
1

Modified Newton-Raphson methods

for optimal control of quantum systems

D.L. Goodwin, Ilya Kuprov*

School of Chemistry, University of Southampton,
Highfield Campus, Southampton, SO17 1BJ, UK.

*Corresponding author (i.kuprov@soton.ac.uk)

2

Abstract

Quadratic convergence throughout the active space is achieved for the GRAPE family of quan-

tum optimal control algorithms. We demonstrate in this communication that the Hessian of the

GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as

the functional itself. This leads to the possibility of using very efficient numerical optimization

techniques. In particular, the Newton-Raphson method with RFO regularized Hessian appears to

require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This

communication describes algebraic and numerical implementation aspects (matrix exponential

recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and

reports benchmarks for common spin state control problems.

3

Introduction

Scientific instruments used in many applications of quantum theory have reached the limits of

what is physically, legally or financially possible. Examples include power deposition safeguards

in MRI instruments [1], sample heating thresholds in biomolecular NMR spectroscopy [2] and

the steep dependence of the cost of superconducting magnets on the induction they generate [3].

Some limits, such as the length of time a patient can be persuaded to stay inside an MRI ma-

chine, are psychological [4], but in practice no less real.

The art of running an experiment to a given accuracy with minimal expenditure of time and re-

sources is known as optimal control theory [5]. In quantum mechanics a popular formulation

[6,7] is to specify the desired state vector δ of the system and maximise the following fidelity

functional J with respect to the instrumentally controllable part of the Hamiltonian  1 tH :

         1 0 1 0 1O
0

Re exp
T

J t i t i dt K t
 

           
 
H δ H H R ρ H (1)

where  Oexp indicates a time-ordered exponential [8], 0H is the part of the system Hamiltonian

that cannot be controlled, R is the relaxation operator, 0ρ is the initial state vector and K is a

penalty functional enforcing the constraints mentioned in the previous paragraph.

Once the controllable part of the Hamiltonian is parameterized, the variation 1J H becomes a

gradient J in the parameter space and the process of maximizing J becomes an instance of

the very well researched non-linear optimization problem for a continuous function [9,10]. Of

the major families of derivative based optimization methods, gradient descent [7], conjugate gra-

dients [11], and quasi-Newton methods [12,13] have all been explored in the optimal control

context. In this communication we evaluate the performance of the Newton-Raphson method for

optimal control of spin dynamics and propose solutions to the associated numerical problems of

Hessian regularization and matrix exponential recycling.

Newton-Raphson version of the GRAPE algorithm

The gradient ascent pulse engineering (GRAPE) method [7,12] proceeds by splitting the Hamil-

tonian into the uncontrollable part 0H and a number K of control operators kH with time-

dependent coefficients  kc t

      0
1

K
k

k
k

t c t


 H H H (2)

The coefficients are discretized on a finite grid of time points (usually with a uniform step t)

                  1 2 1 2 , k k k k k
N Nc t c t c t c t t t t      c   (3)

and the local optimality condition is defined as 0J  with a negative definite Hessian matrix.

With a piecewise-constant Hamiltonian, the time-ordered exponential in Equation (1) becomes

       
0 1 0O

10

exp exp
T K

k
n k

kn

i t i dt i c i t


               
   

 H H R H H R (4)

4

with a time-ordered product, and the equation itself acquires the following form:

         
 

1 1
2 1 0

0
1

, , Re , ,

exp

K K
N

K
k

n n k
k

J K

i c i t


 

        
  



c c δ P P P ρ c c

P H H R

  
 (5)

A particular strength of the GRAPE method is that the gradient of the fidelity functional

    1 1 1 0Re n
N n nk k

n n

J

c c
 




 
P

δ P P P P ρ  (6)

has the same numerical complexity scaling as the fidelity functional itself [7]. In our previous

communication [14] we have pointed out that this also applies to the Hessian of J

       

       

22

1 1 1 0

2

1 1 1 1 1 0

Re

Re

n
N n nj k j k

n n n n

n m
N n n m mj k j k

n m n m

J

c c c c

J

c c c c

 

   




   

 


   

P
δ P P P P ρ

P P
δ P P P P P P ρ

 

  
 (7)

and noted that this situation is highly unusual in non-linear optimization theory – Hessians are

normally so expensive that a significant body of work exists on the subject of avoiding their cal-

culation and recovering second derivative information in an approximate way from the gradient

history [9,10,15,16]. The recent BFGS-GRAPE algorithm [12] is an example of such approach.

