
DOI 10.1007/s00165-016-0376-0
The Author(s) © 2016. This article is published with open access at Springerlink.com
Formal Aspects of Computing

Formal Aspects
of Computing

Foundations for using linear temporal logic in
Event-B refinement
Thai Son Hoang1, Steve Schneider2, Helen Treharne2 and David M. Williams3
1ECS, University of Southampton, Southampton, UK
2Department of Computer Science, University of Surrey, Guildford, UK
3VU University, Amsterdam, The Netherlands

Abstract. In this paper we present a new way of reconciling Event-B refinement with linear temporal logic (LTL)
properties. In particular, the results presented in this paper allow properties to be established for abstract system
models, and identify conditions to ensure that the properties (suitably translated) continue to hold as those
models are developed through refinement. There are several novel elements to this achievement: (1) we identify
conditions that allow LTL properties to be mapped across refinement chains; (2) we provide translations of LTL
predicates to reflect the introduction through refinement of new events and the renaming and splitting of existing
events; (3) we do this for an extended version of LTL particularly suited to Event-B, including state predicates and
enabledness of events, which can be model-checked at the abstract level. Our results are more general than any
previous work in this area, covering liveness in the context of anticipated events, and relaxing constraints between
adjacent refinement levels. The approach is illustrated with a case study. This enables designers to develop event
based models and to consider their execution patterns so that liveness and fairness properties can be verified for
Event-B systems.

Keywords: Event-B, Refinement, Linear Temporal Logic

1. Introduction

Event-B [Abr10] is a step-wise development method with excellent tools: Atelier B [Cle14] and the Rodin plat-
form [ABH+10, Z+14] providing proof support and ProB [LB08] providing model checking. As Hoang and
Abrial [HA11] clearly state the focus of verification within Event-B has been on the safety properties of a sys-
tem to ensure that “something (bad) never happens”. Typically, this has been done via the discharging of proof
obligations. Nonetheless, the use of linear temporal logic (LTL) to specify temporal liveness properties has also
been prevelant, for example in its application within the ProB tool [LFFP09]. The challenge is to identify more
natural ways of integrating Event-B and LTL, so that LTL properties can be preserved by Event-B refinement,
which is not the case in general.

Correspondence and offprint requests to: S. Schneider, E-mail: S.Schneider@surrey.ac.uk; H. Treharne, E-mail: H.Treharne@surrey.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-016-0376-0&domain=pdf

T. S. Hoang et al.

Event-B describes systems in terms of machines with state, and events which are used to update the state.
Events also have guards, which are conditions for the event to be enabled. One (abstract) machine may be
refined by another (concrete) machine, using a refinement step. A linking invariant captures how the abstract and
concrete states are related, and each abstract event must be refined by one or more concrete events whose state
transformations match the abstract one in the sense of preserving the linking invariant. Refinement is transitive,
so a sequence of refinement steps, known as a refinement chain, will result in a concrete machine which is a
refinement of the original abstract one.

A particular feature provided by Event-B is the introduction of new events in a refinement step—events which
do not refine any abstract event. This allows for refinements to add finer levels of granularity and concretisation as
the design develops; there are many examples in [Abr10]. These new events are invisible at the abstract level (they
correspond to the abstract state not changing), and we generally need to verify that they cannot occur forever, to
show that concrete progress corresponds (eventually) to progress at the abstract level. Event-Bmakes use of labels
to keep track of the status of events as a refinement chain progresses. Event-B labels are anticipated, convergent
and ordinary. The labelling of events in Event-B form part of the core of a system description but their inclusion is
primarily to support the proof of safety properties and ensure that events cannot occur forever: convergent events
must decrease a variant and anticipated events cannot increase it. In this paper, followingAbrial [Abr10] all newly
introduced events must be convergent or anticipated, and anticipated events must become convergent at some
stage. As an initial example, consider a Lift machine with two events top and ground, representing movement to
the top and to the ground floor. This can be refined by a machine Lift ′ introducing two new anticipated events
openDoors and closeDoors. The events top and ground are blocked when the doors are open, but enabled when
the doors are closed.

Linear temporal logic provides a specification language for capturing properties of executions of systems, and
is appropriate for reasoning about liveness and fairness over entire system executions. For example, we might
verify for Lift that whenever top occurs, then eventually ground will occur. However, this is not guaranteed for its
refinement Lift ′: it may be that the doors open and close repeatedly forever following the top event, thus never
reaching the next ground event. Alternatively it may be that the system deadlocks with the doors open, again
preventing ground from occurring. Both of these possibilities are permitted within the Event-B refinement frame-
work. Hence we see that LTL properties are not automatically preserved by Event-B refinement. In the first case
we would require some assurance that openDoors and closeDoors cannot repeat forever without the lift moving;
in the second case we require some fairness property on closeDoors to prevent termination with the doors open.

In this paper we present results to enable temporal logic properties to be carried through Event-B refinement
chains. The results generalise to events that are split—refined by several events—during a refinement chain.
The paper builds on [STWW14b] but it is entirely self-contained and provides significant theoretical extension
to previous work. Importantly, the results presented in this paper support discharging a wider range of LTL
properties through Event-B refinement than the previous work, since we can now include all the LTL operators
supported by the ProB tool, i.e., support for the next, proposition and enabled operators is new for this paper.
Note that LTL properties can be introduced at different levels of refinement. This paper’s focus is much more in
clarifying what refinement proofs need to be conducted during a refinement depending on the LTL properties of
interest. The main new contribution is the result that allows properties that include the enabled (e(t)) operator
to be preserved through a refinement chain and this requires a new proof obligation to be discharged during
development.

The benefit of the new extensions is that they have facilitated the removal of an awkward restriction (β-
dependency), which identified conditions on temporal logic properties to make them suitable for use in a refine-
ment chain. Hence the LTL properties that can be specified are much more natural than in [STWW14b]. The
rigour of the results is underpinned by our process algebra understanding of the Event-B semantics, in particular
the traces, divergences and infinite traces semantics used for CSP and applied to Event-B in [STW14].

The paper is organised as follows: Sect. 2 provides the necessary Event-B refinement background and one of
the refinement strategies we use in the paper and was previously presented in [STWW14b]. Section 3 introduces
a running example and is modified from the example in [STWW14b] to include more detail and provide the
basis for new LTL properties. Section 4 introduces the infinite traces Event-B semantics required as a basis for
the technical results. It is an extension of our previous work since a new definition of the refinement relation
is required to support the proofs. Section 5 defines the LTL we use and it is an extended version of LTL from
that presented in [STWW14b]. In particular the extended LTL contains the next operator, state predicates and
supports the enabled operator. Sections 6 and 7 present and illustrate the main theoretical results. The proofs of
these results are included in the Appendix. The sections have been split into two so that it is clear what refinements

Foundations for using linear temporal logic in Event-B refinement

proof obligations would need to be carried out in practice for a particular system in order to discharge appropriate
LTL properties. The proof obligations required to be discharged for a particular system are dependent on the
operators usedwithin the LTL properties. Section 6 is significantly different from our referenced conference paper
and Sect. 7 is entirely new.We place our work into the context of related work in Sect. 8 and in particular [HH13].
The paper concludes with a discussion and directions for future work in Sect. 9.

2. Event-B

2.1. Event-B machines

An Event-B development is defined using machines. A machine M contains a set of variables v and a set of
events. The alphabet of M , αM , is the set of events defined in M . Each event evt has the general form evt �̂
any x whereGevt (x , v) then v :| BAevt (v , x , v ′) end, where x represents the parameters of the event, the guard
Gevt (x , v) is the condition for the event to be enabled. The body is given by v :| BAevt (v , x , v ′) whose execution
assigns to v any value v ′ which makes the before-after predicate BAevt (v , x , v ′) true. This simplifies to evt �̂
whenGevt (v) then v :| BAevt (v , v ′) endwhen there arenoparameters, since theguardand thebefore-afterpredicate
does not refer to the parameters x . In the paper we also use the shorthand Gevt to denote the guard of the event
evt when we omit the parameters for brevity. In practice, events are written using the Generalised Substitution
Language, a syntactic sugar for events which encapsulate before-after relationships in a programming style by
means of abstract assignments of values to variables. For example, v :� v+x corresponds to the relation v ′ � v+x .

Variables of a machine are initialised in an initialisation event init and are constrained by an invariant I (v).
The Event-B approach to semantics is to associate proof obligations with machines. The key proof obligation,
INV, is that all events must preserve the invariant. There is also a proof obligation on a machine with respect to
deadlock freedom which means that at least one event in M is enabled at anytime. When this obligation holds M
is deadlock free.

2.2. Event-B refinement

An Event-B development is a sequence of machines linked by a refinement relationship. In this paper we use
M and M ′ when referring to a refinement between an abstract machine M and a concrete machine M ′ whereas
a chain of refinements is referred to using numbered subscripts, i.e., M0, Mi , . . ., Mn , to represent the specific
refinement levels.

AmachineM is considered to be refined byM ′ if the given linking invariant J on the variables between the two
machines, J (v , v ′), is established by their initialisation, and preserved by all events. This requirement is captured
by the INV REF proof obligation. Formally, we denote the refinement relation between two machines, written
M � M ′, when all the following proof obligations hold for every event: feasibility FIS REF, guard strengthening
GRD REF and invariant preservation INV REF. Feasibility of an event is the property that, if the event is enabled
(i.e., the guard is true), then there is some after-state. Guard strengthening requires that when a concrete event is
enabled, then so is the abstract one. Finally, simulation ensures the occurrence of events in the concrete machine
can be matched in the abstract one (including the initialization event). Further details of these proof obligations
can be found in [Abr10].

Refinement is transitive, therefore for a chain of refinementsM0 � M1 � · · · � Mn there is a linking invariant
between each refinement step such that there is a combination of linking invariants for all refinement steps:.
We make explicit that there is a relationship between the states of the initial and final machine through a chain
of refinements: J (v0, vn) � ∃v1, v2, . . . vn−1.J1(v0, v1) ∧ J2(v1, v2) · · · ∧ Jn (vn−1, vn), and similarly between two
machines Mi and Mj where j > i in a refinement chain as follows: J (vi , vj) � ∃vi+1, . . . vj−1.Ji+1(vi , vi+1) · · · ∧
Jj (vj−1, vj), where Mi and Mj are adjacent J (vi , vj) � J (vi , vj).

A refinement machine can introduce new events and split existing events. We omit the treatment of merging
events in this paper. New events evt ′ are treated as refinements of skip, i.e., evt ′ does not refine an event in M .
Note that when splitting events, M ′ has several events evt ′

1 . . . evt ′
j refining a single event evt .

T. S. Hoang et al.

selectItem (o) selectBiscuit (o) selectBiscuit (o) selectBiscuit (o) selectBiscuit (o)
selectChoc (o) selectChoc (o) selectChoc (o) selectChoc (o)

dispenseItem (o) dispenseBiscuit (o) dispenseBiscuit (o) dispenseBiscuit (o) dispenseBiscuit (o)
dispenseChoc (o) dispenseChoc (o) dispenseChoc (o) dispenseChoc (o)

pay (a) pay (a) pay (c)
refund (c) refund (o) refund (o)

refill (c) refill (o)

VM0 VM1 VM2 VM3 VM4

Fig. 1. Events and their annotations in the vending machine development

f 1 = {sb si , sc si , db di , dc di}
f 2 = {sb sb, sc sc, db db, dc dc} = id
f 3 = {sb sb, sc sc, db db, dc dc, pay pay, refund refund}
f 4 = {sb sb, sc sc, db db, dc dc, pay pay, refund refund , refill refill}

g1,4 = f4 ; f3 ; f2 ; f1 = {sb si , sc si , db di , dc di}

Fig. 2. Function mappings for the vending machine development

We define a function f which maps each concrete event to the abstract event that it refines. Therefore, the
type of f is f ∈ αM ′ �→→ αM , a partial surjection from the alphabet of the refinement machine M ′ onto the
alphabet of the abstract machine M . New concrete events will not map to any abstract event and are therefore
not in dom(f); this is why f is a partial function. In the general case f will be many-to-one, since many concrete
events may map to a single abstract event. Thus, f (evt ′

1) � evt ⇔ evt ′
1 refines evt and similarly for any other

refinement events which relate to evt . In this paper we include the refines annotation only when we are splitting
events in a refinement, otherwise we consider all similarly named events in a refinement step to be straightforward
refinements of their counterparts in the previous step.

