

IgG subclasses determine pathways of anaphylaxis in mice

Héloïse Beutier, PharmD^{1,2,3}, Caitlin M. Gillis, B.Sci. ^{1,2,3}, Bruno Iannascoli, [no degree]^{1,2}, Ophélie Godon, M.Sc.^{1,2}, Patrick England, PhD⁴, Riccardo Sibilano, PhD^{5,6}, Laurent L. Reber, PhD^{1,2}, Stephen J. Galli, MD^{5,6}, Mark S. Cragg, PhD⁷, Nico Van Rooijen, PhD⁸, David A. Mancardi, PhD^{1,2}, Pierre Bruhns, PhD^{1,2,*} and Friederike Jönsson, PhD^{1,2,*}

Authors' affiliations

¹Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France;

²INSERM, U1222, Paris, France;

³Université Pierre et Marie Curie, Paris, France;

⁴Institut Pasteur, Plate-Forme de Biophysique Moléculaire, Centre d'Innovation et Recherche Technologique (CiTech), CNRS-UMR3528, Paris, France;

⁵Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.

⁶Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, CA, USA.

⁷Antibody and Vaccine Group, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK

⁸Department of Molecular Cell Biology, VU Medical Center, Amsterdam, The Netherlands;

*co-senior authorship.

29 *Sources of funding:* none of the sources of funding have an interest in the subject matter or
30 materials discussed in the submitted manuscript

31

32

33

34

35 **Correspondence to:** Friederike Jönsson and Pierre Bruhns, Unit of Antibodies in Therapy and
36 Pathology, Department of Immunology, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris,
37 France. Phone: +33144389144 or +33145688629. E-mail: joensson@pasteur.fr;
38 bruhns@pasteur.fr

39

40

ABSTRACT

41 **Background:** Animal models have demonstrated that allergen-specific IgG confers sensitivity to
42 systemic anaphylaxis that relies on IgG receptors (Fc γ Rs). Mouse IgG2a and IgG2b bind
43 activating Fc γ RI, Fc γ RIII and Fc γ RIV, and inhibitory Fc γ RIIB; mouse IgG1 binds only Fc γ RIII
44 and Fc γ RIIB. Although these interactions are of strikingly different affinities, these three IgG
45 subclasses were described to enable the induction of systemic anaphylaxis.

46 **Objective:** Determine which pathways control the induction of IgG1-, IgG2a- and IgG2b-passive
47 systemic anaphylaxis.

48 **Methods:** Mice were sensitized with IgG1, IgG2a or IgG2b anti-TNP mAbs and challenged with
49 TNP-BSA intravenously to induce systemic anaphylaxis that was monitored using rectal
50 temperature. Anaphylaxis was evaluated in mice deficient for Fc γ Rs, injected with mediator
51 antagonists or in which basophils, monocyte/macrophages or neutrophils had been depleted. The
52 expression of Fc γ Rs was evaluated on these cells before and after anaphylaxis.

53 **Results:** Activating Fc γ RIII is the receptor primarily responsible for all three models of
54 anaphylaxis, and subsequent down regulation of this receptor was observed. These models
55 differentially relied on histamine release and on the contribution of mast cells, basophils,
56 macrophages and neutrophils. Strikingly, basophil contribution and histamine predominance in
57 IgG1- and IgG2b-mediated anaphylaxis correlated with the ability of inhibitory Fc γ RIIB to
58 negatively regulate these models of anaphylaxis.

59 **Conclusion:** We propose that the differential expression of inhibitory Fc γ RIIB on myeloid cells
60 and its differential binding of IgG subclasses controls the contribution of mast cells, basophils,
61 neutrophils and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results
62 unravel novel complexities in the involvement and regulation of cell populations in IgG-mediated
63 reactions *in vivo*.

64

CAPSULE SUMMARY

65

66 Antibodies of the IgG class can contribute to anaphylaxis. This report reveals pathways induced
67 by each IgG subclass in experimental anaphylaxis, demonstrating different contributions of cells,
68 mediators and antibody receptors.

69

70

71

KEY WORDS

72

73 Anaphylaxis; IgG; mouse model; basophil; neutrophil; monocyte; macrophage; Fc γ R; Platelet-
74 activating Factor; Histamine.

75

76

ABBREVIATIONS USED

77

78 Fc γ R: IgG Fc receptor

79 PAF: Platelet-activating factor

80 K_A: Affinity constant

81 WT: C57Bl/6 Wild-type

82 PSA: Passive systemic anaphylaxis

83 TNP: Trinitrophenyl

84 BSA: Bovine serum albumin

85 mAb: Monoclonal antibody

86 PBS: Phosphate Buffer Saline

87 Gfi1: Growth Factor Independence-1

88 GeoMean: Geometric Mean

89 SEM: Standard error of the mean

90

91

INTRODUCTION

92

93 Anaphylaxis is a hyperacute allergic reaction that occurs with increasing incidence in the
94 population and can be of fatal consequence. Symptoms include skin rashes, hypotension,
95 hypothermia, abdominal pain, bronchospasm and heart and lung failure that may lead to asphyxia
96 and sometimes death¹. The main treatment remains epinephrine (adrenaline) injection to restore
97 heart and lung function. Since anaphylaxis represents an emergency situation, few clinical studies
98 have been possible to address the mechanism leading to anaphylaxis in patients. Experimental
99 models of anaphylaxis identified mechanisms involving allergen-specific antibodies that trigger
100 activating antibody receptors on myeloid cells, leading to the release of mediators. These
101 mediators can, by themselves, recapitulate the symptoms of anaphylaxis as observed in humans²,
102³.

103 The “classical” mechanism of anaphylaxis states that allergen-specific IgE binds the
104 activating IgE receptor Fc ϵ RI on mast cells, which upon allergen encounter become activated and
105 release histamine, among other mediators. Notably, histamine injection suffices to induce the
106 symptoms of anaphylaxis in animal models⁴. In many cases, detectable allergen-specific IgE and
107 elevated histamine levels do not accompany anaphylaxis in humans (discussed in⁵), leading to
108 the notion that “atypical” or “alternate” mechanisms of induction could explain these cases. One
109 of these atypical/alternate models proposes a similar cascade of events, instead based on allergen-
110 specific IgG binding to allergen, forming IgG-allergen immune complexes that trigger activating
111 IgG receptors (Fc γ Rs) expressed on myeloid cells (*i.e.* macrophages, basophils and/or
112 neutrophils), which in turn release Platelet-Activating Factor (PAF)^{2, 3}. Importantly, PAF
113 injection suffices to induce the symptoms of anaphylaxis in animal models⁶. IgG-induced

114 anaphylaxis can be elicited by intravenous injection of allergen-specific IgG followed by allergen
115 administration, and is termed IgG-induced passive systemic anaphylaxis (PSA).

116 IgG receptors in the mouse comprise four “classical” IgG receptors termed Fc γ Rs, but
117 also the neonatal IgG receptor (FcRn) and the intracellular FcR tripartite motif-containing protein
118 21 (TRIM21)^{7, 8}. Whereas FcRn and TRIM21 both participate in the intracellular routing of IgG,
119 and FcRn in protection from catabolism and distribution to tissues⁹, Fc γ Rs control cell activation
120 in the presence of immune complexes. Fc γ Rs in mice are subdivided into i) activating Fc γ Rs, *i.e.*
121 Fc γ RI, Fc γ RIII and Fc γ RIV, that lead to cell activation upon immune complex binding, and ii)
122 inhibitory Fc γ Rs, *i.e.* Fc γ RIIB, that inhibits cell activation when co-engaged by an immune
123 complex with an activating Fc γ R co-expressed on the same cell¹⁰. Inhibition of cell activation by
124 Fc γ RIIB thus requires that the immune complex contains IgG that are bound both by the
125 activating and by the inhibitory Fc γ R.

126 Four IgG subclasses exist in mice, IgG1, IgG2a, IgG2b and IgG3. Among those, only
127 IgG2a and IgG2b bind to all Fc γ Rs, whereas IgG1 binds only to Fc γ RIIB and Fc γ RIII. It remains
128 under debate whether IgG3 binds to Fc γ Rs, particularly Fc γ RI^{11, 12}. The affinities of these Fc γ Rs
129 towards IgG subclasses are strikingly different (Table 1) leading to the notion of “high-affinity”
130 receptors that retain monomeric IgG and “low-affinity” receptors that do not⁸. The avidity of
131 IgG-immune complexes, however, enables both types of receptors to retain IgG-immune
132 complexes, leading to receptor clustering, intracellular signaling events and, eventually, to cell
133 activation. Fc γ RI is a high-affinity receptor for IgG2a¹³, and Fc γ RIV a high-affinity receptor for
134 IgG2a and IgG2b¹⁴. All other Fc γ R-IgG interactions are of low affinity (reviewed in ⁷).

135 Three out of the four IgG subclasses in the mouse, *i.e.* IgG1, IgG2a and IgG2b, have been
136 reported to enable the induction of systemic anaphylaxis, inducing mild to severe hypothermia^{5,}
137 ^{15, 16}. This is rather surprising for IgG1, considering that inhibitory Fc γ RIIB binds IgG1 with a

138 10-fold higher affinity ($K_A=3.3\times 10^6$ M $^{-1}$) than activating Fc γ RIII ($K_A=3.1\times 10^5$ M $^{-1}$)¹⁷ (Table 1),
139 implying that inhibition should dominate over activation. WT mice, indeed, develop a very mild
140 anaphylactic reaction during IgG1-PSA compared to Fc γ RIIB $^{-/-}$ mice¹⁸, indicating that inhibition
141 by Fc γ RIIB occurs in WT mice during IgG1-PSA, reducing, but not protecting from anaphylaxis.
142 IgG1-PSA has been reported to rely on basophils¹⁹ that co-express Fc γ RIIB and Fc γ RIII²⁰. In this
143 apparently simple situation, only one activating receptor and one inhibitory receptor are engaged
144 on a single cell type that, once activated, produces an anaphylactogenic mediator, like PAF¹⁹.

145 IgG2a and IgG2b, however, bind three activating Fc γ Rs and inhibitory Fc γ RIIB with
146 different affinities ranging over 2 logs. In particular, the affinity of Fc γ RIIB for IgG2a is
147 significantly lower than for IgG2b, whereas activating IgG receptors Fc γ RIII and Fc γ RIV bind
148 IgG2a and IgG2b with similar affinities, respectively (Table 1). Notably, Fc γ RIV is not expressed
149 on basophils, but on monocytes/macrophages and neutrophils²¹ that have both been reported to
150 contribute to experimental anaphylaxis^{16, 22-24}. In addition, mice expressing only Fc γ RIV can
151 develop IgG-PSA¹⁶. Together with expression and binding data, one would therefore hypothesize
152 that Fc γ RIV contributes predominantly to IgG2a- and IgG2b-PSA. In this work, we present
153 evidence contrary to this hypothesis, and reveal which activating Fc γ R on which cell type(s)
154 releasing which mediator(s) are responsible for IgG2a-PSA and IgG2b-PSA, and the differential
155 regulation of these models of anaphylaxis by Fc γ RIIB. Our results unravel a complex balance
156 determined by Fc γ R expression patterns, inhibition potential by Fc γ RIIB and respective affinities
157 of activating and inhibitory Fc γ Rs for IgG subclasses that, altogether, regulate the contribution of
158 cells and anaphylactogenic mediators to a given model of IgG-induced anaphylaxis.

159

160

METHODS

161 **Mice.** Female C57Bl/6J mice (herein referred to as “WT”) were purchased from Charles River,
162 female Balb/cJRj mice from Janvier Labs, Fc γ RIIB^{-/-} (MGI:1857166), Fc γ RIII^{-/-} mice (MGI:
163 3620982) and Rosa26-YFP mice from Jackson Laboratories. Fc γ RI^{-/-} mice (MGI: 3664782) were
164 provided by J. Leusen (University Medical Center, Utrecht, The Netherlands), Fc γ RIV^{-/-} mice
165 (MGI: 5428684) by J.V. Ravetch (The Rockefeller University, New York, NY, USA), Gfi1^{-/-}
166 mice by T. Moroy (Montreal University, Montreal, QC, Canada) and MRP8-cre mice by Clifford
167 Lowell (University of California at San Francisco, CA, USA). MRP8-cre and Rosa26-YFP mice
168 were intercrossed to generate MRP8-cre; Rosa26-YFP mice. Cpa3-Cre; Mcl-1^{fl/fl} mice
169 (backcrossed for at least 9 generations on a C57Bl/6J background) were kept in the Stanford
170 University animal facility. All mouse protocols were approved by the Animal Ethics committee
171 CETEA (Institut Pasteur, Paris, France) registered under #C2EA-89, and the Institutional Animal
172 Care and Use Committee of Stanford University.

173

174 **Antibodies and reagents.** PBS- and clodronate-liposomes were prepared as previously
175 described²⁵. TNP₍₂₁₋₃₁₎-BSA was obtained from Santa Cruz, ABT-491 from Sigma-Aldrich;
176 cetirizine DiHCl from Selleck Chemicals; anti-mouse Fc γ RIII (275003) from R&D Systems; rat
177 IgG2b isotype control (LTF-2) from Bio X Cell. Purified anti-CD200R3 (Ba103) was provided
178 by H. Karasuyama (Tokyo Medical and Dental University Graduate School, Tokyo, Japan). The
179 hybridoma producing mAbs anti-mouse Fc γ RIV (9E9) was provided by J.V. Ravetch
180 (Rockefeller University, New York, New York, USA), anti-Gr1 (RB6-8C5) by R. Coffman
181 (DNAX Research Institute, Palo Alto, California, USA), IgG1 anti-TNP (TIB-191) by D.
182 Voehringer (Universitätsklinikum, Erlangen, Germany), IgG2a anti-TNP (Hy1.2) by Shozo Izui
183 (University of Geneva, Geneva, Switzerland) and IgG2b anti-TNP (GORK) by B. Heyman

184 (Uppsala Universitet, Uppsala, Sweden): corresponding antibodies were purified as described¹⁶.
185 Purified mouse IgE anti-TNP was purchased from BD Pharmingen. MAbs 9E9 was coupled to
186 FITC using the PierceTM FITC Antibody labeling kit (Life Technologies). The antibodies used for
187 flow cytometry staining of c-kit (clone 2B8), CD49b (clone DX5), IgE (clone R35-72), CD11b
188 (clone M1/70), F4/80 (clone 6F12), CD115 (clone T38-320), Ly6G (clone 1A8) and Ly6C (clone
189 AL-21) were purchased from BD Pharmingen; CD45 (clone 30F11) and Gr1 (clone RB6-8C5)
190 were purchased from Miltenyi Biotec. Fc γ RIIB was detected using FITC-coupled mAb AT130-2
191 mIgG1 N297A²⁶.

192

193 **Passive Systemic Anaphylaxis.** IgG-induced PSA: IgG1, IgG2a or IgG2b anti-TNP antibodies
194 were administered intravenously at a dose of 500 μ g, if not otherwise indicated, in 200 μ L
195 physiological serum, followed by an intravenous challenge with 200 μ g of the antigen (TNP-
196 BSA) 16 hours later. IgE-induced PSA: IgE anti-TNP antibodies were administered intravenously
197 at a dose of 50 μ g in 200 μ L physiological serum followed by an intravenous challenge with 500
198 μ g of TNP-BSA 24 hours later. The body temperature of mice was monitored using a digital
199 thermometer with rectal probe (YSI).

200

201 **In vivo blocking and cellular depletion.** 300 μ g/mouse of PBS- or clodronate-liposomes, 300
202 μ g/mouse of rat IgG2b isotype control or anti-Ly6G, and 30 μ g/mouse of anti-CD200R3 mAbs
203 were injected i.v. 24 hours before challenge. Specificity of cell depletion was evaluated using
204 flow cytometry on blood, bone marrow, spleen and peritoneum taken from naïve WT mice 24
205 hours after injection of the depleting antibody (Examples are shown in Supplemental Figures
206 1&2).

