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Abstract 12 

Bone’s remarkable mechanical properties are a result of its hierarchical structure. The mineralized 13 

collagen fibrils, made up of collagen fibrils and crystal platelets, are bone’s building blocks at an 14 

ultrastructural level. The organization of bone’s ultrastructure with respect to the orientation and 15 

arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a 16 

variety of imaging techniques in the past decades. These techniques either exploit physical principles 17 

such as polarization, diffraction or scattering to examine bone ultrastructure orientation and 18 

arrangement, or directly image the fibrils at the sub-micrometer scale. They make use of diverse 19 

probes such as visible light, X-rays and electrons at different scales, from centimeters down to 20 

nanometers. They allow imaging of bone sections or surfaces in two dimensions (2D) or 21 

investigating bone tissue truly in 3D, in vivo or ex vivo, and sometimes in combination with in situ 22 

mechanical experiments. The purpose of this review is to summarize and discuss this broad range of 23 

imaging techniques and the different modalities of their use, in order to discuss their advantages and 24 

limitations for the assessment of bone ultrastructure organization with respect to the orientation and 25 

arrangement of mineralized collagen fibrils. 26 

Keywords:  27 
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1 Introduction 30 

Bone is a material of remarkable mechanical properties, which are optimized through evolutionary 31 

processes and functional adaptation during lifetime, to meet the basic mechanical needs of 32 

supporting the human body, transmitting forces for locomotion and protecting vital organs. In order 33 

to achieve these mechanical properties, human bone has developed a complicated, composite 34 

structure (Fig. 1). At a macroscopic level, the organ bone is composed of two osseous tissue types: 35 

cortical and trabecular bone. These differ at a microstructural level, with cortical bone being 36 

composed of osteons or Haversian systems, whereas trabecular rods and plates form the trabecular 37 

or cancellous bone compartment. Both, cortical and trabecular bone, are typically made up of 38 

lamellae, which are mostly composed of mineralized collagen fibril bundles or fibers (1, 2), a few to 39 

several micrometers in diameter. At the ultrastructural level, mineralized collagen fibrils with 40 

diameters on the order of ~100 nm are the building blocks of bone (1). It is possible that these do 41 

not form bundles or fibers, but have a disordered organization instead (2). The mineralized collagen 42 

fibrils are formed by the combination of collagen fibrils (3) and hydroxyapatite (HA) mineral crystals 43 

(4). The crystals appear in the form of platelets (5), approximately 3×25×50 nm in size, although 44 

significant variations in platelet size have been reported, based on experiments using atomic force 45 

microscopy (AFM) (6), transmission electron microscopy (TEM) (7), and X-ray scattering (8) or 46 

diffraction (9). Platelets are formed by hexagonal crystal unit cells, with dimensions a = b = 9.4 Å 47 

and c = 6.8 Å (10). The crystals are either intra-fibrillar or extra-fibrillar (11), where intra-fibrillar 48 

crystals are associated with the gap regions of the collagen fibril (12), while extra-fibrillar crystals are 49 

found in the space surrounding the fibrils (13). It is worth noting that the collagen-mineral 50 

interaction is a topic of intense interest and study (14, 15). Further, it has been shown that the c-51 

plane of the unit cells coincides with the direction of crystal platelets (16), and with the direction of 52 

the fibrils (17). This means that for investigating the orientation of the bone ultrastructure, one can 53 

study the orientation of each of the four structural elements of the ultrastructure: 1) the unit crystal, 54 

2) the crystal platelet, 3) the collagen fibril, 4) the fibril bundle or fiber (if the fibrils have been 55 

organized in bundles or fibers). 56 

There exist several factors that are being intensely studied concerning bone’s ultrastructure 57 

organization (14, 18-22). Among them, the significant contribution of the orientation and 58 

arrangement of bone’s ultrastructure to its mechanical properties has long been suggested (23-26) 59 

and experimentally investigated (27-34). In addition, several studies conducted at different structural 60 

scales have shown that ultrastructure orientation and arrangement is among the best predictors of 61 

mechanical properties such as bone strength or elastic modulus (35-38). Many approaches have been 62 

proposed in previous years to investigate the three-dimensional (3D) orientation of at least one of 63 

the four structural elements of bone ultrastructure mentioned beforehand, including methods based 64 
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on visible light, X-rays, electrons, or magnetic fields, with some of them providing very promising 65 

results. This review intends to present an overview of these approaches and recent progress in their 66 

development, in terms of their suitability for the assessment of bone ultrastructure organization, with 67 

a specific emphasis on ultrastructure orientation and arrangement. Namely, for each technique we i) 68 

explain its underlying physical principles, ii) present how the method is applied to study 69 

ultrastructure organization and iii) critically present the advantages and limitations of those methods 70 

in assessing 3D organization of the mineralized collagen fibrils. 71 

It should be mentioned that an overarching limitation of all studies are the artifacts introduced by  72 

sample preparation steps, including e.g. sample sectioning, decalcification, dehydration or embedding 73 

(39). Depending on the protocol used, these procedures might alter to bigger or smaller extent the 74 

tissue structure and therefore limit the quantitative aspect of result interpretation. However, 75 

quantitative studies concerning the effects of these factors concerning the ultrastructure orientation 76 

and arrangement are missing. Hence, this review does not include the sample preparation effects on 77 

the final outcome. Finally, this review does not include techniques such as magnetic resonance 78 

imaging (40), electron backscatter diffraction (41), microwave method (42), small-angle light 79 

scattering (43), elastic scattering spectroscopy (44) or ultrasonic methods (45), which have been 80 

shown to be able to provide information on the orientation and arrangement of ultrastructure in 81 

bone or other tissues, but have not contributed extensively to the assessment of bone ultrastructure 82 

organization. 83 

84 
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2 Techniques to assess the organization of 85 

bone ultrastructure 86 

2.1 Technique categorization 87 

The techniques to assess the organization of the mineralized collagen fibrils or the bone 88 

ultrastructure can be divided into two categories: 89 

The first category represents methods, which can be used to examine directly and specifically the 90 

orientation of the structural elements of the bone ultrastructure (fibril bundles/fibers, collagen fibrils, 91 

mineral platelets or unit crystals) without providing an image of them, by using polarization, 92 

scattering or diffraction of the probe. In this category, only magnetic resonance imaging (MRI) 93 

makes use of another physical phenomenon, the orientation-dependent magnetic relaxation. We 94 

denote this category of techniques as “Orientation-specific techniques”. 95 

The second category encompasses methods that provide direct images of bone ultrastructural 96 

elements, which we refer to as “Imaging techniques”, where orientation-specific information can 97 

be derived from the images (as a by-product). These methods exhibit spatial resolutions that enable 98 

imaging the ultrastructure of bone, where the ultrastructural elements (mineralized collagen fibrils or 99 

fibril bundles) can be visually identified. Quantification of the orientation and arrangement of the 100 

ultrastructure is performed by image post-processing of the acquired images, through either 101 

specialized orientation-sensitive algorithms (53-55), or, most commonly, through two-dimensional 102 

(2D) or 3D Fourier transform (FT) (56), which allow deriving the orientation and degree of 103 

orientation (57-60). It should be noted that the indirect assessment of the organization of 104 

mineralized collagen fibrils by Imaging techniques can lead to artifacts, which are discussed in the 105 

introduction of the respective subsection. 106 

Moreover, another distinction between the various techniques is adopted in the review, through the 107 

different probes used for the techniques. (Visible) light is the more conventional probe used for 108 

many decades in the assessment of the orientation of mineralized collagen fibrils. Since its 109 

wavelength exceeds the mineral crystal sizes, methods using light as a probe are limited in examining 110 

the collagen fibrils or fibril bundles. X-rays and electrons have been used more recently, and can give 111 

access to significantly higher spatial resolutions than (visible) light, which allows probing crystal 112 

platelets, unit crystals, and also features of the fibrils, such as the typical ~67 nm collagen D-spacing. 113 

The only method that uses different probe is atomic force microscopy (AFM), exploiting the 114 

mechanical interaction of the sample with a sharp tip. 115 

116 
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2.2 Orientation-specific techniques 117 

The Orientation-specific techniques and their characteristics are presented in Table 1. In the following, 118 

these techniques are discussed in detail. 119 

Table 1. Orientation-specific techniques for the assessment of the organization of bone ultrastructure. 120 

Technique 
Spatial 

resolution
1
 

Feature 

probed 

Sample 

format 

FOV 

dimension 
Quantitative 

3D orientation 
Main limitation(s) Additional information 

PLM 250 nm 
fibril 

+ 

fibril bundle 
section cm × 

Sections (destructive) 

Equipment for 3D 

 studies custom-made 

Tissue image  

 (in brightfield mode) 

PRS 1 µm 
collagen 

+ 

HA mineral 
surface mm × 

Limited resolution 

Expensive 

Time-consuming
2 

Tissue surface only 

Tissue composition 

Tissue quality 

pFTIR 2 µm 
collagen 

+ 

HA mineral 
section mm × 

Time-consuming 

Sections (destructive) 

Tissue composition 

Tissue quality 

pSHG 150 nm 
fibril 

+ 

fibril bundle 

surface / 

section 
cm × 

Expensive 

Low tissue penetration 

SHG image 

 (in SHG mode) 

