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Chapter 15

A Unified Approach to the Problems
of Semiconductor Laser Theory

M. J. Adams

15.1 INTRODUCTION

This chapter is concerned with some of the fundamental problems of semi-
conductor laser theory; more specifically, let us ask the questions:

(i) which problems remain to be solved?
(i) of the remainder, which solutions are the most appropriate for given situa-
tions?
(iii) how miuch influence on laser development have the theoretical solutions had?

A conventional starting-point would be to discuss the historical progress
of the laser from the early days of a low-power, high-threshold device re-
quiring pulsed operation and/or a low-temperature environment, to the current
situation of a wide variety of laser structures adapted for CW room-tempera-
ture operation, good mode control, ease of modulation, etc. A brief history
of theoretical topics should include (chronologically) the reasons for high
thresholds, the temperature dependence of threshold current, the role of
diclectric waveguiding, the problem of heat dissipation, the gain-current
relationship, transient behaviour (noise, resonance frequencies, ‘spiking’,
modulation, time delays, Q-switching), electromagnetic mode control, carrier
transport phenomena and many other topics.

However, rather than following along the lines suggested in the preceding
paragraph, I propose to take a more formal approach and discuss these topics
in an ordered way, as shown in Table 15.1. The table contains threce columns
headed respectively ‘electrons’, ‘photons’, and ‘phonons’, and five rows
labelled ‘x-direction’, ‘y-direction’, ‘z-direction’, ‘time’, and ‘encrgy’. The
object of this structure is to categorize each fundamental effect associated
with a particular set of quasi-particles by its spatial, temporal and spectraj
behaviour. Thus each available space in the Table contains an entry relating
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Table 15.1 Fundamental physical phenomena in semiconductor lasers

Phonons

Photons

Electrons

heat transfer from active layer to

waveguiding normal to the

carrier transport normal to the

x-direction (normal to the

heat sink

junction plane

junctions

junction plane)

heat diffusion associated with

waveguiding associated with

current spreading in the

y-direction (in the junction

stripe ‘architecture’

stripe ‘architecture’ (real or

virtual guidance)

junction plane

plane, parallcl to the

facets)
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(associated with stripe

*architecture”’)

longitudinal temperature

longitudinal field distribution

longitudinal carrier diffusion

z-direction (in the junction

variations, stimulated

Brillouin emission

and its influence on

plane, perpendicular to
the facets)

time

catastrophic degradation

transient heating effects,

modulation, ‘spiking’, noise

, NOISE

modulation, ‘spiking’

long time delays

effects in lasing output,
resonance, time delays,

Q-switching

effects in carrier currents,

resonance, time delays,

Q-switching

band structure efiects,

non-radiative recombination

spectral distribution

energy

associated with decreased

impurity bands

of emission, selection rules,

allowed transitions

efficiency, possible effects of

long-term degradation

.
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to one or more specific physical phenomena. In the next section some of
these phenomena will be discussed in more detail, whilst in Scction 15.3
some of the possible interactions between these effects will be explored. Finally
in Scction 15.4 the conclusions are summarized in the light of the threc ques-
tions poscd above.

15.2 THE FUNDAMENTAL PHYSICAL PHENOMENA

In this section the principal effects indicated in Table 15.1 will be dealt with
in the order suggested by each column. The basic laser structure and spatial
coordinates are indicated in Figure 15.1.

Stripe
‘architecture’

Epitaxial
layers

S ad y
Output ] z / ’

Figure 15.1 Schematic semiconductor laser structure and
coordinate system

15.2.1 Electron effects
15.2.1.1 Spatial: x-direction

The simplest assumption, especially in the case of a double heterostructure
laser with narrow active region, is that the carrier distributions are homo-
geneously distributed across the active layer. If this layer width is 2a, then
the rate of flow of carriers is simply given by j/(2ea), where j is the current
density and e is the electron charge. However, if a more detailed knowledge
of the carrier distributions is needed, then the charge transport equations
must be solved. Analytic solutions may be found only for situations of limited
applicability where approximations are made to the full set of transport
equations. Leaving aside the current controversy over the energy-band lineup
at an abrupt heterojunction (1) and the somewhat vexed question of just
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how ‘abrupt’ such an interface may be (2), the conventional approximations
to the transport equations may be listed as: i

(a) electron diffusion only (3-6),
(b) electron drift only (5),

(c) electron diffusion and drift (5),
(d) drift of electrons and holes (5).

In all cases these approximations ignore Poisson’s equation and assume either
constant or linear variation of electric field across the active region. Whilst
approximation (a) may apply to widely-spaced heterojunctions, cases (a)-(c)
are suitable for heavily-doped p-type active regions, and (d) applies to double
injection in a lightly-doped active layer.

Numerical solutions of the charge transport equations describing the distri-
bution of carriers in the x-direction (below threshold) have also been published
for both homojunction (7) and double heterostructure (8) lasers. The results
for the latter case would tend to indicate a uniform distribution of carriers
across the greater part of the active layer, with fairly steep gradients close
to each heterojunction. The possibility of carrier leakage into the adjacent
passive layers has also been considered (9, 10). Carrier degeneracy effects
may be included via the use of a generalized Einstein relation (11).

15.2.1.2 Spatial: y-direction

In Figure 15.1 the term stripe ‘architecture’ is used to indicate the structure
in the y-direction which gives current control and electromagnetic mode
confinement. The range of possible stripe configurations is now quite large,
e.g. oxide-insulated, proton-bombarded, shallow and decp diffused, buried
heterostructure, TJS, mesa, rib-guide, channelled-substrate, embedded stripe,
etc. rather than specify a particular structure, we are concerned here to merely
enumerate the carrier transport mechanisms of relevance and indicate the
cases where theoretical solutions may be found. Perhaps the simplest and
most general mechanism is that of lateral diffusion of electrons under a stripe
contact; in this case the carrier distribution n(y) is given by (12, 13):

2y 2
JLa [l —exp(—-—i)cosh( 4 )] for jy]<S (15.1a)

2eaD, L, L,
n
2 |
2jeI;;) Si“h(f )c"P(- Z ) for |y>S (15.1b)

where D, is the diffusion constant, L, the diffusion length, and 2§ is the
stripe width. More complicated situations will arise - for specific stripe

en

Problems of Semiconductor Laser T, heory 423

configurations, especially those involving doping control. The effects of cur-
rent spreading (14-19) and stimulated emission above threshold (13, 15, 17-20)
have also been analysed. The results would indicate that the effects of stim-
ulated emission are only important for wide stripes (25 > 15 um) (15, 19)
whilst for narrow stripes (2S5 ~ 10 um) the distribution of carriers in the
y-direction is largely determined by carrier diffusion and current spreading.
A refined theory of current flow has recently been published (21), together
with ‘pioneering measurements’ of the spatial variation of junction voltage.

