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Abstract

This paper considers a model of multi-unit ascending auction with
two players and known values. This standard model is not robust to a
small reputational perturbation. If reputation is one-sided, then the player
without reputation lowers her demand in order to clear the market and
stop the auction immediately at the reserve price. Hence, the player with
reputation buys all the units she demands at the lowest possible price. If
the reputation is on both sides, then the War of Attrition emerges. In
any case, there is a unique equilibrium payoff profile. One feature of the
equilibrium of the two-sided model is that market clearing is delayed and
the expected realized price is higher than the reserve price.

Keywords: Mulit-unit auction, uniform price, ascending auction, repu-
tation, complementarities, aggressive bidding.

JEL Classification: D44

1 Introduction

This paper considers a model of ascending multi-unit auction with two bidders
and many units of a homogenous good for sale. In such an auction the bidding
continues until the total demand of the bidders is equal to the total number of
units available.

In the simplest model of this auction format, it is assumed that the bidders’
marginal utility is common knowledge and constant. There is a great multiplic-
ity of equilibria in this model — and consequently the model has no predictive
power. This paper shows, that this multiplicity of equilibria is not robust. If
we introduce an arbitrarily small but positive probability that bidders may be
of a type that demands ”large” bundles, even if prices are high, then the unique
equilibrium payoff profile emerges. We will call such types ”irregular”.

If the reputation is one-sided, then in any equilibrium there is no delay. The
player who has no reputation decreases his demand to the level that clears the
market, in order to prevent the price from rising. If such a strong asymmetry
occurs, the seller will not obtain any additional revenue beyond the reserve price.
If the reputation is on both sides, then the equilibrium is mixed, and hence there



is some delay. Each normal bidder decreases his demand to clear the market
with some density over some price interval. However, some surplus stays with
the bidders, since the expected price is less than the value of the object.

The introduction of irregular, aggressive types follows the approach of the
reputation literature. In this approach the irregular types are assumed to be
behavioral — they demand x units, as long as the price is lower than the value of
the object, where exogenous number z is relatively ”large” relative to the total
supply. It is shown that there is only one equilibrium payoff profile in weakly
undominated strategies in this version of the model.

It is argued later, however, that this kind of aggressive behavior of irregular
types does not have to be assumed, but rather can be generated by a very
plausible utility function; for that reason the irregular types do not have to be
irrational per se. The utility function of the irregular type will have a very high
marginal value for the x’th unit.

Why is this type plausible? Complementarities between objects may be
an explanation for high marginal value for the z’th unit. The irregular type
attaches some positive value to the objects as long as the entire bundle of size x
is acquired; if he receives fewer units then they are all worthless, if he receives
more than z, then all additional units are also worthless.

One might be tempted to say that irregular type is aggressive because he
has valuation higher than the normal type. It is interesting to see that marginal
values matter, rather than total valuation.

There are many real-life examples of multi-unit ascending auctions, where
complementarities between objects are bound to play some role. The Federal
Communications Commission (FCC) in the US was using multi-unit ascending
auctions since 1994 in order to sell thousands of radio spectrum licenses for
providing personal communications services such as mobile telephones, paging,
or wireless computer networks. See McAfee and McMillan (1996) or Cramton
(2001). Licenses varied in geographical coverage and amount of spectrum. It is
recognized that complementarities among licenses are natural in these instances.
For example, a license for Philadelphia region may be worth more to a company,
if it wins the adjacent licenses in New York and Washington. Another example
of multi-unit ascending auction was some of the UMTS auctions in Europe.
German and Austrish governments auctioned off 12 blocks of spectrum, and
each bidder could buy either two or three licenses.

2 Model

There is L > 3 indistinguishable units of a good for sale. The normal value of
each unit is common knowledge and common, equal to v > 7, where r > 0 is
a reserve price. There are 2 bidders, each one can buy at most K units, where
% < K < L —1. This upper bound is an exogenous parameter and could be set
by the seller to prevent too much of a concentration of the objects in one hands.

