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ABSTRACT 
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MARINE LANDSCAPE MAPPING IN SUBMARINE CANYONS 

by Khaira Ismail 
 

As the largest portion of the Earth's surface, the deep-sea contains various ecosystems and 
harbours among the highest biodiversity on the planet. Complex deep-sea environments such as 
submarine canyons are some of the true ecosystem hotspots harbouring extensive species 
diversity owing to their high terrain variability. However, their complexity and limited 
accessibility has left many unanswered questions concerning their spatial structure and ecology. 
Recently, there has been an increasing amount of interest to understand the ecosystem function 
of this challenging environment, which has led to the development of technology to enable 
accessibility for research and exploration. Along with this, evidence of anthropogenic impacts has 
been uncovered, and this calls for more effective management in this complex type of deep-sea 
environment. Although there is a growing awareness for conservation in the deep-sea, scientific 
knowledge to underpin these strategies is still inadequate. Often what is known to the scientific 
community is not properly conveyed to policy makers. Hence, implementation of marine spatial 
management is not always successful.    

This thesis provides a scientific framework to underpin ecosystem-based management. It 
examines the seabed spatial structure in submarine canyons by 1) developing a mapping 
procedure to represent the spatial structure using commonly available data types for seabed 
studies, 2) proposing an approach to quantify the structural variability as an indicator for 
biodiversity to aid decision-making in prioritising conservation areas and 3) evaluating the spatial 
structure information transfer across different spatial scales and data types. 

As a result, a novel technique that is objective, automated and statistically robust is 
developed to map marine landscapes, which are geomorphologically and ecologically 
meaningful. The marine landscape map is found to be the best representation of environmental 
characteristics in submarine canyons.  Based on this finding, marine landscape configuration and 
composition is quantified as a proxy for habitat heterogeneity and potentially an indicator of 



 

 

biodiversity. Additionally, the method is transferred to a high-resolution dataset for marine 
landscape mapping at a local scale, in order to evaluate the evolution of spatial characteristics 
across data scales. This study reveals that a link between regional and local scale spatial structure 
can be identified and mapped, and that information from one scale can be transferred to the other. 
Additionally, regional scale marine landscape maps provide first-level structural information that 
is suitable and sufficient to facilitate marine spatial management for large heterogeneous areas 
such as submarine canyons.  
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Chapter 1:  Introduction 
“Or [the state of a disbeliever] is like the darkness in a vast deep sea, overwhelmed with 
waves topped by waves, topped by dark clouds, (layers of) darkness upon darkness: if a 

man stretches out his hand, he can hardly see it! And he for whom HE has not appointed 
light, for him there is no light” 

24:40 

1.1 Research context 
1.1.1 Background 
The deep sea covers 63.6% of our biosphere (Hüneke and Mulder, 2011) and provides various 
ecosystems that harbour millions of known and unknown species (Ramirez-Llodra et al., 2010). 
Like Earth’s landmasses, the deep seafloor contains canyons, mountain ranges and other 
formations. Being the largest portion of the Earth's surface, their role is non-negligible. Yet, this 
challenging environment is still underexplored and much of its ecological processes are poorly 
understood. The reasons for this are varied, and include, besides inaccessibility, difficulties in 
defining and quantifying seabed properties and the lack of a well-developed scientific framework 
that incorporates the uniqueness of these environments.  
Although research in the deep sea is still limited and hampered by time and money, the effort to 
understand the deep-sea environment is increasing (Danovaro et al., 2014).  At the same time, 
awareness for deep-sea conservation is growing and management plans are increasingly being 
developed, even beyond national waters (Barbier et al., 2014). This is in parallel with the increase 
of human activities affecting the deep sea, such as fisheries, hydrocarbon exploration and more 
recently deep-sea mining. These anthropogenic activities are moving into depths beyond 1500 m, 
interrupting the equilibrium of the deep benthic ecosystem.  
Ecosystem-based management represents effective and much needed approaches to conservation 
and management for marine systems (De Young et al., 2008).  Ecosystem-based management is 
defined as an integrated approach to management that considers the entire ecosystem, including 
humans, in order to maintain an ecosystem in a healthy, productive and resilient condition so it 
can provide the services humans want and need (McLeod and Leslie, 2009). However, the 
scientific knowledge base to underpin these strategies is much lacking. To facilitate ecosystem-
based management, ecosystem processes in the deep-sea must be synthesized, interpreted and 
communicated across an extended community of scientists, policy makers and stakeholders.  One 
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of the first steps to establish a successful ecosystem-based management should be to characterise 
the seabed habitat features in the ecosystem, which effectively corresponds to marine habitat 
mapping (Cogan et al., 2009). Habitat mapping is a powerful tool to support modelling and 
management of marine ecosystems. It has now becoming a standard activity in surveys of both 
national waters (e.g. Australia’s National Representative System of Marine Protected Areas 
(NRSMPA)) and international areas of interest (e.g. UNESCO Global Open Oceans and Deep 
Seabed (GOODS) Biogeographic Classification). The general approach is to construct marine 
habitat maps, followed by evaluation of biodiversity and development of management procedures 
(Figure 1.1). 
  

 
Figure 1.1: The role of marine habitat mapping to support ecosystem-based management. Adapted from 
Cogan et al. (2009). 
 
Biodiversity refers to the variation of life forms in an ecosystem, and this is surprisingly high the 
in deep-sea (Ramirez-Llodra et al., 2010). Niche Theory (Chase and Leibold, 2003) states that 
spatial variability in environmental conditions is the main driver behind marine biodiversity 
especially in structurally complex environments. Ecosystems that contain true three-dimensional 
and highly variable terrains such as submarine canyons are able to create true ecosystem hotspots, 
harbouring extensive species diversity (Tyler et al., 2009). Despite this, spatial heterogeneity is 
seldom quantified as an indicator of biodiversity.  
Looking from an ecosystem perspective, quantification of spatial structure becomes meaningless 
without incorporation of biological components. Biological investigations are generally carried 
out at a fine or local scale, while management plans are often taken at much broader scale. Due 
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to this, relating biological information to regional patterns has always been a challenge (Ellis and 
Schneider, 2008). However, a broad spectrum of data with different extent and resolution are now 
available with the emergence of new technologies. Such data will aid in finding ways to relate 
information from metre-scale seabed observations to kilometre-scale regional maps.  
The thesis aims to promote a marine landscape mapping approach to facilitate ecosystem-based 
management by developing an objective automated technique to map marine landscape in 
complex deep-sea environments (with the focus in submarine canyons) in a statistically robust 
way at broad and medium scale and to propose a measure for marine landscape 
heterogeneity to evaluate its potential as a proxy for biodiversity at broad scale.  
The issues are summarised into three main objectives: 
1. To establish marine landscapes as a basis for submarine canyon mapping. Developing a marine 
landscape mapping technique that is objective and automated, and acts as a harmonised approach 
to map and interpret seafloor natural zones in submarine canyons. 
2. The marine landscapes will be the representation of terrain variability in submarine canyons. 
Therefore they are to be quantified through a spatial heterogeneity measure for submarine canyons 
and as an indicator for biodiversity. 
3. To evaluate the information transfer across different types of data, extent and resolution to 
assess the spatial scale relationship from fine to broad scale.  