207 25 µg/mouse of ABT-491, or 300 µg/mouse of cetirizine was injected intravenously 20 minutes
208 or intraperitoneally 30 minutes before challenge, respectively. 200 µg/mouse of anti-FcγRIV
209 mAb were injected intravenously 30 minutes before challenge.

210

211 **Flow cytometry analysis.** Freshly isolated cells were stained with indicated fluorescently labeled
212 mAbs for 30 minutes at 4°C. Cell populations were defined as follows: neutrophils
213 (CD45⁺/CD11b⁺/Ly6G^{hi}/Ly6C^{int}), monocytes (CD45⁺/CD11b⁺/Ly6G^{lo}/Ly6C^{lo} or ^{hi}), basophils
214 (CD45^{int}/DX5⁺/IgE⁺); spleen macrophages (CD45⁺/CD11b⁺/Gr-1^{lo}/CD115⁺/F4/80^{hi}); peritoneal
215 macrophages (CD45⁺/CD11b⁺/F4/80⁺); peritoneal mast cells (CD45⁺/c-kit⁺/IgE⁺).

216

217 **Surface plasmon resonance analysis.** Experiments were performed at 25°C using a ProteOn
218 XPR36 real-time SPR biosensor (BioRad). Anti-TNP antibodies were immobilised covalently
219 through amine coupling on the surface of a GLC chip. TNP-BSA was then injected on the chip at
220 a flow rate of 25 µl·min⁻¹, with contact and dissociation time of 8 minutes each. Binding
221 responses were recorded in real time as resonance units (RU; 1 RU ≈ 1 pg/mm²). Background
222 signals were subtracted, and binding rates (k_{on} and k_{off}) and equilibrium constants (Kd) were
223 determined using the Biaevaluation software (GE Healthcare).

224

225 **ELISAs.** After the induction of IgG1-, IgG2a-, IgG2b- or IgE-induced PSA, plasma and serum
226 were collected at 5 minutes and 3 hours later to determine the histamine and mMCP-1 content,
227 respectively. Histamine and mMCP-1 concentration were determined using commercially
228 available ELISA kits (Beckman Coulter; eBioscience) following the manufacturer's instructions.
229 Relative binding affinity of IgG1, IgG2a and IgG2b anti-TNP antibodies to TNP-BSA was
230 determined by ELISA. Briefly, TNP-BSA-coated plates were incubated with dilutions of IgG1,

231 IgG2a or IgG2b anti-TNP antibodies. After washing bound anti-TNP IgG were revealed using the
232 same HRP-coupled anti-mouse IgG, and SIGMAFAST OPD solution.

233

234 ***Mast cell histology.*** Mouse back skin biopsies were collected 24 hours after the induction of
235 specific cell depletion and mouse ear skin biopsies were collected 30 minutes after IgE, IgG1,
236 IgG2a or IgG2b-induced PSA, and embedded in paraffin prior to sectioning. Mast cells in
237 toluidine blue stained biopsies were counted manually in at least 15 FOV/mouse and > 6 mice per
238 treatment (Supplemental Figure 1I).

239

240 ***Statistics.*** Data were analyzed using one-way or two-way ANOVA with Tukey's post-test. A *p*-
241 value less than .05 was considered significant: (**p* < .05; ***p* < .01; ****p* < .001; *****p* < .0001).

242

243

244

RESULTS

245

246 **Fc γ RIII dominates anaphylaxis induced by IgG subclasses**

247 Passive systemic anaphylaxis was induced by an intravenous injection of one of the
248 different anti-TNP IgG isotypes (IgG1, IgG2a, IgG2b) followed by an intravenous challenge with
249 TNP-BSA 16h later. This protocol induces a transient decrease in body temperature that is most
250 pronounced between 30 and 40 minutes. As reported previously^{3, 16, 19, 22, 27}, all three IgG isotypes
251 were capable of inducing anaphylaxis in WT mice (Figure 1A-C). In these experimental
252 conditions IgG1-PSA triggered a maximum temperature loss of \approx 2°C, IgG2a-PSA of \approx 4°C and
253 IgG2b-PSA of \approx 3°C in WT mice. Using single Fc γ R-knockout mice we evaluated the
254 contribution of each of the four mouse Fc γ Rs to these anaphylaxis models. The absence of either
255 Fc γ RIV (with the exception of a single time point in IgG2b-PSA) or Fc γ RI had no significant
256 impact on IgG-PSA-induced hypothermia, regardless of the subclass of IgG antibodies used to
257 induce anaphylaxis (Figure 1A-C). The lack of Fc γ RIII, however, protected mice from
258 anaphylaxis in all models. Mice lacking the inhibitory receptor Fc γ RIIB had a significantly more
259 severe temperature drop than WT mice in both IgG1- and IgG2b-PSA, but showed no significant
260 difference in the severity of IgG2a-PSA (Figure 1A-C). Even though the three anti-TNP IgG
261 mAbs used are not switch variants of a unique anti-TNP antibody, they show comparable binding
262 to TNP-BSA by ELISA, similar affinity (nanomolar range) and dissociation rates (k_{off}) by surface
263 plasmon resonance analysis, particularly the IgG2a and IgG2b anti-TNP antibodies
264 (Supplemental Figures 3A, B & C). Of note, untreated Fc γ R-deficient mice presented modest
265 variations in Fc γ R expression levels (Supplemental Figure 5) and leukocyte representation among
266 blood cells compared to WT mice (Supplemental Figure 6). In particular, a mild lymphopenia in
267 Fc γ RIV^{-/-} mice, and in Fc γ RIIB^{-/-} mice that have a tendency to express higher levels of Fc γ RIII

268 and Fc γ RIV; and a mild eosinophilia in Fc γ RIII $^{-/-}$ mice that express significantly more Fc γ RIIB
269 on neutrophils and Ly6C $^{\text{hi}}$ monocytes. Together these variations do not explain the drastic
270 phenotypes observed for PSA in Fc γ RIIB $^{-/-}$ and Fc γ RIII $^{-/-}$ mice compared to WT mice. Thus,
271 these data demonstrate that Fc γ RIII predominates the induction of IgG1-, IgG2a- and IgG2b-
272 PSA, and that Fc γ RIIB specifically dampens anaphylaxis severity in IgG1- and IgG2b-PSA.

273

274 **Basophils, mast cells, monocytes/macrophages and neutrophils contribute differentially to**
275 **IgG isotype-dependent anaphylaxis models**

276 Fc γ RIII is expressed by all myeloid cells^{7, 20} and to a lesser extent by NK cells²⁸. One may
277 therefore anticipate that IgG immune complexes formed *in vivo* as a consequence of TNP-BSA
278 injection in anti-TNP sensitized mice would therefore engage Fc γ RIII on these cells, leading to
279 cell activation and possibly contributing to anaphylaxis. Basophils, mast cells, neutrophils and
280 monocyte/macrophages have indeed been reported to contribute to IgG-PSA^{16, 19, 22, 15}, however
281 the respective contribution of each of these different cell types remains debated^{2, 27}. To
282 investigate which cell types contribute to PSA induced by different IgG subclasses, we depleted
283 basophils (anti-CD200R3 mAb), monocytes/macrophages (clodronate-filled liposomes) or
284 neutrophils (anti-Ly6G) prior to anaphylaxis induction or evaluated anaphylaxis induction in
285 transgenic mice deficient in certain cell populations.

286 Of note, the relatively mild temperature loss in IgG1-PSA in WT mice (Supplemental
287 Figure 4A), did not allow us to address reliably the contribution of either basophils or neutrophils
288 to this model of anaphylaxis. We therefore restricted our analysis of the contribution of myeloid
289 cell populations to IgG2a-PSA and IgG2b-PSA. Antibody-induced basophil depletion or
290 genetically-induced mast cell and basophil deficiency (Supplemental Figure 2H, Cpa3-Cre; Mcl-
291 1^{fl/fl} mice²⁹), did not affect IgG2a-PSA (Figure 2A&B), but significantly inhibited IgG2b-PSA

292 (Figure 2F&G). Monocyte/macrophage depletion (Figure 2C&H) significantly inhibited both
293 IgG2a- and IgG2b-PSA. The absence of neutrophils, either following antibody-mediated
294 depletion (Figure 2D&I) or using neutropenic $Gfi1^{-/-}$ mice³⁰ (Figure 2E&J), significantly
295 inhibited both IgG2a- and IgG2b-PSA. Whereas monocytes/macrophages and neutrophils appear
296 to contribute to both models of anaphylaxis, basophils and possibly mast cells therefore
297 contribute specifically to IgG2b-PSA, but not to IgG2a-PSA.

298

299 **Fc γ RIII is down-regulated specifically on neutrophils following IgG2a PSA**

300 Khodoun *et al* proposed to use the reduced expression level of Fc γ RIII on mouse
301 neutrophils as a marker to distinguish IgE- from IgG1-induced PSA, both of which required
302 priming with an antigen-specific IgG1 and challenge with that antigen³¹. We therefore wondered
303 if Fc γ RIII expression on neutrophils might also be a marker for IgG2a- and IgG2b-PSA. In
304 addition, reduced expression of Fc γ R(s) following IgG-PSA may document that a particular cell
305 population is activated following engagement of its Fc γ R(s) by IgG-immune complexes during
306 anaphylaxis. This parameter may thus be used to discriminate cell populations contributing to
307 anaphylaxis following direct activation by IgG-immune complexes from those contributing
308 following activation by mediators liberated by IgG-immune complex-activated cells (*e.g.*
309 histamine, PAF, leukotrienes and prostaglandins).

310 Among mouse IgG receptors, only Fc γ RIIB, Fc γ RIII and Fc γ RIV are significantly
311 expressed on circulating myeloid cells, but not Fc γ RI^{7,32,33}. Of circulating monocyte populations,
312 “classical” Ly6C^{hi} monocytes are Fc γ RIIB^{med}, Fc γ RIII^{med} Fc γ RIV⁻, whereas “non-classical”
313 Ly6C^{lo} monocytes are Fc γ RIIB^{lo}, Fc γ RIII^{lo} Fc γ RIV^{hi}³⁴. We therefore determined the expression
314 of Fc γ RIIB, Fc γ RIII and Fc γ RIV before and after IgG2a-PSA induction on neutrophils and
315 monocyte subsets. The expression of Fc γ RIII was specifically down regulated on neutrophils, but

316 not on Ly6C^{hi} monocytes, during IgG2a-PSA (Figure 3A&D). The expression of Fc γ RIV was
317 also specifically down regulated on neutrophils, but not on Ly6C^{lo} monocytes, during IgG2a-PSA
318 (Figure 3B&D). This was unexpected considering that Fc γ RIV does not significantly contribute
319 to this PSA model (Figure 1B). The expression of Fc γ RIIB, however, remained unchanged on
320 Ly6C^{hi} and Ly6C^{lo} monocytes and neutrophils (Figure 3C&D), in agreement with the lack of
321 contribution of this receptor to IgG2a-PSA (Figure 1B). Together these data suggest that
322 neutrophils may directly be activated through Fc γ RIII by immune complexes formed during
323 IgG2a-PSA. They also suggest that neutrophils, but not Ly6C^{lo} monocytes, may be similarly
324 activated through Fc γ RIV, even if no contribution of this receptor was identified in this model
325 using Fc γ RIV^{-/-} mice (Figure 1B).

326

327 **Elevated IgG2 antibody doses reveal Fc γ RIV contribution to IgG2a-PSA and IgG2b-PSA**

328 In mice, Fc γ RIV binds monomeric IgG2a and IgG2b. At physiological concentrations of
329 IgG2a (\approx 2.5 mg/mL) and IgG2b (\approx 1.5 mg/mL) in the serum, Fc γ RIV may therefore be occupied
330 *in vivo*, particularly on circulating neutrophils and monocytes. Nevertheless, the short binding
331 half-lives of monomeric IgG2a ($t_{1/2} \approx$ 3 min) and monomeric IgG2b ($t_{1/2} \approx$ 10 min) by Fc γ RIV,
332 and their ability to be displaced from this receptor by immune complexes,¹⁴ may enable IgG2-
333 immune complexes to interact with Fc γ RIV during anaphylaxis and therefore contribute to its
334 induction and/or severity.

335 To explore this possibility, we primed Fc γ RIII^{-/-} mice with various doses of anti-TNP
336 IgG2a before challenge with TNP-BSA, in order to induce a range of *in vivo* concentrations of
337 immune complexes. As expected, the low doses did not trigger Fc γ RIII^{-/-} mice to develop
338 anaphylaxis after challenge. Elevated doses (1 or 2 mg), however, enabled significant
339 temperature drops in Fc γ RIII^{-/-} mice, comparable to those observed in WT mice primed with 500

340 μ g IgG2, particularly at the highest dose of IgG2a (2 mg) (Figure 4A). Already at a dose of 1mg
341 of IgG2, Fc γ RIII^{-/-} mice developed mild hypothermia in IgG2a-PSA but not in IgG2b-PSA
342 (Figure 4B&C). Unexpectedly in the same conditions, Fc γ RIV contributed specifically to IgG2b-
343 PSA that was not anymore dampened by inhibitory Fc γ RIIB (Figure 4C). At a dose of 2 mg of
344 IgG, Fc γ RIII^{-/-} mice developed hypothermia in both IgG2a-PSA and IgG2b-PSA that was
345 abolished when Fc γ RIII^{-/-} mice were pre-treated with a blocking antibody against Fc γ RIV (Figure
346 4D&E). Fc γ RI did not contribute to either model of IgG2-PSA at an elevated dose (Figure
347 4B&C). Furthermore, the expression of Fc γ RIII was specifically down regulated on neutrophils
348 and basophils, but not on Ly6C^{hi} monocytes, following IgG2b-PSA (Figure 5A&D). The
349 expression of Fc γ RIV was also down regulated on neutrophils, but not on Ly6C^{lo} monocytes
350 (Figure 5B&D). The expression of Fc γ RIIB, however, did not change on either neutrophils or
351 Ly6C^{hi} and Ly6C^{lo} monocytes even though this inhibitory receptor regulates IgG2b-PSA (Figures
352 1C and 5C&D). This observation is in agreement with the report by Khodoun et al, reporting that
353 Fc γ RIIB expression did not change on neutrophils following IgG1-PSA³¹. Altogether high doses
354 of antigen-specific IgG2 reveal the contribution of Fc γ RIV to IgG2a-PSA and to IgG2b-PSA, and
355 suggest the direct activation of neutrophils and basophils by IgG2b-immune complexes.

356

357 **IgG1 PSA in the absence of inhibitory Fc γ RIIB**

358 The unexpected differences observed between IgG2a- and IgG2b-PSA induction
359 pathways prompted us to find a mouse model more sensitive to IgG1-PSA than WT mice, to be
360 able to evaluate the contribution of cell types and mediators also in this model. Indeed, as
361 mentioned earlier, WT mice respond poorly to IgG1-PSA (Figure 1A; Supplemental Figure
362 4A)¹⁸. Fc γ RIIB^{-/-} mice, however, develop a temperature drop of \approx 4°C during IgG1-PSA,
363 comparable to temperature losses observed in WT mice during IgG2a- or IgG2b-PSA (Figure

364 1B&C). We therefore analyzed the contribution of cell types to IgG1-PSA in $\text{Fc}\gamma\text{RIIB}^{-/-}$ mice.
365 Basophil depletion mildly - but significantly - inhibited IgG1-PSA (Figure 6A), in agreement
366 with previous data¹⁹. The depletion of neutrophils had the same effect, although with consistently
367 less significance than basophil depletion (Figure 6B and data not shown). Monocyte/macrophage
368 depletion had only a tendency to ameliorate anaphylaxis that was reproducible but not significant
369 (Figure 6C). These results suggest that IgG1-PSA relies on basophils and neutrophils, and
370 possibly on monocytes.

