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ABSTRACT

Background: Loss of muscle mass and strength are significant co-morbidities in patients with COPD
that limit their quality of life and have prognostic implications but do not affect everyone equally. To
identify mechanisms that may contribute to the susceptibility to a low muscle mass, we investigated
miRNA expression, methylation status, and regeneration in quadriceps muscle from COPD patients
and the effect of miRNAs on myoblast proliferation in vitro. The relationships of miRNA expression
with muscle mass and strength was also determined in a group of healthy older men.

Methods: We identified miRNAs associated with a low fat free mass (FFM) phenotype in a small
group of patients with COPD using a PCR screen of 750 miRNAs. The expression of two differentially
expressed miRNAs (miR-675 and miR-519a) was determined in an expanded group of COPD patients
and their associations with FFM and strength identified. The association of these miRNAs with FFM
and strength was also explored in a group of healthy community-dwelling older men. As the
expression of the miRNAs associated with FFM could be regulated by methylation, the relative
methylation of the H19 ICR was determined. Furthermore, the proportion of myofibres with
centralized nuclei, as a marker of muscle regeneration, in the muscle of COPD patients was identified
by immunofluorescence.

Results: Imprinted miRNAs (miR-675 and from a cluster, C19MC which includes miR-519a) were
differentially expressed in the quadriceps of patients with a low fat-free mass index (FFMI)
compared to those with a normal FFMI. In larger cohorts, miR-675 and its host gene (H19) were
higher in patients with a low FFMI and strength. The association of miR-519a expression with FFMI
was present in male patients with severe COPD. Similar associations of miR expression with lean
mass and strength were not observed in healthy community dwelling older men participating in the
Hertfordshire Sarcopenia Study. Relative methylation of the H19 ICR was reduced in COPD patients
with muscle weakness but was not associated with FFM. In vitro, miR-675 inhibited myoblast
proliferation and patients with a low FFMI had fewer centralised nuclei suggesting miR-675

represses regeneration.



Conclusion: The data suggest that increased expression of miR-675/H19 and altered methylation of
the H19 imprinting control region are associated with a low FFMI in patients with COPD but not in
healthy community dwelling older men suggesting that epigenetic control of this loci may contribute

to a susceptibility to a low FFMI.



INTRODUCTION

Skeletal muscle is central to all aspects of physical function. Consequently the loss of muscle
mass and strength that accompanies a range of chronic diseases impairs the quality of life of many
individuals. Quadriceps muscle wasting[1] and weakness [2] are common complications of Chronic
Obstructive Pulmonary Disease (COPD), and have been associated with reduced survival. Loss of
muscle mass and function can occur even in mild COPD [3], yet some patients with severe COPD
maintain muscle mass and function [4]. In patients with severe disease, measures of muscle mass
and strength are better predictors of mortality than FEV; [1]. Pulmonary rehabilitation, an exercise-
based regimen that principally augments muscle mass and function, is an effective treatment in

COPD [5, 6] highlighting the impact of skeletal muscle on a patient’s clinical condition.

In healthy adults muscle mass is maintained by balancing loss (through protein degradation,
autophagy and apoptosis) with synthesis (through protein synthesis and satellite cell recruitment)
[7]. In patients with chronic disease the relative rates of these processes are altered such that
catabolic processes outweigh anabolic processes causing muscle loss. However, individuals are likely
to have their own balance of anabolic and catabolic processes against which the insult of COPD is
superimposed. If the balance of catabolism and anabolism is variable between individuals, it follows
that individuals will differ in their response to an identical magnitude of atrophic insult. This
suggestion is consistent with the observation that patients with the same degree of lung function
impairment display a large variation in degree of muscle wasting. Susceptibility to muscle wasting
may result from influences operating in early life as can be seen from the increased prevalence of

sarcopenia in individuals who had a low birth weight [8, 9].

MicroRNAs (miRNAs) are important regulators of cell phenotype involved in both normal
development and disease [10]. We have recently shown that there is a reduction in miR-1 in the
quadriceps muscle of COPD patients, associated with an increase in its target, HDAC4 [11]. Others

have shown that changes in miRNA are important in atrophy associated with congenital myopathies



[12], maintaining fibre type [13] and muscle adaptation to exercise [14]. MiRNAs exported into the
circulation are also potential biomarkers for specific disease phenotypes and for following disease
progression [15, 16]. We have previously shown levels of muscle-specific miRNA are elevated in the

plasma of COPD patients relative to controls [17].

As many miRNAs are processed from RNA polymerase |l dependent transcripts, miRNA levels
will be affected by the same mechanisms that control mRNA production, including DNA
methylation,. Consistent with this suggestion, hypermethylation of the loci for miR-9, -148 and -34c
inactivates expression of these miRNA in cancer cells[18-20]. Other miRNAs are also expressed from
imprinted regions of the genome so expression of one or other allele is suppressed often by
methylation. Indeed two of the largest miRNA clusters in the human genome, one on chromosome
19 (C19MC) and one of chromosome 14 (C14MC) are imprinted with the C19MC expressed only
from the paternal chromosome [21] and the C14MC expressed from the maternal chromosome [22].
Similarly, miR-675 is processed from the maternally expressed lincRNA, H19. This gene is widely
expressed during development, becomes down regulated in most adult tissues but is maintained in
adult muscle[23]. Consistent with a role in muscle development or maintenance, miR-675 has been

shown to inhibit myoblast proliferation and promote differentiation [24].

Smoking, a primary cause of COPD, is known to modify DNA methylation through a number
of mechanisms including the introduction of DNA breaks and nicotine dependent suppression of
DNA methylase (DNMT1) expression (reviewed in [25]). Consequently changes in DNA methylation
are likely to contribute to the changes in gene expression including that of miRNAs. The extent to
which these effects occur in an individual will be dependent on factors including the relative activity
of the DNA methylation cycle enzymes. Polymorphisms that lead to reduced activity of the DNA
methylation cycle and hypomethylation of DNA are over-represented in elite athletes suggestive of a

role in muscle biology[26].



The targeted studies we have performed previously have identified altered miRNA
expression in the muscle and plasma of COPD patients [17, 11]. This led us to hypothesise that the
miRNA pattern would differ between patients with a low FFMI and those with a normal FFMI and
that these differences would provide mechanistic insight into the susceptibility of some individuals
with COPD to lose significant muscle mass. We compared miRNA expression profiles in samples of
guadriceps muscle from COPD patients with a low FFMI and those with a normal FFMI. This analysis
identified miRNAs from two imprinted regions of the genome, miR-675 (from the maternally
imprinted lincRNA H19) and C19MC miRNAs (from a paternally expressed cluster) as the most
differentially expressed miRNAs. We validated the findings by analyzing the expression of miR-675
and miR-519a and the host gene for miR-675 (H19) in a larger group of COPD patients and
determined their association with FFMI and strength. As these miRNAs were derived from imprinted
loci we next analysed relative DNA methylation on the H19 imprinting control region (ICR) in DNA
isolated from the quadriceps of COPD patients. If the differences identified were just a measure of
size rather than susceptibility to a loss of muscle mass we would have expected the same
associations to exist in a normal population. We therefore determined the expression of these
miRNAs in the quadriceps of healthy community dwelling older men participating in the
Hertfordshire Sarcopenia Study. Finally to understand the contribution of regeneration to the
difference between low FFMI and normal FFMI we determined the proportion of fibres with

centralized nuclei in samples from COPD patients with a low or normal FFMI.



MATERIALS AND METHODS
Subjects

COPD cohort: Patients with COPD according to the Global Initiative in Obstructive Lung Disease
(GOLD) guidelines 2004 [27] were enrolled from clinics at the Royal Brompton Hospital. Patients
with a diagnosis of heart, renal or liver failure, a systemic inflammatory or metabolic disorder or a
moderate/severe exacerbation (i.e. requiring antibiotics, oral steroids, or hospitalisation) in the
preceding 4 weeks were excluded. Healthy age-matched controls were recruited by advertisement.
All subjects gave written informed consent and the protocol was approved by the Royal Brompton &
Harefield NHS Trust Research Ethics Committee (Studies 06/Q0404/35 and 06/Q0410/54). 16 control
subjects were recruited by local advertisement. A low fat free mass index (low FFMI) was defined as

below 16.0 kg/m?[28] .