We also provide a clear definition, Definition 2.1, to relate the mapping of concrete events to abstract events
through a refinement chain. The function gi,j defines a mapping for concrete events to abstract events, made up
of composing the function mappings f at each refinement level, i.e., fj down to fi , where i ≤ j . We explicitly
annotate f with the appropriate refinement level, i.e., fi+1 : αMi+1 �→→ αMi (Note that g1,1 � f1). gi,j is also a
partial surjective function. Note that the annotated index is the one from the concrete machine that f is mapping
from. Thus for an arbitrary chain we define the compositional mapping as follows:

Definition 2.1 gi,j � fj ; fj−1 ; . . . ; fi

Note that fj ; fj−1 ; . . . ; fi � fi ◦ . . . ◦ fj−1 ◦ fj . Also g1,n represents the compositional mapping for the
entire refinement chain M0 to Mn . Observe that gi,n will be undefined on any event that does not map to the
first machine Mi−1 in the sequence. In other words any event that was introduced at some point in the refinement
chain does not map back to Mi−1.

Figure 1 illustrates a vending machine development, detailed in Sect. 3 that we use throughout the paper
and Fig. 2 identifies the functional mappings between each refinement layer within that development (using
abbreviations for the select and dispense events, for example selectBiscuit is sb).

In Sect. 1 we introduced the three kinds of labelling of events in Event-B: anticipated (a), convergent (c)
and ordinary (o) and noted that convergent events are those which must not execute forever whereas anticipated
events provide a means of deferring consideration of divergence-freedom until later refinement steps. The proof
obligation that deals with divergences is WFD REF. It requires that the proposed variantV of a refinementmachine
satisfies the appropriate properties: that it is a natural number, that it decreases on occurrence of any convergent
event, and that it does not increase on occurrence of any anticipated event. Alternatively a variant can be a finite
set that decreases in size with convergent events, and does not increase with anticipated events. Therefore, we
augment the previous refinement relation with WFD REF such that M �W M ′. Ordinary events can occur forever
and therefore WFD REF is not applicable for such events. Note that in Sect. 7 we will introduce a further stronger
notion of refinement that takes liveness into account.

Foundations for using linear temporal logic in Event-B refinement

machine VM0
variables item
invariant item ∈
events
init = item := 0
selectItem =

status : ordinary
when item < 2 then item := item + 1 end

dispenseItem =
status : ordinary
when item > 0 then item := item − 1 end

end

Fig. 3. VM0

2.3. Event-B development strategy

Event-B has a strong but flexible refinement strategy which is described in [HLP13]. In [STW14] we also discussed
different Event-B refinement strategies and characterised them with respect to the approaches documented by
Abrial in [Abr10] and supported by the Rodin tool. In this paper we focus on the simplest strategy, and the one
most commonly used. It is also a strategy supported by the Atelier B tool [Cle14]. The strategy has the following
set of restrictions on a refinement chain M0 �W M1 �W · · · �W Mn :

1. all events in M0 are labelled ordinary. This set of events is referred to as O0.
2. each event of Mi is refined by at least one event of Mi+1 (i.e., events can be split);
3. each new event in Mi is either anticipated or convergent, where i > 0;
4. each event in Mi+1 refines exactly one event of Mi (i.e., events cannot be merged);
5. each event in Mi+1 which refines an anticipated event of Mi is itself either convergent or anticipated;
6. refinements of convergent or ordinary events of Mi are ordinary in Mi+1.
7. no anticipated events remain in the final machine.

Figure 1 illustrates our development strategy for a vending machine, detailed in Sect. 3, where Ci is the set of
convergent events within Mi , and Oi is the set of ordinary events within Mi . For example, O0
� {selectItem, dispenseItem} and C0 � ∅,O1 � {selectBiscuit, selectChoc, dispenseBiscuit, dispenseChoc} and
C1 � ∅ in VM1. In VM2 we note that C2 � {refund}. In VM3 we note that C3 � {refill} and in VM4 we have
C4 � {pay}.

3. Example

In Sect. 2.3 we introduced a development strategy for a vending machine. Figures 3, 4, 5, 6 and 7 illustrate a
development chain from machines VM0, VM1, VM2, VM3 to VM4; there are no anticipated events in VM4.

VM0 is a simple machine that supports the selection and dispensing of items via two very simple events:
selectItem and dispenseItem. The item variable is used to control when the events are enabled. VM1 decomposes
the selection and dispensing to be specifically for chocolates and biscuits via four events: selectBiscuit, selectChoc,
dispenseBiscuit and dispenseChoc. VM1 contains a data refinement which tracks the item chosen rather simply
counting the selection. The second refinement step introduces VM2 and the notion of paying and refunding.
The pay event in VM2 is always enabled and allows positive credit to be input. The machine allows a biscuit to
be chosen if it has not already been chosen and additionally provided a payment has been made; a chocolate
selection is similar. Hence the guards of all four of the original events selectBiscuit, selectChoc, dispenseBiscuit
and dispenseChoc are strengthened. The guard of the refund event means that credit cannot be refunded for
selected items and cannot occur forever since it is convergent. Importantly, the refundEnabled flag is introduced
so that it is only true after a dispense and prevents infinite loops of the pay followed by refund.

T. S. Hoang et al.

machine VM1
variables chosen
invariant chosen ⊆ {choc, biscuit} ∧

card(chosen) = item
events
init = chosen := {}
selectBiscuit = status : ordinary

refines selectItem
when biscuit chosen then chosen := chosen ∪ {biscuit} end

selectChoc = status : ordinary
refines selectItem
when choc chosen then chosen := chosen ∪ {choc} end

dispenseBiscuit = status : ordinary
refines dispenseItem
when biscuit ∈ chosen then chosen := chosen − {biscuit} end

dispenseChoc = status : ordinary
refines dispenseItem
when choc ∈ chosen then chosen := chosen − {choc} end

end

Fig. 4. VM1

machine VM2
variables credit , chosen, refundEnabled
invariant

credit ∈ ∧ chosen ⊆ {choc, biscuit} ∧
card(chosen) ≤ credit ∧ refundEnabled ∈ BOOL

variant if refundEnabled = FALSE then 0 else 1
events
init = . . . || credit := 0 || refundEnabled := FALSE
pay = status : anticipated

any x where x ∈ 1
then credit := credit + x end || refundEnabled := FALSE end

selectBiscuit = status : ordinary
when biscuit chosen ∧ credit > card(chosen)
then chosen := chosen ∪ {biscuit} end

selectChoc = status : ordinary
when choc chosen ∧ credit > card(chosen)
then chosen := chosen ∪ {choc} end

dispenseBiscuit = status : ordinary
when biscuit ∈ chosen
then credit := credit − 1 || chosen := chosen − {biscuit} ||

refundEnabled := TRUE end
dispenseChoc = status : ordinary

when choc ∈ chosen
then credit := credit − 1 || chosen := chosen − {choc} ||

refundEnabled := TRUE end
refund = status : convergent

when credit > card(chosen) ∧ refundEnabled = TRUE
then credit := card(chosen) || refundEnabled := FALSE end

end

Fig. 5. VM2

Foundations for using linear temporal logic in Event-B refinement

machine VM3
variables credit , chosen, refundEnabled , stocked
invariant
credit ∈ ∧ chosen ⊆ {choc, biscuit} ∧ card(chosen) ≤ credit ∧ refundEnabled ∈ BOOL
∧ stocked ⊆ {choc, biscuit} ∧ (choc ∈ chosen ⇒ choc ∈ stocked)
∧ (biscuit ∈ chosen ⇒ biscuit ∈ stocked)
variant 2 − card(stocked)
events
init = . . . || stocked := {choc, biscuit}
pay = status : anticipated

any x where x ∈ 1 ∧ stocked = ∅
then credit := credit + x end || refundEnabled := FALSE end

selectBiscuit = status : ordinary
when . . . ∧ biscuit ∈ stocked
then chosen := chosen ∪ {biscuit} end

selectChoc = status : ordinary
when . . . ∧ choc ∈ stocked
then chosen := chosen ∪ {choc} end

dispenseBiscuit = status : ordinary
when biscuit ∈ chosen ∧ biscuit ∈ stocked
then . . . || any x where x ⊆ {biscuit} then stocked := stocked − x end end

dispenseChoc = status : ordinary
when choc ∈ chosen ∧ choc ∈ stocked
then . . . || any x where x ⊆ {choc} then stocked := stocked − x end end

refund = status : ordinary . . .
refill =

status : convergent
when choc /∈ stocked ∨ biscuit /∈ stocked
then stocked := {choc, biscuit} end

end

Fig. 6. VM3

VM3 introduces the notion of stocked items and a new refill event. We could have chosen many different
guards for the refill event. For example, we could have labelled it anticipatedwith a guard of true. Instead we have
made an underspecification where the stock can be restocked when there may be no biscuits or no chocolates, and
established convergence. Again the guard of the four events introduced in VM1 have been strengthened so that
they are only enabled when the appropriate stocked item is in stock. But now dispenseBiscuit and dispenseChoc
also capture the non-deterministic notion of running out or not of their respective items. The guard of refund
remains unchanged. The guard of pay has been strengthened so that it is only enabled when there is stock but
this is not strong enough to prevent it happening infinitely often, hence it remains anticipated in VM3.

The final machine, VM4, is a straightforward data refinement which introduces the capacity of the machine.
Apart from highlighting the refinement relationship between stocked and chocStock and biscuitStock note the
strengthening of the guard of refill so that vending machine should only be refilled when there is no stock. Also
the guard of pay is strengthened so that it becomes convergent.

The example has been proved using Rodin 3.1.0 with Atelier-B 2.1.0.1 The development uses finite set variants
instead of encodings in natural numbers to facilitate proof, for example the variant in VM3 would be ITEM −
stocked . The proof statistics are as follows: context: 1, VM0: 6, VM1: 18, VM2: 19, VM3: 9 and VM4: 46 proof
obligations (44 automatic, 2 manual proofs). In total, there are 99 proof obligations (97 automatic).

1 http://www.computing.surrey.ac.uk/personal/st/H.Treharne/papers/2015/VendingMachineDevelopment_FACS2015.zip.

http://www.computing.surrey.ac.uk/personal/st/H.Treharne/papers/2015/VendingMachineDevelopment_FACS2015.zip

T. S. Hoang et al.

machine VM4
constants capacity
properties capacity > 0
variables credit , chosen, refundEnabled , chocStock , biscuitStock
invariant credit ∈ N ∧ chosen ⊆ {choc, biscuit} ∧ card(chosen) ≤ credit ∧

refundEnabled ∈ BOOL ∧ chocStock ≤ capacity ∧ biscuitStock ≤ capacity ∧
(choc /∈ stocked ⇒ chocStock = 0) ∧ (choc ∈ stocked ⇒ chocStock > 0) ∧
(biscuit /∈ stocked ⇒ biscuitStock = 0) ∧ (biscuit ∈ stocked ⇒ biscuitStock > 0)

variant max{(chocStock + biscuitStock) − credit , 0}
events
init = . . . || chocStock := capacity || biscuitStock := capacity
pay = status : convergent

any x where x ∈ N1 ∧ (chocStock + biscuitStock) > credit
then credit := credit + x end || refundEnabled := FALSE end

selectBiscuit = status : ordinary
when . . . ∧ biscuitStock > 0
then chosen := chosen ∪ {biscuit} end

selectChoc = status : ordinary
when . . . ∧ chocStock > 0
then chosen := chosen ∪ {choc} end

dispenseBiscuit = status : ordinary
when biscuit ∈ chosen ∧ biscuitStock > 0
then . . . || biscuitStock := biscuitStock − 1 end

dispenseChoc = status : ordinary
when choc ∈ chosen ∧ chocStock > 0
then . . . || chocStock := chocStock − 1 end

refund = status : ordinary . . .
refill = status : ordinary

when chocStock = 0 ∧ biscuitStock = 0
then chocStock := capacity || biscuitStock := capacity end

end

Fig. 7. VM4

4. Event-B semantics

For a particular machine M we define the ternary relation T as follows: (s, t, s ′) ∈ T ⇔ ∃x .Gt (x , s) ∧
BAt (s, x , s ′). This gives the relationship between the before and after state for the events within that machine
where s ans s ′ are states and t is an event.