The format of an auction is ascending. It will be modeled in a usual ”clock”
manner, where bidders announce their individual demands by means of usual



"buttons”. The price is continuously rising and each bidder announces how
many units he wants to buy at any current price by keeping that number of
buttons pushed. By releasing the buttons, the bidder can decrease her demand
by one or more units. The buttons are not repushable, so the bidder cannot
increase the demand.

One demand reduction may induce an immediate round of new reductions
and all of them may happen at the same price. To keep track of what triggers
what, assume that releasing a button automatically stops the clock for a short
intermission, so that the opponent can accommodate this new situation, then
the auction resumes.

The auction stops at the market clearing price, p©, the first price where the
excess demand is nonpositive. The distribution of objects to bidders is according
to their demands at the market clearing price.

STRATEGIES: History at price p must describe how and when the bidders
decreased their individual demands prior to price p. Thus, the history will be
identified with a list of prices, when such changes occurred, and the resulting
demands. Suppose that N of these changes occurred, let the history at price p
be a list

hp,2, 2 ) ={(®,20,29), (" 21 23) s or (PN, 20 s 29 ) } for p > P,

where for every n = 1,..., N we have p" > p"~! and 2" < zgl_l forall i =1,2
and 2" < 27"~! for some i. Each element (p”, z},25) denotes an event that at
least one of the bidders, say i, decreased his demand at price p™ to some new
quantity z;* < z?fl. If p* = p™ ! then after one of the bidders decreased his
demand at price p”~!, someone decreased the demand again immediately after
the intermission. Initial element of this list denotes the starting point, where
p° = r is just the reserve price and z? < K is an initial demand of player i. The
final element of this list must have 2{’ 424" > L for the auction to still continue
at and after pV, otherwise the auction stops at p”, and this is a market clearing
price, p¢ = p'V.

It is well known that a standard sealed-bid second-price auction with one
object and two bidders is strategically equivalent to a clock version of an English
auction. In the same way we will consider a sequential sealed-bid counterpart of
the multi-unit clock auction described above. This auction will be regarded as a
series of simultaneous-move games. The outcome of each such game determines
the parameters of the game that will be played in the next stage. The final
payoffs are determined in the final stage.

Specifically, fix an n’th intermission (stage) and a history h (p”, 27, 25). It
means that the price and demands are (p™, 27, 25'). We will assume that bidders
play a simultaneous-move game, in which bidder ¢ = 1,2 chooses two parame-
ters: a ”bid” b; > p™ and a demand z; € {z]' —1,...,0}. If bidder 1 has a bid
lower than bidder 2, then his bid becomes a new standing price during next in-
termission, p"*! = b; = min {by, by}, the new demand of bidder 1 is 2! = 2,

and the demand of bidder 2 remains unchanged at 25" = 2. The new and



commonly known history in the (n + 1)’th intermission is
1 (pn-i-l, Z{Hrl, 2721+1) _ {h (pn, Z’{L, Z;L) , (blv 21, Zél)}

If there is a tie, by = bg, then the new demands for bidders 1 and 2 are equal
to z; and zs, respectively, and the new event added to the current history is

(pnt1, 20 25 = (b1, 21, 22). The process continues until 2™ + 253" < L.

A behavior of player 7 after history h (pN A ) is denoted by F; (zi, bi, h (pN

which is a probability that player ¢ decreases his demand to z; € {z{v -1, O}
at or before price b; > p!, after the history h (pN 2V, 2 ) If the history is null —
before the game started — then the choice is an initial demand z) € {0,1, ..., K'}.

Let N — 1 be the last stage where there is an excess demand, that is 2’ ' +

271> L and 2 + 2 < L. Then the market clearing price is p° = p”, and
the distribution of objects among bidders is z¥ and 22'.

PAYOFFS. Suppose that at the beginning of the auction nature chooses one
of two types for each bidder. With prior probability w; > 0 bidder ¢ is irregular.
With remaining probability, 1 — p;, bidder ¢ is normal and he has gross payoff
function linear in quantity, V,,.. (2) = vz, where z is number of units acquired.
The realized net payoff for normal bidder i is (v — p™) 2/, where p” is market
clearing price.