371

372 **PAF and histamine contribute differentially to IgG2a- and IgG2b-PSA**

373 Because cell types contribute differently to IgG2-PSA models (*i.e.* IgG2a-PSA,
374 neutrophils and monocytes; IgG2b-PSA, basophils, neutrophils and monocytes), one can expect
375 that the mediators responsible for clinical symptoms also differ between them. Platelet activating
376 factor (PAF) has been shown to be responsible for anaphylactic reactions that required basophil¹⁹,
377 neutrophil^{16, 24} and/or monocyte/macrophage²² activation, whereas histamine has been shown to
378 be responsible for mast cell- and basophil-dependent anaphylaxis^{35, 36}. Neutrophils are the main
379 producers of PAF³⁷, whereas mast cells and basophils are the main producers of histamine^{38, 39}.
380 We therefore analyzed the relative contribution of these two mediators to the three models of
381 PSA using the histamine-receptor 1 antagonist cetirizine and the PAF-R antagonist ABT-491.
382 Surprisingly, histamine-receptor 1 antagonist cetirizine significantly inhibited IgG1-PSA whereas
383 PAF-R antagonist ABT-491 had no significant effect, in opposition with previous data¹⁹. The
384 combination of both antagonists had an additive effect, and almost abolished IgG1-PSA (Figure
385 7A). These results obtained in $\text{Fc}\gamma\text{RIIB}^{-/-}$ mice were confirmed in WT mice (Figure 7A). Whereas
386 cetirizine mildly reduced hypothermia in IgG2a-PSA, it significantly inhibited IgG2b-PSA. ABT-
387 491 mildly reduced hypothermia in IgG2a-PSA, but had no significant effect on IgG2b-PSA

388 (Figure 7B&C). The combination of cetirizine and ABT-491, however, almost abolished both
389 IgG2a- and IgG2b-PSA. Elevated plasma histamine levels were detected 5 minutes post
390 challenge in all three IgG-PSA models, and particularly high levels in mice undergoing IgE-PSA
391 (as a positive control) or undergoing IgG2a-PSA (Figures 7D&E). This latter finding is surprising
392 as IgG2a-PSA is unaffected by the absence of both mast cells and basophils that are considered
393 major sources of histamine. Mast cell protease-1 (mMCP-1), which is released upon activation of
394 mucosal mast cells, could be detected in the serum of mice undergoing IgE-PSA, but not in those
395 undergoing any one of the three models of IgG-PSA, 3 hours post-PSA induction (Figure 7F).
396 Collectively these results suggest that histamine predominantly contributes to IgG1- and IgG2b-
397 PSA, whereas histamine and PAF, together, are necessary for IgG2a-PSA.

398

399

400

401

402

DISCUSSION

403 Our work suggests that the activating IgG receptor Fc γ RIII predominantly contributes to
404 IgG-dependent passive systemic anaphylaxis, whether induced by IgG1, IgG2a or IgG2b
405 antibodies. A contribution of the activating IgG receptor Fc γ RIV was only identified when using
406 very high amounts of IgG2 antibodies, whereas the activating IgG receptor Fc γ RI played no
407 detectable role. Remarkably, the inhibitory IgG receptor Fc γ RIIB controlled the severity of IgG1-
408 and IgG2b-, but not IgG2a-induced anaphylaxis. The ability of Fc γ RIIB to inhibit a given model
409 of IgG-induced anaphylaxis correlated with the contribution of basophils and histamine to that
410 model. Indeed, basophils, and possibly mast cells, contributed with neutrophils to IgG1-PSA, and
411 with neutrophils and monocytes to IgG2b-PSA, but not to IgG2a-PSA that depended entirely on
412 neutrophils and monocytes/macrophages. Altogether our data propose that the three IgG
413 subclasses -IgG1, IgG2a and IgG2b- induce three qualitatively different pathways of anaphylaxis
414 that are nevertheless triggered primarily by a single IgG receptor, Fc γ RIII.

415

416 Fc γ RIII is a low-affinity receptor for IgG1-, IgG2a- and IgG2b, whereas Fc γ RI is a high-
417 affinity receptor for IgG2a, and Fc γ RIV a high affinity receptor for IgG2a and IgG2b. One would
418 therefore assume that Fc γ RIII predominates in IgG1-PSA, Fc γ RI and Fc γ RIV in IgG2a-PSA, and
419 Fc γ RIV in IgG2b-PSA. Our data, however, using Fc γ RIII^{-/-} mice indicate that this receptor
420 predominates in all three models. Notably however, we found an increased expression of
421 Fc γ RIIB on neutrophils and Ly6C^{hi} monocytes in Fc γ RIII^{-/-} mice, which could mask a potential
422 contribution of Fc γ RIV in these conditions. In support of the notion that Fc γ RIII predominates
423 IgG-PSA induction, an alternative model of PSA induced by sensitization and challenge with
424 goat antibodies was found to be driven by Fc γ RIII²² and blocking antibodies against Fc γ RIII
425 were protective in a model of PSA induced by IgG immune complexes¹⁶. In addition, IgG2a-PSA

426 in $\text{Fc}\gamma\text{RIIB}^{-/-}$ mice was abolished following injection of anti- $\text{Fc}\gamma\text{RIIB/III}$ blocking mAbs⁵.
427 $\text{Fc}\gamma\text{RIII}$ is the only activating IgG receptor in the mouse that does not bind an IgG subclass with
428 high affinity, thus it remains unoccupied by monomeric IgG and accessible for immune complex
429 binding. This is theoretically not the case for $\text{Fc}\gamma\text{RI}$ and $\text{Fc}\gamma\text{RIV}$, which at physiological serum
430 concentrations of IgG2a (≈ 2.5 mg/mL) and IgG2b (≈ 1.5 mg/mL), are likely occupied *in vivo*,
431 particularly on circulating cells. Of note, C57Bl/6 mice produce IgG2c, but not IgG2a antibodies,
432 whose amino acid sequence varies by about 15%. Experiments performed in Balb/c mice that
433 express endogenous IgG2a (but no IgG2c) gave similar results regarding the contribution of
434 basophils, neutrophils and monocytes to IgG2a (Supplemental Figure 4B), indicating that IgG2a
435 and IgG2c sequence variations do not affect the mechanisms of anaphylaxis induction that we
436 describe herein.

437 Adult female mice of 20 g, as used in this study, possess a circulating blood volume of
438 1.4-1.5 mL. Injection of 500 μg antibody thus corresponds to ≈ 330 $\mu\text{g}/\text{mL}$ of circulating
439 antibody, injection of 1mg to ≈ 660 $\mu\text{g}/\text{mL}$, and injection of 2 mg to $\approx 1,3$ mg/mL. In cases of
440 anaphylaxis the circulating concentration of allergen-specific IgG has not been evaluated due to
441 lack of testing and appropriate controls (*i.e.* monoclonal anti-allergen antibodies); although we
442 have reported high circulating antigen-specific IgG levels in an autoimmune model of arthritis³³.
443 It seems rather unlikely that patients suffering from anaphylaxis possess such elevated circulating
444 levels of IgG anti-allergen as in the high dose we used in this study. Nevertheless, our results in
445 high-dose IgG2a- and IgG2b-PSA demonstrate that $\text{Fc}\gamma\text{RIV}$ can by itself (*i.e.* in the absence of
446 $\text{Fc}\gamma\text{RIII}$) trigger anaphylaxis. Similar results have been obtained in mice expressing only $\text{Fc}\gamma\text{RIV}$:
447 “ $\text{Fc}\gamma\text{RIV-only}$ ” mice developed IgG2b-PSA after injection of pre-formed IgG2b immune
448 complexes and also upon injection of polyclonal anti-sera followed by a challenge with the
449 antigen¹⁶. We reported previously that IgG2b-PSA triggered by the injection of preformed

450 IgG2b-immune complexes in WT mice was abolished following injection of anti-Fc γ RIV
451 blocking mAb 9E9. This contrasts with the findings of the current study, in which we show that
452 Fc γ RIII is the major activating receptor in all models of IgG-PSA, and Fc γ RIV contributes only
453 at high antibody concentrations. Two hypotheses may explain these discrepant results: i) the
454 injection of preformed IgG2b-immune complexes leads to an immediate circulating bolus of
455 immune complexes, which are similarly formed only after injection of high amounts of IgG2b
456 and antigen, thus triggering Fc γ RIV; 2) as recently reported⁴⁰ mAb 9E9 may not only block
457 Fc γ RIV through its Fab portions, but also Fc γ RIII via its Fc portion once 9E9 is bound to
458 Fc γ RIV. In our view, a combination of these mechanisms reconcile our previous and herein
459 described results, and suggest that IgG2b-PSA induced following injection of preformed IgG2b-
460 immune complexes relies rather on both Fc γ RIII and Fc γ RIV than on Fc γ RIV alone as we
461 reported previously¹⁶. Together this body of evidence supports the notion that Fc γ RIV is capable
462 to trigger cell activation leading to anaphylaxis, yet in restricted conditions, *i.e.* in the
463 absence/blockade of Fc γ RIII or in presence of large amounts of IgG2a and/or IgG2b antibodies.

464

465 The differential contribution of Fc γ Rs to IgG-PSA may rely on their respective expression
466 patterns on myeloid cells. Indeed, Fc γ RI is not^{32, 33} or barely³⁴ expressed on circulating
467 monocytes, and its expression is largely restricted to tissue-resident macrophages. The level of its
468 expression on cells reported to contribute to anaphylaxis (*i.e.* monocytes in this case) may
469 therefore not suffice to induce their activation. This notion is supported by the absence of any
470 detectable effect of Fc γ RI deficiency in IgG2-PSA that we report in this study, even at high
471 doses. Fc γ RIII, however, is expressed on all myeloid cells⁷ and moreover at comparably high
472 levels on all those cell types that have been reported to contribute to anaphylaxis; basophils,
473 monocytes and neutrophils²⁰. This cellular expression may explain its predominant contribution

474 to all models of IgG-induced anaphylaxis. Fc γ RIV is expressed on neutrophils and Ly6C^{lo}
475 monocytes. It remains unclear, however, if Ly6C^{lo}, Ly6C^{hi} or both monocyte subsets contribute
476 to anaphylaxis. Fc γ RIV could contribute to PSA induction in exceptional conditions (Fc γ RIII
477 deficiency or high IgG2 antibody doses). The lack of Fc γ RIV contribution in classical conditions
478 of PSA may suggest that its expression level is not sufficient in WT mice. Notably, it has been
479 reported previously that particular Fc γ R deficiencies modify the expression levels of other Fc γ Rs.
480 In particular Fc γ RIII^{-/-} mice, but not Fc γ RI^{-/-} mice, presented a significant increase in Fc γ RIV
481 expression levels on neutrophils^{16, 41, 42} and a tendency for increased expression on Ly6C^{lo}
482 monocytes (Supplemental Figure 5B). This could explain why the contribution of Fc γ RIV to
483 IgG2-PSA becomes apparent in Fc γ RIII^{-/-} mice. Fc γ RIV^{-/-} mice did not, conversely, present
484 alterations of Fc γ RIII expression on neutrophils or Ly6C^{hi} monocytes compared to WT
485 littermates (Supplemental Figure 5A). Fc γ RIIB^{-/-} mice expressed significantly higher levels of
486 Fc γ RIII and Fc γ RIV on neutrophils and increased Fc γ RIII on Ly6C^{hi} monocytes that may,
487 altogether, contribute to their higher susceptibility to anaphylaxis induction (Supplemental Figure
488 5A&B).

489

490 The contribution of a rather restricted subset of myeloid cells to these (and other) models
491 of anaphylaxis^{2, 3} appears to be determined by at least two factors: their capacity to release
492 anaphylactogenic mediators (*e.g.* histamine or PAF) and their expression of sufficient levels of
493 activating IgG receptors. Mast cells and basophils release histamine, and neutrophils, monocytes/
494 macrophages and basophils release PAF upon Fc γ R-triggering. Other mediators may induce
495 anaphylaxis or contribute to its severity, among them lipid mediators like prostaglandins,
496 thromboxanes and leukotrienes. Some of these have indeed been reported to trigger
497 bronchoconstriction and an increase in vascular permeability⁴³. The release of such mediators is

498 sufficiently rapid to coincide with the celerity of hypothermia, which is detectable within minutes
499 after allergen challenge. It is therefore surprising that eosinophils do not contribute to IgG-PSA,
500 as they express high levels of activating Fc γ RIII and Fc γ RIIB²⁰ (but no Fc γ RI or Fc γ IV), and
501 are capable of releasing Leukotriene C4, Prostaglandin E2, thromboxane and PAF upon
502 activation⁴³. Though eosinophils represent relatively low numbers among blood cells
503 ($\approx 2 \times 10^5$ /mL), this is an unlikely explanation because basophils are significantly less numerous
504 ($\approx 5 \times 10^4$ /mL) but do contribute to anaphylaxis models. Most revealingly, it has been reported that
505 eosinophils do not release PAF following IgG-dependent activation⁴⁴. Whether eosinophils
506 produce other potentially anaphylactogenic mediators following IgG-immune complex activation
507 has not been investigated, but this appears the most reasonable hypothesis to explain why
508 eosinophils have not been found to contribute to IgG-induced anaphylaxis.

509 We investigated the contribution of neutrophils and monocytes to IgG-PSA models using
510 depletion approaches. Ly6G $^+$ cell depletion using NIMP-R14 resulted in an efficient depletion of
511 neutrophils in the blood and the spleen (Supplemental Figures 1B&2B). The same treatment
512 resulted only in a partial depletion in the bone marrow, in which a proportion of Ly6G $^+$ cells are
513 masked from fluorescent anti-Ly6G staining, but not depleted by NIMP-R14 treatment (refer to
514 bone marrow panels in Supplemental Figures 1C,D & 2C,D,I). Importantly, we found that NIMP-
515 R14 depletion has a significant impact on monocyte populations in the blood and to some extent
516 in the spleen. This should be taken into consideration when interpreting the results of NIMP-R14
517 depletion experiments. All IgG-PSA models were ameliorated following NIMP-R14 depletion,
518 but also when monocytes/macrophages were targeted using clodronate liposomes. Intravenous
519 injection of clodronate liposomes resulted in a significant depletion of monocytes from the blood
520 and monocytes/macrophages from the spleen and BM, but not from the skin (data not shown) and
521 peritoneum (Supplemental Figures 1&2, as reported²⁵), and to a significant increase in blood

522 leukocyte counts and particularly of neutrophils (Supplemental Figures 1&2). Thus the anti-
523 Ly6G and the clodronate liposome treatments alter also the monocytes and neutrophil
524 compartment, respectively, but reduced hypothermia in the three models of IgG-PSA studied.
525 Constitutive deficiency in neutrophils, studied using $Gfi1^{-/-}$ mice, confirmed the role of
526 neutrophils in IgG2a- and IgG2b-PSA models. Both neutrophils and monocytes can therefore be
527 considered to contribute to IgG-induced anaphylaxis, whether dependent on IgG1, IgG2a or
528 IgG2b in mice. The role of macrophages in the different IgG-PSA models remains to be
529 investigated more deeply, as clodronate liposomes injected intravenously targeted efficiently
530 macrophages in the spleen, but not in other tissues like peritoneum or skin, and thus do not allow
531 conclusions on their contribution.

