitrary.
Historically, all species were defined on phenotypic character-
istics, and then their genetic similarity was discovered. In
microbiome sequencing, bacteria are clustered depending on their
genetic similarity and then defined as a genus, species, etc. For
example, all sequences with 94% similarity may be grouped
together,8,9 and referencing a representative sequence for the clus-
ter (OTU) to a reference database allows for identification of the
bacteria present at genus level. Grouping at 97% similarity may
allow identification at a species level. The relative frequency of
the sequences allows for relative abundances of bacteria to be
identified within a sample.

HOW ARE SEQUENCING DATA ANALYZED?—
COMPUTING PIPELINES

Output data from nearly all sequencing technology is in the
form of “.fastq” files; these contain the specific sequence, primer
sequences, barcode sequences, and quality information on the
sequencing read, i.e., the per-base sequencing reliability score.

Analysis of these data is through computing pipelines using
command-line inputs; typically, these are based on UNIX/LINUX
operating system commands. Commands (specific actions for
a computer to run) are entered into the command-line, which then
runs scripts (programs) and the output are files or directories
(equivalent to folders).

Several software packages exist for processing sequencing
data. Many of these are freely available and have been produced
by academic collaboration. In this study, we focus on the 2 most
commonly used ones.

FIGURE 1. Schematic structure of the 16S rDNA displaying conserved (blue) and variable regions V1 to V9 (orange). Variable regions are repre-
sented to scale.
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Quantitative Insights into Microbial
Ecology (QIIME)

QIIME was developed by collaboration between the Uni-
versity of Colorado and Northern Arizona University. It is freely
available as a download and can be installed on a home PC
(through a VirtualBox) or Mac.13 QIIME is actually a collection of
many programs allowing for a huge amount of customization of
output data; however, as each stage is analyzed separately, there is
some added complexity to processing data.

QIIME uses command-line inputs. A basic pathway for
analysis of data is shown in Figure 2. Output from initial analysis
in the form of a simplified taxonomy summary table is provided in
Table 1. Further analysis of this output data can be performed
within QIIME, and this is discussed below.

Mothur50
Mothur is a widely used software package, developed at the

University of Michigan that allows for analysis of 16S rRNA
sequencing data using a very similar pipeline to QIIME. It has the
advantage of being a single program to run but lacks some of the
easy customization of QIIME. Output from QIIME and Mothur has
been compared and is most often extremely similar.51

INTERPRETING RESULTS—WHAT DOES MY
DATA MEAN?

The output data from basic 16S rRNA analysis requires
interpretation. Although basic output such as a taxonomic summary
shows the bacteria present (to all taxonomic levels) and their
relative abundances within a sample, further analysis is needed to

understand the quality of the data, the diversity within/between the
samples, the species richness of the samples, and ultimately the
statistical comparisons needed to determine whether a microbiome
has experienced flux or dysbiosis. It must be remembered that
many of the underlying tests included in these analyses have been
directly drawn from ecological methods of species observations and
are not specific for microbes.

Diversity Analysis—How Many Different Taxa
are in My Sample?

Alpha diversity is the measure of diversity within a single
sample (community).49 Sample-specific values for alpha diversity
can be compared. The most basic form of alpha diversity is simply
the number of species seen in a sample; however, this is often
unhelpful as there is no measure of frequency of species, estimates
of unseen species, etc.

Chao1 is a commonly used measure of alpha diversity52; this
is mathematically derived and estimates the number of OTUs that
are undetected by sequencing based on the number of bacterial taxa
represented by a single read, “singletons.” Samples with higher
numbers of singletons are estimated by Chao1 as having increased
species richness, and therefore higher alpha diversity. Values range
from 0 to greater than 10,000.

Shannon diversity is another measure of alpha diversity53;
originally proposed as a measure of entropy (disorder) within
text. This measure can be interpreted as follows; if all bacteria
were placed in a list, the Shannon diversity measures the likeli-
hood that one would guess the next bacteria (species) in the
list. Hence, if there were 100 bacteria, 90 of which were
firmicutes, the likelihood of predicting the next bacteria as

FIGURE 2. Basic data-processing pathway (pipeline) in QIIME.
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a firmicutes is very high; and hence the Shannon diversity
would be low (close to 0). If there are 100 bacteria, 10 each
of 10 different species, then the ability to predict the next
bacteria is low and the Shannon diversity would be high. Val-
ues are typically 1.5 to 3.5 but may be higher in some micro-
biome analysis.