We will focus on equilibria in which the weakly dominated strategies are not
used. A behavioral strategy is weakly dominated if there is another behavioral
strategy that brings payoff higher for all strategies of the opponent and strictly
higher for some strategies of the opponent. For instance, bidding positive de-
mands for prices higher than v is weakly dominated by a strategy that involves
decreasing the demand to zero at price equal to v. Also a normal type who
demands 1 unit has a weakly dominated strategy to decrease his demand to
zero at a price less than v. This strategy is dominated by a strategy of bidding
precisely one unit until the price reaches v.

For now, assume that irregular type of any bidder ¢ is behavioral. That is,
he demands z; € {1,..., L — 1} for all prices, by assumption. Later on, a more
complicated version of the model will be discussed, in which even irregular
types are endowed with utility functions and are rational. It will be shown that
under the assumption that bidders do not use weakly dominated strategies, the
equilibrium already analyzed is still unique.

3 Literature versus predictions of the model.

It is known that there is a great multiplicity of equilibria in the unperturbed
game, p; = 0 for i = 1,2. Very low prices, even equal to an exogenous reserve
price, may be supported by an equilibrium.

Example 1 Let a € {1,...,L — 1} be an arbitrary constant. Suppose that the
bidders 7split” the pie according to this constant — that is, they start bidding
with 20 = a and 29 = L —a and then they never give up before the price is equal

N _N
y 21 5”2
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to value, that is F; (z;,b;,-) = 0 for all b; € (r,v) and z; € {O,...,z? — 1} and
F; (0,b;,-) =1 for b; > v.

Player 1 has no incentive to deviate because the market clearing price is r,
and his ultimate payoff is (v —r)a. Any deviation to lower demand does not
affect the price, but assigns less to him and hence the payoff is lower. Any
deviation to a higher demand rises the price but does not affect the eventual
assignment, hence the payoff is lower too.

Obviously, this collusive-seeming equilibrium is neither efficient nor revenue-
maximizing. Moreover, there is many equilibria that differ in price and assign-
ment of the units to the bidders.

Such a possibility of low revenues was first noticed by Wilson (1972), in the
context of a divisible-object and sealed-bid version of the model. His point was
elaborated by Back and Zender (1993) who showed that this type of auctions
admits equilibria that lead to arbitrary low prices. The reason responsible for
low prices is so-called demand reduction. Demand reduction is an incentive of
each bidder to cut the demand to stop the auction even if the price is below
the true value of the object. The cost of stopping the auction earlier is that
the marginal unit is not acquired for the price that is lower than its value,
and hence the potential surplus is lost to the opponent, but savings are that
all inframarginal units are acquired for the price lower than otherwise. This
incentive to lower the demand does not exists in single-unit ascending auction
because there are no inframarginal units. For instance, in Example (1), inelastic
demands are used to skyrocket the price, should the opponent try to acquire
more units than this equilibrium postulates.

The equilibrium behavior in the model analyzed in this paper also recognizes
this incentive for demand reduction, for the realized prices are always less than
v. But since the equilibrium is unique, it is possible to address the question of
comparative statics, and in particular the magnitude of the demand reduction.
If the reputational profile is very asymmetric, say one of the bidders is known to
be normal for sure, then the demand reduction leads the lowest price possible,
r. The player reducing his demand is the one without reputation. On the other
hand, if the model is symmetric, then the normal bidders engage in a struggle
akin to War of Attrition, and the demand reduction is not that dramatic.

The literature also mentions a phenomenon called collusive-seeming equi-
librium, which essentially is a different interpretation of the demand reduction,
emphasizing rather the way how bidders can retain some surplus by coordinating
their behavior. The bidding is seen as a negotiation or bargaining device to split
the objects between the bidders. In Example (1), a constant a determines such
a split. The reputational model of this paper may be seen as a formalization of
this interpretation. The reputational profile may be interpreted as a profile of
bargaining powers — that is, the larger the probability that a particular bidder
is irregular and will not reduce the demand, the stronger this bidder appears
to be, the sooner his opponent reduces his demand and eventually the higher
payoff this bidder gets.