532

533 The contribution of basophils to models of anaphylaxis has been a recent matter of debate.
534 Tsujimura *et al* reported that depletion of basophils using anti-CD200R3 (clone Ba103)
535 monoclonal antibodies strongly inhibited IgG1-PSA and rescued mast cell-deficient mice from
536 active anaphylaxis¹⁹. Ohnmacht *et al*, however, found that basophil-deficient $Mcpt8^{cre}$ mice
537 demonstrated slightly decreased but significant hypothermia in response to IgG1-PSA (induced
538 with the same antibody clone) when compared to WT mice⁴⁵. More recently, Reber *et al*.
539 reported that peanut-induced anaphylaxis was reduced following Diphtheria toxin injection in
540 $Mcpt8^{DTR}$ mice that selectively depletes basophils, and confirmed that basophil depletion using
541 anti-CD200R3 mAbs inhibited anaphylaxis³⁶. Moreover, Khodoun *et al* found a contribution of
542 basophils to anaphylaxis mortality, but not to hypothermia, in a model of IgG2a-PSA following
543 anti-CD200R3 mAb injection⁵. It therefore appears that differences between inducible basophil
544 depletion using specific antibodies or toxin administration and a constitutive lack of basophils,
545 possibly leading to compensatory mechanisms during development of these mice, may account

546 for the divergent results observed. Intriguingly however, basophils have been reported to be
547 resistant to IgG-immune complex triggering *ex vivo* due to dominant inhibition by Fc γ RIIB over
548 activation by Fc γ RIII²⁰. In this study, we report that both basophil depletion following anti-
549 CD200R3 mAb (Ba103) injection or constitutive deficiency of basophils and mast cells in Cpa3-
550 Cre; Mcl-1^{fl/fl} mice inhibits IgG2b- but not IgG2a-PSA, confirming a role for basophils (and
551 potentially mast cells) to specific IgG-PSA models. Of note, Ba103 efficiently depleted basophils
552 from the blood and partially from the spleen and the bone marrow, but had no significant effect
553 on mast cells in the peritoneum or skin (Supplemental Figures 1A&1E and 2A&2E). The
554 difference in the ability of basophils to respond to IgG-immune complex triggering *in vitro* and
555 the various *in vivo* models may be explained by functional alterations during basophil purification
556 or a requirement for co-stimulation by other cells or their products that are present *in vivo*, but not
557 *ex vivo*, for basophils to respond to IgG-immune complexes. Our results using Cpa3-Cre; Mcl-
558 1^{fl/fl} mice indicate that mast cells were not necessary for IgG2a-PSA. We could not formally
559 define their role in IgG2b-PSA as basophil depletion and deficiency in basophils and mast cells
560 lead to similar reduction in IgG2b-PSA. Notably, increased plasma histamine levels, but no
561 increase in mMCP-1 levels could be detected, suggesting that mucosal mast cells were not
562 activated during IgG-PSA. Intriguingly, however, dermal mast cells displayed a degranulated
563 morphology 30 minutes after challenge in all IgG PSA models tested (Supplemental Figure 7).
564 Whether their degranulation is a cause or a consequence of anaphylaxis remains however elusive.
565

566 The ability of cells expressing activating Fc γ Rs to respond to IgG-immune complexes has
567 been proposed to be regulated by co-expression of Fc γ RIIB⁴⁶. Fc γ RIIB^{-/-} mice develop increased
568 hypersensitivity and anaphylactic reactions to IgG1-PSA (this report and^{16, 18}). Our results further
569 demonstrate that Fc γ RIIB inhibits IgG2b-, but not IgG2a-PSA. This latter finding is supported by

570 results from Khodoun *et al*⁵: these authors proposed that the lack of this inhibitory receptor may
571 lead to increased spontaneous formation of immune complexes in Fc γ RIIB^{-/-} mice, that could
572 compete with IgG2a-immune complexes. In light of our results comparing IgG1-, IgG2a- and
573 IgG2b-PSA, we rather propose that the significantly lower affinity of inhibitory Fc γ RIIB for
574 IgG2a ($K_A = 4.2 \cdot 10^5 \text{ M}^{-1}$) than for IgG1 ($K_A = 3.3 \cdot 10^6 \text{ M}^{-1}$) and IgG2b ($K_A = 2.2 \cdot 10^6 \text{ M}^{-1}$) is the
575 determining factor (Table 1). Another factor may be the variance in expression of Fc γ RIIB on
576 circulating myeloid cells: basophils > monocytes > eosinophils >> neutrophils²⁰. Whereas the
577 exact numbers of expressed activating Fc γ RIII and inhibitory Fc γ RIIB per cell remain unknown,
578 flow cytometric analysis allowed the estimation of their relative expression: indeed, the ratio
579 Fc γ RIII/Fc γ RIIB is higher on neutrophils than on monocytes and basophils. These differential
580 expression levels may thus explain why neutrophils contribute to anaphylaxis, as the receptor
581 balance is in favor of the activating receptor. Strikingly, Fc γ RIIB is co-expressed only with
582 Fc γ RIII on basophils and Ly6C^{hi} monocytes, whereas it is co-expressed with Fc γ RIII and Fc γ RIV
583 on neutrophils and Ly6C^{lo} monocytes³⁴. Contribution of a given cell type to anaphylaxis may
584 therefore be favored when inhibitory Fc γ RIIB is required to dampen the stimulatory potential of
585 two activating IgG receptors instead of one. This concept extends to IgG1-immune complexes
586 that only engage one activating receptor, Fc γ RIII.

587

588 Our results on the contribution of mouse IgG receptors, cells and mediators in IgG-
589 induced anaphylaxis can potentially be translated to human IgG-mediated anaphylaxis, *e.g.*
590 following intravenous IgG or therapeutic IgG antibody administration. Indeed, even if IgG
591 receptors are different in both species, we have already reported that human Fc γ RI (hFc γ RI) and
592 human Fc γ RIIA (hFc γ RIIA) can induce anaphylaxis when expressed under the control of their
593 own promoter in transgenic mice^{23, 24}. hFc γ RI (CD64) is the equivalent of mouse Fc γ RI whereas

594 hFc γ RIIA (CD32A) can be regarded as the equivalent of mouse Fc γ RIII, and hFc γ RIIA
595 (CD16A) the equivalent of mouse Fc γ RIV⁷. hFc γ RIIA, like mouse Fc γ RIII, is expressed on all
596 myeloid cells and could therefore act as the principal IgG receptor responsible for anaphylaxis in
597 humans. hFc γ RIIB, the equivalent of mouse Fc γ RIIB, is scarcely expressed on most circulating
598 myeloid cells⁴⁷ except for its high expression on basophils²⁰, suggesting that among myeloid cells
599 only human basophils are sensitive to hFc γ RIIB-mediated inhibition. In contrast to mouse Fc γ RI,
600 hFc γ RI is constitutively expressed on circulating monocytes and inducibly on neutrophils,
601 allowing this receptor to induce anaphylaxis²⁴. The binding of human IgG subclasses to hFc γ Rs
602 differs strikingly from the binding of mouse IgG subclasses to mouse Fc γ Rs. Noticeably, the
603 affinity of hFc γ RIIB for any human IgG subclass is the lowest among human IgG-hFc γ R
604 interactions. For example, human IgG1, the equivalent of mouse IgG2a, is bound by all activating
605 hFc γ Rs ($K_A > 10^6$ M⁻¹) with at least a ten-fold higher affinity than by inhibitory hFc γ RIIB ($K_A \approx$
606 10⁵ M⁻¹)⁴⁸. If we consider the translation of our results obtained in the mouse to human IgG-
607 induced anaphylaxis, one could anticipate that hFc γ RIIB-mediated inhibition of IgG-induced
608 anaphylaxis is inefficient in human neutrophils and monocytes, and efficient only in human
609 basophils for which the elevated hFc γ RIIB expression may compensate for the low-affinity of
610 this receptor for human IgG subclasses. Certainly, Fc γ R-engagement by IgG immune complexes
611 on human basophils could not trigger any detectable basophil activation *in vitro*²⁰, similar to the
612 results we reported for mouse basophil activation. Our data altogether propose that the
613 differential expression of inhibitory Fc γ RIIB on myeloid cells and its differential binding of IgG
614 subclasses control the contribution of basophils, neutrophils and monocytes to IgG-dependent
615 anaphylaxis, thus revealing novel complexities in the mechanism of regulation of cell
616 populations, and therefore their contribution to IgG-mediated reactions *in vivo*.
617

619 **ACKNOWLEDGMENTS**

620 We are thankful to our colleagues at Institut Pasteur, Paris: D. Sinnaya for administrative
621 help, Stéphane Petres for help with antibody purifications and Laurence Fiette for help with
622 histological analyses. We are thankful to our colleagues for their generous gifts: T. Moroy
623 (Montreal University, Montreal, QC, Canada), Clifford Lowell (University of California at San
624 Francisco, CA, USA), J.V. Ravetch (Rockefeller University, New York, NY, USA) and J. Leusen
625 (University Medical Center, Utrecht, The Netherlands) for mice; R. Coffman (DNAX, Palo Alto,
626 CA, USA), R. Good (USFCM, Tampa, FL, USA), B. Heyman (Uppsala Universitet, Uppsala,
627 Sweden), H. Karasuyama (Tokyo Medical and Dental University Graduate School, Tokyo, Japan)
628 and D. Voehringer (Universitätsklinikum, Erlangen, Germany) for antibodies. Cl₂MDP was a gift
629 of Roche Diagnostics GmbH. This work was supported by the Institut Pasteur, the Institut
630 National de la Santé et de la Recherche Médicale (INSERM), the European Research Council
631 (ERC)–Seventh Frame-work Program (ERC-2013-CoG 616050), the Société Française
632 d’Allergologie (SFA; *Soutien de la Recherche en Allergologie*) and the Balsan company. H.B. is
633 supported by a fellowship from the *University Pierre et Marie Curie*. C.M.G. is a scholar of the
634 Pasteur Paris University International Doctoral Program and supported by a stipend from the
635 Institut Carnot Pasteur *Maladies Infectieuses*. F.J. is an employee of the *Centre National de La*
636 *Recherche Scientifique* (CNRS).

637

638 **AUTHORSHIP AND CONFLICT OF INTEREST STATEMENTS**

639 H.B. performed all experiments, with contribution from P.E, C.M.G, F.J., L.L.R. and
640 R.S.; B.I. and O.G. genotyped mice and produced reagents; M.S.C., S.J.G. and N.v.R. provided
641 reagents; H.B., P.B., P.E., C.M.G., S.J.G, F.J., D.A.M., L.L.R. and R.S. analyzed and discussed

642 results; F.J., P.B. and D.A.M. supervised and designed the research; P.B. and F.J. wrote the
 643 manuscript. All authors declare no competing financial interests.

644 **TABLES**

645

646 **Table 1:** Affinities of mouse Fc γ R-IgG subclass interactions (K_A values in M^{-1})

647

	IgG1	IgG2a	IgG2b	IgG3
FcγRI	-	1×10^8	1×10^5	(+)
FcγRIIB	3.3×10^6	4.2×10^5	2.2×10^6	-
FcγRIII	3.1×10^5	6.8×10^5	6.4×10^5	-
FcγRIV	-	2.9×10^7	1.7×10^7	-

648 “-”, no detectable affinity.

649 “(+”, under debate^{11, 12}.

650 *Data compiled from*^{17, 21}

651

652

653

FIGURE LEGENDS

654

655 **Figure 1. Fc γ RIII dominates anaphylaxis induced by IgG subclasses.** Mice were injected with
656 anti-TNP mAbs, challenged with TNP-BSA and central temperatures were monitored. **(A)** IgG1-,
657 **(B)** IgG2a- or **(C)** IgG2b-induced PSA in indicated mice ($n \geq 3$). Data are represented as mean +/-
658 SEM and representative from at least two independent experiments (A: $n=2$; B: $n=3$; C: $n=2$).
659 Significant differences compared to the WT group are indicated.

660

661 **Figure 2. Basophils, mast cells, monocytes/macrophages and neutrophils contribute**
662 **differentially to IgG-PSA models.** Indicated mice ($n \geq 8$) were injected with IgG2a **(A-E)** or
663 IgG2b **(F-J)** anti-TNP mAbs, challenged with TNP-BSA and central temperatures were
664 monitored. WT mice ($n=8$) were pre-treated as indicated (A, C-D, F, H-I). Lipo-PBS: PBS
665 liposomes; Lipo-Cd: clodronate liposomes. Data are represented as mean +/- SEM, and pooled
666 from at least two independent experiments.

667

668 **Figure 3. Reduced expression of Fc γ RIII and Fc γ RIV, but not Fc γ RIIB, on neutrophils**
669 **following IgG2a-PSA.** **(A)** Fc γ RIII, **(B)** Fc γ RIV and **(C)** Fc γ RIIB expression on blood cells from
670 WT mice (A & B : $n=11$; C : $n \geq 6$) left untreated, injected with IgG2a anti-TNP mAbs, or
671 injected with IgG2a anti-TNP mAbs followed by a challenge with TNP-BSA. Expression is
672 represented as Δ Geomean between specific and isotype control staining. **(D)** Compilation of
673 Δ Geomean +/- SEM data from A, B and C.

674

675 **Figure 4. Elevated IgG2 antibody doses reveal Fc γ RIV contribution to IgG2-PSA. (A)** PSA
676 in indicated mice injected with various doses of IgG2a anti-TNP mAbs (n=2). **(B-E)** PSA in
677 indicated mice (B&C: n=8; D&E: n \geq 3) injected with the indicated dose of anti-TNP mAbs. Data
678 are represented as mean +/- SEM and pooled from two independent experiments. Significant
679 differences compared to the untreated WT group are indicated.

680

681 **Figure 5. Expression of Fc γ RIII, Fc γ RIV and Fc γ RIIB on myeloid cells following IgG2b-
682 PSA. (A)** Fc γ RIII (left: n=8, right: n=3), **(B)** Fc γ RIV (n=8) and **(C)** Fc γ RIIB expression (n \geq 6) on
683 cells from WT mice (n=8) left untreated, injected with IgG2b anti-TNP mAbs, or injected with
684 IgG2b anti-TNP mAbs followed by a challenge with TNP-BSA (Ag). *Note:* 1 or 0,5mg IgG2b
685 was injected to assess expression on neutrophils/monocytes or basophil, respectively. Expression
686 is represented as Δ Geomean between specific and isotype control staining. **(D)** Compilation of
687 Δ Geomean +/- SEM data from A, B and C.

688

689 **Figure 6. Cell contribution to IgG1-PSA in the absence of inhibitory Fc γ RIIB.** Fc γ RIIB $^{-/-}$
690 mice were pretreated as indicated, then injected with IgG1 anti-TNP mAbs, challenged with
691 TNP-BSA and central temperatures were monitored (A: n=8; B: n=7; C: n=10). Data are
692 represented as mean +/- SEM. Data are pooled from two independent experiments.

693

694 **Figure 7. Differential contribution of histamine and PAF to IgG-PSA models.** Mice were
695 pretreated as indicated, then injected with anti-TNP mAbs, challenged with TNP-BSA and
696 central temperatures were monitored. IgG1-PSA in **(A)** Fc γ RIIB $^{-/-}$ mice (n=6) or WT mice (n=4).
697 **(B)** IgG2a-PSA, **(C)** IgG2b-PSA or **(D)** IgE-PSA in WT mice (n \geq 7). Plasma histamine **(E)** and
698 serum mMCP-1 concentrations **(F)** were evaluated 5 minutes and 3 hours post PSA, respectively.

699 Data are represented as mean +/- SEM. (A & C) Data are pooled from two independent
700 experiments, (B, D, E & F) data are represented as mean +/- SEM and representative from at least
701 two independent experiments. Significant differences compared to the untreated group are
702 indicated.

703

704 **Supplemental Figure 1. Effects of depletion strategies on myeloid cell populations – Cell**
705 **counts.** WT mice were treated with indicated reagents. 24 hours after injection, counts of specific
706 cell populations were determined by flow cytometry (A-G) and histology (I&J); leukocyte counts
707 in total blood were measured with an automatic blood analyzer (H). Counts of (A) basophils, (B)
708 neutrophils, (C) Ly6C^{hi} monocytes and (D) Ly6C^{lo} monocytes in blood, spleen and bone marrow,
709 (E) peritoneal mast cells (F) peritoneal macrophages and (G) splenic macrophages. (I)
710 Representation of a toluidine blue-stained back skin section with two mast cells. (J) Counts of
711 mast cells/mm² in the dermis of WT mice. (A-H) Figures show one of three independent
712 experiments. Individual measurements and mean +/- SEM are represented. Iso = isotype rat
713 IgG2b, PBS = PBS liposomes, CS= clodronate liposomes.

