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UNIVERSITY OF SOUTHAMFTON

ABSTRACT

FACULTY OF ENGINEERING

ELECTRCNICS AND COMPUTER SCIENCE
Dactor of Philosophy

ANALYTICAL STUDIES OF SPATIAL AND TEMPORAL CONFINEMENT IN
STIMULATED RAMAN SCATTERING

by Michael Craig Ibison

The work presented in this thesis is a description of theoretical
techniques for spatial and temporal confinement in the small signal regime
of Stimulated Raman Scattering with a pump laser beam. The aim of this
work 1s to provide where possible a mathematical model for the effects of
confinement on both the pump, and the Raman generated Stokes fields,
whilst at the same time to give some idea of the tools available to the
theoretician persuing this end. Particular attention has been paid to the
(existing) domains over which relatively simple mathematical models are
applicable, and also to provide bounds on the applicability of both

original and existing results.

Both the Maxwell and Lagrange formulation of the (electromagnetic)
propagation problem are developed in this work. The paraxial ray equation
which arises from the former is investigated in some detail; results are
presented which give the full set of refractive index variations for which
this equation is separable (and therefore potentially soluble) under an
arbitrary' transformation. The Lagrange formulation is employed to solve
the spatial confinement problem which may arise from the use of a
waveguide or a focussed pump beam. The traditional Maxwell formulation is
used to provide the solutions to the temporal confinement problem. Where
possible, results are presented which combine the solutions from both
domains to obtain a model for simultaneous spatial and temporal

confinement.
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THTRODUCT ION

Stimulated Raman Scattering may be regarded as a technique for conversion
of energy from a pump to a Stokes field at a lower frequency. The
conversion process is a result of an interaction of both fields with a
Raman active medium through a third order non-linear susceptability. If
the pump field is a monochromatic plane wave, then under the appropriate
conditions, there will be an exponential growth - at a rate proportional
ta the intensity‘ 0of the pump field - of a co-propagating, co-linearly
polarised field at the Stokes frequency.

Often, it is required to maximise the efficiency of the conversion process
perhaps to produce a (new) high intensity coherent source of radiation at
a longer wavelength with minimum 'cost' in terms of the source radiation.
Thus, for a continuous plane-wave pump field, there is an increase in the
conversion efficiency with pump intensity, so that given a coherent source
at some fixed power, one may be tempted to increase the efficiency by
confining this power to a smaller cross sectional area - i.e. by focussing
the pump beam. However, one can no longer expect the simple dependence of
exponentional growth on pump intensity to hold; spatial confinement will
cause both pump and generated Stokes beams to diffract thereby reducing

the volume over which the maximal growth rate can take place.

Similarly, given a pulsed source at some fixed energy, one may attempt to
increase the conversion efficiency by confining the energy to a smaller
pulse width and thereby increasing the effective intensity at the pump
frequency. However, once again we must consider aspects of the conversion
process which destroy the simple relationship between exponential growth
rate and pump intensity. Once the pump pulse becomes sufficiently short,
it may. no longer be regarded as a continuous plane wave; the finite
response time of the Raman medium will impede the conversion process so

that a steady-state is never attained.

For both of the suggestions above there is clearly some advantage in
attempting to increase the conversion efficiency through spatial and

temporal confinement, although the degree to which this 1s true is not



apparent from the outline abave. The goal of this thesis is to quantify
the effects of confinement so that the efficacy of the various teckniques
can be evaluated, and the experimentally adjustable parameters thereby

chosen to give a Stokes field with the desired characteristics.

Chapter 1 may Dbe regarded as an introduction to the more detailed
theoretical deliberations of chapters 2 +to 4. The material of the
constituent sections has been arranged to provide a linear progression
from the general lagrangian formulation for the Electromagnetic fields, to
the theory of small-signal steady-state plane-wave Stimulated Raman
Scattering. The intervening material contains explanations of the various
approximations - which are often implicit in the literature -~ associated
with the behaviour of electromagnetic fields in inhomogeneous, anisotropic

media,

In Chapter 2, there is a theoretical analysis of the effects of pump
focussing on the conversion process. The results are derived from a
Lagrangian formulation of the small-signal steady-state problem of Raman
Scattering with a Gaussian pump beam. Using this approach it has been
possible to obtain an analytic description of the Stokes field which is
shown to be in very close agreement with an exact numerical treatment, and
which also conforms to the established behaviour in the limiting cases of
bhigh and low pump power. The results of this chapter are also presented in

the form of a paper in Appendix 2,

Chapter 3 contains a theoretical analysis of the effects of a capillary
wavegulde on the Raman Scattering process. This time the spatial
confinement is achleved by virtue of the reflections of the pump and
Stokes beams at the waveguide walls. Just as in free-space Raman
Scattering, there are aspects " of the conversion process that destroy the
simple dependency of Stokes growth rate on pump intensity. In this case,
one must consider in particular the effects of losses on reflection at the
waveguide walls which become more severe as the bore of the guide is
decreased. Particular attention in this chapter is given to the correct
choice of design parameters which maximise the efficiency of the

conversion.



Chapter 4 contains a review of the theory of Stimulated Raman Scattering
using a plane-wave, time-varying pump field. This theory is then applied
to the analysis of Raman Scattering with a dual mode pump laser. In this
chapter it 1is also shown how the plane wave results can, in some
circumstances, be generalised to include the effects of both temporal
confinement, and the spatial confinement techniques considered in chapters

2 and 3.

Appendix 1 is an exposition of the theory of separable solutions to the
diffusion equation. This work evolved from earlier attempts to find exact
solutions to the gain—focussing problem discussed in chapter 2, and was
subsequently developed to cover all possible refractive index variations.
It is believed that the results may find a general utility in optics and
more generally to physical systems which can be described by a diffusion

equation (e.g. quantum mechanics and thermodynamics).



CHAPTER 1

AGNE T 1

In this chapter we discuss the electromagnetic field equations applicable
to the propagation of a field in an electrically polarisable medium. The
aim is to derive a set of equations which are easily adapted to the

context of each of the later chapters in this thesis.

0f particular interest to us in this chapter are the formulations of both
the classical Lagrangian and the Maxwell equations. For each of these
formulations we discuss the zero divergence approximation, the slawly
varying envelope approximation, and the paraxial-ray approximation, each
of which is employed at some point in the work which follows. "These
approximations are brought together in the last section to give the
standard result for small-signal, steady-state, i)lane-wave Raman
Scattering, against which the results for the various techniques for

spatial and temporal confinement can be compared.



The starting point for this chapter is the electromagnetic Lagrangian

density (Goldstein, 1950):
L = % IDE- BH (1]

where each of the symbols have their usual meaning. It is to be understood
that the correct description of the system is found by choosing fields

that minimise the Lagrangian:
L = %ggi, a0.dt =2

where the volume and time integrations are over the region (Q,t) for which
the fields are to be determined. Throughout this thesis, the reaction of
the medium D, B to the electromagnetic fields E, H can be described by the

relations:

D = eE+ 2 {31
and .

B = pH (4]
where YNXE = -6B/St is understood. {51

i.e. we consider media that are electrically polarisable only. Also, we will

deal with polarisations such that it will always be possible to write:

1}
<

¥D (61

It
<

Y.B [71

which can be interpreted as the absence of free charge (rather than

radiating dipoles).

_10_



The polarisation P will, in general, depend on the spatially varying
characteristics of the medium. In the case of a linear optical system
employing lenses and mirrors, the character of P is determined by the

refractive index of the medium, i.e.:

L = ex@E (81

(@ ey - 1 (9]
Vhere x(r) is the linear susceptibility, and n(r) the refractive index; y(r)
is of course a scalar if the medium is isotropic. More generally however,
the polarisation of the medium depends in a non-linear fashion, on the
propagating fields, and through +this +the susceptibility may become

inhomogeneous, anisotropic and time dependent (see section 3).

The relations (3]-[7] can be employed to cast [1] solely in terms of the
electric field and the polarisation. It is convenient however, to follow

traditional methods and define a related quantity A where:
-6A/8t = E . {101
Choosing the Coulomb gauge, it follows from [5] and [7] thaf:
B = ¥XA. (111
With'these substitutions, [1] becomes:
L = “1/Cuadl(L X D= = (L/c)Z (A6 + (BA/SEIR/ (CRen)] (121

The first two terms alone describe the space and time behaviour of the
field in a vacuum. The last term in (12] describes the interaction of the
field ‘A with the polarisation of the medium P. Note that an alternative,
form for [12] can be obtained by using the identity:
Exay = (G2)+(8Y~(4)-(za)y - o[ % %-%AA&]

* 2y 2= 2% ¥z vz De

[ AT 2[4 94 A, A
Dx Dy Dy e Ty 2 Y= \31

[131]

- 11 -



Often we find that the electric field is given on the boundary z = 0,
whilst it is kown that the fields vanish for all z as x,y » ®. There are of
course, problems in being able to specify exactly such boundary conditionms,
but at this point it 4is convenient to assume that they are not

insurmountable and therefore that ‘
Alx,y,z,t) at z = 0 is given; {14]
and Lt wyae AGLyzt) = 0. (181

In addition, it can usually be assumed +that the plane z =0 |is
perpendicular to the 'direction of propagation' of the electric field.
Strictly, this concept is antithetical to that of a boundary condition in
that it arises only in the description of a field over a finite extent
outside the active medium. However, it can be interpreted as requiring that

the main spatial variation of the field determines the boundary condition:
§/6z Ax,y,z,t) at z = 0 is given. {161

Under the Coulomb gauge, this means the longitudinal component of the

electric field is small compared to the transverse components, and that:
Azx,y,z2,8) 2 0 at z = 0. (171

Vith the qualifications of sections 4 and 6, we can conclude that the
longitudinal component of the electric field is everywhere negligibly
small. This conclusion, along with (151, requires the last fthree terms in
(131 vanish on integration over the volume in (2], Therefore, they may be

ignored and the effective Lagrangian density written:

Lot (G- LA -CAT-50E) BN 28] e

2ps L \ W% »z €oc SE

which 1s the required result for the electro-kinetic potential in an

electrically polarisable medium.

- 12 -



The equivalent Maxwell formulation is obtained by finding the field
A(x,y,z,t) that satisfies the Euler-Lagrange equations for the problem:

SEj'Sffi(EshLAam)Jlindziég = 0 [10]
[x
Hence, we must have for each o ¢ {x,y,z,t}
LA B T - R I —d Y { =0
Ve dx DML gy 8PAL e DA T VA, 201
which from [18] gives:
| g 25 LMT g (oA
O Aw + — — = (=D
25c0 B Ap | ¥ALHR Nt D
DY Y
el B —;"}“é'l = 0 (211
PAZY g N1 DAL 3

where B e {x,y,z,t} and O 1is the D'Alembertian operator. For the terms
above involving the polarisation, we have adopted the convention that the
total derivatives act on both the field variables and the co-ordinates,

whilst the partial derivatives act only on one or the other as indicated.

_13_



0f particular interest in this thesis is a polarisation that is linear in
the electric field, but not necessarily homogeneous or isotropic. A

generalisation of [8] would then be:
P = ex(@E (221

where yx(r) 1s a 3x3 matrix. This form for the polarisation can arise for
instan:e in small signal Stimulated Raman Scattering when the pump field
is approximately unperturbed by the growth of the Stokes field and can
therefore be regarded as given. In this case the polarisation at the Stokes

frequency can be written:

Pa = €x(nue®*-1L)Es + (8/2)€cy(~0aip,~Ws,we)EcEx*Ea [231]
whilst the polarisation at the pump frequency is just:

Po = ea(np®-L)E- [24]

where Ep and E= denote the complex amplitudes of the Fourier exponentials

for the pump and Stokes fields respectively, i.e.
E = Re {Esexp(iwat) + E-exp(iogt))

and x(-WeWp,~Wp,ws) is the (2nd rank) tensor for Stimulated Raman
Scattering, (the coefficient 3/2 is chosen to be consistent with Hanna et
al, 1979). In order to recover a form similar to that of [22], we must
now borrow fram the waork of Yuratich and Hanna (1977) which deals with
the susceptibility tensor for coherent anti-Stokes Raman Scattering. In
that work we must interpret the angular factor (see equation 15b), which
relates the polarisations of the Stokes, pump and anti-Stokes fields, as
applying instead to Stimulated Raman Scattering where now the anti-Stokes
field is replaced by a 'Scattered' Stokes field:

Ba = €ex(ne™1)Ea t+ (B3/2)€alEo ¥y <™ E, [25]

_14_



where x°%° is the orientation averaged Raman Scattering matrix and is in

—

general complex. Thus we recover the form (22] in which the effective

linear susceptibility is:

X£) = na*-1 + @B/2)IExEy R {261

==

The scattering matrix x°®° can be calculated from the direction of the
pump polarisation, and :he isotropic, and the anisotropic (symmetric and
antisymmetric) parts of the Raman polarisability tensor, denoted here by
o, B* and ¥* respectively. Thus if the pump field is linearly polarised in

the x direction we find:

o=+4[3%/45, 0 ) 0
X"« 0 WBE/LS+¥=/9, 0
0 ) 0 WBE/15+%2/9 ) (271

It follows from the above that the susceptibility X‘"? can be written in
terms of the ‘'depolarisation ratic' p which is tl_xe ratio of intensities
scattered at the Stakes frequency (per unit solid angle) in the directions
colinear, and perpendicular to the incident (pump) radiation. This quantity
is found to be (Yuratich and Hanna, 1977):

p = (3R*+5¥=)/(4Da=+4/%) (28]
Note that whilst the definition of p applies only to spontaneous Raman

Scattering, the quantity i1s still wuseful 1in defining a general
susceptibility for Stimulated Raman Scattering:

l ] 0 ) O
X Xer |00 e 0
0, 0, p (20]
If instead the pump field is circularly polarised:
Ex = Enlex + 1e)/4/2 (301

_15_



then the susceptibility matrix is unchanged from that above provided one
interprets the vector components denoting the Stokes polarisation in a
spherical polar coordinate system. Alternatively, in a Cartesian coordinate
system, the scattering matrix for circularly polarised pump radiation

undergoes a similarity transform and thereby becomes:

A+p)/2 , A-pr/2 , 0
Ry = X2 | -z, A+pr2, 0
0 ) 0 y P (311

>

]

The value of p depends on the symmetry of the scattering molecule and
generally is much less than one. For the cases considered in this thesis,
prompted by the experimental work on Hydrogen and Methane gases, we are
Justified in neglecting the component of the Stokes field polarised
orthogonally to that of the pump. (Note that a small difference between
the diagonal elements in [29] is exponentiated by the gain process in the
classical plane wave - small signal, steady state - formulation of Raman
Scattering.) In the appropriate coordinate system then, xR’ is a diagonal
‘matrix with one element significantly larger than tJ:a other two., The
implication for the field equations is that, provided the small divergence
approximation holds (see section 4), then generally it is sufficient to
concentrate on the behaviour of the component of the Stokes electric field
vector work which is colinear with the pump polarisation. (This is the

policy which has been adopted in the later chapters.)

For the given linear form for the polarisation, we can now determine the
full dependence of the Lagrangian density on the various components of the
vector field. Thus [18] is found to be:

- g [2(A) bt xeaey

and (19] becomes, for each a € {x,y,z}:

Cz-fi) = ° 1331

1&>

1>
7
m

I

©

— 2

e -

UE-(‘

"'I-

which can be written collectively:

..16_



De - T(Ee) - L ve

—

76—1- (34]
Cl

which 1s the standard form for the Maxwell equations in a polarisable

medium. Note that [34] no longer holds if the susceptibility is a function
of time or 1f the linearity condition expressed by (221 is violated.

_.1‘7_



Yithout the divergence term, [34] is a wave equation for the electric
field. That the term vanishes when the medium is homogeneous (though‘ not
necessarily isotropic) can be seen from [6] and [22]. When this is not the
case, 1t may be convenient to express the divergence using the relative

permittivity temsor as follows:

-1
YE = (:f (e, p] €ax By (351
oL
where ST g,(_’[,_ + [X\(,Q)I x, @
and €y Py € (7,4,

and summation over repeated indices 1s implied. The functional behaviour
of the susceptibility determines the conditions under which [35] can be

neglected,

A strong motivation for ignoring the divergence term is that the resulting
equations for the electric field vector are greatly simplified. 1In
particular, if the susceptibility is diagonal, then [34] decouples into
three independent wave equations. Generally a sufficient condition for
neglecting the field divergence is that the fractional change of the total
refractive index tensor be small within a ‘characteristic distance' of the
electric field. In most cases (see section 6) this characteristic distance
is simply the wavelength of the field along the axis of propagation (see
for example Yariv, 1975). If a method of validating this approximation is
required, it is suggested that a basic test for consistency would be to
compare the resulting magnitude of the divergence term with the other

terms in [34].

_18_



If the field vector is confined by a waveguide it may no longer be
possible to assume that <the divergence terms can be neglected. In
particular, the approximation discussed above clearly breaks down if there
is a step discontinuity in the refractive index at the waveguide wall. In
these cases, it is usual to assume zero divergence of the field either side
of, but not over, the wall. Continuity of the fields over the wall will then
determine the relation between the core and cladding fields. (This is the
approach adopted in chapter 3).

..19_.



We now consider the consequences of assuming that the temporal behaviour
of the electric field is primarily that of a single Fourier component, i.e.
that:

Af,e) = Ref a(e,p)ett]

—

(361

where a(r,t) is a ‘'slowly varying' field. For this decomposition to have
any meaning, it is clear that the magnitude of the Fourier transform of
the field a{z,t) must be confined to a band that lies well within the
interval (O,w). We can then capitalise on this situation by approximating

the time derivative in [18]. The argument runs as follows:

Since
YA\ | 2@&{ S R, SIY
°= = s Q= + e o » r
( f;] 4 bb] 4 [ ‘oz *2.% ]
i N 2 ok
+ = I Lo X + 2 !
Z T
(371
then provided .
PR PP wra |t

{381

the second order terms in the time derivative of a(r,t) can be neglected.
Moreover, the first and second terms in [38] will contribute a negligible
amount to the Lagrangian [2]1 by virtue of the phase cancallation of the
sinusoid components (see for example Loudon, 1968). That this 1is true

follows from consideration of the integral:

S<> eep [ ok ~ cl/T~.] dt& = [T exp {__- uﬂ-vt/‘J [39]

o0

And this result must be compared with that for o = 0:
. 2 2
% exp [iwk - t/*(‘i] dt
~e0 - Tl
. = exp [ W I (401

(% exp [-6/cn] db :

_20_.



Therefore if the field envelope is taken to be a Gaussian of (temporal)

width 7,
g "‘*f[‘tl/vvl
then the slowly varying envelope approximation [38] requires that:
LYt 2y 4 b/ (41]

The worst case is towards the end of the pulse when t/r ~ 1 and so by
virtue of [40], the rapidly varying terms in [37] are seen to be averaged
out of the Lagrangian. It follows from this argument that [37] can be
simplified to:
(}5)1—5 _wg_’“.t-uo[aQq_ AQI
St - St [42]
and further, that only the time averaged components of the remaining terms

in [18] need be retained (Loudon, 1968), i.e.

Y a

1‘—"
YR Z N

(431

Under the same approximation, the Maxwell equations [21] are modified as

follows:
Tra, + B, - 2iwVa, - D [“1_3_)
<t >t IR
+ 1 d 2P R
26.089 — | = ()_‘_i_( *"Q‘l‘)

hY
*[i _;hA ]{E *L‘*’SI*' [L&a-tz (_,,Bq -0

where now B ¢ {x,y,z} only, and it is to be understood that a.(r,t) is
evaluated as [361.

_21.,



The condition in the Maxwell formulation that is equivalent to (381 is

thus seen to be:

—_—

122

da
<< Zu‘_— [45]
|
Equation [441 can simplify considerably if assumptions are made about the
relation between the polarisation P and the field A. Without further

information it is generally more convenient to work with the more compact

Lagrangian formulation.

_22_



So far we have discussed only the requirements for validity of the slowly
varying envelope approximation within the region of integration of [2]. In
terms of the electric field propagating into this region from the
boundary, a sufficlent condition is that the boundary field itself
satisfies [38], whilst the time dependent characteristics of the medium,
through the susceptibility, be negligible over the period 27n/w. Support for
the first of these conditions comes from consideration of the frequencies
and pulse widths encountered in non-linear optics. For instance, a He-Ne
Laser ( x = 633nm ) in a cavity of length 1 = 30cm will generate pulses
with:

wEr2/4 2 (xl/NF = 10'= (461

A similar calculation shows that the second condition is also easily
satisfied. For instance, Raman Scattering of a laser ( » = 532nm ) in Hz
gas has a bandwidth of T = 720MHz at 20 atm. (Pratt, 1985). This
determines a ‘'lifetime' I'"' for the process which can be taken as the

period r in [41], whence:
w2r=/4 = 5,10= (471

(Note that for the generated Stokes component to be relatively speaking
'steady state' the requirement is more stringent - see chapter 4), In
practice then, we are Justified in applying the slowly varying envelope
approximation and [38] can be used to monitor the consistency in terms of
the field envelopes. We note finally that in the absence of a dynamical
variation in the susceptibility, the single Fourier component is an
eigenfunction of the separated wave equation (211, Therefore there is no

approximation in using the results of this section with §/8t a(g,t) = 0.

_.23_.



This approximation is analagous to that of the previous section with
spatial replacing temporal considerations. The difference here is that the
paraxial approximation is usually taken to be a 'package’ wherein the field
varies predominantly in the lonitudinal direction, but also in which the
transverse spatial derivatives cannot be ignored (i.e. the fields are not
plane-wave). As befare, the field is expanded in terms of slowly varying

envelopes and single Fourier components:
Afrst) = Reggu,we““‘zi 48]

where the a(r,t) 1s slowly varying in the z direction, the spatial Fourier -
transform of which is well confined in the interval (0,k). For
definiteness, it is usually assumed that the sinusoid behaviour of the
field occurs in the z (or longltudinal) direction (see section 2.1); thus in
combination with the expansion [36] for the time varying component, (48]

describes a propagating wave with speed w/k in the z direction.

Following the analysis of section 5 we have :

35 1<< KYal*

;;l Y | [491]
2 ~ " *

() o -eler [ adet e,

de 4 2 Yz Sz

whilst remaining terms for « € {x,y,t} become:
B.A_ b —_ _L ) g 2
(— ) 2 (‘— {511
Ve Dot

A result analagous to [43] follows for the Maxwell equations for which we

obtain the constraint equivalent to [49] (see for example, Yariv 1975):
z
e [ << 2w
RNzt

(621

\c_x[

D=

- 24 -



The Jjustification for the paraxial approximation depends on both the
boundary conditions on the electric field and the variation of the
susceptibility in the 2z direction. If the induced longitudinal behaviour of
the electric field inside the region Q is seen to derive primarily from
that of the 'external field' impinging on the boundary z = 0, then the
Justification for the validity of the first condition remains unchanged

from that of the previous section.

The second condition can be supported once again with an example from
Raman Scattering of a laser ( \» = 532nm ) in Hz gas. Under appropriate
conditions for the pump field (see section 7), the Stimulated Raman
Scattering plane-wave gain coefficient may have a value Gr = 30 whereby
the intensity at the Stokes wavelength ( ha = 681nm ) grows as exp(Grz).
Thus by analogy with [41] we have:

ka®/Gr* = 9.10'° (53]

which in this case justifies the use of the paraxial approximation.

- P25 -



The parallel status of this approximation with the slowly varying envelope
is destroyed if there are step discontinuities in the refractive index
which occur for instance within a waveguide. Vaveguides are employed to
confine the electromagnetic field and are thus an important tool in the
field of non-linear optics. A fuller discussion of their use is given in
chapter 3. It is remarked at this point however, that although (461 may be
satisfied, the paraxial approximation will generally be inappropriate for a
waveguide field. This 1is because the mode structure of a waveguide is
determined by the reflection/interference effects of the fields at the
waveguide walls and therefore it is important to choose a coordinate
system which simplifies the boundary conditions. Put another way, the
characteristics of the Helmholtz equation can be made to coincide with the
walls of a cylindrical waveguide, whereas the same is not generally true
for the characteristics of the paraxial ray equation. There are cases
however, where the characteristics of the paraxial ray equation can be
made to lie along the waveguide walls (see appendix 1), as for instance is

possible for a linearly tapered guide (truncated cone).



In this section we bring together some of the approximations described in
this chapter which are pertinent to small-signal, steady-state, Raman
Scattering of a plane-wave pump field. Our aim is to derive an expression
for the evolution of a Stokes field under these conditions. The result acts
as a reference against which the techniques dicussed in the later chapters

of this thesis can be compared.

