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Optimal ALOHA-like Random Access with
Heterogeneous QoS Guarantees for Multi-Packet
Reception Aided Visible Light Communications

Linlin Zhao, Xuefen Chi and Shaoshi Yang,Member, IEEE

Abstract—There is a paucity of random access protocols
designed for alleviating collisions in visible light communication
(VLC) systems, where carrier sensing is hard to be achieved
due to the directionality of light. To resolve the problem of
collisions, we adopt the successive interference cancellation (SIC)
algorithm to enable the coordinator to simultaneously commu-
nicate with multiple devices, which is referred to as the multi-
packet reception (MPR) capability. However, the MPR capability
could be fully utilized only when random access algorithms
are properly designed. Considering the characteristics ofthe
SIC aided random access VLC system, we propose a novel
effective capacity (EC)-based ALOHA-like distributed random
access algorithm for MPR-aided uplink VLC systems having
heterogeneous quality-of-service (QoS) guarantees. Firstly, we
model the VLC network as a conflict graph and derive the EC
for each device. Then, we formulate the VLC QoS-guaranteed
random access problem as a saturation throughput maximization
problem subject to multiple statistical QoS constraints. Finally,
the resultant non-concave optimization problem (OP) is solved by
a memetic search algorithm relying on invasive weed optimization
and differential evolution (IWO-DE). We demonstrate that our
derived EC expression matches the Monte Carlo simulation re-
sults accurately, and the performance of our proposed algorithms
is competitive.

Index Terms—Visible light communication (VLC), multi-
packet reception (MPR), random access, heterogeneous QoS,
effective capacity (EC), saturation throughput maximization.

I. I NTRODUCTION

The fifth generation (5G) wireless communication system
focuses on achieving higher performance in a variety of
technical aspects, such as area spectral efficiency, delay,scal-
ability, as well as reliability [1]. However, radio frequency
(RF)-based wireless communication technologies have arrived
at a bottleneck to satisfy these requirements. Visible light
communication (VLC) is recognized as an ideal complement
to RF-based technologies in future 5G networks [2] thanks
to its advantages, such as high data rates, the avoidance of
interference with RF systems, and low power consumption.
Additionally, the 5G network is expected to carry machine-to-
machine (M2M) traffic emerging from the Internet of Things
(IoT). M2M communications may entail substantial uplink
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traffic having different delay-bounded quality-of-service (QoS)
requirements [3].

At the time of writing, most existing studies of VLC
focus on general-purpose indoor wireless communications,
where it remains uncommon to use visible light for uplink
transmissions. Nevertheless, with the development of M2M
communications, there will be more and more scenarios where
VLC becomes a competitive solution to the uplink trans-
mission [4]–[8], such as logistics centres, warehouses and
indoor surveillance systems. In particular, there exist relevant
application scenarios where the use of RF transmissions may
be restricted, such as hospitals, chemical plants and airplanes.
Therefore, VLC constitutes a promising alternative to RF
based technologies for M2M communication in RF restricted
areas [9], where the light-emitting diode (LED) indicator
of machines/sensors can be used as optical transmitters for
communicating with the coordinator.

As far as the existing VLC-based uplink communication
schemes are concerned, the authors of [4] experimentally
demonstrated a time-division-duplex (TDD) VLC system for
both downlink and uplink transmissions, and the authors of [5]
proposed a network architecture for a high-speed bi-directional
VLC local area network (LAN) based on a star topology. An
access protocol was also proposed in [5] for the VLC network,
where each indoor user transmits data with a RGB LED to the
LED lamp in their individual pre-assigned time slot on the
uplink [5]. Furthermore, in 2011 the IEEE 802.15.7 standard
[6] was presented, which defines the physical (PHY) layer and
medium access control (MAC) layer for short-range wireless
optical communications, including the scenario where all the
links use visible light. With the aid of the Markov chain theory,
the authors of [7] analysed the performance of the MAC
protocol that relies on the carrier-sensing multiple-access with
collision avoidance (CSMA/CA) mechanism and is used in
the IEEE 802.15.7 protocol. In [8], Wanget al. proposed a
MAC protocol relying on the CSMA with collision detection
and hidden avoidance (CSMA/CD-HA) for bi-directional VLC
wireless personal area networks, where each node solely uses
a single LED to transmit and receive data.

Thanks to the simplicity and distributed feature, random
access is suggested as one of multiple-access mechanisms
by the IEEE 802.15.7 standard and other researchers [6]–[8].
However, it is challenging to address the issue of the com-
petition among devices1 in VLC random access systems. Due

1In the IEEE 802.15.7 standard, devices refer to user terminals.
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to the directionality of light sources, the performance of VLC
systems mainly depends on line-of-sight (LOS) transmissions
[10]. As a result, the benefits of the random access based on
carrier sensing are degraded. Some researchers have turned
to the request-to-send/clear-to-send (RTS/CTS) mechanism
and its modified versions for VLC systems [11]. However,
RTS/CTS operates at the cost of frequent signalling.

There exists another alternative random access solution that
is based on multi-packet reception (MPR). MPR is an approach
embracing interference to obtain high throughput gain [12].
The receiver with MPR capability simultaneously decodes
multiple signals transmitted from different devices. MPR can
be implemented with the PHY layer techniques, such as
successive interference cancellation (SIC), directionalantennas
and multiple-input-multiple-output (MIMO) techniques [13],
[14]. It can also be implemented with the ZigZag decoding
[15] in the MAC layer. A few researchers have been exploring
the redesign of MAC protocols for MPR-aided RF networks
[16]–[19]. The authors of [16] stated that the optimal backoff
factor of the CSMA/CA algorithm increases with the MPR
capability. In [17], a stop theory based RTS/CTS scheme was
proposed to reduce the overhead of the RTS contention in
MPR-aided systems. The authors of [18] proposed a flexible
CSMA algorithm that adjusted the transmission probability
according to the estimated number of active users for the
non-saturation MPR-aided RF system. Relying on the zero-
forcing based SIC (ZF-SIC) algorithm, the authors of [19]
proposed an analytical model to characterize the saturation
throughput and mean access delay of CSMA/CA-aided RF
networks. Nevertheless, none of the above works is dedicated
to VLC systems, or to the scenario where the system is subject
to delay QoS constraints.

There are indeed few contributions to the exploitation of
MAC protocols in MPR-aided VLC systems. In [20], MPR
was first explored for mitigating collisions in VLC random
access systems. The authors analysed the impact of the MPR
on the throughput performance of the VLC system. However,
they did not consider the realistic effect of the PHY layer
signal processing technology and did not redesign the MAC
algorithm to fully utilize the MPR capability in the VLC
system. As we mentioned before, due to the directionality of
light sources, VLC systems are dramatically different fromRF
systems. As a result, it is critical to design a novel random
access mechanism, especially the advanced random access
mechanism with heterogeneous QoS guarantees, for MPR-
aided VLC systems.