Rarefaction is another measure of alpha diversity and as-
sesses species richness through construction of rarefaction curves.
These are produced by plotting microbial diversity against depth
of sequencing, an example is shown in Figure 3. These can be
used to assess whether the depth of sequencing is sufficient to
truly sample all species present within a community.49

Beta diversity is the measure of diversity between samples.
Bray–Curtis dissimilarity is possibly the most commonly used

measure54; it describes the dissimilarity between the bacterial com-
positions of samples and is based on the species numbers at each site.
It is expressed on a scale of 0 to 1, where 0 indicates identical
samples and 1 represents no species shared between samples.

Unweighted UniFrac55 is another measure of beta diversity,
specific to microbiome research; it incorporates relative related-
ness of bacteria with a sample (community) into the calculation
and subsequent score. The score is derived by observing the taxa
that are seen in both samples (and those that are individual to
a sample) and then calculating total branch distances (an evolu-
tionary measure of how closely related bacteria are) between
shared and unshared bacteria on a phylogenetic tree. Weighted
UniFrac also takes into account the relative abundances of bac-
teria within the samples.

What Further Statistical Analysis can
be Done?

Principle coordinates analysis (PCoA) is increasingly
common.56 This presents each sample (bacterial community) as
a data point on a 2- or 3-dimensional graph; similar samples
cluster together. The axes of the graph represent the “principle
coordinates” of the bacterial community. A simple example is
provided in Figure 4.

Interesting Ways of Representing Data—Heat
Maps, Networks

Heat maps have become a popular way of presenting 16S
data; there are several ways that heat maps can represent various
microbiome data. The most basic heat maps compare OTUs
within samples, in which different colors represent different
abundances in the samples. An example comparing bacterial
genera is shown in Figure 5.

Correlation networks are a way of visualizing how bacterial
species and other factors—fatty acids, host factors, diversity
measures—interact. This is often used to compare diseased and
healthy groups, demonstrating which bacteria/factors coexist and
which do not.57

FUNCTIONAL IMPACTS OF THE MICROBIOME
The ability to infer functional impact of a bacterial

community is a further stage of microbiome research. Phyloge-
netic Investigation of Communities by Reconstruction of Unob-
served States (PICRUSt)29 is software that references known
bacterial genomes to infer the genes present in bacteria that have
been identified from 16S sequencing. This process allows for
functional predictions about a bacterial community based on the
metagenome, which has been inferred from 16S sequence.

An example of this can be found in articles by Gevers et al4

and Morgan et al58 on the microbiome in new onset pediatric
Crohn’s disease. Interestingly, both studies indicate a loss of nor-
mal bacterial biosynthetic function in diseased individuals.

CLINICAL VARIABLES IMPACTING
THE MICROBIOME

Impact of Antibiotics
The number of variables that impact on, and alter, the

human microbiome are too numerous to describe in this review. In
a clinical context, antibiotics are perhaps the most important and
common variable that can have a huge bearing on the microbiome
of many sites; it is well described that antibiotic use in IBD
amplifies the intestinal dysbiosis4 and in non-IBD conditions, the
gut flora is significantly altered by antibiotics, and this change can
last for many months.21,59–61

Impact of Diet
Another important variable is the impact of diet, specifi-

cally on the gut microbiome. It is known that certain gut flora are
associated with specific types of diet, and this can make
interpretation of results more difficult.62

The Newborn
There has been an increase in interest centered around early

bacterial colonization of the newborn infant; although vaginal
birth is likely to result in a “normal” gut and skin flora in a baby in
the first few days of life, the impact of a cesarean section on

TABLE 1. Example of Taxonomic Summary
Table (Class/Level 2)