SAXS 

/ 

WAXS 

200 nm 
synchrotron 

 

100 µm  
lab-based 

fibril 
+ 

HA platelet 
/ 

unit crystal 

section
3
 mm ✓ 

Time-consuming 

Sections (destructive)
3 

Limited access to 

 synchrotron facilities 

Size and shape of 

 ultrastructure features 

Tissue composition 

X-ray 

scattering 

tomography 

200 nm 
synchrotron 

 

100 µm  
lab-based 

fibril  
+ 

HA platelet 
/ 

unit crystal 

volume mm ✓ 

High dose 

Limited access to 

 synchrotron facilities 

Long post-processing 

 time 

Size and shape of 

 ultrastructure features

Tissue composition 

Electron 

diffraction 
1 nm unit crystal section µm × 

Expensive 

Sample preparation 

Time-consuming 

Sections (destructive) 

Limited FOV 

Crystal structure 

Very high-resolution 

 tissue images  

 (in TEM mode) 

1: Spatial resolution values reflect the current resolution limits of each technique 121 
2. Except if coherent Raman scattering is used (61), which in exchange leads to significantly higher costs 122 
3: Sections not needed when spatially resolved information is not required 123 
Abbreviations: Field of view (FOV), hydroxyapatite (HA) 124 

125 
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2.2.1 Light-based techniques 126 

2.2.1.1 Polarized light microscopy (PLM) 127 

Polarized light microscopy (PLM) has been used since the early 19th century to study collagen 128 

structure in different biological tissues , exploiting the positive intrinsic and form birefringence of 129 

collagen (31, 50, 62). Especially for bone, use of PLM has been mostly driven by the early 130 

observation of alternating bright and dark appearance of the lamellae in the osteons (Fig. 2). The two 131 

commonly used forms of PLM are circular PLM and linear PLM (Fig. 2).  132 

In circular PLM, image brightness depends on the out-of-plane orientation of the mineralized 133 

collagen fibers in the structure and on their degree of orientation (DO), with fibers perpendicular to 134 

the light path and most highly oriented fibers leading to the highest detected intensities (31, 50, 63). 135 

In linear PLM, the image brightness also reflects the in-plane orientation of the collagen fibers 136 

relative to the polarizer (64), at the plane perpendicular to the light path. In order to retrieve the in-137 

plane orientation, either the sample or the polarizer-analyzer system has to be rotated and the results 138 

need to be fitted to a sinusoidal curve (64, 65). However, the in-plane results have an ambiguity of 139 

±90o, which is inherent in polarizer-analyzer systems (see linear PLM images in Fig. 2). This 140 

ambiguity can be removed with the introduction of an quarter-wavelength plate in the imaging 141 

system (66), which is however not standard in linear LPM microscopes. Other factors that influence 142 

the local image intensity are the section thickness and its optical transparency, the uniformity of the 143 

illumination and the initial light intensity (50). Those factors should be well controlled when 144 

performing PLM experiments (67). In addition, local image brightness is susceptible to changes 145 

depending on the collagen content/density (64, 68) (i.e., the mineral-to-matrix ratio), which is not 146 

uniform throughout a bone section, and thus complicates quantification of the 3D orientation of the 147 

mineralized collagen fibers from PLM images (64, 68). In general, there is a lack of standardization in 148 

the analysis of polarized light images, mainly due to the challenging technical demands and the 149 

complex theory of polarized light and birefringence, which can lead to incorrect interpretations of 150 

PLM outcomes (62, 64).  151 

On the other hand, the applications of PLM in bone research throughout the years have been 152 

numerous, provided important insights into the ultrastructural organization of bone (69-72), and 153 

allowed investigating structure-function relationships (27, 28, 73-75). Because of the wide use since 154 

the early 20th century and its relatively low cost compared to most other methods, PLM has been the 155 

method of reference for almost all other developed methods investigating the ultrastructural 156 

organization (63, 76-78). While other methods, such as X-ray scattering, are increasingly being used 157 

as reference methods to quantify bone ultrastructure orientation, shape and size, newer PLM 158 

techniques are being developed for quantitative assessment of the 3D orientation of mineralized 159 
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collagen fibers, by combining the sensitivity of linear PLM for the in-plane orientation and the out-160 

of-plane sensitivity of circular PLM (64, 68, 79). The spatial resolution of PLM is in the range of 161 

~250 nm and – as typical for optical microscopy systems – is limited by the diffraction limit of 162 

visible light at ~150 nm (super-resolution microscopy techniques have not been employed in such 163 

applications). 164 

2.2.1.2 Polarized Raman spectroscopy 165 

Raman spectroscopy is based on the Raman effect, where incoming photons scatter inelastically on 166 

the probed molecule and experience an energy shift. When many photons from the incoming laser 167 

interact with the probed material, the outcome is a spectrum of different energy shifts, depending on 168 

the material molecules. If one uses a polarized laser, the direction of collagen fibrils affects the 169 

Raman signal (80) (Fig. 3). More specifically, the polarized laser affects some of the peaks in the 170 

energy spectrum, such as the amide I and the v1 phosphate peak (67). This offers a way to 171 

investigate the orientation of the collagen fibrils (67, 81). Given that the amide I peak characterizes 172 

the organic and the v1 phosphate peak the inorganic part of the ultrastructure, polarized Raman 173 

spectroscopy can be used to derive information on the collagen and the minerals independently (82, 174 

83). Once the peak positions of the spectra are identified and the heights of the peaks or the areas 175 

under the peak calculated, the data analysis required to extract the 3D orientation of the 176 

ultrastructure is similar to that of PLM, since the data have to be fitted to a sinusoidal curve (84). 177 

However, as in PLM, a quantitative 3D analysis is not possible to date. 178 

In contrast to linear PLM, Raman spectroscopy offers the advantage that the orientation in the plane 179 

perpendicular to the light path can be deduced unambiguously since there is no analyzer in the 180 

experimental setup. In addition, Raman spectroscopy is performed in reflection mode, meaning that 181 

it can be used to analyze the sample without the need of sectioning it, even in vivo (87) and reaching 182 

the bone under the skin (88, 89). On the other hand, Raman experiments are much more time-183 

consuming (acquisition of one spectrum typically needs tens of seconds, except if coherent Raman 184 

scattering is employed (61)), and offer a lower spatial resolution of ~1 µm as compared to that of 185 

PLM (~250 nm). Despite that, advances in instrumentation have enabled high-resolution, position-186 

resolved analyses of bone ultrastructure orientation (85, 86). This is often combined with 187 

composition analysis (90, 91), which is an inherent capability of Raman spectroscopes, to provide 188 

properties that determine different bone quality (92) and other clinically relevant (88, 93) properties. 189 

Because of the attention Raman spectroscopy has been gaining as an in vivo imaging modality (88, 89, 190 

94, 95), and the advances that have been made in the recent years in the tools to characterize 191 

mineralized collagen fibril orientation, Raman spectroscopy/imaging can be expected to become a 192 

common tool to characterize bone ultrastructure organization in the near future. 193 
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2.2.1.3 Polarized Fourier transform infrared spectroscopy (FTIR) 194 

Raman and infrared (IR) spectroscopy are two vibrational spectroscopy methods that can detect 195 

specific chemical bonds in a sample (96). Their difference lays in the fact that IR spectroscopy 196 

detects the absorption of photons by the sample for a range of infrared frequencies, as opposed to 197 

the energy shift due to Raman scattering for a single frequency. Fourier transform IR (FTIR) is the 198 

most commonly applied type of IR spectroscopy, because of its higher speed, accuracy, and signal-199 

to-noise ratio compared to conventional (dispersive) IR techniques (97). Similar to Raman 200 

spectroscopy, the orientation and arrangement of mineralized collagen fibers can be investigated 201 

through the use of a polarized laser (77, 98). However, IR spectroscopy detects asymmetric rather 202 

than symmetric vibrational modes (stretches) (99). Consequently, the technique cannot be used to 203 

image aqueous samples, as opposed to Raman spectroscopy. IR spectroscopy is usually conducted in 204 

transmission mode, and thus requires more extensive (and destructive) sample preparation steps. On 205 

the other hand, the equipment for IR spectroscopy is significantly less expensive, making its 206 

application more common than Raman spectroscopy. Although FTIR has been routinely used to 207 

examine the composition of bone (100), relatively few studies have investigated the ultrastructural 208 

organization of bone (101, 102), and neighboring tissues such as the ligament-to-bone insertion (103) 209 

or cartilage (77, 104). This is due to the relatively recent idea of using polarized light for different 210 

sample or polarization rotation angles, which allows examining collagen fibril orientation in FTIR 211 

(77, 98). It should be noted that, as for PLM and Raman spectroscopy, FTIR is an inherently 2D 212 

technique, and cannot provide quantitative 3D orientation information. Its spatial resolution is 213 

somewhat lower than that of Raman spectroscopy (92), in the range of a few to several micrometers. 214 