The fact that the Hessian is cheap suggests that Newton-Raphson type algorithms [9,10] with the

control sequence update rule at step s

12

1s s s sJ J


      c c (8)

formulated in terms of the gradient J and the Hessian 2J of the fidelity functional  J c

with a suitable line search procedure are a natural next step.

In principle, Equations (1)-(8) define the algorithm completely. However, three logistical prob-

lems present themselves that must be solved before the method becomes useful in practice: (a)

efficient calculation of matrix exponential derivatives, (b) exponential derivative recycling be-

tween Equations (6) and (7) that is required for efficient scaling, and (c) regularization of the

Hessian matrix in Equation (8) that is needed to avoid the numerical difficulties [9,10] associated

with its inverse. Solution to the first problem is known – our experience indicates that the auxil-

iary matrix method [14,17] based on the following block matrix relation

 
 

     
   

2
()

exp () ,

()

ijn
n ni

n
i

ij jin n
n j n nj i j

n n n

n

c
t

i t t
c c c

t

 
     
                     
 
 

P
P A

H H 0
P P

0 P 0 H H A A

0 0 H
0 0 P

 (9)

5

works very well – a 3⨯3 block matrix is used to compute the second derivative and a 2⨯2 block

matrix when only the first derivative is required [14]. The problems of derivative recycling and

Hessian regularization, however, are non-trivial – they are dealt with in the next two sections.

Matrix function recycling

Repeated evaluation of expensive matrix functions of the same argument is a common problem

in quantum dynamics simulations. In our context this problem is evident in Equations (6) and (7)

where exponentials of the same matrix are expected to occur multiple times. Storing all previous-

ly encountered arguments and running a database search at each call would be inconvenient and

inefficient. In this section we propose a method that, subject to sufficient storage being available,

enables convenient and efficient recycling of expensive matrix functions.

Simply looking up a matrix in a database of previously encountered ones is out of question for

the following reasons. On modern computer architectures a memory retrieval and comparison

operation takes at least one CPU clock cycle. The time cost of looking up a given matrix in a

sorted list of previously encountered ones is therefore at least  NZ MlogO N N clocks [18], where

NZN is the number of non-zero elements in the matrix, and MN is the number of matrices in the

database. The worst-case sorting cost for the database of previously encountered matrices is

 NZ M MlogO N N N clocks [18], which is unacceptable because the number of non-zeros in

commonly encountered matrices can be in the millions.

The standard solution from database theory is to use a hash table [19]. This being a physical sci-

ences journal, a detailed exposition is perhaps warranted. A cryptographic hash function is a

function that accepts an input (called message) of any length and produces an output (called di-

gest) with the following properties [20]:

1. The complexity of computing the digest is linear with the size of the message.

2. A single-bit modification in the message is almost certain to change its digest.

3. Two randomly selected messages are almost certain to have different digests.

The first property offers a solution to our lookup cost problem: the complexity of computing the

hash is  NZO N – negligible compared to the cost of expensive matrix factorizations [21] and

significantly smaller than the direct sorting and lookup costs discussed above. Hashing a matrix

is a straightforward procedure: for full matrices, the array is typecast (in-place, to avoid making a

memory copy) into UINT8 and fed into a hashing engine. For sparse matrices, the index array,

the value array and the array of matrix dimensions are typecast into UINT8, concatenated and

hashed as a single message. The cost of sorting the hash table is  M MlogO N N and the cost of

looking up a digest in the sorted list is  MlogO N [18]. This reduces the total cost of the matrix

lookup to      NZ M M Mlog logO N O N N O N  . In situations where matrix operation caching

is necessary, NZ M M Mlog logN N N N  (this may also be viewed as the condition under which

it is sensible to use matrix operation caching) – the overall asymptotic cost of hash table matrix

lookup and all the associated housekeeping is therefore  NZO N clocks. It should be noted that

extremely efficient hashing hardware has recently become available as a side effect of the emer-

gence of cryptocurrencies [22].