1.1.2 Marine habitat mapping 
According to the International Council for the Exploration of the Seas (ICES 2006), marine 
habitats are defined as “particular environments distinguished by their abiotic characteristics and 
associated biological assemblages operating at particular but dynamic spatial and temporal 
scales in a recognisable geographical area”.  It is clearly stated here that there are two 
components in delineating a habitat: abiotic characteristics and biotic assemblages. Abiotic 
characteristics are the non-living factors that can affect the ecosystem such as geomorphic 
features, substrate type, hydrodynamic properties and their spatial structure. Biotic assemblages 
are the species and the living organisms that inhabit a particular area.  
The natural world has often been viewed as a hierarchal structured system. To underpin the 
ecosystem-based management plans it is fitting to use natural regions to represent the seabed. 
Most existing habitat mapping approaches classify a marine ecosystem following a pre-defined 
hierarchal system composed of abiotic and biotic components. Among the well-known 
classification schemes are the European Nature Information System (EUNIS), United States 
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Coastal and Marine Ecological Classification Standard (CMECS) and the more recent UNESCO 
Global Open Oceans and Deep Seabed (GOODS).  
Apart from the mainstream classification systems mentioned above, a number of additional 
existing classification systems have been applied to the deep sea using different characteristics to 
represent the distribution of abiotic and biotic characteristics of the seafloor. Classification 
systems are often limited to regions of the globe such as Europe, UK, Canada, USA, Australia 
etc. This is only logical, because the momentum for the establishment of marine spatial planning 
is driven by national and regional initiatives. Some of the examples of classification applied to 
the deep sea for management purposes are shown in Table 1.1. 
Common characteristics used to create divisions within the hierarchical schemes include depth, 
geomorphology, substrate type and biology. Mutual problems that can be found in these 
classification schemes include that they often are an incomplete representation of the deep-sea 
realm and do not always relate well to what can be mapped with current technologies (especially 
acoustics). For instance EUNIS, the system used to classify habitats within Europe, although well 
developed and fit for purpose in shallow waters, contains a fundamental flaw in classifying the 
deep sea. At the initial level in the classification, i.e. at the broad scale, the deep sea is divided 
based on depth. In a complex deep-sea environment, this can cause conflict of interest especially 
when designing a framework for marine spatial planning, since ecological diversity can vary 
within a heterogeneous terrain in addition to depth. Moreover geomorphic entities within highly 
heterogeneous ecosystem (e.g. submarine canyons) may extend across several depth ranges. 
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Table 1.1: Example of classifications that is applicable to the deep sea 
Classification Levels/Hierarchies Descriptions 
Greene et al., 1999 

 
 

System Subsystem Class Subclass Modifiers 
Mega: Submarine canyons 

Meso : Define by depth Head <100m Upper 100-300m Middle 300-500m Lower >500m 

Meso and macro: Based on seafloor morphology Vertical wall Terrace Channel  Pinnacle  

Macro and micro: Substratum type  Slope angle 
*additional descriptions based on bottom morphology, deposition, texture or physical, chemical, biological or anthropogenic processes 

1. Classification is divided based on geomorphological features. 
2. Habitats are divided according to feature sizes e.g.: mega- kilometres to 10s of kilometres or larger, meso- tens of metres to a kilometer, macro- one to ten meters, micro centimetres in size or smaller. 
3. Potentially, for management purposes at Class level submarine canyons will be divided based on features, however substratum type and slope angle which usually affects biological properties will not be included to describe the habitats.   

Allee et al., 
2000 

 
Level 6 Level 7 Level 8 Level 9 Level 10 Level 11 
Depth: Shallow <200m  Medium 200-1000m Deep >1000m 

Regional wave/ wind energy: Exposed Protected 

Hydrogeomorphic 
features: 
Continental  
Non-continental 

Hydrodynamic features: Supratidal Intertidal Subtidal 

Photic/ Aphotic Topography: e.g. Cliff, reef flat, ledge, terrace   
 

1. Consist of 13 levels altogether, each level represents different characteristic to describe habitats (shown here are levels related to submarine canyons classification i.e. Level 6-Level 11). 
2. Using this classification, a submarine canyon system is identified as a hydrogeomorphic feature (level 8). Further division in submarine canyons is based on local hydrodynamics, exposure to sunlight and topography.    

Roff and Taylor, 2000   
 

Level 1 Level 2 Level 3 Level 4 Level 5 
Geographic / temperature Pelagic/benthic Depth/light:  Bathyal 200 -2000m Abyssal >200m 

Substrate type: Mud/silt Gravel/sand 
Exposure/slope: Low slope High slope 

1. Introduces classification based solely on abiotic dataset and uses biological data at later stage only for validation (i.e. marine landscape) 
2. At Level 5 submarine canyons will be divided based on depth, substrate and slopes.  
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Butler et al., 2001  
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 
Province: ~1000km extent 

a) biome b) sub-biome c) mesoscale unit 
Geomorphological unit ~100km extent 

Primary biotopes ~ 10km 
Secondary biotopes Biological biotopes Micro- communities 

  

1.A bioregionalisation approach at national level 
2. The unit is divided based on size; for instance, geomorphological units are typically about 100km in extent.  
3. Submarine canyons are identified at Level 3, divided further at Level 4 & 5 based on features about 10s of km in extent (e.g. Level 4: soft sediments between reef and Level 5: fine sediments)  

EUNIS; Davies 
et al., 2004  

 

   

Level 1 Level 2 Level 3 Level 4 Level 5 
A: Marine A6: Deep sea bed A6.8 Deep-sea trenches and canyons, channels, slope failures and slumps on the continental slope 

A6.8.1 Canyons, channels, slope failures and slumps on the continental slope 

A6.8.11 Active downslope channels Inactive downslope channels A6.8.12 Inactive downslope channels A6.813 Alongslope channels A6.814 Turbidites and fans  

1. The deep seabed is divided based on chemical conditions, if none, habitats are categorized based on seabed relief/features.  
2. However, no further geomorphological features or substratum types are included to classify habitats within submarine canyons 
3. Lack of spatial structural information especially for submarine canyons that contain high terrain variation  

UNESCO GOODS; Vierros and Commision, 2009 

 
Zones  Characters Provinces 
Pelagic Water masses & currents  
Benthic Depth zones Bathyal 300-3500m Abyssal 3500-6500m Hadal >6500m Hydrothermal vents 

Water masses 

  

1. First classification system covering the entire oceans beyond national jurisdiction 
2. A global attempt to comprehensively classify the open ocean and deep seafloor into distinct biogeographic regions 
3. Biogeographic classification classifies specific ocean regions using environmental features and it aims to find homogeneous regions with respect to habitat and associated biological communities  
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Howell, 2010  
Level 1 Level 2 Level 3 Level 4 
Biogeography: Arctic Atlantic Bioherms 

Depth: Upper slope 200-750m Upper bathyal 750-1100m Mid bathyal 1100-1800m Lower bathyal 1800-2700m Abyssal 2700-5000m 

Substratum: Mud Sand  Mixed  Coarse Hard 

Biology: 40 benthic megafaunal assemblages  

  

1. The first attempt to design a classification that represents biological diversity for deep sea MPA (Marine Protected area) network  
2. The classification is driven by biological relevance and used a bottom up approach. It was developed for a small area in NE Atlantic but is applicable to the whole deep sea and critically the high seas. 
2. Classification omits the geomorphological surrogates, and abiotic component is based on depth and substratum type 
 

CMECS; Federal geographic data committee, 2012 

 
Biogeographic setting Aquatic setting Water column component Geoform component Substrate component Biotic component 
Realm   Province     Ecoregion 

System    Subsystem       Tidal zone 
Layer Salinity Temperature Hydroform Biogeochemical feature 

Tectonic  Physiographic Level 1 Geoform Level 2 Geoform 

Origin Class  Subclass Group Subgroup 

Setting Class Subclass Group  Community 
  

1. The first national standard for classifying coastal and marine ecosystems  in the United States 
2. The classification gives a representation based on different 'components'. 
3. Maps produced are versatile and can be based on each component, therefore the end product can be very flexible and descriptive of most abiotic properties 

Parry et al., 2015   
Environment  Biological zone Substratum Broad community Biological assemblages 
Marine Biogeographic region and vertical zone  