2.2.1.4 Polarized second harmonic generation (SHG) imaging 215 

Second harmonic generation (SHG) imaging (105, 106) is a relatively new technique, which has 216 

gained a lot of attention during the past two decades, partly because it can be realized using existing 217 

multi-photon microscopy instrumentation (SGH and multi-photon microscopy are described in 218 

more detail in the section about imaging methods). SHG exhibits high specificity and thus, good 219 

image contrast for collagen (107, 108), which makes it an ideal imaging method for all collagenous 220 

tissues including bone (Fig. 4). Direct investigation of the orientation of the fibrils can take place 221 

with the help of a polarizer-analyzer couple (106, 109). Compared to PLM, polarized SHG offers 222 

higher image contrast for collagen fibrils. Another advantage of polarized SHG is the capability to 223 

penetrate tissue. However, this is limited to less than ~50 µm in the case of dense tissues such as 224 

bone (49, 110), since the signal is compromised with increasing tissue depth (111, 112). On this 225 

account, there are only few studies published for bone using polarized SHG (113, 114), which are 226 

restricted to regions close to the bone surface, where similar results can be achieved using PLM. On 227 

the other hand, SHG is a popular technology gaining a lot of attention more recently, and it is 228 

regularly being used for other softer tissues such as tendon (108), cartilage (111) or intervertebral disc 229 
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(109). However, similarly to PLM, SHG cannot be employed to quantitatively determine the collagen 230 

density and hence, to derive the degree of orientation (DO) of the fibrils, but provides the in-plane 231 

(115) and/or out-of-plane (116) orientation in a semi-quantitative way (117). 232 

2.2.2 X-ray-based techniques 233 

2.2.2.1 Small-angle / Wide-angle X-ray scattering 234 

Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS), also referred to as 235 

small-angle and wide-angle X-ray diffraction (SAXD and WAXD), are phenomena occurring when 236 

incoming X-rays are scattered by a sample, at smaller or larger angles, respectively. SAXS and WAXS 237 

exploit differences in electron density distributions of the different materials within the sample; X-ray 238 

photons interact with ordered and periodic systems such as collagen and mineral crystals, resulting in 239 

scattered X-ray waves that interfere constructively or destructively to create the corresponding 240 

intensity patterns on the detector, depending on the size and the spatial distribution of the scatterers 241 

(118). SAXS and WAXS can both be used for the analysis of bone ultrastructure (119): WAXS 242 

provides information from scatterers with dimensions in the sub-nanometer range, which are typical 243 

for crystallites and spacings between crystal lattice planes. In contrast, SAXS can be employed to 244 

retrieve information from tissue features in the order of 1-100 nm, both from collagen (120) and 245 

mineral crystal platelets (121, 122), thus providing information on both organic and inorganic phases 246 

of bone (123). When used in combination, SAXS and WAXS can simultaneously provide 247 

information on the unit crystals, crystal platelets and collagen fibrils in bone (123). The area detectors 248 

used to record diffraction patterns in SAXS and WAXS provide information on tissue anisotropy 249 

based on the anisotropic scattering (124). SAXS especially has been regularly employed in the past 250 

few decades to investigate collagen fibril orientation in many collagen-rich tissues (125). For bone, 251 

studies have been undertaken to investigate ultrastructure organization in animal (126, 127) and in 252 

human bone tissue (63, 128, 129), in cortical (63, 122, 130) and trabecular bone (76, 101), in the 253 

bone-cartilage interface (131-133), looking at the influence of age (134), disease (135, 136), drug use 254 

(137-139), fracture healing (140, 141) or genetic modifications (142, 143).  255 

The high brilliance of synchrotron radiation (SR) facilities and recent advances in fast-readout and 256 

low-noise detectors have enabled fast acquisition of X-ray scattering patterns, which have allowed 257 

spatially resolved investigations of bone tissue through scanning small-angle X-ray scattering 258 

(sSAXS) (76, 145). In typical sSAXS protocols thin sections are used to get information from discrete 259 

probed tissue volumes. Common practice is to match the thickness of the sections with the size of 260 

the X-ray beam, so that the probed volume is cubic. This practice also helps to avoid averaging 261 

information over extended sample volumes, where ultrastructural orientations may vary significantly. 262 

However, the use of thin sections for spatially-resolved investigations is a destructive method. 263 

Typical spatial resolutions of sSAXS are in the range of tens of micrometers, but can reach the sub-264 
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micrometer level. However, higher spatial resolutions usually also need thinner tissue sections (to 265 

ensure cubic probed volumes), which restricts the field of view. 266 

SAXS diffraction patterns provide 2D orientation information only, which is merely a projection of 267 

the 3D orientation information of the ultrastructure (144). Recently, there have been efforts towards 268 

deriving the 3D ultrastructure orientation from SAXS data (3D SAXS), by probing the sample under 269 

different rotation angles (38, 141, 146). In a new method, called 3D sSAXS (144), the 3D 270 

ultrastructure orientation has been derived quantitatively in a spatially resolved manner for small 271 

bone trabecular volumes (67), Fig. 5. These results underline the potential of SAXS and WAXS for 272 

studying bone ultrastructure orientation and arrangement, with its main limitation being the difficulty 273 

in accessing the special synchrotron facilities required for such investigations. Another limitation is 274 

the need for thin sections, when spatially resolved information is needed, making the method 275 

destructive. Compared to PLM, SAXS and WAXS offer  better capabilities to characterize the 276 

organization of mineralized and non-mineralized collagen fibrils in a quantitative fashion, since the 277 

DO of the fibrils can be normalized by the transmission information that is being simultaneously 278 

recorded (147). Finally, it should be noted that SAXS and WAXS can be combined with in situ 279 

mechanical testing (148, 149) to investigate load transfer mechanisms in normal (150), diseased (151) 280 

or treated (152) bone, broadening their range of applications and providing insight into bone 281 

structure-function relationships. 282 

2.2.2.2 X-ray scattering/diffraction tensor tomography 283 

X-ray scattering/diffraction tomography has been developed and employed in the previous decades, 284 

to tomographically reconstruct SAXS or WAXS information for a sample volume (153). Briefly, 285 

reconstruction techniques used in X-ray absorption tomography have been applied to 286 

tomographically reconstruct information from specific q-ranges in the diffraction patterns. This can 287 

be used to distinguish different materials (154), tissues (155), tissue features or composition (156, 288 

157) within a sample. However, such approaches assume isotropic azimuthal scattering, ignoring the 289 

anisotropy in the diffraction patterns. Approaches that take into account the structural anisotropy 290 

have also been proposed (158-160), where diffraction information is reconstructed for different 291 

azimuthal angles. These studies provide tissue anisotropy information in a tomographic way. 292 

However, they do not provide 3D orientation information, since they do not account for the fact 293 

that the orientation information in the diffraction pattern is merely a projection of the 3D 294 

orientation, which changes with sample rotation (144). 295 

Concerning quantitative ultrastructure organization analysis, three techniques were developed very 296 

recently to investigate 3D ultrastructure orientation in a tomographic way, based on the 297 

phenomenon of X-ray scattering: X-ray tensor tomography (161), six-dimensional SAXS 298 

tomography (6D SAXS tomography) (162) and small-angle scattering tensor tomography (SAS 299 

tensor tomography) (163). The three techniques can retrieve the ultrastructure organization of a 300 
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volume of material, such as bone, without having to section the sample. These techniques have 301 

evolved in different ways: X-ray tensor tomography has evolved from X-ray dark-field imaging using 302 

a grating interferometer (164), where ultra-small X-ray scattering is exploited (165). The intensity 303 

modulations due to the rotation of the 3rd grating (166, 167) or of the sample (168, 169) reveal the 304 

2D orientation of the ultrastructure, and have been used to retrieve 2D ultrastructure organization of 305 

bone (170) or dentin (166). By rotating the sample around two axes, and using an iterative 306 

reconstruction algorithm, it is possible to retrieve the 3D ultrastructure orientation (161). 307 

Applications to bone ultrastructure are expected to follow. SAS tensor tomography and 6D SAXS 308 

tomography on the other hand have evolved from small-angle X-ray scattering, combining the 309 

concepts of SAXS tomography (171) and 3D sSAXS (144), while adding a sample rotation around a 310 

second axis. For the reconstruction of ultrastructure orientation, 6D SAXS tomography employs a 311 

finite number of virtual tomographic axes, Fig. 6A: for each axis direction, only the ultrastructure 312 

orientations that are parallel to the axis are reconstructed. The use of 6D SAXS tomography has very 313 

recently been employed to evaluate the ultrastructure orientation in bone dentin (162). On the other 314 

hand, SAS tensor tomography uses an iterative tensor tomography algorithm based on spherical 315 

harmonics for the reconstruction of the ultrastructure orientation, Fig. 6B. Known internal sample 316 

symmetries – such as the rotational symmetry in mineralized collagen fibrils – can be exploited to 317 

reduce post-processing time. SAS tensor tomography was very recently applied to successfully 318 

retrieve the ultrastructure organization of a bone trabecula (163), Fig. 6C,D. All three techniques are 319 

non-destructive, and open new paths towards ultrastructure organization investigations of whole 320 

sample volumes. It should be noted that this comes at the cost of higher X-ray dose, and long post-321 

processing times needed to handle the vast amount of acquired data (172). In addition, X-ray tensor 322 

tomography is currently limited to the assessment of only the 3D orientation and not the DO, since 323 

it cannot quantify the amount of scatterers in each voxel. The spatial resolution of these techniques 324 