In this paper we define a trace (path) u of M as a finite or infinite sequence of alternating states and events
(a,c or o), of the form, 〈s0, t0, s1, t1, . . .〉 where ∀ i ≥ 0.(si , ti , si+1) ∈ T . A path 〈s0, t0, . . . , sk−1, tk−1, sk 〉 is finite
when sk is a deadlock state, i.e., ¬∨

e∈αM Ge : none of the events of the machine are enabled. When a machine
M is deadlock free all of its traces are infinite.

Our definition of path is akin to Definition 2 in [PL10] where paths are also defined in terms of a ternary
relation between states. Note that in [STWW14a] we did not need to consider the intermediate states as all our
reasoning was based on the events of infinite traces. In this paper we need to consider intermediate states since
we will be reasoning about LTL properties that require us to refer to the intermediate states.

We use the functions of projection (�), length (#) and concatenation (�) on finite and infinite sequences.
Projection u � E of a path u onto a set of events E gives the subsequence of transitions of u that are in E . This
is used for example in Definition 4.1 below. Note that u � αM � 〈t0, t1, . . .〉 represents the trace of all events
in the path u. The length of u, #(u) � #(u � αM), is defined as the number of transitions in a path.2 A finite
sequence of state transition pairs ending with an event can be concatenated with a path, i.e., 〈s0, t0, . . . tk 〉 � u.
In this paper concatenation is simply used to partition a finite or infinite sequence of events.

2 Note that length of a path in [PL10] is defined as the number of states in a path, however for this paper our focus is on events.

Foundations for using linear temporal logic in Event-B refinement

We additionally need to define the relationship between abstract and concrete paths since we are interested
in their relationship through refinement. Thus, in the following definition we relate abstract and concrete paths.
Relation R is defined as follows:

Definition 4.1 The relationR is theweakest relation such that: 〈s0, t0, s1, t1, . . .〉 is apathofMi and 〈s ′
0, t

′
0, s

′
1, t

′
1, . . .〉

is a path of Mj and i < j and 〈s0, t0, s1, t1, . . .〉R〈s ′
0, t

′
0, s

′
1, t

′
1, . . .〉 iff

• 〈s ′
0, t

′
0, s

′
1, t

′
1, . . .〉 � dom(gi+1,j) is infinite

• if t ′
0 ∈ dom(gi+1,j) then t0 � gi+1,j (t ′

0) ∧ J (s0, s ′
0) ∧ J (s1, s ′

1) ∧ 〈s1, t1, . . .〉R〈s ′
1, t

′
1, . . .〉

• if t ′
0 �∈ dom(gi+1,j) then J (s0, s ′

0) ∧ J (s0, s ′
1) ∧ 〈s0, t0, s1, t1, . . .〉R〈s ′

1, t
′
1, . . .〉

Note that the states are matched through J and R must be the weakest relation in order to rule out false
as a possible R. The relation is general to be between two paths and two arbitrary different refinement levels.
The relation is not restricted to relating two adjacent refinement steps. This definition bears some resemblance
to Definition 11 of [DJK03], though that paper is not concerned with the translation of LTL properties.

Note that the relation between two paths u1 and u2 (i.e., u1 R u2) only holds if u2 projected onto the alphabet of
the events u1 lives in is infinite. This means that all the events in the infinite trace u1 will correspond to something
in u2. Consider an infinite trace u1 related to an infinite trace u2 which only had finitely many events in u1 that
it matched. For example, if u1 � 〈a, a, a, a, . . .〉 and u2 � 〈b, c, b, c, b, c, c, c, c, c, c, . . .〉 where b maps to a in
the mapping function g , and c is a new event. Then R does not hold between these two paths, since the infinite
condition on u2 is not met. Our theoretical results require R to be defined with respect to infinite traces since we
will only need to consider infinite traces. We never need to consider finite abstract traces in our proofs, hence this
definition is only required to define R on infinite traces.

For example, a path of VM0 is

u0 � 〈0, selectItem, 1, selectItem, 2, dispenseItem, 1, selectItem, 2, . . .〉
where the state i carries the value of item.

Similarly, a possible path of VM1 is

u1 � 〈∅, selectBiscuit, {biscuit}, selectChoc, {biscuit, choc},
dispenseChoc, {biscuit}, selectChoc, {biscuit, choc}, . . .〉

where the state s carries the value of chosen.
Then we have that u0Ru1. We have that abstract states and concrete states are related by the linking invariant

of VM1, for example the fourth abstract state item � 1 relates to the fourth concrete state chosen � {biscuit}.
We also have that the abstract and concrete events are mapped through g1,1, for example the fourth concrete
event is selectChoc and the fourth abstract event is selectItem. Since all the states are related through the linking
invariant, and all the concrete events map to the abstract events, we have that u0Ru1.

Now consider the following path of VM2:

u2 � 〈(0,∅,FALSE),
pay, (3,∅,FALSE),
selectBiscuit, (3, {biscuit},FALSE)
selectChoc, (3, {biscuit, choc},FALSE),
dispenseChoc, (2, {biscuit},TRUE)
refund , (1, {biscuit},FALSE),
pay, (5, {biscuit},FALSE),
selectChoc, (5, {biscuit, choc},FALSE),

. . . 〉

T. S. Hoang et al.

Then u1Ru2: transitions for the new events pay and refund meet the third condition of Definition 4.1, and
those for the events already present, e.g., selectBiscuit , meet the second condition. Hence it also follows that
u0Ru2 through two refinement steps.

Conversely, consider the path u ′
2 of VM2 consisting of an infinite sequence of pay transitions:

u ′
2 � 〈(0,∅,FALSE), pay, (1,∅,FALSE), pay, (2,∅,FALSE), . . .〉

Such a path fails the first condition of Definition 4.1, since there are not infinitely many transitions corresponding
to abstract events. Hence u ′

2 does not relate under R to any path of VM1 or VM0.
Thus R only related infinite abstract paths to infinite concrete paths.
A more complex behavioural semantics for B machines was given by Schneider et al. in [STW14] based on

the weakest precondition semantics of [Mor90, But92] for action systems and CSP. In [STW14] there are two key
results that enable us to reason about infinite sequences of convergent and ordinary events in this paper. Firstly,
the following predicate captures that if an infinite trace u performs infinitely many events from C then it has
infinitely many events from O , where C and O are sets of events.

Definition 4.2 CA(C ,O)(u) �̂ (#(u � C) � ∞ ⇒ #(u � O) � ∞)

C andO will be used to capture convergent and ordinary events through a development. For an Event-Bmachine
M the above means that it does not diverge on its C events. This is precisely what we get when we prove WFD REF
but the above definition describes the result on traces.

The second result from [STW14], restated as Theorem 4.3, allows us to conclude that there are no infinite
sequences of convergent events in the final machine of a refinement chain Mn .

Theorem 4.3 If M0 �W M1 �W · · · �W Mn then

Mn sat CA(g−1
1,n (C0) ∪ · · · ∪ g−1

i,n (Ci−1) ∪ · · · ∪ Cn , g−1
1,n (O0))

M sat S means that predicate S holds for every infinite trace of machine M . The result for our example is

VM4 sat CA({pay, refund , refill}, {selectBiscuit, selectChoc, dispenseBiscuit, dispenseChoc})
ThusCA({pay, refund , refill}, {selectBiscuit, selectChoc, dispenseBiscuit, dispenseChoc}) holds for all traces

of VM4. If there are infinitely many pay , refund and refill events then there must be inifinitely many select and
dispense events. In other words an execution cannot reach a point where it only does pay , refund and refill events
from then on. It must always progress to a select or dispense event.

Note that in particular the CA property does not hold for the infinite trace 〈pay, pay, pay, . . .〉 therefore that
trace cannot be a trace of VM4. Indeed, we can see that VM4 only allows pay while the amount of credit is less
than the amount of stock held by the machine.

5. LTL notation

In this paper we use the following grammar for the LTL operators:

φ ::� true | [t] | ¬φ | φ1 ∨ φ2 | φ1 U φ2 | p | Xφ | e(t)

These operators differ from those presented in [STWW14a] since we have included the state predicate p, the next
operator X and the enabledness of an event t , e(t). Note that we do not provide theoretical results for e(t) until
Sect. 7 since the theoretical results require a more detailed treatment of Event-B refinement than those for the
other operators. It is the same grammar as presented by Plagge and Leuschel in [PL10] and hence supported by
the ProB tool.

Foundations for using linear temporal logic in Event-B refinement

A machine M satisfies φ, denoted M |� φ, if all paths of M starting from one its initial states satisfy φ. The
definition for u to satisfy φ is defined by induction over φ as follows:

Definition 5.1

u |� true
u |� [t] ⇔ #(u) ≥ 1 and u � 〈s0, t〉 � u1

u |� ¬φ ⇔ it is not the case that u |� φ
u |� φ1 ∨ φ2 ⇔ u |� φ1 or u |� φ2

u |� φ1Uφ2 ⇔ ∃k ≥ 0.∀ i < k .ui |� φ1 and uk |� φ2
u |� p ⇔ u � 〈s0, . . .〉 and p is true in s0
u |� e(t) ⇔ u � 〈s0, . . .〉 and Gt is true in s0
u |� Xφ ⇔ #(u) ≥ 1 and u1 |� φ

where un is u with the first n state-transition pairs removed, i.e., u � 〈s0, t0, . . . , sn−1, tn−1〉 � un . The until
operator is a strong until since there is a finite k for which uk |� φ2. Note that “Gt is true in s0” is written as
Gt (s0) in the proofs in this paper.

From these operators Plagge and Leuschel derived several additional operators, including: conjunction (φ1 ∧
φ2), finally (or eventually) (Fφ), and globally (or always) (Gφ), in the usual way. From their definition of Fφ �
trueUφ and U from above it follows that F ([a]U [b]) � F ([b]).

We also use these additional operators, and for explicitness we also provide direct definitions for them:

u |� φ1 ∧ φ2 ⇔ u |� φ1 and u |� φ2
u |� Fφ ⇔ ∃ i ≥ 0.ui |� φ

u |� Gφ ⇔ ∀ i ≥ 0.ui |� φ

For example, the informal specification for theLift given in Sect. 1, that whenever top happens then eventually
ground will happen, couldbewritten asG([top] ⇒ F [ground]). Similarly, for our running example given in Sect. 3,
we can state that whenever selectItem happens then eventually dispenseItem will happen is captured using the
following LTL property. We reference it for use later in the paper.

φA � G([selectItem] ⇒ F [dispenseItem]) (1)

From our running VM example, in [STWW14b] we predominantly discussed LTL properties of the form the
predicateGF [selectBiscuit] which expresses that selectBiscuit occurs infinitely often: at any point there is always
some occurrence of selectBiscuit at some point in the future. We used this construction to express properties
such as:

φB � (¬GF [selectBiscuit]) ⇒ G([selectChoc] ⇒ F [dispenseChoc]) (2)

This states that provided selectBiscuit only occurs finitely often (i.e., eventually stops), then whenever selectChoc
occurs then dispenseChoc will eventually occur.

In [STWW14b] we also discussed how LTL properties of an abstract machine become transformed through
a refinement step. For example, one LTL property ofVM0 isGF [selectItem] which states that from any state that
is reached, selectItem will eventually occur. This translates to the propertyGF ([selectBiscuit]∨ [selectChoc]) for
VM1 and the property remains unchanged through the remaining refinement steps.