714

715 **Supplemental Figure 2. Effects of depletion strategies on myeloid cell populations –**
716 **Frequencies.** WT mice were treated with indicated reagents. 24 hours after injection, percentages
717 of specific cell populations among CD45⁺ cells were determined by flow cytometry (A-H): (A)
718 basophils, (B) neutrophils, (C) Ly6C^{hi} monocytes and (D) Ly6C^{lo} monocytes in blood, spleen and
719 bone marrow, (E) peritoneal mast cells (F) peritoneal macrophages and (G) splenic macrophages.
720 (H) Percentages of peritoneal mast cells (pMC FcεRI⁺/cKit⁺) and blood basophils (FcεRI⁺/DX5⁺)
721 in Cpa3-Cre; Mcl-1^{fl/fl} mice and in Cpa3-Cre; Mcl-1^{+/+} mice. (I) Left: Percentages of YFP-
722 positive cells in MRP8-Cre; Rosa26-YFP mice. Right: Effect of NIMP-R14 injection on

723 neutrophils (percentages and counts $CD45^+/YFP^+/Ly6C^{neg}/CD115^{neg}$ cells) in blood, spleen and
724 bone marrow of MRP8-Cre; Rosa26-YFP mice. (A-H) Figures show corresponding percentages
725 to cell counts shown in Supplemental Figure 1 and display individually measured mice the mean
726 and SEM. Iso = isotype rat IgG2b, PBS = PBS liposomes, CS= clodronate liposomes.

727
728 **Supplemental Figure 3. Relative affinity of IgG1 (TIB191), IgG2a (Hy1.2) and IgG2b**
729 **(GORK) anti-TNP to TNP-BSA. (A) ELISA anti-TNP.** Comparison of binding capacity of
730 TIB 191, Hy1.2 or GORK to immobilized TNP-BSA. Data are represented as mean +/- SEM and
731 representative from five independent experiments. **(B) Surface plasmon resonance analysis.**
732 Comparison of binding affinity TNP-BSA to immobilized TIB 191, Hy1.2 or GORK clones. **(C)**
733 The table recapitulates the k_{on} , k_{off} and Kd for each condition.

734
735 **Supplemental Figure 4. IgG1-PSA induces mild hypothermia in WT mice and**
736 **monocytes/macrophages and neutrophils contribute to IgG2a-PSA in Balb/c mice . (A)** WT
737 mice were injected with IgG1 anti-TNP mAbs, challenged with TNP-BSA and central
738 temperatures were monitored. PSA in mice left untreated, injected with anti-Ly6G or anti-
739 CD200R3 (n=4). **(B)** Balb/c mice were left untreated, injected with anti-Ly6G, anti-CD200R3
740 (n=6), lipo-PBS (n=6) or lipo-Cd (n=6) prior to IgG2a-PSA induction. Central temperatures were
741 monitored. Data are represented as mean +/- SEM. Data are pooled from two independent
742 experiments. Significant differences compared to the untreated group are indicated.

743
744 **Supplemental Figure 5. Fc γ R expression in Fc γ R-deficient mice.** Expression of **(A)** Fc γ RIII,
745 **(B)** Fc γ RIV and **(C)** Fc γ RIIB is represented as the Δ Geomean of Fc γ R-specific staining

746 compared to isotype control staining from blood leukocytes collected from untreated WT, Fc γ RI $^{-/-}$
747 Fc γ RIIB $^{-/-}$, Fc γ RIII $^{-/-}$ and Fc γ RIV $^{-/-}$ mice (n=4). Data are represented as mean +/- SEM.

748

749 **Supplemental Figure 6. Blood leukocyte numbers in Fc γ R-deficient mice.** Representations of
750 leukocytes populations were determined using an ABC Vet automatic blood analyzer (Horiba
751 ABX) from blood collected from untreated WT, Fc γ RI $^{-/-}$, Fc γ RIIB $^{-/-}$, Fc γ RIII $^{-/-}$ and Fc γ RIV $^{-/-}$
752 mice (n=4). Data are represented as mean +/- SEM; each point represents one mouse.

753

754 **Supplemental Figure 7. Mast cells degranulation after IgG1, IgG2a and IgG2b-induced**
755 **PSA.** WT mice were injected with IgE (n=3), IgG1 (n=3), IgG2a (n=3), IgG2b anti-TNP mAbs
756 (n=3) or left untreated (n=3), challenged with TNP-BSA. Mouse ear skin biopsies were collected
757 30 minutes after TNP-BSA injection. Representation of a toluidine blue-stained ear skin section
758 with one mast cell for one mouse of each group of mice.

759

760

REFERENCES

761

- 762 1. Brown SG, Stone SF, Fatovich DM, Burrows SA, Holdgate A, Celenza A, et al.
763 Anaphylaxis: Clinical patterns, mediator release, and severity. *J Allergy Clin Immunol*
764 2013.
- 765 2. Finkelman FD, Rothenberg ME, Brandt EB, Morris SC, Strait RT. Molecular mechanisms
766 of anaphylaxis: lessons from studies with murine models. *J Allergy Clin Immunol* 2005;
767 115:449-57.
- 768 3. Jonsson F, Mancardi DA, Albanesi M, Bruhns P. Neutrophils in local and systemic
769 antibody-dependent inflammatory and anaphylactic reactions. *J Leukoc Biol* 2013;
770 94:643-56.
- 771 4. Iff ET, Vaz NM. Mechanisms of anaphylaxis in the mouse. Similarity of shock induced
772 by anaphylaxis and by mixtures of histamine and serotonin. *Int Arch Allergy Appl*
773 *Immunol* 1966; 30:313-22.
- 774 5. Khodoun MV, Kucuk ZY, Strait RT, Krishnamurthy D, Janek K, Clay CD, et al. Rapid
775 desensitization of mice with anti-FcgammaRIIb/FcgammaRIII mAb safely prevents IgG-
776 mediated anaphylaxis. *J Allergy Clin Immunol* 2013; 132:1375-87.
- 777 6. Million M, Fioramonti J, Zajac JM, Bueno L. Effects of neuropeptide FF on intestinal
778 motility and temperature changes induced by endotoxin and platelet-activating factor. *Eur*
779 *J Pharmacol* 1997; 334:67-73.
- 780 7. Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease
781 models. *Blood* 2012; 119:5640-9.
- 782 8. Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcgamma
783 receptors in dendritic cells and macrophages. *Nat Rev Immunol* 2014; 14:94-108.
- 784 9. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. *Nat Rev*
785 *Immunol* 2007; 7:715-25.
- 786 10. Bruhns P, Fremont S, Daëron M. Regulation of allergy by Fc receptors. *Curr Opin*
787 *Immunol* 2005; 17:662-9.
- 788 11. Gavin AL, Barnes N, Dijstelbloem HM, Hogarth PM. Identification of the mouse IgG3
789 receptor: implications for antibody effector function at the interface between innate and
790 adaptive immunity. *J Immunol* 1998; 160:20-3.
- 791 12. Saylor CA, Dadachova E, Casadevall A. Murine IgG1 and IgG3 isotype switch variants
792 promote phagocytosis of *Cryptococcus neoformans* through different receptors. *J*
793 *Immunol* 2010; 184:336-43.
- 794 13. Unkeless JC, Eisen HN. Binding of monomeric immunoglobulins to Fc receptors of
795 mouse macrophages. *J Exp Med* 1975; 142:1520-33.
- 796 14. Mancardi DA, Iannascoli B, Hoos S, England P, Daeron M, Bruhns P. FcgammaRIV is a
797 mouse IgE receptor that resembles macrophage Fc epsilon RI in humans and promotes
798 IgE-induced lung inflammation. *J Clin Invest* 2008; 118:3738-50.
- 799 15. Miyajima I, Dombrowicz D, Martin TR, Ravetch JV, Kinet JP, Galli SJ. Systemic
800 anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII.
801 Assessment of the cardiopulmonary changes, mast cell degranulation, and death
802 associated with active or IgE- or IgG1-dependent passive anaphylaxis. *J Clin Invest* 1997;
803 99:901-14.

804 16. Jönsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, Van Rooijen N, et al.
805 Mouse and human neutrophils induce anaphylaxis. *J Clin Invest* 2011; 121:1484-96.

806 17. Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass activity through
807 selective Fc receptor binding. *Science* 2005; 310:1510-2.

808 18. Ujike A, Ishikawa Y, Ono M, Yuasa T, Yoshino T, Fukumoto M, et al. Modulation of
809 immunoglobulin (Ig)E-mediated systemic anaphylaxis by low-affinity Fc receptors for
810 IgG. *J Exp Med* 1999; 189:1573-9.

811 19. Tsujimura Y, Obata K, Mukai K, Shindou H, Yoshida M, Nishikado H, et al. Basophils
812 play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated
813 systemic anaphylaxis. *Immunity* 2008; 28:581-9.

814 20. Cassard L, Jonsson F, Arnaud S, Daeron M. Fcgamma receptors inhibit mouse and human
815 basophil activation. *J Immunol* 2012; 189:2995-3006.

816 21. Nimmerjahn F, Bruhns P, Horiuchi K, Ravetch JV. Fc gamma RIV: a novel FcR with
817 distinct IgG subclass specificity. *Immunity* 2005; 23:41-51.

818 22. Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD. Pathways of anaphylaxis in the
819 mouse. *J Allergy Clin Immunol* 2002; 109:658-68.

820 23. Jönsson F, Mancardi DA, Zhao W, Kita Y, Iannascoli B, Khun H, et al. Human
821 FcgammaRIIA induces anaphylactic and allergic reactions. *Blood* 2012; 119:2533-44.

822 24. Mancardi DA, Albanesi M, Jonsson F, Iannascoli B, Van Rooijen N, Kang X, et al. The
823 high-affinity human IgG receptor FcgammaRI (CD64) promotes IgG-mediated
824 inflammation, anaphylaxis, and antitumor immunotherapy. *Blood* 2013; 121:1563-73.

825 25. Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages: mechanism of
826 action, preparation of liposomes and applications. *J Immunol Methods* 1994; 174:83-93.

827 26. Williams EL, Tutt AL, French RR, Chan HT, Lau B, Penfold CA, et al. Development and
828 characterisation of monoclonal antibodies specific for the murine inhibitory
829 FcgammaRIIB (CD32B). *Eur J Immunol* 2012; 42:2109-20.

830 27. Jiao D, Liu Y, Lu X, Liu B, Pan Q, Liu Y, et al. Macrophages are the dominant effector
831 cells responsible for IgG-mediated passive systemic anaphylaxis challenged by natural
832 protein antigen in BALB/c and C57BL/6 mice. *Cell Immunol* 2014; 289:97-105.

833 28. Biburger M, Nimmerjahn F. Low level of FcgammaRIII expression on murine natural
834 killer cells. *Immunol Lett* 2012; 143:53-9.

835 29. Lilla JN, Chen CC, Mukai K, BenBarak MJ, Franco CB, Kalesnikoff J, et al. Reduced
836 mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. *Blood* 2011;
837 118:6930-8.

838 30. Yucel R, Kosan C, Heyd F, Moroy T. Gfi1:green fluorescent protein knock-in mutant
839 reveals differential expression and autoregulation of the growth factor independence 1
840 (Gfi1) gene during lymphocyte development. *J Biol Chem* 2004; 279:40906-17.

841 31. Khodoun MV, Strait R, Armstrong L, Yanase N, Finkelman FD. Identification of markers
842 that distinguish IgE- from IgG-mediated anaphylaxis. *Proc Natl Acad Sci U S A* 2011;
843 108:12413-8.

844 32. Tan PS, Gavin AL, Barnes N, Sears DW, Vremec D, Shortman K, et al. Unique
845 monoclonal antibodies define expression of Fc gamma RI on macrophages and mast cell
846 lines and demonstrate heterogeneity among subcutaneous and other dendritic cells. *J*
847 *Immunol* 2003; 170:2549-56.

848 33. Mancardi DA, Jonsson F, Iannascoli B, Khun H, Van Rooijen N, Huerre M, et al. The
849 murine high-affinity IgG receptor Fc(gamma)RIV is sufficient for autoantibody-induced
850 arthritis. *J Immunol* 2011; 186:1899-903.

851 34. Biburger M, Aschermann S, Schwab I, Lux A, Albert H, Danzer H, et al. Monocyte
852 subsets responsible for immunoglobulin G-dependent effector functions in vivo.
853 *Immunity* 2011; 35:932-44.

854 35. Makabe-Kobayashi Y, Hori Y, Adachi T, Ishigaki-Suzuki S, Kikuchi Y, Kagaya Y, et al.
855 The control effect of histamine on body temperature and respiratory function in IgE-
856 dependent systemic anaphylaxis. *J Allergy Clin Immunol* 2002; 110:298-303.

857 36. Reber LL, Marichal T, Mukai K, Kita Y, Tokuoka SM, Roers A, et al. Selective ablation
858 of mast cells or basophils reduces peanut-induced anaphylaxis in mice. *J Allergy Clin
859 Immunol* 2013; 132:881-8 e11.

860 37. Camussi G, Aglietta M, Coda R, Bussolino F, Piacibello W, Tetta C. Release of platelet-
861 activating factor (PAF) and histamine. II. The cellular origin of human PAF: monocytes,
862 polymorphonuclear neutrophils and basophils. *Immunology* 1981; 42:191-9.

863 38. Wedemeyer J, Tsai M, Galli SJ. Roles of mast cells and basophils in innate and acquired
864 immunity. *Curr Opin Immunol* 2000; 12:624-31.

865 39. Jonsson F, Daeron M. Mast cells and company. *Front Immunol* 2012; 3:16.

866 40. Tipton TR, Mockridge CI, French RR, Tutt AL, Cragg MS, Beers SA. Anti-mouse
867 FcgammaRIV antibody 9E9 also blocks FcgammaRIII in vivo. *Blood* 2015; 126:2643-5.

868 41. Syed SN, Konrad S, Wiege K, Nieswandt B, Nimmerjahn F, Schmidt RE, et al. Both
869 FcgammaRIV and FcgammaRIII are essential receptors mediating type II and type III
870 autoimmune responses via FcRgamma-LAT-dependent generation of C5a. *Eur J Immunol*
871 2009; 39:3343-56.

872 42. Nimmerjahn F, Lux A, Albert H, Woigk M, Lehmann C, Dudziak D, et al. FcgammaRIV
873 deletion reveals its central role for IgG2a and IgG2b activity in vivo. *Proc Natl Acad Sci
874 U S A* 2010; 107:19396-401.

875 43. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. *J Allergy
876 Clin Immunol* 2010; 125:S73-80.

877 44. Capron M. Eosinophils: receptors and mediators in hypersensitivity. *Clin Exp Allergy*
878 1989; 19 Suppl 1:3-8.

879 45. Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D.
880 Basophils orchestrate chronic allergic dermatitis and protective immunity against
881 helminths. *Immunity* 2010; 33:364-74.

882 46. Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary
883 and therapeutic implications. *Nat Rev Immunol* 2010; 10:328-43.

884 47. Veri MC, Gorlatov S, Li H, Burke S, Johnson S, Stavenhagen J, et al. Monoclonal
885 antibodies capable of discriminating the human inhibitory Fcgamma-receptor IIB
886 (CD32B) from the activating Fcgamma-receptor IIA (CD32A): biochemical, biological
887 and functional characterization. *Immunology* 2007; 121:392-404.

888 48. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al.
889 Specificity and affinity of human Fc{gamma} receptors and their polymorphic variants
890 for human IgG subclasses. *Blood* 2009; 113:3716-25.