is similar to the SAXS techniques, i.e. in the range of tens of micrometers in synchrotron facilities 325 

and hundreds of micrometers for lab-based systems. 326 

2.2.3 Electron-based techniques 327 

2.2.3.1 Electron transmission diffraction 328 

Electron transmission diffraction pattern detection can be an additional feature in transmission 329 

electron microscopy (TEM) setups (173) (described below). It is used to provide information on the 330 

orientation of mineral crystals (16, 17, 174), derived from the diffraction pattern of the electrons that 331 

interact with the crystal lattice planes (Fig. 7). However, extensive preparation protocols for TEM  332 

that typically include fixation, dehydration, drying , enhancing feature contrast , preparing small 333 

samples for subsequent cutting with an ultramicrotome, and the following handling of very small 334 

specimens have restricted the use of electron diffraction for quantifying bone ultrastructure 335 

organization to a handful of studies over the past decades (51, 52, 175-178) (Fig. 7), examining either 336 
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the crystal arrangement in single platelets or fibrils, or a limited number of points within a TEM 337 

section. TEM gives access to very small features at the nanometer scale (e.g. single platelets), which 338 

are inaccessible with other techniques, and enables the analysis of the 3D orientation of mineral 339 

platelets (179, 180). Nevertheless, the restricted field of view (in the order of a few micrometers) and 340 

elaborate sample preparation procedures are major limiting factors for electron transmission 341 

diffraction to become widely used in the study of the organization of bone ultrastructure. 342 

343 
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2.3 Imaging techniques 344 

The Imaging techniques presented here provide direct images of bone ultrastructural elements, where 345 

orientation-specific information can be derived from the images (as a by-product). These 346 

ultrastructural elements include mineralized collagen fibril bundles (for light-based techniques), 347 

mineralized collagen fibrils (for X-ray-based techniques) or fibril features such as the ~67 nm D-348 

spacing and crystal platelets (for electron-based techniques). By applying image post-processing steps 349 

to the gathered image data (e.g. Fourier Transform) and with the goal to derive orientation-specific 350 

information, the organization of the ultrastructure can be analyzed (53, 55-59). 351 

The Imaging techniques typically have a considerably lower field of view when compared to the 352 

Orientation-specific techniques employing the same probe (presented earlier). The reason for the field of 353 

views being different is that the ultrastructural elements need to be visually identified, which relies on 354 

high spatial resolutions, which in turn limit the field of view and consequently the size of the 355 

area/volume that can be investigated. One way to overcome this limitation and to extend the 356 

effective field of view is through imaging adjacent sample areas (181). 357 

Another consequence of the image-based approaches is the need to discretize the image data in order 358 

to derive the ultrastructure orientation via orientation-specific algorithms, which usually include a 359 

Fourier Transform of a 2D or 3D dataset (Fig. 8). However, most algorithms are not specific for the 360 

fibrils, but they rather average the information from all features in the image. For the case of bone, 361 

this can be features of the lacuno-canalicular network, lamellar boundaries, cement lines, bone-canal 362 

or bone-marrow interfaces and possibly image artifacts. In spite of this, the imaging techniques 363 

presented here offer the advantage of providing visual information of bone tissue at the scale of the 364 

structural elements, which also enables observations concerning other aspects of the bone tissue, 365 

such as the size of the collagen fibrils or fibers, the lacuno-canalicular network or the lamellar 366 

structure. Such information can then also be used to create ultrastructural models that enhance the 367 

analytical tools to study bone’s hierarchical structure (51, 182-184). 368 

The most commonly used imaging techniques for assessing the mineralized collagen fibril 369 

organization are presented in Table 2. 370 

371 
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Table 2. Imaging techniques for the assessment of the organization of bone ultrastructure. 372 

Technique 
Spatial 

resolution
1
 

Feature 

imaged 

Sample 

format 

FOV 

dimension 

Quantitative 

3D orientation 
Main limitation(s) Additional information 

CLSM 150 nm fibril bundle 
surface / 

section 
cm × 

Cannot resolve single 

fibrils 

Low depth penetration 

Macroscopic image of 

 3D tissue volume 

SHG 100 nm fibril bundle 
surface / 

section 
cm × 

Cannot resolve single 

 fibrils 

Low depth penetration 

Expensive 

Macroscopic image of 

 collagen in 3D tissue 

 volume 

SR CT 20 nm fibril bundle volume cm × 

Cannot resolve single 

 fibrils (up to now) 

Limited access to 

 synchrotron facilities 

Mesoscopic 3D tissue 

 image 

Tissue mineral density 

Trabecular architecture 

LCN network 

Phase-

contrast CT 
15 nm fibril volume µm ✓ 

Currently at the limit of

 resolving single fibrils 

Time-consuming 

Limited access to 

 synchrotron facilities 

Microscopic 3D tissue 

 image 

Tissue mineral density 

LCN network 

TEM 0.1 nm 
fibril 

+ 
HA platelet 

section µm × 

Very extensive sample

 preparation 

Expensive 

Limited FOV 

Nanoscopic 2D tissue 

 image 

Platelet shape & size 

Mineral-collagen interface 

Fibril diameter 

Collagen D-period 

SEM 1 nm fibril surface µm × 

Extensive sample 

 preparation 

Only tissue surface 

Expensive 

Limited FOV 

Nanoscopic 2D tissue 

 image 

FIB SEM 

/ 

SBF SEM 

10 nm fibril volume µm ✓ 

Extensive sample 

 preparation 

Only tissue surface 

Expensive 

Limited FOV 

Time-consuming 

Microscopic 3D tissue 

 image 

LCN network 

AFM 0.1 nm 
fibril 

+ 
HA platelets 

surface µm × 

Limited FOV 

Irreproducible results 

 due  to possible probe 

 tip damage 

Nanoscopic 2D tissue 

 image 

Platelet shape & size 

Mineral-collagen interface 

Fibril diameter 

Collagen D-period 

Mechanical properties 

1: Spatial resolution values reflect the current resolution limits of each technique 373 

2.3.1 Light-based imaging techniques 374 

2.3.1.1 Confocal laser scanning microscopy (CLSM) 375 

Confocal laser scanning microscopy (CLSM) enables imaging “inside” tissues by selectively collecting 376 

information from a specific plane (the focal plane) via the use of pinholes in the light path (185). 377 
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Since different focal planes can be chosen, CLSM enables taking a so-called z-stack of images, which 378 

contains information of a volume inside the tissue. It should be noted that this capability is limited in 379 

the case of hard tissues such as bone, where CLSM penetration is restricted to few hundreds of 380 

micrometers. The contrast in CLSM images is a result of differences in the refractive index of 381 

materials, which is typically small within biological tissues. Consequently, CLSM is often combined 382 

with fluorescence microscopy, in order to provide additional biochemical information characterizing 383 

the sample. Collagen is well fitted for fluorescence imaging without the need of fluorescent dyes 384 

because of its autofluorescence (186). CLSM has been regularly used to investigate bone and other 385 

tissues (187), including the organization of the bone ultrastructure (188-190). However, bone tissue 386 

assessed by CLSM can provide images of the mineralized collagen fibril bundles, which are on the 387 

same size scale as its spatial resolution capabilities (~200 nm). Thus, studying the orientation of the 388 

bone ultrastructure using CLSM provides rather qualitative than quantitative results. In addition, 389 

confocal microscopes have recently lost their charm to multi-photon microscopes to some extent, 390 

since the latter offer higher tissue penetration depths and more specific information from the focal 391 

plane/point (Fig. 9) as well as other advantages described in the following. 392 

2.3.1.2 Second harmonic generation (SHG) in multi-photon microscopy 393 

Multi-photon microscopy uses short-pulsed laser to create a high spatial and temporal photon 394 

density at a well-defined focal point in the specimen, where two or more lower-energy photons are 395 

combined to reach the energy levels necessary for fluorescence excitation (192) (see Fig. 9). The 396 

setup for multi-photon microscopy experiments is very similar to those for CLSM if one removes 397 

the pinholes and switches to a very short-pulsed laser (193). Yet, multi-photon microscopy offers 398 

several advantages; i) higher tissue penetration depth (photons at higher wavelength penetrate deeper 399 

into scattering tissues), ii) significantly greater selectivity of the imaging plane, since photons are 400 

combined at, and excite only one desired point in space, iii) higher photon yield, due to the lack of 401 

the pinholes present in CLSM, which are not needed as the excited point emits fluorescence photons 402 

only, iv) less photodamage (damage to the tissue by harmful radiation), and v) less photobleaching 403 

(progressive destruction of the fluorescence properties of the fluorophore by continuous excitation) 404 

(194). Multi-photon microscopy is routinely used in vivo and continuously advancing (195). For the 405 

investigation of collagen-rich structures, an extended experimental setup of multi-photon 406 

microscopes is commonly employed, which is called second harmonic generation (SHG) 407 

microscopy. 408 

SHG microscopy (105, 106) is based on the homonymous phenomenon, where a high photon 409 

density beam passing through a strongly birefringent material excites electrons to a virtual state, 410 

which results in the emission of photons at an energy twofold the excitation energy. SHG 411 

microscopy is thus an appropriate imaging technique for strongly birefringent materials such as 412 

collagen, which can be well distinguished from other tissue components (107, 196). It can 413 
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experimentally be implemented using the same setup as for multi-photon microscopy, with the 414 

addition of a detection filter at half the wavelength of the emission laser. Owing to the great 415 

popularity of the technique (191), more dedicated and sophisticated setups have been developed that 416 

take full advantage of the capabilities of SHG (110). In recent years there have been many studies on 417 

collagenous tissues using SHG microscopy, including cartilage (197), tendon (59), muscle (198), skin 418 