Appropriate properties for VM0 in this paper are:

φC � G(item � 2 ⇒ (X (item � 1))) (3)
φD � G(item � 0 ⇒ (X (item � 1))) (4)

Notice that φC and φD use the next and proposition operator which are new to this paper’s results. In Section 6
we will discuss how these are transformed and preserved through refinement. Property φC states that when you
select the maximum amount of items then the amount of selected items will be decreased in the next state. This is
true since the dispense item is the only event that can happen when item � 2 and this is true in every state where
the maximum number of items have been chosen. Property φD is similar in style to φC and states that whenever
item is 0 then the only thing that can happen is that an item will be selected and hence in the next state the value
of item will be 1.

T. S. Hoang et al.

It will also be useful to identify the events mentioned explicitly in an LTL formula φ. This set is called the
alphabet of φ. This is written α(φ), similar to the use of αM for the alphabet of machine M . For LTL formulae
it is defined inductively as follows:

Definition 5.2

α(true) � ∅
α([t]) � {t}

α(¬φ) � α(φ)
α(φ1 ∨ φ2) � α(φ1) ∪ α(φ2)
α(φ1 ∧ φ2) � α(φ1) ∪ α(φ2)
α(φ1 U φ2) � α(φ1) ∪ α(φ2)

α(Fφ) � α(φ)
α(Gφ) � α(φ)

α(p) � ∅
α(e(t)) � {t}
α(Xφ) � α(φ)

For example, we have α(φA) � {selecItem, dispenseItem} and α(φC) � α(φD) � ∅ for φA, φC and φD above.

6. Preserving LTL properties

In this section we provide results to demonstrate when properties are preserved by refinement chains of the form:
M0 �W M1 �W · · · �W Mn . The results are general in order to deal with splitting events in Event-B, which
occurs when abstract events are refined by several events in the concrete machine, corresponding to a set of
alternatives.

Recall that our running example contains an example of splitting where the events inVM0 are each refined by
two events: selectItem is refined by both selectBiscuit and selectChoc, and dispenseItem is refined by both dispense-
Biscuit and dispenseChoc. Recall that a renaming function f associated concrete events with abstract events that
they refine. For example f1(selectChoc) � selectItem and f1(selectBiscuit) � selectItem where f1 is the renam-
ing function appropriate for mappings between VM1 and VM0. In Sect. 2 we defined a compositional mapping
gi,j in terms of the individual f mappings. Thus, for the chain VM0 �W VM1 �W · · · �W VM4, we obtain
that g1,4(selectBiscuit) � g1,4(selectChoc) � selectItem, and g1,4(dispenseBiscuit) � g1,4(dispenseChoc) �
dispenseItem, and g1,4 is not defined on the remaining events of VM4.

This section excludes a discussion of temporal properties that use the enabled operator, since these require the
more elaborate treatment of Sect. 7.

We begin with a LTL property that will hold for all refinement chains that observe the strategy from Sect. 2.3.
It is restated from [STWW14b].

6.1. General GF property preservation

Lemma 6.1 states that the final machine in the refinement chain must always eventually perform some event
relating to an event in the initial machine. In other words, Mn will perform infinitely many of the initial events.
This means that the events introduced along the refinement chain cannot occur forever at the expense of the
original events. In our example, αM0 � O0.

Lemma 6.1 If M0 �W M1 �W · · · �W Mn and Mn is deadlock free and Mn does not contain any anticipated
events then Mn |� GF (

∨

t∈g−1
1,n (αM0) [t])

Observe that if there is no renaming or splitting, then g1,n is the identity function on the events in αM0, and the
disjunction simplifies to be the disjunction of the events in the alphabet of M0.

Foundations for using linear temporal logic in Event-B refinement

6.2. General LTL property preservation (excluding the enabled operator)

The new results in this paper are given in Lemmas 6.3 and 6.4. They concern the preservation of temporal
properties that could be introduced at any refinement step and are required to be preserved by subsequent
refinement steps. We will see that Lemmas 6.3 and 6.4 are variants of each other. The two subtly different lemmas
are needed due to the two ways of dealing with the negation operator in the associated proofs.

We have already observed from the vendingmachine example that events can be split as shown above and that
new events can be introduced during a refinement, e.g., pay, refill, inVM2 andVM3.We aim for LTL properties to
hold even though splitting of events may occur and new anticipated and convergent events are being introduced.
i.e., we aim for a result that states when a property is introduced in refinement step i then the property must hold
for machineMi and the transformed property also holds at the end of the refinement chain at level n for machine
Mn .

To aid the formalisation of the lemmas we introduceDefinition 6.2 to define a translation function transg with
respect to renaming function g asmapping LTLpredicates on abstract events to predicates on their corresponding
concrete events as follows:

Definition 6.2 Let g ∈ B �→→ A and define N � B − dom(g)

transg (true) � true (5)

transg ([t]) �
∨

n∈N
[n] U

∨

y|g(y)�t

[y] (6)

transg (¬φ) � ¬transg (φ) (7)
transg (φ1 ∨ φ2) � transg (φ1) ∨ transg (φ2) (8)
transg (φ1 ∧ φ2) � transg (φ1) ∧ transg (φ2) (9)
transg (φ1 U φ2) � transg (φ1) U transg (φ2) (10)

transg (Gφ) � G transg (φ) (11)
transg (Fφ) � F transg (φ) (12)

transg (p) � ∃ s.J (s, s ′) ∧ p is true in s (13)

transg (Xφ) �
∨

n∈N
[n] U

⎛

⎝

∨

d∈dom(g)

[d] ∧ X (transg (φ))

⎞

⎠ (14)

The translation is with respect to g since it can be used over a number of refinement steps. When we apply the
definition,B andAwill be particular alphabets ofmachines andJ will be the composition of the linking invariant
between the twomachines. This definition allows us to take into account the new events that are introduced during
refinement steps as required in clauses (6) and (14). It is inspired by [WdRF12] andwewill reflect on this in Sect. 8.

Clause (6) translates the occurrence of the abstract event t to the (repeated) occurrences of the new events
introduced during the refinement (

∨

n∈N [n]) until the occurrence of one of the concrete events that maps to the
abstract event t . Note that the new events cannot happen forever since it is a strong until operator. Clause (14)
translates Xφ to the occurrences of new events until one of the concrete events which do relate to an abstract
event occurs, and translation of the property holds in the next state (X (transg (φ))).

Clause (13) translates an abstract predicate p on states to a concrete predicate on states that relate to the
abstract ones.

For example, consider B � α(VM1) and A � α(VM0). In this case g � f1 and N � ∅. Hence,

transf1 (φA) � G(([selectBiscuit] ∨ [selectChoc]) ⇒ F ([dispenseBiscuit] ∨ [dispenseChoc]))

as transf1 ([selectItem]) � [selectBiscuit] ∨ [selectChoc]. Since there are no new events in VM1 the expression
containing the until operator simplifies to the disjunction of the corresponding mapped events. Similarly the
translation of the occurrence dispenseItem event translates to the disjunction of the concrete dispense events.

T. S. Hoang et al.

The same φA property translates for a refinement chain as follows: consider B � α(VM2) and A � α(VM0).
In this case g � f2; f1 and N � {pay, refund}. There are new events in VM2 which have an impact on φA. Hence,

transf2; f1 (φA) � G
((

∨

n∈N
[n] U ([selectBiscuit] ∨ [selectChoc])

)

⇒ F ([dispenseBiscuit] ∨ [dispenseChoc])
)

It states that new events fromVM2 are permitted to occur until one of themapped selection events happens the new
events are again permitted to occur until one of the concrete dispensing events occurs. Notice that the eventually
property is simplified from F ((

∨

n∈N)[n]U ([dispenseBiscuit] ∨ [dispenseChoc])) since F ([a]U [b]) � F ([b]) as
noted in Sect. 5.

Using the same simple refinement chain from VM2 to VM0 an example to illustrate the translation of Clause
(13) for property φC is given as follows:

transg (φC) � G(transg (item � 2) ⇒ transg (X (item � 1)))

The predicate transg (item � 2) becomes ∃ item.(#(chosen) � item ∧ item � 2) which simplifies to
#(chosen) � 2. Also, transg (X (item � 1)) simplifies to

([pay] ∨ [refund])
U ([dispenseBiscuit] ∨ [dispenseChoc] ∨ [selectBiscuit] ∨ [selectChoc]) ∧ X (#(chosen) � 1)

In a state where #(chosen) � 2, both the dispenseBisuit and dispenseChoc concrete events are possible and also
one of the new events in N , namely pay. Hence, through the translation of transg (X (item � 1)) any number of
pay events can occur until one of the dispense events occurs and then in the next state we assert there is amatching
concrete state when item � 1 holds. There will be a matching concrete state because one of the dispense events
will have occurred, i.e., the concrete state of chosen will have decreased the number of its elements by one and
therefore the linking invariant will hold.

Two main results are presented in this section which identify additional conditions under which an LTL
property φ will be preserved in a refinement chain that adheres to the development strategy given in Sect. 2.3. The
strategy already makes clear that by the end of the refinement chain there should be no outstanding anticipated
events (and so all newly introduced events have been shown to be convergent), restriction 6 of the Development
Strategy of Sect. 2.3.

The common additional conditions for both new results are as follows:

Condition 1 φ must not contain the enabled (e) operator.
Condition 2 the final machine in the refinement chain must be deadlock-free.

These conditions are enough to ensure that φ is preserved through refinement chains in the case where the
LTL also does not contain the negation (¬) operator. In particular, if a property φ is established for Mi−1, then
the resulting system Mn will satisfy the translation of the property: transgi,n (φ). Hence, by using Definition 6.2
with g � gi,n we are now able to define the first result: Lemma 6.3.

Lemma 6.3 If Mi |� φ and φ does not contain the enabled (e) and negation (¬) operators and Mi �W · · · �W Mn

and 0 ≤ i < n, Mn is deadlock free and Mn does not contain any anticipated events then Mn |� transgi+1,n (φ)

Note the requirement for the refinement chain to adhere to restriction 6 of the Development Strategy of
Sect. 2.3 we mention this explicitly in the lemma to emphasise it. The second lemma, Lemma 6.4, is similar but
subtly different; in order to have a result on the negation operator we need to restrict the composition of the
refinement relations J to be functional. This same restriction was identified by Derrick and Smith in [DS12].
Hence a further condition is needed for this result as follows:

Condition 3
The compositional linking invariant J must be functional. In other words, J (v1,w) ∧ J (v2,w) ⇒ v1 � v2

Lemma 6.4 If Mi |� φ and φ does not contain enabled (e) operator and Mi �W · · · �W Mn and 0 ≤ i < n,
the composition of the refinement relations J is functional and Mn is deadlock free and Mn does not contain any
anticipated events then Mn |� transgi+1,n (φ)

Foundations for using linear temporal logic in Event-B refinement

Note that unlike Lemma 6.1 the application of this lemma requires a property to be established of Mi .
Theproofs for the lemmasare given inAppendixA. Inorder to applyLemmas6.3 and6.4 inpracticeCondition

1 can be achieved by a simple review and Condition 2 is a mechanical check that can be done automatically using
ProB. Condition 3 must also achieved by review, but note that if each of the linking invariants is functional then
so is their composition. The proof obligations related to the refinement chain would need to be proved using
Rodin or AtelierB.

6.3. Preserving vending machine properties

The purpose of this section is to consider the LTL properties of interest for the vending machine development,
to highlight that:

• properties need not hold through all refinement steps, only for the machine in the refinement step in which
the properties are introduced and again for the machine at the end of the refinement chain which does not
contain anticipated events.

• properties can be introduced at different levels of refinement,minimising the need for duplicate LTLproperties
to be introduced in subsequent refinement steps,

We consider the application of the above Lemmas to our running example on the refinement chain

VM0 �W VM1 �W VM2 �W VM3 �W VM4

In this case we obtain immediately from Lemma 6.1 that

VM4 |� GF ([selectBiscuit] ∨ [selectChoc] ∨ [dispenseBiscuit] ∨ [dispenseChoc]) (15)

Any execution of VM4 will involve infinitely many occurrences of some of these events. The newly introduced
events pay , refund , refill cannot be performed forever without the occurrence of the original events.