15.2.1.3 Spatial: z-direction

Along the cavity length of the laser structure the conventional assumption
is that of a uniform distribution of carriers below threshold. At threshold
and above the distribution of carricrs is closely coupled to that of the photon
field, although longitudinal diffusion may be expected to oppose this effect
and attempt to restore a uniform carrier distribution (22).

15.2.1.4 Temporal

Below threshold the temporal evolution of the carrier populations is gov-
erned by (at most) two simple rate equations; the intrinsic time delay before
lasing commences is well known (23). Above threshold the interaction of
photons and carriers leads to a dynamic situation and a wide range of interest-
ing effects, the discussion of which will be postponed until Section 15.2.2.4.

15.2.1.5 Spectral

The electron energy states associated with lasing action may be those of
the parabolic bands, of isolated impurity levels (24), or more usually of im-
purity bands which may or may not merge with the bands (25, 26). In high-
purity material a number of states associated with excitons and many-body
effects at high excitation level may also be involved (27). A detailed knowi-
edge of the densities-of-states functions of the clectrons and holes involved
in lasing is essential for the calculation of recombination rates, gain-current
rc".lationships, emission spectra, etc. Further discussion of these effects is
given at the appropriate point in Section 15.2.2.

15.2.2 Photon effects
15.2.2.1 Spatial: x-direction

The epitaxial layers indicated on the schematic laser structure of Figure 15.1
}151xally provide a diclectric waveguide due to the variation of refractive index
in the x-direction (28). In order to describe this waveguide in the most gencral
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o terms it is convenient to eXpress its propertics in terms of normalized variables
(, 3 - ' (28, 29), the most important of which is the normalized frequency, v (29),
‘ & —_ - defined as:
fomd g :-’5 :‘:’ 2 _ (027': )2 2 2
N '5: é , < :S‘f Vi =\ (ri-nd) (15.2)
é j j'; ‘;l' § where a is the half-width of the guidc (i.e. active layer), 1 is the wavelength,
8 «Z ‘g’ /‘"T <2 3 n, is the refractive index of the active layer, and #, is the index of one adjacent
& .:.U /_7_:\/? 214 < E layer (see inset of Figure 15.2). If nj is the refractive index of the passive
B8 e '-i "f TR ‘2 S layer on the other side of the active region, then an asymmetry factor ¢’ may
315 SIECIE oA ¥ 8 2 also be defined (28, 29): .
EiSl 8  £4% % 3 CET
' k4 ' :i ﬁ:“ ‘ "T :_T_ ? : :f 2 ﬁ The parameters # and ¢’ defined in Equations 15.2 and 15.3 completely specify
g & S - g: - % S 2 T a given dielectric slab waveguide with homogeneous ‘core’. Numerical solu-
2 I X + X% g ’-g; 'é tions of the wave equation and associated boundary conditions can then
g & &~ — E ;, = yicld results for the propagation constants of_ the various modes. For the
- : I - 2 fo waveguide formed in a heterostructure laser, perhaps the most useful para-
":% o~ 'Tsll o - :?": °Z>) meter which can be found from such a calculation is the radiation confine-
= — - 'I . \.S-/ g 2 o ment factor, I’ (30), defined as the ratio of power confined in the core to the
e 22 B 3 £ T e total power. Table 15.2 gives results for the eigenvalue equation and con-
g E ‘? 7,": —-T ot ‘% '%’ finement factor for TE modes in the homogencous core waveguide (29, 31).
g Sl - X3 J "f 2 9 Figure 15.2 shows plots of I” versus o for various values of the asymmetry
g '.‘: = ot X oz g % factor ¢’ (mode TE,); I varies from zero at cut-off to unity at large values
; é E g A S/_\ 3 ee’" § ~ of # (corresponding to complete field confinement). The net gain per unit
§ % — /T—: SR P 2 g s length (G) of a guided mode may be expressed in terms of the gain g in the
§ gl P T O L € £ 5 active core layer and the loss « associated with the passive claddings as:
] A E R R DY k- S SR i 1 - Bt
/ AHEE i st B RSt T ¢ -slall=D) (59
” ol 2 A s T 5 % § o5 P This equation may be used to compute the threshold for lasing when G is
b4 i . 8§ e g S Just equal to the end-loss from the cavity facets.
:§ £ vEla T % £ e 8 g 3 ] £ A refinement of the simple three-layer slab waveguide structure has been
g = ! -’?“ % I .“II x B E ;é the development of multilayer lasers (LGR (32, 33), SCH (34), SCHDFB
% SN ‘;/’ ;8 E :—;E‘: (35, 36), leaky wave (37)) with separate optical and carrier confinement.
. I o9 ° 1 T-Ex BeoS A symmetric five-layer structure is shown schematically in the inset of Figure
et 2% At § ; E-‘% 15.3; the diclectric variation &(x) is given by:
© o o2 < '—\“—_ = ni  for |x]<a
% 2 -? E 'E . S LSE e(x) = { n? for a<|x|<d (15.5)
<A @ n N

n3 for d < |x|
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Figuré 15.2 Radiation confinement factor I" versus normalizc.d

frequency v for the lowest-order TEq mode of t!le asymmetric

slab waveguide with homogencous core; labelling parametf:r

gives the value of the asymmetry factor ¢’ defined in
Equation 15.3

1 2
oy '
Figure 15.3 I versus v for the TEo mode of the ﬁve-layc.:r symmefnc
slab waveguide (sce inset) with r = 1/3 (dcfincd as lI:l Equation
15.6). Labelling parameter gives the value: o.f the ratio 'dl{a (:ei
Equation 15.5). Broken line shows the variation of I" wit v fo

the equivalent three-layer slab (d/a = 1)
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To analyse this structure it is convenient to retain the definition of v as in
Equation 15.2, but to introduce a new measure of the asymmetry, defined as:
ni—n2

r= n—%:;‘zz’ (15.6)
The parameters v, r and the ratio dla are sufficient to-completely specify
a symmetric five-layer waveguide structure. Results for the eigenvalue equa-
tion for TE modes and the confinement factor (for even-order modes only)
are given in Table 15.2. Plots of I" versus v for r = 1/3 and dfa = 2, 4, and 8
are given in Figure 15.3 (solid lines). The broken line gives the variation of
1" for the equivalent three-layer slab (d/a = 1). For small o the values of I”
obtained with the five-layer structure are larger than those for the equivalent
three-layer slab. Since at threshold the value of gain, g, is inversely dependent
on I' (cf. Equation 15.4), the result is a lower threshold for the SCH laser
as compared with the equivalent DH device. Although the effect, as shown
in Figure 15.3, is small, it is suflicient to produce worthwhile improvements;
it may be augmented in practice by a superlinear gain-current relationship (32).