891

Figure No. 1

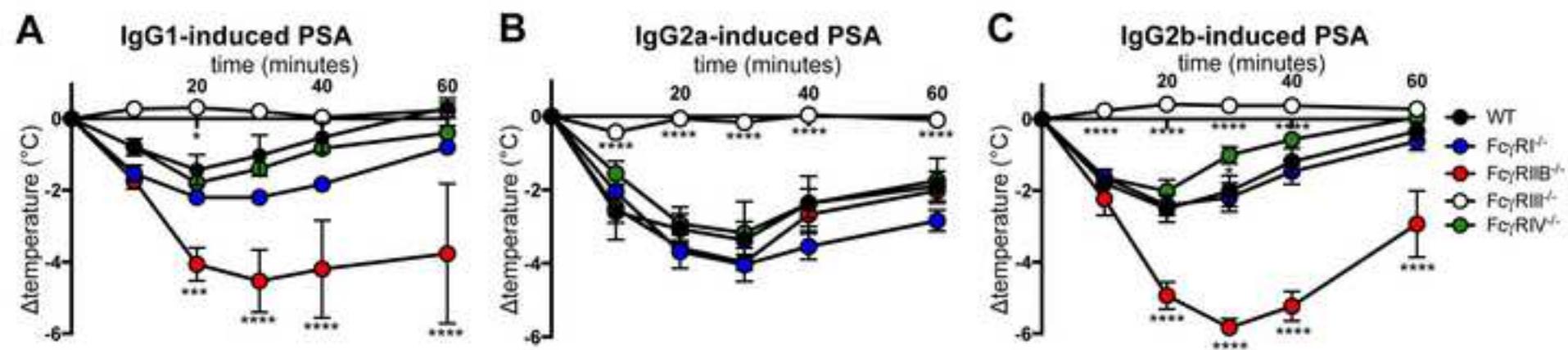

[Click here to download high resolution image](#)

Figure No. 2

[Click here to download high resolution image](#)

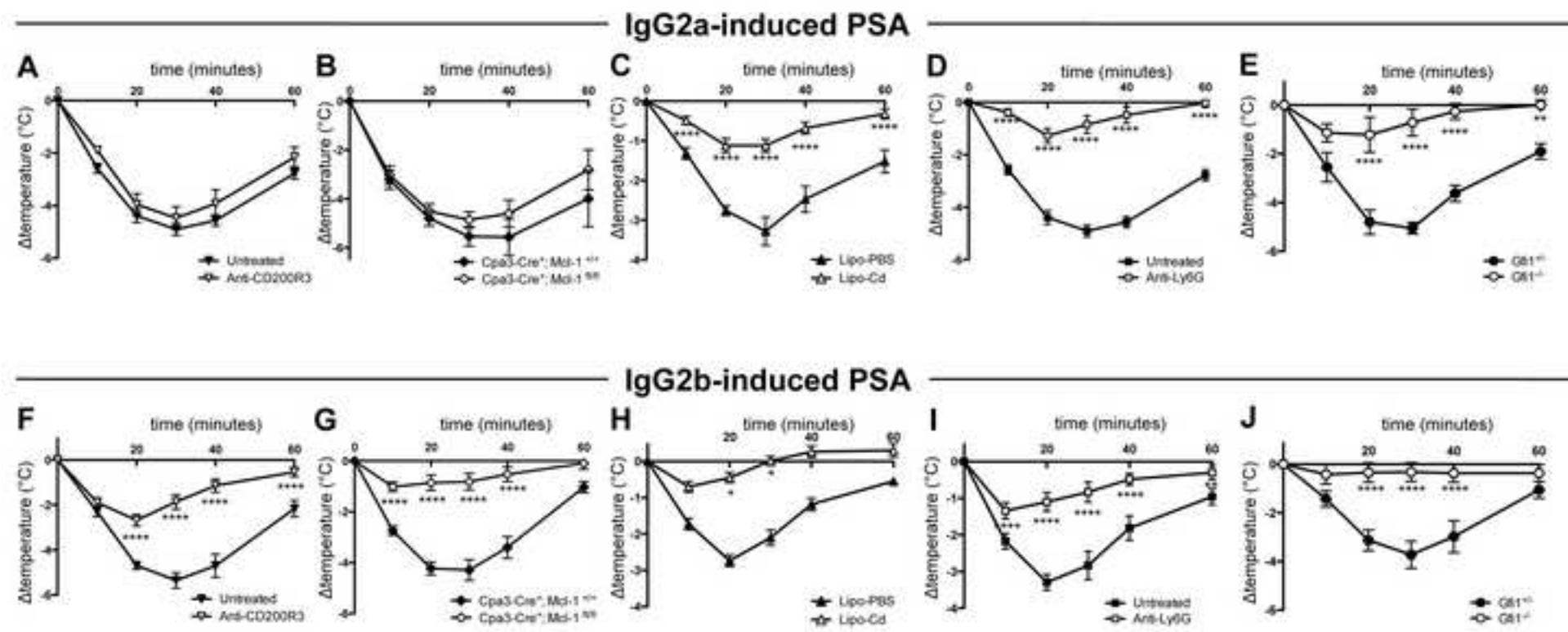


Figure No. 3

[Click here to download high resolution image](#)

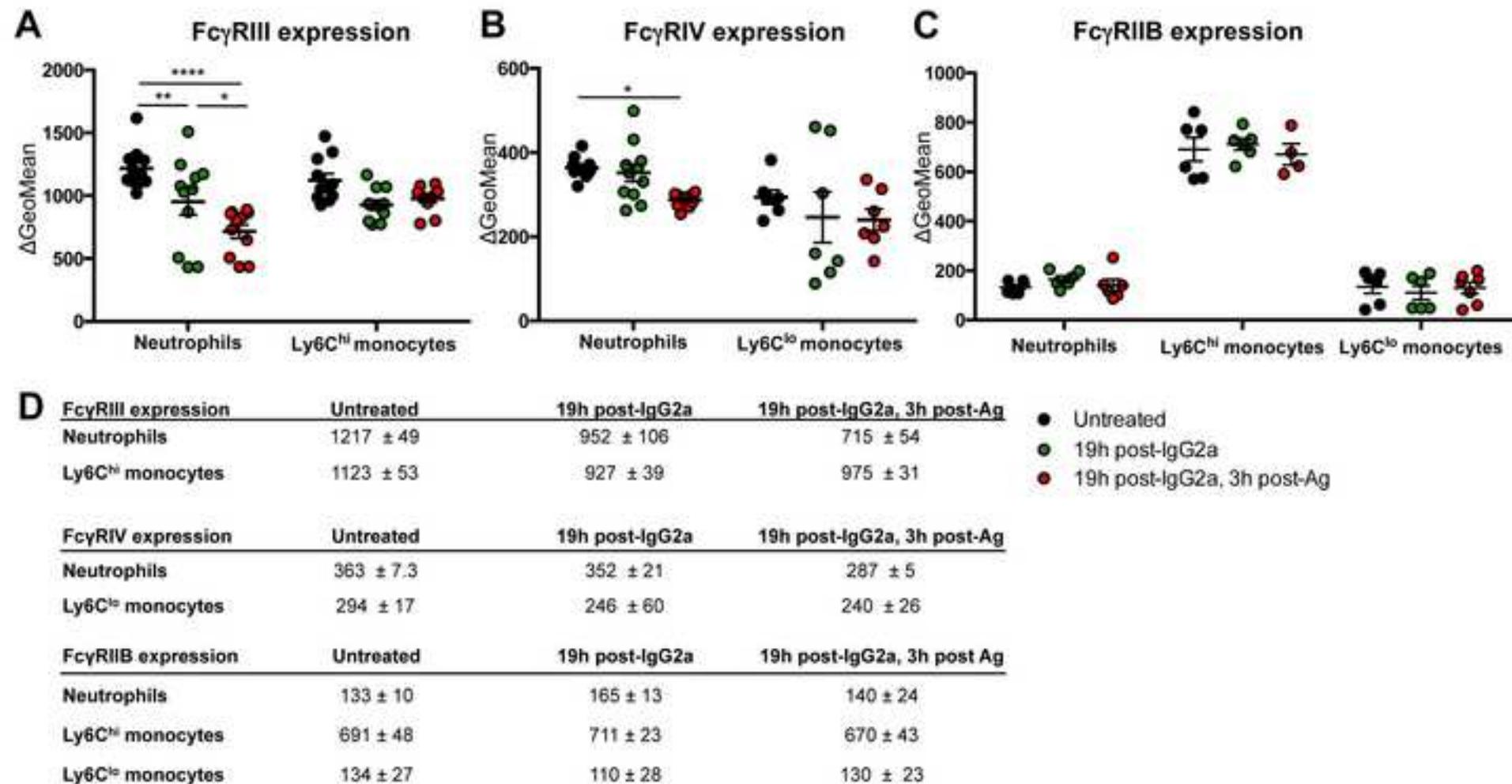


Figure No. 4

[Click here to download high resolution image](#)

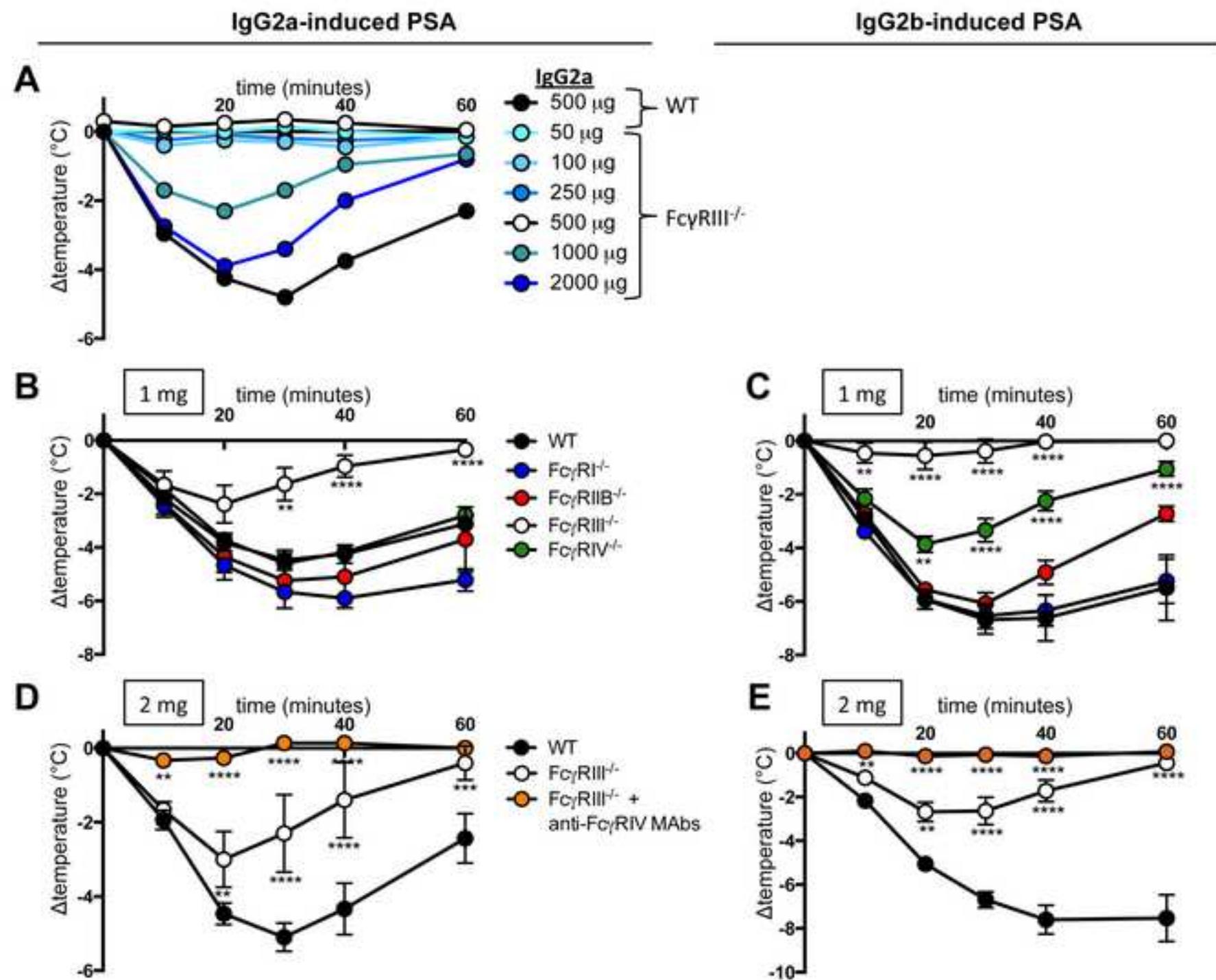
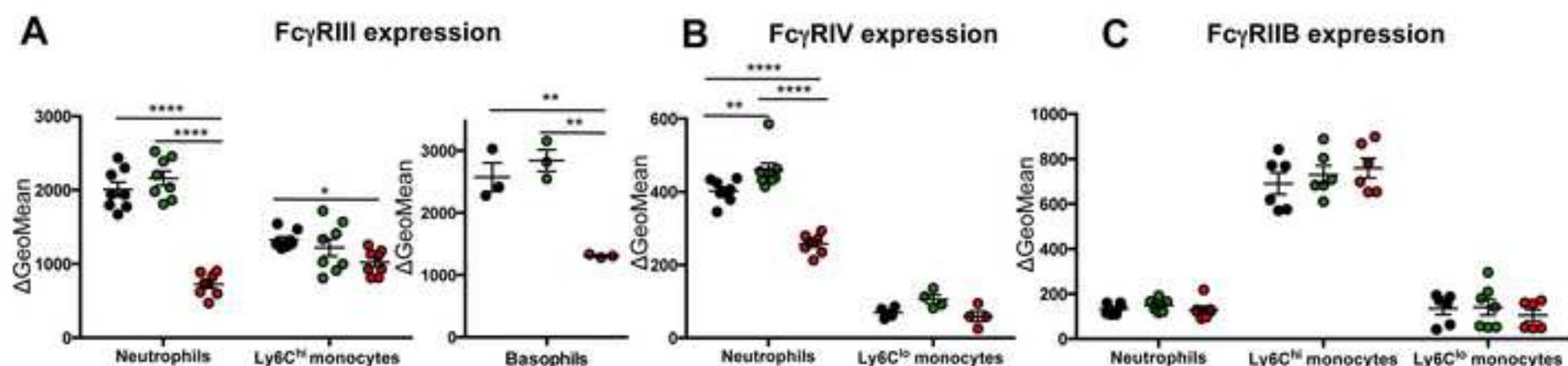