Based on the effective bandwidth (EB) concept [21], Wuet
al. proposed the effective capacity (EC) theory [22], where the
concept of the statistical delay QoS, instead of a deterministic
delay, is introduced to guarantee a specific delay bound
violation probability. Focusing on the stochastic nature of RF
fading channels, many researchers derived ECs of RF-based
cellular systems and heterogeneous systems. Relying on the
derived ECs, they developed their QoS-guaranteed resource
allocation algorithms [23]–[26]. Some of the above works
focused on the downlink systems, while others focused on
the uplink. The works considering the uplink are all based on
deterministic scheduling rather than random access. Due tothe

multi-fold stochastic nature, the random access system requires
a new analysis framework of EC, which is the foundation for
developing QoS-guaranteed random access algorithms.

In this paper, we focus on the uplink of a VLC system
consisting of a coordinator and a number of devices. This is
an important application scenario, since there will be a large
amount of M2M traffic in the uplink of 5G systems. Similar
to [14] and [19], we employ the MIMO-SIC algorithm as
the MPR technique to avoid collisions. For the VLC random
access system with MIMO-SIC, the set of transmitting devices
in each time slot is random, which means the group of the
concurrently transmitting devices and their decoding order are
both random. This characteristic is in stark contrast to that
of conventional deterministic scheduling based cellular system
and hence imposes significant challenges on redesigning a new
random access algorithm. Inspired by the concept of EC, we
propose a novel slotted ALOHA-like random access algorithm
with heterogeneous delay QoS guarantees for the MPR-aided
VLC system considered. The purpose of our algorithm is
to make sure that each device accesses the shared channel
with its optimal probability according to its individual QoS
constraint in adistributed mode. Our ALOHA-like random
access approach conceived for the scenario of heterogeneous
QoS requirements can also be applied to the scenario of
unified QoS requirements, which represents a special case of
the former one. Our ALOHA-like random access algorithm
is also suitable for networks using infrared (IR) for uplink
transmissions, because of the similarity between the features
of VLC channels and those of IR channels. Explicitly, to the
best of our knowledge, the problem of designing a distributed
random access based MAC protocol that takes into account
the realistic effect of the adopted PHY layer signal processing
technique and supports heterogeneous delay QoS requirements
has not been investigated for MPR-aided VLC systems. Our
main contributions are summarized as follows.

• Considering the random nature of the access procedure
of conflicting links, we model the ALOHA-like random
access network as a conflict graph and propose the con-
cept of feasible access statefor the MPR-aided system.
Based on the conflict graph, we address the challenges of
formulating the EC of the individual device taking into
account the SIC algorithm, the random features of the
system (randomly blocked channel and random access
mechanism) as well as their interaction.

• Based on the EC derived, we propose a novel ALOHA-
like random access algorithm for the MPR-aided VLC
system under heterogeneous QoS guarantees. We derive
the algorithm by solving the saturation throughput max-
imization problem subject to heterogeneous QoS con-
straints.

• For high-dimensional non-convex or non-concave con-
strained optimization problems (COPs), typically the op-
timum solution is difficult to obtain with the brute-force
search due to multiple mathematical intractabilities, such
as huge search space together with small feasible region,
and the fact that the optimal solutions sometimes lie
on constraint boundaries. In this paper, we address the
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The device without any dotted or solid lines is not transmitting.

Fig. 1. The system model.

non-convex/non-concave COP formulated using a novel
memetic search algorithm that amalgamates the modified
invasive weed optimization (IWO) algorithm relying on
Pareto dominancewith the differential evolution (DE)
algorithm, which helps us tackle the mathematical in-
tractability of the COP considered.

The rest of this paper is organized as follows. In Section II,
the system model is described. In Section III, the EC of indi-
vidual device is derived and our ALOHA-like random access
algorithm with heterogeneous QoS guarantees is proposed.
In Section IV, the IWO-DE algorithm is employed to solve
the COP formulated. Our simulation results are provided in
Section V. Finally, in Section VI the conclusions are offered.

Notation: Bold letters denote vectors or matrices.1n denotes
ann×1 vector whose elements are all1, and1n×n denotes an
n× n identity matrix.(•)H denotes the Hermitian transpose,
and(•)T denotes the transpose.E(•) denotes the expectation.
{0, 1}N denotes the set of allN -dimensional binary vectors.
‖•‖ denotes the Euclidean vector norm. For the givenσ,
N(0, σ2) denotes the normal distribution with the mean of
0 and the variance ofσ2. For the given vectorx andy, x ≺ y
denotes thatx Pareto-dominatesy for the given multi-objective
optimization problem (MOP).

II. SYSTEM MODEL

In this paper, we consider the uplink of an indoor MPR-
aided VLC system with the star topology for M2M commu-
nications. The system model is shown in Fig. 1. The system
consists of one coordinator andN devices. The coordinator
is equipped withM optical receivers (i.e., photo-detectors
(PDs)), and each device is equipped with one optical transmit-
ter (i.e., LED). The coordinator uses the MIMO-SIC algorithm
to decode up toM data streams simultaneously, i.e., the
coordinator has the MPR capability ofM . We assume that
the coordinator knows the LOS channel gain information of
devices. The time is divided into slots. At the beginning of
each time slot, the devicej distributedly transmits its data
packets to the coordinator with an access probability ofpj,

j = 1, · · · , N , and its transmission occupies one time slot.
We call this random access mechanism as the ALOHA-like
random access mechanism. Moreover, packets are assumed
constant-length. When the number of devices is not greater
than the MPR capability of the coordinator, i.e.,N ≤M , the
coordinator is capable of decoding all the data streams of the
devices, which is regarded as a situation where no collision
happens. Hence we mainly focus on the overloaded scenario
thatN > M .

At time slot t, n (n ≤ N ) unblocked devices are as-
sumed to transmit their signals which are organized into an
n × 1 non-negative real vectorx = [x1(t), · · · , xn(t)]

T , and
E{xxT } = 1n×n. The received signal currents after the
optical-to-electrical conversions are collected into anM × 1
vector r = [r1(t), · · · , rM (t)]T , which is given by

r = ξPtHx+ v, (1)

whereξ is the detector responsivity,Pt denotes the transmitting
power, andH denotes theM × n indoor VLC channel
matrix with elementhij representing the channel gain from
the LED of device j to the i-th PD of the coordinator,
i = 1, · · · ,M . Additionally, v denotes the additive white
Gaussian noise (AWGN) with zero mean and varianceσ2

VLC ,
i.e., E{vvH} = σ2

VLC1M×M .
In VLC systems, the reflected light signals are very small

compared with the LOS light signals [10]. Therefore, we
mainly consider the LOS transmission for convenience of
analysis. The LOS channel gainhij is given as [10]:

hij =







(ρ+ 1)A0Gs

2πd2ij
ς(ψin

ij)cos
ρ(ψir

ij)cos(ψ
in
ij), ψ

in
ij ≤ ΨC,

0, ψin
ij > ΨC,

(2)
whereρ is the order of Lambertian emission, which is given
by the semi-angleφ1/2 at half illumination of a LED asρ =

ln 2

ln(cosφ1/2)
. ΨC denotes the width of field of view (FOV) at

a receiver.A0 is the physical area of the detector in a PD, and
Gs is the gain of an optical filter.dij is the distance between
the LED of the devicej and thei-th PD of the coordinator.
ψir
ij is the angle of irradiation from the LED of the devicej

to thei-th PD of the coordinator,ψin
ij is the angle of incidence

from the LED of devicej to the i-th PD of the coordinator,
and ς(ψin

ij) is the gain of an optical concentrator,

ς(ψin
ij) =







n2
0

sin2(ΨC)
, ψin

ij ≤ ΨC,

0, ψin
ij > ΨC,

(3)

wheren0 denotes the refractive index.
Due to moving obstructions, the LOS propagation of the

VLC system might be blocked. In this paper, we assume that
the devicej is blocked if all the LOS links of the devicej
are blocked. We define a binary random variable (r.v.)κj to
characterize the event if the devicej is blocked or not.κj = 1
represents that the devicej is unblocked, otherwise we have
κj = 0. We assume thatκj obeys the Bernoulli distribution
[25]:

f(κj) =

{

βj , κj = 1,
1− βj , κj = 0,

(4)
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whereβj denotes the probability of the event that the devicej

is unblocked. Because of the randomness and unpredictability
of the blocked situation, we assume that the device is not
aware if its link is blocked.