6

The second and the third properties provide collision safety assurances: the definition of almost

certain in this context is that one needs to calculate /22N hash values (where N is the number of

bits in the digest) to have a 50% probability of seeing a hash collision [23]. Even with basic 128-

bit hash functions, such as MD5, this is a vanishingly rare event in the physical sciences context:

a useful rule of thumb in modern physics is that any probability smaller than that of the research-

er committing suicide (approximately 9.7⨯10-5 per year in the UK in 2013 [24]) is negligible.

Caching algorithms based on MD5 and SHA hash functions fall below that measure by many

orders of magnitude – for our purposes they are safe. If absolute certainty is required, an addi-

tional step of comparing the matrices element-by-element may be added, at the cost of extra

storage, but without any changes to the asymptotic  NZO N complexity scaling estimate.

The benefit derived from the caching procedure has the same caveats as the well-researched al-

gorithms for caching disk access [25] – when the same sectors are requested repeatedly, the ben-

efit is large, but for random access the cache can actually make the process slower. Matrix func-

tion caching should therefore only be used in situations where repeated requests for expensive

functions of the same argument are likely – that situation is thankfully very frequent. The hash-

ing and caching procedure may also be viewed as a generalization of the concept of a look-up

grid, but without the possibility of interpolation. Implementing an interpolated look-up grid

would of course be impractical due to the large dimension of the interpolation problem space.

In the quantum dynamics context, the increase in performance resulting from using matrix expo-

nential caching is illustrated in Figure 1. The CN2D NMR pulse sequence [26] is designed to

correlate 14N and 13C NMR signals under magic angle spinning conditions. It contains multiple

periods that have identical Hamiltonians – the caching algorithm identifies those automatically

and avoids their recalculation.

Figure 1. Wall clock time consumed by the simulation of the CN2D sol-
id state NMR experiment [26] for a 14N-13C spin pair in glycine with dif-
ferent matrix exponential caching settings in Spinach [27]. Light grey
columns correspond to running with matrix caching switched off, medi-
um grey columns are for runs with the caching switched on and a cache
that is empty at the start of the simulation. Dark grey columns corre-
spond to simulations where all required matrix exponentials are already
present in the cache. Details of the NMR pulse sequence and the spin
Hamiltonians involved are given in Reference [26].

7

It is in principle possible to hand-code this simulation in such a way as to avoid repeated calls to

expensive functions by manually identifying the time intervals that have identical Hamiltonians.

Such an approach would not, however, be scalable to more complicated experiments and to high-

ly general and automated simulation systems, such as Spinach [27].

Cache destination can be a file system or a key-value store of any type – a solid state disk was

used in this work. In practice, the latency of the cache storage device means that for small matri-

ces it may be faster to recalculate the function. In our practical experience, the caching procedure

becomes beneficial once the dimension exceeds 512. Because matrix exponentiation dominates

the numerical cost of optimal control simulations, a beneficial side effect is a rapid restart capa-

bility for the GRAPE algorithm – the calculation can re-trace its steps quickly.

Hessian regularization

Newton-Raphson and quasi-Newton methods (minimisation is assumed here) rely on the neces-

sary conditions for Taylor’s theorem [28,29] and use a local quadratic approximation:

 21
1 2() ()s s s s s s sJ J J J J      c c c c c (10)

The first order necessary condition requires any minimiser c to be a stationary point

 () 0J c (11)

Imposing this condition on Equation (10) gives the control sequence update rule of Equation (8).

The second order necessary condition is

 2 () KNJ    c c c c c c  (12)

where is a positive scalar, i.e. the Hessian  2 J c must be positive definite at c . This is evi-

dent from Equation (8), in which a negative Hessian eigenvalue would result in a step being per-

formed up, rather than down, the corresponding gradient direction.

A significant problem is that far away from a minimiser, the Hessian is not actually expected to

be positive definite. Small Hessian eigenvalues are also problematic because they result in overly

long steps that can be detrimental because most fidelity functionals are not actually quadratic. A

significant amount of research has gone into modifying the Hessian in such a way as to avoid

these undesired behaviours [30-40].