Physiological measurements: COPD subjects in this study form part of a larger well-phenotyped
cohort described by Natanek et al [4]. Measurements of lung volume, using plethysmography,
carbon monoxide transfer factor, using the single breath technique (CompactLab, Jaeger, Germany)
and post-bronchodilator spirometry were performed according to ATS/ERS guidelines [29]. Blood gas
tensions were measured in arterialised capillary earlobe blood. Fat-free mass index (FFMI) was
calculated using bioelectrical impedance (Bodystat 1500, Bodystat, UK) measured in patients after
resting supine for 10 min as described previously [30]. Due to the availability of samples, it was not
possible to work on a single set of samples. The physiological characteristics of the groups analysed

are given in Table 1 and Supplementary Tables 1, 2, 4 and 5.

Quadriceps strength was determined by measuring supine isometric maximal voluntary contraction
(MVC) and unpotentiated Twitch force (TwQ) as described previously [30] and exercise capacity
measured as 6 minute walk distance (6MW) 5 minutes after bronchodilator treatment (ATS 2002

guidelines[31]) as described previously. Muscle biopsy was performed by percutaneous needle



biopsy of the vastus lateralis in the mid-thigh of the leg that strength was tested was performed

under local anaesthesia using the Bergstrom technique[32].

Hertfordshire Sarcopenia study cohort: Samples from the Herts Sarcopenia Study study [33] were
used in this analysis as an additional control set to determine whether similar associations existed in
a normal healthy population of older people as those identified in the COPD cohort and whether
there were any associations with birth weight. Recruitment of this cohort has been described
previously [33]. The protocol was approved by the Hertfordshire Research Ethics Committee (study
07/Q0204/68) and all participants gave written informed consent. The skeletal muscle
characterisation carried out in this study included; body composition and lean mass by dual energy X
ray absorptiometry scanning, hand-grip strength, determined using a Jamar hydraulic dynamometer
and physical capability determined as 3m gait speed and ‘6m time to get up and go’ test. These have
been previously described [33] and the data for the cohort used in this study are shown in
Supplementary Table 3. Muscle biopsy was performed by percutaneous needle biopsy of the vastus

lateralis under local anaesthesia as described previously[34].

TagMan® Array MicroRNA Cards: The amplified cDNAs were quantified using Human TagMan®
Array MicroRNA Cards (Cards A and B, V.3.0 Applied Biosystems) according to the manufacturer’s
instructions on an ABI 7900HT thermocycler. Array cards were run under the 384 well TagMan® Low
Density Array default thermal-cycling conditions defined by SDS 2.4 software. Once complete all
cards were calibrated to a single control sample and one detection threshold set across all samples
and assays using RQ manager software. The resultant Ct values were then exported and normalised
to the geometric mean of U6, RNU44 and RNUA48, using the AA Ct method. As variance tended to

increase with miRNA intensity the data were standardised by a log transformation.

Assessment of mRNA and miRNA levels: Messenger RNA was extracted and quantified by
guantitative real time PCR (QRTPCR) as described previously [35] or using the allele specific primer

kit for RS2075245 (Life Technologies). PCR values for H19 (obtained from 11 controls, 34 normal



FFMI patients and 22 low FFMI patients) were normalised to the geomean of RPLPO and HPRT.
Primers were H19: For-TGCTGCACTTTACAACCACTG, Rev- TGGTGTCTTTGATGTTGGGC RPLPO: For-
TCTACAACCCTGAAGTGCTTGATATC, Rev-GCAGACAGACACTGGCAACATT  and HPRT: For-
GCTATAAATTCTTTGCTGACCTGCTG, Rev- AATTACTTTTATGTCCCCTGTTGACTGG. MicroRNA
expression was analysed in trizol extracted RNA. RNA isolated muscle was reverse transcribed using
MultiScribe™ Reverse Transcriptase with, Megaplex™ RT Primers (human pools A and B, Version 3.0,
Applied Biosystems) according to the manufacturer’s instructions. The reactions were terminated by
heat deactivation at 85°C for 5min and the cDNA stored at -80°C. The cDNAs were pre-amplified
using Megaplex™ PreAmp Primers (Applied Biosystems) for 12 cycles of 95°C for 15 sec and 60°C for
4 min. The reaction was terminated by heating to 99.9°C for 10 min and pre-amplified cDNA diluted

by addition of 75ul of 0.1x TE buffer pH 8.0 (Qiagen) and stored at -80°C.

Quantification of single microRNAs using TagMan® probes: For the quantification of individual
microRNAs, custom designed primers and probes were purchased for each test gene from Applied
Biosystems and amplification was carried out on cDNA preamplified as described above according to
the manufacturer’s instructions. Each reaction was performed in duplicate and the average Ct value
normalised to the corresponding geometric mean of U6, and RNU44 using the AA Ct method. RNA
isolated from cells was analysed using single RT reactions. MiRNAs were quantified in 16 controls, 24
low FFMI patients and 24 normal FFMI patients the COPD cohort and from 67 individuals in the Herts

Sarcopenia Study cohort.

Methylation analysis

DNA from muscle biopsies (for 10 controls, 14 normal FFMI patients and 15 low FFMI patients) was
extracted using the QlAamp DNA Mini kit (Life Technologies) according to manufacturer’s
instructions. The two resulting elutions were then pooled and precipitated. The resuspended DNA
was diluted to 12.5ng/ul in AFA fiber pre-slit Snap-Cap microtubes (Covaris, Life Tech) and sheared

using a Covaris $220 Focused-ultrasonicator to sonicate the DNA into 200bp fragments using a pre-



set protocol in the SONOLAB 7.2 software (Covaris, Life Tech). DNA (1ug) was applied to the
MethylMiner Methylated DNA Enrichment kit (Life Tech) according to manufacturer’s instructions.
The resulting methylation enrichment DNA was eluted in 2000mM and 450mM NaCl, which were
then concentrated and pooled. The DNA was then quantified using the Quant-iT PicoGreen dsDNA
(Life Tech) according to manufacturer’s instructions. The methylation enriched DNA was diluted to
0.1ng/ul whilst the original (non-enriched) DNA was diluted to 1ng/pl. 1.5ul of DNA was amplified in
20ul SYBR reactions as described for cDNA using primers UBE2B: For-CTCAGGGGTGGATTGTTGAC ,
Rev-TGTGGATTCAAAGACCACGA, H19 ICR: For-TTGGTGGAACACACTGTGATCA, Rev-
GAGCCGCACCAGATCTTCAG.

Immunofluorescence: Frozen 10um thick slices from quadriceps muscle biopsies of both low FFMI
(n=5) and normal FFMI (n=10) patients (Supplementary Table 5) were fixed in 4% PFA for 10 min at
room temperature. Following fixation sections were washed in 1x PBS-T (3x for 3min), prior to
incubation in 5% BSA-PBS-T solution for 30 min at room temperature. The sections were then
incubated with anti-laminin 2a antibody (1:300, AbCam) overnight at 4°C in a humidified chamber.
The primary antibody solution was removed and the sections washed before incubation with anti-
rabbit IgG conjugated to Alexafluor-658 (1:500, Invitrogen). The sections were incubated with the
secondary antibody for 1h at room temperature, then washed and before be incubated with a DAPI

solution (1:10,000) for 15 min.

Statistical analysis: All gene expression data were log transformed to stabilize variance and produce
a normal distribution. To identify groupings within the data set principal components analysis (PCA)
and hierarchical cluster analysis (HCA) were performed in Aabel (Gigawiz). The variables for HCA
were scaled to unit variance and distances were calculated based on correlation coefficients and
groups were defined based on centroid linkage. Correlation analysis was performed using Pearson

correlations assuming that correlations would be linear (Aabel). Differences between groups were
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calculated by Student’s t-test for normally distributed data (Excel) and by Mann-Whitney U test for

non-parametric data (Aabel, Gigawiz).