15.2.2.2 Spatial: y-direction

It was already noted in Section 15.2.1.2. that the stripe ‘architecture’ of
Figure 15.1 would provide some degree of electromagnetic field confinement
in the y-direction. In general there will be a complex dielectric waveguide,
including variations of gain and loss as well as the refractive index, with
a dielectric profile whose distribution in the y-direction depends on the details
of the laser structure, drive current, ctc. From a theoretical point of view
therefore it is appropriate here to review the forms of dielectric profile for
which solutions are known without the necessity of recourse to approxima-
tions or numerical techniques. For the case of real dielectric guides the sym-
metric profiles whose solutions are easily accessible are listed in Table 15.3;
they are the step-index, linear, extended and cladded parabolic, exponential,
and sech-squared waveguides. The assumption of symmetry in the y-direction
seems well-founded, although it may sometimes be nccessary also to consider
some forms of asymmetry (38). Of the profiles listed in Table 15.3, only the
step-index (39, 40), extended-parabolic (41, 42), and sech-squared (43-45) are
applicable for the complex waveguide without the nccessity of extensive
computation.

As for the case of guidance in the X-direction (scc 15.2.2.1 above) the
Wwaveguide parameter of greatest relevance to laser calculations is the con-
finement factor 1. Since most of the newer laser structures arc concerncd
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(i) b is a normalized propagation constant:

(i—i) Ai, Bi are Airy functions (58).
(iii) J denotes the Bessel function of the first kind (58).-
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with the achievement of built-in refractive index guides in the p-direction,
I' is a meaningful parameter and Equation 15.4 for the nect gain G remains
valid for cases of uniform gain g and loss a in the y-direction. For the sym-
metric graded-index real guides listed in Table 15.3 we will review the methods
of calculating I" and give results in the case of the lowest-order TE mode
for the purpose of comparison with the results of the symmetric uniform-
core (step-index) guide (case ¢’ = 0 of Table 15.2 and Figure 15.2). Note
that the definition of v remains as in (15.2) with stripe width 2§ replacing
layer thickness 2a.

(a) Linear: In this case I" may be evaluated directly in terms of the Airy
functions and their derivatives, making use of a special property of these
functions (57). The results are plotted in Figure 15.4; for values of v
below about 2.5, I' is slightly below the corresponding curve for the
step-index profile (broken line).

1 [ . —
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r
5} /
/
At /
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.
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)
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Figure 15.4 I versus v for the TE, mode of the symmetric
linear profile (see inset); broken line gives the variation of I"
with v for the equivalent step-index guide

(b) Extended-parabolic: Computation of I" for this profile is a straightforward

integration over the Hermite-Gaussian field distributions. However,
since this profile does not include the effects close to mode cut-off where
the cladding layers would in practice provide a strong perturbation, no
further results will be given here. Further results and a detailed critique
of this profile as a lascr waveguide mode!l will be found in a reccent
publication (49).
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" (¢) Cladded-parabolic: It is felt that this profile represents a more appropriate
laser waveguide model than that of (b). Results using a series solution
have been calculated here, although a number of possible other methods
of analysis are available (see Reference 49 for a review). Plots of I’
versus v are given in Figure 15.5; for values of v below about 1.5, the
graph lies just below that for the equivalent step-index guide (broken

line).
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Figure 15.5 I’ versus v for the TE, mode of the symmetric
cladded-parabolic profile (see insct); broken line gives the
variation of I" with v for the equivalent step-index guide

(d) Exponential: For this case I' may be found as an integral over Bessel
functions, which may be evaluated in terms of a series of Besscl func-
tions (58). The results are given in Figure 15.6; once again the curve
lies below the corresponding step-index result for a considerable range
of v.

(¢) Sech-squared: Although the field distributions take a reliability simple
form for this profile, it is necessary to evaluate /" by numerical integra-
tion. The results are shown in Figure 15.7 and again they lic just below
those for the equivalent step-index curve for v less than about 3.

In view of the current interest in new laser structures for achieving good
ranges of single-mode operation and ‘kink’-free light-current curves, a further
quantity of relevance is the value of v corresponding to cut-off of the first-
order mode. The results for this quantity are given in Table 15.3 in the column

—

La

0

N w8 o
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Figure 15.6 I versus v for the TE, mode of the symmectric
exponential profile (see insct); broken line gives the variation

of I" with v for the equivalent step-index guide
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Figure 15.7 I versus v for the TE, mode of the scch-squared
profile (see inset); broken line gives the variation of I” with v

for the.equivalent step-index guide
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headed ‘v.,’; from the Table the highest value of v., IS scen to occur for
- the lincar profile. A high value of ¥y is potentially advantageous in that
a low value is diflicult to achicve in practice, since very small valucs of cither
waveguide width or refractive index difference present technological problems,
Note that although the results of Table 15.3 and Figures 15.4-15.7 werc
calculated for TE modes, there is approximate TE/TM degeneracy for suffi-
ciently small values of the relative index difference A (28, 29). Finally, it
should be emphasized that the results presented in this sub-section are for
real dielectric waveguides and hence apply to injection lasers only in situations
where the real waveguiding effect dominates over gain-guiding. Examples of
such situations include the recent structures intended to yield linear output
characteristics, such as the buried heterostructure (59), channelled substrate
(60, 61), deep-diffused (62), and double stripe lasers (63). Discussion of the
gain-guiding situation will be postponed until Section 15.3 below.

15.2.2.3 Spatial: z-direction_

We will deal here with the description of the longitudinal photon field
distributions in semiconductor lasers. Into this category falls also the subject
of distributed-feedback (DFB) and distributed-Bragg-reflector (DBR) Iasers,
but these will not be discussed here: for an overview of these and related
subjects the reader is referred to a recent review article (64).

At threshold and above the longitudinal photon field distribution N2 is
composed of forward and backward travelling waves which may be summed
to give a variation of the form (65, 66):

N(2)

o)
where G is the (uniform) net gain per unit length (as in Equation 15.4 for
the case of uniform gain transverse to the guide) and the origin of the z-axis
is taken at the minimum of the field distribution. At threshold the value of
G is conventionally given by the lasing threshold condition:

1 1

= cosh(zG) : (15.7)

where L is the cavity length and R,, R, are the facet reflectivitics. For a
GaAs/air interface the reflectivities R, and R, are approximately 0.32, so
that the maximum variation of longitudinal ficld distribution is given from
(15.7) and (15.8) as N(L/2)/N(0) = 1.17. This variation is frequently neglected
in calculations of laser propertics; for lower values of R,, R,, as for example

s B4 ¢
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in the case of anti-reflective coatings, the longitudinal variation of photon
ficld distribution becomes more accentuated. Under these circumstances, since
the clectron and photon distributions are coupled, the electron distribution
and hence the gain will no longer be uniform in the z-direction and more
complicated interactions may occur (67, 68). A further discussion of these
phenomena will be presented at the appropriate point in Section 15.3.