The polarisation induced by a pump field at the Stokes frequency in the

small-signal, steady-state regime has been given in section 3:

By s alnp) B < (/) e X |e, 25)

In we interpret this as a linear polarisation at the Stokes frequency, then
we can employ the Maxwell equations of that section (equation [341) with

the small divergence approximation of section 4 to give:

[vt -4 [f‘{‘*f 3B KG"]}’_ E =o (541
- C = L

carresponding to a Lagrangian density (from [321):

L= L [a(l’-})‘~ 2AT x®yaA (551
2p, [ % Uk St ¢

Also in sectlon 3, we have argued that we need generally only consider the
component of the Stokes field which bhas a polarisation which is colinear

with that of the pump. Then the above becomes:
v - 1 (5 2

[ L+ e @y ]E,L - 6 (561
R

with Lagrangian density:

I = ~ 1 [(YA"Y' (\Ax

2po 3t

1_‘1 [0~ 3/1[E,,|1X‘§}'] ] (571

(&
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where we have assumed a pump polarised in the x direction for
definiteness. If the pump intensity is constant in time, then the above

admits of solutions:
E = R&}: Es exr[iuaﬂg [58]
whereupon [56] becomes (W, = ng Wy fen ) :
[Vz“' K * 34 KiJna lE,.\IX‘S} l‘isx = o [59]

Generally the magnitude of the 3rd term in braces is much less than the
second, i.e, the magnitude of the pump induced polarisation is small
compared to that of the linear polarisation of the medium. Therefore,
whatever the spatial variation of the pump intensity, we can be sure of
the justification for making the paraxial approximation (section 6). Thus
assuming a propagation principally in the z direction, and a Stokes field

polarised in the x direction:
Bew = &@exe[-iz] [60)

equation [59] becomes:

Y DM 2w 2, ke
L_ + <+ 7y s/n;

£ @ _
st Tyt Nz P[ Ko € =0 (611

and recalling the relation [10] between A and E, the Lagrangian density is:

1 = —L. [ ‘ lbes . _stjh\gef 3\653__% K; lE‘ |* X\,‘,. tésll (621

4pow” DL
The purpose of this section is to determine the evolution of a Stokes
field when the pump is a plane wave. Vith this in mind, we are free to
consider the evolution of a single Fourier component of the Stokes field

whereupon the transverse derivatives above can be ignored:

26, -3 ke K [E M,

— [63]
Dz + "'s1

1

The Stokes intensity therefore grows exponentially:
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T (z) = I.e)exp [ 6“11 (641

where G = 3/2. j.\ﬁx‘,,gsﬁ ks /"51 [E{: [1 {651

is the small-signal, steady-state, plane-wave Raman gain coefficient. In

addition it is often useful to refer to a Raman gain coefficient g. where

®)
= X .0/ . t
go 3 ‘,Sh\i x50 KS nl“//\g /Soc 661
50 that the Stokes intensity can be written:
L&) = Te@expl4.T, z] (671

In this chapter then, we have confirmed the exponential growth of a Stokes
field in the particular case of small-signal, steady-state scattering of a

plane-wave pump field.
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CHAPTER 2

As mentioned in the introduction +to this thesis, under appropriate
conditions, Stimulated Raman Scattering of a pump laser promotes the
exponential growth of a Stokes beam with a rate that is proportional to
the pump intensity. Often we may wish to maximise the conversiaon of
energy from the pump to the Stokes frequency whilst the energy in the
pump pulse, and the length of the Raman active medium are fixed. Clearly
the intensity of the pump beam, and therefore the growth rate of the
Stokes beam, are increased with a decrease in the pump beam diameter. Ve
cannot conclude however, that the process of conversion 1is simply
maximised simply by choosing an indefinitely small diameter for the pump;
the diffraction of both the pump and Stokes beams are yet to be accounted
for. Thus, in this chapter, we will consider the effects of pump focussing
in Stimulated Raman Scattering. Our results will eﬁable us to optimise the
experimental conditions for an efficient conversion of energy and so
determine the (minimum) pump energy required to attain some threshold. In
addition, we will be able to predict the profile of the Stokes beam at the

exit of the Raman active medium as a function of the focussing parameters.

In this Chapter, we start with a review of the earlier attempts that have
been made to tackle the problem of pump focussing in Stimulated Raman
Scattering. This is followed by the presentation of new results wh“ich are
seen to encompass earlier approaches yet without their associated
limitations. The approach used is that of a calculus of variations for a
generalised Gaussian beam description of the Stokes field within the

Lagrangian framework described in chapter 1.
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In the following analysis we assume that the Stokes field growth is small
signal, steady-state, and without competing processes. The conditions to be

satisfied are respectively:

(@) The Stokes field is not large encugh to deplete the pump or saturate
the medium,.

(b) The pump and Stokes field each have a bandwidth smaller than
the Raman linewidth (Raymer et al, 1979).

(¢) The gain and material dispersion of the medium favours the dominant
growth of a field at the first Stokes frequency over higher order

Raman processes (Perry et al, 1985).

Our starting point in the variational approach to the derivation of the
Stokes field is the Lagrangian density for the electromagnetic field
(see for example Goldstein, 1950):

L - é[B-E‘Q'HI (1]

and the Maxwell relation:

. L ¥xE (2]
= m

The pump and Stokes fields are defined as those components of the total
field with frequencies we and wa respectively. In the small signal regime,
the pump fleld is unpertubed by the medium and its spatial distribution
may therefore be regarded as given. Thus [1] and [2] apply to the field
components at the Stokes frequency only, which we expand in the usual

manner making explicit the rapidly varying part of the spatial variation

in the z direction:

Im
"

Re §€5(£\e-"?[ Lugt - *:Ksz:[ _Cts z (3]

B = Re Eks(s) exp [‘:“se - ZK&ZT 2 "%s} [41
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K, = tosns /o (51

where ns is the refractive index at the Stokes frequency, €s(r) and ha (D)
are slowly varying envelopes, and &= defines the direcfion of the Stokes
polarisation. In addition teo (@), (b)), and (c), it is assumed in this
chapter that the pump field is a Gaussian beam and that the Stokes field
is linearly polarised parallel to the pump field {(for definiteness, this is
taken to be in the x direction; see chapter 1, section 3). Then the fields

D, B can be written in terms of the electric and magnetic field vectors as

follows:
B=pl 3 2 =-4E «P (61
r

- oy ele P x“E

|€e|" = léfor[ﬁ’_o jlex(’[-l_‘ ]

(7]

R
Wee) = W, [u-+ 4(=-__P )I (01
2
o Wer

where x‘®> is the Raman susceptibility, the definition of which comes from
Hanna et al (1979). Classically, the Stokes field E (with H given by (21
will be that distribution for which the integral of the Lagrangian demnsity

is a’minimum:

SR Eo8 )dedgd=dp | = o (103

Ve are justified in applying both the small divergence approximation and
the paraxial approximation (see chapter 1) to the minimisation problem of
(101, This is because the contribution of the non-linear polarisation to
the electric displacement in [6] is much less than that of the vacuum.
Equally, we will find that the fractional deviation of the Stokes beam
from a pure plane wave is negligible over a distance of Xa, both radially
and longitudinally. Again, appealing to chapter 1, we find that the x

polarised Stokes field must therefore minimise the integral:

L — | SfSSflez&ei%‘*f‘ﬁl%esllwi\ kses*éeﬂb%
& po 05 205 324 13

'Bl }x

2 ;)éslzf f111]
29
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whilst the Euler-Lagrange equation for the amplitude of the Stokes field

in the above generates the paraxial ray equation:

R . 2 *
LA - 2Kyt 3 OH X‘f:,’( €.1"f & = o [12]
kAl 56" Nz 2. —".31

Perry et al (1982, 1983) have posed the above as an eigenvector problem in
the Hilbert space of Gauss-Laguerre functions which are the TEM freespace
modes. The assoclated eigenvalues represent the growth of the Stokes beam
on propagation through the galn medium. This decomposition of the praoblem
relies on the separability of [12] for the particular ‘refractive index’
variation given by the Gaussian pump field (see the discussion in chapter
1, section 5). More recently, the same approach has been adopted by
Gavrielides and Peterson (1986) to produce a numerical model valid in the

large signal domain, i.e. taking into account pump depletion.

For the particular case ks = ks, Perry et al give their results for the
variation of the three largest eigenvalues with the pump power. Although
theirs is an exact (numerical) solution of [12], an approximate analytic
treatment would in some cases be more desirable. For instance, one is
generally interested in the component of the Stokes beam that couples into
an optimally chosen TEM.. beam, whereas the spatial transverse profile of
the Stokes beam at the exit of the gain medium is not readily recoverable

from the Gauss-Laguerre eigenvectors.

The following treatment therefore models the Stokes field as a Gaussian
beam throughout the medium, the parameters of which are chosen to
minimise [11]. Our approximation consists of ignoring the coupling between
this and higher order modes, although it will seen that this approach
becomes exact either when the pump power is sufficiently large or
sufficiently small. Ve therefore retain the Lagrange formulation, and
substitute into [1] a Stokes field of the form:

Es(e) = Awy exp [~ Qe r"/,_:( (131

The amplitude A(z) and beam parameter Q(z) are now chosen so that [11] is
a minimum. Thus we carry out the transverse integrations, and apply the

Euler-Lagrange equations for the variation of Q*(z) and A*(z):
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3 k2 X8 e, v K@+ @* [14]

¢ [4+ ivie (@-a%)] [@-&¥]
VL R (< (o Y- ¥ 3 k2 x8 kpo 1Mo [@-¢*] [153
d= EQ‘Q"] 4 ng [“'*‘LW;C‘)(Q'Q*)I

Equations (141 and (15} can be recast in terms of the normalised

quantities as follows:

2 3 ) i

qr < b_‘\_r + g_Pg_ [H-{"- (rd~q.) ‘J =0 (161
7 Lic*

L Y

3 -
et - (kdag) (171
2 71" 4»c[ gl

where we have used the following definitions:

1y - 2 . T
Za2
3 = KWws® (191
2 Ky
o=z [ =-f I [20]
Kp Wro
e = Ks/kp (211

F- is the 'normalised pump power' and Z is the normalised longitudinal
ordinate i.e. where possible, we have kept to the notation of Cotter et al
(1975), whilst the definition of x‘®° 1s that of Hanna et al (here assumed
pure imaginary). Clearly if P = 0, [16]1 and [17) reduce to the equations
of motion for the spot-size, radius of curvature, and (complex) amplitude
of a free-space Gaussian beam. When ﬁ: # 0 however, these equations can be
used both to analyse the results of earlier authors in the domains of low
and high pump power, and provide a more general description for the
Stokes field for arbitrary Po; these are the respective goals of the

sections which follow.
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Ve start by considering solutions to equations [16] and [17] in the limit
of low pump power. We will first derive the general result for the Stokes
amplitude and profile, and then show how this result can be applied to the

design of a Raman gain cell.

If the normalised pump power P. is sufficiently small, the Stokes profile

remains almost unchanged from its free space behaviour:

4t =+ )”/3% = o 1221

In terms of normalised quantities, the solution of [22] is:

P [ v(3-70) ~L]

9 = [23]
[ vepi(1-70) ]
where: 7P = 2 f (241
Ko Wpe '
and: v = Ke W;., [25]
Ws \J;;

Hence, 7, 1s the distance of the Stokes focus from the pump focus in units
of the pump confocal beam parameter, whilst p is the ratio of pump to
Stokes confocal beam parameter. This general case is depicted in figure 1
where the pump and Stokes beams have been enclosed by the gain medium. Of
course, calculation of the Stokes field through equations [161 and [17]
apply only to the field within the cell. Equally it is tacitly assumed that

the finite transverse dimensions of the medium can be ignored.

_85_



Vith the free-space form for the Stokes profile, [17] can easily be solved
to give the amplitude of the Stokes field at any point 1 in the gain

medium:

A = Ay iG], [ fo [ lewtliorie - ke len o "]}261
[ ) L2 - ‘

1
where: VAT [1-\- \q(t;*-t)“)-*-)cl-\.t.\c"l:]/z (271

and A({g) is the Stokes amplitude at the entrance to the medium. The total

power in the Stokes beam can be evaluated from the above (using [231):

w w

G@) = A3 exp l: ;:; [ aa (_"(’_'ft"_']iﬂ: < Rt (ep 3 - P 11 (28]

The justification for using the free-space profile [23] in deriving [28] is
that our result for the Stokes power is then directly comparable with
those of earlier workers. In fact Boyd et al (1969) have obtained exactly
the same result using an ‘'overlap integral' method. Whilst [28] is also
related to the result obtained by Christov and Tomov <(1985). Also,
allowing for typographical errors, the same result has been obtained by
Trutna and Byer (1980). Examination of [16] reveals however, that to first
order in P%p, the third term also contributes to the gain as described by
(17]. Thus we find that even for low pump powers, the éffect of the pump
power on the Stokes beam profile can be significant. However, this
component can be shown to be identically zero for the particular initial

Stokes profile satisfying:

20 = 0; b = 1
which is just that the pump and Stokes beams share a confocal plane, and
have equal confocal parameters. These are the conditions are chosen by

Trutna and Byer to maximise their expression, based on [28], for the

Stokes gain.
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Strictly speaking, Trutna and Byer obtained a maximum gain through optimal
choice of the confocal parameters belonging to both the pump and the
Stokes fileld under the assumption that the beams share a confocal plarne.
They rightly concluded that the Stokes gain would be a maximum - in the
limit of tight focussing for the pump - if the confocal parameters were
equal. Thus in a cavity designed to give rise to a self-reproducing pump
beam, the optimal choice of confocal parameters is also that which gives
rise to a self-reproducing Stokes beam. We note in passing that for a
cavity design other than that of Trutna and Byer wherein the pump beam is
not tightly focussed, the condition p=1 does not maximise the Stokes gain.
In this case the characteristics and growth rate of the Stokes beam will
be a result of the (competing) tendencies towards a beam that is self-

reproducing, and one that has maximum gain.

Vithin the variational framework of this chapter however, the condition
above is a necessary prerequisite for the validity of (28]. Therefore we
will proceed assuming that these conditions are met by the design of the
Raman amplifier, so that by virtue of our more general approach, we will
then be in a position to determine the validity of the low gain
approximation. In this case, the power gain for the Stokes beam is found
from [28] to be:

P \ = P(_s G x r‘;\p e)ca,'x'ls)
sQ s (3e) (“I_- Ty ] (291

where 8(‘(; {=> 1s the (dimensionless) parameter:

(1) = Rty - k' (301
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If we now compare the magnitude of the discarded term in [16] with those
used to define the free-space profile [23], then we find that the low gain

approximation is consistent with the requirement:
P << L(H—m)l(l-t-z") 131a]

which must therefore be regarded as a necessary condition for the validity
of [29]. In this form, the constraint above is rather unsatisfactory since
it depends strongly on the length of the Raman gain medium. However, a
more accurate constraint can be found from comparing the result [291, with
an exact solution for the Stokes exponential gain which we will anticipate
from the results of section 3.3. Thus by expanding the exponential gain in
increasing powers of the normalised pump power, we find it is necessary
that:

w 4
PP << [ 31(\+k)¢] > [31b]

whence in the low pump power domain, [20] gives an accurate measure of the

Stokes exponential gain.
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As the pump-power is increased, the Stokes profile will deviate from the
free-space form given by [23]. Hence the extent of the profile is governed
by the competing effects of diffraction and gain-focussing determined
respectively by the first and third terms of equation [16]. When the pump
pawer is sufficiently high, effect of the gain-focussing is to confine the
Stokes spot-size to an area well within that of the 'guiding' pump, i.e. in

the limit of high pump power we expect:
W@ >> W) (321

The Stokes spot-size can be defined (using [13] and [191, in terms of the
normalised variable q; whilst the pump spot-size can be defined (using (9]
and [20] in terms of the normalised co-ordinate % Thus we may rewrite

(321 as:
-1
A e R e [33]

(If a TEMoo Stokes mode exists, then the imaginary part of q must always
be negetive.) Using [331, [16] becomes:

R L R S P [34]

'azL 2'(1 ( -+ .{L)\.

Ve note that the same result can be obtained by retaining only the zeroth
and quadratic terms in the expansion of le-!* in powers of r in equation
[81. Hence this approach is Jjust that of the parabolic-index profile
approximation considered by Cotter et al (1975). In this chapter however,
we proceed to solve for q without the additional approximations made in
that work.

Equation [34] is a Ricattl equation, and can be cast as a linear second

order differential equation by making the usual change of variable:

. B 4

_lé_v } Y: [\+DPP b

Y o ‘—'L
i 2Rk

L 1351
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v (7)) v

whence: - + = 0 (361
a7 0+
By substitution or otherwise, the solution of [361 can be shown to be:
\/Q\ = Vo{w -zi]% Cos [\(9(13}5) + @ I (371

and V., # are (complex) arbitrary constants. From the substitution in [351,

the complex parameter q can be recovered:

Vv 11
where now ¢ can be interpreted interms of the Stokes parameters at the

entrance to the gain medium:

g =k [7,5 - (r39) 4G | [39]
Y

The equation for the amplitude of the Stokes field can now be derived from
(18] and [17] and making use of [331:

.

al Ln A = - 1 -+ Pf‘
13 AR(1+y))
Again, recalling the substitution in [35] and the result for V(z) in (371,

the amplitude can be written down without further calculation:

AQ) = A(is)[l_*_i?i]y‘ cox(#) exp Ff_:@__l [41]

AR Cos(¥e+¢) 4 1o

The condition [33] can now be stated using (38] as:

[401]

‘Imé PCXEan(Xe-H,ﬁ)‘g >> | 421

Equations [38] and {411, in conjunction with [42], describe the behaviour
of the Stokes field under the quadratic index profile approximation.

Just as for the case of low gain, we proceed with an example maing use of

these results. In particular, we consider the initiation of the stimulated

pfocess from spontaneous scattering at z = is‘ Ve will take the initial
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field to be a Gaussian beam with zero spot-size and zero radius of

curvature, whence from [(39]:

2(3s) = @ -iw [43]

. After a short distance into the gain medium, the complex parameter q from

[38] obeys:
W@ = 1= [44]

Pt

and the Stokes amplitude is:
A(@ = 2LA("L$) S E
vt

The condition for the parabolic index profile approximation is now:

¢ TE
exr,(_:fn + i) E’<’1575)] [45]

KR Im(¥) »> | (461

and in deriving [44] and (45], use has been made of the additional

constraint:

! exp [ -2190(151:)] J >>1 5 ez 3 a-g} (471

This is a simplifying assumption designed to ensure that the cosine terms
in [41] effectively collapse into the dominant exponential component. The
value of ‘Z for which [47] becomes true depends on the magnitude of the
gain: the higher the gain, the earlier will this constraint be satisfied
and therefore will q approach the the particular form [441],

Defining the real and imaginary parts of Q in terms of the spot-size and

radius of curvature (see for instance Yariv, 1975):

Q - & - 2 1481
R:() WAYCS)

then we find that [44] implies that the Stokes beam has a radius of

curvature:
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R, = K"W”[ :L_I [49)
2 7L+ ﬂf—\(,)f)

and spot—size given by:
We = Wi/ [k re(o)] 1501

Hence the Stokes field is a Gaussian beam with propagation characteristics
similar to that of a free-space beam, but with a distorted phase front,

and a spot-size that 1s everywhere narrower than 1ts free-space

equivalent.

Equations [44] and (48] describe the ‘matched mode' behaviour of the Stokes
field in that the complex parameter q(%) and amplitude A(-U bave become
independent of the initial parameter q(3=). This is a generalisation of a-
concept first introduced in this context by Cotter et al. The magnitude of
the pump power, through the left hand side of [47], is seen to determine
how quickly the initial Stokes profile tends towards the matched mode
profile. In fact, if instead of (431, the initial parameter is made to
satisfy the matched mode condition at "l ="23:

_ -y
9.Gs) = 7“—1—_ [51]
V3
/
then the q(l) remains unchanged from its matched mode value throughout

the medium.

_

These results can be compared with those of Cotter et al by taking the
limit for high pump power of the complex parameter given by (341, Under

these conditions, the Stokes power is:

&Q) N 495671/5) e,_r[ Pe "ZZEJ_\"A: 6(151‘3} (52]

where now [46] becomes:

(VN

G > & (531
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Therefore, the results of Cotter et al represent the high pump power limit
of the matched mode solution. Note that by virtue of [53], the expression
for the Stokes power in [52]1 is valid only when the net exponential gain
is greater than zero. Thus the explanation based on this result which was
advanced by Cotter for the behaviour of the Stokes beam at low pump power
is spurious. Note also that (521 in conjunction with (53], describes a
Stokes power similar to that obtained from the low pump power calculation
of the previous section. The first term in the exponent is greater by a
factor (1 + k)/xk, whilst the additional second term represents a reduction
in gain due to the increased diffraction of the Stokes field in the

presence of gain-focussing.
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Following the discussion in the previous section, we seek an exact matched
mode solution to the equations of motion [16] and [17] without making the
parabolic index profile approximation. The result will then be an analytic
description for the Stokes field that will simultaneocusly cope with the
low gain conditions as for example in a multipass Raman gain cell, and the
high gain conditions encountered in a single pass Raman generator. In
either case, the matched mode condition may be arrived at through one of

two routes:
(@) An initially unmatched mode perturbed by the gain medium to a point
where the spot-size and radius of curvature have converged upon that

of the matched mode. From the previous section, we find this condition

will generally be satisfied if:
| exr[-1:(9(13 ’LS)] l >> | [471

(b An injected field which is a Gaussian beam with spot-size and radius

chosen to satisfy the matched mode condition at 3 =3s

The matched mode solution to [16] may be derived from a substitution of

the form:
. € - Up o €
1 — (541
where «, B, and € are real, and § > 0. Upon equating equal powers of i we
obtain:
& = |
(651
oL = \/p"—l
(561
a 2 —
PP = gfteep] Vol
(571

whilst the amplitude now satisfies:
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q_(_wwl'&) ?5 ) Z [581

GH./\A ! [ }3\? P “+ b(ri-*-
KRN

45 (1]

and so the Stokes power is easily found to be:

o) = Ps(is)ezf[ G(P,,, € e)] [59]
where G(lgp,k) is the matched mode exponential pawer gain:
5
“ @
G(ﬁmﬁ‘)@) = 3 (601
2+ kp)
and the matched mode complex parameter q is:
V- -
q = (! F*7 (611

[\ + '(1}
and B is given by the solution of (571. That [59] and [61] encompass the

high and low gain results of the previous sections can readily be seen

from the limiting values for B:

- v / U ~\
Pp small: R = 1~ 7 I + ©( (’93)
M31(1+K§$
e el v
= 6 = 9[ s + e+ C9<(_)(’+) (621
2( 1t k) Calttin)®
e "“{ -
Pn large: B = Pe R @(\(7; "()
2 e
i~ \/\\//1 \A_\ZL
= @:@[fﬁi - o+ o) 1631
V'S K

Note that comparison of the first and second terms in the expansions for
the exponential gain, confirms the constraints for the validity of each of
the results in the domains of low and high pump power in the previous

sections (equations (31b] and [531 respectively).

Ve note in passing that the gain-focussed Stokes beam becomes ever more
confined with increasing pump power and therefore can expect the parabolic
index profile approximation discussed in section 3.2 to give increasingly
accurate results. Thus the coupling between modes will eventually vanish
and the high gain limit given by (59-611 and [63]1 will give the exact
solution to [12]. Further it is recalled that the result first obtained by
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Trutna and ‘Byer is effectively that of a first order perturbation theory
(in the pump intensity) applied to a Stokes field expansion in free—space
TEXww modes. Hence for sufficiently low pump powers, the low gain limit

given by [62] will also give an exact solution to [121.
For the general matched mode result, it may be of interest to know the
spot-size and radius of curvature at any point 'Z in the medium. Comparison
of (541 with [44] reveals that the substitutions:

Re {Y )R [64]

Im<{Y)>2a=/p*-1 [65]

into [49] and (50] gives the general results:

. |
Ry = KeWer | 1220 (661
2 1+ /P-""‘

Ws = Wpe 1671

"
¥

where again B is given by the solution of [57]. The radius and spot-size
at the end of the gain‘ medium can be found simply by substituting 2 =7
into [66] and (67] respectively. It 1s clear from these results that the
radius of curvature and the spot-size are smaller than that of the
equivalent free-space mode which has u = 1 and shares a focal plane with

the pump beam.
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Ve now compare the results predicted by (601, (611 with both the
approximate results of sections 3.1 and 3.2, and the numerical results of
Perry et al. In the following, we will assume that the pump focussing
conditions are such that 6(3;3) = m, and therefore that the Stokes

exponential power gain is given by:

fo o

_ [68]
2 1+ k)

@
P
_b'?
)
i

The equation (571 has been solved for B numerically, and a plot of B8
versus P. for various values of k is given in figure 2. These results can
be used to find the matched mode exponential gain G(ﬁp,h) in [60], and the
spot-size and radius of curvature in [66] and [67]. In figure 3 we compare
the matched mode gain with the gain predicted by [62] and (631, As
expected, it is seen that the limiting cases are satisfactorily modelled as
P + 0 and fp 9 @ respectively. For the chosen value of k = 1, we observe
that the predictions of the high and low pump power approximations are
equal at \f"p = 16 (the high pump power solution thereafter being closer
than the low pump power solution to the matched mode gain). In this aspect
then, this is the point at which the conventional models are least

satisfactory; there being about 15% deviation from the matched mode gain.