(199), fetal membranes (200), and vessels (201).  419 

At the same time, bone ultrastructure organization have been investigated using SHG imaging in a 420 

handful of studies only [38, 206, 239, 240] (Fig. 10), which is due to the limited penetration depth of 421 

SHG in mineralized tissues (less than 100 µm [38]). Nonetheless, the capability of SHG to provide 422 

spatial resolutions down to ~30 nm [241], the development of methods to quantify the 3D 423 

orientation of collagen fibrils [50], and the advantage to scan deep within the tissue in vivo [121, 242, 424 

243] or to image in conjunction with mechanical testing [237, 238], point towards a wider use of 425 

SHG for a quantitative investigation of the bone ultrastructure in the future. 426 

2.3.2 X-ray-based imaging techniques 427 

2.3.2.1 Absorption-based X-ray imaging 428 

Synchrotron radiation-based computed tomography (SR CT) is a CT-based technique (203) that can 429 

reach resolutions in the sub-micrometer range (204). Compared to conventional lab-based micro-430 

computed tomography (µCT) imaging systems, SR CT can deliver higher resolution images of bone 431 

tissue (205) with increased signal-to-noise ratios, mainly due the high X-ray flux available at (3rd 432 

generation) X-ray synchrotron sources (205). At the same time, the use of quasi-monochromatic X-433 

ray light in SR CT imaging prevents beam hardening effects, which are typically present in CT scans 434 

from lab-based µCT systems that are equipped with a standard (polychromatic) X-ray tube. 435 

Moreover, the parallel X-ray beam setup for SR CT imaging is free of cone beam artifacts known 436 

from classical µCT systems, where X-rays are emitted in a cone beam fashion (207). SR CT allows 437 

examining bone features of sizes similar to the mineralized collagen fibrils or fibers (48, 208, 209) in 438 

a quantitative way (210, 211). Examples are osteocyte lacunae, which are in the micrometer range and 439 

canaliculi with dimensions in the order of 100 nm. These bone microporosities can be identified and 440 

segmented straightforwardly due to their high contrast as compared to the surrounding (mineralized) 441 

bone matrix. However, identifying single fibrils requires higher spatial resolutions and contrast as it is 442 

shown for SR CT at sub-micrometer resolution, where mineralized collagen fibril arrangement is 443 

visible (206) (Fig. 11). The technique is not currently at a stage where bone ultrastructure 444 

organization can be studied in a quantitative fashion, yet continuous advancements in SR CT (204, 445 

212) at ever increasing spatial resolutions, currently reaching 20 nm (213), will eventually enable 446 

resolving single collagen fibrils in 3D, and hence quantitative investigations of 3D orientation of 447 
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mineralized collagen fibrils in bone. Nevertheless, improvements in resolution typically come at the 448 

cost of a reduced field of view. 449 

2.3.2.2 Phase contrast X-ray imaging 450 

Unlike the traditional X-ray absorption techniques, phase contrast X-ray imaging exploits the phase 451 

of the propagation X-ray waves (not their amplitude), which is modulated by interaction with the 452 

object when coherent X-rays beams are used, provided explicitly by SR sources.  453 

The various phase contrast techniques offer in many cases higher image contrast at lower X-ray 454 

exposure or dose compared to X-ray absorption techniques , which makes them good candidates for 455 

in vivo studies (216-218). The applications of phase contrast X-ray imaging techniques are rapidly 456 

increasing (217) and specific imaging modalities such as X-ray phase nanotomography (219) and 457 

ptychographic (or lensless) CT (214) have been used to image bone with spatial resolutions at the 458 

nanometer scale. First studies on bone ultrastructure organization have been performed on volumes 459 

at the micrometer level (215) (Fig. 12). Considering the capabilities of ptychographic CT for 460 

quantitative analysis of materials and tissues (220) at spatial resolutions below 20 nm (221), where 461 

single collagen fibrils could be resolved, phase contrast methods offer the potential for a direct 462 

insights into bone ultrastructure organization of single osteons or trabeculae. 463 

2.3.3 Electron-based imaging techniques 464 

2.3.3.1 Transmission electron microscopy (TEM) 465 

Transmission electron microscopy (TEM) has very high spatial resolution capability, which is well in 466 

the sub-nanometer range (222). TEM examines sub-micrometer thin material sections, which are 467 

difficult to prepare (223). The image contrast is imparted through differences in the quantity of 468 

transmitted electrons through the sample. The high financial equipment and sample preparation 469 

costs, the extensive sample preparation time and expertise required (224), and the restricted field of 470 

view (as a consequence of the high spatial resolution) have limited the use of TEM in the study of 471 

bone ultrastructure organization. 472 

On the other hand, the available studies using TEM portrayed the bone ultrastructure at a 473 

nanoscopic scale, which has led to important arrangement models of the bone ultrastructure, such as 474 

the twisted plywood pattern in the osteons proposed by Giraud-Guille (226). TEM has also allowed 475 

local qualitative assessment of ultrastructure arrangement of healthy and osteoporotic bone (225, 476 

227), yet in 2D only (Fig. 13). Furthermore, TEM has been applied to make important contributions 477 

to what we know about bone structure at very small scales, through investigations of the shape and 478 

size of bone crystals (7, 228), their spatial relationship and arrangement in relation to the collagen 479 

fibrils (175, 229) or features of the collagen fibrils such as the ~67 nm D-spacing (52) (Fig. 13). 480 

Finally, TEM is also playing an important role in studying crystal arrangement during the bone 481 

mineralization process (230). 482 
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2.3.3.2 Scanning electron microscopy (SEM) 483 

Scanning electron microscopy (SEM) is the most widely used EM technique. SEM provides 484 

nanometer resolution of the sample surface, so there is no need for preparing very thin samples as 485 

for TEM. However, equipment is costly and bone sample preparation procedures labor-intensive 486 

(47, 231). Secondary electrons (SE), allow analyzing sample texture and topography, and have been 487 

used in SEM to determine collagen fibril orientation in different tissues such as ligaments (57), 488 

menisci (232), tendons (233, 234) and cartilage (235, 236), as well as bone (237-239). SEM gives 489 

access to mineralization levels and elemental analysis using back-scattered electrons and energy-490 

dispersive X-rays respectively, generated by the interaction of the electron beam with the sample (47, 491 

240). However, only the sample surface is imaged. At the present time, SEM is typically employed in 492 

the study of 3D ultrastructure orientation in combination with volume electron microscopy 493 

techniques, which give access to volumetric information, such as serial focused ion beam SEM (FIB 494 

SEM) and serial block-face SEM (SBF SEM) discussed below. 495 

2.3.3.3 Serial focused ion beam SEM & serial block-face SEM 496 

In the past years, different volume electron microscopy techniques have been developed, such as 497 

serial focused ion beam SEM (FIB SEM) and serial block-face SEM (SBF SEM) (241). Both 498 

methods follow the idea of imaging a volume slice-by-slice, by alternating between SEM imaging and 499 

removing a very thin section of the sample block at the surface, either with an ion beam for FIB 500 

SEM or with an ultramicrotome for SBF SEM. The result is stacks of 2D images that provide a 3D 501 

volume of the sample. Given that the result of such a procedure is a micrometer volume with 502 

nanometer resolution, the data can be used to study ultrastructure organization of tissues such as 503 

muscle , tendon (242) or bone, either in 2D (243-245) or in 3D (2, 246) (Fig. 14). Although only a 504 

limited tissue volume can be assessed when using volume electron techniques (the spatial resolution 505 

at nanometer levels restricts the field of view to tens of micrometers), and despite the fact that those 506 

techniques are destructive, they provide important insights concerning the organization of the bone 507 

ultrastructure, such as in Haversian systems (2) or trabeculae (247). While the spatial resolution of 508 

FIB SEM is in the order of a few nanometers, compared to the tens of nanometers for SBF SEM 509 

(owing to the finer sectioning or milling capabilities of FIB), both techniques are expected to play an 510 

important role in further investigations of bone ultrastructure organization at the nanometer scale. It 511 

should be noted that both techniques also allow investigations of bone microporosities, including the 512 

lacuno-canalicular network (245). Still, the extended sample preparation protocols and the extended 513 

imaging times involved for serial sectioning electron microscopy consume a lot of resources and time 514 

(246). 515 

516 
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2.3.4 Other imaging techniques 517 