One fairly cheap way to work around an indefinite Hessian is to attempt Cholesky factorization,

which exists for any invertible positive definite matrix [41]:

12 T 2 1,T 1 J J

        LL L L (13)

where L is a lower triangular matrix and TL is its transpose. If this fails, an identity matrix may

be used as a substitute for the Hessian, effectively reverting to a gradient descent step for any

iterations that produce an indefinite Hessian [42]. The problem with this approach is that indefi-

nite Hessians become more common as the dimension of the problem increases, making the min-

imizer spend most of the time in the gradient descent mode and destroying any advantage of the

second-order method over simple gradient descent – we do not recommend this technique.

8

A more sophisticated workaround is to use the eigenvalue shifting (aka trust region) method,

suggested by the origins of the Levenberg-Marquardt algorithm [43,44] and using the Cholesky

decomposition [45] on a Hessian with a multiple of the unit matrix added [9,30,33,36,38,46]:

 2 T , 0J     1 LL (14)

The choice of  is made to produce a positive definite Hessian and satisfy Equation (12), with

the trial value

2 2 2

F

2 2

F

min if min 0

if min 0

ii ii

ii

J J J

J J


            
     

 (15)

chosen in that way because the Frobenius norm of the Hessian is an upper bound on the largest

absolute eigenvalue. The value of  is increased iteratively until the Cholesky decomposition

succeeds [10] and the inverse Hessian may be obtained. Alternatively, Hessian eigenvalues may

be computed explicitly [31] and a precise estimate made for the value of  in Equation (14):

2 1

2 1

reg

, max(0, min())

()

iiJ

J

 







     
    

QΛQ Λ

Q Λ 1 Q
 (16)

where Λ is a diagonal matrix containing the eigenvalues of 2J and Q is the matrix with col-

umns of corresponding eigenvectors. The user-specified positive value of  is included to make

the Hessian positive definite. The primary problem with this method is that, for poorly condi-

tioned Hessian matrices, the regularization procedure destroys much of the curvature information

and the technique effectively becomes a combination of Newton-Raphson method and the gradi-

ent descent. Based on our practical performance evaluation, it is also not recommended here:

formally, Equations (14) and (16) do solve the step direction problem, but the convergence rate

we have seen in practice was not superior to gradient descent.

The method that was found to perform best in our practical testing is known as rational function

optimization [32,37,39]. It replaces the Taylor expansion with a Padé approximant [47]:

21

2

1

J J
J

  
 


c c c

c S c
 (17)

This preserves the derivative information of Equation (10), leaving the necessary conditions un-

changed, because the derivatives of
1

1


   c S c give contributions only through higher orders

in c . The nature of the rational function means that the asymptotes of J and is gradients re-

main finite for c , determined by the Hessian and the symmetric scaling matrix S . The

first order necessary condition for Equation (11) gives the following eigenvalue equation:

2

2
T

J J
J

J

       
            

c S 0 c

1 0 1 10
 (18)

Choosing a uniform scaling matrix [39] 2 S 1 , where 0 1  , reduces this equation to

2 2

2
T

J J
J

J

  


      
          

c c

1 10
 (19)

9

Rational function optimisation proceeds in a similar way to eigenvalue shifting methods de-

scribed above, except the shifting is applied to the augmented Hessian:

2 2
aug2 1

aug2 1
2reg

, max(0, min())

1
()

iiT

J J
J

J

J

 











  
         

    

QΛQ Λ
0

Q Λ 1 Q

 (20)

The top left corner block of the regularized augmented Hessian is then used for the Newton-

Raphson step [32,37,39] in Equation (8). Our practical experience with the scaling constant 

indicates that it should be allowed to vary, with 1  when the Hessian is well-conditioned and

a value that is reduced until the condition number becomes acceptable, for example:

 1

min() 1
 while

max()
ii

r r
ii

 
  

Λ

Λ
 (21)

where  is machine precision and 0 1  . The factor 0 1  is used to iteratively decrease the

condition number of the Hessian – this is the method used to condition the Hessian in the exam-

ples presented below. It should be noted that a value 1  may be used to increase the condition

number of the Hessian when it is very small and the inequality of Equation (21) is reversed.