It is also of interest to compare these results with those obtained by
Perry et al (1982) (see figure 1 of that work). First it is necessary to
make explicit the connection between the symbols used in their work, and
those adopted in this chapter. Table 1 provides a summary of the pertinent

relationships:
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Table 1

Description Perry et al This chapter

LY
Dimensionless parameter P -

VA
Gain coefficient Gp “f;; / 4
Real part of eigenvalue RL% }7; G P

4 (1t RkB)

Normalised gain Re i)i /GP N

L+ e

In figure 4 we use these relationships to compare the matched mode gain
with the gains predicted by Perry et al (at K = 1) for the first and
second (rotationally symmetric) eigenfunctions. Clearly the matched mode
gain is consistently close to the gain of the first eigenfunction, and the
good correspondence between these results therefore lends support to the
analytic model .and the results (601, [61] and [57]. Encouraged by this
comparison, we present in figure 5 the matched mode gain for various

values of ®k found by applying the numerical solution of (571 to [60].

It is possible to further test the accuracy of our supposition that the
lowest order mode is essentially a Gaussian beam by comparing the matched
mode profile with that predicted by Perry et al. With reference to figure
6, we have used the normalised coordinate r/ws(z) = rﬁc_g/wp (z), and find
that once again, at least for the values Pe = 40 and W= 1, there is good

agreement between the results.
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In this chapter we have presented a novel analytic model for the evolution
of a Stokes field in a Raman active medium excited by a focussed pump
beam. We have shown that the results of this model are valid for a wide
range of pump powers, and that in the limits of high and low pump power,
they reproduce the results of earlier workers. We have therefore been able
to identify constraints which in this context define the domains of high
and low pump power. Excellent agreement has been obtained in comparison

with an exact numerical treatment.
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FIGURE 2

Dimensionless parameter B versus normalised pump power for various k.
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tokes exponential gain as predicted by matched-mode, low gain, and

igh gain theory.
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FIGURE &

‘Stokes exponential gain as predicte& by matched-mode theory and that of

first and second eigenfunctions of Perry et al.
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FIGURE 5

Stokes .exponentlal gain as predicted by the matched-mode theory

versus normallsed pump power for various K.
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FIGURE 6

Stokes profile as predicted by matched-mode theory and that of

first and second eigenfunctions of Perry et al.
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CHAPTER 3

In chapter 2 we investigated the effects of using a focussed pump beam to
drive the Raman active medium. In this chapter the same motivation, namely
that of a reduced threshold for the pump power, will encourage us to
consider the effects of Raman generation in a waveguide. This time the
spatial confinement of both pump and Stokes fields is achieved as each
suffers multiple reflections on its journey down the guide. Once again the
aim is to characterise the behaviour of the Stokes field at the output of
the system in terms of the experimentally adjustable parameters, which in
this case will include the diameter and length of the waveguide as well as

the pump power and focussing conditions.

Raman generation in a wavegulde has a potential advantage over generation
in free-space in that the 'interaction length' between pump and Stokes
fields can be much greater than would otherwise be possible. The process
of tight focussing, which may be necessary to achieve the required pump
intensities, enhances the diffraction of both pump and Stckes beams, so
that the (effective) interaction length remains always of the order of a

reciprocal confocal beam parameter (see chapter 2).

In this chapter we will concentrate on the application of hollow dielectric
waveguldes (capillaries) to Raman Scatfering in gases, and thus hope to
produce some results relevant to the experimental work at Southampton
University <(see for instance Berry and Hanna, 1982, 1983). The first
reports of the use of capillaries in Raman Scattering were by Rabinowitz
et al (1976) and Hartig and Schmidt (1979), the latter reporting greatly
enhanced efficiency through a reduction in pump threshold power.
Theoretical analysis of Raman Scattering in (non-metallic) waveguides has

been attempted by Yeung and Yariv (1978) and more recently by Urquhart
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and Laybourn (1986). Although these two references deal with approximate
techniques for the generation of Stokes fields in glass fibres, the
simplified numerical model of Urqubart and Laybourn will be shown, under
most circumstances, to be applicable also to the generation of Raman
Scattering in capillaries (this is possible because terms -  which they
employ to describe the wavelength dependent material absorbtion within the
fibre may alternatively be used to describe the non-equal losses suffered
by the pump and Stokes fields on reflection at the waveguide walls).
However, unlike Urqubhart and Laybourn, we will be concerned with the
stimulated scattering process in the small signal regime so that depletion

of the pump field can be ignored.

In section 2 we present an approximat‘é model for the propagation of a
field in a glass capillary and in section 3 we show how this theory can
be applied to the description of both the pump and the Stokes fields. Ve
conclude in section 4 with a discussion on the choice of optimum guide

characteristics for a variety of experimental scenarios.
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In this section we will make use of both the classical mode theory of the
dielectric waveguide (see for example Marcatili and Schmeltzer, 1964) and
the Lagrangian formulation of the general inhomogeneous problem. We will
borrow from the results of chapter 1 +to obtain a Lagrangian density
incorporating the non-linear Raman polarisation which will then be solved
by the method of calculus of variations. First however we must discuss the
behaviour of electromagnetic fields in an empty capillary in order that we
may understand the behaviour of the pump field and also be in a position
to later suggest suitable trial functions for the approximate (variational)

Stokes field.

Figure 1 depicts the dielectric waveguide referred to in this chapter. The
axis of the guide is made to lie along the z axis, and the core region has
a radius 'a‘, whilst the cladding is supposed large enough to be considered
as infinite. The classical modes of a dielectric guide are found from
solving the Maxwell equations in a cylindrical polar co-ordinate system.
For consistency, we will briefly show how these modes can be derived from
the Lagrangain density of chapter 1 where now there is neither refractive
index variation, nor nonlinear polarisation of +the medium. The Euler-

Lagrange equations in such a case are easily found to be:
0a = 0 YA = 0 (11
and we recall that A is related to the electric and magnetic fields thus:

B = ¥YXA [21

E —~8A/6% [31]

By simple manipulations, it is easy to show that B (and therefore H) and E

also satisfy the wave equation:
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OB = 0; YE = 0 [4]

OE

]
o
1<l

E = 0 {51

and now: VIE = -p.6H/6t (6]
It follows f{from the above that just two of the six components of the
electromagnetic field are independent. Traditionally, these are taken to be
the longitudinal fields E. and Hz. Before we write the remaining fields in
terms of these two, it is convenient to remove the Fourier components

describing the z, t and 8 variation of all the fields:
EH ~ explet - iz + 1ive) [71

The sign of B is fixed indicating a forward propagating wave, whilst v can
take either sign. Making use of the above and relations [4-6], it is now
possible to express (in a closed form) the remaining fields in terms of
the longitudinal components:

‘[M» b+ op Y

[

a2l
-
1
I
“cl»

(sl

m
&
1

wl
oY

o Buz B}
b FVE] (9]

)

[
Hr = %‘ ]- ic.uoE -[,{131-\,.]
[

3 [101]
Hp = 2T tareowdE
0 = |t tewiE, i b | [11]
wr
where Ex and H. are found from:
(:_b_’ P N R m](E u) - 5 [121
2 -— — L ] z
3 RY, e a”

In this chapter the wavenumber k is just 2n/), the refractive index at
both the pump and Stokes frequencies is taken to be n: in the core region,

and nz in the cladding.

Equations [12] admit solutions of the form:
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(Ex =) ~ Jo(ur/a) and K. ur/a (131

i.e. Bessel functions of the first and second kinds. Here, u is a

dimensionless parameter given by:
u = aln,®k=® - = {141

The appropriate solutions must be chosen with due consideration given to
the boundary conditions on each of the field components. In practice, it is
usual to solve the propagation problems in the core and cladding regions
independently, and then derive the eigenmodes from applying the continuity
conditions for the fields at the waveguide walls (l.e. the core/cladding
interface). In our case, we bhave nz > n1 so that a mode of the core also
has an oscillating component in the cladding - i.e. the 'core modes' are
not praoperly confined by the guide. However, by insisting that the fields
vanish at some large <(but otherwise arbitrary) radial distance from the
guide axis, we ensure that only one of the two types of solution is
permitted in the cladding. This in turn creates the desired eigenvalue
problem by virtue of the boundary conditions on the fields at the core-
cladding interface. The problem is thereby considerably simplified without

compromising the basic results.
The appropriate solution for the longitudinal field components in the core
region is the non-singular Bessel function of the first kind. In the

cladding region, following the discussion above, we retain only the Bessel

function of the second kind:

Jo (ur/a)d icore
}El W, i -
K. (wr/a) icladding (18]

where w is a dimensionless parameter given by:
w = alf® - na@k=] | (161

The definition of w is borrowed from the theory of propagation in fibres

where usually nz < n.; in our case w is imaginary.
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Combining (71 and [15] gives two distinct solutions which may be

substituted into the relations [8-111:

j},,(u ~/a core

? L b ! LWy \‘PL WO 3\'\(:‘

where A and B are constants.
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It can be seen from our choice of normalisation that both E: and H: are
continuous at r=a (for all 8 and 2). In fact the boundary conditions on
the electromagnetic fields in a dielectric waveguide are that the
tangential components of both fields are continuous at the waveguide
walls. Thus it remains only to ensure that Ee and He are continuous at
r=a. Substitution of (171 into [9] and [11] and application of the

continuity condition gives:

% = -E_"_J_\:" \"t:“ [3.\:(9\ (wz I ":VP . U"’-rw [ /1 :\(Q)) +(\1 K‘(Lw -l [18]
RY VWl R uT,) w Kl Wi,  wiw VIV W k)

The above implies both a relationship between the coeffiecients A and B,

and a constraint on the possible values for B through u and w i.e. the

above determines the eigenvalues for the propagation problem in a

dielectric waveguide.

Modes propagating in a capillary waveguide suffer losses on reflection at
the waveguide walls. It will be seen that the extent of these losses
depends on the radius of the core region and the wavelength of the
propagating radiation: the losses are low when the ratio \/a is small.
Generally we may assume that the capillary has been designed so that

losses are small and will therefore be justified in assuming:
ka » 1 {19]

For sufficiently small values of u given by the solution of (181, the abave
implies that:

[201]

This in turn implies that, for sufficient refractive index change nz—n., w

is large and therefore:

E W)/ w) = 1 [211
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Making use of these inequalities in (18] and evaluating the derivatives
therein (Abromovitz and Stegun, 1970) results in a simplified eigenvalue

equation:

R A L Uit B FRVER SEVIn N S ST N v*
. S " 2= 1221
T ) w

I, ®) nt W

Expanding the quantity Joz:(/ul. () in (negetive) powers of w gives to

first order:

Lt

L& = v (23]
U Toé’,) ak /A, - N, ‘
3.v) >~ (Nt {(24]
U J.(©) ak n};n;-n}

o) o + 0 ( n« q“) {251

L Ive) 2aX 0} [ar_as
The equations [283] and [24] correspond respectively to TE and TH modes,
whilst [25] corresponds to the EH/HE modes of the dielectric waveguide.
Equation [21] implies that the fields are small in the vicinity of the
waveguide walls and therefore the particular values of u (and therefore §)
that solve the equations above can be found by expanding the Bessel

functions about the value of u‘=’ such that:
cJerr U=y = 0 {261

whereupon we find that an approximate solution for each of the roots of
[26] is:

© ) I : L’
AR l v — (271
ak/ﬂi‘ -,
' TE modes
n;' ~
where b = * / AR TM modes (28]
(n) « 0 )/ 2 EH/HE modes

- B3 =



Ve recall from [14] that § is defined in terms of the parameter u:
B = I[m=k=® - u2/a%l»*
= nm kil - BW > /an k) =] {291

Since [20] requires that $§ is not much changed from n.k, the above implies
that this analysis is valid only for modes with:

uc=> g ﬁamk (301
Of practical import are the losses suffered by the various modes at the
waveguide walls. Thus we define the exponential loss coefficient for the
electric field intensity:

a = -2Im({® {311

which, from [29], [20], and [27] is found to be:

ry
a = 2]V9° b [32]
ax an, n:-nnl
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Before proceeding to the variational theory for Raman Scattering in a
waveguide, it is convenient to make explicit the simplified form for the
field components within the framework of the wide bore approximation.
Making use of [17] and [20] in equations [8-11] and neglecting terms of
the order X\/a, we find for each of the roots of [26] the fields in

cylindrical polars are:

IE = (_E)ﬂ)wexl,[iultﬂu|32+ive] —51(“‘:")]"8‘{05\305‘“1/;}%-\0391 331
M = (E,ﬂ)mexr[iwk—\lfﬂz*‘ CV@] Tu(%f) :Tu-,@)[l701 030.)Y\|_£ti:.)oi( [34]

EH./HE. = (:Fnﬁ )~ exp [ L‘Wt‘@ﬁz*';V@:[ Ivrxg)l::(u) [1,:&(, 0,tun, ?H: \ n,ﬁ;,\ol [35]
Having recovered the allowed values for both the real and imaginary parts
of B from the eigenvalue equation, it 1is convenient to pretend that the
fields vanish at the waveguide walls and so treat the parameter u in the
arguments of the Bessel functions as identically satisfying [261.
Accordingly we drop the normalisation coefficients J.~'(u) (which are

effectively absorbed into the field amplitude coefficient).

A further simplification is possible if we note that by taking linear
combinations of the form %(EH.-1 * HE.+:) we can construct from [33-35]
linearly polarised modes analagous to the TEM.w modes of free-space.
Denoting the roots of [261 by u.n, we define the modes in Cartesian

vectors:

LB = exp [iwb-ifuazeive] TQL) (1,0, 0,0, n/@ X3 (36]

LPJn eep [k - Lpyeive] Tv(”ﬁ)[ 0, 1,0, -n./_?2 ,o,0] @7
a t‘o -

for the LP modes with x and y polarised electric field components

respectively, where S 1is given by (29]. These are just the linearly

polarised modes of the weakly-guiding approximation of fibre-optics

(Adams, 1981). Note however that here we do not require Inz - nil small,
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but rather the results [36,37] are based - instead on the large Dbore

approximation {191,
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Vithin the framework of section 2, we deduce that any field in the core

can be written as a superposition of the LP modes:
- 1 .
fg,gi = fteg{;qv‘:{._"”*«q“l:jvﬁ% y T%a 1381

where the field outside the core is supposed to be zero. In the small
signal regime, the depletion of the pump beam is negligible and therefore
the susceptibilty at the pump frequency is 1linear. In this case the
coefficients a.n» are constant, and are determined by the field at the

entrance to the guide:
gol‘w Soq E).-( 6,e.0, ’7) e«a{s(~l:L\)["\\.\/@) SV(UVAP/O\> cdr d@

\.sz Vroq IVZ(UW\ "/a) rl;ll‘d@

and also for the orthogonally polarised fields.

ag, = (391

Ve are now in a position to determine the pump field &istribution at the
entrance to the guidt_/ that in some sense bptimises the -ooupling into the
guide modes. In practice, the free-space pump field will be a TEMoo beanm
so that the problem is resolved upon determination of the optimum spot-
size and radius of curvature at the guide entrance. The losses indicated by
(32] can be shown to be minimised in a quartz guide (nz==1.5, n1=1.0) for
the HE::1 mode (Adams, 1980), In our formulation, this means that the LPo:
mode 1s the most favoured in terms of the coupling of free-space to
waveguide modes. Fortunately, nearly all of the power in a TEM.. mode can
be coupled into the LPo: mode; with the optimally chosen beam parameters,
the coupling coefficient can be as high as 0.99 (Abrams, 1975). The
optimum TEM.. mode has a focus at the guide entrance (z=0) and a spot-

size related to the guide bore by:

Wwa(0d/a = p = 0.66 {401
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V¥ith these focussing conditions, we will have a pump field in the
waveguide which propagates almost entirely as an LPo: mode with minimum
consequent losses. Using (Abromovitz and Stegun, 1970) uer = 2.405, with

nz = 1.5, na» = 1.0 for a quartz capillary, and recalling:

(V) (e )

a = (metres—1) (411
K*a> /n2 -
we find the minimum losses for the pump field are:
s = 0.430%/3% {421

Ve will assume henceforth that the free-space pump field is a TEMoo mode
and the focussing conditions are such that [40] is obeyed whereupon the
pump field in the capillary is very nearly an LPo1 mode with exponential
loss given by (421,
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The Stokes field no longer satisfies equation [1] but instead is perturbed
in the guide by the presence of the pump induced Raman polarisation. The
magnitude of the polarisation term is proportional to the pump intensity
which, for the LPs: mode, is:

—

&

I, = Ic“ Q\cr[— xz][}'o(uo. P)lz . [431

Just as in previous chapters, we find the the Raman polarisation induces
an effective refractive index at the Stokes frequency that varies both
radially and longitudinally. We now use the fact that the projection of the
LB~ modes onto any cone dimension form a complete set of functions within
the core of the waveguide. This is true of course (for a fixed polarisation
of the LP mode) for either the transverse electric field, or the transverse
magnetic field, but not for both. However, it is clear that the MHaxwell
relation (i.e. equation [6]) fixes the relationship between the transverse
magnetic and electric components within each mode, even in the presence of
an inhomogenecus electric susceptibility. Therefore the perturbed modes of
the waveguide must retain the same relationship between the field
components, so that provided we remember that the magnetic field
components of the Stokes field are given by (6], we can concentrate solely
on the electric field. It follows from this discussion that the
completeness of the LP.» modes can be extended to two dimensions by
allowing the coefficients al?% and aJn to become functions of z. Combining
aow and aJn into a single (transverse) vector aunw(@2) = (ax\,a\?ﬁ) we
therefore have:

£, = Re § Zu auatn) exp -tz eive] T(U)% [44]

v, A —_
&

where E= 1s a complex amplitude of the Fourier exponential, i.e. in this
chapter, the total electric field is:

E = Re {EsexpUwat) + Esexpiwnt))

_.69..



It is easily seen that the form given by [44] is both sufficiently general,
and satisfies the appropriate boundary condition, for a Stokes field
propagating in a Raman active medium with a pump intensity which is a
function‘ of both r and 2z. Due to +the anisotropic nature of the
'susceptibility matrix' (see chapter 1, section 3), we need only consider
the Stokes field with a polarisation colinear with that of the pump field.
However, note that the orthogonally polarised component will always have a
magnitude at least of the order X=/a times that of the principle component
by virtue of the residual terms neglected in the LP formulation of the

wavegulde modes,

In order to determine the coefficients avw(Z), we once again adopt a

variational approach based upon the Lagrangian density of chapter 1:

- (AR Ra ey e e 208
T an A ~y e ! RE . :;J [45]
where E = -6A/6t and H = p-YXA [46]

and the polarsiation at the Stokes frequency, is (section 3, chapter 1):
Bs = €a(na®™1)Es + (S/Z)EQX‘R”IE‘:PEE;. B = Re {Bsexp(iwst)} [47]

where x‘f” is a diagonal matrix representing the combined effects of the
Raman Scattering susceptibility tensor and the polarisation of the pump
field. Note that [44] with a.w~ constant finds the minimum of the

Lagrangian associated with [45] when the pump intensity is zero.

Vriting [45] in cylindrical polars and invoking the =zero divergence
approximation (chapter 1, section 4) gives the Lagrangian density for the
electric field at the Stokes frequency:

1 +‘l gs
&lNhe

Ve now proceed noting that terms varying as exp(iwt) and exp(i(v-w8)

ME,

= ' - g wog Es
Y

[ =

ME.
Tz

T
-

Lo

4{0'-3;'

N
35T K¥e  E, 7_(‘@)5*,‘1][48]
4 [l ~ -

(v#4) vanish on integration, and assume that we need only retain the

component of the Stokes field polarised colinearly with the pump (taken to

_70.-.



be in the x direction for definiteness). Thus upon substitution of [43]1 and

[44] into the above, and using [29], we obtain:

| = -;;cu? gauj:d;{% H;m@imj,[

o

da

3 *
+ 2B Re§az ?_@2&]
L 2z

V=

2 at:j;&;—; [ﬁ;‘m Iw(t%n):m(u%p)y(v%r)”%i

EP° 11 x@) e"ﬁ-z’+£ (Bv: £..) {]E[ 401

Ve now define the constant C\:m which is the matrix element of the

perturbing potential induced by the pump field:

Cow = Jadee IA(L’;;P)TW@LJ ) 3‘(0_&!‘) (501
[0r 3] [T Ty X
a T -
where j dr o T, (U\mﬁ) I s R (VW P (511
3 T 2 —_—Ov"
i.e. Crm = ZU,, Usm Ty:"{_uv,‘)]'v._:(}hm) YO‘ de gvn(u“x):rw@mx)q-:@,, )

The matrix Cam for n,m € 10 corresponding to the coupling coefficients for
the circularly symmetric modes has been evaluated numerically using an
extended (adaptive) Simpson's rule for the integration, and a successive
approximation procedure for the Bessel functions (Abromovitz and Stegun,
1970). The results are given in table 3-1. From table 3-1 we find that
{Com} 1s a band matrix indicating that coupling takes place only between
'adjacent' modes. Note also that the ‘'overlap integral! Ci1 = 0566 is close
to the value that would be achieved if the pump and Stokes fields were
both TEM.. Gaussian beams (this is easily found to be 0.5).

The 2zeroes uom o0of the Bessel function Jo(x) have also been found
numerically and these are given in table 3-2. The numerical technique
employed was the Newton method seeded by an algebraic approximation far
each zero (Abromovitz and Stegun, 1970), and once again a successive

approximation technique for the Bessel functionms.
Upon substitution of (501 into [49] and making use of the paraxial

approximation (chapter 1, section 6) we obtain the Euler-Lagrange

equations for the coefficient ach(z):
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2P 100 = 3 ws )C@,f [Epo " 2% a2 Com Tot ltum) e_,(,,[t@,\- Fea)z-dnz] 1521
dz 2 < " Tt (Uva)

It is clear from the above that the matrix Com introduces coupling between
each of the LP modes at the Siokes frequency. Ve can employ however a
simplifying approximation which consists of ignoring inter-mode but not
intra-mode coupling. With reference to the discussion in chapter 2, it was
clear from the work of Perry et al (1982) that this approximation was not
applicable to the TEM.. free-space modes. But it will be appreciated that
this was because the inter-mode phase coherence length could be as great
as the effective 'interaction length' between the pump and Stokes fields.
In a waveguide haowever, the interaction length (nominally 1) could be much
greater than the coherence length (nominally 2n/{RBvw~Rum), n#m). Therefare
we conclude that if the gain for each of the waveguide modes at the Stokes
frequency is sufficiently small (i.e. G. « ks) then we are justified in
retaining only the diagonal terms of the scattering matrix {Com} in [52]

provided:

for all v, m # n: 1 » 27Bem — Bunl™' @ # ) {531
Also noting that:

foz; all v, m # n: Minlum® - uwn®l =  |Uoz® - UoqZ| - 24.688 (541

with reference to [14], we {find that (53] and [54] require that the

waveguide is long enough to satisfy:
a%/1xa « 0.3 (551
which is easily achieved in the experimental conditions under
investigation. Vithin the framework of this 'long waveguide' approximation
we may integrate the now uncoupled equations in [521 to give:
2un(Z) = aun(0)explhGunZere] (561

where  Gun = (/2)Im xR YkalEnol2Cnn/na 571

is the exponential gain, and
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Zatt = [1 - expCapz) /o (581

is the effective length of the medium, where on is the loss coefficient for
the pump beam and we have used [19]. Generally the pump power will be
fixed and therefore it is convenient to express the abave using (39] as:

G Co¥ePe/ (2a=ka) (501

.

where Pe B/72) Im{x " ha® I Epul®Wna™/14 (601
wx .

n

is the normalised pump pawer introduced in chapter 2.

Note from table 3-1 that the growth Gu. is a maximum for the LPo: mode
whence Crn = 0.566. Thus the pump mode that optimally couples into the
guide (TEMwo/LPo1) also maximises the growth of a single ' (circularly

symmetric) Stokes mode within the guide (i.e. the LFo: mode).

From the analysis of this section it is clear that we are able to treat
the Stckes field as a series of independent modes growing at a rate given
by equations [56] and [57]. The net gain experienced by each mode however,
is a combination of the Raman gain and the losses suffered on reflection
at the waveguide walls. Recalling equation (441 then, we can write the full
Stokes field as:

Ea Tom 8om(00Jun (Uunr/adexpl iv0 + lwst — ikez + %¥um lew (611

I

L Gvnzeff - =2 ] (621

where Yon

is the net Stokes exponential gain, and alh(0) is the (supposed) injected
amplitude, of the LP.. mode polarised colinear with the pump field, and ow
is the exponential loss at the Stokes frequency. This result has been
anticipated by Berry and Hanna (1983) and used to obtain predictions in

good agreement with experimental results.
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Before we can assess the efficacy of the waveguide, say in comparison to
the focussed pump beam method of chapter 2, it is necessary to consider
the effects on the Stokes gain of varying the parameters at the
experimentalist’'s disposal. Once again, we are mostly concerned with the
choice of parameters that minimises the pump power necessary to attain
some fixed threshold, In this section then, we will show how the variation
of these parameters affects the net Stokes gain, so that an optimal choice
can be made consistent with constraints on the design of a particular

Raman laser.