In VLC system, the dominant noise contribution is assumed
to be the shot noise and the thermal noise [10], i.e., we have

σ2
VLC = σ2

shot+ σ2
thermal. (5)

According to [10], the shot noise variance is given by

σ2
shot= 2qξPrB + 2qIbgI2B, (6)

where Pr denotes the total received optical power at the
coordinator;ξ is the detector responsivity, which is the same
as that of (1); q denotes the charge of an electron, i.e.,
q = 1.602×10−19 coulombs;B denotes the noise bandwidth;
Ibg denotes the background current; andI2 denotes the second
Personick integrals. In this paper, we assume that a field-
effect-transistor (FET) transimpedance receiver [27] is used.
The thermal noise variance is given by

σ2
thermal=

8π̺T

G0
δA0I2B

2 +
16π2̺TΓ

gm
δ2A2

0I3B
3, (7)

where̺ is the Boltzmanns constant,T is the absolute tem-
perature,G0 is the open-loop voltage gain,δ is the fixed
capacitance of the PD per unit area,Γ is the FET channel noise
factor,gm is the FET transconductance, and finally,I3 denotes
the third Personick integrals. Here, we opt for the parameter
values used in [10]:Ibg = 5.1×10−3 [A], I2 = 0.562, T = 295
[K], G0 = 10, gm = 30 [mS], Γ = 1.5, δ = 112 [pF/cm2],
I3 = 0.0868.

We define the QoS exponent vectorθ = [θ1, · · · , θN ]
to characterize the heterogeneous delay QoS in the VLC
system. The QoS exponent of the devicej is denoted asθj
that characterizes the steady state delay violation probability
of the devicej such thatPr

{

Dj ≥ Dmax
j

}

≈ e−θjµjD
max

j ,
where Dj denotes the steady state2 delay [second] of the
devicej, Dmax

j denotes the delay bound (maximum tolerable
delay) andµj is the fixed rate [bits/s] jointly determined
by the arrival process and the service process [22]. It is
apparent that the QoS exponentθj plays an important role
here. Largerθj corresponds to more stringent statistical delay
QoS constraint, while smallerθj implies looser statistical
delay QoS requirements. In this paper, we assume that the
devicej chooses the value of its QoS exponentθj from the
range of10−10 to 1.

EC may be interpreted as the maximum constant arrival rate
that can be supported by the service process of the system
subject to the delay QoS constraint specified by the QoS
exponent. For time-uncorrelated service processes, the ECof
the devicej is given by [23]:

ECj(θj) = −
1

θj
lnE

[

e−θjsj
]

, (8)

whereE[•] denotes the expectation operator andsj denotes
the service rate3 of devicej.

2More explicitly, it means the queue or buffer is in its steadystate.
3The service rate represents the data [bits] communicated over the given

time period.

III. T HE NOVEL ALOHA- LIKE RANDOM ACCESS

ALGORITHM WITH HETEROGENEOUSQOS GUARANTEES

Based on the EC theory, we propose a novel ALOHA-
like random access algorithm for the MPR-aided VLC system
subject to heterogeneous QoS constraints. For the ALOHA-
like random access aided VLC system where the coordinator
uses the MIMO-SIC algorithm, it is challenging to model the
EC of each device due to the mutual dependence between the
MIMO-SIC algorithm and the ALOHA-like random access
mechanism.

A. The Effective Capacity of Individual Device

Let Rj(t) denote the instantaneously achievable transmis-
sion rate of the devicej at the time slott, j = 1, · · · , N . The
fundamental part of modelling EC of the devicej is to find
the probability distribution ofRj(t). Rj(t) and its probability
distribution are influenced by the MIMO-SIC algorithm and
the ALOHA-like random access algorithm that is characterised
by the access probability vectorp. To emphasize the effect
of p on EC, we defineECj(p; θj) as the EC of devicej in
the remainder part. It is extremely difficult to quantify the
impact of the MIMO-SIC algorithm onRj(t) because of the
randomness of the interference relations existing among the
links.

For solving the above EC derivation problem, we model the
ALOHA-like random access aided VLC network as a conflict
graph G = (V , E), whereV denotes the set of devices,E
denotes the set of interference relations among links. There is
an edge between two vertices inG if their links interfere with
each other. The vectorσi ∈ {0, 1}N is defined as the statei
of G, i = 1, · · · , 2N , andσi

j denotes thej-th element inσi,
j = 1, · · · , N . σi

j = 1 represents that the devicej transmits
signals to the coordinator and it is non-blocked in the state
σ

i; otherwise, we haveσi
j = 0. For example, the current state

of G corresponding to the system of Fig. 1 is[1, 0, 1, 0, 1]4.
Since the devicej does not know if it is blocked before its
transmission, we obtain:

Pr{σi
j = 1} = pjβj , (9)

Pr{σi
j = 0} = 1− pjβj , (10)

wherepj denotes the access probability of the devicej. Note
thatσi

j = 1 does not mean that the transmission of the device
j is successful because collisions might happen.

Because we adopt the slotted ALOHA-like random access
mechanism, the states ofG in different time slots are in-
dependent and identically distributed. The probability ofthe
occurrence of the stateσi, defined asπ(σi), is given by

π(σi) =

N
∏

j=1

[

(1− σi
j)(1− pjβj) + σi

jpjβj
]

. (11)

4In the random access VLC system considered, not all of the devices
transmit data packets to the coordinator in each time slot. In the particular
time slot shown in Fig. 1, the device2 does not transmit data packets, thus
the second element of the vector characterizing the currentstate ofG is 0.
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Note that hereinπ is the steady state distribution probability
rather than the mathematical constant that represents the ratio
of a circle’s circumference to its diameter.