RESULTS
Patient characteristics

miRNA profiles were determined in RNA isolated from the quadriceps of, 7 patients with a
low FFMI, 7 patients with a normal FFMI and 7 age-matched controls. All samples in this analysis
were from males and their physiological characteristics are shown in Supplementary Table 1.
Consistent with a diagnosis of COPD, both the low FFMI and normal FFMI patient groups had
reduced FEV; and TLco% of predicted. Quadriceps strength, physical activity levels, and exercise
performance were all reduced compared to controls. Both the low FFMI and normal FFMI COPD
groups had a lower mean FFMI than the healthy controls. The low FFMI and normal FFMI groups did
not differ in any characteristic measured including daily physical activity except, by design, FFMI and
consequently weight and BMI (Supplementary Table 1). Furthermore, there was no difference in
fibre type proportion between the patient groups although both the low FFMI groups had a lower

proportion of type | fibres than the controls (Supplementary Table 1).

Low FFMI patients are a distinct sub-group of COPD patients

HCA and PCA, showed that the low FFMI patients formed a distinct group based on their
miRNA profile. PCA but not HCA was also able to partially segregate normal FFMI patients and
controls however, there was overlap in these two groups (Fig. 1A and B). This result was confirmed
by linear discriminate analysis, which allowed us to correctly assign the entire low FFMI group, all

controls and 5 of the 7 normal FFMI patients from their PCA scores.

Identification of FFMI associated miRNAs in muscle

To identify miRNAs associated with a low FFMI in COPD, the expression of individual miRNAs

was compared by t-test between the groups in a pair wise manner. To increase stringency miRNA
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associated with a low FFMI in COPD were defined as those that were statistically significantly
different between low FFMI patients and controls/normal FFMI patients but not statistically

different between controls and normal FFMI patients.

Forty-seven low FFMI-associated miRNAs were identified (Supplementary Table 5). Of these
only two miRNAs were increased in low FFMI patients relative to normal FFMI patients of which miR-
675 showed the greatest fold change of any miRNA (8.5 fold low FFMI vs normal FFMI p=0.008). The
remaining 45 miRNAs were expressed at lower levels in low FFMI- compared to normal FFMI-
patients. Median expression of all but 2 miRNAs was lower in low FFMI patients compared to
controls. Comparison of miRNA expression in low FFMI and normal FFMI patients relative to
controls showed that the median expression of 17 miRNAs changed in opposing directions in low
FFMI vs. controls (statistically significant) compared to normal FFMI vs. controls (not statistically
significant) (Fig 1C and Supplementary Table 6) including miR-675, miR-1 (consistent with our

previous study [11]) and 9 miRNAs from a cluster located on chromosome 19q13.2 (C19MC).

Muscle Array validation:

To validate the screen, levels of miR-675 and miR-519a (derived from the C19MC) were
guantified in an expanded cohort of muscle samples from patients including both males and females
of all GOLD stages and healthy controls (controls n=16, normal FFMI n=24 and low FFMI n=24,
freshly prepared cDNA samples from 5 normal FFMI, 1 low FFMI COPD patients and 4 controls from
the original screen were used in this expanded study). The physiological characteristics of these
groups are given in Table 1 and showed similar differences to those of the screen cohort. There was
no difference in the expression of miR-675 between COPD patients (as a whole group) with controls.
However, median miR-675 expression was higher in the low FFMI patients than either of the other
two groups but was significantly different only compared to the controls (low FFMI vs cont; p=0.013,
low FFMI vs normal FFMI; p=0.027, Bonferonni corrected p value for significance =0.016). There was

no difference in the expression of miR-675 between normal FFMI patients and controls (Fig 2A). In

12



the patients, miR-675 was inversely correlated with FFMI (r=-0.41, p=0.004, Fig 2B). Furthermore,
miR-675 was inversely correlated with quadriceps strength (vs. maximal voluntary contraction MVC,
r=-0.43, p=0.003, vs. twitch force TwQ, r=-0.47, p=0.001, Fig 2C and D). MiR-675 was not associated
with lung function judged by either FEV; or TLo% predicted. In the controls miR-675 was not

associated with FFMI or quadriceps strength.

There was no difference in the expression of miR-519a between COPD patients as a whole
group with controls. In the whole cohort (patients and controls together), consistent with the array,
miR-519a was lower in individuals with a low FFMI than in those with a normal FFMI (p=0.025, Fig.
3A) and weakly correlated with FFMI (r=0.24, p=0.044, Fig. 3B). However, miR-519a was not
different between patients with a low FFMI compared to patients with a normal FFMI. Restricting
the analysis to samples with the original criteria used for patients in the screen (male GOLD IlI-IV,
n=27) increased the association between miR-519a and FFMI (r=0.48, p=0.017, Fig. 3C). No
association between miR-519a and FFMI was found in female patients with similar disease severity
(n=13) raising the possibility of a sex-specific effect. Analysis of a second miRNA from the same
locus (miR-518e) in GOLD llI-IV males also showed a positive association of C1I9MC miRs with FFMI in

these patients (Fig. 3D).

H19 linc RNA expression associates with muscle mass and strength in COPD

As miR-675 is processed from the H19 lincRNA, we determined the expression of H19. As
the cDNAs for the miRNAs were generated separately from cDNAs for mRNA analysis and our
samples were limited, it was only possible to obtain overlapping but distinct data sets for miR-675
and H19. This analysis used samples from 11 controls, 34 NFFMI patients and 22 low FFMI patients;
31 samples were included in both miRNA and mRNA analyses (see supplementary table 2 for the
physiological characteristics). There was no difference in H19 expression between the patients and
controls or between the low FFMI and normal FFMI patients (Fig 4). However, H19 expression was

inversely associated with FFMI in the patients (r=-0.39, p=0.001) and with quadriceps strength (vs.
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MVC r=-0.44, p<0.001 and vs. TwQ r= -0.38, p=0.007). H19 expression was also higher in those
patients defined as weak based on an MVC less than 120% of their BMI (p=0.01). In those patients in
which we analysed both miRNA and mRNA, expression of miR-675 and H19 showed a positive
association (r=0.49, p<0.018, n=22 patients only and r=0.47, p<0.007 n=31 patients and controls,

Supplementary Fig 1).

Methylation of the H19 locus is associated with muscle H19 expression and strength in COPD

To determine whether H19 was expressed from one or both alleles in adult muscle we used
allele-specific PCR for the polymorphism RS2075245, which is in exon 1 of H19, close to miR-675. In
this experiment homozygosity or mono-allelic expression was assumed when there was difference in
Cycle threshold for each of the alleles of 4 cycles (i.e. when one allele contributed >94% of the
detectable transcript). In this analysis, expression of a single SNP variant was detected in 60% of the
samples whereas expression of both variants was detected in the remaining 40%. Within the
European Caucasian population the A:T allele frequency is 48:52 so that the approximately 50% of
individuals are heterozygous. Therefore, in the majority of individuals both alleles were active in the
muscle. However in the subjects in whom both A and T alleles were detected, one allele contributed
more than 75% of the transcript in all but 3 cases indicating that one allele was suppressed, probably
by methylation. It was not possible to determine whether the same was true from homozygous
individuals. As these primers are designed for genotyping and not mRNA quantification, to verify
that the method quantified H19 RNA, the expression of each allele was normalised to RPLPO and the
values summed. This value correlated strongly (r=0.86, p<0.001) to our measurements of H19

performed by non-allele specific PCR (Supplementary Fig 2) indicating that the approach was valid.