The gross behaviour of the net Stokes gain may be determined from

equations (58,591 and [62]. The main feature is the competition between the

effects of guidance and enhancement through Gun - which increases for
small bore radius (equation (59]) - and the losses suffered at the
waveguide walls through o= and Zarr - which for large radii are less

important, but which increase rapidly as a -» 0. Clearly therefore, for all
other parameters constant, the net gain has a distinct maximum for the

optimal choice of bore radius.
The situation can be further clarified by reference to a graphical
representation of [62]. Firstly we define a set of normalised co-ordinates
{%1,X=z,x2} which serve as a vehicle for expressing the degrees of freedom
available in the design of a waveguide laser.
Let Xa = K®Y¥on ) k= ks/kp (631
be the net exponential Stokes gain (scaled by =),

X2® = el [64]

be the {(exponential) pump losses, and

X T REGonXz/ox [65]
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iz the new normalised pump power. Then (62] can be written:

Xxa = X[ 1 - expCx2®)1/xz - x2® (661

The choice of definitions is motivated by the need to decouple the
dependencies of the {x:} on the intrinsic design variables which are here
taken to be guide bore and length. Thus only xz depends on a, and whilst
baoth x: and xz depend on 1, the mutual coupling is linear, so that a
straight line through the origin in the (x.,x=) plane represents the locus

of x1,xz for varying 1 and fixed a.

In terms of these parameters, for the LPo: mode in a fused silica guide,

with nv = 1 in the core, the {x.} are:

X1 = 0.36Ps( AoZl/ha® )17° . 1671
Xz = 0.75( \p=l/a® )1/ 1681
Xa = Yo1{ A=/ he® ) (691

Vith these definitions, the projection in the (x1,x=) plane of various
values of x= given by [66] is given in figure 2. With reference to figure

2, we can make the following observations:

1> The net Stokes gain increases monotonically with pump power for fixed

1, a.

2) The net Stokes gain has a single maximum at some bore radius for
fixed ?p, 1.

3) The maximum net Stokes gain (for optimal a) is a monotonicly

increasing function of 1 for fixed Fp.

4) The pump power required to attain some net Stokes gdin is a

monotonically increasing function of that Stokes gain for fixed 1, a.
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5) The pump power required to attain some net Stokes gain has a single

minimum at some bore radius for fixed ?p. 1.

6) The minimum pump power required to attain some net Stokes gain (for

optimal a) is a monotonically decreasing function of 1.

More specifically, we can outline a set of procedures using figure 2, for

various optimisation schemes as follows:

a) Find the optimal bore radius and length that maximise the Stokes gain

for fixed pump power:

From the third of the points abave, it is clear that the maximal Stokes
gain increases without limit with increasing 1. This suggests that a guide
of the maximum tolerable length lwas is chosen. In practice it will not be
just the physical dimensions of the guide that detemine luwaw. We note from
figure 2 that the optimal choice of bore becomes progressively more
critical with increasing 1. Also, the losses suffered from (as yet
unaccounted for) imperfections in the guide, including bends, will
undoubtedly take their toll as 1 increases. Given lwawx, We can determine
x1 (max) from [67]. Then a line x: = x:(max) in figure 2 determines

xz(max) and therefore the optimal bore via x=z.

b) Find the optimal length of the guide that maximises the net Stokes gain

for fixed pump power and bore radius.

In this case we can draw a line through the origin of the (x1,xz) plane at
an angle 6 = tan™'(xz/x:1) which according to equations (67] and (68] is
tan~' @\s/(aF=)). The point on the line that maximises x= detemines the
co-ordinates (xz,X:) and therefore 1. It is easy to show from (66] and
definitions [67-69] that the optimal length is:

lapt = AX=2")1ln(x1/x2) [701

2.4 (a%/7\>2) 10 (@Pp/ (2ha)) [71)

[

i.e. lr_'q:-t-
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t is clear from figure 2 that in most cases, unless the pump losses are
very high, the net Stokes gain continues to increase with 1 beyond x= = 45
when the bore radius is fixed. Although [71] suggests that there is always
a distinct optimal length, once again design constraints may dictate a

maximum tolerable length before this value is reached.

c) Find the minimum pump power necessary to attain a fixed threshold for

arbitrary guide bore and length.

Here we have x=z given, and x1, Xz to be determined. With reference to the
sixth point above, it is clear that we must again choose 1 to be the
maximum tolerable length. With reference to figure 2, the minimal pump
power is then determined from the point of intersection of the line x: =

constant which is a tangent to the curve xz = constant (given).

d) Find the minimum pump power necessary to attain a fixed threshold

given a guide of fixed bore radius of arbitrary length.

From point b) above, we note that the angle 6 of a line through the origin
in the (%.,x=) plane is a monotonically déoreasing function of f'\p.
Therefore we seek the maximum angle of such a line that passes throu(éh
the curve xz = constant (given). This line is just the tangent to the curve
x= = constant, the point of intersection determining the optimal co-
ordinates (x:,xz) and therefore the minimal pump power and optimal bare
radius. It may be verified with reference to figure 2, that this

optimisation procedure is consistent with the approximation:

Yor = Gorv/oe (721
which in normalised co-ordinates is:

Xz = X1/X= (731

Thus within this optimisation scheme, the net Stokes gain for the LPo;

mode is approximately:
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Yor = (Pa/2K).(a/rs) [74]

Ve conclude this chapter with an example comparing free-space and guided
Raman Scattering. At least for the scheme d) above, and recalling the
results of chapter 2 for Stokes gain using a focussed pump beam, we note
that [74] predicts a reduction by a factor of order a/On) in the pump
power necessary to attain threshold in a waveguide. However, this is only
a very approximate comparison, so that we now proceed with a hypothetical

example as follows.

Suppose that we require the minimum pump power required to reach a
threshold Stokes intensity given by a gain factor of exp(40> for Raman
Scattering in Hz gas with X = 1.06ym whereupon the first Stokes has a
wavelength s = 191um. Let us also suppose that practical design
considerations dictate that lwax = 1m. In the tight-focussing high pump-

power regime of free-space generation, we have from chapter 2:
¥ = nPe - 2/?,:‘)/(2&) 1751

which with ¥ = 40 and k = 0.55 gives P = 24 for threshold. (This value
confirms our supposition that we are working in the domain of high pump

power).

In the waveguide, for the LPo:1 mode we have Xz = ¥2¥o1 = 12. Vith
reference to figure 2, and executing procedure c) above, we find the
intersection co-ordinates to be (x:,xz) = (17,1.0). The value for x= gives
the optimal bore radius from [(68] to be a = 80jim. The value for x; gives

the minimal pump power from [67] to be P = 1 for threshold.

Thus we conclude that, even in consideration of the design constrainfs on
the choice of guide length, Raman Scattering in a waveguide confers a
significant advantage in terms of reducing pump threshold power compared

with Raman Scattering in free-space using a focussed pump beam.
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n\™

1
2
3

4 -

© 0o 9 O U

1

0.566
0.271
0.013
0.001

Table 3-1

2 3 4 5 6 7 8 S 10
0.271 0.018 -0.001
0.485 0.256 0.013 -0.002
0.256 0.478 0.253 0.013 -0.002
0.013 0.263 0.476 0253 0.018 -0.002
-0.002 0.013 0.253 0475 0.252 0.013 ~0.002
—-0.002 0.013 0.252 0.474 0.252 0.013 -0.002
-0.002 0.013 0.252 0.474 0.252 0.013 -0.002
-0.002 0.013 0.252 0.474 0.252 0.013
-0.002 0.013 0.252 0.474 0.252
-0.002 0.013 0.252 0.474
Table 3-2
Zeroges of Jo(x) for x>0
n Uon
1 2.405
2 5.520
3 8.654
4 11.792
S 14,931
6 18.071
7 21.212
8 24 .352
S 27.493
10 30.635
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FIGURE 1 '

Co—ordinate system and parameters associated with the waveguide
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FIGURE 2

Curves of constant normalised gain (x3) with normalised pump power (xl)

and pump losses (xz) for a Stokes beam in a Capillary Waveguide.
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CHAPTER 4

The Stimulated Raman Scattering steady-state plane wave gain coefficient
Gr, discussed in chapter 1, section 7, depends on the pump field only
through the intensity I.. If the pump laser is pulsed (rather than c.w.),
then the maximum energy in each pulse will be determined by the output of
the flash-lamp and the efficiency of the laser. Thus, it would seem
possible to control - and therefore increase - the value of G through
control of the pump laser pulse width. If the gain coefficient is to be
maximised, then we will need to know the extent to which the steady-state
result - and therefore this line of reasoning - can be trusted. We will
also need a more general theory capable of describing the behaviour of a
Stokes field when the Stimulated Raman Scattering process is no longer
steady-state. Much work has already been done in this field, and so
leaving aside the technical aspects of short pulse generation, we will

concentrate on some of the more neglected aspects of the problem,

It is possible to identify {wo extreme regions in the time dependent
behaviour of the BStokes field which are analagous to the plane-wave and
tightly focussed domains of free-space Raman Scattering (chapter 2). If
the steady-state regime is likened to the plane-wave case of that chapter,
then the tightly focussed pump beam <(i.e. spatial confinement) may be
likened to a transient limit for short pump pulses (temporal confinement).
0f very general interest, we investigate In this chapter the advantages
offered by a system that is neither steady-state, nor plane-wave. In
particular, we will use some of the ideas introduced in chapters 2 and 3,
and some of the familiar results from the field of time dependent Raman
Scattering, to describe the behaviour of the Stokes field in a medium

excited by a short, focussed or guided, pump pulse.
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In this work, we make use of the semi-classical model of Stimulated Raman
Scattering which is discussed for instance in Yariv (1975). The full
quantum mechanical treatment has been given in Penzkoffer et al (1979).
Perhaps more usefully, Raymer and Mostowski (1981), have restricted the
quantisation of the electromagnetic fields to that of the pump laser, while
considering in some detail the spontaneous initiation of the Stokes field.
In chapter 1, section 3, it was assumed that the classical third order

susceptibility was sufficient to describe the polarisation of the medium at

the Stokes frequency:
Eg = Eu (ngl—l)E_s + (3/2)6::-)(‘3 3 <—0.>g 1O s~ W ’QQ&)E:IE:\:":E_\'S [1]

In this chapter, we assume that the Stokes field is polarised colinear
with the pump (taken for definiteness in the x direction) and therefore
retain the scalar formulation of the field equations. Equation {11 however
is valid only in the steady-state limit; for a more general description of
the time dependent behavior of the Stokes field, we must return to the

molecular oscillator, and its interaction with a time varying pump field.

In our semi-classical description, we let Q be the oscillator coordinate
identifiable with the expectation value of the quantum mechanical dipole
operator. Raman Scattering takes place when the polarisability «, is a

function of the dipole length; i.e. for each of the N oscillators:

o = e t QUa/EQ) lamo (21
where the susceptibility x = No and N is the number of oscillators
within the region under consideration. Thus the energy density of the
dipoles in an electromagnetic field is

%(1+X)EOE2 = %Ea (1+H<ao + Q(Sa/6Q)|CQ,=¢3))E2 [3]

(Here we are working with scalar fields; the extension Q is taken to be

measured along the direction of the field vector E.)
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The force exerted by the field on each oscillator is therefare:
F o= Y%eo fa/SQE= - (4]

Hence the coordinate Q is modelled as satisfying an harmonic oscillator

equation with a forcing term proportional to [41:

H
J’_Q P dR e = £ Px ET

Qb & 2m 3@ !

where w. is the resonant frequency of the oscillator, m its effective mass,
and I'a is the collision induced damping. The reader is reminded that this
approach is justified only when the fractional change in the population of
the quantum mechanical ground state is small, whence the Heisenburg
equations of motion for the dipole operator are linear in the forcing term
given by [41.  Thus equation [5] becomes invalid when the scattering starts
to appreciably deplete the active medium. Note also that the spatial
derivatives that would be present in a wave equation involving Q have been
ignored in this treatment. This neglect is justified by the relatively low
velocity of the <(optically induced) phonons in the Raman active medium
(which in our case is a gas), i.e. each oscillator can be considered as

uncoupled and independent from its neighbours.

If we now suppose that the field is composed of mainly two components E.
and Ea at frequencies o and ws = wp - w. respectively, then the
oscillator is driven most effectively by the cross terms at the resonant
frequency. As in previous cases, we extract the major components of the
time and space variation whilst leaving a slowly varying amplitude to

absorb any deviation from a purely sinusoidal behaviour:

Q- Re §me’£w,t§

N ‘_.K kN .
E - R,Q E es e,Lwa sz + epacupk —uK‘.z§

where ke = Wule/c, Kp = 0phe/c, and ov » Ta. £61
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The equation of motion for the slowly varying amplitude q is now:

dg/dt + Taq = -ik:*enes™® [71

where kq* el (6&/6Q) I-:q-=0 Lo/ (Bmw) {81

and corresponds to the {(quantum mechanically derivable) coupling constant

(Penzkoffer et al 1979):

- 1
- i P"'\ tJ"ﬁ + :
K, m T Dmg =, Wimq * b3 o]

Note that the steady-state limit is just that of dq/dt - 0 whence:
q = -1 *Taleges™ (101
is constant in time.

€= and és may contain spectral components with a combined bandwidth much
greater than la whilst retaining their status as slaowly varying envelopes
for the optical frequencies wr and ws respectively. Thus [7] is a useful
starting point for our discussion of the temporal dependence ‘of the
stimulated process. VWe now follow Raymer and Mostowski <(1981) and
introduce a Langevin function F(r,t) that is responsible for the collision

induced fluctuations:

dq/dt + Tag = -iki*epea™ + F (111
Unlike Raymer et al however, our function will be used to describe
initiation of the scattering process in the volume defined by the active
medium, Thus we have:

FEtOFe @)y = 2Ta/p)8@ - £t - tH

Q@"Og*@,0> = A/p)s - " (121

and p. is the molecular volume density.

_85_



The Langevin force iz introduced in anticipation of the need for a source
capable of initiating the scattering process when there 1s no
electromagnetic field injected at the Stokes frequency. Once within the
stimulated regime, the quantative bevaiour of the Stokes field is almost
indifferent to the type of process, spontanecus or otherwise, assumed
responsible for the initiation. The precise definition of F should
therefore not be taken too seriously; (there are for example diff-iculties
in assuming that the fields can be written as a slowly varying envelope

times a Fourier component whilst F obeys [1211).

It now remains only to describe how each oscillator contributes to the
total polarisation of the medium. It can be seen that the non-linear
polarisation of the mediium depends on q through [2] and [6], At the Stokes

frequency, the polarisation will involve products of q and €:
PgtN-2> o g¥epexp{dilwst ~ kaz)) [131]

Again we follow the notation of previously published work and define the

modified coupling constant:
k= = ¥$Hpohoski*/(eac) [14]

The Maxwell equation for the slowly varying amplitude e« under the

paraxial approximation can be written, using [131 and [141:

2 x .
g?—o-v* ‘:’51 T %-L+'AZS%ZI fes = "2‘%“1%*6P [15]
Equations [15] and [11] are the coupled Maxwell-Bloch equations for the
atom - field interaction. They form the basis for the subsequent
discussion in this chapter on the temporal characteristics of Raman
Scattering outside the steady-state regime. It is appropriate at this point
to note that there 1s a reciprocal polarisation at the frequency ww., which
involves products of q and €=. As in chapter 2, this component is ignored

thereby confining our analysis to the small-signal regime.
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There has been no published work known to the author which attempts to
treat simultaneously both the +time dependent, behaviour, and the
diffraction/gain-focussing behaviour of the Stokes field. Instead, in
modelling the time dependent behaviour, previocus authors assume that both
the pump and Stokes fields are plane waves, and therefore that the

transverse derivatives in [15] can be neglected:

3 0«89 le = -ikeqte [16]
[’Bz o ot ] : L
where Raymer and Mostowski have F(g,t) - F(z,t), q(r,£) » q(z,t), and p: is

now the molecular density per unit length.

Even with this simplified model, there exists a wide range of sub-domains
each concerned with a very particular aspect of the time dependent Raman
Scattering problem. In this chapter we make an additional assumption that
will enable us to concentrate on just a’ few of the possible instantiations
of ({111 and (15]. This approximation is that the dis'persion of the medium
is negligible for the fields at the pump and Stokes frequencies, the
validity of which depends on the pump pulse width and the the length of
the active medium. Consider for example a pump pulse of width 7= in an
active medium with refractive index at frequencies wn, ws 0f D, s

respectively. Then a medium of length greater than:
leon = C'T'plnp = ngl™? [171

would not support the use of our dispersionless model; a co-propagating
Stokes pulse would not experience the full gain over the full length of the
medium. If the active medium is a gas, the material dispersion can be
reduced by introduction of an additional gas with material dispersion of
opposite sign. If this is not feasible, then a more comprehensive model
must be considered; see for instance the discussion by Carman et al

(1970), and Akhmanaov et al (1971 and 1974).
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Under the approximation np = n« = n, the Maxwell-Bloch equations for

fields in a dispersionless medium simplify through the transformation:
T = t -nz/c [181

whence [11] and [16] become:

b€ (zy1) /62 = =ik2q*{(z,1)ex (1) {1961

§q(z,m)/8r + Taq(z,r) = -lki*e(v)es*(z,7) + Flz,r) [20]
If the pump field envelope is assumed to suffer no variation as it
propagates through the medium, €. 1is a function of t only. Upon the
substitution:

LE<) = €d't) &sGn)e™T [21]

we abtain from the above:

o

30 2 -~k qFe "

Rz , (221

> [ﬁf@%wJ - Chiefllu - F*g}yT

ST (231
These may be combined to give:

. Pt
v —- X K, |[€*0 = -tk.e " F
— il - [24]

3z

Ve now assume that the initial fields q(z,0) and €. (0,r) are given, whence

[24] can be solved (Raymer and Mostowski, 1981) to give:

. -y 2 ’ /
Esfzr) = € (o) = ~ikuéplr) e nT Sa dz cf(z’,o) Ioﬁ/tn Yxéz-z}[’@)]\(i

R ety T [t TNl 6, T [Taen(p- ]

. ' -ty ) :
ke ffifﬁzdt' . afr-7) p"(z; ) T {“.xy&-%)(r&)» P(f'))]'/‘ [25]

where the I.{(x) are modified Bessel functions, and:
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‘1\
p{ry = \leg (v [=da" [26]
Q

is proportional to the energy in the pump pulse upto time 7.

If the Raman Scattering process is deemed to be initiated solely by the
fluctuations in q(z,0) and F{(z,r), then:

(€= (0,1exa®0, > = 0 (271
Using the above, with the auto correlation functions [121, the product
I (Z,7) = ¥eacles™(Z,1)es(Z,1)>

may be evaluated, and the integrations over z may thus be performed (see

Raymer et al, 1981) to give the Stokes intensity (in SI units Jm—=s~'):

ISC‘W‘) = .;:i,c lkL\—‘/etléP(‘\‘] [Lz

- r - 14 B
é TN T [z p8)4] - T [ ke ) ] .

—

. T, —'ZY‘A( “?v - . R
2, §, dd e )[L’ L (koo e69)) 41 7, (4 en (e r(*')J)V‘ﬂ Y
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The result [28] is a general description of the time dependent behaviour
of the Stokes intensity under the small-signal, plane-wave, zero dispersion
conditions assumed to hold in section 3. The steady-state plane-wave limit
(chapter 1, section 7) can be recovered from [28] by taking the limit as
Far 3 », This is justified, given that e.(r) is constant, by the lack of
temporal variations of any consequence in the integrand, whence [28]

reduces to:

TaGo)= Laclkl, bz L"’a;e"‘% [ | 26 alEpl x JVL}-I,T(ZM‘ ]‘41 }[29]

Ta [

which can be integrated to give (Gradshteyn and Ryzik):
Tl - i{“‘l‘(”/(’ﬂév“{lo(““‘ f\ll)-f.(wxlfpﬁ)]urf' “«"xlspl‘zz 301
A Pa b A

The familiar steady-state result can at last be recovered if the gain is
sufficiently high whence the modified Bessel functions can be approximated

by taking the first term in the expansion (Abromovitz and Stegun):

Lwx) = Cux)~%e~(l - Un=-1)/Bx) + ...) for x » 1

/
whence Igz(z,@) = Kooy T4 G exp [Gm'z] [311]
B CL/GCeZ
where Gr = Z2kikzleal®/Ta {321

can be identified as the Raman gain coefficient - now expressed in terms
of quantities which are (at least in principle) calculable. To cast this

into the familiar result of steady-state theory of chapter 1, we let:

L&

- kw.s‘r’kgv

Lo Ve

which is a weak function of z, and for our purposes can be regarded as a

constant, whence:

o = IenexplGuz] (331
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The validity of this result rests on the (time-wise) dominant behaviour of
the exponential factor in the integrand in [28]. For a more detailed
assessment of the situation, the reader is referred to equation [20]. This
suggests that, for the steady-state result to be accurate, the bandwidth of
the product e-(M)es™®(z,¥) must be much less than the linewidth Ta - a
condition which corresponds physically to (adiabatic) following by the
molecular oscillator of the driving signal. From the exponential dependency
indicated by [31], and the form of the driving term in [20], we can argue
that in the high gain limit, the pump field must have a bandwidth s that

satisfies:
Fa > WGrzl-= [34]

Moreover, for the transient component of the Stokes intensity to be
negligible, we require that the time elapsed is sufficient such that the
first time in [28] is almost zero. It is easy to show that, for a 'top hat'

pump pulse of duration 7w, the first term has a sharp peak at a time
T = %Grz/Ta (351

and thereafter rapidly decays to zero. The second term however, continues

to increase monotonically after this time. Therefore a time 7. such that
T > %Grz/Ta (361

is a sufficient minimum pulse length that must be endured before the
system settles to the steady-state response; (note that this is just [34]
with I's replaced by =77,

Generally, the transient limit of the result for plane wave Raman
Scattering is deemed to occur when the elapsed time of the 'top hat' pump
pulse envelope satisfies:

Fate « 1 {371

whence the second term in [28] is negligible with respect to the first. If
now in addition to ([37], the gain is sufficiently great then the Bessel
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functions can be expanded as for (311, and the high gain limit for

transient Raman Scattering recovered:

te
le = I&.g)expw (2Grzl A ] (381
where Ig;) = ML
dzrmwe, T
and valid when: Grzlate » 1 [39]

Clearly, for a sufficiently small pump pulse width 7., the Stokes field

never leaves the iransient domain described by [37] and (381].

From the steady-state and transient domain results we can draw the
following conclusions. The exponential gain coefficient in the steady-state
limit depends only on the pump iIntensity. In the transient limit, the
exponential gain coefficient depends only on the energy in the pump pulse.
Since the gain coefficient is a smooth monotonic function of the pump
pulse width (see for instance the results of Raymer et al, 1979), we may
conclude that given a fixed emergy pump pulse of variable duration, the
Raman threshold is most easily achieved using the shortest possible pulse.
However, once within the transient domain, there is no advantage in
further shortening the pump pulse width. Thus we have answered an
important question about enhancement of Stimulated Raman Scattering
through control of the temporal behaviour of the pump and we are now in a

position to consider some of the less well explored areas in this field.
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5. Qﬁin ﬁnhancemﬁnt L]Eing a d u@,l mﬁdg pump laSEl.

Some earlier authors have been concerned wifh the complicated four-wave
mixing behaviour of the Stokes field when the pump field is a super-
position of plane-wave modes with frequency separation much greater than
the linewidth of the molecular oscillator Ta, (Stappaerts et al, 1980;
Dzhotyan et al, 1977; Trutna et al, 1979; Eggleston et al, 1980; Ackerhalt,
1981). The motivation for this analysis may simply be that the pump laser
output is unavoidably non-monochromatic, rather than theoretical support
for an attempt {o reduce the threshold pump power. However, we will
discover that a real reduction in the pump power required to attain
threshold is possible when the mode spacing 1s less than, or in the order
of, the oscillator linewidth. The question we wish to answer in this
section is: how does the Raman Gain depend on the distribution of pump

energy amongst the closely spaced modes?

Berry and Hanna (1983), have described Stimulated Raman Scattering using a
pump laser deliberately designed to deliver just two modes simultaneously.
The characteristics of the Raman medium (which in this case is Hz gas)
can be adjusted to give a range of values for the oscillator bandwidth
through pressure induced line broadening. In the following, we will attempt
to quantify the .effeots of dUc';ll mode operation of the pump laser using the

theory of section 4.