Definition 3.1 (Feasible Access State):If τi ≤ M , where

τi =
N
∑

j=1

σi
j , the stateσi is defined as afeasible access state

in the MPR-aided network with star topology.
Definition 3.2 (Infeasible Access State):If τi > M , the state

σ
i is defined as aninfeasible access statein the MPR-aided

network with star topology.
I is defined as the set of thefeasible access statesof G,

andI = {σi : τi ≤M}.
In this paper, we adopt the MIMO-SIC algorithm to achieve

MPR for the coordinator5. That is, after the signal of one
device is decoded, its signal is stripped away from the ag-
gregate received signal before the signal of the next device
is decoded [13], [28]. We assume that no device is decoded
successfully in theinfeasible access state, while in thefeasible
access stateσi we assume the SIC procedure of the MIMO-
SIC algorithm is ideal, i.e., there is no error propagation in
the decoding process. The performance of the MIMO-SIC
algorithm is dependant on the detection ordering method,
which is represented by aτi × τi matrix F. If and only if
the signal of the devicej is decoded at thel-th layer, we have
Fjl = 1. Otherwise, we haveFjl = 0. After using the detection
ordering, the rearranged channel matrix and the transmitted
signal are denoted as̃H and x̃, which are given byH̃ = HF

and x̃ = Fx, respectively. The LOS channel gain vector of
the devicej is defined ashj that is thej-th column ofH.
The LOS channel gain vector of the device decoded at the
k-th layer is defined as̃hk that is thek-th column of H̃.
Additionally, xj is the transmitted signal of the devicej, and
x̃k is the signal decoded at thek-th layer. After decoding and
removingl − 1 signals, the residual received signal vector is

given byrl =
τi
∑

k=l

ξPth̃kx̃k + v. If Fjl = 1, we haveh̃l = hj

and x̃l = xj , then

rl = ξPthjxj +

τi
∑

k=l+1

ξPth̃kx̃k + v. (12)

Let zl denote the output of the MIMO detector (e.g. ZF or
minimum mean-squared error (MMSE) filter) at thel-th layer.
W

l is defined as the filter matrix used at thel-th layer, and
W

l
j denotes thej-th row in W

l [13]. At the l-th layer, the
channel gains of the residual devices are organized into the
residual channel matrix̃Hl = [h̃l, · · · , h̃τi ]. Thej-th element
of zl is given by

W
l
jrl = ξPtW

l
jhjxj +W

l
j

[

τi
∑

k=l+1

ξPth̃kx̃k + v

]

. (13)

5In random access systems, the group of concurrently transmitting devices
is random, and the coordinator does not even know the number of these
devices, which imposes challenges on the channel estimation. As a result, the
implementation and performance analysis of the MIMO-SIC algorithm are
affected. In fact, the number of simultaneously transmitting devices can be
estimated by using the threshold based rank estimation algorithm, and then
existing MIMO channel estimation algorithms can be used.

Hence, the signal-to-interference-plus-noise ratio (SINR) of
the devicej in the feasible access stateσi is:

γij =
ξ2P 2

t E

[

∥

∥W
l
jhjxj

∥

∥

2
]

E





∥

∥

∥

∥

∥

Wl
j

(

τi
∑

k=l+1

ξPth̃kx̃k + v

)∥

∥

∥

∥

∥

2




. (14)

If the ZF filter [13], [28] is used,Wl
j is the j-th row of the

matrix
(

H̃
H
l H̃l

)−1

H̃
H
l , and the SINR of the devicej in the

feasible access stateσi is:

γij =
ξ2P 2

t ‖W
l
jhj‖

2

σ2
VLC

∥

∥Wl
j1M

∥

∥

2 . (15)

If the MMSE filter [13], [28] is used,

W
l
j = h

H
j

(

τi
∑

k=l+1

ξ2P 2
t h̃kh̃

H
k + σ2

VLC1M×M

)−1

, (16)

and the SINR of the devicej in the feasible access stateσi

is given by

γij = ξ2P 2
t h

H
j

(

τi
∑

k=l+1

ξ2P 2
t h̃kh̃

H
k + σ2

VLC1M×M

)−1

hj .

(17)
Using Shannon’s capacity formula, the upper bound on

the instantaneously achievable transmission rate [bits/s] of the
devicej in the feasible access stateσi is given by

Ri
j = B × log2

(

1 + γij
)

[bits/s]. (18)

The instantaneously achievable transmission rate of the
device j only depends on the state ofG (i.e., the set of
the devices that are simultaneously transmitting signals)and
their corresponding channel gains. The individual channel
gains of these devices can be regarded as fixed provided
that these devices are unblocked and their positions are un-
changed. Because the states ofG in different time slots are
independent and identically distributed, the instantaneously
achievable transmission rates of the devicej are independent
and identically distributed across different time slots. The
probability of

{

Rj(t) = Ri
j

}

equals the probability of the
occurrence of thefeasible access stateσi that satisfiesσi

j = 1,
and is given by

Pr
{

Rj(t) = Ri
j

}

= π(σi),σi ∈ Ij , (19)

whereIj is defined as the set of thefeasible access statessatis-
fying that the devicej is transmitting signals to the coordinator
and is unblocked,Ij = {σi : τi ≤M,σi

j = 1}. Furthermore,
the probability of{Rj(t) = 0} equals the probability of all
events that the devicej transmits unsuccessfully, which is
given by

Pr {Rj(t) = 0} = 1−
∑

σ
i∈Ij

π(σi)

= 1−
∑

σ
i∈I

σi
jπ(σ

i).
(20)

Accordingly, the EC of the devicej is formulated as (21).
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ECj(p; θj) = −
1

θj
ln











∑

σ
i∈Ij

π(σi)e−θjR
i
j



+ 1−

[

∑

σ
i∈I

σi
jπ(σ

i)

]







= −
1

θj
ln

{[

∑

σ
i∈I

σi
jπ(σ

i)e−θjR
i
j

]

+ 1−

[

∑

σ
i∈I

σi
jπ(σ

i)

]}

= −
1

θj
ln







1−
∑

σ
i∈I





(

1− e−θjR
i
j

)

σi
j

N
∏

j=1

[

(1− σi
j)(1 − pjβj) + σi

jpjβj
]











[bits/s]

(21)

B. Problem Formulation

Saturation throughput refers to the network throughput
when devices always have data to transmit [19]. According
to (19), the saturation throughput is formulated as

η(p) =
∑

σ
i∈I

N
∑

j=1

Ri
jσ

i
jπ(σ

i)

=
∑

σ
i∈I

N
∑

j=1

Ri
jσ

i
j

N
∏

k=1

[

(1− σi
k)(1 − pkβk) + σi

kpkβk)
]

.

(22)
In this paper, we aim to find the optimum access probability

vector p = [p1, · · · , pN ] so that the saturation throughput is
maximized for the VLC system subject to the heterogeneous
delay QoS constraints. For a given QoS exponent vectorθ =
[θ1, · · · , θN ], the optimization problem (OP) is formulated as

max
p

η(p) =
∑

σ
i∈I

N
∑

j=1

Ri
jσ

i
jπ(σ

i)

s.t. ECj(p; θj) ≥ EBj(θj),
0 < pj ≤ 1, j = 1, · · · , N,

(23)

whereEBj(θj) denotes the EB [21] of the traffic of the device
j, given by

EBj(θj) =
1

θj
lim
t→∞

1

t
lnE

[

eθjAj(t)
]

,

in whichAj(t) denotes the accumulated arrival process of the
devicej over the time interval[0, t). ECj(p; θj) ≥ EBj(θj)
represents that the QoS constraint of devicej has to be
satisfied [23].0 < pj ≤ 1 represents that the access probability
of devicej must range from0 to 1. θj = 0 denotes that the
devicej has no QoS requirement.