Rock Mud Sand Coarse sediment Mixed sediment Biogenic sediment 

occupy a certain niche and fulfill a certain functional roll e.g. deep sponge aggregation 

linked to one ‘parent’ broad community e.g. Pheronema carpentreri field 
 

1. A new deep sea section for marine habitat classification of Britain and Ireland that is proposed to be included as part of upcoming revision of the EUNIS classification 
2.  A system designed to achieve a representation of biological diversity within a deep-sea MPA (Marine Protected Area) network 
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In order to achieve harmonised mapping and integrated deep-sea research efforts globally, there 
is a growing need for statistically robust and repeatable mapping techniques. Existing marine 
habitat mapping methods do not always fulfill this requirement as they are often based on expert 
judgment and subjective decisions. At regional and medium scales, mapping is mostly done 
through manual delineation, algorithm assisted digitising or a combination of those. These 
approaches used for mapping are still time-consuming and labour extensive. With the rapid 
development of seabed acoustic surveying techniques and increasing environmental data in recent 
years, an objective, automated and repeatable technique is much needed to handle the volume of 
information efficiently. Indisputably, the fundamental concept behind hierarchical classification 
is useful. However, the subjective approach taken to delineate the natural zones on the seabed 
hinders the quantification of seabed properties.  
Marine landscape mapping is an approach of habitat mapping that was introduced by Roff and 
Taylor (2000) and will be adopted in this thesis. Each delineated natural zone will be referred to 
as a marine landscape. Roff and Taylor (2000) first introduced the concept adapting it from 
landscape ecology. They applied the hierarchal abiotic classification based on easily available 
abiotic datasets such as bathymetry, slope, bed stress and seabed substrata to produce marine 
landscape maps.  
Marine landscape is defined as “an environment distinguished by its abiotic characteristics with 
a potential to provide colonisation ground for specific biological assemblages”. Marine 
landscape mapping hence is defined as broad scale classification based solely on abiotic factors 
to distinguish natural seabed zones that can support particular biological assemblages.  
The concept was trialed in a shallow marine environment by Verfaille et al. (2009). The work was 
applied to the Belgian part of the North Sea (BPNS) to divide the area into ecologically relevant 
zones using an objective statistical method. The advantage of the BPNS as a trial area to attempt 
a harmonized approach of habitat mapping is the various abiotic datasets available and a large 
dataset of macrobenthic samples to be used as ecological validation. The protocol proposes six 
steps to classify the area into ecologically relevant marine zones; 1) principal component analysis 
(PCA) for data reduction and to avoid multicolinearity of the abiotic attributes, 2) hierarchal 
cluster analysis was applied onto the resulting principal components (from PCA) to group the 
pixels with abiotic data on a statistical basis, 3) K-means partitioning using the result from the 
hierarchal clustering as starting points to cluster the pixels in groups in which the distance to its 
center is minimal, 4) number of clusters is determined using the Calinski-Harabasz criterion, an 
F-statistic multivariate analysis of variance and classified pixels from the cluster analysis, 5) split-
run procedure as a measure to validate the clustering analysis based on its internal properties 6) 
indicator species analysis of the clusters to evaluate whether the obtained clusters represent 
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ecologically relevant marine zones. The outcome (Figure 1.2) reflects the natural spatial 
variability in the area and showed clear relationship between its abiotic attributes and occurrence 
of macrobenthic species. Overall evaluation of the protocol as an objective approach can be 
summarized as follows; 1) it allows possibility to use all available abiotic variables as input for 
PCA as it eliminates data redundancy 2) no necessity to classify continuous abiotic variables into 
predefined clusters 3) and the optimal number of clusters is statistically determined. However, 
the possible risk if the protocol were to be applied over a large area and datasets, obtained based 
on different techniques and accuracies, is that it may create unpredictable error propagation. 
Nevertheless, the protocol creates opportunities towards a harmonised habitat mapping approach 
with caution on primary data origin, qualities and accuracy. Following the success of the objective 
protocol in the BPNS, shallow marine environment to delineate ecologically relevant marine 
zones on the seabed based on geophysical characteristics, it motivated the development of a 
similar procedure with added values for the deep-sea environment.  
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Figure 1.2: The Belgian part of the North Sea was classified into 8 clusters or zones by using the objective 
protocol proposed by Verfaille et al. (2009). Interpretation of each cluster is shown in the legend above. 
Each cluster is described according to the characteristics of the original abiotic variables. (Source: Verfaille 
et al., 2009). 
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1.1.3 Spatial structure and biodiversity 
Biodiversity has often been considered as an indicator for ecosystem functioning and status. 
Studies have shown that a higher biodiversity supports increased efficiency and higher rates of 
ecosystem processes (Danovaro et al., 2008). However, assessment of biodiversity in the deep sea 
is difficult to accomplish owing to limited sample coverage. Due to this, a surrogate to act as an 
indicator for biodiversity in complex deep-sea environments is a more realistic approach.  
According to Stability–Time hypothesis (Sanders, 1969), high species richness in the deep-sea 
environment is attributed to the apparent stability of the environment by allowing time for 
specialisation. However, rather than its stability, spatial variability in environmental condition has 
shown to be the main driver behind marine biodiversity (i.e. Niche Theory) (Chase and Leibold, 
2003), especially in structurally complex environments (Henry et al., 2010) as they provide a 
larger number of niches. Based on these fundamentals, spatial heterogeneity of environmental 
conditions in a terrain is proposed as an indicator of biodiversity in structurally complex deep-sea 
environments.  
The niche concept has been defined in many ways throughout the history of ecology (Schoener, 
1989, 2009; Chase & Leibold, 2003) and was often depicted descriptively through observing 
associations between organisms and habitats. The first qualitative description of the interaction 
made by Grinnell (1917) and Elton (1927) describing the roles and requirements of species in 
communities. According to the concept, a niche is defined as a multidimensional hypervolume 
that includes a whole range of conditions forming a stable population that can be successfully 
maintained.  
Quantitatively, when the niche space is set to its optimal conditions under which a species can 
live and replace itself, it is termed as the ‘fundamental niche’, as opposed to ‘realized niche’ that 
takes into account biotic interactions such as predation and competition. Here, niche in the marine 
landscape context refers solely to fundamental niche under an ideal condition in structurally 
complex deep-sea environment. The challenge then is to derive an approach to quantify the spatial 
structure with regard to the relationship between biodiversity and spatial heterogeneity in complex 
deep-sea environments.   
Evaluating ecosystem function using spatial pattern metrics is a well-developed approach in 
landscape ecology (Turner, 1989). Most terrestrial conservation and management activities view 
the landscape perspective as an essential way to manage resources (Uuemaa et al., 2013). 
However, the landscape approach in the marine realm is still lacking (Wedding et al., 2011). 
Although there are a number of studies in shallow waters that extend the usage of terrestrial spatial 
pattern metrics to characterize and quantify marine structural features, there is only one metric 
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that is specifically developed in the context of the marine environment and was used to quantify 
atoll structure (Andréfouët et al., 2001; Andréfouët et al., 2003). With regard to the deep-sea 
environment, the relationship between biodiversity and spatial pattern was studied at a local scale 
and shows that an association exists between biological distribution and spatial seabed 
characteristics (Robert et al., 2014a). Although the ultimate aim for the deep-sea research 
community would be to develop a unique spatial pattern metric for the marine realm, adaptation 
from the terrestrial environment can open new opportunities to explore and understand the 
relationship between spatial pattern and ecological processes. 

1.1.4 Spatial information across scale 
A long-standing issue in seafloor mapping is the scaling relationship, which combines the concept 
of grain and extent (Turner, 2001). Grain refers to the data resolution and extent is the area 
encompassed in the study. Biological information is usually limited to fine or local scale in 
contradiction with management decisions that are made at much broader scale. Often broad scale 
maps used for management purposes are doubted to give a good portrayal of the structural 
information in local scale surveys.  
Acoustic surveys are also affected by scale issues. There is a trade-off between data resolution 
and survey extent. The question remains how to relate the information obtained from two different 
scales. As technology advances, many new tools are capable of acquiring high-resolution data to 
give better insight in the deep sea. Generally, these types of data are obtained over smaller 
coverage areas but in more detail. For instance Autonomous Underwater Vehicles (AUV) with 
the ability to survey close to seabed are capable of acquiring sidescan sonar and bathymetric data 
that can be processed to the finest resolution of 0.05 m x 0.05 m pixel but the coverage extent is 
approximately around 7 km x 1.5 km at around 6 hours (Wynn et al., 2014). In comparison, ship-
borne multibeam bathymetry at water depth of approximately 3000 m or more, may get a coverage 
of approximately 100 km2 but with pixels of 100 m x 100 m. 
There are different types of structural features that can be mapped at different scales from different 
acoustic systems (Figure 1.3). In this study, the availability of data from ship-borne multibeam 
bathymetry and nested acoustic surveys using multibeam echosounders mounted on ROVs 
(Remotely Operated Vehicles), provides the opportunity to study the structural variation across 
fine and broad scale data. Intrinsic spatial characteristics of the terrain will be used to define scale 
relationships. 
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Figure 1.3: Some of the typical seafloor features that can be mapped by ship borne and ROV multibeam 
bathymetry. 