Figure No. 5

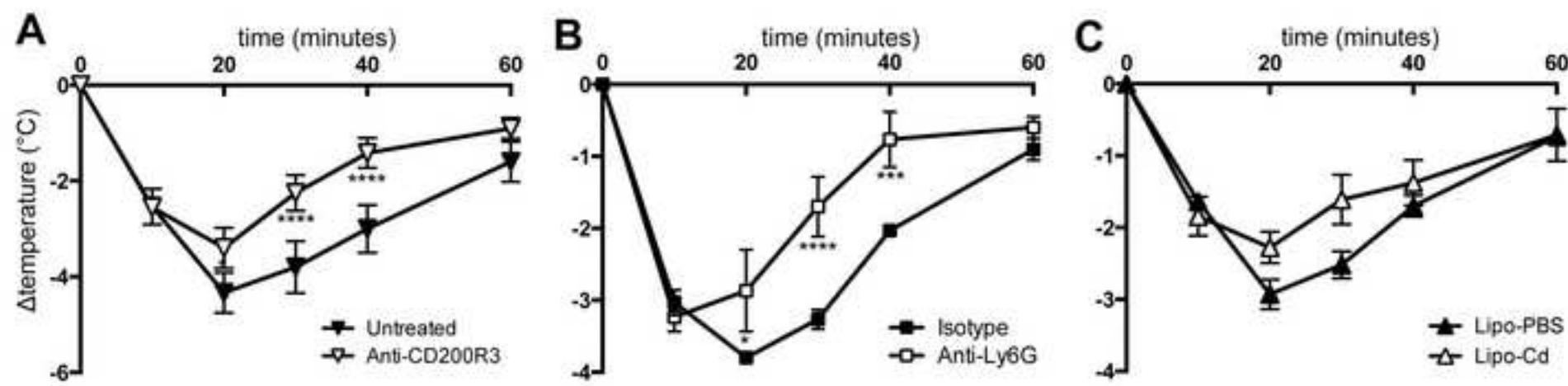
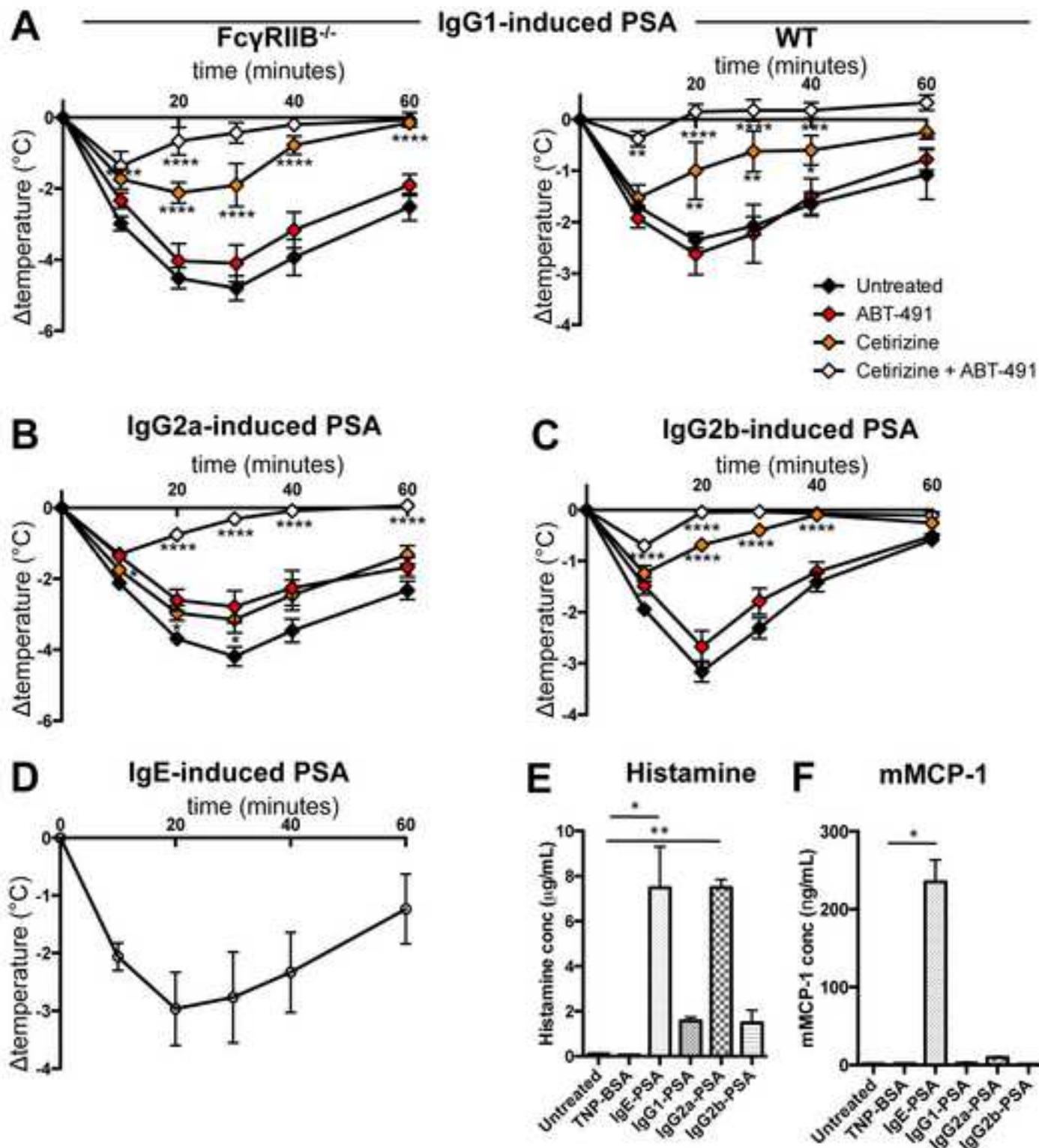
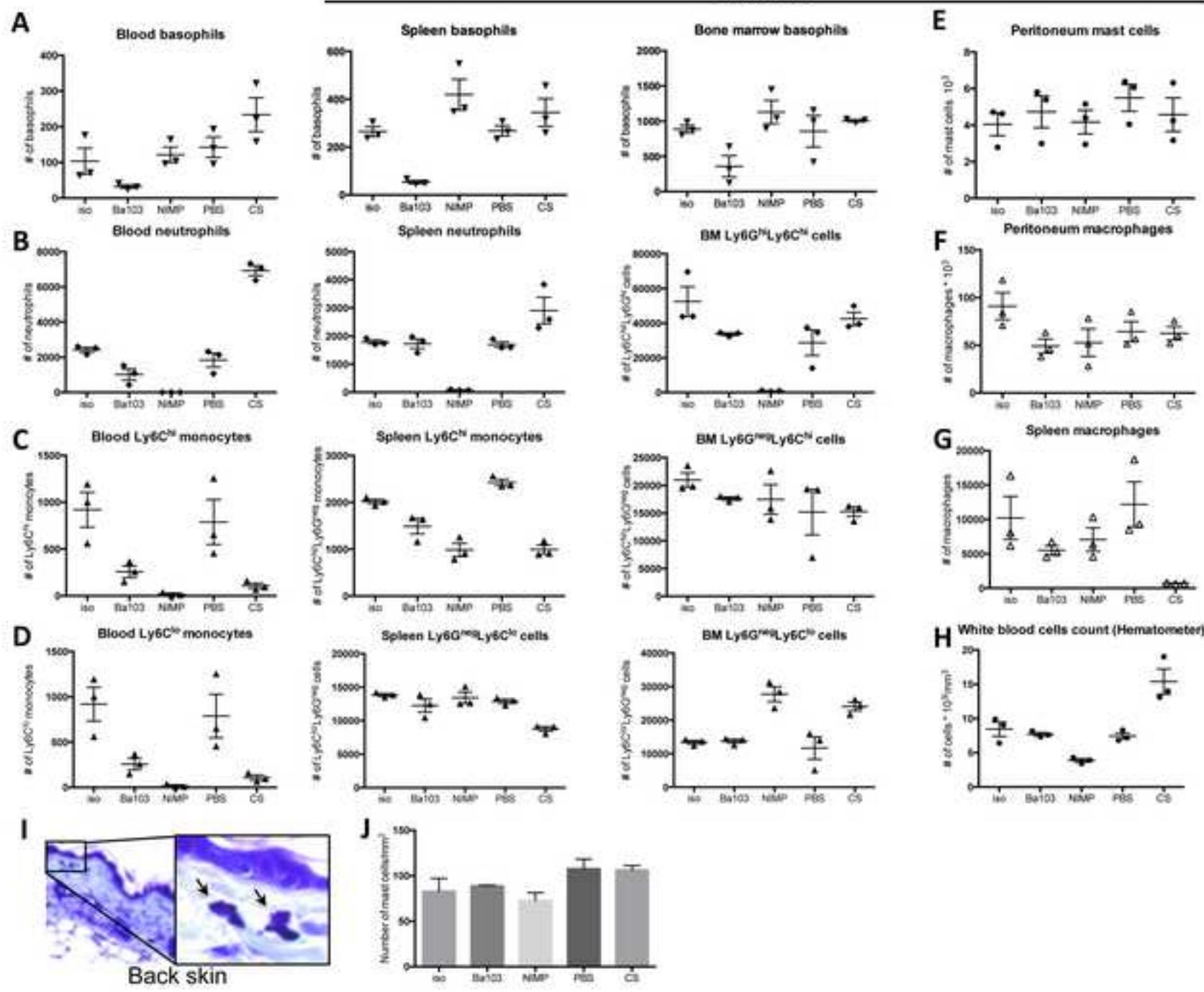
[Click here to download high resolution image](#)

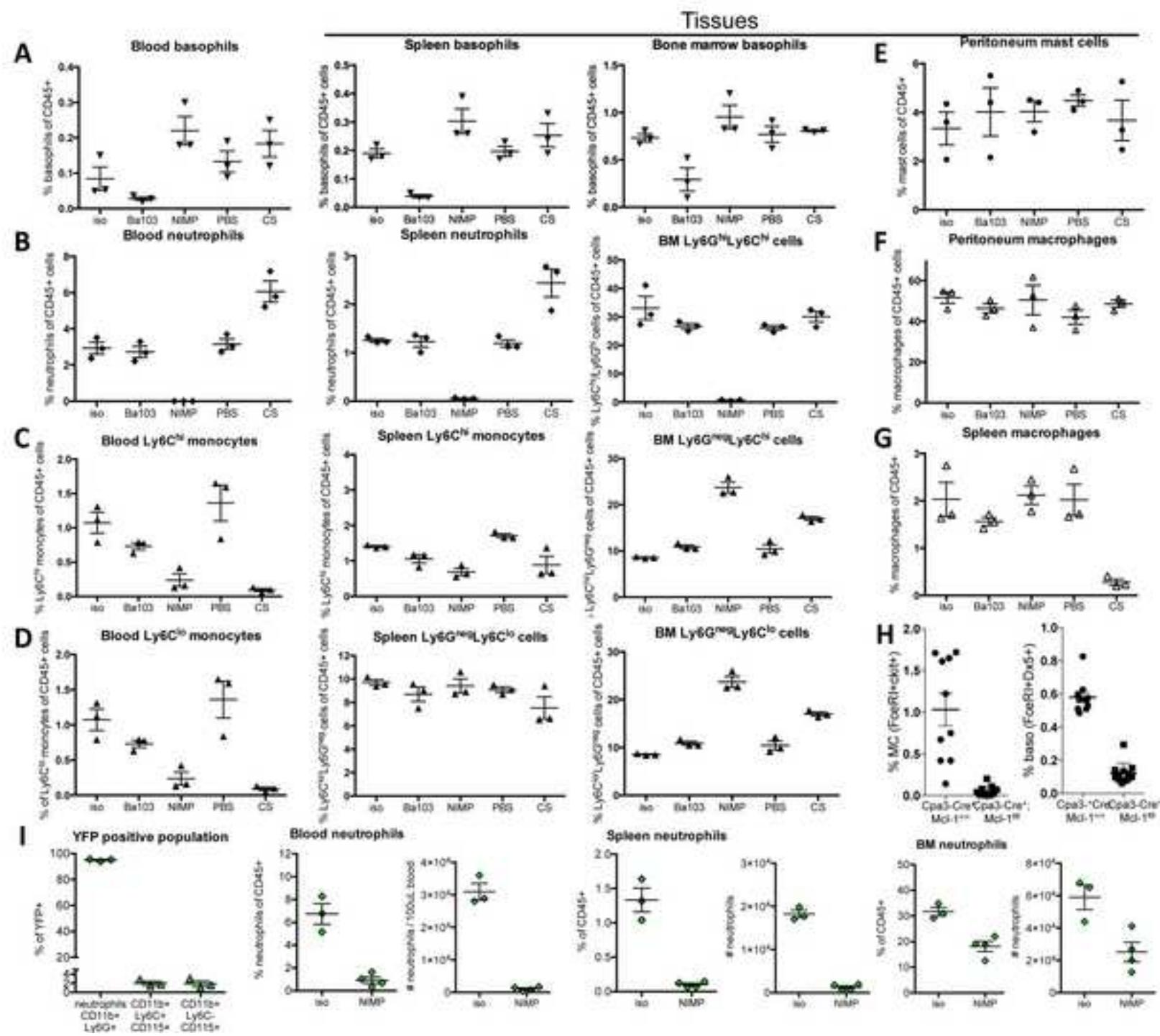
D

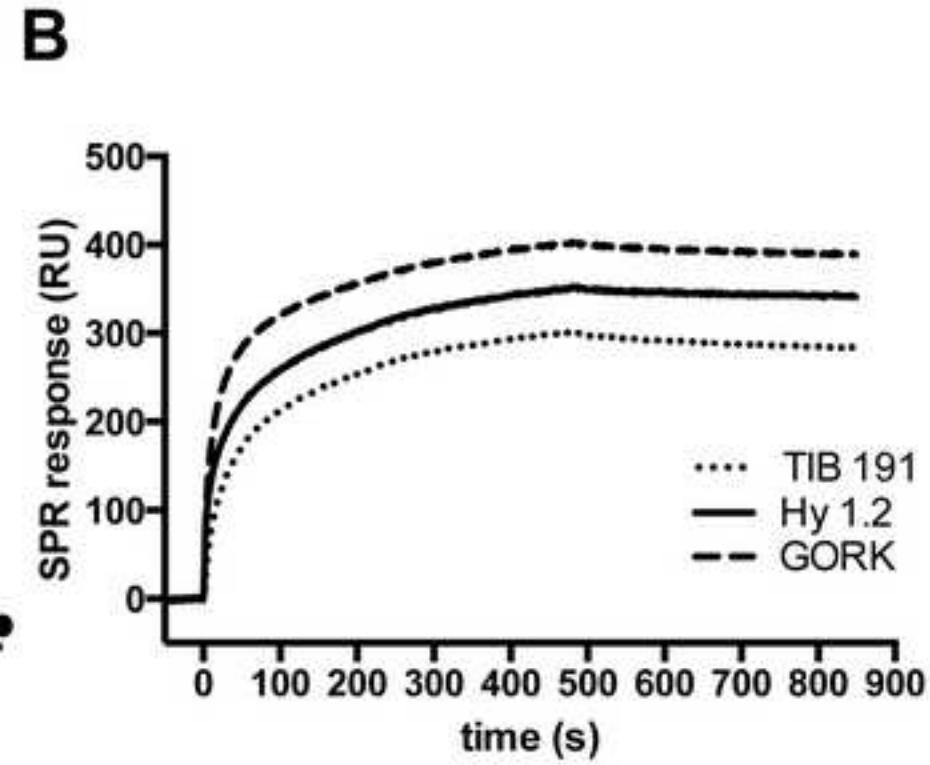
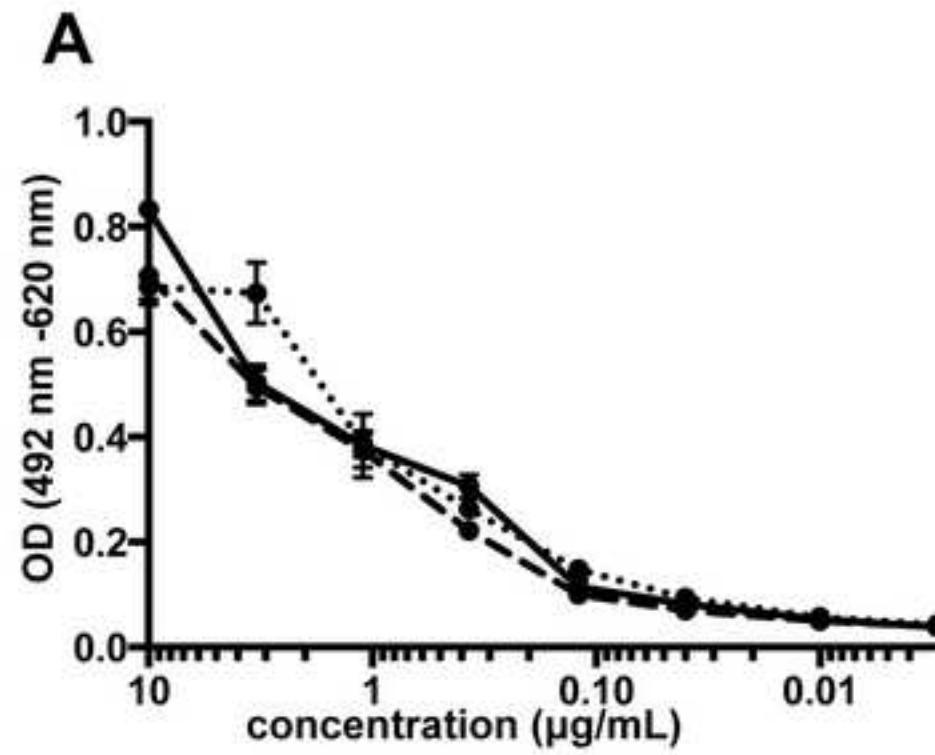
Fc γ RIII expression	Untreated	19h post-IgG2b	19h post-IgG2b, 3h post Ag
Neutrophils	2008 ± 97	2158 ± 98	724 ± 54
Ly6C ^{hi} monocytes	1326 ± 42	1222 ± 117	1021 ± 60
BM basophils	2574 ± 231	2842 ± 176	1307 ± 15
Fc γ RIV expression	Untreated	19h post-IgG2b	19h post-IgG2b, 3h post Ag
Neutrophils	402 ± 11	459 ± 19	258 ± 9
Ly6C ^{lo} monocytes	70 ± 8	106 ± 12	59 ± 14
Fc γ RIIB expression	Untreated	19h post-IgG2b	19h post-IgG2b, 3h post Ag
Neutrophils	133 ± 10	149 ± 12	130 ± 16
Ly6C ^{hi} monocytes	691 ± 48	730 ± 41	759 ± 44
Ly6C ^{lo} monocytes	135 ± 27	141 ± 35	105 ± 25