Theorem 3.1:The OP (23) is non-concave with respect to
the access probability vectorp = [p1, · · · , pN

].
Proof: Please see Appendix A.

It is usually unlikely to transform a non-concave problem
to a convex or concave problem without solution gap. As
an evolutionary algorithm, IWO [29] provides an alternative
to search for the optimum solution of the unconstrained
optimization problem (UOP), and a number of its variants
have also been proposed for solving constrained optimization
problems (COP). Unlike in the UOP, both the constraints
and the objective function need to be considered to find the
optimum solution of the COP. More recently, it is increasingly
popular to solve COP usingPareto dominancebased multi-
objective optimization (MOP) techniques. In this paper, we

transform the COP (23) into an MOP and adopt the emerging
memetic algorithm called IWO-DE [30] to tackle the problem.
For convenience, we rewrite (23) as follows

min
p

1

η(p)
=

1

∑

σ
i∈I

N
∑

j=1

Ri
jσ

i
jπ(σ

i)

s.t.
EBj(θj)

ECj(p; θj)
≤ 1,

0 < pj ≤ 1, j = 1, · · · , N.

(24)

Obviously, the OP (24) and the OP (23) share the same
optimum solution and the same feasible solution set.

IV. T HE IWO-DE ALGORITHM

The IWO-DE algorithm first considers IWO as a local
refinement procedure to tackle the COP. The outputs of the
IWO procedure are taken as the optimum candidates used as
the inputs of the DE procedure, which is employed as the
global search procedure to effectively explore the search space
for finding the optimum access probability vector. A detailed
discussion of IWO-DE is out of the scope of this paper. The
interested reader is referred to [30]. Below we start with a
brief introduction of the IWO algorithm.

A. IWO-The Local Refinement Procedure

The classical IWO algorithm [29] cannot handle the COP
directly, thus we transform the single-objective COP (24) into
a bi-objective unconstrained OP (a special case of MOP, which
is also called vector optimization problems [31]). We employ
the modified IWO algorithm relying onPareto optimization
technologies to cope with the bi-objective OP. Referring
to [30], the unconstrained bi-objective OP is given as the
element-wise minimization problem of

min
p

Λ(p) =
(

1

η(p)
,Ω(p)

)

, (25)

where the first objective
1

η(p)
is the original objective in the

OP (24), and the second objectiveΩ(p) is the sum of all
constraint violations in the OP (24). More specifically,Ω(p)
is defined as follows:

Ω(p) =
N
∑

j=1

[

ΩQoS
j (p) + Ωp0

j (p) + Ωp1
j (p)

]

, (26)
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ΩQoS
j (p) = max

(

0,
EBj(θj)

ECj(p; θj)
− 1

)

, (27)

Ωp0
j (p) = max (0,−pj) , (28)

Ωp1
j (p) = max (0, pj − 1) . (29)

Obviously, we haveΩ(p) ≥ 0, and all the constraints in (24)
are satisfied if and only ifΩ(p) = 0.

The optimization variablep of the problem (25), i.e. the
access probability vector in this paper, is taken as the position
of the weed in the search space. The number of devices in
the VLC system isN , hencep is anN -dimensional variable.
As a result, the search space of our IWO-DE algorithm isN -
dimensional. Without causing confusion, in what follows both
the position of the weed and the weed itself may represent
the access probability vector. The candidate access probability
vector that has smaller fitness value, as define in (30), is closer
to the optimum access probability vector and thus more likely
to reproduce and survive. For simultaneously achieving mini-
mization of the two objectives in (25), some modifications are
made in thereproductionstep and thecompetitive exclusion
step of the IWO algorithm. The key steps of the modified IWO
algorithm are presented as follows.

Step 1) Initialization: A number of initial candidate so-
lutions defined asP = {pi, i = 1, · · · ,W0} are randomly
dispersed over theN -dimension space.W0 denotes the number
of the initial candidate solutions.pi is the i-th weed, i.e., the
i-th candidate solution of the problem (25), in the population,
and it is an1 × N vector with elementpij representing the
access probability of the devicej.

Step 2)Reproduction: To accommodate IWO for the MOP,
we adopt the adaptive weighted sum fitness assignment mecha-
nism [30] to determine the number of the offspring reproduced
by each weed. For the weedpi, the fitness value ofpi, denoted
asfit(pi), is defined as follows:

fit(pi) =

√

ω∆f (pi)2 + (1 − ω)∆Ω(pi)2, (30)

where

ω =
The size of feasible weeds

The size of all weeds
, (31)

∆f (pi) =

f(pi)− min
j=1,··· ,W

f(pj)

max
j=1,··· ,W

f(pj)− min
j=1,··· ,W

f(pj)
, (32)

∆Ω(pi) =

Ω(pi)− min
j=1,··· ,W

Ω(pj)

max
j=1,··· ,W

Ω(pj)− min
j=1,··· ,W

Ω(pj)
, (33)

in which we havef(pi) =
1

η(pi)
andW = W0 if Z = 0.

Otherwise,W = Wmax. Z denotes the iteration index, and
also denotes the generation index.Wmax denotes the maxi-
mum number of survival weeds.

Hence, the number of offspring reproduced by thei-th weed
pi is formulated as follows [29]:

Si = Smax −

(Smax − Smin)(fit(pi)− min
j=1,··· ,W

fit(pj))

max
j=1,··· ,W

fit(pj)− min
j=1,··· ,W

fit(pj)
,

(34)
where Smax denotes the permissible maximum number of
offspring, andSmin denotes the permissible minimum number
of offspring.

Step 3)Spatial Dispersion: The generated offspring of thei-
th weedpi are randomly dispersed over the search space. The
offspring obey the normal distribution with varying standard
deviations. The mean of the normal distribution is zero, and
its standard deviation gradually reduces from an initial value
σinitial to a final valueσfinal in each generation. The standard
deviation at each iteration is expressed as [29]:

σZ =

(

Zmax − Z

Zmax

)φ

(σinitial − σfinal) + σfinal, (35)

whereZmax is the maximum number of iterations,σZ is the
standard deviation in theZ-th iteration andφ is thenon-linear
modulation index6 of the IWO algorithm [29].

Step 4)Competitive Exclusion: In order to limit the number
of the weeds that serve as inputs to the DE procedure, weeds
and their offspring are ranked together to eliminate weeds
that have poor (i.e. high herein) fitnesses values in this step.
More specifically, to minimize the two objectives in (25)
simultaneously, we adopt the non-dominated sorting [30] to
decide which individual to survive into the next generation.
The non-dominated sorting is based onPareto dominance[30],
which ensures that the candidate solutions obtained in the
IWO procedure distribute surrounding thePareto front [30].
As a beneficial result, the convergence of the algorithm is
accelerated. The definition ofPareto dominanceis given as
follows [30]:

Definition 4.1 (Pareto Dominance):For the given MOP with
m optimization variablesx = [x1, · · · , xm] and n objective
functionsgi(x), i ∈ {1, · · · , n}, define

min y = (g1(x), · · · , gn(x)) . (36)

An optimization variablexa is said toPareto-dominateanother
vectorxb (denoted byxa ≺ xb) if and only if:

∀i ∈ {1, · · · , n} : gi(xa) ≤ gi(xb)

and ∃j ∈ {1, · · · , n} : gj(xa) < gj(xb). (37)

Accordingly, the exclusion mechanism of IWO is as follows:

• if the weedpi Pareto-dominatesthe weedpj , the weed
pi wins;

• otherwise, the weed with smallersum constraint violation
valueΩ(p) wins.