To determine whether methylation regulates H19 expression in muscle, we used methylated
DNA immunoprecipitation (MeDIP) followed by gPCR using muscle samples from 10 healthy
controls, 14 normal FFMI patients and 15 low FFMI patients. Methylation on the ICR of precipitated

H19 DNA was quantified relative to a comparatively unmethylated gene UBE2B. There was no
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significant difference between relative ICR methylation between patients and controls. Consistent
with methylation suppressing H19 expression, the ICR:UBE enrichment ratio was inversely correlated
with H19 expression in the COPD patients (r=-0.498, p=0.008, Fig. 5A). Furthermore, the ICR/UBE
methylation ratio was higher in patients with a normal strength compared to weak patients
(p=0.026, Fig 5B) and correlated with strength (r=0.45, p=0.014, Fig. 5C) but not with FFMI. In this
cohort of patients H19 correlated with strength (r=-0.45, p=0.017) but not with FFMI and was
different between patients with normal strength and weak patients (p=0.009, Fig 5D). In the
controls the association of relative ICR methylation with strength did not reach statistical
significance (r=0.57, p=0.084) unless normalized to FFMI (r=0.64, p=0.045, Supplementary Fig 3).
Similarly strength normalized for FFMI was also correlated with ICR methylation in the patients alone
(r=0.48, p=0.009 Supplementary Fig. 3) and in the cohort as a whole (r=0.45, p=0.004). Methylation
of the C19MC was not determined because these miRNAs are not expressed in differentiated cells
[36, 37]. As analysis of methylation in the biopsies would have profiled whole muscle, the majority
of signal would have been from cells that did not express the miRNA rather than determining the

effect of methylation on expression.

Are miR-675 and miR-519a markers of FFMI in the general population?

The association of miR-675 and miR-519a with FFFMI in COPD raises the possibility that they are
markers of muscle mass in the general population rather than showing an adaptation to disease. We
therefore determined the expression of both miRs in the quadriceps of a subset of individuals from
the Hertfordshire Sarcopenia Study, which assessed muscle mass and function in healthy older
adults. In this cohort neither miRNA was associated with FFMI or strength (measured as grip
strength) or with physical capability marked by 3m walking time and 6m time to get up and go.
Furthermore, there was no association of the expression of these miRNAs with birth weight.
Comparison of the expression of miR-675 and miR-519a in people with a history of smoking and in

non-smokers also showed no difference.
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Altered regeneration in low FFMI patients

The ability of miR-675 to inhibit C2C12 cell proliferation (as previously described [38] and as
shown in supplementary information) raises the possibility that there is a difference in muscle
regenerative activity in low FFMI patients and normal FFMI patients. We therefore determined the
expression of MyoD, a marker of satellite cell activation, and the number centralized nuclei in
samples from male patients with GOLD 3/4 COPD, the selection criteria for our original screen.
MyoD was suppressed in the low FFMI patients compared to the normal FFMI patients (low FFMI=
0.031+0.009 AU, normal FFMI=0.041+0.017 AU, p=0.037, Fig. 6A). The low FFMI patients also had
fewer fibres with centralised nuclei indicating recent regeneration compared to normal FFMI
patients (normal FFMI 6.9+1.1 centralised nuclei/100 fibres vs low FFMI 3.2+0.6 centralised
nuclei/100 fibres p=0.036, Fig. 6B-D). These findings are consistent with increased muscle
regeneration occurring in normal FFMI patients compared to low FFMI patients. In patients in which
centralized nuclei, miR-675 and miR-519a were all measured, miR-675 was higher (LFFMI median
was 2.4 fold higher than the NFFMI median, p=0.014) and miR-519a was lower (LFFMI median was

0.71 times the NFFMI median, p= 0.008) in the LFFMI patients than in the NFFMI patients.

16



DISCUSSION

The data presented show that a low FFMI and weakness in COPD patients are associated
with increased expression of miR-675 and H19 in the muscle and that muscle weakness correlates in
these patients with relative methylation of the H19 ICR. Furthermore, the expression of miRNAs
from the C19MC is suppressed in the muscle of male patients with a low FFMI and associated with
FFMI. However, there was no association of miRNA expression with FFMI or strength in healthy
individuals from the Herts Sarcopenia Study nor did smoking affect the expression of the miRNAs,
suggesting that the associations of miRNA with FFMI and strength occur only on the background of
the disease. Finally we confirm that there are fewer centralized nuclei in the muscle of low FFMI
patients compared to patients with a normal FFMI raising the possibility that poor regeneration is a
contributory to the low FFMI phenotype. Together, these data indicate that the level of imprinted
miRNAs contributes to the susceptibility to muscle wasting in the context of COPD, where the
disease provides an atrophic stimulus that can be resisted in individuals to varying extents
dependent on the expression of these miRNAs. The potential mechanisms by which these miRNAs

contribute to the low FFMI phenotype are discussed separately below.

miR-675-H19

The H19-IGF-2 imprinted gene cluster is one of the best-studied imprinted regions[39]. In
this cluster H19 is expressed from the maternal chromosome whereas IGF-2 is expressed from the
paternal chromosome with expression of H19 suppressed by methylation of an imprinting centre.
H19 is a long intergenic non-coding RNA the function of which appears to be to act as a source of
miR-675 [24, 38]. The fact that the observed associations of H19 with strength and FFMI were not as
strong as those of miR-675 is consistent with this suggestion. Previous studies of miR-675 have
shown that it inhibits cell proliferation and consistent with this observation we also found that miR-

675 could inhibit C2C12 proliferation. This inhibition of proliferation has been shown to occur at
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least in part through suppressing IGF1R[38], therefore increased miR-675 in myofibres is likely to

suppress hypertrophy.

Our data show that H19 and miR-675 are expressed at low levels in proliferating cells but are
markedly elevated in cells that have stopped proliferating and are differentiating (see
supplementary information). Recently it has also been shown that miR-675 promotes myoblast
differentiation [24] by suppressing expression of SMAD-1 and-5 leading to reduced BMP signaling as
well as a suppression of cdc6 (a protein required for the G1-S phase transition in the cell cycle). This
study suggests 3 likely consequences of an elevated background of miR-675 that would contribute to
a low FFMI phenotype. Firstly, in differentiated myofibres BMP signaling is pro-hypertrophic [40]and
a reduction in BMP signaling has been shown to be pro-atrophic [40]. Secondly, as the analysis was
performed in whole muscle homogenates we are unable to differentiate between changes in miR-
675 expression in myofibres and satellite cells. Consequently, if the increase in miR-675 is not
restricted to myofibres but is also present in myoblasts and satellite cells it will inhibit the expansion
of the myoblast pool (by inhibiting cdc6 and reducing cell proliferation) and thirdly, it will promote
the early differentiation of these cells reducing the time available for myoblast proliferation and

further restricting the pool of cells available for regeneration.

C19MC miRNAs

The C19 microRNA cluster is the largest cluster of miRNAs in the human genome but arose
relatively late in evolution and is only found in primates[21]. The miRNAs from this cluster are
expressed in pluripotent cells and in the placenta but are not expressed in fully differentiated tissues
[36, 37]. It therefore seems likely that the transcripts that we detected arose from satellite cells
rather than from the myofibres. Consistent with this suggestion the levels of C1I9MC miRNAs were

low. Functionally the C19MC miRNAs have been shown to promote the pluripotent state in
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embryonic stem cells by targeting RBL-2 and thereby relieving RBL-2 dependent suppression of the
expression of a methyltransferase DNMT3B a key regulator of embryonic differentiation[41].
Knockdown of DNMT3B results in a reduction in embryonic stem cell survival and in the formation of
embryonic stem cell-derived clones in vitro. These data suggest that C19MC miRNAs may contribute

to the normal FFMI phenotype by promoting stem cell survival.[36, 37]

It is important to note that the association of C19MC expression with FFMI was only evident
in males with severe COPD. The lack of association of C19MCs in the cohort as a whole and in other
groups individually may be due to confounding factors and/or statistical power as some of the sub-
groups were relatively small. It is also possible that it is only apparent in the severe subgroup as, in
the absence of significant physiological stress due to severe disease, the requirement for

regeneration will be limited to normal muscle cell turnover.

Imprinting and DNA methylation

Both C19MC and H19 expression are regulated by imprinting[42]. The C19MC locus is
expressed from the paternal chromosome, whereas H19 is expressed from the maternal
chromosome. In general, paternally imprinted genes promote growth whereas maternally imprinted
genes inhibit growth and our data are consistent with this observation. In muscle, imprinted genes
are predominantly expressed in stem/progenitor cells in adult mice[43]. This pattern of expression
is consistent with an important functional role in the regulation of satellite cells and represents one
way in which imprinted genes may contribute to the control of post-natal skeletal muscle mass [43].
As imprinting involves DNA methylation the involvement of imprinting suggests that DNA
methylation makes an important contribution to the low FFMI and normal FFMI phenotypes.
Methylation of the H19-IGF-2 ICR inhibits the expression of H19 [44] and our data showing an
inverse correlation of H19 expression with relative H19-IGF-2 ICR methylation is consistent with this
observation. Furthermore, our data showing that relative methylation of the H19-IGF-2 ICR is higher

in normal FFMI patients and is correlated with muscle strength suggests that differences in DNA
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methylation of particular loci may contribute to the control of muscle function in adulthood in

response to the stress of COPD.