Ve are justified in using the result [28] for the Stokes intensity, but now

the pump envelope is no longer constant in time:
leal® = lerl® + lezl® + 2lerexicos{Aw.r+4¢) {401
where |le:l, lez| are the mode amplitudes, and g the relative phase

(at v = 0). Ve will assume that the laser has been adjusted so that the

modes have equal amplitude, whence

lept? = lex®Ll + cos{(aw.r+g)] {411

where the bar denotes a cycle average.
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From this result it follows that:

, | , ,
- ’ = le T -y + 2 Sin (L_L:Jt‘-'l‘) ~COS<&JCT+T —+9‘ ] (4

plel - et = lee 1™ [ 2 Sl Gy (rav) ) 23

Long after the pump laser is switched on, the system will reach some

'dynamic equilibrium’' :

L= = Et:‘o g:‘ce‘r, [iccnﬂlk“tlﬁ/etl—érj’lz].[\,-\‘-CDS(AM)W*:¢>I

. exp [-er(w-f’)]. [I:[(Q Wk 2 (pty -pé ))"*1 -1 [(u.k,z@érl- r@"))ﬂ] [43]

where we have used (28] and (41]. Since the relative phase g may take any
value with equal probability, we may calculate the expected value of the

Stokes intensity by averaging the result above:

16 = Ly IS(fM)/Zw g:“ S:rck%’ [ = Cos(px+i) ]

X dab

cexp(-x) [ L"[( Gzl + Syl Cos ) )441_1:[( e (s o 4 j)’éutm
=

r)
B . s : ' (d M) _ (E")
where K= Aw/{4Ta), x' = 2TFafr-1", and las = 2Gezlateleo

[45]
Also, the Raman gain is defined in terms of the (long) time averaged pump

intensity:

-z

Gr = 2kikzles®/Ta [46]

The result [44] may be investigated under the the two limits of steady-
state and transient response. The meaning of these is however modified
from that of section 4 because we are not dealing with a top hat but
rather a periodic envelope for the pump. Thus although the first term in
(28] has been neglected, a “transient' limit may be identified which leaves
the Raman gain responding only to the energy in the pump over a period
2n/Aw. l.e. 1t is sufficient that:

4p » 1; Grz » 1 (471

in which case, from [44]1, we find that the averaged Stokes intensity is:
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(3)
{Ia(z)> = lscexp{Gr2) _ (481

and the reader is reminded that the symbol Gw is proportional to the

cycle—-averaged pump intensity.

To find the steady-state limit of [44]1, it is simpler to assume that the
classical steady-state result is valid, and thereby to qualify the result
in terms of the constraints on the bandwidth. Thus we find that:

o5
la(zyrig) = Lgm{axp[GRz(l + cos{aw.T+g))] [49]
which, with reference to [34], is seen to require:
1/7@w > Grz » 1 [501

It follows from this constraint that the cycle-averaged (or phase-

averaged) pump intensity is just:
el
{Is(zZ)> & Iao XP(ZGRZ> {511

The results [51] and (48] mark the extremes for the averaged Stokes
intensity for small and large values respectively of the ratio of pump to
oscillator bandwidth. Our theory predicts a reduction in threshold pump
intensity by a factor of % when the mode spacing is sufficiently small and
we can measure this prediction against the results of Berry and Hanna as
given in figure 1. If we assume that in this case, an exponential gain of
about 30 was required in order that the (averaged) Stokes intensity attain
(visible) threshold, then we might expect to see the minimum pump
intensity required to occur for some value of Ta/Aw > 15. In fact we find
from figure 1 <that the reduction factor is about 0.8 for Ta/aw = 2

suggesting that the constraint [50] can be relaxed somewhat.

According to (471, the transient limit described by [48] can be trusted
anly for small values o0f [w/4w. Upon examination of figure 1, it seems
plausable that the pump threshold power is then the same for both single
and duval mode operation of the pump laser. The situation is complicated in

this experiment however, by the finite overall duration of the pump pulse:
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the steady-state condition [34] is violated when Ta/Aw is very small, and
the pump threshold power is therefore increased (see Berry and Hanna,

1683, for a fuller discussion).
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8, Short pulses apd spatial confinement

Ve now devote our attention to a problem of great experimental interest,
which involves an examination of the behaviour of a Stokes field when the
active medium is excited by a short, pump pulse which is spatially
'‘confined' either by focussing, or by use of a guide. The aim is to obtain
a result that quantifies the advantages of simultaneous spatial and

temporal confinement in promoting Stimulated Raman Scattering.

Just as in chapter 2, it is convenient to partition the focussing problem
by defining the two domains of high and low pump power. Unlike the work
in that chapter however, it has not been possible to find a solution of
the ‘'equations of motion' for the parameters of the Stokes beam that
covers the general case for arbitrary pump power. However, useful
asymptotic results valid in each of these domains have been obtained and
there derivation is outlined below in sections 6.1 to 6.3. Section 6.4
brings together the results of chapter 3 with those of section 3 to give a
desription of the evolution of a non-steady state Stokes field in a

waveguide.
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€.2 Low pump power focussed pump pulses

To be consistent with the approach of chapter 2, we would have to see the
time dependent nature of the atom-field interaction, which manifests in
section 2 of this chapler as equation (111, as contributing additional
terms to the classical Lagrangian density. The procedure of that chapter
could then be executed to recover the space and time dependent behaviour
of the parameters of a Gaussian Stokes beam. This approach however has
been unsuccessful; it has proved possible only to discover the solution in
the extremes of high and low pump power. In this case, it is sufficient to
retain the differential form of the Maxwell-Bloch equations for <the
problem, (111 and [15], to which the approximations suggested by these

extremes may be applied directly.

Ve recall equations [15]1 and [111:

3« o — 2% ¥

= — “hs L = = 2K €

[b‘k‘- Dyt 'le €s < SWLW F [52]
- y = -ik €.eq ~FF =
°% « a9 T K &p€s (r=1t - z/© (53]
DT

where ¢n and €s are the slowly varying envelopes for the frequencies
(g k) and (ws,ks) respectively. We will now develop the low gain steady-
state model of Boyd and Johnston (1969) by allowing €- and €« to vary in
time. Their approach is simpiy to assume that the pump power is
sufficiently small such that a first order perturbation theory suffices to
describe the evolution of the free-space TEM.. modes for the Stokes field.

Concentrating on the TEMo. mode, we have:

& = [qo., (hz) Voo (Mzyve) * I Qb2 Unm [ 62,0 5w45,) ws,./E [54]
Qy\ln):# c;, ’) 2
for which we will need the orthogonality condition:

S:TS:) Uoo(_P) 7‘3‘“’50) Unem (."32193\"/&0) cdede = 8")”‘\ g")" [551]

where Unm (r,2,8{Was) is the TEM.. mode with focus coincident with that of
the pump field, and which satisfies:
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[2 +2: —7;"55.}.] Uae = ©

Dt ) ‘o"» N2 [561

The pump beam is also assumed to be a Gawssian beam, but with time

varyin en/velope Qry:

€o = [T QVealoe (T ,2iWes) o (571
/'z-l :

OQur tagk now 1is to cast (521 into the recognisable form which is
characteri of time dependent plane wave Raman Scattering, and thereby
, 0f Raymer et al (1981) outlined in section 2. Combining
(521 and [53] with'[54] and [57], and making use of [{55], we find to first

order:
Yoo = =W FF AU
- L v ) {581
3L nY . i e aa, «
>4 [59]
Ao _ ("0 kw +
where (q"’ F ) = (wf"’/w“’) lo Sa UWQ\ZS"’SO) U"O(f)zjwfa)("L'\_F)dorﬂl“[%]
- 2.¢¥(%
and COIC‘&\) - _—r-‘_-»L 50 \A/: 1 Uoo(Gl’)wsoﬂlono(r)Z)Wf.)lI(\&(‘ J@
T .
= Weo (611
We' @) + W)
It follows from the above definitions, and from [12] that:
w1 A P ZVA X / S /
LFEOFUHEA)? = 24 gpy 8&-7) 3(c-A) [62)
Cv
L Gy = L wi Seev)

Cv
where p. 1s the oscillator volume density. VWith the exception of the
‘overlap’' term =(z), these equations are identical in form to those of
section 2 in this chapter. In order to make the correspondence complete, it
is convenient to make a change of variable:

§vi/éz = o=@ [64]

4ph = @hre=e@ (65
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whence, the above becomes:

4?*(VL,T)I?(\/L,<¢')7 = 24 gt/};\/xl) 5@—?’)

—_— [661]
A\ 4
n A
< qtv,a) L (Vv),e)y = _—é- S ~v') (671
\4
and from [64] and (651, it now follows that:
N At
2de | SRR (681
AV,
A A N A
51, « Ty = — e %) dqpe + F (691
‘1\
The new independent variable vi may be found from solving the equation:
AV Wos
o= P . (701
d= W)+ We(e)
for which we make the usual definitions:
Mo _ 7
4 = Zrk Fl] T A S S S 1711
Vo -
to obtain:
VL = ks

2 1% AT 4 ~! %
Woo [+t ] (o] «th (U k*ﬂx)_ mas[mﬂﬂ (721
z I Lcrp
T+ k*r

where v1(7l€') = 0. Equations [66-69]1 are now just the Maxwell-Bloch
equations of section 3, so that the results of that section may be
employed directly upon making the appropriate substitutions. Hence from
[281:

<

q”@_,ﬂ]a> = 2w \“’.v: Lee P y,e [kL]“/EL .
é o Mt [IJ[(H«MF@\"L] - I(TC%“‘VL T’(“-"\KH
,~Pk(,"¢'-7- Y 1| It
# 47 S (atn-pe))] - T [t pta-163)) ]| i”"”

where: P(‘j]. = S\o\r lJl@") l1 d 1’ (741
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Thus we find, in the low gain approximation, the non-steady-state plane
wave theory may be applied to the envelopes of the pump and Stokes
Gaussian beams provided the z coordinate is replaced by V1(z) of [72]. At
this level of approximation, this substitution is therefore all that is
required in order to utilise the family of curves published by Raymer and
Mostowski. In the following section, we will analyse some predictions of

this result and the necessary conditions for its validity.
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Ve now consider more specific experimental conditions under which we may
employ [73]. Note that the steady-state limit of [73] is just the low-gain
theory of Boyd and Johnston (1969) and Trutna and Byer (1981). However, if
the multipass gain cell (see chapter 2) was driven by a top hat pump
pulse with 7o « 2n/Ta, then we would be justified in taking the transient
limit of [73]. This 1s a situation which has not yet been covered in the

literature and is discussed in more detail below.

The slowly varying envelope of the Stokes intensity <(las<(z,m) 12>, is a
monotonic function of V1(Z), so that it is natural to assume that Vl(i?
will be maximised (for fixed z) by appropriate choice of focussing

conditions. It is easily seen from [72] that this requires:
H= 1 ) i.e, kpw,:..;? = KaWss= (751

ie. equal pump and Stokes confocal beam parameters. Under these optimal

focussing conditions, Vl(l) becomes, for the first pass:
Vi = HEaWee®8(3i3e)/ (L 4 10O | (761
where: 8(1;1?) = tan_‘(j) - tan“’(ﬁs) {771

Ve will also assume that the resonator construction is such that the pump
is tightly focussed (see the discussion in chapter 2, section 3.1),
whereupon:

6(‘26;1&) =T [781]
For a multipass configurationm, V1(}) is the 'cumulative' distance traversed
by the Stokes beam as it propagates around the cell and so, using [78] we
define:

V1n1(7) = ¥KawWeoZ(@m + 668)/(1 + k) {791

where: 66 = { 8(1}?5) n even, 6(1;15) n odd } [80]
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and n is the number of reflections suffered by the Stokes beam.

Ve will usually be justified in assuming the design of the system is such
that the Stokes field has attained a threshold on leaving the cell.
Therefore the total gain experienced by the Stokes field (from its initial
value) will be large, and it will be safe to take the high gain transient
limit of [731:

Ll Ao (“’"“A \17 o«  ex=p ] 2 ]-n'ﬂ' G ks \A/E’:'T'R‘r,, ]v;! (811

- L e g
where we have used (381 and [79]. Once again, we find that the (transient)
exponential gain depends on the energy in the pump pulse but this time
with the coordinate z replaced by the effective length vi,. given by [791.
Also it is interesting to note that the theory predicts a reduction by a

factor n-% in pump energy required to pass the threshold.

Unfortunately, unlike the case discussed in chapter 2, the precise
conditions defining the transient low gain domain are not known because
we lack a unified (arbitrary gain) theory. However, we can argue, using the
results of that chapter as a guide, for a set of approximate conditions
necessary for the validity of (81]. These are summarised on the following

page in table 4-1. /

/
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Table 4—-1

Domain Condition Design constraints

transient ‘Y‘A T << ! short pump pulse / long lifetime

tight focussing 'jc eI T <<l small waist / long cavity
!

low gain per pass 2 |G, KsWp "n T % < low pump pulse energy

[\ + LC]
high gain in total Z[n-ran W Wr: r‘ATPI ‘/1$> \ many passes
Dtk

optimal focussing Kiwe: = K Wik equal confocal parameters

r [>]
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4 similar procedure to that above may be carried out to obtain a set of
modified Maxwell-Bloch equations describing the evolution of the Stokes
field in the high gain limit. Just as in chapter 2, we can expect the
effects of gain-focussing to be such that, in the bhigh gain limit, the
Stokes waist is contained within that of the pump:

We(2)F « wWa(z)= [82]

Once again, we can use this assumption to justify a (radial) Taylor series

expansion of the pump field retaining only terms upto quadratic. We begin
with a substitution into [52] and (53] for the Stokes field:

€a = Beas(z,m)expl-1Q(z,m)r=/2] [831]

and thereby obtain:

2 _. - ‘ . N
% + PA L,_f"- DQ El_ﬂ/*e/bQ /LI - tk\aooer + Fe/er 1 (84]

R YO

~ . . LRy
(Q, * e “0_‘2,] Moo & 1Qaw =+ i, = K4 e Q*/LQ?{BS]
"z > ~z

Consistent with the above, it is clear that we must expand not only the
pump field, but also the oscillator coordinate and the Langevin function as

a Taylor series:

LQ et ~ @1 +
‘L*Q, Q / =z I L:"I. é,'v) {‘2'\ {861
n= o
£ &L‘(r‘/,' = {L:‘;o R, (-,_, —r) rn [87]

O
Celth=r) = ‘Z:m Colzr) ™ (881

so that substitution of [86], [87] and [88] into [B4] and (85] gives a set

of equations connecting the Stokes amplitude with the coefficients bw(z,r),

cnfz,1), and fn(z,7).
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Hence to zeroth order in r= we have:

X EN ' X
Bi“ -+ PA bo = v \<‘ dbo CO + ¢° [89]
7t '
E. Roo + Q_ aoo = - ‘:KL Co 5:‘
whilst to first order:
™ .
ot = %
[Q‘HCQS law = 2K, ¥ [Lo*‘cl “ k,*coI (021
Dz

Equations (891-[92] describe the evolution of the Stokes field in the
‘presence of a focussed, time-varying pump field. No satisfactory form for
the analytic solution of these equations has been found. However we can
make a few simple observations by comparing these with the standard
KHaxwell-Bloch equations for a plane wave pump. We notice that the
equations for the zeroth order term are unchanged except for the
'‘diffraction loss' term involving the Stokes spot-size in [90]. Since, in
chapter 2, it was demonstrated that the Stokes spot-size was a strong
function of the pump intensity, we cannot ignore its variation with‘ time
through [92]. Phsically, there is an interaction between the time
tr;ansients and the effects of gain focussing. However, just as for the high
gain, tight focussing case discussed in chapter 2, we can conclude that
the diffraction losses become relatively less important for sufficiently

high gain, i.e. the very high gain limit of (89], [90] is just:

AL L ‘ o+ F
020+ Myby = Ky O+ B (93]
Qv _
. A
VDUoo = —¢ l(,_-—ﬂ@) Eo* [94]
AN
where we have used:
1
|Col* = |9ty |‘[wf,° [ Wee] .
Vk = kf_\\lp 6(}.)15) [96]

pa
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and (Lo ) ca) = Uowpo) [ﬁ_@) [ [971
c.*
N s = - V‘* - ZPA / !
BiVIng L8N, 6, (Vi) = e &C"k‘vk\‘g@"’”) L8
A
Thus in this 1limit, the standard from is recovered with the change of
variable [96] and so the results of the previous section (731 and (741, may
thereby be adopted with the replacement v: » v~. Equally the high gain
transient limit may be borrowed from that section, the exponential gain

differing only by the factor (K/(1 + K))=;
- \
{\C{ao @,vv) > o« exp l_ 2 LTrGR Ko Woo F”'TPI/IJ 1991

Once again, the precise conditions which define the domain of very high
gain are not known in the absence of a theory for arbitrary gain. However
by analogy with the situation discussed in chapter 2, it is reasonable to
assume that the theory is valid if the exponent in [99] is sufficiently

large:
o 4
2 [reakewpryr, 1% >> (1001
As in the previous sction, we can argue for a set of approximate

conditions necessary for the validity of ([99), these are summarised in
table 4-2.
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Table 4-2

Domain Condition Design constraints

transient Ca Tl’ << | short pump pulse / long lifetime

tight focussing (e S>30 z(s << -| small waist / long cavity

confined Stokes W;C‘) > WJ‘(‘:) high pump pulse energy?
\

high gain in total 2 {:TFG,Q KP\«/;, A “rrl/’- > | high pump pulse energy

- 108 -



Transient Stimulated Raman Scattering in a waveguide has recently been
investigated as a means of dramatically reducing the pump power required
to attain a threshold for the Stokes beam (Hanna et al, 1986). Indeed, one
might expect a much reduced threshold power (assuming a continuous pump
pulse train) as a result of combining the most effective means of spatial
confinement with short pump pulses which take fhe scattering process into
the transient regime. Unfortunately, a comparison of the results of Hanna
et al with the predictions of the following model is not possible; the
authors found that the (exponential) pump losses in the guide were much
greater than that predicted by equation {421 of chapter 3. Their conclusion
was that other loss mechanisms which have been excluded from our model

(e.g. bending losses) were significant in their experiment.

In this section we demonstrate how the theory of section 2 of this chapter
is readily applicable to a description of the scattering of short pump
pulses in a capillary waveguide. The case for such a correspondence rests
on the observation that the results of chapter 3 indicate that the Stokes
profiule remains unperturbed, except for the z dependent amplitude factor,
as the field at that frequency propagates daown the guide. Therefore we
might expect to be able to modify the first order differential equations
for the Stokes envelope in the presence of a plane-wave pump field (n
free space) into a form consistent with the theory of propagation in a

waveguide. The two factors to be accounted for by this modification are:
» The Stokes losses on reflection at the waveguide walls,

+ The pump losses, and therefore the z dependent gain experienced by the

Stokes field.

For a LP.. waveguide mode, each of these is properly accounted for by

writing the Maxwell-Bloch equations ([19] and [201) in the form:

36 (=) = —ds Clany —ilgfer, & P ey € ) [101]
— —i %’ , P
oz
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PR 7 v “oln T Lo
g (nr) + La(ze) = -G, e / () &M@ ) + Flt) 1102
D%
These equations can be solved upon making the appropriate transformations

using the methods of section 3. First we define:
vV = er"(o)—r) Es Cz"r‘)exp[r'a‘(‘-t ole 2 /,_I [103]

and make the additional change of variable:

o = V-] (104

where ¢ 1is the new longitudinal co-ordinate (i.e. the effective length Zass

of section 3). Using the above, equations [101] and [102] can be combined

to give:

Ay - K K‘L[GP (o) li v = -1 K F *e/')cf[TAT + ég“‘o(l—; )3‘.] [105]
ddT 2

which replaces equation [24] of section 3. With these substitutions, the

only difference between [105] and [24] is in the source term which is

responsible for initiating the scattering process. The full result for the

Stokes field in a waveguide may therefore be written down on inspection:

AN ";dsl/‘{éz (o) =i e (00 )] 0l % (4w pta -]

R e L) ST el ey 1, (st

"o (o) LT LA e [ hln-r a2 P, ) T (el f@ﬂ"lﬂ

\1\
where p(r) = C\?\'\qjlep(o,?")lﬂd'r" [vos]
) .

Equation (1061 is valid for a Stokes field in a waveguide driven by a
pump beam undergoing temporal variations of any kind. Unlike the free-
space transient analysis of section 3 however, it is not possible to
arrive at a simple expression for the Stokes intensity by forming the
expectation I. = %€.c<{Es*Es> and performing the integrals. This is because
the 'natural longitudinal co-ordinate for the pump (¢=Zs¢¢) is no longer

that of the oscillator, and therefore of the noise source, as can be seen
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from equations [12]. However, we can be sure that the exact nature of the
initiating process cannot effect the behaviour of the Stokes field once its
magnitude has risen well above the noise. Note that the problem of
conflicting 'natural co-ordinates' does not arise in the second term of
{106] since this does not involve the Langevin function and the assaciated
expectation value of equations [12]. Therefore it is convenient to invoke
the fiction that the stimulated scattering process is driven by an
injected Stokes field with an energy (density) much greater than that of
the molecular oscillator in thermal equilibrium, whereupon all but the
second term in (1081 can be neglected (this is the approach taken by
Carmen et al (1970)).

In this model then, [27] is no longer true, but instead the intensity of
the Stokes field at the guide entrance is presumed whence a general

expression for the intensity within the guide may be derived from [1061:

—sZ ] \? ‘F —“4‘ » v\,
T(zr)=ly Tyjlee™ /‘,}k«,r-{ép] S = e )Ifl(Ak.kLu-cfn [e,.\‘(w-«’)\ ]d‘\"[].()?]
L) 7
aded [ﬂ-wl 8
That this model gives the result for steady-state scattering of chapter 3
can be verified by extending the upper limit in the above to infinity
Tare= » 1) whereupon the integral can be performed to give (Gradshteyn and
Ryzik):

(1) '
Is o (z) = Ia o €0 )exp[ Gont = ez 1 [1081
where  Gun = 2Cmnkikzlépsl*/Ta £109]
and v = Zerr = [1 - expCop2)]/o 1101

which is just equation [62] of chapter 3.

Given then that [107] provides an accurate model of the Stokes intensity,
wé can now proceed to evaluate the integral in the limit of transient
scattering. In this extreme, the integral is perfomed making use of the
fact that the exponential is always nearly unity (see Carman et al, 1970),

whereupon we obtain:
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Y
lawn(Z1) = laun(0)expl 2[26unZarelaT] - ez ] (111l
and this is valid for short pump pulses:
Tar « 1 r < 1) {1121
and high gain:
%
2[26unZareTar] 0 1 [113]

Borrowing from the analysis of section 3 in chapter 3, we find that the

full Stokes field in a capillary waveguide can therefore be written:

Ea = Ivmavn(O)Jvnluvnr/adexpl 1ve + iwet - ikez + %Xg\-\) ] (1141

Y
where Yo = z[eevnzeffrm:]t Az [115]

is the net Stokes transient exponential gain <(of the LPuw mode), and
avwn(0) 1s the (supposed) injected amplitude of the LP..» mode polarised
colinear with the pump field. '

It is of interest to compare this result for transient scattering in a
waveguide, with the result derived earlier in the chapter for plane-wave
scattering in free-space. There are three changes that must be made to the
latter in order to arrive at [114] (these are also the changes that should
be made to convert the result for steady-state plane-wave Raman Scattering

into that for steady-state Raman Scattering in a waveguide):

¢ The effective pump power (which appears in G, and Gun

_respectively) is modified by a factor Con.
¢ The effective longitudinal co-ordinate is Ze.re¢ which replaces z.

¢ The Stokes field suffers an additional exponential loss in the

guide at a rate oaz
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Just as for steady-state scattering in a waveguide, we find that the net
transient Raman gain suffers from competition between the enhancing
effects of guidance, and the depleting effects of losses at the waveguide
walls. Once again, it is of interest to show how these effects depend on
the design parameters available to the experimentalist. Therefore we define
a set of normalised quantities which embody the available degrees of
freadom (nominally: pump energy, waveguide bore, and waveguide length).

Confining our attention to the LPo1 mode, we let:

U:r)

Xa = Yoo (1161
which is the net exponential gain scaled by %%,

x2® = el (1171
which are the exponential pump losses, and

X1 = 8KkGorTatexz/op {1181

which is proportional to the energy in the pump pulse. Now [115] can be

written:
Xa = [1 - exp(x=3)1"[x1/xz21" - x2% f1191

Once again the choice of these definitions is motivated by the need to
decouple the dependencies of the {xi} on the intrinsic design variables,
which are here taken to include guide bore and length. Unlike the steady-
state case however, X, 1s proportional to energy in the pump puise of

duration r1= (rather than pump power).

For the LPo: mode in a fused silica guide, with reference to [591, the x4}

may be written:

2.85 O®Ll/Xg®)" 7= E‘r (1201

I
n

0.75 O\a=1/a%)1 7= 01211

]
9
N
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€) .
Xz = Yai1 OegF/\e®) {1221

where E"P is the normalised pump energy:
(e.p = ﬁ:.l"g'rp = @/2)Im{x*® Y ka® lepo *Wpa*TaTe [123]
WU

The normalised variables x= versus x: are plotted in figure 2 for various
values of xaz, Just as for the steady-state scattering in a waveguide, we
find that the theory predicts an optimum design (in the sense that the
pump energy required to attain threshold is minimised) for pump losses
xz ~ 1 a guide narrower than this will give rise to increased pump
losses, whilst a wider bore guide will fail to take full advantage of the
opportunity for spatial confinement and therefore increased intensity.
Since the qualitative nature of these curves are unchanged from those of
figure 2 of chapter 3, then the optimisation procedures described in that
chapter apply without qualification to figure 2 of this chapter and

therefore are not repeated here.