The topWmax weeds are taken as the optimum candidates
used as the inputs of the DE procedure. Having carried out the
refinementprocedures of IWO, the excellent weeds are picked

6In the IWO algorithm, thenon-linear modulation indexφ is a terminology
that determines the variation degree of the offspring.
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out. Then, the DE algorithm is applied with respect to the
selected weeds, which essentially explores the search space to
obtain the optimum solution.

B. DE-The Global Search Model

The variation of the DE procedure is created to find the
global optimum solution by means of three operations, i.e.,
mutation, crossoverandselection[30].

Step 1)Mutation Operation: In the mutation operation, a
mutant vectorαi is built as follows [30]:

α
i = pbest+ F0 × (pr1 − pr2) , (38)

where pbest denotes the best weed obtained in the IWO
procedure,r1 and r2 denote randomly selected indices,pr1

denotes ther1-th weed in the IWO procedure, andpr2 denotes
the r2-th weed in the IWO procedure.F0 is a scaling factor
that quantifies the difference betweenpr1 andpr2 . Each weed
in the IWO procedure corresponds to a mutant vector in the
DE procedure.αi is a 1×N vector,i = 1, · · · ,Wmax.

Step 2)Crossover Operation: With the mutant vectorαi

and the vectorpi, another trial vectorui is generated through
the binomial crossover as follows [30]:

uij =

{

αi
j , if randj ≤ Cr, or j = jrand

pij, otherwise
, (39)

where i = 1, · · · ,Wmax, j = 1, · · · , N , jrand is a randomly
selected integer ranging from1 to N , which ensuresui

inherits at least one component from the mutant vectorα
i.

Additionally, randj is a r.v. obeying the uniform distribution
and0 ≤ randj ≤ 1. Cr is the crossover probability.αi

j , p
i
j and

uij denote thej-th element inαi, pi andui, respectively.
Step 3)Selection Operation: ui is chosen as the replace-

ments ofpi in the next generation only whenui leads to a
better solution. Hence, the selection operation is described by:

pi =

{

ui, if ui ≺ pi

pi, otherwise,
(40)

For the sake of clarity, the whole framework of IWO-DE is
presented in Table I. The search space of our IWO-DE is
N -dimensional. Hence, the computational complexity of the
IWO-DE algorithm isO [ZmaxWmaxSmax(N +WmaxSmax)].
A larger maximum number of weeds (Wmax) and a higher
maximum number of offspring (Smax) may improve the qual-
ity of the optimum access probability vector obtained, while
imposing an increased computational complexity.

To sum up, our QoS-guaranteed ALOHA-like random
access algorithm relies on the IWO-DE algorithm to find
the optimal access probability for each device. Each device
transmits its traffic information containing the traffic type
(determined by the statistical property of the traffic) and the
QoS requirement to the coordinator. The coordinator calculates
devices’ optimal access probabilities by solving the OP (24)

TABLE I
THE IWO-DE ALGORITHM

% Initialization
Z = 0;
% Create initial population ofW0 weedsP = {pi, i = 1, · · · ,W0}

% that are randomly dispersed over theN -dimensional search space,
% and the range of the value in each dimension is between0 and1;

while Z < Zmax

%% (Operate the IWO algorithm )
% Evaluate the fitness value of each weed inP according to (30);
% Sortpi in ascending order according to their fitness values;
% For each weedpi, from (34), calculate the size of its offspringSi.
% For eachpi, create its offspring setPsi = {pk

si
, k = 1, · · · , Si},

for k = 1 : Si

pk
si

= pi + ϕ
k ,

% all elements inϕk obeyN(0, σ2

Z)

end
% Create the overall population of parents and offspring:

% Pca =

(

W
∪

i=1

Psi

)

∪ P , W =

{

W0, Z = 0,

Wmax, others.

% Select the bestWmax individuals aspZ for the DE procedure.
% Note thatpZ consists ofWmax weeds.
%% (Operate the DE algorithm)
α = Mutation(pZ , best, r1, r2, F0), α = {αi, i = 1, · · · ,Wmax};
u = Crossover(pZ ,α, Cr), u = {ui, i = 1, · · · ,Wmax};
pZ = Selection(u, pZ);
% pZ , taken as the new weed setP into the next generation.
Z = Z + 1;

end

with the help of the IWO-DE algorithm7. Then, the coordi-
nator broadcasts the optimum access probability vector for
devices in the beacon frame. Finally, each devicedistributedly
transmits its respective data to the coordinator with its unique
optimum access probability.

V. SIMULATION RESULTS AND DISCUSSIONS

In this paper, the coordinator uses the MMSE based SIC
algorithm [14] and the device having higher LOS channel gain
is decoded first. We assume that the number of devices is
N = 10 except for the scenario of Fig. 5. Additionally, devices
are uniformly distributed in the room. In the context ofM = 2,
the distance between the PDs of the coordinator is15 cm.
WhenM = 4, the PDs constitute the2 × 2 receiver array of
15 cm× 15 cm. We assume that the arrival process of the
traffic of the devicej obeys the Poisson distribution with the
parameterλj . λj is also defined as the average arrival rate of
the packet. The packet length is1000 bits, and the duration
of the time slot is0.5 ms. The main system parameters and
values used in our simulations are summarized in Table II.

7The coordinator does not need to recalculate the devices’ optimal access
probabilities provided that the individual channel gains and traffic information
(i.e., the traffic type and QoS requirement) of these devicesare unchanged. In
this case, the IWO-DE is an off-line optimization algorithmfor the problem
considered. Hence, it does not make sense to incorporate theprocessing time
of the IWO-DE algorithm into the statistical transmission delay considered,
which is related with the underlying buffer size and the arrival information
rate.
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TABLE II
THE VALUES OF PARAMETERS

Parameter Value

The number of devices:N 3-10
Available bandwidth for VLC system:B 20 [MHz]
Length of room 10 [m]
Width of room 20 [m]
Height of room 5 [m]
Height of LED 4.85 [m]
Transmitting power:Pt 100 [mW]
The detector responsivity:ξ 0.97 [A/W]
Semi-angle at half power:φ1/2 70 [deg.]
Width of the field of view:ΨC 70 [deg.]
Detector physical area of a PD:A0 1.0 [cm2]
Refractive index:n0 1.5
Gain of an optical filter:Ts 0.53
Size of the initial population:W0 60
Maximum no. of iterations:Zmax 300
Maximum no. of weeds:Wmax 20/50/80
Maximum no. of offspring:Smax 6
Minimum no. of offspring:Smin 1
Non-linear modulation index:φ 3
Initial standard deviation:σinitial 0.15
Final standard deviation:σfinal 10−6

Scaling factor:F0 0.75
Crossover probability:Cr 0.9

A. Analytical versus Simulated EC of Individual Devices

Our Monte Carlo simulation is based on5 × 105 times
repeated trials8. Table III shows the theoretical EC results and
the Monte Carlo simulation results in the situation that all
devices randomly pick their probabilities of being unblocked,
access probabilities and QoS exponents. It is demonstratedthat
our analytical EC expression of (21) matches accurately with
the results of the Monte Carlo simulation.