Most studies of imprinted genes focus on development and the early post-natal period.
Consequently the association of H19 and miR-675 with muscle mass and strength in adults has not
previously been noted and we did not find an association of miR-675 with FFMI or strength in the
Herts Sarcopenia Study participants. This observation suggests that the association is only present or
detectable in patients with a disease that predisposes to muscle wasting. It is therefore possible
that differences in the expression of this miRNA are only of functional significance when there is an

increased atrophic drive and/or an increase in the demand for muscle synthesis.

Reduced regeneration in low FFMI patients

Consistent with the recent studies of Theriault et al[45] who observed reduced centralised
nuclei in patients with a mid thigh muscle cross sectional area <70cm” compared to those with a mid
thigh cross sectional area >70cm” we found that patients with a low FFMI had reduced proportion of
myofibres with centralized nuclei. This observation implies that a low level of regeneration
contributes to the low FFMI phenotype. As described above both a low level of expression of
C19MC miRNAs and an increased miR-675 expression may contribute to this reduction in

regeneration.

Critique of the Method

The study is cross-sectional and as such the data can only demonstrate associations rather
than causation. Nevertheless, our analysis of the muscle has highlighted a number of miRNAs with
potential mechanistic relevance to the development of skeletal muscle dysfunction in COPD that
warrant further investigation. Although one interpretation of our data is that there is a reduction in
the number of satellite cells, we did not quantify satellite cell number directly due to the number

and size of the samples available. Our analysis of centralized nuclei is consistent with the data of
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Theriault [45] and in their study they did not see a difference in satellite cell number between
patients with a low or normal mid thigh cross sectional area suggesting that any differences are
small. Consequently if there is a difference in satellite cell number it will require a large number of
biopsies to identify it. It is also possible that the number of satellite cells does not change either
because these cells have become senescent as suggested by Theriault et al or because the effects of
miR-675 are on the proliferation of committed myoblasts rather than the number of satellite cells.
Whether any such senescence results from high miR-675 and/or low C19MC expression remains to

be established.

Clinical Implications

There is significant variation in the amount or rate of loss of muscle mass in response to a
range of diseases. In COPD, skeletal atrophy appears to be a significant factor in about 25% of
patients that can start early in the disease[3]. In a second example, we have recently shown that
following major cardiac surgery approximately 50% of patients will lose more than 10% of their
muscle mass in the following 7 days whereas the others will not[46]. Furthermore, there is marked
diversity in the response to treatment in patients with muscle wasting with only a subset responding
well to pulmonary rehabilitation. This diversity hampers the development of methodologies to
improve muscle mass. Understanding the basis for this variation in individual response to disease
and treatment will help to identify those at greatest risk of wasting, to identify those likely to
respond to therapies and to develop novel targeted therapies. Our data here suggest that expression
levels of H19, miR-675 and the C19MC miRNAs may contribute to this diversity of response and that
DNA methylation is a potential contributor to this differential expression. It is possible therefore
that measurement of these factors may help to identify sub-groups of individuals likely to respond

differently to anabolic therapies.

21



Conclusion

Our data show that increased expression of miR-675 and H19 are associated with a low FFMI
in patients with COPD. Furthermore, increased expression of H19 is inversely correlated with
relative methylation of the H19 ICR. In male patients with severe COPD, expression of the paternally
expressed C19MC miRNAs were suppressed in patients with a low FFMI. We also confirmed that
patients with a low FFMI had lower levels of muscle regeneration than patients with a normal FFMI.
Together these data suggest that expression of imprinted miRNAs may contribute to the

susceptibility to a low FFMI phenotype in COPD.
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Table 1 Patient characteristics of the validation cohort

Control (n=16)

normal FFMI (n=24)

low FFMI (n=24)

Sex (M, F) 7,9 15,9 12,12
Age (years) 66+ 8 6717 64 19
Smoking History® 0 (0, 10) 47 (35, 66)*** 39 (24, 48)***

(pack-year)

Weight? (kg)

67.1 (61, 74.1)

75.1 (65.3, 83.0)

61.4 (53.5, 65.8)%,
t+t

BMI? (kg/m?)

24.8 (23.5, 26.2)

26.7 (24.0, 29.7)

21.8(19.8, 22.9)**, Tt

FFMI® (kg/m?)

16.1(15.3, 17.2)

17.1(16.2, 17.4)

14.5 (13.4, 14.6)***, t1t

FEV,° (% pred)

107.6 (100.6, 112)

42.8 (25.7, 49.6)***

36.6 (27.6, 45.2)***

RVTLC 35+ 6 58+8*** 60+8% **
TLCO® (% pred) 92.3 (83.0,98.1) 45.3 (34.8, 54.4)*** 40.6 (26.7, 50.6)***
6 min walk (m) 621+ 84 368+119*** 400+£130%***
6min walk % pred 126+12 T7124%*** T77+24%**
pVO,° (% pred) 99 (88, 111) 51 (42, 65)*** 45 (36, 51)***
SGRQ*® 2 (0, 8) 53 (43, 60)*** 56 (51, 63)***
Quadriceps MVC (kg) 34.7+10.6 27.749.8 25.7+7.2%*
Quadriceps MVC (% 7819 66+17* 61+11**
pred)
Locomotion time® 96 (84, 127) 37 (23, 52)*** 44 (26, 64)***
(min/12 hr)
Movement time (as 2316 12+6%** 13+4%**
% of 12hrs)
Type | fibre % 54.4 +18.1 28.7 £ 12.1%** 27.4 £13.2 *¥**
Type IIA fibre % 41.0+£14.0 58.5+ 10.6*** 63.6 + 14.0***
Type IIX fibre % 2.5+35 6.7+8.2 4.8+4.5

Definitions of abbreviations: = Not normally distributed, BMI = Body Mass Index, FFMI= Fat-Free

Mass Index, FEV; =Forced Expiratory Volume in 1 sec, RV =Residual volume, TLC = total lung capacity,

TLco= transfer coefficiant of the lung for CO, Pag, = arterial oxygen partial pressure, Pacg, = arterial

carbon dioxide partial pressure, pred = predicted, MVC = Maximal Voluntary Contraction, SGRQ, St

George’s respiratory questionnaire. Values are means * SD for normally distributed variables and as

median (interquartile range) for variables that were not normally distributed. Significance was

calculated by t-Test for normally distributed variables and by Mann Whitney U test for variables that

were not normally distributed.

vs control . 1 (p=<0.01), 11 (P=<0.001) low FFMI vs normal FFMI
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Figure legends

Figure 1. miRNA expression in patients with COPD

Hierarchical cluster analysis (A) and principal component analysis (B) of miRNA expression in the
guadriceps of low FFMI, normal FFMI patients and controls show that the low FFMI group have a
distinct pattern of miRNAs compared to normal FFMI patients and controls. Separation between the
normal FFMI and control groups was weaker and had some degree of overlap. (C) Comparison of
the median expression of miRNAs between low FFMI patients and controls and between normal
FFMI patients and controls to identify ‘low FFMI-associated miRNAs’. Median expression of miRNAs
in the bottom right hand quadrant is lower in low FFMI patients than controls (statistically
significant) but higher in the normal FFMI patients than controls (not statistically significant)
whereas median expression of the miRNA in the top left hand quarter is higher in low FFMI patients
than controls (statistically significant) but lower in normal FFMI patients than controls (not

statistically significant).

Figure 2. MIiR-675 is increased in low FFMI COPD patients compared to normal FFMI COPD
patients and is associated with muscle mass and strength.