There were a few fairly promising attempts to give some recommendations
to the seller who, for some reasons, must use uniform price mechanism. One
argument, made by Back and Zender (1999) and McAdams (1999) gives the
seller an opportunity to adjust the supply of shares after bidders announced
their demands. Since bidders’ collusive behavior is sensitive to this quantity,
they are not able to coordinate on equilibrium so well. This again can easily be
seen in terms of the Example (1); if the seller can decrease the number of units
L after the demands are announced,' then the cooperation among bidders in a
collusive-seeming way can effectively be punished by the seller.

Allowing for some alternation of total supply is closely related to the model
of Klemperer and Meyer (1989). Their approach, in the context of an auction, is
to assume that there are some noisy players who purchase some part of the total
supply, leaving an uncertain residual for the strategic bidders. The probability
of such a supply variation can be arbitrarily small, and still a unique equilibrium
is selected (in the model with divisible objects), but this noise has to have a full
support. The model in this paper introduces a perturbation for the same reason
— to select a unique equilibrium — although the nature of this perturbation is
different.

McAdams (1999) proposes a mechanism in which a seller gives a small mon-
etary prize to reward a bidder who does not reduce the demand too early. The
intuition is that in this case each bidder can win the prize by increasing the price
by an arbitrarily small bit. Such a small change leads to a Bertrand-like bid-
ding and eventually upsets the collusive-seeming equilibria. The realized price
is equal to v. However, only equilibria in pure strategies are considered in this
analysis. The model presented in this paper suggests however, that a mixed
equilibrium with a random winner and random price is plausible. Such equi-
librium is robust — small money prize perturbations will not be able to change
the strategies of the bidders substantially, and the collusive-seeming equilibria
apparently are not eliminated, the realized price would still occur below v.

From the point of view of the reputation literature the model of this paper
is closely related to Abreu and Gul (2000), who analyze the bargaining problem
with reputation on both sides. It was already mentioned that the multi-unit as-
cending auction can be seen as a mechanism in which bidders negotiate/bargain
how to split the objects among themselves. The only substantial difference is
how the cost of bargaining is specified — in the classical bargaining model this
is discounting, in the multi-unit ascending auction this is increasing price. The
equilibrium in the Example (1) corresponds to the well-known no delay outcome
of the bargaining problem. See also Ausubel and Schwartz, (1999). The result
of Abreu and Gul (2000) that there is some delay in reaching the agreement in
bargaining corresponds to the similar delay result in the model below.

Abreu and Gul (2000) is itself related to the paper by Fudenberg and Tirole
(1986), who introduce reputation into the standard model of a War of Attrition
and receive the uniqueness of the equilibrium there. The uniqueness of the
equilibrium payoff in the model of ascending multi-unit auction below is not

! They analyze a sealed-bid uniform price, rather than its ascending counterpart.



surprising then, given that such an auction is a form of War of Attrition.

4 Equilibrium with behavioral types

This section assumes that irregular type of bidder : demands x; for all prices less
than v. We will consider strategies in which normal bidder i starts demanding
x; at the reserve price, 29 = z; for i = 1,2. Let X = x1 + z2. Suppose that at
the beginning of this ascending auction there is some excess demand, X — L > 1.

Let y; = L —x; be a residual demand of bidder ¢, once the irregular demand
of bidder j is fully satisfied. Note that x; > 1;. Moreover, let w; = z—% > 0.

Consider a family of strategies, in which if normal type of any bidder ever
decreases his demand, then he decreases it to y;. That is, for any b; < v we have
Fi (2i,bi, {(r,21,22) }) = 0if 2; # y;. Define IT; (b;) = (1 — p;) Fi (ys, bs, {(r, 21, 72) })
to be the probability that (unconditional) player i decreases his demand to y;
before or at the time where the price reaches b;. If these strategies are played
then the game stops immediately after any of the bidders decides to reduce his
demand — that is, there is only one stage, p¢ = p'. It is possible to pin down
the entire strategy and ultimately the strategy profile. For instance, for any
history involving demands z < z; and 2} < x; (after bidder i is revealed to
be normal and bidder j is or is not revealed to be normal), bidder i gives up
immediately, F; (L — zjv, h (pN, 2N, zJN)) = 1, and his opponent gives up only
at price equal to v, Fj (-, bj, h (pN,ziN,zN)) =0 for all b; < v.