Fig. 2 shows the EC comparison results when the coor-
dinator has different MPR capabilities, indicated byM . It
is demonstrated that the EC grows with the increase of the
MPR capabilityM of the coordinator. Fig. 2 also indicates the
accuracy of our analytical EC expression of (21). Additionally,
it demonstrates that the EC decreases with the increase of
the QoS exponent. The reason is that higher QoS exponent
indicates more stringent delay QoS requirement. For a given
service process, the maximum constant arrival rate that canbe
supported will decrease under stricter delay QoS requirement.

B. Performance of the QoS-Guaranteed ALOHA-like Random
Access Algorithm

Fig. 3 and Fig. 4 depict the maximum saturation throughput
and the percentage of the feasible solutions of the IWO-DE
algorithm with respect to different values of the maximum
weed sizeWmax in the random situation, where the devices
randomly pick their blocking status and the traffic parameters,
such as the probability of being unblocked ranging from
0.7 to 1, the arrival parameters ranging from0.001 to 0.01,

8An ALOHA-like random access VLC system was simulated, wherethe
individual instantaneous service rates of5×105 time slots were recorded for
evaluating the EC according to (8).
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Fig. 3. Performance of the IWO-DE algorithm with different values of the
maximum weed sizeWmax in the random situation considered.

the QoS exponent ranging from10−10 to 10−6. Obviously,
increasing the maximum weed size from 20 to 80 improves
the performance of the IWO-DE algorithm after convergence.
Fig. 3 shows that the IWO-DE search algorithm is trapped into
the local optimal solution whenWmax = 20. This is because
DE is a population-based method. The small maximum weed
sizeWmax limits the variation of the DE procedure, and then
limits the global search ability of the DE method. In Fig. 4, the
curve ofWmax = 20 is steeper than the others. The reason is
that the population size ofWmax = 20 is much lower than the
other two situations. Fig. 3 and Fig. 4 indicate that our IWO-
DE algorithm has a desirable convergence whenWmax = 50.
Considering the convergence as well as the computational
complexity, we chooseWmax = 50 as the specific value used
in the following simulations.

Fig. 5 shows the comparison of the saturation throughput
achieved by our QoS-guaranteed ALOHA-like random access
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TABLE III
COMPARISON BETWEEN THEORETICALECS AND SIMULATIONS IN THE RANDOM SITUATION CONSIDERED,M = 2

Device ID 1 2 3 4 5 6 7 8 9 10

Theoretical EC [bits/s] 5.27978 1362.97 0.295016 5306.56 9.87281 1225.59 610.200 26.8956 1167.75 1822.52

Simulated EC [bits/s] 5.27828 1272.98 0.294268 5346.41 9.77563 1225.77 572.928 26.7342 1169.21 1815.45
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Fig. 4. Percentage of feasible weeds for the IWO algorithm with different
values of the maximum weed sizeWmax in the random situation considered.
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Fig. 5. Comparison of the saturation throughput achieved byour QoS-
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rithm of the IEEE 802.15.7 standard. We assume that the common probability
of the LOS links being unblocked isβ = 1, the common QoS exponent is
θ = 10−8, and the common arrival parameter isλ = 0.01.

algorithm and by the CSMA/CA algorithm of the IEEE
802.15.7 standard [6], [32]. In Scenario 1 and Scenario 2,
the difference in the channel gains of the devices is assumed
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Fig. 6. Performance of the proposed QoS-guaranteed ALOHA-like random
access algorithm in different blocking situations, assuming the common arrival
parameter asλ = 0.01.

to be large and small9, respectively. In both scenarios, none
of the devices is blocked, i.e., the channels are assumed
to be ideal. Additionally, we assume that all the devices
share the common QoS exponent constraintθ = 10−8

and the common arrival parameterλ = 0.01. Referring to
[7], we set the parameters of the CSMA/CA algorithm of
the IEEE 802.15.7 standard as follows:macMinBE = 3,
macMaxBE = 5, macMaxFrameRetries = 3 and
macMaxCSMABackoffs = 4. Furthermore, to make fair
comparison, we also utilize Shannon’s capacity formula to cal-
culate the upper bound on the instantaneously achievable PHY
transmission rate when quantifying the saturation throughput
achieved by the CSMA/CA algorithm of the IEEE 802.15.7
standard.

As observed from Fig. 5, the saturation throughput of our
algorithm is far superior to that of the CSMA/CA algorithm,
especially in Scenario 1, although the CSMA/CA algorithm
benefits from the carrier sensing, which is assumed to be
perfect in our simulations. This is because the MPR capability

9To achieve this “channel-gain difference” goal in a fair manner for both
algorithms, the actual locations of the devices are particularly selected from a
larger set of uniformly distributed positions in both Scenario 1 and Scenario
2. More specifically, considering the benchmark single-packet reception, i.e.,
M = 1, we first calculate the individual instantaneous PHY transmission rates
for all the elements of the larger position set, and then select two identical-size
subsets of positions so that the channel-gain difference ofone subset is large
and the other is small, while making sure the average PHY transmission rate of
both subsets is the same. As a result, all the devices share a common access
probability of p = 1/N and for the CSMA/CA algorithm, the saturation
throughput is equal in both scenarios, since it is insensitive to the channel-
gain difference, as demonstrated by the results of Fig. 5.
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of the proposed algorithm reduces the chance of collisions in
the random access procedure. More specifically, our algorithm
adaptively adjusts the access probability vector of devices
in order to fully utilize the MPR capability. Furthermore,
there is no constraint on the minimum service rate of each
device in our algorithm. As a result, the devices with higher
channel gains have larger access probabilities in the context
where they share a common delay QoS exponent value. In
other words, the devices with higher channel gains have
more chances to transmit data packets to the coordinator
and thus a maximized saturation throughput of the VLC
system is achieved. Additionally, in our scheme the MPR
capability of the coordinator is achieved by using the SIC
algorithm, which performs better when there is a substantial
difference in the channel gains of the simultaneously trans-
mitting devices, provided that no power control is used [13].
Therefore, the gap of the saturation throughput between our
algorithm and the benchmark CSMA/CA algorithm is much
larger in Scenario 1 than in Scenario 2. It is worth noting that
our algorithm achieves the maximized saturation throughput
of the VLC system by sacrificing the fairness, while the
benchmark CSMA/CA algorithm guarantees that all devices
have equal opportunities to transmit to the coordinator, thus
achieving better fairness. We also observe from Fig. 5 that
the saturation throughput of both algorithms declines when
the number of devices is increased. Nonetheless, the proposed
algorithm remains substantially superior to the benchmark
CSMA/CA algorithm in term of the saturation throughput
achieved. Finally, our algorithm guarantees the statistical delay
QoS requirements of devices, hence a marginal decrease in
the saturation throughput with the increasing of the number
of devices can be regarded as a reasonable cost for obtaining
this benefit.