There is another source of non-uniform photon distribution in the z-direc-
tion: the standing wave structure of the field along the laser cavity (22). The
length L of the cavity must be equal to an integer number of half-wavelengths.
Since the longitudinal gain distribution is intimately coupled to the photon
distribution, this results in a periodic variation of the gain along the cavity.
This effect has recently become the basis of a theory concerning the reasons
for multi-longitudinal-mode operation of injection lasers (69, 70). According
to this theory, the non-uniform gain distribution permits other longitudinal
modes to lase, provided that the carriers do not diffuse fast enough to smooth
out the non-uniformity. Hence laser structures with lightly-doped active
regions where both electrons and holes are injected (see Section 15.2.1.1
above) will tend to exhibit multimode oscillations since the ambipolar diffusion
constant will be dominated by the slow diffusion of the hole concentration,
On the other hand, structures with electron injection into heavily-doped active
regions will tend to oscillate in fewer modes, since the electron diffusion
constant is relatively large. Experimental observations on heavily-doped con-
ventional double-heterostructures (70) and on TJS lasers (71) tend to support
this explanation and yield single longitudinal mode operation over large
ranges of drive current.

15.2.2.4 Temporal

. To discuss the transient properties of injection lasers above threshold it is
necessary to include the interaction of the photon field with the electron
concentration n. In keeping with the spirit of our categorization of fundamental
effects in Table 15.1, for the remainder of this sub-section the photon and
electron distributions will be assumed spatially uniform. With this assump-
tion, the rate equations describing multimode laser operation become (72-74):

dn J R, c

e et (139)
izl

dN (5141 1

Y (.7“___1’_)N,+ﬂ,R,, (15.10)
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where M is the number of modes, Ny, g;, 7; and B; are réspectively the photon
density, gain, cavity lifetime and spontaneous emission factor of the ith mode,
c is the speed of light, R, is the total spontaneous emission rate, 7 is the
internal quantum efficiency, and the other symbols have been dcfined pre-
viously. Note the distinction between the electron concentration  and the ref-
ractive index n; in the equations. The effects of non-uniform spatial distri-
butions of n and N, together with the appropriately modified versions of
Equations 15.9 and 15.10 will be discussed in Section 15.3.

To proceed further with the solution of the rate Equations 15.9 and 15.10
it is necessary to find explicit expressions for the spontaneous emission rate
R,, and the gain g; in terms of the electron concentration n. The calculation
of such expressions falls within the topics to be covered in Section 15.2.2.5.
However, the conventional approximation of an electron lifetime 7, to describe
the rate R,,, and a phenomenological model for g, e.g. as a power-law
dependence on n (75) permit the general form of the solutions to (15.9) and
(15.10) to be explored. The existence of at least two time constants 7, and
T; gives rise to characteristic resonance frequencies associated with the sol-
utions. For the case of single-mode oscillation (M = 1) a small-signal analysis
yields for the resonance angular frequency w, (75): -

wt =" (-,L—l) s
TaTyL \Jin

where / is the index in the power-law expression for g: and j;, is the threshold
current density. The resonance frequency manifests itself in transient “spiking’
and quantum noise effects and also plays a key role in the understanding of
high-frequency modulation of injection lasers. Under conditions of large-
signal modulation the resonance shifts to lower frequencies (76-78) than
given by the simple expression 15.11. At the same time the modulation
efficiency decreases and a strong distortion of the modulated output may
occur; these effects are confirmed experimentally (79).

The fraction of spontaneous emission into a lasing mode, denoted by B in
Equation 15.10, has an important influence on the relaxation oscillations and
‘ringing’ effect in laser modulation (73, 74, 79-84). Large values of §; (10-3-
10~2), implying a large number of oscillating modes, would tend to damp
the relaxation oscillations evoked in response to a step current pulse (80-83);
they would also reduce the relative modulation amplitude at the resonance
frequency w, (74, 81). In practice, experiments on stripe-geometry double-

heterostructures have resulted in measured values of f; in the range 10~5-

5x10™* (74, 82), although there are also reports of B: as high as 1073-10-2
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(85, 86). A recent theoretical calculation of B: (84) gave values around 10-3
for conventional GaAs laser parameters, and for the case of non-untform
photon distributions showed a linear dependence of 8; on the product of
radiation confinement factors I, I, (84, 79) defined for the x and y-direc-
tions as in Subsections 15.2.2.1 and 15.2.2.2. B is also found to be inverscly-
dependent on the volume of the active region, which may be a reason for the
large B; values, suppression of relaxation oscillations, and absence of resonance
peaks in modulation characteristics of buried-hcterostructure lasers (85).

The laser rate equations (15.9) and (15.10) have been used to study pattern
effects in PCM of injection lasers. Pattern effects occur as a result (i) of the
intrinsic time delay (23), (ii) of the values of electron population n and photon
density N; immediately before the application of a pulse (87), and (iii) the
relaxation oscillations alrcady discussed. Based on the theoretical analyscs,
suggestions for suppressing the pattern effects have been made; these include
the use of compensation pulses (88), pre-biasing (89), pulse-shaping (90, 91),
light injection (92-95), optical feedback (92), and resonant circuits (96). In
all these cases the appropriate formulation of the rate equations including
the spontaneous emission term in (15.10) is essential in order to permit
accurate tracking of the electron and photon populations. In almost all cases.
however, the assumption is made that all properties of the lasing modes are
identical, so that the sum over modes in (15.9) can be replaced by the multi-
plicative constant M. A useful review of theoretical and experimental progress
in the area of transient laser behaviour will be found in reference
(79).

If Langevin noise operators are included in the rate equations 15.9 and
15.10 (97), then a detailed theory of the quantum noise in semiconductor
lasers may be developed (98, 99). One important prediction of the theory is
that the relative intensity noise should exhibit a maximum close to threshold
and should decrease with increasing current above threshold. Experimental
measurements by Paoli (100, 101) showed this stabilization in some lasers
at low frequencies (< 100 MHz) but not at higher frequencies (> 2 GHz).
This anomalous behaviour was tentatively attributed to long thermalization
times so that the electron population could not respond quickly to the fluctuat-
ing photon density to provide quieting. However, the noise measurements of
other authors (102-104) are in reasonable agreement with the theoretical
predictions on this point. Further cvidence of a lack of low-frequency noise
stabilization above threshold has also been reported (105) and interpreted on
the basis of spatially inhomogencous gain saturation ; the theoretical treat-
ment of this problem will be discussed further in Section 15.3.
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Recently, several authors (104, 106, 107) have published numerical solutions
of the multimode rate equations including the Langevin noisc terms, and have
compared these results with the single-mode solutions. In general, the multi-
mode case shows weaker intensity fluctuations than the singlc-mode situation
for frequencies below resonance, the extent of the difference depending on
the number of modes excited; near the resonance frequency the difference
diminishes. For these calculations the properties of the modes are usually
assumed identical; good qualitative agreement with experimental results has
been achieved (104, 106, 107). A. further development has been the extension
of the theory to include the noise sources in the time-dependent equations
when applied to direct modulation (108). The principal results is a shift of
the noise peak to higher currents for increased modulation frequencies (shorter
current pulse-widths), in general agreement with the experimentally-observed
situation (108).