The expression of miR-675 was determined by qPCR in samples of quadriceps from the validation
cohort of COPD patients and controls as described in Methods. MiR-675 was elevated in patients
with a low FFMI compared to patients with a normal FFMI (p=0.019, A). In both patients alone and
the whole cohort, miR-675 was correlated with FFMI (r=-0.41, p=0.004 patients alone r=-0.35,
p=0.04 patietns and controls, B). In the patients alone miR-675 was correlated with strength both
voluntary (MVC, r=-0.43, p=0.003, C) and involuntary (TwQ=-0.47, p=0.001, D) measurements of

strength. Patients are shown as grey circles co.wswsntrols as black circles.
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Figure 3. MiR-519a is suppressed in low FFMI individuals compared to normal FFMI individuals.

The miRNA expression was determined by qPCR in samples of quadriceps from the validation cohort
of COPD patients and controls as described in Methods. In the whole cohort, miR-519a levels were
reduced in individuals with a low FFMI compared to individuals with a normal FFMI (A) and weakly
correlated with FFMI (r=0.29 p=0.044, B). In GOLD3/4 male patients quadriceps expression of miR-
519a (C) and miR-518e (D) were correlated with FFMI (r=048, p=0.01 and r=0.39, p=0.025

respectively). Patients are shown as grey circles controls as black circles.

Figure 4. H19 is increased in low FFMI COPD patients compared to normal FFMI COPD patients
and is associated with muscle mass and strength.

The expression of H19 was determined by gPCR in samples of quadriceps from the validation cohort
of COPD patients and controls as described in Methods. H19 not different between patient groups
or controls (A). In patients H19 was correlated with FFMI (r=-0.385, p=0.001, B) and with was
correlated with quadriceps strength both voluntary (MVC, r=-0.44, p<0.001, C) and involuntary
(TwQ=-0.38 p=0.007, D) measurements of strength. Patients are shown as grey circles controls as

black circles.

Figure 5. Methylation of the H19 locus is associated with H19 gene expression and strength

Methylated DNA was precipitated using the MeDiP kit as described in the Methods and input and
precipitated DNA was quantified for the H19 ICR and for UBE2. ICR methylation is presented relative
to the methylation of UBE2 (a sparsely methylated DNA region). H19 ICR methylation was inversely
proportional to H19 gene expression (A), higher in weak patients compared to patients with normal
strength (B) and correlated with quadriceps strength measured as % predicted (C). H19 expression

was redcued in weak patients compared patients with normal strength (D)
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Figure 6. Reduced regeneration in the muscle of low FFMI patients

(A) sections of muscle were stained for laminin and DAPI as described in Methods. The number of
centralised nuclei was determined by counting the number of transverse cut fibres with an intact
laminin outline and the number of centralised nuclei in the whole section by an individual blinded to
the group assignment of each image. Centralised nuclei are presented as number per 100 fibres.
The number of centralised nuclei was higher in normal FFMI patients than in low FFMI patients. (C
and D) Segments of representative images used in counting the number of centralised nuclei from a
normal FFMI patient (C) and a low FFMI patient (D). White arrows indicate centralised nuclei. (B)
MyoD mRNA expression was determined in the quadriceps of patients with COPD as described in

Methods. Normal FFMI patients expressed significantly more MyoD than low FFMI patients (p<0.05).
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Supplementary Methods

Cell culture: C2C12 cells were maintained in culture as described[33]. RNA was extracted
using Trizol and mRNA and miRNAs were determined as described above. miR mimic
transfection: cells were seeded into 96 well plates at 500 cells/well in octuplet. Each well
was transfected the following day with 0.5 pl of 20 uM mimic with 0.5 pl lipofectamine 2000
in 50 pl Opti-MEM and 100 pl DMEM for 4h before the medium was replaced with DMEM
supplemented with 10%FCS. Cells were quantified using CyQuant NF cell proliferation kit

(Invitrogen) according to the manufacturer’s instructions.

Supplementary Results
Mir-675 increases as myoblasts withdraw from the cell cycle and inhibits their proliferation

in vitro

miR-675 has been associated with cell cycle inhibition [34]. To determine whether it
inhibited myoblast proliferation, we determined the expression profile of miR-675 and H19
in C2C12 cells during differentiation. The expression of cell cycle markers (cyclinEl, Chkl
and cdc25) was reduced, while those of differentiation (MHCs and myogenic bHLH proteins)
were increased over the time course, consistent with previous studies of C2C12
differentiation [35, 36](Supplementary Fig. 4). Expression of H19, miR-675-3p, and -5p was

also higher in myotubes compared to proliferating myoblasts (Supplementary Fig. 4).

To determine whether these miRNAs could directly inhibit myoblast proliferation,
C2C12 cells were transfected with these miRNAs (675-5p and 3p) and proliferation was
analysed. Transfection with miR-290 (a close murine equivalent to C19MC miRNAs that has
the same AAGUGC seed sequence as miR-519a) or a scrambled miRNA served as negative

controls and transfection with miR-1 as a positive control. miR-675 inhibited C2C12 cell



proliferation to the same extent as miR-1. Neither the scrambled miRNA nor miR-290

suppressed cell proliferation (Supplementary Fig. 4) compared to untransfected cells.



Supplementary table 1 Screen cohort

Control (n=7)

Normal FFMI (n=7)

Low FFMI (n=7)

Age (years)

67+ 11

64+4

68 +6

Smoking History®
(pack-year)

6.25 (0, 24)

49 (41, 60) *

51(32,71) *

Weight? (kg)

75.5 (74.1, 86.8)

83.3 (72.1, 94.0)

60.8 (54.5, 69.4)*

BMI? (kg/m?)

25.7 (24.8, 26.9)

24.5 (24.4,27.1)

20.8 (19.9, 22.7) **, T

FFMI® (kg/m?)

18.5 (17.5, 20.0)

17.6 (16.4, 17.9)

14.3 (13.9, 14.8)**, 1

FEV,° (% pred)

107.7 (104.0, 123.2)

25.1(22.0, 38.0)**

31.5 (27.4, 41.5)**

RVTLC 35+ 4 61+9*** 60+7***
TLCO® (% pred) 86.7 (84.5, 90.8) 31.9(28.2,50.7)** 29.0 (22.7,43.3)**
6 min walk (m) 657+ 102 367+159*** 342+161***
6min walk % pred 116+12 67+31%** 63+25%***
pVO,° (% pred) 90 (84, 99) 38 (33, 48)** 44 (31, 46)**
SGRQ* 1(0, 8) 53 (51, 62)** 58 (51, 66)**
Quadriceps MVC 39.9+6.6 32.5¢7.9 27.019%**
(kg)
Quadriceps MVC 77 £ 15 62+ 15 57+11*
(% pred)
Locomotion time® 90 (67, 115) 30 (18, 59) 61 (30, 77)
(min/12 hr)
Movement time 19.2+6.4 13.7+9.2 15.7+8.2
(as % of 12hrs)
Type | fibre % 45.9+13.7 27.0£17.7* 24.,945.7**
Type lIA fibre % 48.0+12.3 59.0+£12.5 61.8+10.4
Type IIX fibre % 3.413.4 11.7+£10.6** 7.415.9**

Definitions of abbreviations: °= Not normally distributed, BMI = Body Mass Index, FFMI= Fat-

Free Mass Index, FEV,; =Forced Expiratory Volume in 1 sec, RV =Residual volume, TLC = total

lung capacity, TLco= transfer coefficiant of the lung for CO, Pag, = arterial oxygen partial

pressure, Pacg, = arterial carbon dioxide partial pressure, pred = predicted, MVC = Maximal

Voluntary Contraction, SGRQ, St George’s respiratory questionnaire. Values are means + SD

for normally distributed variables and as median (interquartile range) for variables that were

not normally distributed.

variables and by Mann Whitney U test for variables that were not normally distributed.