In order to make a rough a'ssesément of the advantages conferred by a
capillary waveguide over free-space scattering, (both in the transient
regime), we briefly compare the pump energy required to attain some fixed
threshold when the guide bore radius is fixed. In +this case the

optimisation procedure may be shown to require:

Xa = /xdx::. [124]

(see figure 2 for a confirmation of this relation). From [120-1221, this in

turn implies:

€r) ‘F %
Y, = 2|f=« l (1251
k%
for the net transient exponential gain. In terms of the normalised pump
energy defined in (1231, the transient exponential gain for a tightly
focussed pump beam in tke high gain Iimit from [99] is just:

Py [126]
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Comparison of [125]1 with [128] shows that, in this context, the use of a
waveguide provides an increase in the exponential gain of the Stokes
LPo1/TEMoo beam by a factor of approximately /a/mh= for a fixed pump
energy. Equivalently, this implies a reduction in pump energy required to

attain threshold by a facfor of (a/mx=>, and is unchanged from the result

of section 4 in chapter 3.
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In this chapter we have developed existing theory to cover a variety of
(previously uninvestigated) cases in the field of Stimulated Raman
Scattering. Whilst showing that gain enhancement results from pulse
shortening (see the remarks at the end of section 4), we have also
demonstrated the advantages of multimode operation of a c.w. pump laser in
reducing the intensity required to attain threshold (section 5) for which
the theoretical prediction is in close agreement with experimental results.
In section 6 we have brought together results from earlier sections with
those of chapters 2 and 3 to develop a theory covering simultanecusly
spatial and temporal confinement of the pump and Stokes beams. The
success of this approach has depended on our ability to Qse the results
appropriate to plane-wave Raman Scattering for the amplitude of the

principle Stokes mode of the spatially confined field.
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FIGURE 1

Pump threshold power versus Raman bandwidth -

single and dual mode operation of pump laser.
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FIGURE 2

Curves of constant normalised gain (x3) with normalised pump energy(xl)

and pump losses (x2) for a Stokes beam in a Capillary Waveguide.
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APPERDIX 1

This appendix is devoted to an investigation of the scalar paraxial ray

equation of chapter 1 which, in dimensionless co-ordinates may be written:
{ 82/8%x2 + §=/8y= + &§/6z + B(x,y,2) ¥ §x,y,2) = 0 [1.13

This investigation was initially prompted by two factors which arose in
the work concerned with the spatial confinement problem of chapters 2 and
3. One of these was the need to find a co-ordinate transformation in which
the paraxial ray equation associated with the gain-focussing problem of
chapter 2 could by separated. The motivation was to pose this as an
eigenvalue problem and thence to find a perturbative expansion for the
eigenvalues. From this it would be a simple matter. to integrate the
remaining (separated) differential equation in the direction of propagation
and so find the gain for the Stokes beam. Eventually this transformation
was found (section 5), and work on a numerical sclution to the eigenvalue
problem was commenced. However the same discovery was made by Perry et al
(1982), who had gone on to compute the numerical solution. At this point
it was decided to seek a theoretical solution to the focussing problem
since it was felt that such a solution, if discovered, would have some
distinct advantages over that of a purely numerical treatment (see the

discussion in chapter 2),

The second factor to influence this work arose from attepts to find an
exact solution to the propagation problem for the Stokes beam in a
waveguide (chapter 3). It was discovered that the perturbation expansion
for the Stokes field in terms of Bessel functions (equaton (441 chapter 3)

gave rise to a difference-differential equation in +the expansion
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coefficients which could be transformed, through a suitable generating

function, into a diffusion equation of the form:

{ 8=/6x= + §/8z + exp(-opzicos(kx) } gix,2) = 0 [1.21

Once again it was decided to try to find a transformation that would turn
this into an eigenvalue problem making it susceptable to a perturbative
treatment, and so the work in this direction which had been started on
behalf of the focussing problem was expanded. Finally it was decided that
a satisfactory conclusion would be attained only when an exhaustive search
had been made for the full set of functions B(x,y,2) for which [1.1]1 is
separable. It was realised that the result of such an investigation would
have some utility in other fields employing a diffusion equation with an
inhomogeneous ‘potential' B(x,y,z), including thermodynamics and quantum

mechanics.

The pupose of this appendix then, is to find the full set of potential
functions B{x,y,z) such that [1.1]1 separates into three ordinary
differential equations in the appropriate transformed coordinate system.
From this point (in two of the transformed coordinates) the theory of 2nd
order differential equations will deliver exact or approximate solutions
according to the complexity of terms within the allowed functional forms
for B(x,y,z). Thus it is possible, within this framework, to delineate all
possible variations of refractive index that permit an exact solution to

the scalar wave equation.

Section 2 describes the mechanics of the transfomation, whilst section 3
deals with the conditions for separability. Section 4 brings the results
from these two sections together +to give the set of separable
transformations. Section 5 is a brief discussion of the implications of
the result, both generally, and specifically with respect to some of the

propagation problems analysed in this thesis.
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The general transformation of (1.1} is accomplished through a substitution

of the form:
x5,z - uxy,2,v&y,2),wx,y,2))} (2.1]
and §{x,y,2) = exp(Q(x,y,z))\{(u,v,w) [2.21

Here, u,v,w are the new coordinates spanning the transformed space. The
exponential is an integrating factor providing a further degree of freedom
which will be needed in the nest section. For the present, we will not
discuss the formal properties of the mapping, but will tacitly assume that
the inverse exists so that x,y,z and Q can happily be expressed in terms

of the transormed coordinates (u,v,w).

Substitution of [2.1] and [2.2] into [1.1] yields:

@uyg’- + @v‘)‘ﬁ +@w)\12 + z[yu\zvl’-_ + _V_Vzwb_“' '\'Y‘/g\"é};
Jur R\ A D

ANV DUDW VoW

vz

*ve 22 ¢ 2TR)Zeny, « TR HEZy. W + o % ¢ =o

[2.31
where v o= LQ LD 40 j
[V 'DL\‘\
v = 2,200
’ L‘ﬁ TNV Fw)
ot = (L, v W) [2.4]

Ve now demand that [2.4] represents a diffusion equation in the
transformed space, and choose the propagation direction to be along the

caoordinate axis u=0, v=0. Then we can draw the folowing conclusions:

Yo ¥%w = 0

14
<
<1
>3
|
o
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Tw) = 0 [2.5]

Thus, the characteristics of w are seen to be everywhere orthogonal to
those of u and v. provided that u and v are 'independent coordinates (i.e.
the Jacobian J(u,v/x,y) does not vanish), then the conclusion must be that

w is independent of x and y and so must be a function solely of z.

In the next section we wish to examine the conditions for separability of
the transformed diffusion equation and therefore it 1is convenient to

rewrite [2.3]1 as follows:

)l }2 - -
A, = R 9 Ay 9 [+ ] ’} Qa b a,d Q.
[ o+ v Shee oty T e T s, Tl =0 [2.6]
where ar = (yu)
az = 2¥uvVyv
a8z = LY_“/)”
aa = Vi €D ¢ 2¥Q Y0
=
2 = TN AW L 2TQTv
Nz
D=
az = T (ZeP+Re +p [2.7]
Nz

Hence, constraints on the functional forms of the a;lu,v,w) will furnish
constraints on the behaviour of the functions ux,y,2), v{x,y,2), w(z) and
Q(x,y,2). The last of these will in turn constrain the form of B(x,y,2)

through the allowed forms for az(u,v,w).
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Ve will now consider, without reference +to the result [2.7], which
constraints exist on the functions a:(,v,w) in order that [2.6] separates

through a substitution
¥ = TWwWVnNWm) [3.1]

into 3 ordinary differential equations in the independent variables u,v,w.

In the subsequent analysis we will make use of the following definitions:

o 20w, g1(v), hai(w) are functions of a single variable;
v Ps (U, v, qiCu,wd, rilv,w) are functions of a pair of variables;
¢ S5 (u,v,W) is a general function of three variables.

Similarly, we will describe y(u,v,w) in terms of the following functions:

¢ T, V(v), Wiw) (see [3.1] abovel;

o X(u,v), Yu,w), Z(v,w) are ‘intermediate’ functions.

Ve examine first the constraints on the a:(u,v,w) such that [3.2] separates

in w first:
v o= Vvwiww (3.2]

From [2.6] it follows that:

a, X ¢ o, Yoy €l ¥ X wvacX o+ oagw «d, = O

= [3.31
X X x X > W
and for [3.3] to be separable this must be expressible as:
[pa (U, ¥)ha (W) + puU,W)hu (W) isaU,v,w) = 0 (3.4]

for some set of functions {pa,pt,babw,su}. Therefore [3.31 can be

decomposed into two parts, each related to a term in [3.4] as follows:
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g, xuu/x -+ ‘L)(w/x + C{’AXVV/X +d, xu/)c =+ Ofkv/x T L‘l (3.51]
/

acw'/y = s pahy [3.6]

a4 = §[kal-1-$‘[32]'\|

[3.71

Examination of [3.5] to [3.7] reveals that the form [3.4] is preserved if

we set:
Sa = 81, ha = hy, bo = hz + ha, Pa = pv + Pz, P = Paz [3.81

Thus, dividing by sipzh:, we have:

t
>

P1/pz + p=/p= [{3.81

hz/h1 + h=/h,

|
i
>

{3.101
where \ is the separation constant.

The constraints thus far on the ai(u,v,w) may be determined from equations
[3.6-3.71, Since the coefficients Tw/X, Xuo/X etc. are themselves just
functions of u and v, (and W=/V¥ is a function only of w), it is clear that

the ai(u,v,w) must be expressible as follows:

ar = S1pabs
az = s1pshs
az = Si1psh
a4 = S1prhs
as = 8Sipahy
as = 8S1pzha
arz = 81pzhz + s)pabh, (3.111
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It follows that the separated equations must have the following form

(combining (3.4-3.8D1:

PeXow v psXo * Pt Xy + B X0 vegXe @y =Vp = & [3.12]
% x X x X
hy W
«W v hs 20k = o [3.18]
w

Note that [3.13]1 is an ordinary equation in w. This completes the first
stage in the separation of [2.6] (in w first). The same procedure is used
in the second stage to separate [3.12] into two ordinary differential

equations in u and v. Just as before, we postulate a form:

HaWgn W) + feWge W Ipeu,v) = 0 [3.14]

and decompose [3.12] accordingly:

paU"/U + pyUY/U = £181ps [3.15]
pe (UM, (VYY) = 0 [3.161
psV'/V + paV'/V = fogops _ [3.17]
ps = [fag: + fzgalps [3.18]
Pz = [fag: + fzgalps [3.19]

Examination of ([3.15-3.19] reveals that +the required form (3.14]1 is
attained provided:

Pe = Poy fa = f2, o = £1 + fa + f4, g2 = g1 + 83 + g4, g = g1 [3.20]

whence dividing by fzg:ps we obtain for some separation constant u:

£1/fn + fa/fa ~Na/fz [3.211

]
=

gz2/81 t ga/g1 — ARBa/gr = —K {3.221]
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The constraints on the pi(u,v) can now be found from equations [3.15-3.191.
Since the coefficients of U"/U and U'/U are themselves just functions of u,

and coefficients V'/V and V'/V just functions of v, we must have:

pz = (fagr + fzg84)ps

pz = (fag1 + fz2820ps

pa = 1fsgips

ps = 0

ps = fzgsps

pr = fegips

pe = fzgepe [3.23]

"Hence the (separated) ordinary differential equations are:

From [3.131: ha¥W' + (hz + MhOW = 0 ' [3.24]
From [3.21]: fsU" + feU' + (s - Ma - pf2)U = 0 [3.25]
From {3.22]: gsV" + gsV' + (g3 — Nga + pgdV = 0 - [3.26]

So far, no reference has been made to the transformation leading to the
‘canonical form' (3.12]1 and [3.13]. With reference to the method of Section
2 of this appendix, we observe that the transformations x(u,v,w)>, y<u,v,w),
z{u,v,w) and the ‘integrating factor' explQ(u,v,w)1 are all quite general.
Therefore, we are free to assume (implicitly) a transformation on u

u - £ say, for any function f and also on the transformed variable
U:0- FM. This {freedom can be exploited to eliminate unecessary
(i.e. redundant) coefficients in equations [3.30-3.32]. One possibility is to

set:
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ha

ha

= fe = g = 0

[3.331

(3.341

Using [3.111, [3.15], (3.331 and ([3.34], the forms to be satisfied by the

ai{u,v,w) are thus seen to be:

as

as

as

a7

and now the

= sz{U,v,wgi (vh (W)

= szu,v,w)Izhi (w)

= sz uvwlfs g (v) + f2dga ()]

= sz{vw)fzWgy (v) + £f2Wgs () Ihi (w)

functions U, V(v) and V(w) satisfy:

U + [fa) - Mal) - pfz2 @IV = 0
V' + [ga(v) = A\ga (V) + pgr MV = 0
V'+ i)W = 0

where we have defined:

sz (u,v,Ww) = s7(u,v,Wwpau,v)
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Equations [3.35-3.38] are the required results under the hypothesis that
[1.1] separates in the variable w first. Thus we have a set of ordinary
differential equations ([3.36-3.38] in the functions U, V(v) and W{w)
with coefficients which are linear combinations of the functions f£:(w),
gi(v) and hi(w). These functions in furn constrain the functional behaviour

of the coefficients ai{u,v,w) through [3.35].
If we require {1.1] to separate in the variable u first, i.e.

\r = TWZv,w [3.401
then the analysis of this section must be repeated in order to find the

new constraints on the as (uyv,w) and the corresponding new set of ordinary

differential equations. The results are thus found to be:

a1 = S (g,v,w)[g4(v)h1 W) + gz haw)]

az = 0

az = szu,v,w)f: Whi (w)

aa = 0

as = 0

ae = szu,v,wi, Wgz(w

az = 8zW,v,W) {faWIigs(Wht W) + g=2(Mha(w)]l + £1 (Wgs(v)hy (W)
[3.41]

for the ai(u,v,w), and:

" + [faw) + M WWIU = 0 [3.421

VY + (ga(v) = Aga (V) = pg=(MIV = 0 [3.431]

V' + [phy (W) = XhaGdIW = 0 [3.44]
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are the ordinary differential equations in U, V{v) and W(w). Note that
none of the functions of [3.41-3.44] are related to those of [3.35-3.381.

Finally, we consider separation of the partial differential equation [1.1]

in the variable v first. In this case we expect that y factorises as:
Y o= VY (u,w) [3.451

However, from the gsymmetry of ([1.11 and the generality of the
transformation considered above, it is seen that this separation can offer
no further degrees of freedom on the allowed forms for ai(u,v,w) once the
functional relationship between the transformed variables <(u,v,w) and the
original variables (x,y,z) 1is made explicit. Therefore we will disregard
this form for the function ¢ and work with the results derived from the

factorisations given in [3.2] and [3.401].
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In this section we embark on the solutions of the constraint equations for
the a:i{u,v,w) which combine the expressions for the transformation
variables in (2.7] with the functional forms deduced in section 3 (i.e.
those given in [3.35] and [3.411). In section 4.1 we consider the allowed
forms for the a:{u,v,w) given that ¥ is separable in the variable w first.
Ve find from these deliberations that there are +two types of
transformation each of which gives a distinct form for the aj(u,v,w). These
are labelled as linear and non-linear transformations and are discussed
respectively in Sections 4.1.1 and 4.1.2. In Section 4.2 we consider the
allowed forms for the ai(u,v,w) given that \} is separable in the variable u
first. In this case we find that there is only one distinct form for the

transformation and therefore for the ai(u,v,w).
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With reference to equations [3.3%5], it 1is convenient to make the

substitution:
sz (u,v,Ww) = sz0,v,w)fzgr (vIh1 (w) £4.11]
whepoe [2,7] becomes:
(To) = S5 (www) / &) [4.21
Yov¥v = © [4.3]

@v)‘ = Sx(“:‘/)w)/ﬁn@) [4.4]

Vo +9 + 2¥Q TV =o
D= [4.51
Vv~ 2V + 2¥QIVv =5 _ [4.6]
D= :
dw = = U, V. A\ £
= 2 (Y, )[ 4U/p1@) + 34(_‘/)/&'@,)1 | [4.71
A "‘@Q)l 0 4+ = 53@,v,w)[P3@) + 3 [4.8]
o= P'LLB) .

The first step is to obtain the functions udx,y,z), v{x,y,2), and w(z) from
[4.2-4.4]1 and [4.7]. The next step will be to calculate a consistent Q from
(45] and [4.6] whence finally B can be obtained from [4.8]. In order to

achieve the first step, it is convenient to make some changes of variable:

YU
4, ® = § £ 4 [4.9]
1.0 = § 4k dv [4.101

where it is to be understood that <(ultimately) the qi are given functions
of u and v. The first step can now be expressed as the solution of the

equations:
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(a0 = (@9) = 52 (uvw) [4.11]
(V_.ah)" = (z c[”-y = \i\/z [pk@)/‘lz(‘}) -+ g‘r(!) /ﬂ néf) I‘Al (4,121
and: ¥9,Y%9, = o (4.13]

Equations [4.11] and [4.13] yield the Cauchy-Riemann equations:

¥ . V9. [4.14]
ol 2 24

2 = 9, [4.15]
83 s

for which the solution is easily found to be:
" = F ( Lti"i‘)z> + F'ch“:‘j>z~) [4.161

[F‘("""“&w‘)‘ ‘:LC"'%»‘)]/C [4.17]

1.

for any functions Fi and Fz. Note that this is a conformal mapping from
the space {x,y} to {gqi,z} only if F. = Fz*. Note also that the
transformations must yet be made to safisfy [4.12] which will give an
additional constraint on the form of the qi. From here onwards the
dependence of the F: on 2z will be taken for granted and the second

argument thereof suppressed.

Through [4.9] and [4.10], we are at liberty to write the fi as functions of

q, and the g: as functions of qz=. Therefore we will define:
G.(3) = G /f® [4.18]

6,6.) = 20 /a0 ‘ (4.19]

where once again, the G. are to be regarded as given functions. We will

also find it convenient to make the change of variable:

ig "'t;"ﬁ 3 —i*’ = x'\""‘] [4.201
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Vith these definitions, we are able to express the additional constraint on

the functional behaviour of the gq: in [4.12] as follows:
4 FlR) RN [ Gn(':‘@”%@))* Gm(ﬁ&tr Ti(;*)ﬂ = Wy [4.211

Equation [4.211 can be integrated once it is recognised that the

derivatives can be expressed as operators on the Gu:

3—;}? [ ) 6.6 "ul/k__ e S( 6.6 4 ) Fl‘_ﬂ] = ‘%1 [4.22]
=5 ”Gx&)cu} - -+ Y(GZ(‘ICUJ {‘:&;Fz = %—1_. [F_S @\1_5:4({{.}1 [4.23]

o

and FE’(P’ F4(7L*) are constants of integration. Equation {4.23] can now be
expressed as a purely functional equation. To make this apparent, we make

the following definitions:

a = F (7l) ; Fi=7 ¢ = Hidw

B = Fz(f‘) ; Fz='(@ = Hz2(® [4.24]

Fs(‘t) = Fa®E1@) = I

Fa(p®) = FaBlzP)) = Iz [4.25]

@wz) [ 61 ()t tesen = G CatD)

(4/W=) gg Gz (£)At3 ltmex—B3/1 = Galo—f) [4.26]
whereupon [4.23] becomes:

Ga(atf) + Galo—f) = Hi@H=(R) + I + I=(R) [4.271

Perhaps surprisingly, given the generality of the analysis thus far, only
one distinct possibility exists for the functions {Gz, Ga, Hy, Hz, T\, Iz},
The proof is not given here, but the solution may be intimated from the

work of Aczel, 1968 (after Vilson, 1926) on the equation [4.27]1 with
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Ii, I= = 0. In this case, the authors show that the functions G: must be
either fhe sum of two trignometric functions, or a quadratic function of
the arguments ((a+f) and (a—-B) respectively). In our case, it can be shown
that both such solutions exist simultaneously in that the functions G.i may
be a linear combination of trignometric and quadratic functions. It is
instructive however, to construct two distinct solutions, which will be
called linear and non-linear tranformations. The former is the solution to
[4.27] with the trignometric components set to zero, whilst the latter is

the full solution without any such constraints:

(1) Linear transformation

Ga(x) = p= + QaXx T rax®
G;(x) = Ppa t qaX t rax®
Hix) = ¥ + bix
Ha(x) = %Y= + bax
ILhx) = pv + qax + mx=
Iz(x) = p=z + Qax + rax=

Substitution of the above into [4.27] gives the following constraints:

Yi%2 + pr + Pz = pz t pa

bi¥z + g» = Qga * qa

Yabz + gz = Q= ~ Qqa

bibz = 2(ra - ra)

rm = rz = 2(= * ra [4.28]
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(i1) Non-linear transformation:

Ga(x) = pz * gasxX + rzx® + tacos{wx—gz)
GalX) = pa + aaX + rax® + tacos(wx—ga)
Hix) = Y1 + bix + bycos(wx-61)
Ha(x) = xé + bzx + bzcos{(wx-6z)
Ihix) = pv + qix + mix® + ticos(ex—g¢1)
I2z=(x) = pz + q=x + rzx* + tzcos (Wx—gz)

Substitution of the above into [4.27] gives the following constraints:

Yi¥z= + p1 +t p2 = Da t pa
bibz = 2tz = 21a

Yabz = t=z

bi¥z =

81 = #

Bz = 4=

61 + 62 = 4ga

B - 082 = ga

Q1 = Q= t* Qa

Qz = Q= ~ Qa

r's = ra = ™/2 = rz/2 [4.29]
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Each of the coefficients (bi, pi, Qu, r'sy ti, ¥i, 81, #) in (4.28] and [4.20]
is potentially a function of z. It is left to the analysis which follows to
decide which of these must be constants, and which are true functional
degrees of freedom. We note that the linear transformation [(4.28]1 may be
derived from the more general non-linear transformation [4.29] by defining
a suitable limit for the coefficients as o - 0. It will be seen that [4.28]
gives rise to transformations which define Cartesian co-ordinates in the
u,v plane, whilst the transformations resulting from [4.29] can give rise
to cylindrical polar co-ordinates in the u,v plane. Each of these is

treated separately in the following two sections.
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Equations [{4.25] imply an inverse operation to recover the Gi, Gz

}2
Gr(atf) =  (W=/4) [Igex 63(‘4‘\‘(3)' ]
dﬂg:\—. (:T-o(-rp
= Wzra/2 = Av say (from [4.281) {4.301]
Gz (- /1) = (Wa/l) [f_ G, (<) | ,
W d-p=ct E=A-p2

Y

= -Wzla/2 = Az say (from [4.281) [4.31]

From these we conclude that Gi1, Gz are independent of « and B and

therefore of u and v. Therefore, from (4.18] and [4.19] we must have:

i}

fa(w Aqrf2 (W) [4.32]

1]

ga (V) Azgq (v) [4.33]

where we conclude from the definition of the Gi that the A; cannot be
functions of z. Also wx= can be expressed in terms of the bi(z) from [(4.30]

and [4.31] say (using [4.281):
Wx = 4(Ay + A2)/ (b1 Z)bz(z)) [4.341]

and from [4.7] therefore we are able to deduce that the factor sz u,v,w)

must have the form:
saz(u,v,Ww) = 4/(b1{2>b=(2)) [4.35]

The exact functional forms of the Fi can be recovered from {4.28]1 as

follows:

Fa (‘[) (71- ¥1(z)) /b (2D {4.36]

F::(‘IL*) aF = ¥2(2))/bz (=) {4 .37]
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so that from [4.17] we have the mapping of the functions g (uw, g=(v) into

the x,y,z space:

- 2 t

Q@ = 7 o+ gt - e [4.38]
L& L&)

@z = = Ne gt xe (4.39]
Z':,@J Cth‘)

Therefore the new co-ordinates (q:,3z) represent a linear transformation
on the (x,y), whilst the (u,v) may have a more complex dependency through

the functions f=z(uw), g:(v). Generally though, we can write:

u = 5 < SR (*-&j (4.40]
L, vy

v = %;‘ ( S___‘_;-‘ _ Z'\"T "7. j [4-413
v "

Recalling (4.5]1 and [4.6], it remains only to find the Q consistent with
these definitions for u and v. It is easily verified, using the complex co-
ordinates z= xtiy, 12* = x-1y, and the results:

4

Vie.=o 3 (Yo ) = ——— [4.42]

N

along with [4.38] and [4.39], that the equations in Q can be expressed in

terms of the qi as follows:

vie D0 4 29@ Yy = ‘A[ + 9% €4 32 4 4 R Ty 43
= 55 B2 2=z ™) b %
Vv« XY L 25q v = ’ZL 29/ a7, -4 W s 0 1444
°= bb,qls L b7 b