The users cannot unfortunately be relied upon to scale their problem well – quantum mechanics

is rich in situations that produce very small values of Hessian and gradient elements. We there-

fore propose choosing 0 to be the value that would shift the smallest eigenvalues to be above 1,

giving a similar effect to choosing 1  in Equation (16). When 0 min1 min() 1ii  Λ

choice is made, the augmented Hessian in Equation (20) becomes

2

aug min min2 1

min

aug2 1
minreg

1 1

, max(0, min())
1

()

ii
T

J J

J

J

J

 




 





   
         

  
 

    

QΛQ Λ

0

Q Λ 1 Q

 (22)

Practical testing indicates that this combination of using initial scaling, then accepting large con-

dition numbers for the Hessian, allows the Newton-Raphson method to avoid getting stuck at

inflection points. The condition number would grow to a large value around the inflection point

and then shrink back when the point has been avoided. Due to the tendency of the Hessian to in-

crease condition number as it approaches the minimizer, machine precision could eventually be-

come a limit to this type of conditioning. To avoid a slowdown at the final stages of the optimi-

zation, an upper bound is placed on the  parameter in Equation (21) – this guarantees that the

terminal convergence is always quadratic.

In practice, at each optimization step the function code attempts to compute the Cholesky de-

composition of Equation (13). If that is successful then no regularization is needed, otherwise the

function proceeds to regularize with the methods described above. Once the descent direction

and the initial step length are obtained from Equation (8) it is advantageous to perform a line

search procedure. We adapted the version with a bracketing phase that obeys strong Wolfe con-

10

ditions [48,49] followed by a sectioning phase with cubic interpolation. The initial step length is

always equal to that of Equation (8) to ensure that the convergence is at least quadratic [10].

Derivatives of penalty functionals
The inevitable limitations of physical hardware on maximum amplitude and minimum switching

time necessitate the addition of the penalty term that would enforce those limitations – that is the

role of the K functional in Equation (1). Instrumental limitations are rarely hard and it is there-

fore reasonable to implement them as penalties rather than hard bounds. For Newton type opti-

mizations to work, second derivatives of K with respect to the control sequence are required,

they are given in Table 1 for the three most common penalty functional types.

Table 1. Common GRAPE penalty functionals with their first and second derivatives.

Functional
type

Penalty Penalty gradient Penalty Hessian

weighted
norm square

2
k k

k

K w c   2 n nn
K w c  2 2 n nmnm

K w    

weighted
derivative

norm square
 2

k k
k

K w  Dc    2 k knn k
k

K w D   Dc 2 2 k kn kmnm
k

K w D D    

weighted
spillout

norm square

 

 

2

2

n n

n n

k k k c u
k

k k k c l
k

K

w c u

w c l











 

 





 
 
 

2

2
n n

n n

n

n n n c u

n n n c l

K

w c u

w c l








 

 

 

2

2

2
n n

n n

nm

n nm c u

n nm c l

K

w

w

 

 




   




In Table 1, c is the control sequence vector, w is the weight vector, u is the upper bound vec-

tor, l is the lower bound vector and D is the differentiation matrix of a suitable type and order,

or any other appropriate transformation matrix. The weighted norm square spillout penalty is de-

signed to only apply to the parts of the control sequence that fall outside the bounds defined by

u and l vectors. The meaning of the corresponding delta symbols is:

1 if 1 if 1 if

0 otherwise 0 otherwise 0 otherwisen n n n

n n n n
c u c l nm

c u c l n m
   

    
    
  

 (23)

The principal advantage of the three functionals listed above over the multitude of possible alter-

natives is in the fact that the corresponding derivatives are cheap to compute. All three are im-

plemented in the penalty module of Spinach [27].

Performance analysis
Several performance metrics are possible for optimal control algorithm benchmarking: wall

clock time to a given fidelity, iteration count to a given fidelity, function evaluation count to a

given fidelity, etc. Our choice of metric is dictated by the motivation of this work: to accelerate

waveform optimization in time-critical scenarios, such as clinical MRI, assuming that a parallel

computer with a large number of CPU cores is available. That computer needs to run Equations

11

(5), (6) and (7), of which only Equation (5) is not highly parallel because it involves propagating

the system from 0ρ to  Tρ and keeping all intermediate trajectory points that are re-used in

Equations (6) and (7). Trajectory generation is a serial process because the next trajectory point

depends on the previous one. In contrast, Equations (6) and (7) have the same asymptotic cost as

Equation (5), but are easy to parallelise – every element of the gradient array and the Hessian

array may be sent to a separate core. The wall clock time on large parallel computers is therefore

determined by the number of system trajectory calculations because the generation of the system

trajectory is the only serial step. We shall therefore use trajectory calculation count as the time

variable in the benchmarks presented below.