We have already introduced four properties which we recap here as follows:

φA � G([selectItem] ⇒ F [dispenseItem])
φB � (¬GF [selectBiscuit]) ⇒ G([selectChoc] ⇒ F [dispenseChoc])
φC � G(item � 2 ⇒ (X (item � 1)))
φD � G(item � 0 ⇒ (X (item � 1)))

Note thatpropertyφB , andpropertiesφG ,φH andφI introducedbelow,werediscussed in the example in [STWW14b]
but we restate them here so that it is clear that the new results apply to them.

Properties φA, φC and φD are appropriately introduced in the first development step upon specification of
VM0 since they relate to events in VM0. We have checked that VM0 satisfies each of these three properties using
ProB. Once we have also established the refinement chain VM0 �W VM1 �W VM2 �W VM3 �W VM4, and
that VM4 is deadlock free we can deduce using Lemma 6.3 that the translations of all three properties hold for
VM4.

For example, from the result forVM0 that whenever selectItem occurs then dispenseItemwill eventually occur,
VM0 |� φA, we obtain from Lemma 6.3 that

VM4 |� G(([selectBiscuit] ∨ [selectChoc]) ⇒ F ([dispenseBiscuit] ∨ [dispenseChoc])) (16)

This states that whenever selectBiscuit or selectChoc occur, then dispenseBiscuit or dispenseChoc will eventually
occur.

Property φB is an appropriate property for first refinement step andVM1 |� φB , which we have checked using
ProB. Once again provided we establish the correctness of the refinement chain and demonstrate that VM4 is
deadlock free then we can deduce using Lemma 6.4 that VM4 |� transg1,4 (φC). Property φB states that if you do
not always eventually have a selectBiscuit then you will be able to choose a chocolate and for it to be dispensed.
There is a dual property when you do not always have a selectChoc.

Observe however that Lemmas 6.3 and 6.4 do not establish that the translation of φ properties hold in
all refinement machines, only those deadlock free and with no anticipated events. For example, VM2 does not
satisfy the translations of φA nor φB since pay is anticipated and can be executed infinitely often and hence
VM2 �|� transf2; f1 (φA). The same applies for VM3 since pay also remains anticipated in this machine.

T. S. Hoang et al.

There are well-known benefits to introducing a property as early as possible. Firstly, we can minimise dupli-
cation of properties. For example, we need not check the following property to be required of VM1

G(([selectBiscuit] ∨ [selectChoc]) ⇒ F ([dispenseBiscuit] ∨ [dispenseChoc]))

We have already sufficient proof that it is true since VM0 |� φA and by application of Lemma 6.3.
VM0 has three stateswhileVM1 hasmore states andVM4 has unboundedlymany states.Whilemodel checking

a machine with three states is trivial, the time taken to perform explicit state model checking grows exponentially
with the size of the statespace and model checking an infinite statespace is intractable in this manner. Therefore,
it is easier to check φA on VM0 than on VM1 and it is not possible to check it on VM4. Hence, through the
application of our theoretical results we can establish properties of infinite state systems using our development
strategy within existing tools.

There may be properties that do not hold early in a refinement chain but do hold later. For example, consider
the following property:

φE � G([pay] ⇒ F ([dispenseBiscuit] ∨ [dispenseChoc]))

The infinite behaviour of pay means that φE is not satisfied in VM2. Thus, even though φE satisfies Condition
1, Lemma 6.3 is not applicable in the second refinement step because Condition 2 is not satisfied. However,
VM4 |� φE since pay is no longer anticipated, i.e., convergent in VM4. Hence, the property is not satisfied until
the final refinement step. Since VM4 is infinite state we cannot check this using ProB directly. However, it can be
deduced from the result VM4 |� φF below together with Lines 15 and 16 above.

There may be properties involving anticipated events which hold at an early point of the refinement chain,
and hence by the applications of the lemmas also hold at the end of the refinement chain. For example,

φF � G([pay] ⇒ (G [pay] ∨ F ([selectBiscuit] ∨ [selectChoc]))

VM2 |� φF and so by application of Lemma 6.3VM4 also satisfies the translation of φF . Since pay is anticipated,
it cannot occur forever in VM4 (as indicated in Line 15), the disjunct G [pay] in φF cannot hold in executions of
VM4 and we obtain

VM4 |� G([pay] ⇒ F ([selectBiscuit] ∨ [selectChoc])

This combines with the result of Line 16 to yield the result that VM4 |� φE . Hence even though φE could not
be established for VM4 by direct use of Lemma 6.3, it follows from other results which are established by that
lemma and others.

7. Extending LTL properties to include enabled events

In this section we extend the theoretical results to support the inclusion of the enabled (e(t)) operator from our
LTL grammar in Sect. 5. First we extendDefinition 6.2 to include the following translation clause to the definition
of transg for the mapping the enabledness of an abstract event to the disjunction of its corresponding concrete
events as follows:

Definition 7.1 Let g ∈ B �→→ A and define N � B − dom(g)

transg (e(t)) �
∨

n∈N
[n] U

⎛

⎝

⎛

⎝

∧

n∈N
¬e(n) ∧

∨

y|g(y)�t

e(y)

⎞

⎠ ∨
⎛

⎝

∨

n∈N
e(n) ∧

∨

d∈dom(g)

[d]

⎞

⎠

⎞

⎠ (17)

This additional clause was inspired by the definition of availability in [WdRF12]. This translation clause
means that the occurrence of one of the new events introduced during the refinement (

∨

n∈N [n]) is permitted
until either:

1. a stable state is reached (none of the guards of the new events are enabled) and one of the guards of the
concrete events that maps to the abstract event t is enabled, or

2. a concrete event in dom(g) that corresponds to an abstract event occurs from an unstable state (where some
of the new events are enabled).

Foundations for using linear temporal logic in Event-B refinement

machine PM0
variables paid ∈ {0, 1}
events
init = paid := 0

pay = paid := 1
dispenseApple =

when paid = 1
then paid := 0
end

dispensePear =
when paid = 1
then paid := 0
end

end

machine PM1
refines PM0
variables paid , offers
invariant paid ∈ {0, 1} ∧ offers ⊆ {apple, pear}
variant 2 − #(offers)
events
init = offers := paid := 0

pay = paid := 1

dispenseApple = when apple ∈ offers
then offers := paid := 0 end

dispensePear = when pear ∈ offers
then offers := {} end

fetch = when paid = 1 ∧ {apple, pear offers
then if apple offers then offers := offers ∪ {apple}

else offers := offers ∪ {pear} end
end

end

Fig. 8.Machine PM0 and its refinement PM1

To motivate this definition, consider the machines PM0 and PM1 of Fig. 8. Here we see that the events
dispenseApple and dispensePear are both enabled in PM0 following a pay event, thus for example the predicate
e(dispensePear) holds following the sequence [pay], i.e.,PM0 |� φG ,whereφG � G([pay] ⇒ X (e(dispensePear)).
The refinement machine PM1 maintains a set offers of pieces of fruit which are available, and also introduces a
new event fetch which adds items to that set.

Consider the translation of φG , in particular, that of e(dispensePear). Consider the clause (
∧

n∈N¬e(n) ∧
∨

y|g(y)�te(y)) of Definition 7.1 regarding reaching the stable state. For the translation of e(dispensePear), this
is simplified to ¬e(fetch)∧ e(dispensePear). Following the occurrence of pay , it is not immediately the case that
e(dispensePear) holds for PM1, but if a user of that machine allows fetch to occur until it is no longer possible,
corresponding to the sequence of events [pay, fetch, fetch] then indeed e(dispensePear) is true following that
sequence. This corresponds to clause (1).

With respect to the clause (
∨

n∈N e(n) ∧ ∨

d∈dom(g)[d]) regarding unstable states, in our example becomes
e(fetch) ∧ ([pay] ∨ [dispenseApple] ∨ [dispensePear]), consider the following: the introduction of the new event
fetch means that there are some intermediate states in which dispensePear is not yet enabledwhile the sequence of
fetch events is ongoing. In our example the event dispenseApple becomes enabled after a single fetch, and if a user
selects that in preference to waiting for fetch to occur, corresponding to the sequence [pay, fetch, dispenseApple],
then a different path has been taken and the offer of dispensePear is not made anywhere along this path. This
illustrates that some other event might occur before the event of interest becomes enabled in the refinement
machine.We only wish to allow for this situation of dispensePear not yet being enabled if some further new event
is still enabled, hence the inclusion of

∨

n∈N e(n) in clause (2). If no further new events are possible, then an event
such as dispensePear enabled in the abstract machine should also be enabled in the refinement machine.

In general, observe that if there are no new eventsN , then
∨

n∈N [n] � false,
∨

n∈N (e(n)) � false,
∧

n∈N ¬e(n)
� true, and hence transg (e(t)) simplifies in this case to

∨

y|g(y)�te(y)
For example, in VM1 there are no new events, so transf1 (e(dispenseItem)) simplifies to e(dispenseBiscuit) ∨

e(dispenseChoc).
Now we can examine whether the previous results from Sect. 6 remain applicable if we permit the enabled

operator. In fact it turns out that they are not applicable; we need to strengthen the antecedents of the lemmas.
We illustrate this on Lemma 6.3, but with the enabled operator e permitted.

Consider the new LTL property which is true of VM4:

φI � G([selectBiscuit] ⇒ (Xe(dispenseBiscuit)))

and the refinement chain VM4 �W VM5 where VM5 is given in Fig. 9. It is exactly the same as VM4 except that
the availability of the dispenseBiscuit is less, since its guard is strengthened so that a biscuit can only be dispensed
once a biscuit and a chocolate are chosen.

T. S. Hoang et al.

machine VM5
. . . exactly as VM4 apart from the following event:
dispenseBiscuit = status : ordinary

refines dispenseBiscuit
when credit > 0 ∧ biscuitStock > 0 ∧ chosen = {biscuit , choc}
then . . . || chocStock := chocStock − 1 end

Fig. 9. VM5

Hence, application of a relaxedLemma6.3would state thatVM5 satisfies the trivial translation ofφI .However,
this is not the case. For example, the infinite trace

〈(0,∅,FALSE), pay, (1,∅,FALSE), pay, (2,∅,FALSE), selectBiscuit, (2, {biscuit},FALSE), . . .〉
does not satisfy transf5 (φI) � φI since dispenseBiscuit is not enabled in the fourth state; selectChoc has not yet
occurred to increase the value of the set chosen appropriately.

This example illustrates that we need a stronger notion of refinement that deals with the liveness of events so
that we can ensure that the enabledness of events is guaranteed through the refinement chain. In fact there is a
proof obligationwithinEvent-B requiring certain events frommachineM to be enabled in the adjacent refinement
machine M ′ [Abr10]. We define this proof obligation referred to as S NDF in the same way as in [Abr10] but we
include explicitly the event t it applies to, the corresponding concrete events, and the new events Ni+1.

S NDF: Strong Deadlock Freedom with new events If an abstract event is enabled then either some concrete
refinement of it is enabled, or some new event is enabled.

I (vi) ∧ Ji+1(vi , vi+1) ∧ Gt (vi)
�

∨

y|fi+1(y)�t

Gy (vi+1) ∨ ∨

n∈Ni+1

Gn (vi+1)
S NDF(t)

Observe that the refinement from PM0 to PM1 in Fig. 8 satisfies this proof obligation.
Let us examine this S NDF proof obligation with respect to all the events in the vending machine development

from VM0 to VM4. Consider again the refinement chain from VM0 to VM1. In this refinement step S NDF holds
for both the selectItem and the dispenseItem events.

For the refinement step betweenVM1 andVM2 S NDFholds for selectBiscuit , selectChoc, dispenseBiscuit and
dispenseChoc since in the refinement step even though the guards are strengthened, the new event pay can occur,
hence discharging S NDF. In the step between VM2 and VM3 again the new event refill supports the discharging
of the S NDF obligations for all the events in α(VM2).