If bidders use the above strategies, then (IT; (), Iz (+)) are enough to specify
the payoff profile. The following proposition shows that if these functions have
a particular form then they generate a unique equilibrium payoff profile.

Proposition 2 If 0 < (p;)*" < (uj)wj and 0 < p;, then the unique Perfect
Bayesian equilibrium payoff in weakly undominated strategies is generated by a
strategy profile that involves

v—r

me =1 (i) W)
O e e (=)

forbe [r,vf (v—r) (uj)“%}

Note that there may be a multiplicity of equilibria, but there is a unique
equilibrium payoff. The unique equilibrium payoff profile can be obtained by
evaluating the utility functions, defined below, at price r. The payoff ultimately
is

ui (r) =y; (v—r)

/A /A

w5 ) = [ (1 () ) s ()5 0



When the reputation is one-sided, p; = 0 and p; > 0, then player ¢ decreases
his demand to y; immediately at price r, IT; (r) = 1, and the payoff profile is

ui (r) = yi(v—r)
uj(r) = wj(v—r)

4.1 Proof of the Proposition (2).

Let ZN = 2V 4+ 2V be the total demand at stage N = 0,1,.... Let also u¥ be
a posterior probability belief in the N’th intermission that player 7 is irregular,
where ;Y = p,; is a prior probability belief.

The idea of the proof is to find an equilibrium by backwards induction. This
reduces the entire game to a series of games. Moreover, each such game turns
out to be a simple timing game, namely a War of Attrition.

Lemma (3) below deals with the last stage of the auction, where the excess
demand is equal to one unit. It shows that if reputation is one-sided, then player
who is known to be normal decreases his demand immediately. Lemma (4) pro-
vides an inductive step, which is to show that if in one-sided model a player
without reputation reduces his demand immediately when the excess demand is
up to some D — 1, then in one-sided model a player without reputation reduces
his demand immediately when the excess demand is D. Lemma (5) combines
these two results to conclude that in one-sided model, the player without rep-
utation reduces immediately his demand to the level just enough to stop the
auction. Thanks to this, the auction at any stage is equivalent to a simple War
of Attrition and representable by the above (II; (-),II5 (+)).

Lemma 3 Suppose that in stage N the excess demand is one, ZN - L =1,
and suppose that 0 < (uf\')wl < (uj-\')wj and 0 < uj-\' (or zJN =z, 2N < ;).
N

Let yN = L — zjv and w) = xNy;yN' Then the unique equilibrium payoff is

generated by the strategies

oy () =1- (J’:,,‘;V)wﬁv
Y (b) =1—p" (Né\’)(’“’;\’/‘*’f\]) (v_—b>“’§v

v—pN

Proof. Any decrease of the demand by any of the bidders stops the auction.
Obviously a normal type of bidder ¢ will decrease his demand by one unit, to
L—zY. Let I (b)) = (1 — i) Fi (y)¥, 05, h (p", 21, 237)) denote a probability
that player i decreases his demand to L — zJN by the time the price reaches b;,
stopping the auction. For simplicity of notation, let us ignore the superscript N
in this proof, and write y;, 2;, yi, p and w; instead of N, 2N, yN, p™ and w¥.

If a normal bidder 7 is the first to decrease his demand at price b, then his
realized payoff is y; (v — b). On the other hand, if i’s opponent, bidder j, decides
to decrease his demand first, at some price b;, then ¢ receives the quantity that he
demanded, z;. The resulting payoff for normal player ¢ in this case is z; (v — b;).



Given the strategy of player j summarized in II; (-), the expected payoff of
player i from exiting at price b is

b
u; (b) = 2z (v —p)IL; (p) + / zi (v —b;)dlIl; (bj) +y; (v —b) (1 —1I; (b))

Let

be the time at which it is known that player ¢ is never going to decrease his
demand in the future.