The first test system is an HCF group in a 9.4 Tesla magnet with 1H isotope for hydrogen, 13C

isotope for carbon and 19F isotope for fluorine, with the 1H-13C J-coupling of 140 Hz, 13C-19F J-

coupling of –160 Hz and all three signals assumed to be on resonance with the transmitters on

the corresponding spectrometer channels. A six-channel (HX, HY, CX, CY, FX, FY) shaped pulse

with a duration of 100 ms, a quadratic penalty for excursions outside the 10 kHz power envelope

and 50 time discretisation points was optimized to perform longitudinal magnetization transfer

from 1H to 19F. This system was chosen because very high terminal fidelities are achievable with

the parameters described above – it is a good test of terminal convergence behaviour for quadrat-

ic optimization algorithms in finite precision arithmetic.

Fidelity functional optimization profiles using TRM and RFO regularization with Newton-

Raphson method are compared in Figure 2 with the previously leading method for this class of

optimal control problems – the BFGS quasi-Newton method [12,13]. It is clear that Hessian reg-

ularization is always advantageous and that RFO regularization performs better than TRM. It is

also clear that the exactly quadratic optimization method beats the asymptotically quadratic one

by a considerable margin.

Figure 2. Convergence profiles for the state transfer within the HCF
three-spin system described in the main text for BFGS quasi-Newton
method and the Newton-Raphson method using TRM and RFO Hessian
regularization techniques. The same line search method in the predicted
descent direction was used in all cases.

12

The primary reason for the better performance of RFO is the regular asymptotic behaviour of

Equation (17) and its derivatives compared to the simple Taylor expansion in Equation (10). The

Cholesky decomposition method in TRM, although able to force a positive definite Hessian, of-

fers little influence over its condition number. This leads to poorly balanced step directions in

which the smallest eigenvalues dominate and much of the local curvature information is lost in

the regularization process, leading to high costs at the subsequent line search stage.

The second test case involves the transfer of magnetization from longitudinal polarization into a

two-spin singlet state, while allowing for up to 20% miscalibration of the control channel power

level. The spin system contains two 13C spins in a 14.1 Tesla magnet with chemical shifts of 0.00

and 0.25 ppm and a J-coupling of 60 Hz. The system is prepared in the    1 2
Z Z

ˆ ˆC C state and a

two-channel control sequence on    1 2
X X

ˆ ˆC C and    1 2
Y Y

ˆ ˆC C control operators with 50 time dis-

cretization points, the nominal power of 60 Hz and the duration of 50 milliseconds is optimized

simultaneously for ten different power levels spaced equally between 80% and 120% of the

nominal power. Weighted norm squared penalty functional was used (Table 1) with equal

weights for all time points. The infidelity measure in Figure 3 refers to the distance from the best

possible magnetization transfer fidelity for the system in question.

Figure 3. Convergence profiles for the transfer of longitudinal magnetisation into the singlet state for the two-spin system de-
scribed in the main text. The same line search method in the predicted descent direction was used in all cases. Memory time for
LBFGS was set to 20 gradients.

Figure 3 illustrates the common wisdom that gradient descent and its variations are only good up

to a point and optimal control problems that require high fidelities must use methods that have,

exactly or asymptotically, quadratic convergence behaviour [12]. It is also clear that the RFO

regularised Newton-Raphson method described above is superior to quasi-Newton methods and

vastly superior to gradient descent. This relationship between the three classes of methods is to

be expected [10] – our claim to novelty here is to demonstrate that the Newton method is actual-

ly affordable for quantum optimal control because the off-diagonal elements in Equation (7) can

re-use propagator derivatives from Equation (6) and the diagonal elements have the same asymp-

totic cost as Equation (6). There is no longer any excuse for using steepest descent.

All methods described in this communication are implemented in versions 1.7 and later of Spin-

ach library [27]. Both test systems described in this section are in the example set.