15.2.2.5 Spectral

In this subsection we will discuss the calculation of the spontaneous emission
rate R, and the gain g as explicit functions of electron concentration n and,
in the case of g, of photon energy E, for use in the rate equations 15.9 and
15.10. In the most general form, the expressions for these quantities are as
follows (7, 72):

Ry =\ r(E)AE (15.12)

n2clh3 _ ‘

8(E) =~z gz "u(E) | (15.13)

where o
E—F+F : ‘
ra(E) = r,,(E)[l—exp(——-K%—i’—)] : (15.14)
4n, 2 E|M;,(E)I2,
ryp(E) = L Vm’h’;& QIJ(E)ﬁ(] —f1) Ok,~k,.E (15.15)

nLJ

In these expressions, & is Planck’s constant over 27, K is Boltzmann’s constant,
T is the absolute temperature, »1 is the electron mass, Fyand Fj are quasi-Fermi
levels associated with sets of energy states denoted by i and j, f; and f; are
the Fermi-Dirac distribution functions associated with specific states / and J
(I €i,J €j) of cnergies E, and Ej, p;,(E) is the density of encrgy states con-
tributing to emission of a photon of encrgy E, |M;;(E)Ii, is the square of the
momentum matrix element for the /-J transition suitably arranged over
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polarization and dircctions of the photon wave vector, V is the volume of
the active region, and the rest of the symbols are as defined earlier.

The principal task in the evaluation of Equations 15.12-15.15 is to find
suitable relations for the matrix element A, and the density-of-states func-
tion g, for the transition of interest. The early history of calculations of this
sort will be found in References 7 and 72. More recently, a rather compre-
hensive calculation has been presented by Cascy and Stern (109) and applied
to steady-state laser problems by Stern (110). This approach used the model
of no k-selection rule for transitions between conduction and valence bands
and their associated impurity band tails. The assumption of no k-selection
rule is now fairly well-established and has found convincing experimental
support (111). The density-of-states function g,; thus becomes proportional
to the product of density-of-states functions for each set of states i and j.
The Casey-Stern model uses a density-of-states of the Kane form (25) to
interpolate between the parabolic portions of the bands and the deep im-
purity tail states as described by the Halperin-Lax results (26). The optical
matrix element M;, is calculated using empirically-determined wave func-
tions which correctly reproduce the Bloch-like behaviour for states in the
parabolic bands whilst reducing to the hydrogenic form for the localized
states (24). For p-type GaAs these calculations give good agreement with
experimental absorption data (109); the results are also in close accord with

. those from experimental studies of the spectral dependence of gain in hetero-

structure lasers (33, 112). A significant feature of Stern’s results (110) is the
confirmation that R,, = Bnp where B is reasonably independent of concentra-
tion at room-temperature and takes the value ~ 2x10-'° cm3s~! for
GaAs.

Whilst the sophistication of this recent theoretical analysis (109, 110)
provides excellent detail for the spectral and current dependence of the gain
function in a uniform, steady-state laser model, it is also useful to have
available approximate results for these quantities in order to use them in
more complicated laser models allowing for non-uniformity, transience, etc.
For these purposes it is, of course, possible to fit simple algebraic expressions
to the numerical results for the quantities of interest. For example, the con-
centration dependence of gain g may be approximated by a simple power-law
(75,79, 95) as described in Section 15.2.2.4. Similarly, since the spectral
dependence of g is only of interest in the region of its maximum, this may be
modeclled by a simple parabolic variation with encrgy E (20). Alternatively
one may usc approximations based on models of the transitions, dcnsities-
of-states, and matrix clements involved. On¢ such approximation, based
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loosely on the exponential band-tail model (72, 99) yields the formula
o) (5] o
4 - exp( E, ! ne E,

where Eg is the band-gap, and E,, ny and g, may be choser.x to fit available
results for g(E, n), which may be theoretical (110) or experimental (111). It
follows from Equation 15.16 that the gain maximum occurs at photon energy

E., given by

En—Es _ ]n(_n_)._l (15.17)
E, no
when the value of g is
Em _ T exp(~1) (15.18)
8o
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.Figure 15.8 Gain g versus nominal current density Juom (7, 110) and photon

energy E from the simple model represented in Equation 15.16; parameters
used were Ep = 10 meV, Jo = 4x 10* Afcm? um, go = 2800 cm™!,; Eg = 1.424 eV
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If n is expressed in terms of Stern’s nominal current density J,om (7, 110)
(Jnom = 1.6 x107#3Bnp = 1.6 x 10~ 23/7,), then Equations 15.16-15.18 may be
rewritten in terms of J,,, and an adjustable parameter Jo. Some results are
given in Figure 15.8 in the form of a three-dimensional plot showing g as
a function of E and J,,,. It should be emphasized that the simple model
represented here cannot be expected to reproduce all the subtleties of more

. detailed numerical treatments (109, 110) but may be usefully applied in
problems where the complications of non-uniformity and transient develop-.

ment are of interest. In this respect the model reasonably represents the main
physical effects associated with the concentration and spectral dependencies
of the gain.

15.2.3 Phonon effects

15.2.3.1 Spatial: x-direction

A primary source of heat in the semiconductor lascr structure is non-
radiative recombination occurring in the active region. Near threshold the
power dissipated as heat at the junction is given approximately by (j¥,2SL)
where j is the current density, ¥, is the applied voltage, 25 is the stripe width,
and L is the laser length. In this expression the radiative output has been
ignored and all electrical input power assumed converted to heat; other heat
sources such as contact resistance, distributed bulk resistance, self-absorbed
spontancous emission, etc. have been neglected. If it is assumed that heat
production is limited to a plane at the centre of the active layer and then
flows in the x-direction to the heat-sink, then a simple one-dimensional sol-
ution of the heat-flow equation will describe the situation (113, 114). Such
a model applied to oxide-insulated stripes (113), buried heterostructures (59)
and mesa-structures, where heat flow in the y-direction may be neglected.
The resulting temperature distribution through the layers from the active
region to the heat-sink is amenable to comparison with experimental measure-
ments (115, 116); in addition the model may be used to calculate the CW
lasing range for given laser parameters (113, 114). The temperature gradicnt
across many epitaxial layers with different thermal expansion coefficients may
lead to a strain distribution (1 17) which may play a role in the initial degrada-
tion behaviour of lasers (118).

15.2.3.2  Spatial: y-direction

For structures other than those listed in the previous subsection, heat flow
in the y-direction cannot be ignored. In these cases the Laplace equation for
two-dimensional heat flow from a planar source situated in the active layer

s
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is to be solved. The most gencral solutions take the form of Fourier trans-
forms for a laser model assumed infinitely wide (119), and Fourier scries for
a model of finite width (120). The result is a temperature profile across the
active arca in the y-direction with a variation of typically a few degrees be-
tween the centre and edge of the stripe (120). Since the refractive index n(y)
of the active layer increases with temperature at the rate of 5x 1074K~! (42),
such a temperature profile may give rise to a corresponding refractive index
profile with a positive guidance effect in the y-direction.