Suppose that the situation involves a reputation is on both sides, 0 <
()" < (p;)™ < 1. Let us establish a few properties of equilibria.

1. Ry = Ro. If R < v, then for all b € (R,v), II1 (b) =1 — puq and I3 (b) =
1 — py, where R = Ry = Ro».

Suppose not, Ry < Ry. Then player 1 exits with probability zero in the
interval (Ry,v). A normal type of player 2 will never wait with exiting
after R;.

2. R>p

If R = p, then no player should decrease his demand at p but rather should
wait a little, proving that he is irregular.

3. If TI; is discontinuous at any given point b € (p,v), then there exists € > 0
such that II; is constant on (b —€,b). If II; is discontinuous at any given
point b € [p,v) then II; is not discontinuous at b.

Suppose that II; is discontinuous at b. Then normal player ¢ who is sup-
posed to exit before b but sufficiently close to b, is better off by waiting a
tiny instant to some date just after b. The gain is discrete since a positive
mass of players j exit at b and z; > y;, while the loss due to waiting is
arbitrary small. For the second part suppose that II; is also discontinuous
at b. Then there is positive probability that both bidders exit at b. On
the other hand, if ¢ waits a bit, this gives a discrete increase of a payoff,
while a loss due to waiting is arbitrary small.

4. If II; is continuous at b then u; is continuous at b.

See the definition of u;, above.

5. There is no interval (b1, b2) C (p, R) such that both II; and II; are constant
on (by,b2). Both II; and II; are strictly increasing on (p, R).

For the first claim suppose not, and let b, be a supremum of upper bounds
of all such intervals, so that at least one bidder exits with positive proba-
bility at every price just after b,. Let ¢ be a bidder, whose u; is continuous
at b, (there is at least one). Note that u; and u; are both strictly decreas-
ing on the interval (b1, by ), so for a fixed b € (b, b.) there exists a positive



constant ¢ such that for every s € (by — &, b, + €) we have u; (b) > wu; ().
In particular, this means that bidder 7 cannot exit with positive probabil-
ity at dates s € (by, b. + €) and II; is constant for all dates in (by, b, + ).
But then u; is strictly decreasing on the interval (b1, b« +¢), so bidder
j cannot exit at these dates and II; is constant there too. We reach a
contradiction, because b, was assumed to be the supremum of all such
intervals. The second part is a by-product of the above.

6. Both II; and II; are continuous on (p, R).
Suppose II; has a jump at b, then II; is constant just before b. This
contradicts that both are strictly increasing.

7. Both u; and u; are differentiable on (p, R).

Utilities u; and u; are continuous on (p, R) because II; and II; are. Since
II; and II; are strictly increasing «; must be constant, hence differentiable.

8. It follows that w} (b) = 0 for all b € (p, R)

The condition, u} (b) = 0 for b € (p, R), implies that
1 111, (b)
w0 TP= m; ()

The general solution of the above condition is explicit and has the following
form

v—>b\"
(b)) =1-(1—1 (R
50 =1 (-1 () (+=3)
where the point (R,II; (R)) pins down the particular solution - the point yet
unknown. Since w; > 0 this function is increasing.
One boundary condition is II; (R) = 1 — p; and II; (R) = 1 — y;, which
implies

w; (2)

0, which imply
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R = v—(v—p)(y)
(n) < ()™

Eliminating R from the equations (2) gives the result.

Now suppose that reputation is only on one side, x; > 0 and p; = 0. Suppose
that R > p is the last price at which normal bidder 7 exits. Points 3-8 above
are unaffected by the assumption of one-sided reputation. The construction of
the equilibrium leads to equations (2) and a conclusion that II; (b) = 1 for all
b > p. This contradicts the assumption that R > p. Hence, p = R. There may
be a lot of equilibria, but in each equilibrium we have II; (b) = 1, for all b > p,
which is consistent with the claim. m
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Lemma 4 Fiz D = 2,3,..., X — L. Suppose that ZN*' — L € {1,...,D — 1}

and N1 >0, pN =0 (or zjV‘H =z; and 2N < x;) implies that player

J i
i collects only L — x; units at market clearing price pNtL. Then ZN — L =D
and uév > 0, ul¥ = 0 implies that player i reduces his demand with probability

one at price p~.