13

Conclusions

The GRAPE algorithm for optimal control of quantum systems is highly unusual in that the Hes-

sian of the fidelity functional has the same asymptotic computational cost as the gradient when

due care is taken to recycle the intermediate results for the matrix exponential derivatives. This

makes the usually prohibitively expensive, but very efficient, Newton-Raphson optimization al-

gorithm affordable. After all technical problems with Hessian regularization, line search and ma-

trix exponential recycling are addressed, the result is an optimal control algorithm that converges

faster than BFGS-GRAPE (which is the current leader) and much faster than all previous

GRAPE implementations. It is recommended particularly in time-constrained situations, such as

magnetic resonance imaging, due faster convergence and greater code parallelisation opportuni-

ties compared to other quantum control algorithms in the GRAPE family.

Acknowledgements

We are grateful to Sophie Schirmer, Stefan Stoll and Steffen Glaser for useful discussions. This

work was made possible by EPSRC through a grant to IK group (EP/H003789/1) and a CDT

studentship to DLG. The European Commission has facilitated this project through a coordina-

tion action grant (297861/QUAINT).

References

[1] M.F. Dempsey, B. Condon, D.M. Hadley, MRI safety review, Seminars in Ultrasound, CT
and MRI, 23 (2002) 392-401.

[2] P.L. Gor’kov, E.Y. Chekmenev, C. Li, M. Cotten, J.J. Buffy, N.J. Traaseth, G. Veglia,
W.W. Brey, Using low-E resonators to reduce RF heating in biological samples for static
solid-state NMR up to 900 MHz, Journal of Magnetic Resonance, 185 (2007) 77-93.

[3] Y. Iwasa, HTS and NMR/MRI magnets: Unique features, opportunities, and challenges,
Physica C: Superconductivity and its Applications, 445–448 (2006) 1088-1094.

[4] S.A. Sarji, B.J.J. Abdullah, G. Kumar, A.H. Tan, P. Narayanan, Failed magnetic resonance
imaging examinations due to claustrophobia, Australasian Radiology, 42 (1998) 293-295.

[5] L.S. Pontryagin, V.G. Boltanskii, R.S. Gamkrelidze, E.F. Mishchenko, The mathematical
theory of optimal processes, Pergamon, 1964.

[6] Y. Maday, G. Turinici, New formulations of monotonically convergent quantum control
algorithms, The Journal of Chemical Physics, 118 (2003) 8191-8196.

[7] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, S.J. Glaser, Optimal control of
coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, J
Magn Reson, 172 (2005) 296-305.

[8] D.J. Tannor, Introduction to quantum mechanics, A Time-Dependent Perspective, 75
(2007).

[9] R. Fletcher, Practical methods of optimization, 2nd ed., Wiley, 1987.

[10] J. Nocedal, S.J. Wright, Numerical optimization, 2nd ed., Springer, 2006.

[11] L. Lasdon, S. Mitter, A. Waren, The conjugate gradient method for optimal control
problems, Automatic Control, IEEE Transactions on, 12 (1967) 132-138.

[12] P. de Fouquieres, S.G. Schirmer, S.J. Glaser, I. Kuprov, Second order gradient ascent pulse
engineering Journal of Magnetic Resonance, 212 (2011) 412 - 417.

14

[13] R. Eitan, M. Mundt, D.J. Tannor, Optimal control with accelerated convergence:
Combining the Krotov and quasi-Newton methods, Physical Review A, 83 (2011) 053426.

[14] D.L. Goodwin, I. Kuprov, Auxiliary matrix formalism for interaction representation
transformations, optimal control, and spin relaxation theories, The Journal of chemical
physics, 143 (2015) 084113.

[15] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Progr., 45 (1989) 503-528.

[16] R.H. Byrd, J. Nocedal, R.B. Schnabel, Representations of quasi-Newton matrices and their
use in limited memory methods, Mathematical Programming, 63 (1994) 129-156.

[17] I. Najfeld, T.F. Havel, Derivatives of the Matrix Exponential and Their Computation,
Advances in Applied Mathematics, 16 (1995) 321-375.

[18] T.H. Cormen, Introduction to algorithms, MIT press, 2009.

[19] W.D. Maurer, T.G. Lewis, Hash table methods, ACM Computing Surveys (CSUR), 7
(1975) 5-19.

[20] R. Sedgewick, Algorithms in Java, Addison-Wesley Professional, 2002.