1.2 Research details 
1.2.1 Submarine canyon 
In the last decade, submarine canyons have been a major interest for research communities with 
the growth of new sampling and surveying technologies (Huvenne and Davies, 2014). Their deep 
V- or U-shaped valleys cut across continental margins of the world’s oceans, making them 
important geological features (Harris & Whiteway, 2011). Improved and well-developed 
equipment such as Autonomous Underwater Vehicles (AUV) and Remotely Operated Vehicles 
(ROV) allows access to the dramatic scenes of submarine canyons (Karson et al., 2015). 
Regardless of their unique structural characteristics, many questions about their spatial structure 
and ecosystem processes still remain. According to Niche Theory (Chase and Leibold, 2003), 
spatial variability in species distributions and the resulting biodiversity are ruled by spatial 
variation in environmental conditions, which makes submarine canyons the fitting complex deep-
sea environment to fulfil the study objectives.  
Submarine canyons are the main pathways that connect the shallow waters to the deep sea. They 
transport sediments (Puig et al., 2014) and organic matter as a source of nutrients to the deep sea 
(Amaro et al., 2010). However, also human litter and pollutants are brought along to the deep 
depositional system via this pathway (Schlining et al., 2013). Owing to their high terrain 
variability, steep topography, unique hydrodynamic regime and increased nutrient content 
contributing towards increased food availability, submarine canyons are often considered 
potential hotspots of biodiversity (Tyler et al., 2009; De Leo et al., 2010). Studies have shown 
that submarine canyons are complex habitats with specific hydrographic and sedimentological 
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characteristics to intensify mixing and amplify currents (Turchetto et al., 2007) that influence 
faunal community structure and biodiversity (Schlacher et al., 2010). 
Extensive datasets for submarine canyon systems have been collected by the National 
Oceanography Centre, Southampton. The data used for this study cover the Setubal/Lisbon and 
Cascais Canyons offshore Portugal, and Whittard Canyon in the Bay of Biscay. These data were 
collected in the framework of the EU FP6/7 IP HERMES and HERMIONE, and the NERC 
MAREMAP programme, a follow-on from NERC’s OCEAN2025 programme. They were 
analysed in those projects for habitat mapping using traditional visual interpretation. Structured, 
repeatable and automated habitat mapping was still lacking, which became one of the main 
motivations for the ERC CODEMAP project of which this thesis is part. 

1.2.2 Technique and technology 
In general habitat mapping techniques can be divided into two kinds of approach: top-down and 
bottom-up. A top-down approach delineates map units (habitats/landscape types/terrains) by 
splitting broad, full-coverage abiotic data (often from acoustic surveys) based on abiotic 
similarity, following the assumption that environmental attributes can predict biological patterns. 
Incorporation of biotic data (ground-truth data) only takes place to evaluate the validity of the 
abiotic characterised regions. Marine landscape mapping is one of the important examples of a 
top-down approach. In contrast, a bottom-up approach first establishes significant relationships 
between biological communities and environmental characteristics, and then uses both biotic and 
abiotic data to predict ecologically relevant regions. This approach starts with point coverage 
information that can then be interpolated to a full coverage map (Robert et al., 2014b). Between 
the two, top-down is often the more popular approach for regional mapping efforts (Brown et al., 
2011), as abiotic information is more widely available than detailed biological information 
especially in deep-sea environments. 
Abiotic data for the submarine canyons studied in this thesis are primarily derived from acoustic 
signals (Figure 1.4). They are the best way to investigate the seabed efficiently and accurately. 
Seabed imaging revolutionized in the 1940s with the first system reported to survey the seabed 
being relatively high-frequency echosounders that yielded the first sidescan sonar sonographs 
(Fish and Carr, 1990). The most rapid developments in acoustic electronics were reported during 
1970s and 1980s (Kenny et al., 2003). From then onwards, many recent developments have 
enhanced the ability to map the seabed, making deep-sea exploration more tangible (Wynn et al., 
2014).  
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Acoustic mapping systems can be roughly divided into three categories: single beam 
echosounders, multibeam echosounders and sidescan sonars. Single beam echosounders are 
widely used for navigational purposes on most vessels. They transmit a single acoustic signal at 
a time close to the vessel’s nadir.  The first return from the seabed corresponds to the point closest 
to the vessel. The usage is limited because they only provide information directly below the 
survey vessel. Due to this limitation, multibeam echosounders were designed, which are more 
fitting for mapping purposes. 
 

 
Figure 1.4: Illustration of the common acoustic systems used during seabed surveys. ROVs can be equipped 
with video, camera and a multibeam system. This thesis uses acoustic data acquired from ship-borne and 
ROV-mounted multibeam bathymetry and sidescan sonar system.  
 
Multibeam bathymetry 
Multibeam echosounders are the successors of the single beam echosounders. They transmit a 
fan-shaped acoustic signal across the vessel’s track and record in several strips perpendicular to 
this direction (Figure 1.5). They record the depth in the cross-sections of the transmitted signals 
and record strip, creating the beams that cover a wide swath from underneath the ship to either 
side of the vessel’s track. Each beam acquires a bathymetry measurement and additionally 
backscatter strength can also be derived (Brown and Blondel, 2009). Various technical (e.g. 
Lurton, 2002) and applied publications (Gardner et al., 2003; Roberts et.al, 2005; Wilson, 2006; 
Costa et al., 2009) have documented the principles of a multibeam system. The important factors 
to be considered when using multibeam bathymetry data in the deep sea are data density and 
spatial resolution as they decrease with depth. Wider beam widths and longer pulse length are 
required for deep-sea surveys to overcome losses in the water column and provide sufficient 
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acoustic energy for a detectable return at greater depths. Water depth, beam angle and 
topographical features will affect multibeam acoustic footprint, for instance a bathymetric feature 
whose lateral dimensions are less than the acoustic footprint size will not be resolved into the 
data. Multibeam systems are often optimised for operation according to these factors especially 
depth of survey area by utilising different frequencies to achieve desirable bottom detection. 
However, multibeam data are often surveyed from surface vessels and have a limitation in the 
spatial resolution as it decreases with depth. This is a major drawback for data acquisition in the 
deep sea. Nevertheless, the advancement of survey vehicles, such as ROVs and AUVs permits 
multibeam surveys to be carried out closer to the seabed hence giving higher resolution data. But 
at the same time, the data extent will be reduced in comparison to ship-borne multibeam 
bathymetry.  

 
Figure 1.5: Visualisation of a multibeam echosounder sending out an array of sound pulses in a fan shape, 
then the beams bounce off the seabed and returns depths from underneath to the ship where the echoes are 
recorded. (Source: AML Oceanographic) 
 
The availability of multibeam technology has been a great tool and a significant development for 
habitat mapping. Their value for seabed studies has widely been regarded as the standard baseline 
for benthic habitat studies. They now create the most widely surveyed and commonly available 
data type for seabed studies. The common practice for multibeam data is to be readily transformed 
into digital terrain models, which may be visualised into two or three dimensions and incorporated 
in Geographic Information Systems (GIS), to provide spatial context for habitat mapping. The 
decrease of data density with depth has important consequences in habitat mapping since the same 
level of detail cannot be obtained at all depths especially in a highly heterogeneous terrain such 
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as submarine canyon. Inevitably, data gridding is another major issue when dealing with 
multibeam bathymetry processing for deep-sea areas. The effects of data gridding were artificially 
reproduced by Wilson (2006) on data from Galway Bay (shallow water area) to simulate the 
changes in detail one might expect to resolve in deeper waters (Figure 1.6). Most multibeam 
processing software has incorporated gridding algorithms that take into account the geometry of 
the sonar system to ensure optimisation of multibeam data representation.  
 