15.2.3.3 Spatial: z-direction

In the z-direction the conventional assumption is that the thermal distribu-
tion is uniform; the longitudinal expansion of a laser calculated on this basis
agrees qualitatively with the result of measurements by an interferometric
technique (115). '

Another effect which falls into this category is a possible explanation of
catastrophic degradation in high-power lasers. This is the excitation of acoustic

waves by the optical radiation in the laser cavity (stimulated Brillouin emission)

(121); according to this theory the acoustic phonons travel along the laser
beam and cause damage (‘burn-off”) at the facets as a consequence of the
weaker mechanical properties of the surfaces. However, it should also be
noted that an alternative mechanism has been postulated to account for facet
damage and catastrophic degradation, viz. optical absorption at inhomo-
geneities near the facet resulting in thermal runaway or a ‘micro-explosion’

(122).

15.2.3.4 Temporal

For pulsed operation with relatively short pulses (~ 100 ns) the effects of
heat diffusion away from the active region may be ignored and the heating
may be assumed adiabatic. For this situation, the temperature rise AT of the
active region in time ¢ is given simply by (123):

AT=—1Y%~S—I:—-I N } (15.19)

where ¢ is the density, C the specific heat, and a the half-width of the active
layer. For longer pulse widths it may be necessary to include thermal diffusion
and find solutions to the time-dependent cquation for heat condustion (123,
124). An associated phenomenon which has been reported is the existence of
longitudinal and flexural vibrations attributed to shock heating and thermal
expansion of the laser (117).
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It is perhaps worth noting also in this sub-section that the combination of
'Equation 15.19 together with the thermal coefficient of refractive index noted
in 15.2.3.2 leads to a mechanism for transient evolution of the refractive
index of the active region. When this effect is considered in the context of
a single-heterostructure laser where the guidance is very weak on the n-side
then it implics a time-dependent waveguide which may vary from below tc;
above cut-off for the fundamental mode within the course of a current pulse
Such a mechanism has been invoked to account for long time delays and.
internal Q-switching in single heterostructure lasers (125); this latter model]
is to be contrasted with the other principal explanation of these plienomena
viz. that involving saturable absorption as the time-dependent ‘driving force:
leading to loss of optical confinement (126).

15.2.3.5 Spectral

I:‘ina!ly in this section we should include the fundamental features of phonon
emxs§ion viewed as a non-radiative recombination route, i.e. as a mechanism
ca}Jsu-lg reduced quantum efliciency 7 (as defined in Equation 15.9). The
principal non-radiative mechanisms of this kind in laser materials are multi-
phonon emission (127) and the Auger effect (128). Confining attention here
to the. former effect, a recent calculation (127) based on the configurational
coordinate theory and applied to deep levels in GaAs yields values for the
capture cross sections which may be as large as 10-14-10-15 ¢ 2. experimental
values also fall in this region 127). ’ ‘

15.3 SOME INTERACTIVE EFFECTS

In discussing the fundamental physical phenomena of Table 15.] it has
already been necessary to include some limited interaction between el,ectrons
photons and phonons in order to give the description some validity. If wé
werf: to adopt a purely didactic approach it would now be possible to consider
al'l Interactive effects from the Table: 105 pairs, 455 triplets, etc.! However
within the limits of current or conceivable applications we are confined tc;
rather fewer combinations. Since any limited choice must be largely determined

by pcr.sonal preference, I make no apology for restricting attention to the
following four effects only.

15.3.1 Threshold calculations in symmetric double heterostructures

This simplc example illustrates well the interactive nature characterizing the
eﬂ'r‘:cls‘mcludcd in this scction. The calculations of 15.2.2.1 provide the wave-
guide information, 15.2.2.4 the (steady-state) rate equations, and 15.2.2.5 the
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gain-current relationship. For fundamental mode threshold, Equations 15.4
15.8 and 15.18 provide the constitutive relations; if we include also the ex:
pression for the flow of carriers given in 15.2.1.1, then the threshold current
density j,, is given by (in normalized variables):

o 1)1 1 1

where A is a constant and the other symbols are as defined previously

I

Figure 15.9 Threshold parameters o/I" and v(1/T=1)
for the TE; mode of the three-layer slab waveguide
plotted as functions of v

' From the form of Equation 15.20 it is clear that all the waveguide information
is contained in the normalized factors »//" and v(1/I'—1). Plots of these quanti-
ties versus v for the TE, mode of the symmetric three-layer slab waveguide
(¢’ = O of Subsection 15.2.2.1) are given in Figure 15.9. Note that although
_Eq.uatlon 15.20 was derived for the simple gain-current relationship of (15.18)

1t is a trivial extension to include the more general case g,,oc (n—n’) (12, 112;
w.hcrc n’ represents a carrier density necessary for cavity transparency. Hence
I-jxgurc 15.9 may be said to contain all the necessary information for calcula-
t!ons 'of threshold current density when it is used in conjunction with an equa-
tion .hkc 15.20. Whilst such calculations have already been presented in some
detail for GaAs/GaAlAs lasers (30, 112, 129), the novelty of the present
approach lies in the use of normalized variables, so that the results are casily
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applied to new laser materials, e.g. those intended for use in optical com-
munication systems at longer wavelengths where the absorption and dis-
persion properties of optical fibres are greatly improved (130). With reference
to possible optimization of such materials it is also worth noting that for the
simplest case where (15.20) applies and end-loss dominates strongly over «,
the optimum 9-value is given by the minimum of v/{” on Figure 159 as

= 0.71 (131). For the conventional GaAs/GaAlAs double heterostructure
with 2, = 3.6 and n, = 3.4 this corresponds to an optimum active layer
width of about 0.17 pm; when refractive index values of the newer laser
materials become available, similar predictions of optimum layer thicknesses
can be made. For example, for InGaAsP lasers grown on InP substrates
(132), using measurcd InP refractive index data (133) and estimating the
InGaAsP values from the effective band-gap shift (134), operation at
A~ 1.3 pm would imply an optimized active layer thickness of about 0.3 um.