In the scenario of Fig. 6, all the devices share the com-
mon QoS constraintθ and the common probability of being
unblockedβ. Additionally, they share the common arrival
parameterλ = 0.01. Fig. 6 shows the maximum satura-
tion throughput of our proposed ALOHA-like random access
algorithm in different blocking situations. When the MPR
capability is smaller, i.e.,M = 2, heavy collisions happens, the
achievable maximum throughput ofβ = 0.7 approaches that
of β = 0.9. Whereas the gap between the curve ofβ = 0.7
and the curve ofβ = 0.9 increases whenM = 4. This is
because the stronger MPR capability alleviates collisionsof
the VLC system in a greater degree. In such a situation, the
benefit of the less severely blocked channel condition becomes
prominent. Fig. 6 also shows that the maximum saturation
throughput only slightly decreases with the increase of the
QoS exponent for the givenM , which indicates that our QoS-
guaranteed ALOHA-like random access algorithm is reliable
when the QoS constraint varies.

In the context of Fig. 7 and Fig. 8, the devices are divided

into two groups, where
M

2
devices with the stricter QoS

constraintθs are in one of the groups, while the remaining
devices with θl = 10−10 in the other group. S(2k − 1)
(k = 1, · · · , 5) represents the situation ofθs = 10k−11 and
S(2k) (k = 1, · · · , 4) represents the situation ofθs = 5 ×

S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9)
0

1

2

3

4

5

6

7

8

9
x 10

6

QoS exponent of users with stricter delay QoS (θ
s
)

S
at

ur
at

io
n 

th
ro

ug
hp

ut
 [b

its
/s

]

 

 

M = 2

M = 4

Fig. 7. The maximum saturation throughput of our QoS-guaranteed ALOHA-
like random access algorithm in heterogeneous QoS situations, where
S(2k − 1) (k = 1, · · · , 5) represents the situation ofθs = 10k−11 and
S(2k) (k = 1, · · · , 4) represents the situation ofθs = 5 × 10k−11 , while
assuming that the common arrival parameter isλ = 0.01, the common
probability of devices being unblocked isβ = 0.9, and the common QoS
exponent of the remaining half of the MPR-supported devicesis θl = 10−10.
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Fig. 8. The number of iterations when we first haveω = 1 in heterogeneous
QoS situations, where S(2k − 1) (k = 1, · · · , 5) represents the situation of
θs = 10k−11 and S(2k) (k = 1, · · · , 4) represents the situation ofθs =
5 × 10k−11 . We also assume thatλ = 0.01, β = 0.9, θl = 10−10 , which
are the same as those of Fig. 7.

10k−11. Additionally, they share the common arrival parameter
λ = 0.01. Fig. 7 shows the maximum saturation throughput
of our QoS-guaranteed ALOHA-like random access algorithm
versusθs. It is demonstrated that the performance of our QoS-
guaranteed ALOHA-like random access algorithm remains
favourable even when the QoS constraints become stricter,
i.e. when θs becomes larger. Additionally, the maximum
saturation throughput is doubled when the MPR capabilityM

increases from2 to 4, which indicates that our algorithm fully
utilizes the MPR capability to improve the performance of the
system considered. Fig. 8 shows the value of the generation
numberZ versusθs when all candidate solutions of the IWO-
DE algorithm start to be feasible. The fluctuations in Fig.
8 are caused by the randomness inherent in the IWO-DE
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Fig. 9. The maximum saturation throughput of our QoS-guaranteed ALOHA-
like random access algorithm versus the arrival parametersλ. We assume
β = 0.9, θl = 10−10 and θs = 10−7, as defined in a similar fashion to
those of Fig. 7 and Fig. 8.

algorithm, such as the randomly generated offspring in the
spatial dispersionstep and the randomvariations in the DE
procedure. Obviously, it is harder to search for the feasible
access probability vector whenM = 2, which matches the
fact that it is harder to guarantee the QoS when the MPR
capabilityM is lower.

In the scenario of Fig. 9, all devices share the common
probability of being unblocked, i.e.,β = 0.9. Again, the

devices are divided into two groups, where
M

2
of them

with the stricter QoS constraintθs = 10−7 are in one of
the groups, while the remaining devices with looser QoS
constraintθl = 10−10 in the other group. Fig. 9 shows the
maximum saturation throughput of our proposed ALOHA-like
random access algorithm versus the common arrival parameter
λ. The maximum saturation throughput declines with the
increase ofλ in the situation thatM = 2, so does in
the situation thatM = 4. But the curve ofM = 4 falls
more slowly, especially after the noted point. The increase
of λ makes it more difficult to satisfy the first constraint
of the OP (24). Thus the set of the feasible solutions of
(24) becomes smaller. As a result, the achievable maximum
saturation throughput becomes lower. Furthermore, there is no
feasible solution to the OP (24) whenM = 2 andλ = 0.04.
In other words, the QoS requirement cannot be guaranteed in
this situation. Furthermore, after the noted point in Fig. 9the
maximum saturation throughput ofM = 4 is more than twice
that of M = 2. It is demonstrated that increasing the MPR
capability of the coordinator obtains remarkable performance
advantage whenλ is larger.

VI. CONCLUSION

In this paper, upon considering the influence of the MIMO-
SIC algorithm in the PHY layer, we have explored the
ALOHA-like distributed random access algorithm for the
MPR-aided uplink VLC system with heterogeneous QoS
guarantees. We modelled the system as a conflict graph and
proposed the concept offeasible access stateto characterise

the random group of concurrently transmitting devices, which
is resulted from the random access. Relying on the probability
of the feasible access stateand the feature of the MIMO-
SIC algorithm, we analysed the instantaneously achievable
transmission rate and its probability distribution for each
device. Based on the EC theory, we derived the EC of each
device to model its statistical delay QoS constraint. Then,
we formulated the random access problem as a saturation
throughput maximization problem subject to multiple sta-
tistical delay QoS constraints. We converted the resultant
non-concave COP to the unconstrained bi-objective OP and
obtained the optimal access probability vector with the help
of the IWO-DE algorithm. The impact of a wide range of
relevant system parameters have been investigated based on
our analysis and simulation results.

APPENDIX A
PROOF OFTHEOREM 3.1

Let us employ the Hessian matrix for examining the non-
concavity of the functionη(p), which is given by:

H(η(p)) =
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whereπi
(−n) =

N
∏

k=1,k 6=n

[

(1− σi
k)(1− pkβk) + σi

kpkβk
]

, and

∂2η(p)
∂p2n

= 0, n = 1, 2, · · · , N . We know that the sum of

the eigenvalues equals the sum of the elements on the main
diagonal. Furthermore, it is obvious that the functionη(p)
is not linear with respect to the access probability vectorp.
Hence, the eigenvalues of the Hessian matrix are not all non-
positive. Thusη(p) is not concave with respect top. So is the
EC functionECj(p; θj). As a result, the OP (23) is neither
concave nor convex.
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