2.3.4.1 Atomic Force Microscopy (AFM) 518 

Atomic force microscopy (AFM) (248) is the only technique among the presented ones where the 519 

probe mechanically interacts with the sample: a sharp tip mounted on a cantilever is used to probe 520 

the sample surface, piezoelectric elements are used to move the sample (or the tip) in x-y direction 521 

and a 3rd element is used to move it in the z-direction. A force-feedback loop has the task to keep the 522 

interaction force between the tip and the sample constant, by acting on the z-piezoelectric element: 523 

when the force deviates from the set value, the element moves the sample (or the tip) accordingly, so 524 

that the force goes back to the pre-assigned levels. AFM spatial resolution capabilities are impressive 525 

and are only comparable to TEM among the techniques considered in this review: it can reach spatial 526 

resolutions in the sub-nanometer range , in biological samples  and even at room temperature (249). 527 

In addition, AFM can act as a nanoindentation tool to measure mechanical properties of 528 

micrometer-scale samples (250, 251). Compared to electron microscopy equipment, AFM is 529 

inexpensive and less destructive, while requiring much less copious sample preparation. However, its 530 

results are less repeatable, since the probe can be gradually or abruptly blunted by the contact with 531 

the sample, or it can pick up a small particle on its tip, events that can cause artifacts in the resulting 532 

image. Also, in order to reach the resolution levels needed for imaging single fibrils, the field of view 533 

has to be restricted to a few micrometers (252). Moreover, AFM probes the surface of materials, and 534 

can thus provide only 2D information on the organization of the ultrastructure. This is why AFM’s 535 

numerous applications in bone research (253, 254) have been mainly focused on the study of its 536 

mechanical properties at a tissue (255-257) and single fibril level (258-260), while very few studies 537 

have investigated the organization of the mineralized collagen fibrils (261, 262), Fig. 15. However, 538 

similarly to TEM, AFM has been extensively used to examine bone features at the nanometer scale, 539 

such as the size of mineral platelets (6, 263), collagen fibril characteristics (e.g. its diameter and D-540 

spacing) (264-266) and the spatial relationship between collagen fibrils and mineral platelets (267-541 

269). 542 

543 
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3 Discussion 544 

The presented techniques that can be used to assess the orientation and arrangement of the 545 

mineralized collagen fibrils, the ultrastructural units of bone, were grouped into two categories. For 546 

the orientation-specific techniques, the orientation of the collagen fibrils is probed directly based on 547 

physical principles such as polarization, diffraction and scattering (see Table 1). On the other hand, 548 

for the imaging techniques the images of the ultrastructure must be post-processed using algorithms 549 

such as Fourier transformation in order to derive quantitative information about the organization of 550 

the ultrastructure (see Table 2). 551 

The presented techniques are numerous, and of different nature, and are used to study the 552 

orientation and arrangement of the ultrastructure at different hierarchical levels, in 3D or 2D only 553 

and/or in conjunction with mechanical testing. Some of the techniques have the potential to be 554 

applied in vivo, whereas some methods are inherently destructive, and others have the potential to 555 

reveal the organization of bone ultrastructure with further advances in technology. Here, we provide 556 

a critical assessment of the presented techniques with respect to the above mentioned aspects, taking 557 

into account their capability and potential to provide insight into to the organization of bone 558 

ultrastructure. 559 

3.1 Assessment at different hierarchical levels and 560 

additional information on bone tissue 561 

The presented techniques can provide insight into bone structure and organization at different length 562 

scales, probing distinct features at different hierarchical levels, Fig. 16. In general, orientation-specific 563 

techniques provide a larger field of view (FOV), since single fibrils or fibril bundles do not need to 564 

be resolved individually to provide quantitative information on the 3D organization of the 565 

ultrastructure. In contrast, imaging techniques, where single collagen fibrils or fibril bundles need to 566 

be spatially resolved, offer a more limited FOV due to their intrinsic inverse relationship between 567 

field of view and spatial resolution. Additionally, the presented techniques provide complementary 568 

information, other than orientation and arrangement of mineralized collagen fibrils. Imaging 569 

techniques visualize bone structure, probing tissue features apparent at different scales, which allows 570 

deriving measures such as ultrastructure feature shapes and sizes and other structural information, 571 

for example about local mineralization, the collagen-mineral interface and the lacuno-canalicular 572 

network. 573 

More specifically, regarding imaging techniques, AFM and electron microscopy (EM) techniques can 574 

directly image mineralized collagen fibrils, with a FOV covering areas at a scale of tens of 575 
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nanometers to a few tens of micrometers (2). Imaging bone at this scale provides useful information 576 

on other structural features, such as the collagen-mineral interface (14), mineral platelet sizes and 577 

shapes (6, 7) or collagen D-period (52, 265) for very high resolution techniques such as TEM and 578 

AFM, and offers data revealing structural details of the lacuno-canalicular network (245) and bone 579 

remodeling sites (270) for high resolution techniques such as SEM. X-ray phase contrast techniques 580 

such as ptychographic CT (214) or X-ray phase nanotomography (215) operate at similar scales as 581 

volume SEM, and in addition offer the important advantage of tomographic (i.e. non-destructive) 582 

assessment. These techniques can also provide insight into features such as the lacuno-canalicular 583 

network and mineralization levels at the nanoscale (214, 271). At higher FOVs, synchrotron radiation 584 

CT (SR CT) offers a tomographic approach, with the limitation that SR CT cannot resolve single 585 

fibrils and is limited to visualization of fibril bundles only. Moreover, SR CT allows studying 586 

structural features such as the intracortical canal network or the lacuno-canalicular network (48, 210), 587 

microcracks (272), pathological cysts (273), and trabecular bone micro-architecture (274). Similar to 588 

SR CT, optical microscopy techniques, such as CLSM or SHG, are limited to visualization of fibril 589 

bundles only. On the other hand, optical microscopy techniques provide insight into the mesoscopic 590 

bone organization. 591 

Orientation-specific techniques can offer additional information on bone tissue. Electron diffraction 592 

gives access to information about crystal lattice, shape, size (16) and orientation (180) at spatial 593 

resolutions at the nanometer scale, but is expensive, requires extensive sample preparation and 594 

provides a very restricted FOV only. When the TEM setup is used in imaging mode (and not 595 

diffraction mode), it allows for very high-resolution images of bone tissue (174). Using X-ray 596 

scattering techniques, such as scanning SAXS and scattering tomographic techniques, one can 597 

achieve sub-micrometer resolutions and FOVs at the millimeter level. In addition to crystal or fibril 598 

orientation (144, 163), X-ray scattering techniques disclose features such as the collagen 67 nm D-599 

period (8, 9), the shape and size of HA platelets (126), the load partitioning between different bone 600 

phases (149, 150) and also information on tissue composition (155, 156, 159, 275). Polarized 601 

spectroscopic techniques such as pFTIR and PRS come along with a comparable low resolution (at 602 

the micrometer scale), but they can provide a wealth of information on bone chemical composition 603 

and tissue quality, such as mineralization/mineral-to-matrix ratio, crystallinity, collagen cross-604 

linking/maturity and carbonate-to-phosphate ratio (92, 100). Optical microscopy techniques such as 605 

pSHG and PLM are also limited in their spatial resolution, which is around 200 nm, but their wider 606 

FOV allows studies of macroscopic samples. 607 
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3.2 Quantitative assessment of 3D orientation and 608 

arrangement of mineralized collagen fibrils 609 

The capability to quantitatively assess the 3D organization of the ultrastructure is key to the 610 

understanding of structure-function relationships in bone tissue. As can be seen in Table 1 and Table 611 

2, four different techniques can provide quantitative measures for the mineralized collagen fibril 612 

orientation and arrangement within a tissue volume. First, for the orientation-specific techniques, 3D 613 

sSAXS gathers data that can be used to derive the 3D orientation and arrangement of bone tissue 614 

ultrastructure for tissue sections with resolutions at the micrometer scale. By stacking these results 615 

from consecutive thin sections, one obtains volumetric information for samples at the millimeter 616 

scale, as exemplified for complete trabeculae (67, 144), that can also provide insight into important 617 

ultrastructure-microstructure relationships (67). X-ray scattering tomography techniques, including 618 

6D SAXS tomography (162) and SAS tensor tomography (163), provide bone ultrastructure 619 

organization information in a tomographic, non-destructive way, at the cost of higher X-ray doses 620 

and longer data post-processing times. Nevertheless, X-ray scattering tomography techniques seem 621 

to open the way to tomographic investigations that provide ultrastructure orientation information in 622 

3D. Regarding imaging techniques, volume EM techniques, such as FIB SEM (243) or SBF SEM 623 

(241), provide information by serially removing thin sections and imaging the underlying surface, to 624 

reconstruct volumes of tens of micrometers in size. Finally, through phase contrast techniques, such 625 

as ptychographic CT (214) and phase-contrast nanotomography (215), bone tissue samples at overall 626 

dimensions of tens of micrometers can be imaged in a tomographic and thus non-destructive way, 627 

with spatial resolutions at the nanometer scale. Whereas both volume EM and phase contrast 628 

techniques use post-processing algorithms, such as Fourier transform, to provide the 3D orientation 629 

and arrangement of mineralized collagen fibrils at the nanoscale (215, 247), phase contrast 630 

approaches have the important advantage of being non-destructive, hence allowing further 631 

investigations on the tissue post hoc. 632 

3.3 Combination with in situ mechanical testing 633 

The capability to assess the organization of the ultrastructure in combination with in situ mechanical 634 

testing is another important aspect to understand structure-function relationships in bone tissue. Not 635 

all presented techniques can be combined with mechanical testing, e.g. techniques that need sample 636 

sectioning, such as PLM, FTIR, SHG in transmission mode, TEM (and electron transmission 637 

diffraction) or volume electron microscopic techniques (e.g. FIB SEM or SBF SEM). Electron-based 638 

techniques relying on an SEM setup are not ideal for in situ experiments, mainly because of the 639 

imaging process taking place under high vacuum and due to the extended sample preparation that 640 
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alters the mechanical properties of the tissue. Although both requirements have been alleviated with 641 

the advent of environmental SEM , which can image samples “wet” and under moderate pressures 642 

and has thus enabled in situ experiments of biological samples , reported in situ SEM experiments 643 

have been very limited up to date for bone tissue , because they currently cannot provide sufficient 644 

spatial resolution that would allow assessment of the bone ultrastructure organization. X-ray based 645 

techniques such as SAXS and WAXS have been used in the past years for in situ experiments (149, 646 