Class of Bacteria Relative Abundance

k__Bacteria;p__Actinobacteria 0.0165982121715

k__Bacteria;p__Bacteroidetes 0.725658596336

k__Bacteria;p__Cyanobacteria 3.20463176111 · 1025

k__Bacteria;p__Firmicutes 0.240162225581

k__Bacteria;p__Fusobacteria 2.13642117407 · 1025

k__Bacteria;p__Lentisphaerae 1.78035097839 · 1026

k__Bacteria;p__Proteobacteria 0.0169364788574

k__Bacteria;p__Tenericutes 0.000194058256645

k__Bacteria;p__Verrucomicrobia 2.49249136975 · 1025
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developing “abnormal” flora and the relationship with disease
requires further investigation.63,64

CURRENT APPLICATIONS AND CAUTION IN
MICROBIOME INTERPRETATION

Although our ability to characterize microbiomes in both
health and disease states has led to the swathe of publications,
clinical interpretation of such findings has lagged behind. The
ability to robustly interpret microbiome data has emerged over the
last 5 to 10 years. The science is reliable, and there are an increasing
number of large studies in the literature. However, despite many
publications using current technology, there are still reports of

potential pitfalls, such as over- or undersequencing of bacteria and
misrepresentation of true numbers, in the interpretation of data.65

Furthermore, the interpretation of results from a clinical perspective
remains extremely uncertain with reliability and relevance of data
needing to be examined before routine clinical application.

Without consensus on what is normal in health, it is difficult
to understand the impact of the microbiome on individuals;
inferring causality from correlation of microbiome results and
disease is dangerous and further experimental work is needed.66 It
is known that there is huge interindividual microbiome variation at
many body sites, especially the gut67,68; the work of the Human
Microbiome Project to vastly increase the number of microbiome
profiles of healthy individuals is extremely important in future

FIGURE 3. Rarefaction curves. Sample 1 (red line) may represent inadequate sequencing depth; the curve indicates that more OTUs would be
found with the additional sequence number as the curve continues to rise beyond the maximum sequence number (not flattening out). Sample 2
(green) represents adequate sequencing depth; the curve flattens indicating that few additional OTUs will be identified even if the sample was
sequenced in more depth.
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research and clinical interpretation.8 Further insights into what con-
tributes to this normal variation is an important area of work.69,70

FURTHER APPLICATION
We are at a point of transition—from observation and descrip-

tion to functional analysis and inferring causality. Understanding the
host gene expression and functional impacts of microbiome in health
and disease may help build evidence to infer the role that bacteria
play in disease.16 The understanding of the immunoregulatory role
that microbes are presumed to play is extremely exciting, and we are
at the start of a hugely important period in our understanding.

Currently, it seems unlikely that 16S sequencing will be
used in the in diagnosis of acute infectious disease, in which
accuracy, antibiotic sensitivity, and reliability are paramount, but
there have been previous attempts.71 In the future improved

technology may allow the application of microbiome sequencing
for routine sequencing, potentially identifying specific genes
related to antibiotic resistance and allowing rapid diagnosis and
treatment of infections to become routine practice.

Understanding broad microbial shifts and dysbiosis in
immunodeficient individuals may help to prevent some infections
associated with this group of conditions.72

CONCLUSION
The human microbiome seems to play a key role in

maintaining health and also in the pathogenesis of many chronic
diseases. Over the next 5 years, it will become increasingly important
for clinicians to understand the impact of the microbiome on normal
development, disease, and treatment. The meteoric rise of genomic
medicine to the brink of routine clinical use can only be seen as

FIGURE 4. Example of a 2-dimensional (2D) principle coordinate analysis. Plot of first 2 principle coordinates (PC) for 20 samples generated using
unweighted UniFrac analysis. PC1 (x-axis) accounts for 12.3% of total variation, and PC2 (y-axis) accounts for 10.8% of total variation. Clustering of
samples indicates that they are more similar; the sample type can then be used to understand relationships between samples and overall shifts in
the microbiome. Here, we show samples classified by 3 different treatment types (A, B, and C) and their subsequent clustering.
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a blueprint for microbiome researchers; the ability for physicians to
understand and interpret 16S data is vital to this growth and to the
transition to a generation of microbiome-literate clinicians.
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