Significance was calculated by t-Test for normally distributed

*(p

< 0.05) ** (p =<0.01) ***(p=<0.001) low FFMI or normal FFMI vs control . t1 (p=<0.01), 1t

(P=<0.001) low FFMI vs normal FFMI




Supplementary table 2: H19 cohort

Control (n=11)

Normal FFMI (n=34)

Low FFMI (n=22)

Sex (M, F) 2,9 19, 15 5,17
Age (years) 68+ 10 6819 63 19
Smoking History® 0 (0, 6) 45 (34, 655) *** 40 (30, 47) ***

(pack-year)

Weight? (kg)

64.7(61.0, 65.4.8)

78.3 (73.9, 85.3)**

59.7 (51.0, 65.1)tt++

BMI? (kg/m?)

24.5 (23.6, 25.5)

28.1(25.9, 30.8)**

21.7(19.9, 23.5) *, t11

FFMI® (kg/m?)

15.3 (15.2, 15.9)

17.7 (16.2, 18.5)**

14.0 (13.4, 14.5)***,

ttt
FEV,° (% pred) 110.5(99.1,113.0) | 58.5(44.1,71.9)*** | 43.8 (27.4,59.0)***, 1
RVTLC 39+5 5149%** 57+8*** t1
TLCO® (% pred) 82.5(79.6,95.1) 52.5(40.0, 61.8)** 41.2 (26.1, 52.9)**
6 min walk (m) 603+ 69 426+102%** 374+136***
6min walk % pred 127412 90+19*** 72426%*** t1
pVO,° (% pred) 97 (80, 110) 60 (50, 70)** 45 (34, 54)**
SGRQ* 2(1,7) 50 (37, 59)*** 54 (47, 62)***
Quadriceps MVC 30.7+7.8 33.9+10.7 20.2+8.6*, 1t
(kg)
Quadriceps MVC 77 £ 17 72+19 56+£13** T+t
(% pred)
Locomotion time® 96 (59, 141) 46 (36, 80)** 40 (21, 55)***
(min/12 hr)
Movement time 23.846.5 14.4+5.7%* 13.145.3%**
(as % of 12hrs)
Type | fibre % 53.8+12.5 32.6+10.6*** 27.2+£13.9%**
Type lIA fibre % 42.0+11.6 56.4+11.0%** 63.0+13.7%**
Type IIX fibre % 1.9+3.1 5.1+5.7 5.3+5.3

Definitions of abbreviations: °= Not normally distributed, BMI = Body Mass Index, FFMI= Fat-

Free Mass Index, FEV; =Forced Expiratory Volume in 1 sec, RV =Residual volume, TLC = total

lung capacity, TLco= transfer coefficiant of the lung for CO, Pag, = arterial oxygen partial

pressure, Pacg, = arterial carbon dioxide partial pressure, pred = predicted, MVC = Maximal

Voluntary Contraction, SGRQ, St George’s respiratory questionnaire. Values are means + SD

for normally distributed variables and as median (interquartile range) for variables that were

not normally distributed.

Significance was calculated by t-Test for normally distributed

variables and by Mann Whitney U test for variables that were not normally distributed. *(p

< 0.05) ** (p =<0.01) ***(p=<0.001) low FFMI or normal FFMI vs control . t1 (p=<0.01), 1t

(P=<0.001) low FFMI vs normal FFMI




Supplementary table 3: Herts Sarcopenia Study cohort

Whole cohort (n=67)

Non-smokers (n=32)

Current and ex smokers
(n=35)

Weight? (kg)

83.2(72.8,91.8)

81.2 (70.9, 86.4)

84.1 (80.0, 93.3)

BMI? (kg/m?)

27.1(24.8,29.1)

25.8 (24.0, 28.7)

27.4 (26.2,29.3)

FFMI® (kg/m?)

18.4 (17.4, 19.3)

18.4 (17.1, 19.3)

18.4 (17,8, 19.3)

FEV,® (% pred)

105.2 (98.2, 114.8)

106.1 (103.1, 117.2)

104.5 (92.3, 112.5)

TUG time (s) 10.5(9.2,12) 10.1 (9.2, 10.9) 10.9 (9.6, 12.25)
3m walk time?(s) 2.7 (2.5,3.1) 2.7 (2.5,2.9) 2.8(2.5, 3.3)
Handgrip strength 38.6+8.9 38.617.8 38.5+10.0

(kg)
Birth weight® (kg) 3.2(3.0,3.9) 3.2(3.0,4.0) 3.2(3.0,3.9)
Log miR-675 (AU) -2.8%19 -2.81+0.58 2.83+0.54
Log miR-519a (AU) -4.22 £0.36 -4.17 £0.28 -4.26 £ 0.40

Definitions of abbreviations: °= Not normally distributed, BMI = Body Mass Index, FFMI= Fat-
Free Mass Index, FEV; =Forced Expiratory Volume in 1 sec, TUG time = time to up and go.




Supplementary Table 4 Physiological parameters for the Methylation cohort

Control (n=10)

Normal FFMI (n=14)

Low FFMI (n=15)

Age (years)

66+ 11

67+7.

67 +7

Smoking History®
(pack-year)

7 (0, 9)

55 (40,72)***

37 (29, 50) **

Weight? (kg)

77.5 (74.0, 96.9)

70.6 (63.2, 81.6)

60.8 (54.7,
68.8)***

BMI? (kg/m?)

26.3 (24.7,29.1)

24.2 (22.8, 25.1)

21.7 (19.6, 22.1)**, 1

FFMI® (kg/m?)

19.0 (17.5, 20.5)

16.9 (16.4, 17.1)*

14.5 (14.5, 15.1)***,

ttt
FEV,° (% pred) 107.7 (101.4,111.1) | 28.5(24.1, 35.9)*** 31.6 (27.0, 39.5)***
RVTLC 34+ 4 63+7%** 60+9***
TLCO® (% pred) 90.5 (86.7, 97.3) 40.3 (28.3, 46.2)*** 39.3(27.1, 54.6)***
6 min walk (m) 630+ 101 332+119*** 360+151***
6min walk % pred 120+14 72+23%** 80+27***
pVO,° (% pred) 96 (89, 104) 42 (34, 46)*** 44 (31, 49)***
SGRQ* 3(0, 8) 50 (42, 61)*** 58 (49, 66)***
Quadriceps MVC 42.5+9.3 32.6+8.3** 28.1+7.3%**
(kg)
Quadriceps MVC 82+ 20 67 + 15* 59+12**
(% pred)
Locomotion time® 85 (61, 97) 37 (20, 41)** 47 (20, 71)*
(min/12 hr)
Movement time 17.0+£4.9 11.0+£5.3 12.7+6.4
(as % of 12hrs)
Type | fibre % 53.1+18.1 29.2414 3%** 25.9413.6 ***
Type lIA fibre % 39.8+17.4 62.7+8.6*** 64.1+15.7%**
Type IIX fibre % 3.613.6 5.618.9 5.7+5.1

Definitions of abbreviations: °= Not normally distributed, BMI = Body Mass Index, FFMI= Fat-

Free Mass Index, FEV,; =Forced Expiratory Volume in 1 sec, RV =Residual volume, TLC = total

lung capacity, TLco= transfer coefficiant of the lung for CO, Pag, = arterial oxygen partial

pressure, Pacg, = arterial carbon dioxide partial pressure, pred = predicted, MVC = Maximal

Voluntary Contraction, SGRQ, St George’s respiratory questionnaire. Values are means + SD

for normally distributed variables and as median (interquartile range) for variables that were

not normally distributed.

variables and by Mann Whitney U test for variables that were not normally distributed.

Significance was calculated by t-Test for normally distributed

*(p

< 0.05) ** (p =<0.01) ***(p=<0.001) low FFMI or normal FFMI vs control . t1 (p=<0.01), ttt

(P=<0.001) low FFMI vs normal FFMI




Supplementary table 5 Physiological Parameter centralized nuclei cohort

Normal FFMI (n=10)

Low FFMI (n=5)

Sex (M, F) 10,0 5,0
Age (years) 6315 68 6
Smoking History® 55 (38, 68) 75 (68, 80)

(pack-year)

Weight? (kg)

79.8 (72.6, 90.8)

64.2 (60.8.5, 71.7),

BMI? (kg/m?)

25.2 (24.3, 26.7)

22.0(20.3, 23.4)

FFMI® (kg/m?)