The ‘active' variables in these equations are still (x,y,z), but for
convenience, the functions f=(u) and g:(v) are left to imply a dependence
on (x,y,z) through [4.40] and [4.39] repectively. It is now a simple matter
to solve [4.43]1 and [4.44] for ’)Qh-i and XQ/D—L’“ giving two equations that

must simultaneously be satisfled by the function Q(x,y,z):

£/ o
%0_2 - 4 [_’-_V - 0q0 ] - b 2 (q.-iq,) [4.451
L S S S
S
2% . 1 o - b2 (4t [4.46]
34 = =~
Dvg Lk, [ B* PR g =



Again, just as we have done earlier in this section, the integration is
performed by first expressing the unknown functions in terms of

derivatives using:

1’ = lm?_ ‘-\F = L:,_\__ (" R

o 5o S [4.47]
3. = 2 g, = —LLA_ M [4.48]
ERC 3 it

where we have used [4.9]1, [4.10], [4.40] and [4.41], Using these results, we

can write the simultaneous equations, [4.45] and [4.46] in Q as:

e Y afag) ok, [7L L o« (‘(1 )’] [4.49]

!
fh?l, & }ZL LL bl

i.% - l%l(lﬁ + B[lb %)] 14501

Upon integration of these equations, we find that Q must must satisfy:

i

o B 2;__ [.,,U—L ﬁ <iﬂf+ ko (152) [4.52]

where we have introduced the functions k=(:*,2) and ka(zt,z) which are

= I CC « b, }"Lu—; (b ) k a2t 2) [4.51]

constants of integration. Since the above expressions for Q must be
identical for all ’L, i*, and z, it follows that the bs and ki must be

related as follows:

b= (2) = kaby (@) (4,531

kaG*2) = 7t L.(E )' + ke @ [4.54]
=

katz,2) = 0 L (%) Kef=) (4,551

“q N (s |+ 6 '

1

where k= is a constant, and ks(z) is an arbitrary function of z. Invcoking

these relationships, we find that the function Q has the form:

R R S A
B * -
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The desired function $§ (equation [4.8]) can now be expressed as:

Blrs,:) - = | fo . 33&)1 ~Va -(zR) -2 [4.57]
ke béy £, ©) 4.0 >z

so that it is clear that we require the various derivatives of the result

in [4.56]. The major steps to this calculation are as follows. First we

note from the results of (4.9], [4.10], (4.40] and [4.411 that for any

function H:

D He = KW [ bl bl [4.58]
B ol o= BTFN[ou
2 Hee) HO L5 | [4.59]

Similarly for a function. H(v):

,\4 7 -t -\
> = 9, Lo b,
2 H{) 7.7 H [ - ] [4.60]
S =Y P -

_?,5 Ho o o= W20 b+ b7 ) 14611
Making use of the above, the result of [4.56] and the relation [4.531 we
obtain:

v? = .E'_{ - _‘ _F""_', _:_3 le; +§,l”“ 1 «3"1
'bl kﬂo." F,Ll T p13 3"\ _7_ e [4.62]
o8
A similar analysis yields the result for [¥vQl=:
¥e)y = +—— TR el I A RS
e - gz [, e
)

/ .
.[ Kooeoy) +K1(’ZL.I+E,("-5/Y)) [4.63a]
FIB/" 3!3/7’ ’

Finally then, we evaluate the quantity VQ/yz:

R A
Jai.l’; [xl(v.’ )-8 L_Ln t&(kl m)l%

+ % +¥r[%‘/_%)zl +—Z—;[Y’”—Y L\"_ 1:2;[\(‘,, u %:l)}]{4.63b]
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and substitute this result along with [4.62] and (4.63] into the expression
for B [4.57] to obtain:

Bx,y,2) = L
K

" 4 y :
- k[ 38R e (W) 3R AL LU
' bl bl

4 i 5 L
This result expresses the full compliment of functional degrees of freedom
for the function Rx,y,2) given that the diffusion equation separates
(according to the canonical form ({2.6]) in w first with a ‘linear

transformation' expressed in the definitions (4.38] and [4.39].

Summary

It is perhaps useful at this point to review the definitions and relations
supporting this result. First we will choose to regard the functions fi(w
and gi(v) as elementary (functional) degrees of freedom in u and v
respectively; the functions bi(z), ¥:1(2), ¥=2(2) and ks(z) as elementary
degrees of freedom in z; and k= as a constant degree of freedom. Then the
co-ordinates u and v are defined in [4.40] and ([4.41] through the
intermediate functions qi which are themselves defined in terms of the
functions fz and g1 in [4.38] and [4.39]. Making use then of the relation

{4,531, the co-ordinate transformation for this case is:

u = 1;1 ( é - Y' -+ 1 +- Yj \) [4.65]
B‘ Kab,
= - - Y, +
voEoq) ( 1= % 3 Y, > [4.66]
;L! \\-K\, L>l
(where g1 and qz are defined in [4.38]1 and [4.39] respectively) and
w = B8k S—‘ d= [4.67]
V‘l— LIL
with 1 = Xty [4.681
and ZLJ( = x =3y (4.691
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Upon making this transformation, we find the solution of the diffusion

equation can be written, recalling (2.2]:
g = \f(u,v,w)exp[Q(x,y,z)] | [2.21
where by virtue of its separability, the function ai)(u,v,w) can be written:
y = Sd,ugd)\U(u;p,)\)V(V;;J,x)W(w;)\) [4.701

where, recalling [3.36-3.38] and using [(4.32] and [4.33], the functions U,V,W

are solutions of the ordinary differential equations:

U+ [fa(w) - fz@( + MU = 0 [4.71]
Vo4 [ga (W) + g (W - Mz)IV = 0 (4,721
V'o+ DB IV = 0 [4.731
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Consider now the transfaormation given by equation [4.29]1 for which we

proceed in an analagous manner the case discussed in section 4.1.1 abave.

The functions G2, Gz are readily found from applying the operations
depicted in (4.30] and [4.31] to the functions Gz and Ga respectively:

Gr(atf) = (W=/8)[2r7 - bibzw?cas (wlatf)-—g=)] (4,741
Gz ({a=R)/1) = —(w=/8)[2r1 - bibzwZcos(wla—R)—ga)] [4.75]
where o and § are unchanged from the definitions in [4.241].
Equations [4.18]1 and [4.19] imply that G,, Gz cannot be functions of z
except through g1, qz and therefore through o and B. Therefore the results
(4.74] and (4.75]1 imply, through [4.27] that ¢z, da (and therefore g1, gz

and © are constant whilst w= and r1 nust satisfy:

Bb: )bz (Z)w=/2

o)
}

8A/[wZb1 (Z)bz(2)] (4.76]

=
N
il

where A and B are constants. With these substitutions, the Gi are now:

G1(g1) B - Acos(wgi—g=) [4.77]

Gz{(q=) Acos (iwqz-gs) - B [4.78]

so that, recalling the relations [4.18]1 and [4.19], the abaove results
imply:

fadw (B - Acos(wgr (W)—F=) 1= (W [4.79]

1l

g4 (V) [Acos (wqz (V)~ga) — Blg: (v (4.80]
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Just as for the case discussed in section 4.4.1, we now recover the F;
from [(4.29]1 and use this result to determine the intermediate transformed
co-ordinates q:(uw and q=z(v) according to the definitions in [4.16] and

[4.17] whilst regarding the bi(z) as functional degrees of freedom:

R
1

By (z) Hqy? (‘Z) = [gy + cos™!’ ((7[-*&1 (z2)/b1 2N 1/w (4811

h o~
1]

Fz(Z(*’) Hz™? (‘f) [g= + cos™!? ((T""Xz (z))/bz(z))l/w [4.82]

whereupon the q. become:

2
It

{gs + cos™! (<‘i-x1 (z))/b1(2)) + cos™' (3*=Y¥u(z))/bz(2))]1/w [4.83]

Ne]
M
1

{ga + cos™? ((1L-¥1 (z))/D1(z)) - cos™! (’i*'Xz(Z))/b:z (z)1/iw [4.84]

The new (non-linear) transformations then are:

uo= g7t Algs + cosT! ((Y 200/ (2)) 4 cos™ (7"=¥=2(2)) /b= (2))1/w}  [4.85]
v = gz '{lga + cos™? <<7L-‘h (2))/01(2)) — cos™ ' (TF-Y¥z(2)) /b= (2))1/1w} [4.86]
w o= gdzaA/IQQbm (Z)bz2(2z)1 [4.87]

where we recall that the functions q. are given by [4.9] and [4.101. The

multiplicative function sz (u,v,w) is determined by [4.121:
sa(u,v,Ww) = wz/(G1 + G)
= A4w~=F[b*® - G-¥=I R lbe® - (’Z*-—xz)‘—?]““* [4.881]

Az before, we proceed with the solution of [4.5] and (461 for the
integrating function Q. Ve first note the results:

v=qi = 0 , (Tq)= = s=alu,v,w) p1=1.2 (4.89]

and apply the chain rule to express the derivatives of u and v in terms of

q: and qz respectively whereupon equations [4.5] and [4.6] become:
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E - T L.‘-@vf,)‘]l‘[bs-@—v, )11/‘ Y,
R4 2z
e 0w 20 1"92 « oL -g-n)rTeg = o [4.901
>3t e

‘133 3, bd[“ ) ] l b _(’l*’y‘ﬂ% %\
* W [LZ-G*—YL]‘]K&_Q - fL.’-@—V,)‘I‘/‘B o [4.91]
WQ% aZL »

and therefore the function Q must satisfy:

2Q = =t [v? -Y,l"{[’fl’ _uq) W T L oy 1 /o
51 aw Al X —%34] BrASal AEXCATES

il

2R o Y ‘Z[ 1) Y MLy D (g 43 Y493
2 e ] = X,%] %[ § ')lx“z&' A

Just as in the previous section, we proceed by expressing the derivatives
of fz, g1 in a manner that prepares the ground for the integration of each

of the two equations involving Q:

@ o L2 (afng, +L:[b§ *\.(ﬁ’ .
32 P 5 191) =2 5;1 TH | [4.04]
R R (n by 7yt Y \! . [4.95]
¥ ”’CAU‘) T2 ‘er“(‘*)]

These equations are now identical to ([4.49] and ([4.50], so that Q is

clearly unchanged from that of the previnus section:

= —- F + (-L + - *‘ r ! - ‘
& z (a0 &) }é 71 L{] l‘(, _1‘;:\(,] () 14.96]

b,

where once again bz(z) = kzb:1(2) for some constant k=. The desired

function B in equation [4.8] can now be written:

Bx,y,2) ="'). 37)‘] [L -@+ ]]‘{.[4% +1:§}1

VR -(zR) - R [4.97]
>z

Clearly, the basic form of § remains unchanged from that of [4.64] and the

final result can be written down upon inspection:

- 1456 -



_ v _y
| 1_ 17t 1 [k v1-Y% ¢ F .
B(ng,z) = :5\. l_Ll @‘Yl) 1 [ L] Kl @ Y\.) l [[Lg_; %1 g%‘ A‘fg J‘ f:?— I
2 T ! a‘ 6‘1

~

/
Kook “” g s g [ ”Y.l*[ﬁ’-k_,’_hUn’-};._’nu[ll'%]

)D' L LI

Summary

Just as for section 4.1.1, we recall the +transformation necessary to

convert [1.1] to a set of ordinary differential equations in U,V,V:

= R Cos™| S LR .
U % [Lo ( T ( %J: 7] [4.99]
v o= cl-—;‘ [;‘)I. ( + Cou™ ( ) (‘-C;_E’ ))] (4.100]
Vv o= A j [4.1011
Ko tat L'®

where the q. are given by [4.38] and (4.49]. Upon making this

transformation and using [2.2]:

S
It

$u,v,wexplQ(x,y,2)] [2.21
where = {ap (o ap v v o [4.70]

and where, recalling [3.36-3.38] and using [4.79] and [4.80], the functions
U,V,¥V must satisfy:

U+ [fa) + MAcoslwgr (W-gz)— \B - prf=wI0 = 0 [4.102]
v o+ [ga(v) + OB - )~Acos@q;(v)-h) + gV = 0 [4.103]
V' + AWV o= 0 [4.104]
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Ve now consider the transformation that allows a separation in u first.
Vith reference to equations [2.7] and [3.41] as before we make a further
substitution:

sz{u,v,w) = sy ,v,wf Wgz@ihi (w) [4.105]

and the constraints on the transformation can thereby be written:

@) = ssluvw) ]_’ 196 /a6 = hb) /ey ] /F.(u,) [4.106]
@) = 52 (0vw) /9, [4.107]
Yogv = o [4.108]
Vo o+ E_ “ 2R o “=—D [4.109]
Nz
D=
v = S hvw) / h () [4.111]
d=

es@)e2R v =

%@v,w)ﬂ _Si(-t) “+ ﬁ;;_(’:_‘] GQM -+ Lm(}"’J ]] {4.1121

31.6_’,) ﬁ@) E;Q/) hy (\9/)

Equation [4.111] immediately gives that sz is a function of z only. We can

therefore make the simplifying substitutions:
1 = ( F o) do (4.113]

g~ [ 97 dv (4.114]

whereupon (4.106-4.108] become:

[Ze) = s3(wvw) [5%@) ~ hby) K [4.115]
’ Wy )
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i.e, using s= is a function of z only, for some function G(q=,z) say:

T3 = 6(557) [4.116]
and (2 1) = S:aleviw) [4.1171
where vV, ZO‘/, = © [4.118]

From [4.1171 we conclude that q= is a straight line in x,y space and from
[4.118] that g1 1is everywhere in that space perpendicular to qi. Therefore

G can be a function of z only, and the qi must have the form:

4. = T o« 3w [4,119]
. b L,

4. = j-b\/, ~ =% [4.120]
3 Lq,

where, by virtue of [4.1181, the b:i(2) must satisfy:
b1 (2)ba(z) + bz(@balzd = 0 (4.1211 "

and the bi(z) and ¥i(z) are otherwise arbitrary functions of z.

Furthermore, the constraint that G be a function of z only requires that:

galv) = kiga(v) (4.1221]
whilst (4.117] implies that:

sz@@,v,Ww) = 4/[ba@)ba(z)] [4.123]
whereupon [4.111] gives:

Wz = 4/[h1 (Wba(2)ba (2)] [4.,124]
Also [4.115] and (4.1Z21] demand that:

hatw) + { kv + [b=(2)/by (2)]¥ Yhq (W) [4.125]

1]
(@]
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Ve now seek solutions of equations {4.109] and [4.110] for the function Q.
The algebra proceeds much as in section 4.1, whereupon the modified

equations are:

Vo~Be +2%aTo = X204« Ve L4 g [4.126]
o= L|L1,F|j/l vz bz -Dzz \’\ —if
Vive X L27QUV = 32—‘/{ 29 + % - % 4 4 % 1 (4,127
oZ bybsed, A >z F}’K T {hl
Therefore the function q must simultaneously satisfy:
0@ = [ ~ 1 -1 L”‘L. + b, 3%1 [4.128]
Fb L’ '5‘3 2
[ ] -1 [\9,3_% +¢>13&I [4.120]

Upon integration, and substitution of the results for qu from [4.118] and
[4.120]1, we find that the following condition must be satisfied by the
bi(z):

b1 )bz (z) = constantkbz (z)ba{z) [4.130]

Recalling [4.121], we find that the above implies:

bz (2) kzbq () [4.1311]

-kzbs (z) [4.1321]

ba 2z

for some constant kz, whence Q beconmes:

Q= \.\(‘31) wg-_15_

<L 6 o) Pt o e

for some function ks (z).
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Now the target function J?:(x.y,z) from [4.112] can be written, using

[4.121-4.123]1 and [4.1261:

e [fl - 33 l - ve —(_ZQY -3
RB&x,y,2) = ' Pl 9, b = [4.1341

Upon evaluating the derivatives of Q in the normal way, after some lengthy

manipulations, we obtain:

Bx,y,2) = _L [‘,ﬁy‘ti e —*4937 - [‘ﬂzl/ +5 ‘3:1 + 494 I —
wbie L fr 4 TR ) kbim] T3t A r Tq,

bl ]

g bbby 16

BN —L,; -z b, ba |
V 4
2 [ﬂ”-z\_(u_u_tq-a[w-aq A8 b
n bl gl Ty 2L The

[4.135]
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Just as in section 4.1, we recall the transformations leading to this

result, namely (from (4.119-4.121] and using (4.131]1 and [4.1321):

W= g ( I RRCTI LA 3 (4.136]
L&) b,
v = ?z-' ( z,r‘é) _ gi;—-kél [4:.187]
\DS(——!) k-:. \‘7'5@")
_ -z 1 d {4.,138]
_[ hé) dw e d b =

where the q: are defind in [4.1131 and [4.114]. Upon making these
substitutions, we find that the solution of the diffusion equation [1.1] can
be written using [2.21:

#(x,y,2> yx,y,2)expl Qx,y,2) 1 [2.21

[}

where Lil('x,y,z) jdxjdp PG OLECAVINTPA'RS T WY [4.1391]

and, recalling (3.42-3.44], 1[4.1221, (4.124] and (4.125] we find <the

functions U,V,V must satisfy the ordinary differential equations:

U+ [fad) + XM @IU = 0 [4.140]
v+ Igav) - (U + kaNg=2(WMIV = 0 [4.141]
V' o+ {u = NMky + (ba@)/br ZNEDhi W)W = 0 [4.142]

- 151 -



It may be seen from inspecting the results of sections 4.1 and 4.2 that
the linear form of the transformation following a separation in u first is
contained within the more general transformation which follows a
separation in w first; thus by choosing b=z(z)=ib:(z) ([4.135] becomes
{4,641, Therefore there are effectively +two distinct types of
transformation which render the diffusion equation [1.1] separable. Space
does not permit a full discussion of the characteristics of each of the
transformations although some of the features relevant to this work are

briefly discussed below.

In the following section we discuss the results of this appendix with
reference to the quadratic index profile B ~ c(2)r#. In section 5.2 we show
how the results of section 4.1.2 support the familiar transformation to a
cylindrical co-ordinate system, and give the functional form for the index
which permits separation. In section 5.3, this form is chosen to coincide
with that arising from the gain-focussing problem of chapter 2 to give the

eigenvalue problem of Perry et al.
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The relevance of this work to the problem of Raman Scattering follows
from the identification of the paraxial ray equation (chapter 1) as a
diffusion equation whence the potential function is then approximately
proportional to the varying part of the refractive index. Particular forms
for the transverse (x and y) variation of the refractive index have been
used in the past to model the inhomogeneous properties of the medium and
yet still permit a simple closed form solution for the propagating field.
Almost universally, for a free-space, paraxial beam, these forms are based
on a quadratic transverse variation of the refractive index. In particular,
in their well known review, Kogelnik and Li (1966) showed how that, for a
rotationally symmetric quadratic index variation, the field may be written
as a series of modes which are Hermite-Gaussian functions in a Cartesian
co-ordinate system. Shortly afterwards, Hanna (1969) pointed out that the
Hermite-Gaussian beams were solutions to the paraxial wave equation when
the refractive index variation was quadratic, but not rotationally
invariant (i.e. astigmatic); a fact which has recently been rediscaovered
(Simon, 1985). A fuller, more detalled description of the types of field
that result from a medium with a quadratic transverse index variation may
be found in Arnaud (1970). With reference to the results of section 4.2 of
this appendix, it can be shown that this type of solution arises (for
instance) when the functions fxz(u) and g=(v) are chosen to be quadratics,
and the functions £.(u) and g=(v) are constant (see equation {4.135D.
However, the advantage of our analysis is that the full compliment of
functional degrees of freedom <(that 1s variation in the direction of
propagation) can be determined. V¥ithin this context then, considering only
the mapping &x,y0 » U,v), we are able to interpret k= as the angular
rotation, (Xy(z)xz(z)) as the coordinate vector shift, and by (@)~', bz(z)?
as the respective magnifications suffered by the axes in the

transformation.
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It was mentioned in passing in section 4.1.2 that the transformation to a
cylindrical co-ordinate system may be recovered from the more general
transformation described in that section. Briefly, this may be achieved as
follows. First we take the limit of [4.81]1 and [4.82] as:

§ = ei*30 with by (2)9283(z> and A--26=C [6.11
for some arbitrary function s{(z) and some constant C <{(note that these
limits are consistent with the relations developed in section 4.2.1). Then,
choosing:

B=0,% =% =0, k2 =1, and v = -21 [5.21]

it is easily verified that the Gi become:

i

Gn Cr2/s(z)= [5.3]
Gz = 0 [5.41]

and that the transformation becomes:

q1 In(r/s(z)) where r = (x* + y=)=» (5.51]

and " Q= 8 = tan~'(y/x) (5.61

whereupon the potential function B given in [4.98] now has the form:

—_—

g = —L [4_5‘-“1"*5 R q,"] -0 -5l 5.7
435 S5,

4l @ % 3 o e

Equations [5.5] and [5.6] confirm the transfomation to a cylindrical co-
ordinate system where, in this example, an arbitrary functional degree of

freedom s(z) has been preserved.
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As mentioned in the introduction to this appendix, the initial work on the
separation problem was inspired by the gain-focussing problem which has
been discussed in chapter 2. The relevance of the work of this appendix
may be made apparent by first casting the paraxial ray equation (121 of
that chapter into the canonical form {1.1]. This is achieved by equating 8
in [5.7] as follows:

B = iPexpl-2r=/wpz(2)1/wa2(2) [5.8]
Ve then choose in the above:

fz(u) = u=®; gi(v) = 1; ga(v) =0; C=1 [5.91]
whereupon we have:

qi1w = 1ndw so that u = r/sz);
Yext we choose:

s(z) = wp(z)
and replace z by z/(-2iks) in [5.7], so that equating [5.7] and (5.8] leads
to:
. AREYE 4 ymE/4 - fa () = i\fpexp[—zua] ) (n‘. = "3/“?\ (5.101

and ks' = -s'/s [5.111

The eigenvalue problem of interest comes from (4.102], which on

substitution of [5.10] and using [5.3] becomes:
"+ [A/4-n®)/u® + X+ 4KFuR - i‘lgpexp(—Zu'-"‘)]U = 0 (5.121

where, from the equation in the angular co—ordinate, we have deduced that

M4 = n® where n 1s an integer.
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Ve have successfully transformed the paraxial ray equation for the gain-—
focussing problem discussed in chapter 2 into a set of ordinary
differential equations. The above may now be treated as an eigenvalue
problem, the solutions of which are required to vanish at infinity. This
will provide a set of allowed values for )\ which depend on the magnitude
of the normalised pump power ﬁ;. and thus determine the longitudinal gain
through [4.104]. This was the method adopted by Perry et al (1982), whose
approach was to expand U as a sum of Gauss-Laguerre functions
(Abromovitz and Stegun, 1970) and thereby treat the term due to the

presence of the pump beam as a perturbation.
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Clearly, the results of section 4 suggest that a variety of possibly
previously undiscovered refractive index variations exist for which an
exact separation of the paraxial ray equation is possible. In additionm,
because this has been an exhaustive search, the results of that section
may be useful in showing that for some particular forms for the refractive
index, no transformation exists for which the system is separable. Indeed,
we can see at a glance that no separation is possible under any

transformation for the potential function in (1.21.

Note however that not all forms for the refractive index which give rise
to separable transformations will also give rise to ordinary differential
equations that can be solved in terms of tabulated functions. Indeed, the
work of Perry et al is an illustration of this point. Further work remains
to be done therefore, in order to isolate the functional forms for the
refractive index that permit an exact solution in the separated co-odinate
system in terms of tabulated functions. One possibility is to closely
follow the work of WVestcott (1968a, 1968b) and insist that the potential
terms involving the functions fi(w, gi(v) in the transformed system are
such as to allow a solution in terms of hypergeometfic functions. This
constraint could then be 'propagated backwards' to identify the constraints
on the refractive index variation. It is hoped that this pessibility will

be investigated in the near future.
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APPERDIX 2

PAPER: ANALYSIS OF RAMAN GAIN FOR FOCUSSED GAUSSIAN BEAMS

The following paper has been submitted to Applied Physics B under the
above title. The contents closely follow the exposition of chapter 2 in the

main body of the thesis.
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Title: Analysis of Raman Gain for Focussed Gaussian Pump Beams

First author: M. C. Ibison

Affiliation: Department of Physics, University of Southampton,

Highfield, Southampton, S05 5NH, U.X.

Now with: The Dove Project Limited,

29 Church Lane, Highfield, Southampton, SO2 18Y, U.X.

Second author: D. C. Hanna

Affiliation: Department of Physics, University of Southampton,

Southampton, S05 5KH, U.K.
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Several theoretical and numerical models . have been published which
describe the evolution of a Stokes beam in a Raman medium excited by a
focussed pump beam. Generally, the published theoretical departures from
the plane-wave theory of Raman Scattering are based on assumptions about
the power of the pump beam. In this paper we present a theoretical model
which is shown to be in excellent agreement with an exact numerical
treatment, and which is valid without restrictions on the pump power. Its

predictions are used to indicate the range of validity of earlier theories.