15.3.2 Guidance in stripe gcometry lasers

Some discussion of this topic has already becn given in Subsection 15.2.2.2
together with some considerations of real built-in guides; in addition, Sub-
section 15.2.3.2 included one mechanism for guidance under a conventional
stripe contact, viz. a thermally-induced refractive index profile. However,
there are also changes of real and imaginary parts of the dielectric permittivity
associated with the injection of carriers underneath a stripe contact. Increased
carrier density leads to an increase of gain (cf. Equation 15.18) and to a de-
crease of the refractive index (134, 135); in each case, to a first approxima-
tion, the variation is linear with electron density. Bearing in mind the remarks
in 15.2.2.2 concerning dielectric profiles for which analytic solutions are
available, it is therefore feasible to fit the electron distribution under the
stripe to a profile whose modal solutions are well known. Figure 15.10 shows
two such possible profiles—the extended-parabolic and sech-squared laws—
which have been fitted to the electron distribution described by Equation 15.1.
The parabolic profile was fitted to the small-signal expansion of (15.1) around
y = 0 (19), whilst the sech-squared profile was matched to Equation 15.1 at
y = +S; other methods of determining the appropriate fitting process have
also been discussed in the literature (13, 38, 45). In view of Figure 15.10
and the remarks on the extended-parabolic profile in 15.2.2.2, it is clear that
this distribution, although widely used in the literature (13, 19, 38, 41, 42,
136) is applicable only to modes well above cut-off which arc largely con-
fined to the central region under the stripe. The scch-squared profile, on the
other hand, may be applicable for modes over a wide range, including closc

-y
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to cut-off, and it is understood that an appropriate analysis is currently in
progress (137). '

Once a suitable model has been established for the dielectric distribution
in the y-direction, this must be combined with the refractive index change

/S

Figure 15.10 Carrier distributions under a stripe contact: dotted

line—Equation 15.1 normalized to unity at y = 0, with S/L, = 1;

solid line—sech? profile, matched at y = +5; dashed line—para-

bolic approximation, fitted to small-signal cxpansion of (15.1)
near y = 0

in the x-direction in order to find solutions to the wave equation in two
dimensions. The most frequently used approximation for dealing with this
problem is the effective dielectric permittivity method (138). The technique
consists of replacing the actual two-dimensional dielectric distribution by an
cffective one-dimensional profile (19, 61, 135, 136, 138, 139), the solutions
of which are usually fairly simple to obtain. For the stripe-geometry double
heterostructure the guidance in the x-direction is usually much stronger than
that in the y-direction where the dielectric profile is relatively slowly-varying.
Hence the solution for the x-direction is usually obtained first (as discussed
in Scction 15.2.2.1) and then assumed to have a weak y-dependence; an
effective dielectric permittivity may then be defined for the y-direction which
incorporates the x-direction solutions. If the active and passive layer diclectric
permittivities are denoted by £,(y) and £:(»), respectively, then the effective
permittivity is given by (140)

eere(y) = be, 0N+ =b)e:(y) (152D
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where b is a (weakly y-dependent) normalized propagation constant (29)
found from the x-dircction field solutions as

y = (Bl =620

‘£ (¥)—£2()

and # is the longitudinal propagation constant. Solutions of the one-
dimensional wave equation with permittivity given by (15.21) may then be
used to calculate the net gain G of the laser. Allowing for the y-dependence of
the gain of the active layer, g(»), and the loss of the passive layers, «(3), the
analogous equation to 15.4 becomes:

_ 280Ny [ aD)IPO)dy
{20 [2O)IPdy e 120)1%dy
where I is the confinement factor for the x-direction guide and D(y) is the
y-dependent part of the (separable) field solutions.

Calculations based on the model described in this subsection have been
performed by Buus (140); rather than use approximations to the electron
and dielectric distributions, his model was based on the calculated profiles
and employed a numerical technique for solving the wave equation.

(15.22)

(1-r)

(15.23)

15.3.3 ALongitudinal and transverse ficld distributions in stripe geometry
lasers ' '

A further degree of complexity is introduced into the problem of describing
guidance associated with stripe contacts when the longitudinal variation of
carrier and photon populations is included. Since the photon distribution is
maximum at the facets (Equation 15.7) and the gain varies inversely with
the photon population for a uniform current distribution (Equation 15.9), it
follows that the gain distribution is minimum at the facets. If we consider,
for simplicity, the case of gain-guiding only (40-42), then it becomes clear
that the strength of guidance in the y-direction must vary along the cavity
length, being at its weakest at the facets (141). To quantify these ideas, note
that from Equations 15.7-15.9 in steady-state and for single-mode operation
far above threshold (so that spontaneous emission may be ignored), a first
approximation for the gain distribution g(z) is given by (141)

£(0)

ozl ]
cosh TR RK,

For a z-dcpendent diclectric distribution such as that given in (15.24), sol-
utions to the scalar wave equation may be found by the method of Kogelnik

(15.24)

g(®) =
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Intensity

Figure 15.11 Photon field intensity distri-

bution in the y- and z-directions calculated for

a 10 gm stripe-gcometry GaAs laser with

facet reflectivities of 0.05 and cavity length

500 pm

(142). Assuming a parabolic variation for g in the y-direction and using the
effective index approach to allow for guidance in the x-direction, it is then
possible to calculate the photon field distribution as a function of all three
spatial coordinates. The results differ significantly from those assuming uni-
formity in the z-direction, especially for low values of facet reflectivity Ry, R,.

A typical result is shown in Figure 15.11, where the photon ficld intensity is -

plotted as a function of y and z for R, = R; =!0.05 and L = 500 pm. As
anticipated from the arguments given above, the ficld is best confined in the
lateral direction near the centre of the cavity and spreads to its maximum
breadth at the mirrors; the corresponding distribution of the gain is shown

in Figure 15.12.
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For stripe-geometry lasers, cspecially with anti-reflection coated facets, it
follows from this theory (141) that:

(a) For the gain-guiding situation the fields are spread at the laser facets,
hence giving a lower power density which may assist in inhibiting both
catastrophic (121, 122) and long-term degradation (143).

Gain

Figure 15.12 Distribution of gain corresponding to the ficld
variation of Figure 15.11

(b) In the opposite situation of real guidance produced either by dips in the
carrier concentration (spatial hole burning (15, 19)) or by a specific
fabrication process, the behaviour will be reversed in that the fields will
be strongly focused at the facets; similar calculations to those presented
above support this. An analogous situation may exist in the x-direction
in high-power single-heterostructure lasers.

(c) Expcriments designed to study guidance mechanisms in a.r.-coated lasers
(42) should be interpreted with caution, lest the cfiect of the non-uniform
z-variation masks the mechanism operating in the y-dircction.
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(d) The interactive effect studied here could in principle be used to produce
specific distributions of the laser output beam by suitable profiling of the
stripe contact along the length of the laser (141).