In the refinement step from VM3 to VM4, S NDF holds vacuously for refund and S NDF for selectBiscuit ,
selectChoc, dispenseBiscuit , dispenseChoc, refill simply holds by data refinement. For example in the proof for
S NDF(dispenseBiscuit) the strengthened guard biscuitStock > 0 is established by the following:

J4(v3, v4) : (biscuit ∈ stocked ⇒ biscuitStock > 0)
Gdb(v3) : ∧ biscuit ∈ stocked
Gdb(v4) : ⇒ biscuitStock > 0

In VM4 the pay event has a strengthened guard which stops pay happening forever, this is needed in order
to turn it into a convergent event but of course this then means that S NDF does not hold for it since its guard is
strengthened and no new events are introduced in VM4.

In general, once amachine has an anticipated event that is always enabled, then tomake that event convergent
its guard will need to be strengthened in a way that fails to meet S NDF. Therefore, the anticipated approach of
deferring convergence proofs is incompatible with the use of S NDF for each event in all of the refinement steps.
Therefore, we need to identify a weaker form of S NDF. The inspiration for its definition comes from the same
principle that we adopt for deadlock freedom, i.e., we do not need deadlock freedom to be a property that is true
of each refinement step but it simply needs to hold at the end of a refinement chain.

Foundations for using linear temporal logic in Event-B refinement

Let us therefore also consider S NDF to be a proof obligation that needs to hold between the refinement step
in which an LTL property based on the enabled operator is introduced and the final machine in the refinement
chain. It does not need to hold for all the intermediate steps.

We define a new proof obligation referred to as S NDFi,j (t) to relate the enabledness of t inMi with its concrete
refinement(s) in Mj as follows:

Definition 7.2 If an abstract event is enabled forMi and i < j then either some concrete refinement of it is enabled
in Mj , or some new event is enabled in Mj .

I (vi) ∧ Ji,j (vi , vj) ∧ Gt (vi)
�

∨

y|gi+1,j (y)�t

Gy (vj) ∨ ∨

n∈Nj

Gn (vj)
S NDFi,j (t)

With this extra condition on the preservation of enabledness of events, we are able to extend themain results about
the preservation of LTL properties to include the enabled operator (i.e., remove the restriction on its inclusion)
as follows:

Lemma 7.3 If Mi |� φ and and φ does not contain the negation (¬) operator and Mi �W · · · �W Mn and
0 ≤ i < n and

∧

t∈φS NDFi,n (t) and Mn is deadlock free and Mn does not contain any anticipated events then
Mn |� transgi+1,n (φ).

Lemma 7.4 If Mi |� φ and Mi �W · · · �W Mn and 0 ≤ i < n and
∧

t∈φS NDFi,n (t) and the composition of the
refinement relations J is functional and Mn is deadlock free and Mn does not contain any anticipated events then
Mn |� transgi+1,n (φ).

The proofs of these lemmas is given in Appendix A.
Consider again the property φI . It is satisfied for VM1 and VM2, but not for VM3, since if biscuit �∈ stocked

in VM3 then selectBiscuit can be followed by an infinite sequence of pay events with no refill event, and so
e(dispenseBiscuit) never becomes true. However S NDF1,4 holds,VM4 has no anticipated events (thus pay cannot
occur for ever) and Lemma 7.3 yields that VM4 |� transg2,4 (φI). Expanding out transg2,4 (φI) simplifies to:

G([selectBiscuit] ⇒ X (([pay] ∨ [refund] ∨ [refill])
U ((¬e(pay) ∧ ¬e(refund) ∧ ¬e(refill) ∧ e(dispenseBiscuit))

∨
((e(pay) ∨ e(refund) ∨ e(refill))
∧ ([selectBiscuit] ∨ [selectChoc] ∨ [dispenseBiscuit] ∨ [dispenseChoc])))))))

This states that, following selectBiscuit , the new events pay , refund and refill may occur until either none of them
are enabled any more, and dispenseBiscuit is enabled; or any of the select or dispense might occur while the new
events are still enabled. Thus if the customer is prepared to wait for dispenseBiscuit , and does not engage in any
of the other events, then dispenseBiscuit will eventually become enabled.

The inclusion of the enabled operator allows for the expression of useful fairness properties. Fairness assump-
tions are often required when model checking systems for liveness properties, so as to dismiss infinite behaviours
(thatmay violate liveness properties) that are judged to be unfair.Here fair typicallymeans that “if a certain choice
is possible sufficiently often, then it is sufficiently often taken” [AFK88]. Strong (resp. weak) event fairness frame
fairness properties in the context of event-based formalisms such as Event-B [Lam00, PV01, SLDW08, Mur13].
Given a set of events�, weak event fairness with respect to� demands that any continually enabled event from�
must occur infinitely often, whereas strong event fairness with respect to � demands that infinitely often enabled
events occur from � infinitely often.

WEF �
∧

z∈�

(FGe(z) ⇒ GF [z])

SEF �
∧

z∈�

(GFe(z) ⇒ GF [z])

Consider the following new properties, with � � {selectChoc, selectBisc, dispenseChoc, dispenseBisc}:
φJ � WEF ⇒ GF [dispenseChoc]

T. S. Hoang et al.

Supposing each continually enabled event occurs infinitely often, then dispenseChoc occurs infinitely often.

φK � SEF ⇒ GF [dispenseChoc]

Supposing each infinitely often enabled event occurs infinitely often, then dispenseChoc occurs infinitely often.
VM1 satisfies both of these properties. One infinite trace that violates GF [dispenseChoc] is the following:

〈selectBiscuit, dispenseBiscuit〉ω. In this trace selectChoc is continuously enabled but never taken and is thus
deemed unfair. In fact the only traces that violate the property GF [dispenseChoc] are those that (unfairly)
continuously deny either selectChoc or dispenseChoc; GF [dispenseChoc] is satisfied under the assumption of
both strong and weak event fairness. From our results we may deduce that dispenseChoc is guaranteed to occur
infinitely often under (a translation of) the assumption of weak event fairness and hence is also satisfied in VM4.

8. Related work

One of the few papers to discuss LTL preservation in Event-B refinement is Groslambert [Gro06]. The LTL prop-
erties were defined in terms of predicates on system state where we also include events’ occurrences and enableness
in our formulation. His paper focused only on the introduction of new convergent events. It did not include a
treatment of anticipated events, but this is unsurprising since the paper was published before their inclusion in
Event-B. Our results are more general in two ways. Firstly, the results support the treatment of anticipated events.
Secondly, we allow more flexibility in the development methodology. A condition of Groslambert’s results was
that all the machines in the refinement chain needed to be deadlock free. The four main lemmas in our paper:
Lemmas 6.3, 6.4, 7.3 and 7.4 do not require each machine in a refinement chain to be deadlock free, only the final
machine. It is irrelevant if intermediate Mis deadlock as long as the deadlock is eventually refined away. This is
possible by refining away paths to deadlock.

Groslambert deals with new events via stuttering and leaves them as visible events in a trace. This is why the
LTL operators he uses do not include the next operator (X). As new events may happen this may violate the X
property to be checked. On the other hand Plagge and Leuschel in [PL10] permit the use of the X operator since
they treat the inclusion of new events as internal events which are not visible. In this paper we are also able to
deal with the next operator.

The notion of verification of temporal properties of both classical andEvent-B systems using proof obligations
has been considered in many research papers. Abrial and Mussat in an early paper, [AM98], introduced proof
obligations to deal with dynamic constraints in classical B. In amore recent paper [HA11] Hoang andAbrial have
also proposed new proof obligations for dealing with liveness properties in Event-B. They focus on three classes
of properties: existence, progress and persistence, with a view to implementing them in Rodin. Bicarregui et al.
in [BAA+08] introduced a temporal concept into events using the guard in the when clause and the additional
labels of within and next so that the enabling conditions are captured clearly and separately. However, these
concepts are not aligned with the standard Event-B labelling.

In [BDJK00, BDJK01], the authors propose an approach of combining proofs and model-checking veri-
fication techniques to reason about properties formulated in Propositional Linear Temporal Logic (dynamic
properties). Similar to our approach, the PLTL properties are first specified at the abstract level (and verified
by PLTL model-checking), and gradually reformulated during refinement. Several transformation patterns are
mentioned with accompanying sufficient conditions that required to be discharged. As a result, the supported
properties are restricted to those that are transformable, e.g., dynamic invariants, leads-to, or until properties. In
our work, the translation function transg is total and can be used to transform any property over a number of
refinement steps. Moreover, our temporal language is also richer than PLTL, including the events’ occurrences
and enableness. In [BDJK00], fairness assumptions are required for reasoning about dynamic properties using
PLTL model-checking tools. As a result, the transformation of dynamic properties is conditional on the preser-
vation of fairness assumptions which is consider as future work in [BDJK00]. Since fairness assumptions can
be encoded using events’ enableness and occurrences in our language, they can be transformed as a part of the
temporal properties. Furthermore, the transformation of fairness assumptions using our approach can be the
basis for future research on preservation of fairness assumptions via refinement.

In [HH13], the Unit-B modelling method is proposed as a combination of UNITY [CM89] and Event-
B [Abr10]. Unit-B extends the Event-B events with coarse- and fine-schedules, a generalisation of weak- and
strong-fairness assumptions, stating how often an event has to occur. Liveness reasoning in Unit-B is borrowed
from the UNITY logic and is adapted for the newly introduced scheduling assumptions. Refinement in Unit-B

Foundations for using linear temporal logic in Event-B refinement

amounts to proving that the liveness assumptions are strengthened and the rules are based on reasoning about
progress properties.

To compare with our work, the LTL used in Unit-B is defined in term of state variables and does not included
references to event occurrences [t] or event enableness e(t). In fact the Unit-B traces are defined as sequence of
states whereas we explicitly include executions of events into the definition of traces. Moreover, at the moment,
Unit-B only considers superposition refinement, where variables of the abstract machine are retained in the
concrete machine. As a result, liveness properties are preserved in LTL “as they are”. Our work is more general
by allowing data refinement, transforming the liveness properties accordingly via the translation function transg .
Another difference is the fact that the preservation of properties in ourwork can stretch across several refinements,
i.e., we can postpone the proof of properties preservation for some refinements, until all the necessary conditions
(e.g., deadlock-free, event convergence) canbe established. InUnit-B, it is required that all thenecessary conditions
are discharged at every refinement step, so that all liveness properties are maintained. Note also that Unit-B has
a single general refinement rule preserving all liveness properties. With the inclusion of event enableness in our
language, we have additional conditions for refinement depending on the properties we want to preserve.

In order to prove liveness properties relying on reasoning about convergence and deadlock-freeness, we made
an assumption on event execution for each machine (called minimal progress in [HH13]): if the system is not
deadlocked then one of the enabled events will be executed. In Unit-B, the assumption on event execution is
finer-grained. Individual scheduling assumptions can be attached to each event. As a result, Unit-B can express
stronger fairness assumptions and subsequently can prove more liveness properties relying on these assumptions.

Approaches to LTL preservation through refinement are wider than simply Event-B. For example, Derrick
and Smith [DS12] discuss the preservation of LTL properties in the context of Z refinement, extending their
results to other logics such as CTL and theμ calculus. They focus on discussing the restrictions that are needed on
temporal-logic properties and retrieve relations to enable themodel checking of such properties. Their refinements
are restricted to data refinement and do not permit the introduction of new events in refinement steps. Our paper
does permit new events to be introduced during refinement steps and the conditions that are required to hold at
each refinement step do not provide any restrictions on the properties that can be expressed.

9. Discussion and future work

The paper has provided the theoretical foundation to justify the use of LTL properties in Event-B development. It
provides foundational results that justifywhen temporal properties hold at the end of anEvent-B refinement chain
for developments which contain anticipated, convergent and ordinary events, which goes beyond that presented
in [Gro06]. Moreover, the class of LTL operators that is supported by the theory also extends the LTL presented
in [Gro06] and are those supported by ProB. Notably, our inclusion of the enabled operator, and its translation
in Definition 7.1, (reflecting Lowe’s available operator [Low08]) allows for the expression of temporal properties
under various notions of fairness [Mur13, WdRF12]. The expression of fairness properties are typically required
in proving pertinent liveness properties.