 
Figure 1.6: Illustration of the effect of data gridding reproduced on shallow water data at six different grid 
sizes to simulate the type of detail one might expect to resolve in deeper waters. Features appear on the 
smaller grid size disappears at larger grid size. This is worth noting especially when matching with direct 
observation data such as video data. Features that are attainable in video may be smoothed in large grid 
bathymetric data. (Source: Wilson, 2006) 
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Sidescan sonar imagery 
Sidescan sonar is an acoustic survey system either towed on a cable or built into an AUV produces 
high-resolution imagery of the seabed. Sidescan sonars repeatedly emit a pulse and record the 
intensity of the backscattered signal over time. The transmitted beams form the shape of a fan that 
sweeps the seafloor under and on either side of the towed sonar equipment.  These beams are 
narrow along-track to obtain a high-resolution image while across-track they are wide to cover as 
much range as possible. The components of the acoustic signal and scattering are shown in Figure 
1.7. The slant range is the distance between the sonar to a point on the seabed and the ground 
range is the distance between this point on the seabed to the point immediately below the sonar 
known as nadir. The angle of incidence is the angle between the line of sight to the sea bottom 
and the sea floor itself. The incidence angle of the incoming acoustic wave is the most important 
in sonar backscattering, as it will determine how the sound will scatter. The acoustic waves are 
scattered around the reflection angle and only a portion will be scattered back toward the sonar 
and is used in sidescan sonar, hence the backscatter. 
The receiver records the relative strength of this backscatter from the seafloor. The backscatter is 
influenced by three factors: local geometry of ensonification, roughness of the seafloor and 
intrinsic properties of the seafloor (Blondel, 2009) (Figure 1.8). For instance hard (rocky) seafloor 
will absorb very little signal and return most of it to the receiver while muddy seafloor will absorb 
most of the signal. Most sidescan sonar systems cannot provide depth information, however with 
the right algorithm and techniques, sidescan sonar imagery can provide information on sediment 
texture, topography and seabed features. The sidescan sonar data is commonly presented as 
greyscale sonar imagery which is often then interpreted visually by experts (Blondel, 2009) or by 
using advanced techniques such as textural analysis (Huvenne et al., 2002) or quantitatively to 
enable direct extraction of seabed properties such as mean backscatter intensity (Collier and 
Brown, 2005), grain size and sediment sorting. 
Sidescan sonar imagery, like any data, is rarely devoid of anomalies and artefacts. They can be 
easily mistaken for real features, as they are often difficult to interpret or remedy. It is important 
to identify these artefacts, anomalies and noise. Here, three artefacts that are recognised are near-
nadir distortion, shadows and exaggerated features at the edge of the processed sonar imagery. 
The nadir is a known area for having very poor data quality due to the vertical angle of incidence. 
For the same reason, feature exaggeration occurs at the edge of the sidescan sonar data in the 
survey area where the towed sidescan was almost vertical to the flank of the canyons. A shadow 
is an area that is less ensonified than the surrounding region caused by the acoustic signal being 
blocked by an acoustically opaque object. 
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Figure 1.7: Components of an echo event on the seafloor (Source: Blondel, 2009)  
 

 
Figure 1.8: Backscattering is affected by three factors with decreasing order of importance: 1) geometry of 
the sensor-target system (local angle of incidence of the sonar beam, local slope), 2) physical characteristic 
of the surface (roughness of the seafloor at scales comparable with sonar’s wavelength) and 3) intrinsic 
nature of the surface (e.g., rocks vs. sediments) (Source: Blondel, 2009) 
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Bathymetric terrain analysis 
Derivatives from the bathymetric grid are one of the important sets of data used in the analysis 
for the thesis. These terrain variables are derived from multibeam bathymetry data. They are used 
as part of the abiotic variables throughout this thesis. The derivation is performed on the 
multibeam bathymetry represented in a pixel grid. Based on a study by Wilson (Wilson et al., 
2007), terrain variables can be grouped into four categories: slope, orientation, relative position 
of features and terrain variability (Figure 1.9). 

 
Figure 1.9: Derivatives from bathymetry data can be divided in to four types of secondary layers; slope, 
orientation, positioning and terrain variability. Modified from Wilson et al. (2007). 
 
Slope is a key variable in landscape ecology. It is one of the common indices adopted from 
landscape analysis and widely used in the marine realm. Slope represents the maximum rate of 
change in value from a cell to its neighbour. The lower the slope value the flatter the terrain. Slope 
is calculated in Landserf v2.3 using Evans et al. (1979) method using the following equation: 
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where Z is the bathymetry depth and x and y are the coordinates 

Slope is one of the most widely used terrain variable used in studies related to seabed mapping. 
There are many other slope algorithms readily available in GIS and related software to calculate 
slope from bathymetric data. The effect of using different slope calculation was examined 
extensively in terrestrial studies (e.g. Dunn and Hickey, 1998; Hickey, 2000; García Rodríguez 
and Giménez Suárez, 2010; Gao et al, 2012;). However, there is a only small volume of literature 
that focuses on DTM uncertainty and the computation and use of terrain variables in marine 
context. The most thorough investigation on this was made by Dolan and Lucieer (2014) by 1) 
quantifying the effect of error in bathymetric data on slope derivatives, 2) examining the effect of 
different algorithms used to calculate slope and 3) effects of bathymetric data grid resolution and 
slope computation analysis window. According to their investigation they suggest that using 
Landserf’s multiple scale analysis is beneficial for bathymetric data as this can tailor the length 
scale/ window sizes for the analysis to a particular type of environment containing different sizes 
of features. For instance, in submarine canyons where you have small gullies and broad features 
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such as the canyon floor (area near the thalweg), by computing multiple scale analysis, it retains 
full detail of bathymetric surface through the minimum windows analysis (i.e. 3 x 3 window size) 
and bigger windows for broader features. They conclude that although there is no one analysis 
that can be pointed out as the best method for seabed mapping or marine geomorphology, they 
recommende suitable algorithms to calculate slope based on the purpose of the analysis and 
quality and resolution of bathymetric data.   
Aspect is a derivative from multibeam bathymetry and commonly available from most GIS 
application (e.g. ArcGIS, Erdas IMAGINE). It identifies downslope direction of the maximum 
rate of change value in from each pixel to its neighbours. It is closely linked to slope and can be 
simply thought of as the direction of slope. The output value is expressed in degrees clockwise 
from north. The aspect is calculated in Landserf v2.3 as follows: 
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where Z is the bathymetry depth and x and y are the coordinates 

As this derivation is typically measured in degrees, different values may be oriented in the same 
direction (e.g. 1o and 359o). To avoid confusion in statistical calculation, aspect is split into two 
components: eastness and northness (Hirzel et al., 2002; Wilson et al., 2007). 

ݏݏ݁݊ݐݏܽ݁ = sin(ܽݐܿ݁݌ݏ)         ݊ݐݎ݋ℎ݊݁ݏݏ = cos (ܽݐܿ݁݌ݏ) 
Aspect is one of the most common and widely used first order derivatives of DTMs. Its usage is 
well known in the terrestrial context as a significant factor in generating differences in ecosystem 
characteristics (Bale and Charley, 1994; Bale et al, 1998). For instance, the direction of the 
hydrological and sunlight exposure of mountains (i.e. the aspect) effects the distribution patterns 
of vegetation (Hartung and Lloyd, 1969; Ganuza and Almendros, 2003), and local variation in 
temperature and precipitation regulates decomposition rates of soil organic matter (Chen et al., 
1997; Lisiki and Westman, 1997; Casanova et al., 2000). In a marine context, aspect is a valuable 
variable for shallow water, where it provides information regarding the exposure to dominant 
swell or where sunlight is able to reach the seabed (Lucieer et al., 2013). However, in the deep-
sea environment, aspect is more relevant to be associated with local and regional currents (Gage 
and Taylor, 1992) rather than sunlight exposure due to the limited presence of sunlight (Schrope, 
2007). However its usage is still limited in marine habitat related studies. This is partly because 
of the lack of oceanography and circulation patterns data, which with such information only then 
makes the aspect a significant variable (Wilson, 2007). The issue is further discussed in Chapter 
2 and 4.  
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The Bathymetric position index (BPI), the algorithm is adapted from topographic position index, 
TPI), is commonly used to categorise topographic position in terrestrial environment (Weiss, 
2001) and has been applied to a number of benthic habitat studies (Iampietro et al., 2004; 
Lundblad et al., 2006; Wilson et al., 2007). The BPI compares the elevation of each pixel to the 
mean elevation of neighbouring pixels. The algorithm calculates the difference between cell 
elevation value and the average elevation within a circular neighbourhood within a certain radius 
(known as scale factor). Other options of neighbourhood type to calculate BPI are available in the 
toolbox and are described in detail by Jenness et al. (2010). Positive BPI values represent locations 
that are higher than their average surrounding while negative values indicate otherwise. Since BPI 
is innately scale dependent, a large scale factor is useful for delineating large scale seabed features 
in comparison to a small scale factor. BPI in this thesis is calculated in ArcGIS 10.2 using the 
Land Facet Corridor Designer extension (Jenness et al., 2011). The BPI algorithm for a circular 
neighbourhood is as follows;  

(ݎ݋ݐ݂݈ܿܽ݁ܽܿݏ)ܫܲܤ  = ݐ݊݅  ቀ൫ܾܽݐℎݕ— ,ݕℎݐܾܽ)݈݊ܽ݁݉ܽܿ݋݂ ,݈݁ܿݎ݅ܿ ൯(݀ܽݎ +  0.5ቁ 
where scalefactor = radius of circular neighbourhood in pixel unit; bathy = raster bathymetry grid and rad = radius of 

circular neighborhood (pixel) 

The BPI is described in detail by Lunblad et al. (2006) and demonstrated the ability of broad and 
fine scale BPI to capture different component of overall terrain variations (Figure 1.10).  