15.3.4 Transient evolution of spatial and spectral distributions of photons
and electrons

In this subsection we shall include the temporal and spectral variation of the
photon and electron concentrations; in other words, non-uniformity is allowed
in all five rows of Table 15.1. An adequate description is given by allowing
all terms in the rate equations 15.9 and 15.10 to be functions of x, y, z, ¢,
and, where appropriate, photon energy E. A certain amount of simplification
is achieved by recalling from 15.2.1.1 that the carrier concentrations are
usually constant across the active layer, so that the equations may be averaged
over x. A further logical step is to average the photon rate equation also
over y (144) and z (22), so that the photon density N becomes a function
only of t. The rate equations then assume the form (20, 79, 86):

dn(y,z,t) _ j ( o2 0? ) e R, (n)
ar = 2ca YO\ GE t g |0 5 0

M
..._’%-Z;I‘lgi(Ei, N, (®)|D(y, 2)i? (15.25)

§ g(Ei, mID(y, 2)17dydz
§ 1D(y, 2)|2dydz
—(l _F‘)S “(E.',J’, Z, t)|¢(y, z)lzdydz} _ Ni(‘t)
{190, 2)I7dydz 7
n2c3h3 Sr,p(E,, n)|d(y, z)|2dydz
"VilE® T (1o(y, 2)|*dydz

dNi(1)
dt

=N {n
hy

(15.26)

where all the symbols are as defined previously. In particular, I’ is the con-
finement factor in the x-direction for mode i, E; is the photon energy of
mode i, ¥(y, z) is the normalized field amplitude, and g,(E;, n), r,,(E;, n),
and R,,(n) are the corresponding gain, spontaneous emission rate, and total
spontaneous rate (integrated over photon energy). Note that a comparison
of Equations 15.10 and 15.26 may be used to obtain an expression for the
spontancous emission factor #; (84). The sccond term in Equation 15.25
allows for lateral and longitudinal diffusion of electrons (20, 22, 79, 86, 145).
Equation 15.26 has been derived on the assumption that the cavity lifetime
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r, is independent of position; it usually corresponds to the end-loss which
is given explicitly in Equation 15.8. In the steady-state and ignoring spon-
tancous emission, Equation 15.26 may be used to calculate lasing thresholds,
when it becomes cquivalent to the combination of Equations 15.8 and 15.23
with the z-dependence neglected. Note also that the mode index i in (15.25)
and (15.26) may apply to transverse, lateral, and longitudinal mode numbers.

For single-mode operation the rate equations 15.25 and 15.26 have been
solved numerically by Cross (146). In this analysis the effects of diffusion
were ignored in (15.25), the loss term « in (26) was assumed constant, and the
effects of spontancous emission on the lasing mode (last term in (15.26))
were neglected; in addition longitudinal uniformity was assumed (no
z-dependence). The results indicated the usual ‘spiking’ oscillations in response
to a step current pulse, with the additional feature of a corresponding oscilla-
tion in field distribution in the y-direction; a time-dependent real waveguide
in the y-direction was assumed as a consequence of the fluctuating carrier
density (see Section 15.3.2). These results have recently been confirmed by
experimental studies of broad oxide-stripe lasers (17-20 um) (147).

When multimode operation is permitted in the rate equations ‘15.25 and
15.26, the response to a step current pulse is more complicated. Since the
clectron concentration overshoots its equilibrium value during the relaxation
oscillations, the gain is temporarily sufficient for a number of modes to be

. above threshold. When the number of modes is increased, the power in the

dominant mode is consequently reduced. The net effect is a spectral broaden-
ing which decreases with increasing time after the onset of the current pulse;
detailed theoretical analyses have been made by Ikegami (148) and Buus es
al. (20, 86). This broadening (of order 3 nm) may also occur in sinusoidal
modulation and PCM (79, 148, 149) where it might be a severe limitation
on the bandwidth of an optical communications system, as a result of material
dispersion in the fibre. The effect is diminished somewhat by diffusion of
carriers, which tends to favour the dominant mode (20, 22, 86, 145, 148),
or by a high rate of spontaneous emission into the modes (see Section 15.2.2.4).
It may be controlled by external light injection (73, 92-95) or by biasing the
laser above threshold (150).

. Equations similar to 15.25 and 15.26 but ignoring the z-dependence, have
also been used to study the low-frequency intensity noise in CW stripe-
geometry lasers (105). For two oscillating modes with different thresholds,
the results indicate a lack of quicting above threshold owing to spatially-
inhomogencous gain saturation; this result is in qualitative agreement with
experimental finding (see Section 15.2.2.4).
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- 154 CONCLUSION

This contribution has been concerned with theoretical descriptions of the
phenomena occurring in semiconductor lasers. We have seen in Section 15.2
that almost all the fundamental physical effects are now amenable to theoretical
analysis and, in Section 15.3, that the prime areas of current concern are
associated with interactive effects involving one or more of the possible com-
binations from Table 15.1. In the areas of wave-guidance, the design of new
laser structures, and transient phenomena, the theoretical descriptions have
contributed strongly to the mainstream of semiconductor laser development.
A possible exception to this rule has been the subject of long-term degrada-
tion studies, where an understanding of some of the fundamental mechanisms
is still outstanding, in spite of the enormous effort which has been invested.
It is perhaps appropriate to conclude by listing a few specific effects of
current interest where further theoretical study could be profitable:

() Guidance in stripe-geometry lasers. There are at least five mechanisms
influencing the guidance in the y-direction:

(a) thermally-induced variation of the refractive index (120, 151),

(b) gain-guiding due to injected carriers (40-42),

(¢) index-antiguiding associated with carrier distribution (19, 38),

(d) spatial hole-burning (self-focusing) in broad stripe lasers (6, 19, 38, 135,
146),

(¢) strain effects associated with the contact (38).

A comprehensive understanding of the relative roles played by these
mechanisms has not yet been achieved; in particular, the reported existence of
guiding action even below lasing threshold (136, 151) poses a new challenge
to theoretical analysis. An associated problem would be the description of
the facet reflectivities and far-field patterns associated with these mechanisms;
the presence of gain-guidance and astigmatic beams implies that these quanti-
ties are functions of injected current density.

(ii) New laser structures. Structures with a built-in waveguide in the
y-direction are now being designed (59-63, 71, 152-154) with the objectives
of stable single-mode operation and ‘kink’-free output characteristics. In
many cases these designs utilize the effective permittivity concept (described
in 15.3.2) to analyse the strength of guidance obtained in a given structure.
A point that arises is therefore concerned with the accuracy of this technique;
other than a comparison with numerical solutions for the step-index guide
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(138), there has been no effort to estimate the accuracy of the effective per-
mittivity method or its applicability to a given situation.

(iii) New laser materials for long-wavelength operation. In this respect there
is now a similar situation to that for the AlGaAs system some years ago;
the waveguide theories available seem adequate, but there is as yet little
refractive index data available. Hence there is a place for theorctical models
of refractive indices in new laser materials, perhaps based on those available
for AlGaAs (134, 155).

(iv) Degradation problems. To sclect only two particular areas where theor-
ctical study seems appropriate, consider (a) self-pulsing observed in degraded
lasers (156), and (b) effects of facet coating in improving laser lives (143).
Whilst the former effect has been tentatively attributed to microscale absorp-
tion centres (157), an extremely large absorption cross section is necessary
to explain the observed pulsations via repetitive Q-switching (158). As regards
(b), the problem is to explain why facet coating is effective when hall-wave
films are used (159, 160) which do not intentionally change the facet reflectivity
or limit the optical field intensity. An improved understanding of these
phenomena may shed further light on the mechanisms responsible for laser
degradation.

Tt is anticipated that theoretical work on the topics listed here and on related
subjects will continue to play an important part in semiconductor laser
development.
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