PACS code number: 78.30 j
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Several authors have addressed the problem of describing the spatial
behaviour of a Stokes fileld in a Raman active medium driven by a focussed
pump beam [1-7]. The motivation is generally to discover the optimum
experimental conditions required to effect an efficient conversion of
energy from the pump to the Stokes field. The information required may
include the necessary pump power such that the Stokes field attain some
threshold, the optimum focussing conditons for the pump beam that
minimise the threshold, and the Stokes beam parameters on leaving the

medium.

In this paper, we present an approximate solution to the problem using a
variational technique for describing the evolution of the Stokes field in
the gain medium as a Gaussian (TEM..) beam. This solution is shown to be
in excellent agreement with an exact numerical treatment of Perry et al
(5,61, and that the work of earlier authars [1-4] are special cases of the
general results we derive, each having assaciated limited domains of
applicability. Thus the 'overlap integral' approach of Boyd et al [1]1 is
seen to be the limit for low pump power in our more general result, whilst
the solution developed by Cotter et al [2] based upon a quadratic index
profile approximation is shown to be applicable only when the pump power

is sufficiently large.
The following section deals with the derivation of the equations of motion

for the parameters describing the Stokes field. The next section presents

the solutions to these equations under the high and low pump power limits
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discussed above followed by the more general result of our analysis. The
final section is a discussion of the predictions of this result together

with a comparison with the results of Perry et al (5,61.
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In the following analysis we assume that the Stokes field grawth is small
signal, steady-state, and without competing processes. The conditions to be

satisfied are respectively:

(a) The intensity of the Stokes field is not large enough to deplete the
pump or saturate the medium,
(b) The pump and Stckes field each have a bandwidth smaller than the
Raman linewidth [81.
(c) The gain and material dispersion of the medium favours the dominant
- growth of a field at the first Stokes frequency over higher order

Raman processes (9],

Qur starting point in the variational approach te the derivation of the

Stokes field is the Lagrangian density for the electromagnetic field [101:

= L 2 ‘_E_ - 9. - -H— .
L > [ I Y
and the Maxwell relation:
28 =
- -~ 2)
ot
The pump and Stokes fields are defined as those components of the total
field with frequencies wp and ws respectively. In the small signal regime,
the pump field is unpertubed by the medium and 1its spatial distribution

may therefore be regarded as given. Thus (1) and (2) apply fto the field

components at the Stokes frequency only, which we expand in the usual
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manner making explicit the rapidly varying part of the spatial variation

in the 2z direction:

J™m
1]

Qe % S © exr[i (st - ke=) ]-i 25 (3)

and similarly for the magnetic field. Here 8= is a unit vector in the
direction of polarisation 61’ the Stokes field, and ks=nsws/c, n=s 1is the
refractive index at the Stokes frequency, and &=(r) is a slowly varying
envelope. In addition to (@), (b), and (¢), it is assumed in this paper that
the pump field is a Gaussian beam and that the Stokes field is linearly
polarised parallel to the pump fileld. Then the fields D and B can be

written in terms of the electric and magnetic field vectors as follows:

B = poH 35 D=g g =82 4)
P = el *®g
P Y elednl 0 e .
. 2 by - ,\
|6r'@) "= lef"’l [Vf" ] exp - e
Wp() W) ®)

o+ [ o[z, T]

Ke\pe

where y‘®” 1s the Raman susceptibility, the definition of which is taken
from Hanna et al [11]. Classically, the Stokes field es(r) will be that
distribution for which the integral of the Lagrangian density is a
minimum:

050560 fz ) detgdede] = o

®)
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Ve now make use of the paraxial approximation:

J c
|22 | << sled ©)
z
and the boundary conditions:
Le €s(2)=© 5 - Eg(D) l given
3T 2= (10

so that the lLagrangian density becomes, upon substitution of (2)-(7) into
1

o(= b E_K_six(g)lér&;]‘»fzjﬂ\ &N ‘E(H

—

By

& \1

an
Here it is assumed that the integrals over z and t of the Lagarangian
density extend over many cycles of the Stokes field. Therefore the rapidly
varying components in z and t do not contribute to (1) and have been

omitted from (11). The Euler-Lagrange equation for the above is just the

paraxial ray equation:

roy -2tz K X‘G)lérll ee = o
" — —_— — S
Xt vyq Nz 2 ns® a2

a full solution of which has been sought by Perry et al (5,61, and more
recently by Gavrielides and Peterson [7] who have also taken into account
depletion of the pump beam. Their approach was to pose (12) as an
eigenvector problem in the Hilbert space of Gauss-Laguerre functions which
are the TEM freespace modes. The assoclated eigenvalues represent the
growth of the Stokes beam on prop;agaticm through the gain medium. For the
particular case ks = kp, Perry et al give their results for the variation

of the three largest eigenvalues with the pump power. Although theirs is
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an exact (numerical) solution of (12), an approximate analytic treatment
would in some cases be more desirable. For instance, one is generally
interested in the component of the Stokes beam that couples into an
optimally chosen TEM... beam, whereas the spatial transverse profile of the
Stokes beam at the exit of the gain medium is not readily recoverable from

the Gauss-Laguerre eigenvectors.

The following treatment therefore models the Stokes field as a Gaussian
beam throughqut the medium, the parameters of which are chosen to
minimise (11). Our approximation consists of ignoring the coupling between
this and higher order modes, although it will seen that this approach
becomes exact either when the pump power is sufficiently large or
sufficiently small. We therefore retain the Lagrange formulation, and

substitute into (11) a Stokes field of the form:

&0y = Am exp [~ tae ey, ] 13

The amplitude A(z) and beam parameter Q(z) are now chosen so that (11) is
a minimum. Thus we carry out the transverse integrations, and apply the

Euler-Lagrange equations for the variation of @*(2) and 4*(2):

3k Xl Ve = W Rirar
2.
5 . . g 2
[ {t_-tthI@) (Q_Ce?)l [&_QY] (14‘)
LA . ' ? i
k dA o R TR+ 3k 3®) Vo lEo I [ @-@#] (15)

d=z Q- QF 415 . .
E 1 [44»[\'\]' )LQ_(E*‘)]

Equations <(14) and (15) can be recast in terms of the norﬁalised

quantities as follows:
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4t + dq ‘»_:p [regr=(edaq )" 17 (16)
mlw

. o
4
dln _ T _ -{ 5 1=l
Sl [lq’\ oy ][1'3'*1 - e [=q-bedn) ] an
d3 41 4K
5 _ 7;: « (-«) 2
where: P' - -‘3—1(31 Weo ‘)"\(X )(é(’°l 18)
2ng
q = KeWpr @
2 % 13
= 2/z-6 |
2 [xfwfl?[ @0)
S @1)

?; is the 'normalised pump power' and z is the normalised longitudinal
ordinate 1.e. where possible, we have kept to the notation of (2] apart
from the definition of x‘®> which is that of (111, Clearly if B> = 0, (16)
and (17) reduce to the equations of motion for the spot-size, radius of
curvature, and ({(complex) amplitude of a free-space Gaussian beam. WVhen
f’; # 0 however, these equations can be used both to analyse the results of
earlier authors in the domains of low and high pump power, and provide a
more general description for the Stokes field for arbitrary 13,;; these then

are the respective goals of the sections which follow.
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Ve start by considering the limit of low pump power of the solutions to
equations (16) and (17). We will first derive the general result for the
Stokes amplitude and profile, and then show how this result can be applied

to the design of a Raman gain cell.

If the normalised pump power E is sufficiently small, the Stokes profile

remains almost unchanged from its free space behaviour:

4  + v
i1

|
¢

(225

In terms of normalised quantities, the scolution of (22) is:

v = X . 23)
t‘(ﬁ’%o)*“

where: 7‘ o = %_’F;_ 24>
2
Ko Yo
— -«

and: p o= KpWpo (25)
Ke Wsr

Hence, i is the distance of the Stokes focus from the pump focus in units
o

- of the pump confocal beam parameter, whilst u is the ratio of pump to

Stokes confocal beam parameter. This general case is depicted in figure 1

where the pump and Stokes beams have been enclosed by the gain medium. Of
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course, calculation of the Stokes field through equations (16) and (17)
apply only to the field within the cell. Equally it is tacitly assumed that

the finite transverse dimensions of the medium can be ignored.

Vith the free-space form for the Stokes profile, (17) can easily be solved
to give the amplitude of the Stokes field at any point ‘Z7 in the gain
medium:
A = A "‘jr<<é’<o’zemr [ 2o [ it -k e
(R m30) A0
v

where: W = [L’"\*t')(“‘p') -+ r)c%,;‘} @7

and A(%=) is the Stokes amplitude at the entrance to the medium. The total

power in the Stokes beam can be evaluated from <13), (23) and (26):

AGENANE [ [ fom” Q“*vh o = &“-I(K*?‘J )ls‘ﬁoz @8)

The justification for using the free-space profile (23) in deriving (28) is
that our result for the Stokes power is then directly comparable with
those of earlier workers. In fact Boyd et al [1] have obtained exactly the
same result using an 'overlap integral' method. Whilst (28) is also related
to the result obtained by Christov and Tomov (4], Also, allowing for
typographical errors, a similar result has been obtained by Trutna and
Byer (3], Examination of (16) reveals however, that to first order in f;,
the third term also contributes to the gain as described by (17). Thus we
finci that even for low pump powers, the effect of the pump power on the
Stokes beam profile can be significant. However, this component can be

shown to be identically zero for the particular initial Stokes profile
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satisfying: ’20 =0, and g = 1, which is just that the pump and Stokes
beams share a confocal plane, and have equal confocal parameters. These
are the conditions are chosen by Trutna and Byer to maximise their

expression, based on (28), for the Stokes gain.

Strictly speaking, Trutna and Byer obtained a maximum gain through optimal
choice of the confocal parameters belonging to both the pump and the
Stokes field under the assumption that the beams share a confocal plane.
They rightly concluded that the Stokes gain would be a maximum - in the
limit of tight focussing for the pump - if the confocal parameters were
equal. Thus in a cavity designed to give rise to a self-reproducing pump
beam, the optimal choice of confocal parameters is also that which gives
rise to a self-reproducing Stokes beam. We note in passing that for a
cavity design other than that of Trutna and Byer wherein the pump beam is
not tightly focussed, the condition x4 = 1 does not maximise the Stokes
gain. In this case the characteristics and growth rate of the Stokes beam
will be a result of the (competing) tendencies towards a beam that is
self-reproducing, and one that has maximum gain., Vithin the variational
framework of this chapter however, the condition above 1s a necessary
prerequisite for the validity of (28). Therefore we will proceed assuming
that these conditions are met by the design of the Raman amplifier, so
that by virtue of our more general approach, we will then be in a position
to determine the validity of the low gain approximation. In this case, the

power gain for the Stokes beam is found to be:

o~

Ps@] = 0 @s) e=r el 13)1

2 (ven) 29)

() Yis) = "‘M_' - tas
where: CL t ) 7’ 3; &1D)
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If we now compare the magnitude of the discarded term in (16) with those
used to define the free-space profile (23), then we find that the low gain

approximation is consistent with the requirement:

A

Fl’ < < zCl—t-vo)L{l-{-‘Jl?-) (31lay

which must therefore be regarded as a necessary condition for the validity
of (29). In this form, the constraint above is rather unsatisfactory since
it depends strongly on the length of the Raman gain medium. However, a
more accurate constraint can be found from comparing the result (29), with
an exact solution for the Stokes exponential gain which we will anticipate
from the results of section 3.3. Thus by expanding the exponential gain in
increasing powers of the normalised pump power, we find it 1is necessary
that:

\(;;, << (:'SLCL—HQY’:(\/L

@1l

/

whence in the low pump power domain, (29) gives an accurate measure of

the Stokes exponential gain.
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As the pump power is increased, the Stokes profile will deviate from the
free-space form given by (23). Hence the extent of the profile is governed
by the competing effects of diffraction and gain-focussing determined
respectively by the first and third terms of equation (16). When the pump
power is sufficiently great, the effect of gain-focussing is to confine the
Stokes spot-size to an area well within that of the 'guiding' pump, i.e. in
the limit of high pump power we expect we*(2) » ws*?(z). The Stokes spot-
size can be defined using <(13) and (19), in terms of the normalised
variable g; whilst the pump spot-size can be defined using (7) and (20) in
terms of the normalised co—ordinatez. Thus we may rewrite this condition
as:

-
=+ ‘27 > [\Qﬂn\rfpl 32

(If a TEMoo Stokes mode exists, then the imaginary part of g must always

be negetive.) Using (32), (16) becomes:

4 P
e =0 (33)
d.7L ‘2‘(’16\4-2"7‘)”

Ve note that the same result can be obtained by retaining only the zeroth
and quadratic terms in the expansion of l&/® in powers of r® in (6). Hence
this approach 1s just that of the parabolic-index profile approximation
considered by Cotter et al (2], However, in this paper we proceed to solve

for g without the additional approximations made in that work.
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Eqn. (33) is a Ricatti equation, and can be cast as a linear second order

differential equation by making the usual change of variable:

0', = 4 i\f
v
JT/ . 34)
- ! =+ \., F *
also we define: ¥ ( _r z (35)
v
v (¥ -1) Vo= o
whence: . — . 36)
3 Lr+7%)

By substitution or otherwise, the solution of (36) can be shown to be:
L3 V .
\/@) = Vo Et+< 17 Ces [—?59(%> K‘S) + gz(] (37)

where: (1334 )= Fal 2 - *‘wf[@ (38)

v

and va., ¢ are (complex) arbitrary constants. From the definition (34), the

complex parameter g can be recovered:

I )
[‘+ltl] |

where now g can be interpreted in terms of the Stokes parameters at the

entrance to the gain medium:

b [és - (1) 4@y

¥

i

P

(40>

The amplitude of the Stokes field can now be obtained from (17), making

use of (32):
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dﬁ B L chw?) A1)

Again, recalling the substitution in (34) and the result for V(Z) in @7,

the amplitude can be written down without further calculation:

A = As) ﬁr Cos () F J

|+ 711 cc;(b’@+7é ) 42>

The condition (32) can now be stated using (39) as:
jn’\ 2 WX lu"\ (’\/9 "C'}Z) % Z > l (43)

Equations (39) and (42), in conjunction with (43), describe the behaviour

of the Stokes field under the quadratic index profile approximation.

Consider now the initiation of the stimulated process from spontaneous
scattering at i= 3= I the initial field is a Gaussian beam with zero

spot-size and zero radius of curvature, then we would have:
9,(s) = 0 -Co0 )

After a short distance into the gain medium, the complex parameter g from

(39) obeys:

.

- X
GV@S) = 2 45)

L+ 72

and the Stokes amplitude is:

AG) = 2iAG)[) 43] o [ (<o s
A4 4w i
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The condition for the parabolic index profile approximation is naw:

\ j”\i?f‘i >> | 47

and in deriving (45) and (46), use has been made of the additional

constraint:

exp[—alve(vtms)]

>21 ) Zs?iéj(f (48

This is a simplifying assumption designed to ensure that the cosine ter'ms
in (42) effectively collapse into the dominant exponential component. The
value of 1 for which (48) becomes true depends on the magnitude of the
gain: the higher the gain, the earlier will this constraint be satisfied

and therefore will g approach the the particular form 45).

Defining the real and imaginary parts of @ in terms of the spot-size and

radius of curvature (see for instance {121):

Q = ‘CS — z":

_ — (49)
Rs@ Ws &)

then we find that (45) implies that the Stokes beam has a radius of

curvature:
ki T
R = e Wpo [ ‘. * Zl ‘Z
= 3+ Inixt ©0)
and spot-size given by:
Wt o= wf\(})
e thz KS B
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Hence the Stokes field is a Gaussian beam with propagation characteristics
similar to that of a free-space beam, but with a distorted phase front,
and a spot-size that 1is everywhere narrower than its free-space

equivalent.

Equations (45) and (46) describe the 'matched mode' behaviour of the
Stokes field in that the complex parameter q¢7> and amplitude A(Z) have
become independent of the initial parameter q(’(I‘s). This is a generalisation
of a concept first introduced in this context by Cotter et al (2], The
magnitude of the pump power, through the left hand side of (48), is seen
to determine how quickly the initial Stokes profile tends towards the
matched mode profile. In fact, if instead of (44), the initial parameter is

made to satisfy the matched mode condition at Z = Fa

v(725)=  Ts-v¥
\ - ’is"

B2)

then the q(p remains unchanged from its matched mode value 45)

throughout the medium.

These results can be compared with those of [2] by taking the high pump
power limit for the complex parameter ¥y defined in (35). Under these

conditions, the Stokes power is:
s @ A Y (P eup[( R -zf%; ) e(z‘)?s)/(zlc)] (53)

where now (47) becomes:

AN

PP 3> 4
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Therefore, the results of [2] represent the high pump power limit of the
matched mode solution. Note that by virtue of (S4), the expression for the
Stokes power in (53) is valid only when the net exponential gain is
greater than zero. Thus the explanation based on this result which was
advanced by Cotter for the behaviour of the Stokes beam at low pump pawer
is spurious. Note also that (63) in conjunction with (54), describes a
Stokes power-similar to that obtained from the low pump power calculation
of the previous section. The first term in the exponent is greater by a
factor (1 + k)/w, whilst the additional second term represents a reduction
in gain due to the increased diffraction of the Stokes field in the

presence of gain-focussing.
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Following the discussion in the previcus section, we now seek an exact
matched mode solution to the equations of motion (16) and (17) without
making the parabolic index profile approximation. The result will then be
an analytic description for the Stokes field that will be valid
simultaneously under conditions of low pump power as for example in a
multipass Raman gain cell, and conditions of high pump power likely to be
encountered in a single pass Raman generator. In either case, the matched

mode condition may be arrived at through one of two routes:

(@) An initially unmatched mode perturbed by the gain medium to a point
where the spot-size and radius of curvature have converged upon that
0of the matched mode. From the previous section, we find this condition

will generally be satisfied if:
| exp [ 200 BCTWQII =7 48)

(b An injected field which is a Gaussian beam with spot-size and radius

chosen to satisfy the matched mode condition at z = ZS.

The (exact) matched mode solution to (16) may be derived from a

substitution of the form:

6‘1’: d{'vaé*e?
I+ 2

55)
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where o, B, and ¢ are real, and £ > 0. Upon equating equal powers of é we
obtain:

e=1 (56)
oLl = l’&.’-—-\
B7)
ff = a (rer) Sy
(58)

whilst the amplitude now satisfies:

T S T B Cpey] -
d_ﬁ [H—{"—l L 4(‘_\_!&9) ( (&) Yl 59)

and so the Stokes power is easily found to be:

RG) - PS@S\exF[G(\@.)w‘)@)I

(60)
where G(E,,/e) 1s the matched mode exponential power gain:
f,
o
A
G(?P)\c;@) = c ©1)
2 (v rp)
and the matched mode complex parameter g is:
= s
9 = yvbP -t | ©62)
I+ le

and B is given by the solution of (58). That (60-62) encompass the results

for high and low pump power of the previcus sections can readily be seen
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from the limiting values for B Thus if E. is small, we can develap a

series solution of (G8) for B in increasing powers of B> to obtain:

B~ 1 o~ R -+ €>(€3)
3x(iri)t
A v 3 “
and > & = D, ,.L—P - p_f’ ™ ©CpP+) 63)
2( 1+ 1) ¢y (1tk)°

Alternatively, if 15; is large, then we can obtain a series solution for g

in decreasing powers of f,;.“‘ to obtain:

\A\é vy
P = EE - 1L + © C ﬁ,l)
2% W
e \Az_ \"-\4
and => G = ©. _P_" - e + @@r) (64)
2K IC

Note that comparison of the first and second terms in the expansions for
the exponential gain, confirms the constraints for the validity of each of
the results in the domains of low and high pump power in the previous

sections (equations (31b) and (54) respectively).

Ve note in passing that the gain-focussed Stokes beam becomes ever more
confined with increasing pump power and therefore can expect the parabolic
index profile approximation discussed in section 3.2 to give increasingly
accurate results. Thus the coupling between modes will eventually vanish
and the high gain limit given by (80-62) with (64) will give the exact
solution to (12), Further it is recalled that the result first aobtained by
Trutna and Byer [3] is effectively that of a first order perturbation

theory (in the pump intensity) applied to a Stokes fileld expansion 1in
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free-space TEM.. modes. Hence for sufficiently low pump powers, the limit

given by (63) will also give an exact solution to (12).
For the general matched mode result, it may be of interest to know the
spot-size and radius of curvature at any point % in the medium. Comparison
of (45) with (55) reveals that the substitutions:

Re {¥)Y 2 p ©5)

ImA{YYH>a=/pF -1 66>

into (50) and (1) gives the general results:

R, = KeWp . xz*

R Y ®7

(68)

/

where again f§ is given by the solution of (58). The radius and spot-size
at the end of the gain medium can be found simply by substituting z =% e
into (67) and (68) respectively. It is clear from these results that the
radius of curvature and the spot-size are smaller than that of the
equivalent free~space mode which has 4 = 1 and a shares a focal plane

with the pump beam.
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Ve now compare the predictions of (60-62) with both the approximate
results of sections 3.1 and 3.2, and the results of [5]. In the following,
we will assume that +the pump focussing conditions are such that

8(‘?;%6) = m, and therefore that the Stokes exponential power gain is given

by:

- \? P‘W‘
6wy =
2 (1+wp) ©9)

The equation (58) has been solved for g numerically, and a plot of 8
versus f’; for various values of w is given in figure 2. These results can
be used to find the matched mode exponential gain G(F-jk) in (61) and the
spot-size and radius of curvature in (67) and (68). In figure 3 we compare
the matched mode gain with the gain predicted by ®3) and (64). As
expected, 1t is seen that the limiting cases are satisfactorily modelled as
F}, 2 0 and pp 2 ® regpectively. For the chosen value of w = 1, we observe
that the predictions of the low and high gain approximations are equal at
a pump power }\"‘;. = 16 (the high pump power solution thereafter being
closer than the solution for low pump power to that of the matched mode).
In_ this respect then, this iIs the point at which the conventional models
are least satisfactory - there being about 15% deviation from the matched

mode gain,

It is also of interest to compare these results with those obtained by
Perry et al [5] (see figure 1 of that work). First it is necessary to make

explicit the connection between the symbols used in their work, and those
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adopted in this paper. Table 1 provides a summary of the pertinent

relationships:
Table 1
Description Berry et al This paper
R
Dimensionless parameter t’ / é 't K)
Gain coefficient G-{, Pe / 4
o~
Real part of eigenvalue Re % gﬁ Pr > /(4 ( i+t P))

Normalised gain Re,%:; 3 / Gf ' 13/ C I+ P)

In figure 4 we have used these relationships to compare the matched mode
gain with the gains predicted in [5]1 (at W= 1) for the first and second
(rotationally symmetric) eigensolution. Clearly the matched mode gain is
consistently close to the gain of the first eigensolution and the excellent
correspondence between these resulfs lends support to our model,
Encouraged by this comparison, we present in figure 5 the matched mode
gain for various values of R found by applying the solution of (58) to

@1,
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It is possible to further test the accuracy of our supposition that the
lowest order mode is essentially a Gaussian beam by comparing the matched
mode profile with that predicted by the numerical results of [5]. With
reference to figure 6, we have used the normalised coardinate
r/ws(z) = 1/}-2_137 wo(2), and find that once again, at least for the values

PV,; = 40 and k= 1, there is very good agreement between the results.

- 184 -



In this paper we have presented an analytic model for the evolution of a
Stokes field in a Raman active medium excited by a focussed pump beam. Ve
have shown that our results are valid throughout a wide range of values
for the pump power, and that in the limits of high and low pump power,
they reproduce the results of earlier workers., We have therefore been able
to identify constraints which in this context define the domains of high
and low pump power. Excellent agreement has been obtained in comparison

with an earlier numerical treatment.
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Figure 1: Configuration of pump and Stokes beam in a gain medium

Figure 2: Dimensionless parameter B versus normalised pump power
Pe.

Figure 3: Stokes exponential gain as predicted by matched-mode,

low-gain, and high-gain theory.

Figure 4: Stokes exponential gain as predicted by matched—mode
theory and that of first and second eigenfunctions of

Perry et al,

Figure 5: Stokes exponential gain as predicted by matched-mode

theory for k = 0.1, 0.5 and 1.0.

Figure 6: Stokes profile as predicted by matched-mode theory and

that of first and second eigenfunctions of Perry et al.

- 188 -



1

FIGURE

beam in a gain medium.
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FIGURE 2

Dimensionless parameter B versus normalised pump power for various k.
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FIGURE 3

tokes exponential gain as predicted by matched-mode, low gain, and

igh gain theory.
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FIGURE 4

Stokes exponential gain as predicted by matched-mode theory and that of

first and second eigenfunctions of Perry et al.
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FIGURE 5

Stokes exponential gain as predicted by the matched-mode theory

versus normalised pump power for various K.

= 1.0

= 0.1

40
30
20
10

G(Fey k)

40

30

20

10



FIGURE 6

Stokes profile as predicted by matched-mode theory and that of \

first and second eigenfunctions of Perry et al.
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