 
Figure 1.10: A description of the resulting bathymetric position index values derived from bathymetry 
data, based on topographic position index by Weiss (2001). a) fine scale and b) broad scale BPI values 
(image is adapted from Weiss, 2001). 
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Curvature is a second spatial derivative of multibeam bathymetry explaining concavity and 
convexity of the surface. The values, similarly with slope, depend upon the line or plane along 
which calculation are made. There are multitudes of ways to define curvature of a surface as 
mentioned in literature (Schmidt et al., 2003) that has been widely applied for terrain analysis in 
terrestrial (Porres de la Haza and Pardo Pascual, 2002; Yu et al., 2015) and marine realm (Wilson 
et al., 2007; Hasan et al., 2014). It is also one of the most commonly available terrain analyses in 
GIS software (Hengl and Reuter, 2009). Plan and profile curvature are both represent the rate of 
change in slope at that point in a horizontal and vertical plane, respectively. Negative value 
indicates a concave shape, positive is convex and zero if there is no sloping. According to Wilson 
et al., (2007), based on her analysis plan curvature are beneficial in highlighting ridges and 
channels while profile curvature are useful to pick out breaks in the slope possibly may be of 
significance for feature boundaries. The profile and plan curvature in this study are derived as 
follows using Landserf v2.3 (Wood, 2009); 

݂ܿ݋ݎ݌       = −200 (ܽ݀ଶ + ܾ݁ଶ + ܿ݀݁)
(݁ଶ +  ݀ଶ)(1 + ݁ଶ + ݀ଶ)ଵ.ହ ݈ܿ݊ܽ݌                       = 200 (ܾ݀ଶ + ܽ݁ଶ − ܿ݀݁)

(݁ଶ + ݀ଶ)ଵ.ହ  

where a, b, c, d and e are the coefficients of the DTM surface and the curvature terms are multiplied by 100 to 
express them as per cent gradient per unit length 

The DTM surface can be locally approximated by the bi-variate quadratic funcion (Evans, 
1980): 

ܼ = ܽܺଶ + ܾܻଶ + ܻܿܺ + ݀ܺ + ܻ݁ + ݂ 
where Z is the bathymetry depth, and X and Y are the horizontal coordinates 
 
Rugosity or seafloor roughness calculates the ruggedness of the seafloor, especially in the terms 
of how convoluted and complex a surface is. Jenness (2004) developed a method to calculate 
rugosity, which is essentially a ratio of a surface area to the planar area, across the neighbourhood 
of the central pixel. The algorithm is made available via DEM Surface Tools as an extension for 
ArcGIS 10.2 and was used to derive the following parameter in this study as follows;  

= ݕݐ݅ݏ݋݃ݑܴ ݀݋݋ℎݎݑ݋ℎܾ݃݅݁݊ 3 ݔ 3 ݂݋ ܽ݁ݎܽ ݂݁ܿܽݎݑݏ
݀݋݋ℎݎݑ݋ℎܾ݃݅݁݊ 3 ݔ 3 ݂݋ ܽ݁ݎܽ ݎ݈ܽ݊ܽ݌  

Values nearing 1 indicates a smooth surface while a higher ratio is more rugged. 
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Fractal dimension is a measure of the surface complexity or changes over an area. It has been 
used to study the terrain variation on the continental slope with relevance for benthic habitat and 
fauna distribution (Wilson, 2007), habitat structure and biodiversity on rocky shores (Commito 
and Rusignuolo, 2000; Kostylev et al., 2005) and tropical coral reef structures (Basillais, 1997). 
Here, fractal dimension is calculated in Landserf v2.3 (Wood, 2005). There are various ways of 
calculating fractal dimension, Landserf uses the ‘Variogram method’ (e.g. Mark and Aronson, 
1984) to produce a raster map of fractal dimension values indicating the surface complexity over 
space. The variogram is calculated as: 

(ℎ)ߛ = 1
2݊(ℎ) ෍ ෍൫ݖ௜ − ௝൯ଶݖ

௡

௝ୀଵ

௡

௜ୀଵ
 

where h is the lag between measured cells, n is the number of pairs considered and z bathymetry depth. 

Landserf calculates the fractal dimension within a moving window around each cells across the 
raster to gain an indication of surface roughness changes over the entire multibeam bathymetry 
raster. The outcome raster will be a range of fractal dimension values ranging from 2.0 indicating 
smooth, scale invariant behaviour and a theoretical maximum of 3.0 indicating space filling rough 
surface. 
 
Ratio of real to synthetic sidescan sonar imagery is a derivation from real and synthetic sidescan 
sonar imagery (Figure 1.11); the latter is produced from multibeam bathymetry. Synthetic 
sidescan imagery is created similar to the sidescan sonar imagery by simulating the flight of the 
sonar through the bathymetry along the sonar vehicle track (LeBas and Mason, 1997; Ismail, 
2010). In comparison to the real sidescan sonar imagery, synthetic imagery created is entirely 
dependent on topographical attributes and slope reflection and assumes the lithological variations 
and terrain roughness to be constant. Based on this property, calculating the ratio of backscatter 
between real and synthetic sidescan sonar imagery depicts the lithological attributes and cancels 
out the effect of slope on the backscatter. 



  Introduction 

 25   

 
Figure 1.11: On the left is a section of real sidescan sonar imagery acquired through sonar survey in a 
submarine canyon. Meanwhile, image on the right is a synthetic sonar imagery produced by simulating the 
flight of the sonar onto multibeam bathymetry data of the same area. Synthetic imagery contains 
topographical and slope attributes without any lithological effect in comparison to real sidescan sonar 
imagery. Topographical features can be clearly seen and matching between the two images. 
 
Object based image analysis 
Object based image analysis (OBIA) is a pattern recognition technique that has been widely used 
in remote sensing to segments and classify images based on meaningful objects regardless of its 
pixel. The concept of image segmentation has long existed, but is more common in industrial 
image processing such as medical image processing and was not used extensively in geospatial 
applications (Blaschke et al., 2004). The strength of OBIA is that it examines pixels in context of 
the environment that they occur in rather than in isolation. OBIA builds up an image iteratively, 
recognizing groups of pixels as objects. It uses the colour, shape, texture and size of objects as 
well as their context such as pixel location and relationships to other objects to draw conclusions 
and inferences regarding classification rules (Lucieer et al., 2013). The use of this technique in 
marine habitat mapping is still at its infancy, some of the studies that has adopted the image 
segmentation technique are Lucieer (2007) to characterise rocky reef habitat and Lucieer and 
Lamarche (2011) to map deep water substrates. These studies have shown that OBIA is the way 
forward for marine habitat mapping and there are endless opportunities to be explored and 
contribute towards the development of automated and quantifiable marine habitat mapping. In 
this study, the use of OBIA is trialled onto sidescan imagery since they have much higher 
resolution than multibeam bathymetry data and therefore has the more identifiable seafloor 
features. By using OBIA, these features potentially can be retained in the marine landscape 
procedure to produce the marine landscape map. Further investigation of the OBIA usage is 
reported in Chapter 3. 
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1.2.3 Rationale and objectives 
The thesis is built on the fundamental goal to bridge the gap between science community and 
policy makers. Additionally, the methodology uses the most common data type obtained for 
seafloor related studies and aims to optimise its usage. The objective is addressed as follows: 
Objective 1: Technique development 
A simple and straightforward but statistically robust marine landscape mapping method is 
developed for bathymetric grid data that is usually available from initial seabed surveys. The aim 
is to promote the use of the marine landscape approach as a way to represent spatial information 
in complex deep-sea areas. The proposed technique is a step forward to aid existing deep-sea 
classification schemes. The technique developed is objective, automated and statistically robust, 
time and labour efficient and suitable for broad regional scale mapping.  
Chapter 2 is dedicated to the development of an objective automated marine landscape mapping 
technique using multivariate statistical analysis. The method was tested in the Cascais and 
Lisbon–Setúbal Canyons. This chapter follows the publication  

Ismail, K., Huvenne, V.A.I., Masson, D.G., 2015. Objective automated classification 
technique for marine landscape mapping in submarine canyons. Marine Geology 362, 17-
32.  