[21] D.E. Knuth, The art of computer programming, Addison-Wesley, Upper Saddle River, NJ,
2005.

[22] N.T. Courtois, M. Grajek, R. Naik, Optimizing SHA256 in bitcoin mining, in:
Cryptography and Security Systems, Springer, 2014, pp. 131-144.

[23] X. Wang, H. Yu, How to break MD5 and other hash functions, in: Advances in
Cryptology–EUROCRYPT 2005, Springer, 2005, pp. 19-35.

[24] D. Evans, UK Office for National Statistics - Suicides in the United Kingdom, 2013.

[25] B. Jacob, S. Ng, D. Wang, Memory systems: cache, DRAM, disk, Morgan Kaufmann,
2010.

[26] J.A. Jarvis, I.M. Haies, P.T.F. Williamson, M. Carravetta, An efficient NMR method for
the characterisation of 14N sites through indirect 13C detection, Physical Chemistry
Chemical Physics, 15 (2013) 7613-7620.

[27] H.J. Hogben, M. Krzystyniak, G.T. Charnock, P.J. Hore, I. Kuprov, Spinach - a software
library for simulation of spin dynamics in large spin systems, J Magn Reson, 208 (2011)
179-194.

[28] J. Gregory, Vera circuli et hyperbolae quadratura, 1667.

[29] B. Taylor, Methodus incrementorum directa & inversa, 1715.

[30] S.M. Goldfeld, R.E. Quandt, H.F. Trotter, Maximization by quadratic hill-climbing,
Econometrica: Journal of the Econometric Society, (1966) 541-551.

[31] J. Greenstadt, On the relative efficiencies of gradient methods, Mathematics of
Computation, 21 (1967) 360-367.

[32] A. Banerjee, F. Grein, Convergence behavior of some multiconfiguration methods,
International Journal of Quantum Chemistry, 10 (1976) 123-134.

[33] M. Hebden, An algorithm for minimization using exact second derivatives, UKAEA
Theoretical Physics Division Harwell, 1973.

[34] D. Goldfarb, Curvilinear path steplength algorithms for minimization which use directions
of negative curvature, Mathematical Programming, 18 (1980) 31-40.

[35] C.J. Cerjan, W.H. Miller, On finding transition states, The Journal of Chemical Physics, 75
(1981) 2800-2806.

[36] J.J. Moré, D.C. Sorensen, Newton's method, in, Argonne National Lab., IL (USA), 1982.

15

[37] R. Shepard, I. Shavitt, J. Simons, Comparison of the convergence characteristics of some
iterative wave function optimization methods, The Journal of Chemical Physics, 76 (1982)
543-557.

[38] J.J. Moré, D.C. Sorensen, Computing a trust region step, SIAM Journal on Scientific and
Statistical Computing, 4 (1983) 553-572.

[39] A. Banerjee, N. Adams, J. Simons, R. Shepard, Search for stationary points on surfaces,
The Journal of Physical Chemistry, 89 (1985) 52-57.

[40] J. Baker, An algorithm for the location of transition states, Journal of Computational
Chemistry, 7 (1986) 385-395.

[41] G.H. Golub, C.F. Van Loan, Matrix Computations, 4th ed., The John Hopkins University
Press, 2013.

[42] A. Goldstein, J. Price, An effective algorithm for minimization, Numerische Mathematik,
10 (1967) 184-189.

[43] K. Levenberg, A method for the solution of certain non–linear problems in least squares,
(1944).

[44] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters,
Journal of the Society for Industrial & Applied Mathematics, 11 (1963) 431-441.

[45] P.E. Gill, W. Murray, Newton-type methods for unconstrained and linearly constrained
optimization, Mathematical Programming, 7 (1974) 311-350.

[46] P.E. Gill, W. Murray, M.H. Wright, Practical optimization, (1981).

[47] H. Padé, Sur la représentation approchée d'une fonction par des fractions rationnelles,
Gauthier-Villars et fils, 1892.

[48] P. Wolfe, Convergence conditions for ascent methods, SIAM Review, 11 (1969) 226-235.

[49] P. Wolfe, Convergence conditions for ascent methods. II: Some corrections, SIAM
Review, 13 (1971) 185-188.