● Untreated
● 19h post-IgG2b
● 19h post-IgG2b, 3h post-Ag

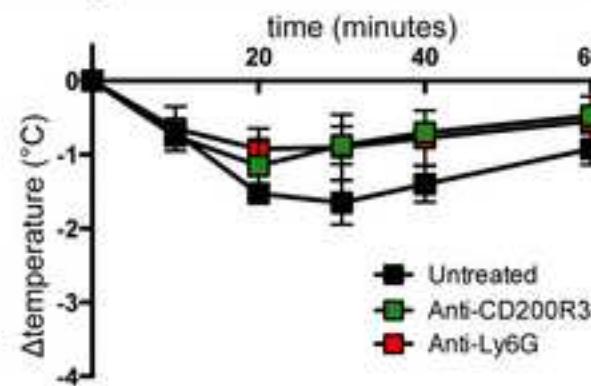
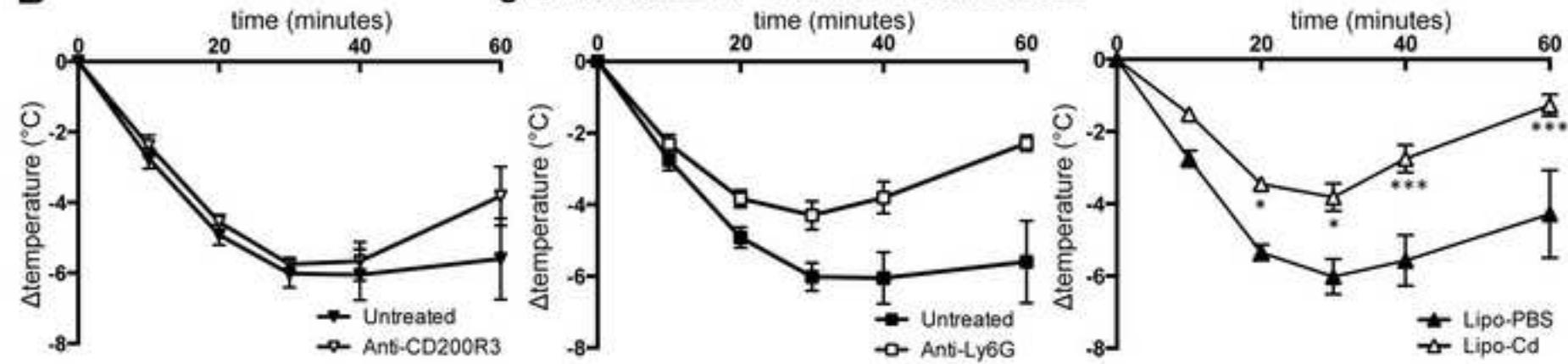
Figure No. 6

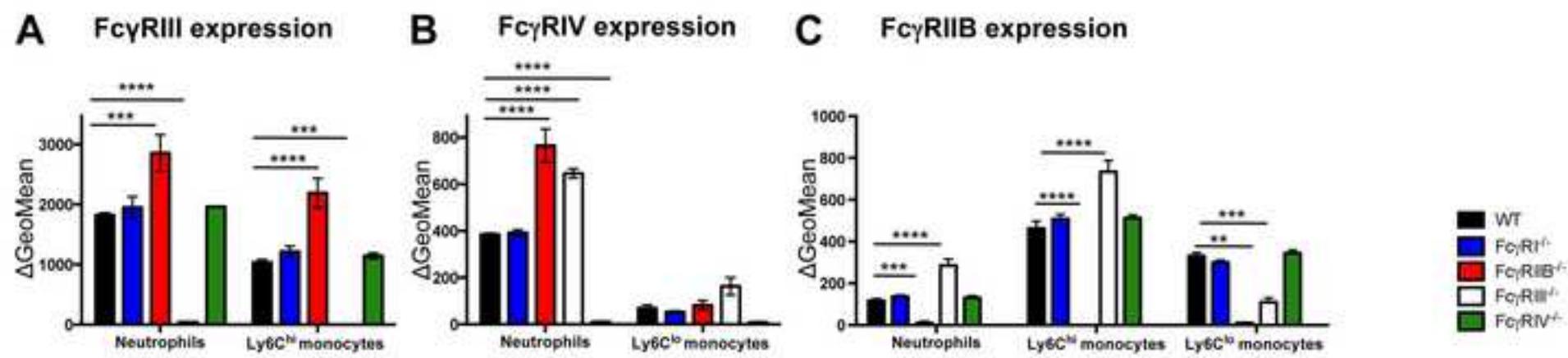



[Click here to download high resolution image](#)

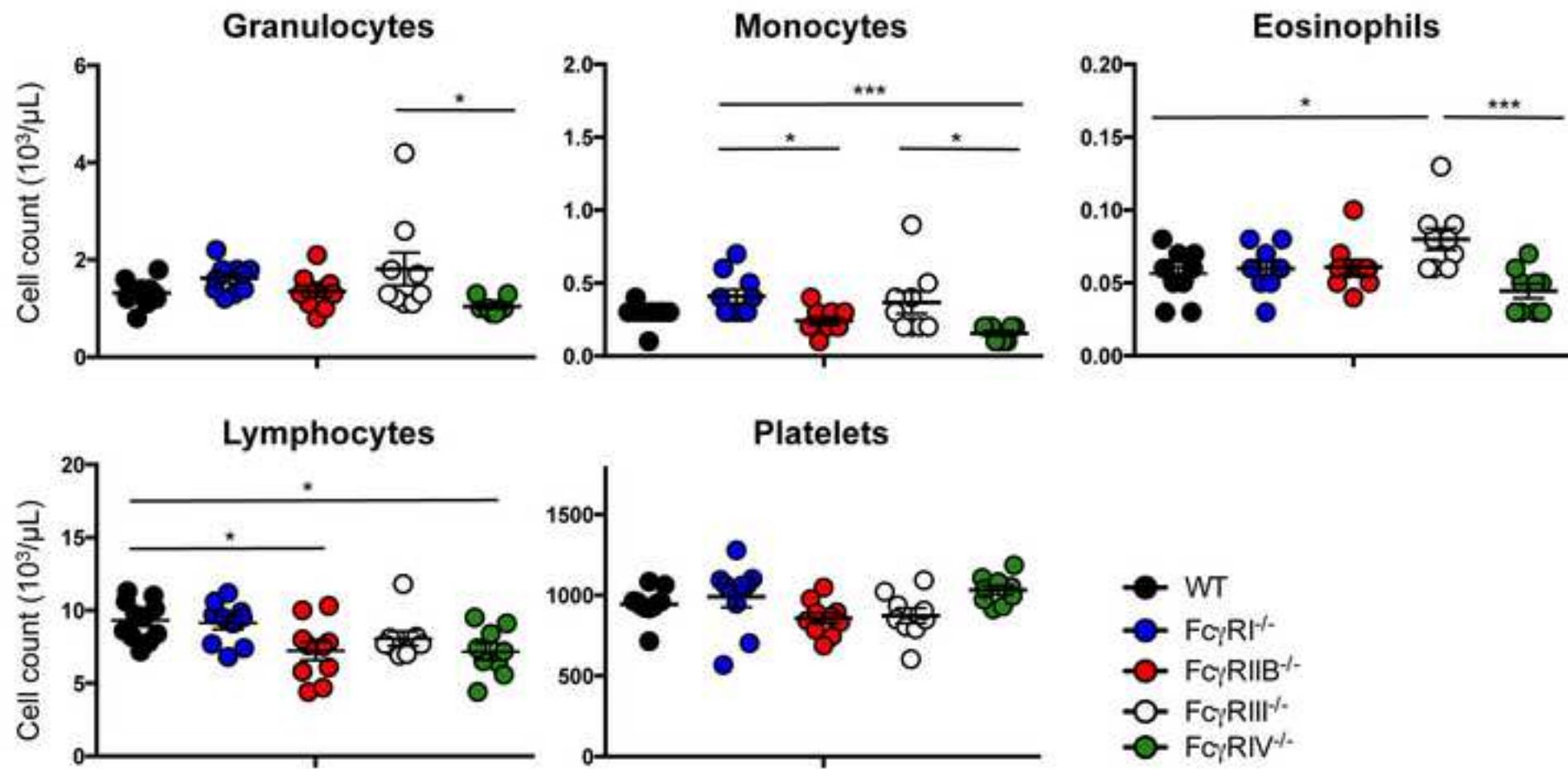

Figure No. 7



[Click here to download high resolution image](#)

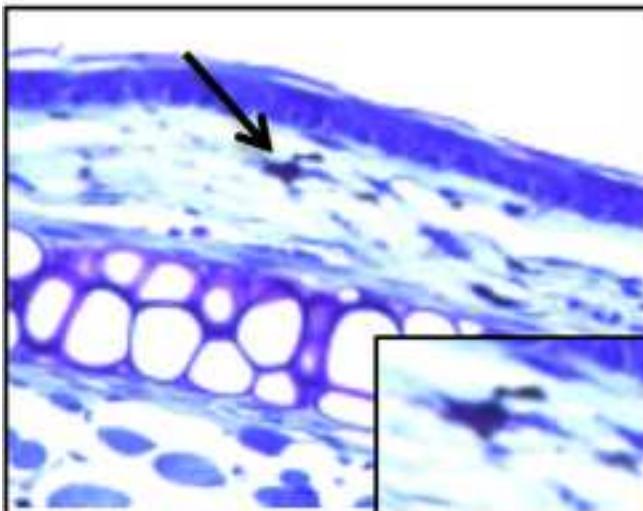
Tissues

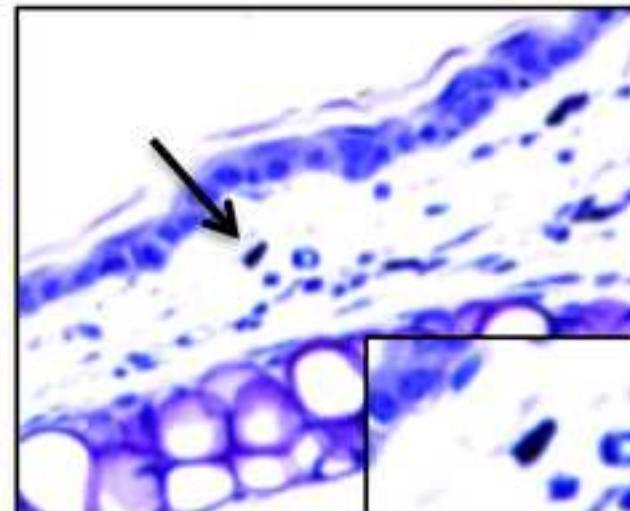


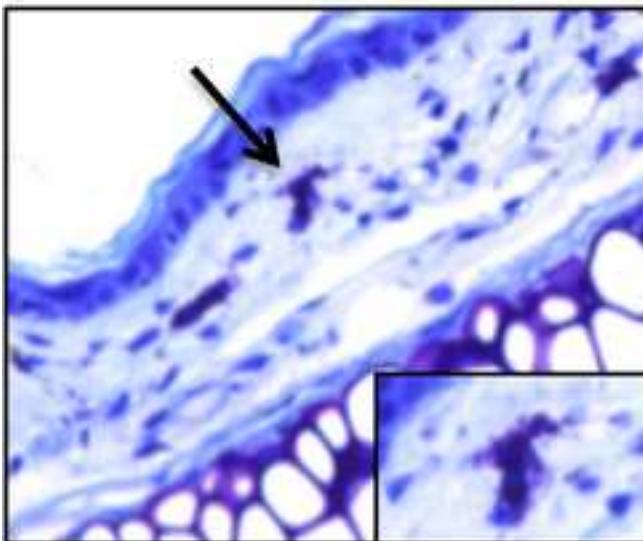


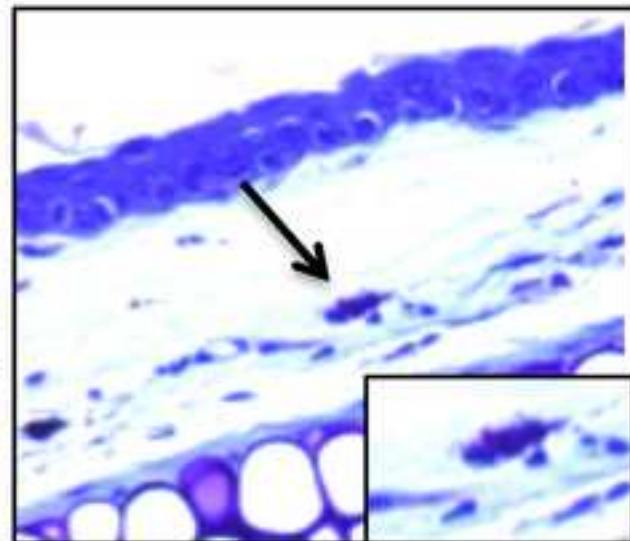
C

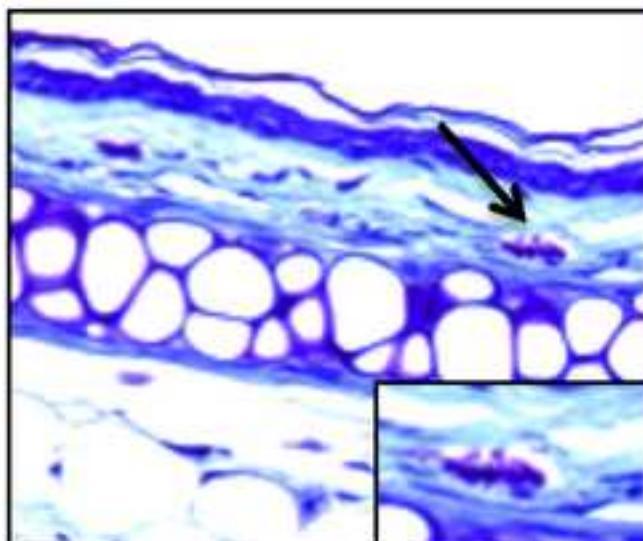

	$k_{on} (10^5 M^{-1}s^{-1})$	$k_{off} (10^{-4} s^{-1})$	$Kd (nM)$
TIB 191 (IgG1)	0.97 (± 0.29)	2.27 (± 0.32)	2.34 (± 0.33)
Hy1.2 (IgG2a)	1.43 (± 0.43)	1.08 (± 0.30)	0.76 (± 0.31)
GORK (IgG2b)	2.15 (± 0.65)	1.19 (± 0.24)	0.55 (± 0.20)

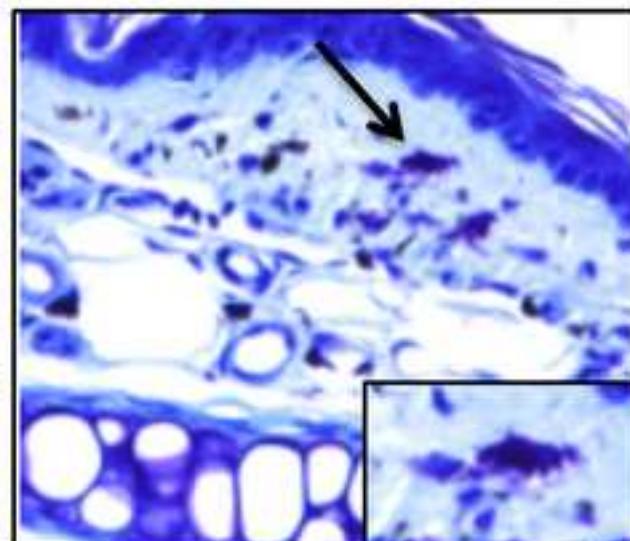
A IgG1-induced PSA in wt mice**B IgG2a-induced PSA in wt Balb/c mice**




Untreated


TNP-BSA


IgE-PSA


IgG1-PSA

IgG2a-PSA

IgG2b-PSA