A way of translating sediment point sample data to provide a full coverage substrate distribution 
map is discussed in Chapter 3. A semi-automated methodology, based on Object-Based Image 
Analysis (OBIA), to produce a substrate distribution map is discussed in Chapter 3, together with 
its effect towards the marine landscape delineation.  
Objective 2: Quantifying spatial structure 
Based on Niche Theory, spatial variability in environmental conditions is the main driver behind 
marine biodiversity. With this fundamental concept, marine landscape heterogeneity is proposed 
as a proxy for biodiversity. The quantification of spatial heterogeneity is carried out on a marine 
landscape map produced using the technique developed. The index used for marine landscape 
quantification is extended from landscape ecology. The detail of the quantification is discussed 
comprehensively as part of Chapter 3. This chapter is aimed for publication in an international 
peer-reviewed journal, 

Ismail, K., Robert, K., Huvenne, V.A.I., 2015. Quantification of marine landscape 
heterogeneity in submarine canyons. To be submitted 
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Objective 3: Spatial information across scale 
Pixel size and extent are the primary scaling factors affecting heterogeneity. The technique used 
for broad scale mapping (~100 km2) is put to trial for transferability in medium scale (~1 km2) 
surveys. The method developed in Chapter 2 and 3 for broad scale mapping is applied to the high-
resolution multibeam bathymetry acquired using ROV. The issue on scaling relationship here is 
addressed in Chapter 4 and is in preparation to be submitted to an international peer-reviewed 
journal, 

Ismail, K., Robert, K., Huvenne, V.A.I., 2015. Application of marine landscape mapping 
to high-resolution data. To be submitted  

Chapter 5 provides a synopsis describing the key findings in relation to the thesis aims and 
objectives. Recommendations are made about issues raised during the study, followed by 
suggestions for future directions relating to marine habitat mapping to support the scientific 
framework in ecosystem-based management for submarine canyons. The chapter finishes with a 
summary of this research. 
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Chapter 2:  Objective Automated Classification 
Technique for Marine Landscape Mapping in 
Submarine Canyons 

2.1 Abstract 
This study proposes a fully automated and objective technique to map marine landscapes in 
submarine canyons. The method is suitable for broad and regional scale mapping derived from 
sonar data and uses multivariate statistical analysis. The method is divided into two main parts: 
the terrain analysis and the multivariate statistical analysis. The first part aims to optimise the 
sonar data and comprises three steps 1) data resampling 2) determination of length scale and 3) 
multiple scale analysis. The second part covers the actual marine landscape classification and 
consists of 1) principal component analysis (PCA) 2) K-means clustering and 3) cluster 
determination. In addition, a confidence map is presented based on clusters membership derived 
from clusters distance in attribute space.  
The technique was applied in the Lisbon-Setubal and Cascais Canyons offshore Portugal. The 
area was classified into 6 marine landscapes that represent the geomorphological features present 
in submarine canyons. The main findings from the study are 1) transferability of a tool from 
geomorphometric analysis – Estimation of Scale Parameter (ESP) - to detect length scale of 
potential patterns in bathymetric grids; 2) multiple scale terrain analysis allows an appropriate 
discrimination of local and broad scale geomorphic features in marine landscape mapping; 3) the 
method does not only delineates geomorphic seafloor features but also points out properties that 
might influence biodiversity in a complex terrain.     
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2.2 Introduction 
Over the past decade, the ongoing effort to develop an efficient and reliable method to map and 
study benthic habitats in various environments has promoted the advancement of classification 
techniques in the habitat mapping community (Brown et al., 2011). Benthic habitats are physically 
distinct areas of seafloor that are associated with particular communities of plants and/or animals. 
Of those two components that structure a benthic habitat - the physical environment and the 
species community - it is often the detailed species information that is lacking during seafloor 
characterisation. General geophysical mapping is therefore commonly used as the basis for 
benthic habitat mapping. Advances in sonar technology now permit seafloor imaging with high 
resolution and wide coverage using a wide variety of instruments and systems of different 
frequency and resolution (Hayes and Gough, 2009; Hansen et al., 2011; Nakanishi and 
Hashimoto, 2011; Paull et al., 2013; Harris et al., 2014; Wynn et al., 2014). These data can be 
used to depict various seafloor geomorphic features and interpreted to provide potential habitats 
represented on a marine landscape map.   
“Marine landscape” is a concept introduced originally by Roff and Taylor (2000), who developed 
a classification based on enduring geophysical features that reflect changes in biological 
communities composition. They emphasized the importance of identifying and conserving 
representative spaces or landscapes rather than preserving individual species. They produced a 
classification using geophysical features to identify representative and distinctive benthic habitats 
supporting different communities, which works as an ecological framework for marine 
conservation.  
Based on this fundamental concept, the marine landscape in this study is defined as an 
environment distinguished by its abiotic characteristics with a potential to provide colonization 
ground for specific biological assemblages. This approach has been applied successfully in the 
marine realm, specifically in shallow water environments (Al-Hamdani et al., 2007; de Grosbois 
et al., 2008; Verfaillie et al., 2009; Kotilainen and Kaskela, 2011). On a global scale a similar 
approach is being used to segment the ocean floor based on its geomorphological features as done 
by Harris et al. (2014). 
Although the aim of the studies mentioned above is similar, i.e. to classify the seabed in relation 
to its biological associations, either for managerial purposes or to predict biological occurrences, 
each study offers a different methodology. The methods vary from the conventional approach of 
manual digitising over algorithm-assisted digitising to fully automated techniques, or use 
combinations thereof. Unfortunately, most methods developed so far always still a have 
subjective aspect in several stages of the methodology e.g. the parameters to use, the number of 
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classes, the scale. The ideal methodology should offer a robust statistical way to make these 
choices in an objective way. Moreover at this day and age, with the current state of the art in 
acoustic technology, large volumes of data are becoming available, therefore a time- and labour-
savvy approach is preferable. A robust approach that is objective, repeatable and can speed up the 
delineation of marine landscapes from acoustic survey data is much needed especially when these 
data are now easier to obtain compared to a decade ago.  

2.2.1 Scope and aims 
Therefore, taking the above arguments into account, the aim of this study is to develop a fully 
automated marine landscape mapping technique that is robust, objective and repeatable, based on 
remotely sensed acoustic survey data, using multivariate statistical analysis. The method is 
developed in submarine canyons because of their complex characteristics defined by their spatial 
structure that contains true three-dimensional morphology and terrain variability often supporting 
increased biodiversity. However, submarine canyons are difficult to quantify as they often 
overwhelms conventional mapping techniques. This aim will be addressed through the following 
objectives: 
1. Evaluate and compare the effect of a single scale vs. multiple scale approach  
2. Test the transferability of a method used in Object Based Image Analysis (OBIA) to detect the 
scale that best represents real-world objects in multibeam bathymetry data.  
3. Evaluate the advantages of the proposed method in comparison to manual delineation for 
marine landscape mapping.  
 

2.3 Materials and methods 
2.3.1 Study area 
Submarine canyons are important geological features incised in most continental margins of the 
world’s oceans (Harris and Whiteway, 2011). They serve as conduits for the transport of large 
amounts of sediment and organic matter from continental shelves to the deep abyssal plains 
(Hickey et al., 1986; Puig and Palanques, 1998; Monaco et al., 1999). The deep and complex 
topography, strong currents and occurrence of high turbidity promotes a high variability of 
substrates and terrain, affecting the habitat heterogeneity and making submarine canyons a 
potential hotspot for biodiversity (Vetter and Dayton, 1998; Mortensen and Buhl-Mortensen, 
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2005; Tyler et al., 2009). Considerable interest in benthic habitats associated with submarine 
canyons (Tyler et al., 2009; Huvenne et al., 2012; Currie and Sorokin, 2014; De Leo et al., 2014), 
especially in vertical and overhanging terrains that occur at the heads of shelf-incising canyons, 
has been generated (Yoklavich et al., 2000; Brodeur, 2001; Huvenne et al., 2011; Johnson et al., 
2013). Such terrains hold biologically diverse communities, but are especially difficult to map. 
The Cascais and Setúbal-Lisbon Canyons that form the basis for this study, cut the western 
Portuguese continental margin between 38° and 38° 30’N (Figure 2.1). Cascais Canyon begins at 
a water depth of 175 m at the shelf edge of the Portuguese margin. It is not connected directly to 
a river system but its head is situated 27 km southwest of the Tagus river mouth. It is the shortest 
canyon on the Central Portuguese continental margin. Although the average gradient of the whole 
axis is only about 3°, its slope gradients typically exceed 10°, making it the steepest canyon 
(Lastras et al., 2009) in the region. The upper Cascais Canyon first trends south-southwest then 
changes direction further down, to a westward and later north-westward trend.  