150, 152, 276-279). However these studies have been carried out for a limited number of discrete 647 

points in space within the sample only, and they could not provide quantitative results in terms of 648 

the 3D orientation of the ultrastructure. The orientation reconstruction technique of 3D sSAXS 649 

(144) could be applied to whole sample measurements in order to provide such 3D information. 650 

Also, the X-ray scattering tomography techniques of SAS tensor tomography (163) and 6D SAXS 651 

tomography (162) could be used to provide the ultrastructure organization in situ. However, the 652 

biggest limitations of X-ray-based techniques for use in conjunction with in situ experiments are the 653 

radiation dose and the time needed to acquire the experimental image data, both of which have an 654 

important effect on the mechanical properties of the bone sample (280). On the other hand, light-655 

based techniques do not induce specimen damage -even though long laser residence times can 656 

detrimentally affect the sample (281). Polarized Raman spectroscopy would involve acquisition times 657 

of tens of seconds for every spot, enough for bone to exhibit its viscoelastic behavior (282). 658 

Reflection mode SHG (either polarized or not) has been used in combination with in situ 659 

experiments of bone (283) and other tissues (200, 201). However, as discussed earlier, SHG in 660 

reflection mode can provide qualitative orientation information only, which originates from the 661 

sample surface or from sites very close to the surface. 662 

3.4 In vivo assessment 663 

Electron microscopic techniques cannot be applied in vivo due to the sample preparation procedures 664 

and imaging conditions needed, that are incompatible with living mammalian cells (284). Also, in vivo 665 

measurements require techniques that can reach bone tissue a few millimeters below the skin surface. 666 

X-rays have the inherent ability to penetrate deep into tissues, however X-ray imaging techniques 667 

used to investigate bone ultrastructure organization operate at high resolutions, requiring very small 668 

samples and involving significant X-ray doses, which is detrimental for in vivo applications. Local 669 

tomography (285, 286), where the reconstructed region of interest is smaller than the sample, could 670 

be used to significantly reduce the dose, yet at the expense of reconstruction errors (287) such as 671 

cupping (radial increase of the gray values towards the edge of the reconstruction circle) or other 672 

non-uniform errors over the FOV. Application of SAXS and WAXS in vivo is also very difficult due 673 

to the high X-ray dose required for signal detection, because the primary X-ray beam is blocked and 674 

the signal is only generated from the scattered X-ray photons, which are several orders of magnitude 675 
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less than the transmitted ones. However, X-ray phase contrast methods based on grating-based dark 676 

field imaging (164, 288), could be easier adopted to be used in vivo in animals(216, 289) and eventually 677 

in humans (290, 291), whereas they can also be combined with standard X-ray absorption methods 678 

(218, 292). Their use in providing information on ultrastructure organization (161, 169), by exploiting 679 
ultrastructure orientation-dependent signal modulations (168, 293) is expected to rise in the future, since these methods have not been adequately 680 
explored to date (169). In addition, the two recent non-destructive X-ray scattering tomographic methods 681 

(162, 163) are potential candidates for being applied in vivo, although that would require significant 682 

technological advances, mainly in detector technology, in order to reduce the dose deposited in the 683 

sample. 684 

Visible light is less harmful to biological tissues and could be used for in vivo investigations of 685 

ultrastructure organization. The assessment would however be restricted to superficial areas, due to 686 

the (very) low penetration depth of light in hard tissues such as bone. For instance, it has been 687 

shown that Raman spectroscopy can be performed on bone transcutaneously (88, 89, 94, 95), 688 

whereas application of SHG in vivo in tissues underneath the skin is possible through the use of 689 

endomicroscopes (294, 295), which can in addition preserve the laser polarization and thus, also 690 

enable polarized SHG imaging (296, 297). Therefore, the use of polarized Raman spectroscopy and 691 

SHG for the in vivo assessment of the ultrastructural organization of bone can be envisaged in the 692 

future. 693 
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4 Conclusions 694 

Bone’s composite nature and hierarchical structure impart its remarkable mechanical properties. 695 

At the ultrastructural scale, the mineralized collagen fibrils, with a diameter of ~100 nm, are 696 

bone’s building units. Their organization has been shown to be of importance in determining the 697 

mechanical properties at different levels. For this reason, multiple techniques that assess the 698 

orientation and arrangement of the mineralized collagen fibrils have been developed. 699 

This article reviewed these different imaging techniques suitable for the assessment of bone 700 

ultrastructure organization, and evaluated their ability to determine the orientation and 701 

arrangement of the mineralized collagen fibrils at different scales, using different probes and 702 

exploiting various different physical phenomena. Their advantages, limitations and most 703 

important applications in the study of bone ultrastructure arrangement were presented. Finally, 704 

we evaluated the techniques’ capabilities to assess the ultrastructure organization quantitatively 705 

and in 3D, and in terms of combination with in situ experiments and their suitability for in vivo 706 

studies. 707 

It seems that we are currently at a point where both the interest in bone ultrastructure 708 

organization is high, and the technology potential to assess it is sufficient. As technology is 709 

advancing on many fronts (e.g. probe strength and size, lens quality, detector sensitivity, etc.) 710 

these techniques are going to offer an improved ability to assess bone’s ultrastructure 711 

organization, and it is very probable that new techniques based on similar physical principles 712 

emerge. 713 
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 1418 

Figure captions 1419 

Figure 1. Bone at different hierarchical levels. At a macroscopic level, bone consist of the cortical 1420 

and the trabecular bone compartment. On a microstructural level, the trabecular network and the 1421 

Haversian system are observed, which are typically formed by bone lamellae. At a lower 1422 

hierarchical level, bone ultrastructure comprises mineralized collagen fibrils, which are arranged 1423 

randomly or in bundles. This review presents the methods that enable investigations of the 1424 

organization of the ultrastructure. A) Human femur cut in half and imaged using scanning 1425 

electron microscopy (SEM). Image from (46) with kind permission of Royal society of 1426 

Chemistry. B) Trabecular network imaged using SEM in backscattered electron mode. Image 1427 

from (47) with kind permission of Humana Press, Inc. C) Haversian system imaged using 1428 

synchrotron radiation-based computed tomography (SR CT). Image from (48) with kind 1429 

permission of SPIE. D) Lamellar structure of trabecular bone imaged using polarized second 1430 

harmonic generation (SHG) imaging. Image from (49) with kind permission of Materials 1431 

Research Society. E) Lamellar structure of cortical bone imaged using circularly polarized light 1432 

microscopy. Image from (50) with kind permission of John Wiley and Sons, Inc. F) Mineralized 1433 

collagen fibril bundles imaged using transmission EM (TEM). Image from (51) with kind 1434 

permission of PLOS. G) Single mineralized collagen fibril and diffraction pattern (inset) showing 1435 

the orientation of unit crystal cells imaged using TEM and electron diffraction, respectively. 1436 

Image from (52) with kind permission of ACS Publications. 1437 

Figure 2. Determining bone ultrastructure organization using polarized light microscopy (PLM). 1438 

A) Sketch of the orientation of the fibrils in the osteon, for the three different osteon types 1439 

(transverse, alternating, and longitudinal). B) Linear polarized light microscopy (PLM) (top) and 1440 

circular PLM (bottom) images of the three types of osteons. The linear PLM images exhibit the 1441 

“Maltese cross” artifact, because of the polarizer-analyzer setup, leading to a ±90o ambiguity in 1442 

the orientation of the fibrils in the plane of the section. Images from (50) with kind permission of 1443 

Wiley-Liss. 1444 

Figure 3. Determining bone ultrastructure organization with Raman spectroscopy. A) Two 1445 

Raman spectra of human vertebral trabecular bone embedded in polymethyl methacrylate 1446 