Proof. Consider any intermission N in which the excess demand is D and
player ¢ has already revealed his normality and player j is still possibly irregular,
@ >0 and pY =0, that is 2} = z; and 2V < ;.

Suppose that bid of player 7 is less than the bid of j, that is b; < b;. Then in
the next stage the demand will be at most D —1 and uj\lﬂ >0, ufvﬂ = 0. Also
pNtl =b;, zJN =N+l = z;. Therefore, by the hypothesis of the lemma, player
i will receive a payoff y; (v — b;), where y; = L — x;, and player j will receive
a payoff x; (v —b;). Let II; (b;) denote a probability that player i decreases his
demand by the time the price reaches b;.

Suppose that bid of ¢ is not less than the bid of j, that is b; > b; = pN+L
Then in the next stage both players are revealed to be normal and there is a
multiplicity of equilibrium continuation payoffs. Consider the most difficult case
for the claim in the lemma, that is the case in which player i gets the largest
possible incentive to bid high b;, and player j gets the largest possible incentive
to bid small b;, so that b; > b; is the most likely. Namely, suppose that if b; > b;,
then player j gets (z; — 1) (v — b;) and player i gets z¥ (v — b;) which are the
highest conceivable payoffs that both bidders can obtain in this situation. If in
this case bidder ¢ reduces his demand immediately and with probability one,
as the lemma claims, then he will reduce his demand immediately and with
probability one in all other cases. Let II; (b;) denote a probability that player
Jj decreases his demand by the time the price reaches b;.

Hence, if bidder 7 and j decides to reduce their demands at b then the
expected payoffs are, respectively,

ui () =z (v—p") I (PN)+/ 2N (v —bj) dIL; (b)) + i (v —b) (1 =TI, (b))

pN

u; (b) = SUj('UpN)H,L»(pN)+/ZI'j('Ubi)dni(bi)‘i’(xj1)('01))(11_[1‘(()))

This problem is completely analogous to the one in Lemma (3). The only
difference is that z; is replaced by 2V and y; is replaced by (z; —1). Still,
however, this is a War of Attrition, since z¥ > y; and x; > (z; — 1). Hence,
in any equilibrium of one-sided model, bidder without reputation reduces his
demand with probability one immediately at price p%V. m

Lemma 5 Consider any stage N, in which pf > 0, p¥ =0 (or z) = zj,
2N < ;). Then with probability one player i reduces his demand at p™ (in one
or more intermissions) and receives a payoff y; (v — p").
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Figure 1: Linear example of an equilibrium in a multi-unit ascending auction

Proof. This claim is true if the excess demand of one unit, ZV¥ — L = 1, by
lemma, (3). Hence the hypothesis of lemma (4) is satisfied for D = 2. Applying
this lemma repeatedly to any D = 2,3, ..., X — L proves the result. ®

The lemma (5) states the Proposition (2) in the case of one-sided reputation,
pi = 0 and p; > 0. To prove the Proposition (2) in the case of two-sided
reputation, 0 < (u;)*" < (uj)wj, consider a history h (r,z1,x2). If bids are
b; < b; then in the next stage bidder ¢ is known to be normal, hence by lemma
(5) his payoff is y; (v — b;), otherwise it is x; (v — b;). This problem is again
analogous to the one in Lemma (3), except that N = 1, 2 = 21, 28 = 25 and

p™ = r, hence the result.

4.2 Example

Let L = 3 let z; = x; = 2. This means that w; = w; = 1 and if p; < p; then
the equilibrium strategies are

{ IL; (b) = 1 — =2

See Figure 1. To be more general, the functions II; (b) and II; (b) are both linear
if the irregular type demands two thirds of the total quantity.
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5 Rationalizing irregular types

This section shows in a simplified case that the irregular type does not have to
behave in a way that is assumed exogenously.

Assumption. Suppose that K = z; = z; and that X — L = 1.