From the results in this paper, a complex (even infinite branching/infinite state) concrete machine can be
shown to satisfy such a property by first model checking a small abstract machine using ProB and following a
particular refinement strategy, discharging the proofs in Rodin or Atelier B.

The paper has removed one of the awkward restrictions of our previous work, which imposed restrictions on
the temporal properties in terms of being β-dependent, which determined when a temporal property of interest
should be introduced into the development chain.

T. S. Hoang et al.

machine M
variables n
invariant n ∈ 1 . . . 4
events
init = n := 1
open = when n = 1 then n := n + 1 end
close = when n = 2 then n :∈ {1, 3} end
wedgeOpen = when n = 3 then n := n + 1 end
alarm = when n = 4 then skip end

end

Fig. 10.M

In this paper we restricted two of the lemmas, Lemmas 6.4 and 7.4, to refer to developments whose linking
invariants were required to be functional in order to deal with negation in LTL properties. Event-B developments
generally contain functional invariants, since abstract machines usually contain less information than their refine-
ments, and thus functional mappings in this case make sense. There are of course examples (e.g., the alternating
bit protocol of [Abr10]) where this is not the case, but these are rare.

The novelty of the results, which is a clear extension from [STWW14b], is the requirement to establish strong
deadlock freedom S NDF, in certain circumstances, in order to guarantee the preservation of LTL properties that
include the enabled operator. The conditions of the lemmas required to hold and the proof obligations required
lend themselves to the practical application of Event-B. We are looking into how to provide the new S NDF rule
over a number of refinement steps in terms of chaining single step S NDF proof obligations for the corresponding
events, so that this proof obligation can be tool supported.

The proofs in this paper were defined on infinite traces. The proofs are not defined in terms of a CSP semantics
model. Our work in [STW14] provided a CSP traces divergences and infinite traces semantics for Event-B.
Our ongoing work is combining these results with those in this paper in order to provide a cohesive process
algebra underpinning for Event-B and the preservation of LTL properties. It should not be surprising that the
underpinning will be in terms of the refusal traces semantic model of CSP; Definitions 6.2 and 7.1 were based
on [WdRF12, Low08], which addressed the preservation of LTL properties through refusal traces refinement.
(In [Low08] temporal operators were defined in terms of the set of finite and infinite refusal traces they allow.)

We have focused in this paper on a refinement strategy that achieved convergence of all its new events by the
end.We could also consider the impact on temporal property preservation in refinement chains where anticipated
events remain present in the final machine. We have also yet to deal with extending the work to merging events in
a refinement chain. Consider the example in Fig. 10 the events open and wedgeOpen meet the conditions to allow
them to be merged. In particular they have the same body n :� n + 1. The LTL property G(open ⇒ F (close))
is satisfied by M . However, if open and wedgeOpen are merged then this property no longer holds. Hence, the
results of the paper do not apply. A different approach would be required.

Acknowledgements

Thanks to Thierry Lecomte for discussions about Event-B and its practical use. We are also grateful to the
reviewers for their thorough and detailed comments on this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

Appendix A: Proofs of Lemmas

In this appendix we provide the proofs for the main lemmas: Lemmas 6.1, 6.3, 6.4, 7.3 and 7.4. We also provide
additional supporting definitions and lemmas.

Proof of Lemma 6.1 This proof is restated from [STWW14a] Since Mn does not deadlock consider an infinite
trace u of Mn . Let u � u � (C1 ∪ · · · ∪ Cn ∪ O0) since Mn does not have any anticipated events. We aim to prove
that u � O0 is infinite. If u � C1 ∪ · · · ∪ Cn is finite then u � O0 is infinite. If u � C1 ∪ · · · ∪ Cn is infinite then

http://creativecommons.org/licenses/by/4.0/

Foundations for using linear temporal logic in Event-B refinement

u � O0 is infinite by Theorem 4.3. Hence, since u � O0 is infinite then the occurrence of one of the events in M0
will be always eventually be possible. �

The following lemmas: Lemmas A.1 and A.2, provide results that allow us to demonstrate the relationship
between an infinite traceua preserving a temporal property and a corresponding traceuc preserving a transformed
temporal property. The two lemmas are subtly different and both are required due to the subtleties in the proof
when using the proposition and negation operators. The lemmas are required in order to prove Lemmas 6.3 and
6.4 presented in Sect. 6 and proved below.

Lemma A.1 If φ does not contain the enabled e and the negation ¬ operators and α(φ) ⊆ ran(g) and ua R uc then
ua |� φ ⇒ uc |� transg (φ)

Proof By structural induction over the structure of φ.
Base Cases:

Consider where φ is true. Trivially holds.
Consider where φ is [t]: Let ua R uc and ua � 〈s0, t0, s1, t1, . . .〉

If u |� [t] then t0 � t by definition of [t]
Since uc � dom(g) is infinitethenthere is a first t ′

k such that t ′
k ∈ dom(g).

So g(t ′
k) � t0 since ua R uc ∧ ∀ j < k .t ′

j ∈ N

So uc |�
∨

n∈N
[n] U

∨

y|g(y)�t

[y]

So uc |� transg ([t]) by trans definition

Consider where φ is p: If ua |� φ then p is true in s0 by definition J (s0, s ′
0) holds from the definition of ua R uc

⇒ uc |� ∃ s0.J (s0, s ′
0) ∧ p ∈ s0.

Inductive Cases:
Case φ1 ∨ φ2:

ua |� φ1 ∨ φ2

⇒ ua |� φ1 ∨ ua |� φ2

⇒ uc |� transg (φ1) ∨ uc |� transg (φ2)
⇒ uc |� transg (φ1 ∨ φ2)

Same for φ1 ∧ φ2.

Case φ1 U φ2:
If ua |� φ1 U φ2 ⇔ ∃k ≥ 0.∀ i < k .ui

a |� φ1 ∧ uk
a |� φ2 by definition of U .

k is the k th state of ua and φ2 holds for the path starting from that state, the point where φ2 is reached.
Let l be the least value such that uk

a R u l
c holds. Then ∀ j < l .uj

c ∃ i < k .ui
a R uj

c . Then ui
a |� φ1, so by ind hyp

uj
c |� transg (φ1). Also since uk

a |� φ2 by ind hyp u l
c |� transg (φ2). Therefore, uc |� transg (φ1 U φ2).

Case Xφ: If ua |� Xφ and ua � 〈s0, t0, s1, t1, . . . 〉 then u1
a � 〈s1, t1, . . .〉 |� φ by definition of X .

Let ua R uc . Since uc � dom(g) is infinite then there is a first t ′
k such that t ′

k ∈ dom(g).
Let uc � 〈s ′

0, t
′
0, . . . , s

′
k−1, t

′
k−1〉 � 〈s ′

k , t ′
k , s ′

k+1, t
′
k+1, . . .〉.

So u1
a R uk+1

c and by ind hyp u1
a |� φ ⇒ uk+1

c |� transg (φ).
Since ∀ i < k ui

c |� ∨

n∈N [n] ∧ uk
c |� ∨

d∈dom(g)[d] ∧ X (transg (φ)) since t ′
k ∈ dom(g) by definition of X for uk

c .
Therefore ∃k ≥ 0.∀ i < k .ui

c |� ∨

n∈N [n] ∧ (uk
c |� ∨

d∈dom(g)[d] ∧ X (transg (φ))). Hence by definition of transg
uc |� transg (φ). �

Lemma A.2 If φ does not contain the enabled e operator and α(φ) ⊆ ran(g) and ua R uc and J is functional then
ua |� φ ⇔ uc |� transg (φ)

Proof By structural induction over the structure of φ.
Base Cases:
Consider where φ is true. Trivially holds.

T. S. Hoang et al.

Consider where φ is [t]:
Consider “⇒" as in Lemma A.1.
Consider “⇐": Let ua R uc and ua � 〈s0, t0, s1, t1, . . .〉
If uc |�

∨

n∈N
[n] U

∨

y|g(y)�t

[y]

⇒ ∃k ≥ 0.∀ i < k .ui
c |�

∨

n∈N
[n] ∧ uk

c |�
∨

y|g(y)�t

[y] (definition of U)

⇒ i < k ⇒
∨

n∈N
(t ′
i � n) ∧ t ′

k ∈ {y | g(y) � t}

⇒ i < k .t ′
i �∈ dom(g) ∧ t ′

k ∈ dom(g) ∧ g(t ′
k) � t � t0

⇒ ua |� [t]

Consider where φ is p:
Consider“⇒" as in Lemma A.1.
Consider “⇐": If uc |� ∃!so .J (s0, s ′)∧p ∈ s0, since J is functional. Now consider ua R uc then ua has an initial
state s0 which is related through J to the concrete state and therefore p is true in s0, thus ua |� p.

Inductive Cases:
Case ¬φ:

ua |� ¬φ

⇔ ¬ua |� φ

⇔ ¬(uc |� transg (φ)) by ind hyp and requires ⇔
⇔ uc |� ¬transg (φ)
⇔ uc |� transg (¬φ)

Case φ1 ∨ φ2: Similar to Lemma A.1 with ⇒ replaced by ⇔ in the steps.
Same for φ1 ∧ φ2.

Case φ1 U φ2:
Consider “⇒" as in Lemma A.1.
Consider “⇐": If uc |� transg (φ1Uφ2) then uc |� transg (φ1) U transg (φ2) by definition of transg (U).
Hence ∃k ≥ 0.∀ i < k .ui

c |� transg (φ1) ∧ uk
c |� transg (φ2) by definition of U .

Let l be the least value such that u l
a R uk

c holds. Then ∀ j < l .uj
a |� φ1 ∧ u l

a |� φ2 by ind hyp. Therefore,
ua |� φ1 U φ2.
Case Xφ:
Consider “⇒" as in Lemma A.1.
Consider “⇐": Ifuc |� transg (Xφ) thenuc |� ∨

n∈N [n]U (
∨

d∈dom(g)[d]∧Xtransg (φ)) bydefinitionof transg (Xφ)
⇔ ∃k ≥ 0.∀ i < k .ui

c |� ∨

n∈N [n] ∧ uk
c |� ∨

d∈dom(g)[d] ∧ X transg (φ) by definition of U .
Let uc � 〈s ′

0, t
′
0, s

′
1, t

′
1, . . . , s

′
k , t ′

k , . . .〉 . So ti ∈ N ∀ i < k , tk ∈ dom(g) and uk+1
c |� transg (φ) by the definition of

X).
Also given ua R uc then u1

a R uk+1
c then u1

a R uk+1
c by ind hyp u1

a |� φ therefore ua |� Xφ. �

The next lemma allows us to determine that there is a relationship between infinite concrete paths, which are
infinite due to convergent and ordinary (and not anticipated) events, and an abstract path such that the refinement
relation R introduced in Definition 4.1 holds.

Lemma A.3 If M �W · · · �W M ′ and u ′ is an infinite path of M ′ with no anticipated events, then ∃u.u is a path
of M and u R u ′.

Proof Let u ′ � 〈s ′
0, t

′
0, s

′
1, t

′
1, . . .〉

r (s0, u ′) � 〈s0, g(t ′
0)〉 � r (s1, 〈s ′

1, t
′
1, . . .〉) if t ′

0 ∈ dom(g) for s1 where J (s1, s ′
1)

r (s0, u ′) � r (s0, 〈s ′
1, t

′
1, . . .〉) if t ′

0 �∈ dom(g) where J (s0, s ′
1)

Foundations for using linear temporal logic in Event-B refinement

Let u � r (s0, u ′). then by construction u R u ′. �

Proof ofLemma6.3Letu ′ tobean infinite executionofMn sinceMn is deadlock free thenMn sat CA(g−1
i+1,n (Ci−1)∪

· · · ∪ Cn , g−1
i+1,n (Oi)) thus u ′ � dom(gi+1,n) is infinite since Mn has no anticipated events.