16.8 (16.4, 17.9)

14.5 (14.5, 14.6) t1

FEV,° (% pred)

33.7(25.7, 49.6)

27.6 (27.6, 45.2)

RVTLC 59+9 62+4
TLCO® (% pred) 44.3 (29.2, 52.4) 26.2 (19.1, 29.9)
6 min walk (m) 387+162 3574118
6min walk % pred 70+29 65+18
pVO,° (% pred) 41 (32, 49) 34 (31, 45)
SGRQ* 55 (50, 67) 45(41, 60)
Quadriceps MVC 34.2.749.8 27.4+7.2
(kg)
Quadriceps MVC 66115 5617
(% pred)
Locomotion time® 37 (23, 66) 61 (52, 82)
(min/12 hr)
Movement time 14+8 1646
(as % of 12hrs)
Type | fibre % 28.6 +18.1 23.4+8.4
Type IIA fibre % 59.0+15.1 60.6 +11.6
Type IIX fibre % 9.5+94 10.6 £ 8.6

Definitions of abbreviations: °= Not normally distributed, BMI = Body Mass Index, FFMI= Fat-
Free Mass Index, FEV; =Forced Expiratory Volume in 1 sec, RV =Residual volume, TLC = total
lung capacity, TLco= transfer coefficiant of the lung for CO, Pag, = arterial oxygen partial
pressure, Pacg, = arterial carbon dioxide partial pressure, pred = predicted, MVC = Maximal
Voluntary Contraction, SGRQ, St George’s respiratory questionnaire. Values are means + SD
for normally distributed variables and as median (interquartile range) for variables that were
not normally distributed. Significance was calculated by t-Test for normally distributed
variables and by Mann Whitney U test for variables that were not normally distributed. *(p

< 0.05) ** (p =<0.01) ***(p=<0.001) low FFMI or normal FFMI vs control . t1 (p=<0.01), ttt

(P=<0.001) low FFMI vs normal FFMI



Supplementary Table 6. Low FFMI associated miRNAs in the quadriceps muscle of COPD

patients
Median fold change P value
LFFMI vs LFFMI vs NFFMI vs LFFMI vs LFFMI vs NFFMI vs

miRNA NFFMI cont cont NFFMI cont cont
miR-519c¢-3p 0.137 0.220 1.611 0.000 0.008 0.393
miR-518a-3p 0.265 0.354 1.338 0.000 0.038 0.171
miR-517a 0.366 0.438 1.197 0.000 0.000 0.079
miR-517c¢ 0.386 0.568 1.471 0.000 0.004 0.068
miR-519a 0.451 0.438 0.971 0.000 0.002 0.300
miR-512-3p 0.523 0.519 0.991 0.000 0.005 0.325
miR-525-3p 0.341 0.438 1.286 0.001 0.003 0.524
miR-518b 0.428 0.398 0.931 0.001 0.013 0.385
miR-519d 0.511 0.515 1.009 0.001 0.004 0.422
miR-517b 0.137 0.103 0.748 0.002 0.004 0.398
miR-523 0.314 0.553 1.760 0.002 0.036 0.139
miR-101 0.531 0.527 0.993 0.002 0.001 0.862
miR-515-5p 0.334 0.370 1.106 0.003 0.017 0.342
miR-518e 0.541 0.518 0.959 0.003 0.011 0.562
miR-520g 0.132 0.106 0.801 0.004 0.003 0.751
miR-522 0.280 0.256 0.912 0.004 0.006 0.544
miR-32 0.505 0.359 0.711 0.004 0.000 0.118
miR-15a 0.343 0.577 1.680 0.005 0.001 0.071
miR-26b 0.579 0.525 0.906 0.005 0.001 0.253
miR-342-3p 0.632 0.658 1.041 0.007 0.000 0.788
miR-342-5p 0.263 0.144 0.547 0.008 0.010 0.651
miR-126 0.734 0.591 0.805 0.008 0.001 0.255
miR-340 0.771 0.570 0.739 0.010 0.001 0.082
miR-489 0.521 0.656 1.259 0.011 0.018 0.268
miR-140-5p 0.687 0.602 0.876 0.011 0.001 0.492
miR-186 0.745 0.672 0.903 0.013 0.010 0.599
miR-518d-5p 0.235 0.251 1.070 0.015 0.006 0.675
miR-148b 0.635 0.568 0.896 0.015 0.014 0.623
miR-139-5p 0.724 0.617 0.851 0.017 0.004 0.216
miR-190 0.489 0.325 0.664 0.018 0.001 0.151
miR-146a 0.615 0.754 1.226 0.018 0.026 0.784
miR-195 0.770 0.645 0.837 0.018 0.004 0.102
miR-374a 0.516 0.440 0.851 0.019 0.004 0.166
miR-148a 0.665 0.531 0.799 0.024 0.011 0.437
let-7f 0.798 0.653 0.818 0.024 0.015 0.703
miR-193a-3p 0.462 0.336 0.727 0.025 0.006 0.388
miR-1 0.679 0.775 1.141 0.029 0.041 0.662
miR-208b 0.642 0.375 0.584 0.030 0.002 0.567
miR-628-5p 0.589 0.862 1.464 0.031 0.029 0.327
miR-454 0.481 0.444 0.923 0.034 0.008 0.475
miR-125a-5p 0.703 0.676 0.961 0.037 0.036 0.633
miR-30b 0.848 0.780 0.920 0.037 0.008 0.621
miR-98 0.610 0.649 1.063 0.038 0.017 0.513
miR-590-5p 0.794 0.639 0.805 0.039 0.003 0.080
miR-361-5p 0.706 0.811 1.148 0.041 0.029 0.329
miR-424# 3.893 28.569 7.340 0.009 0.000 0.220
miR-675 8.506 7.002 0.823 0.008 0.030 0.182




miRNAs that were suppressed in LFFMI patients compared to NFFMI patients are shown
above the line in order of statistical significance, those increased in LFFMI patients
compared to LFFMI patients are shown below the line in order of statistical significance.

Supplementary Figure legends

Supplementary Figure 1: Expression of miR-675 is correlated with H19 in the muscle of

COPD patients and controls.

The expression of miR-675 and H19 were determined by qPCR as described and compared in
the individuals where both determinations were possible. The expression of miR-675 was
positively correlated with H19 expression in these samples. Patients are shown as grey

circles and controls are shown as black circles

Supplementary Figure 2: Comparison of two methods of determining H19 expression.

H19 expression was determined using Sybr Green and by combining the results of two
independent measures using the SNP assay. There was a tight correlation of the values
obtained by these two methods. Patients are shown as grey circles and controls are shown

as black circles

Supplementary Figure 3. Relative DNA methylation is associated with MVC normalized for

FFMI in COPD patients and controls

Methylated DNA was precipitated using the MeDiP kit as described in the Methods and
input and precipitated DNA was quantified for the H19 ICR and for UBE2. (A) Relative ICR
methylation was not different between patients and controls. Relative ICR methylation was

associated with QMVC normalized for FFMI in patient (B) and in controls (C).



Supplementary Figure 4. miR- 675 and H19 are increased in differentiating myoblasts in

vitro

RNA was extracted from C2C12 and differentiating C2C12 cells 120h prior to (proliferating
cells) and 48h, 96h, and 144h after the induction of differentiation by placing the cells into
medium supplemented with 2% horse serum as described in Methods. QPCR was used to
determine the expression of myosin heavy chains (MHCI, MHCIIA, MHCIIX and MHCIIB, A),
myogenic transcription factors (myoD, myogenin and myf5, B) and cell cycle genes (Chk1,
CDC25A and cyclin E1, C). The expression of H19, miR-675 is shown in D. Data are shown as
mean +/- SEM from quadruplicates. (E) C2C12 cells were transfected with miR mimics for
miR-675-3p, miR-675-5p, miR-290, a scrambled control or no oligonucleotide (lipo) as
described in Methods. The cells were counted after 24, 48 or 96 h in growth medium. MiR-
675-3p and miR-675-5p inhibited cell proliferation compared to scrambled or no transfected
controls whereas miR-290 did not affect cell number. The data were from 2 separate

experiments each performed in 8 biological repeats at each time point.
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