Under this assumption we obtain just a simple timing game. The auction
stops when any of the bidders decreases his demand. As long as the auction
is not finished, there is just one simple history possible, namely the history in
which both bidders demanded precisely K units. Our linear example above
satisfies this assumption.

The normal type has a value function as assumed above, V., (2) = vz. Now
we will assume that irregular type has a function

_ 0 ifz <y
V"T(z)_{ ve; if z=ux;

Note that the irregular type has weakly lower valuation than the normal type,
Virr (2) < Vior (2), but his marginal valuation for the last unit is much higher
than the one of the normal bidder.

This valuation function of irregular type formalizes a notion that units or
objects in this auction may be complementary to each other. Irregular type
values a bundle of z; units only if the whole bundle is acquired. Anything less
is worthless. But whether any given player is normal or irregular is not known
to the public, and prior probability belief is given by the distribution p,; and
1—p,.

The rational type defined above does not have to announce demand equal to
x;, as the behavioral type in the previous section is assumed. It turns out that
there are multiple equilibria in this slightly augmented model. For instance,
consider a strategy profile in which player 1 yields immediately, regardless of
type. That is the normal type decreases his demand to x; — 1, and the irregular
type decreases his demand to 0. On the other hand, player 2 demands z2 units
until the price reaches or exceeds v. In this equilibrium the market is cleared at
the reserve price and no player of no type has incentives to deviate.

This equilibrium, however, is implausible, because it relies on weakly domi-
nated strategies. Namely, irregular type of player 1 could use a strategy in which
he decreases his demand at v, rather than at the reserve price. The former strat-
egy weakly dominates the latter, because both guarantee the payoff of at least
zero, but for some strategies of the opponent (not used in this equilibrium) the
former strategy gives positive profit.

We obtain

Proposition 6 There exists a unique equilibrium payoff profile in weakly un-
dominated strategies.

Proof. Just note that irregular player has a unique weakly dominant strategy,
to decrease the demand from z to zero, when the price reaches v. Given this

13



behavior of irregular type, we obtain precisely the behavioral model in which
there is a unique equilibrium payoff profile by Proposition (2). m

Is the assumption at the beginning of this section restrictive? Potentially
yes, because in a more general case, when the excess demand is more than one,
we obtain a model in which more complicated histories can occur. Decreasing
demand at certain prices may serve as a signaling device. Moreover, it was
shown that irregular types will not demand less than their z, but there may be
a reason for them to demand more than z.

6 Bibliography

Abreu, D. and F. Gul, (2000), Bargaining and Reputation, Econometrica, 68,
pp. 85-117.

Ausubel, L. M. and J. A. Schwartz, (1999), The Ascending Auction Paradox.
Manuscript, University of Maryland.

Back, Kerry and Jaime F. Zender (1999), 'Auctions of Divisible Goods with
Endogenous Supply’, mimeo, Washington University in St. Louis.

Cramton, P. (2001a), Spectrum Auctions, Handbook of Telecommunications
Economics, Martin Cave, Sumit Majumdar, and Ingo Vogelsnag, eds. Amster-
dam: Elsevier Science B.V., forthcoming.

Cramton, P. (2001b), Appendix 3, Lessons Learned from the UK 3G Spec-
trum Auction, The Auction of Radio Spectrum for the Third Generation of
Mobile Telephones.

Fudenberg D. and J. Tirole (1986), A Theory of Exit in Duopoly, Econo-
metrica, Vol. 54, pp. 943-960

Klemperer P. D. and M. A. Meyer (1989), Supply Function Equilibrium
Oligopoly Under Uncertainty, Econometrica, Vol. 57, November, pp.1243-77.

McAdams, D., (2000), ’Collusive-Seeming Equilibria’ in the Uniform-Price
Auction, manuscript.

McAdams, D. (1999), ’Increasable Supply and Collusive-Seeming Equilibria
in the Uniform-Price Auctions’, mimeo, Stanford University.

McAfee R. P. and J. McMillan (1996), Analyzing the Airwaves Auction,
Journal of Economic Perspectives, Vol. 10, Number 1, pp.159-175.

14



	0609.pdf
	Reputation in Multi-unit Ascending Auction   
	      