From Lemma A.3 u is a path of Mi such that u R u ′.
Since Mi |� φ then u |� φ. Thus, from Lemma A.1 u ′ |� transgi+1,n (φ) thus Mn |� transgi+1,n (φ) as required. �

Note that u ′ � dom(gi,n) being infinite is key within the proof in order to be able to establish the conditions
for R to hold. Recall the example of u1 � 〈a, a, a, a, . . .〉 and u2 � 〈b, c, b, c, b, c, c, c, c, c, c, . . .〉 where b maps
to a, and c is a new event. u1 |� GF (a) but u2 �|� GF (b), i.e. the transformed property is not satisfied by u2 since
u2 only has finitely many events in u1 that it matched.

Proof of Lemma 6.4 The proof of this lemma is almost identical to Lemma 6.3, noting that the existence of a path
does not rely on the fact that J is functional. But since J is functional the path will be unique and we are able
to apply Lemma A.2 in the penultimate step so that u ′ |� transgi+1,n (φ) thus Mn |� transgi+1,n (φ) as required. �

The remainder of the appendix provides the proofs that support the most general results in the paper, i.e.,
Lemmas 7.3 and 7.4. We begin as above by providing a supporting lemma, Lemma A.4 to demonstrate the
relationship between an infinite trace ua preserving a temporal property which refers to the enabled operator
and a corresponding trace uc preserving a transformed temporal property. In this lemma we have been more
explicit with our labelling with regard to which refinement steps are being used, i.e., between Mi and Mj , thus it
is clearer between which refinement steps the strong deadlock freedom proof obligation needs to hold. We have
also labelled the compositional function mapping g more explicitly for consistency within the proof.

Lemma A.4 If ua is a path of Mi and uc is a path of Mj such that ua R uc and ua |� e(t) and uc � dom(gi+1,j) is
infinite and S NDFi,j (t) holds ⇒ uc |� transgi+1,j (e(t)).

Proof Consider ua R uc such that uc � 〈s ′
0, t

′
0, s

′
1, t

′
1, . . .〉 and ua � 〈s0, t0, . . .〉.

Then let t ′
0, t

′
1, . . . , tk−1 ∈ N and t ′

k �∈ N , i.e., t ′
k ∈ dom(gi+1,j) and N � α(Mj) − dom(gi+1,j)

Then ∀ i < k .ui
c |� ∨

n∈N [n]
Thus from Definition 7.1 we are required to prove that

uk
c |�

⎛

⎝

⎛

⎝

∧

n∈N
¬e(n) ∧

∨

y|gi+1,j (y)�t

e(y)

⎞

⎠ ∨
⎛

⎝

∨

n∈N
e(n) ∧

∨

d∈dom(gi+1,j)

[d]

⎞

⎠

⎞

⎠

Note that ua |� e(t) ⇒ Gt (s0).
We have J (s0, s ′

k) since ti ∈ N , i < k and ua R uc .
Since S NDFi,j (t) we have by Definition 7.2 that J (s0, s ′

k)∧ Gt (s0) ⇒ ∨

y|gi+1,j (y)�t e(y)(s ′
k)∨

∨

n∈N e(n)(s ′
k).

It follows that
∨

y|gi+1,j (y)�t e(y)(s ′
k) ∨ ∨

n∈N e(n)(s ′
k)

⇒
⎛

⎝

∨

y|gi+1,j (y)�t

e(y)(s ′
k) ∧ ¬

∨

n∈N
e(n)(s ′

k)

⎞

⎠ ∨
∨

n∈N
e(n)(s ′

k) (since A ∨ B � (A ∧ ¬B) ∨ B)) (18)

Also
∨

d∈dom(gi+1,j)

[d](s ′
k) by construction of s ′

k , i.e., t
′
k ∈ dom(gi+1,j) (19)

Thus for s ′
k we have (18) and (19) ⇒

⎛

⎝

∨

y|gi+1,j (y)�t

e(y)(s ′
k) ∧ ¬

∨

n∈N
e(n)(s ′

k)

⎞

⎠

∨

×
⎛

⎝

∨

n∈N
e(n)(s ′

k) ∧
∨

d∈dom(gi+1,j)

[d](s ′
k)

⎞

⎠ since (A ∧ ¬B) ∨ B) ∧ C ⇒ (A ∧ ¬B) ∨ (B ∧ C)

T. S. Hoang et al.

i.e.

uk
c |�

⎛

⎝

∨

y|gi+1,j (y)�t

e(y) ∧ ¬
∨

n∈N
e(n)

⎞

⎠ ∨
⎛

⎝

∨

n∈N
e(n) ∧

∨

d∈dom(gi+1,j)

[d]

⎞

⎠ (20)

Thus uc |� ∨

n∈N
[n] U (20). �

Proof of Lemma 7.3Let u ′ to be an infinite execution ofMn sinceMn is deadlock free thenMn sat CA(g−1
i+1,n (Ci)∪

· · · ∪ Cn , g−1
i+1,n (Oi)) thus u ′ � dom(gi+1,n) is infinite since Mn has no anticipated events.

From Lemma A.3 u is a path of Mi such that u R u ′.
Since Mi |� φ then u |� φ. We also have that S NDFi,n (t) holds, thus from Lemma A.4 (with i � i and j � n)
and Lemma A.1 we have that u ′ |� transgi+1,n (φ) thus Mn |� transgi+1,n (φ) as required. �

Proof of Lemma 7.4 This proof is identical to the proof of Lemma 7.3 but with the penultimate step applying
Lemma A.2 since J is functional.

References

[ABH+10] Abrial J, Butler MJ, Hallerstede S, Hoang TS, Mehta F, Voisin L (2010) Rodin: an open toolset for modelling and reasoning
in Event-B. STTT 12(6):447–466

[Abr10] Abrial J-R (2010) Modeling in Event-B: system and software engineering. Cambridge University Press, Cambridge
[AFK88] AptKR,FrancezN,Katz S (1988)Appraising fairness in languages for distributedprogramming.DistribComput 2(4):226–241
[AM98] Abrial J, Mussat L (1998) Introducing dynamic constraints in B. In: Bert D (ed) B’98: Recent Advances in the Development

and Use of the B Method, vol. 1393. Springer, Heidelberg, pp 83–128
[BAA+08] Bicarregui J, Arenas A, Aziz B, Massonet P, Ponsard C (2008) Towards modelling obligations in Event-B. In: Börger E, Butler

M, Bowen JP, Boca P (eds) Abstract state machines, B and Z, vol. 5238. Springer, Heidelberg, pp 181–194
[BDJK00] Bellegarde F, Darlot C, Julliand J, Kouchnarenko O (2000) Reformulate dynamic properties during B refinement and forget

variants and loop invariants. In: Bowen JP,Dunne S,GallowayA,King S (eds) ZB 2000: Formal specification and development
in Z and B. First International Conference of B and Z Users, York, UK, August 29–September 2, 2000, Proceedings, volume
1878 of Lecture notes in computer science. Springer, pp 230–249

[BDJK01] Bellegarde F, Darlot C, Julliand J, Kouchnarenko O (2001) Reformulation: a way to combine dynamic properties and B
refinement. In: Oliveira JN, Zave P (eds) FME 2001: Formal methods for increasing software productivity, International
Symposium of Formal Methods Europe, Berlin, Germany, March 12–16, 2001, Proceedings, volume 2021 of Lecture notes in
computer science. Springer, pp 2–19

[But92] Butler MJ (1992) A CSP approach to action systems. DPhil thesis, Oxford University
[Cle14] ClearSy (2014) Atelier B version 4.2. http://www.atelierb.eu/en/download-atelier-b/. Accessed 20 Feb 2016
[CM89] Chandy M, Misra J (1989) Parallel program design: a foundation. Addison-Wesley, Reading, Mass
[DJK03] Darlot C, Julliand J, Kouchnarenko O (2003) Refinement preserves PLTL properties. In: ZB 2003: Formal specification and

development in Z and B, Third International Conference of B and Z Users, Turku, Finland, June 4–6, 2003, Proceedings, pp
408–420

[DS12] Derrick J, Smith G (2012) Temporal-logic property preservation under Z refinement. Form Asp Comput 24(3):393–416
[Gro06] Groslambert J (2006) Verification of LTL on B event systems. In: B 2007: Formal specification and development in B, volume

4355 of LNCS. Springer, pp 109–124
[HA11] Hoang TS, Abrial J (2011) Reasoning about liveness properties in Event-B. In: ICFEM, volume 6991 of LNCS. Springer, pp

456–471
[HH13] Hudon S, Hoang TS (2013) Systems design guided by progress concerns. In: Integrated formal methods—10th International

Conference on integrated formal methods (IFM2013), volume 7940 of Lecture notes in computer science. Springer-Verlag, pp
16–30

[HLP13] Hallerstede S, Leuschel M, Plagge D (2013) Validation of formal models by refinement animation. Sci Comput Program
78(3):272–292

[Lam00] Lamport L (2000) Fairness and hyperfairness. Distrib Comput 13(4):239–245
[LB08] Leuschel M, Butler MJ (2008) ProB: an automated analysis toolset for the B method. STTT 10(2):185–203
[LFFP09] Leuschel M, Falampin J, Fritz F, Plagge D (2009) Automated property verification for large scale B models. In: FM, volume

5850 of LNCS. Springer, pp 708–723
[Low08] LoweG (2008) Specification of communicating processes: temporal logic versus refusals-based refinement. FormAsp Comput

20(3):277–294
[Mor90] Morgan CC (1990) Of wp and CSP. In: Feijen WHJ et al (eds) Beauty is our business: a birthday salute to E. W. Dijkstra.

Springer, New York, pp 319–326
[Mur13] Murray TC (2013) On the limits of refinement-testing for model-checking CSP. Form Asp Comput 25(2):219–256
[PL10] Plagge D, Leuschel M (2010) Seven at one stroke: LTL model checking for high-level specifications in B, Z, CSP, and more.

STTT 12(1):9–21
[PV01] PuhakkaA,ValmariA (2001)Liveness and fairness in process-algebraic verification. In:CONCUR2001—concurrency theory,

12th International Conference, Aalborg, Denmark, August 20–25, 2001, Proceedings, pp 202–217

http://www.atelierb.eu/en/download-atelier-b/

Foundations for using linear temporal logic in Event-B refinement

[SLDW08] Sun J, Liu Y, Dong JS, Wang HH (2008) Specifying and verifying event-based fairness enhanced systems. In: Formal methods
and software engineering, 10th International Conference on formal engineering methods, ICFEM 2008, Kitakyushu-City,
Japan, October 27–31, 2008. Proceedings, pp 5–24

[STW14] Schneider S, TreharneH,WehrheimH (2014) The behavioural semantics of Event-B refinement. FormAspComput 26(2):251–
280

[STWW14a] Schneider S, Treharne H,WehrheimH,Williams D (2014)Managing LTL properties in Event-B refinement. arXiv:1406.6622,
IFM2014, June

[STWW14b] Schneider S, Treharne H, Wehrheim H, Williams DM (2014) Managing LTL properties in Event-B refinement. In: Integrated
formal methods—11th International Conference, IFM 2014, Bertinoro, Italy, September 9–11, 2014, Proceedings, volume
8739 of Lecture notes in computer science. Springer, pp 221–237

[WdRF12] Williams DM, de Ruiter J, Fokkink W (2012) Model checking under fairness in ProB and its application to fair exchange
protocols. In ICTAC, volume 7521 of LNCS. Springer, pp 168–182

[Z+14] Zurich ETH et al (2014) Rodin version 3.1.0. http://www.event-b.org/. Accessed 20 Feb 2016

Received 25 February 2015
Accepted in revised form 29 March 2016 by Michael Butler

http://arxiv.org/abs/1406.6622
http://www.event-b.org/

	Foundations for using linear temporal logic in Event-B refinement
	Abstract
	1 Introduction
	2 Event-B
	2.1 Event-B machines
	2.2 Event-B refinement
	2.3 Event-B development strategy

	3 Example
	4 Event-B semantics
	5 LTL notation
	6 Preserving LTL properties
	6.1 General GF property preservation
	6.2 General LTL property preservation (excluding the enabled operator)
	6.3 Preserving vending machine properties

	7 Extending LTL properties to include enabled events
	8 Related work
	9 Discussion and future work
	Acknowledgements
	Appendix A: Proofs of Lemmas
	References