(PMMA), where the most important peaks are identified. Spectra were acquired under orthogonal 1447 

laser polarization directions (red and blue double-headed arrow inset). Analysis of the differences 1448 

in the heights or areas under peaks, such as the v1 phosphate peak (~960/cm-1) or the amide I 1449 

peak (~1650/cm-1), can provide the ultrastructure orientation. Image adapted from (85) with kind 1450 

permission of Springer. B) A stich of 2D images based on polarized Raman spectra analysis, 1451 

resulting in a 3D representation of two orthogonal planes of an osteonal structure of human 1452 
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cortical bone. The color intensity corresponds to the v1 phosphate to amide I ratio, with a spatial 1453 

resolution of 1-2 µm. Image from (86) with kind permission of Elsevier. 1454 

Figure 4. Determining bone ultrastructure organization using polarized second harmonic 1455 

generation (SHG). A) Comparison of organized wild type (top) and disorganized osteogenesis 1456 

imperfecta (oim) (bottom) bone ultrastructure from 5 µm-thick sections of demineralized femoral 1457 

mouse bones. The images on the left (“Parallel”) are taken with a polarizer angle difference of 90o 1458 

with respect to the images on the right side (“Perpendicular”). Images from (114) with kind 1459 

permission of SPIE. B) Polarized SHG of human vertebral trabecular bone in transmission 1460 

mode. The white arrows indicate the polarization direction of the incident laser beam. 1461 

Mineralized collagen fibril bundles/fibers arranged in lamellae are clearly visible when aligned 1462 

with the laser polarization direction (bottom image). Image from (49) with kind permission of 1463 

Cambridge Journals 1464 

Figure 5. Determining bone ultrastructure organization with 3D scanning small-angle X-ray 1465 

scattering (3D sSAXS). A) Trabecular bone volume, which includes the trabeculae of interest, 1466 

imaged with micro-computed tomography (µCT). B) Thin section cut out of volume in (A). The 1467 

region of interest (red rectangle) is scanned with sSAXS for different rotation angles. C) Local 3D 1468 

orientation for every bone sub-volume, based on the analysis of the diffraction patterns of each 1469 

sub-volume for the different rotation angles. The level of the degree of orientation is denoted by 1470 

the length of the vector, as well as by the color of the colormap. D) Many consecutive thin 1471 

sections stacked together. In each section, the region of interest contained in the red rectangle is 1472 

scanned. E) The trabecular structure under investigation F) Reconstruction of the 3D orientation 1473 

map for each sub-volume of the trabecula. The level of the DO can be interpreted by the length 1474 

of the vector and the colormap in (C). Images from (144) with kind permission of Elsevier. 1475 

Figure 6. Determining bone ultrastructure organization with six-dimensional SAXS tomography 1476 

(6D SAXS tomography) and small-angle scattering tensor tomography (SAS tensor tomography). 1477 

A) The virtual-tomography-axis technique in 6D SAXS tomography, where for each virtual 1478 

sample axis, the corresponding projections (arrows with matching color) are used to reconstruct 1479 

the ultrastructure orientation. Image from (162) with kind permission of Nature Publishing 1480 

Group. B) The iterative spherical harmonics technique in SAS tensor tomography . The 1481 

thousands of SAXS patterns corresponding to the same voxel under different angles (left) are 1482 

fitted to a spherical harmonics equation (represented by a single sphere in the middle), that 1483 

represents the local orientation and arrangement of the mineralized collagen fibrils (right). C) 1484 

Computed tomography reconstruction based on the recorded transmitted intensity. D) 1485 

Reconstruction of the orientation and arrangement information for a bone trabecula based on the 1486 

iterative spherical harmonics algorithm. Images from (163) with kind permission of Nature 1487 

Publishing Group. 1488 

Figure 7. Determining bone ultrastructure organization with electron transmission diffraction. 1489 

A) Single mineralized collagen fibril. Data assessed by TEM. B) A diffraction pattern from an 1490 
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area of the fibril, with the c-axis of the crystals (strong black dots) being aligned with the 1491 

direction of the fibril. Images from (52) with kind permission of American Chemical Society 1492 

Publications. 1493 

Figure 8. Typical ultrastructure orientation analysis for the presented imaging techniques. A) 1494 

Tendon collagen fibers imaged using second harmonic generation (SHG) microscopy. The image 1495 

is split into multiple compartments, in each of which the orientation is determined via an 1496 

orientation-specific image processing algorithm. B) Fourier transform of a single compartment in 1497 

(A), to retrieve the 2D orientation of the fibers in this compartment. Fourier transform is the 1498 

most common method to retrieve orientation information from the data in imaging techniques. 1499 

A-B) The spatial resolution of imaging techniques, where the orientation-specific information is 1500 

derived as a by-product, has to be in the sub-micrometer range, so that fibers can be identified, 1501 

which limits the field of view that can be covered. Also, the necessary compartmentalization 1502 

(white grid in (A)) reduces the ultrastructure organization analysis resolution (here it is reduced to 1503 

~25 µm). Moreover, irrelevant structural features (such as the blood vessels that appear black in 1504 

the Fig. 8A), or possible imaging artifacts, are also taken into account, unless special care is taken 1505 

to eliminate their influence of the orientation-specific measures. Image from (59) with kind 1506 

permission of OSA publishing. 1507 

Figure 9. Imaging bone with confocal laser scanning microscopy (CLSM). A) CLSM image of a 1508 

single lamella from a human femur. The arrow represents a qualitative assessment of the 1509 

orientation of the collagen fibrils. Image from (63) with kind permission of Elsevier. B-C) 1510 

Difference in the focusing capabilities of CLSM versus multi-photon microscopy. Images from 1511 

(191) with kind permission of Nature Publishing Group. B) In the case of CLSM, the laser beam 1512 

excites molecules outside of the focal plane on its path through the tissue. C) In multi-photon 1513 

microscopy, (at least) two photons are combined to specifically excite only the molecules at the 1514 

focal spot. 1515 

Figure 10. Imaging bone with second harmonic generation (SHG) microscopy. Collagen fibril 1516 

bundles from porcine cortical bone (in green). A grid has been superimposed in order to 1517 

compartmentalize the picture that enables semi-quantitative assessment of the 2D orientation of 1518 

the collagen fibrils (white arrows). Image from (202) with kind permission of Elsevier. 1519 

Figure 11. Imaging bone with synchrotron-based computed tomography (SR CT). Three images 1520 

of human femoral bone at a voxel size of 280 nm, where bone ultrastructure organization can be 1521 

identified, but not quantified. Image from (206) with kind permission of the American 1522 

Association of Physicists in Medicine. 1523 

Figure 12. Imaging bone with X-ray phase contrast techniques. A) Bone ultrastructure of mouse 1524 

femur assessed with ptychographic CT at 65 nm isotropic voxel size, where bone microporosities 1525 

(osteocyte lacunae and canaliculi) are visible. The continuous advances in synchrotron radiation-1526 

based imaging techniques led to spatial resolutions below 20 nm, which allows direct assessment 1527 

of the bone ultrastructure organization. Image from (214) with kind permission of Nature 1528 
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Publishing Group. B) Human femoral bone imaged using X-ray phase nanotomography at 60 nm 1529 

isotropic voxel size. C) Compartmentalization of the images via a 3 µm grid and image post-1530 

processing results in the assessment of the ultrastructure orientation. B-C) Images from (215) 1531 

with kind permission of Elsevier. 1532 

Figure 13. Imaging bone with transmission electron microscopy (TEM). A-D) Bone 1533 

ultrastructure arrangement of decalcified trabecular (A-B) and cortical (C-D) rat tibiae. Collagen 1534 

arrangement in bones of control animals (A,C) in qualitative comparison to bones from 1535 

ovariectomized animals (B,D). Images from (225) with kind permission of Elsevier. E) Single 1536 

mineralized collagen fibril, where the ~67 nm D-spacing of collagen is visible and can be 1537 

measured using Fourier transformation of the image (inset). Image from (52) with kind 1538 

permission of American Chemical Society Publications. 1539 

Figure 14. Imaging bone with serial focused ion beam scanning electron microscopy (FIB SEM). 1540 

A-D) Four images out of a 3D stack from demineralized rat tibiae (cortical bone), imaged using 1541 

serial focused ion beam scanning electron microscopy (FIB SEM) at a (lateral) pixel size and a 1542 

slice thickness of about 10 nm. Fast Fourier transform is performed to assess the ultrastructure 1543 

orientation in 2D (insets). Images from (243) with kind permission of Elsevier. 1544 

Figure 15. Imaging bone with atomic force microscopy (AFM). A-C) Murine cortical bone. 1545 

Images from (253) with kind permission of Elsevier. A) Polished cortical bone surface, 1546 

mineralized. B) Cortical bone surface demineralized using ethylenediaminetetraacetic acid 1547 

(EDTA). The collagen fibrils are nicely exposed. C) Collagen fibrils corresponding to the inset 1548 

area in (B). The characteristic D-spacing, as well as their 2D organization are clearly visible. D-F) 1549 

D-spacing measurements of collagen fibrils of ovariectomized sheep dermis. Images from (265) 1550 

with kind permission of Wiley-VCH Verlag GmbH & Co. 1551 

Figure 16. Imaging and orientation-specific techniques for the assessment of bone ultrastructure 1552 

organization, based on their capabilities in terms of their spatial resolution and field of view 1553 

(FOV) they cover, and their ability to derive the 3D orientation and arrangement of mineralized 1554 

collagen fibrils in a quantitative way. 1555 

Page 43 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 44 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 45 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only
Page 46 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 47 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 48 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 49 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 50 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 51 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 52 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 53 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 54 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 55 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 56 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 57 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 58 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Page 59 of 59

http://mc.manuscriptcentral.com/jrsi

Under review for J. R. Soc. Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