 
Figure 2.1: Bathymetry map of Lisbon–Setúbal and Cascais Canyons offshore Portugal, overlain by TOBI 
sidescan sonar imagery coverage. Contour interval is 500 m. The inset map shows the location of the study 
area relative to the location of Portugal. 
 
The Lisbon Canyon head is situated 13 km southwest from the Tagus river mouth and 5 km west 
of the nearest coastline at approximately 120 m water depth. It incises 28 km into the shelf with 
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a total length of 37.5 km (Lastras et al., 2009). The canyon trends north-south towards the middle 
course of Setúbal Canyon and is almost perpendicular to the Setúbal branch at 2010 m water 
depth, where these canyons join. 
The Setúbal Canyon is east-west oriented and the canyon head is located at approximately 90 m 
water depth, situated at about 20 km south-southwest of the Sado river mouth and 6 km west of 
the nearest coastline in Setúbal Bay. The branch cuts 41 km into the continental shelf (Arzola et 
al., 2008). Setúbal Canyon is among the submarine canyons that extend across the continental 
shelf and approach the coast. This type of canyon is known to intercept organic-matter-rich 
sediments; these cause organic rich material to be supplied downslope. For example, Gage et al. 
(1995) reported finding sea grass at a water depth of 3400 m in the middle canyon.   

2.3.2 Data 
Data and samples used in this study were collected during 5 different cruises in the area. 
Multibeam bathymetry data were compiled from RRS Charles Darwin cruises 157 (May/June 
2004) and 179 (April/May 2006) and from ancillary data kindly provided by IFREMER (French 
Research Institute for Exploration of the Sea). The data were integrated during the HERMES 
project (Hotspot Ecosystem Research on the Margins of European Seas) (http://www.eu-
hermes.net). The multibeam bathymetry was processed using SwathEd and results in an image 
with pixel size of 100 m. 
30 kHz TOBI (Towed Ocean Bottom Instrument) sidescan sonar imagery was collected during 
three cruises in 2003, 2005 and 2006: RV Pelagia 219, RSS Discovery 297 and RSS Charles 
Darwin 179. The sidescan sonar imagery, also published in Lastras et al. (2009) was pre-processed 
using the PRISM (v4.0) (Le Bas and Hühnerbach, 1998) and Erdas Imagine (v8.5) software suites 
to produce imagery with improved geographical registration (Ismail, 2011). TOBI is towed at an 
altitude of approximately 400 m above the seafloor at about 2 knots, producing 6 km wide swath 
images with a horizontal resolution of 6 m (Le Bas et al., 1995). 
The grids of multibeam bathymetry and sidescan sonar imagery used here had a different 
resolution of 100 m and 6m, respectively. Data have to have equal pixel size to carry out the 
multivariate statistical analysis. Therefore, the data was resampled to a common cell size of 25 m 
resolution. This is thought as a good compromise to keep the sidescan sonar detail, without over-
interpolating the multibeam-derived datasets.  
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2.3.3 Research strategy 
The technique to map the marine landscape in submarine canyons developed here, is divided into 
two parts: the terrain analysis and the multivariate statistical analysis. The first part focuses on 
optimising the usage of the acoustic dataset while the second part addresses the classification of 
the data into distinct physical areas and is partly based on the work of (Verfaillie et al., 2009) in 
shallow waters.  Both parts comprise 3 steps each, a simplified illustration of the research strategy 
is presented in Figure 2.2.  
The software used for each step in the first and second part is listed as follows; the first part: 1) 
data were resampled in ArcMap 10.0 using bilinear algorithms, 2) determination of length scale 
for multiple scale analysis using the Estimation Scale Parameter tool in Ecognition Developer 
v8.9, 3) production of terrain indices using multiple scale analysis in Landserf v2.3 (Wood, 2005), 
whilst RStudio v0.98.484 was used in the second part of the method to carry out 1) principal 
component analysis (PCA), 2) K-means clustering and 3) cluster determination using within 
group sum of squares.  
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Figure 2.2: A simplified flowchart of the automated and objective techniques used to produce marine landscape maps for submarine canyons. The method consists of two 
parts; terrain analysis and multivariate statistical analysis. 
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2.3.3.1 Single scale vs. multiple scale terrain analysis 
Multiple scale analysis refers to the incorporation of terrain indices produced at different scales 
to optimise the detection of details and features in bathymetric surfaces for marine landscape 
characterisation. Two length scales are used to represent local features and broad features, both 
of which are valued for habitat characterisation. The length scales represent n x n analysis window 
sizes to calculate terrain indices, where n is any odd integer value (Wilson, 2007). Due to 
computational limitation and processing time for a large area, multiple scale terrain analysis only 
manages to be tried out with two scales. As suggested by Dolan and Lucieer (2014), using terrain 
indices obtained from multiple scale analysis in comparison to other approaches allows retaining 
the full detail of the bathymetric surface, while at the same time keeping the computation time 
reasonable. However, in their studies the length scales for the analysis were predetermined and 
therefore subjective.  
An automated and objective procedure to select length scales for multiple scale analysis is 
proposed here and is adapted from a technique used for image segmentation in geomorphometry 
(Dragut et al., 2010). The Estimation Scale Parameter (ESP) tool is used for fast estimation of 
scale parameters for a multiresolution segmentation in Object Based Image Analysis (OBIA). The 
tool is based on the fundamental concept of the relationship between spatial structures of images 
and the size of objects in the real world. Hence both methods – multiple scale terrain analysis and 
segmentation – try to emulate real-world units by aggregating cells. The tool calculates the local 
variability or Local Variance (LV) in the segment or window, for increasing segment/window 
sizes. However, for multiple scale analysis, the LV graph does not show an obvious threshold for 
suitable scale, therefore the rate of change of local variance (ROC-LV) graph is used instead, as 
suggested by Dragut et al. (2010). ROC-LV measures the amount of change in LV from one scale 
level to another. Steps in the ROC-LV graph indicate the scale at which groups of real-world 
objects are more appropriately imaged.  
Based on a study by Wilson (2007), multiple scale analysis has proven to be beneficial to delineate 
terrain features at particular scales and facilitate habitat mapping work. However, due to 
computational limitation, only one additional scale is included for the terrain analysis in this 
study. The scale size is determined as an equivalent of the scale parameter obtained using the ESP 
tool. Since the Scale Parameter (SP) value has no unit, the segments produced using the SP in 
Ecognition are exported in ArcGIS as polygons (feature class). The mean value of the area of the 
segments (i.e.: polygons) is calculated and by using the calculation below, the additional window 
size for the terrain analyses (i.e.. slope, curvature etc. calculations) is determined (see also 
Appendix A): 
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 ݎ݋݂ ݁ݖ݅ݏ ݓ݋݀݊݅ݓ
 ݈݁ܽܿݏ ݈݁݌݅ݐ݈ݑ݉

ݏ݅ݏݕ݈ܽ݊ܽ ݊݅ܽݎݎ݁ݐ
(݈݁ݔ݅݌)

= ඥ݉݁ܽ݊ ܽ(2݉)ݏݐ݊݁݉݃݁ݏ ݂݋ ܽ݁ݎ
ݕݎݐ݁݉ݕℎݐܾܽ ܾ݉ܽ݁݅ݐ݈ݑ݉

(݈݁ݔ݅݌/݉) ݁ݖ݅ݏ ݈݁ݔ݅݌
 ܺ 

 ݏ݅ݏݕ݈ܽ݊ܽ ݎ݋݂ ݁ݖ݅ݏ  ݓ݋݀݊݅ݓ ݉ݑ݉݅݊݅݉
 (݈݁ݔ݅݌) ݁݀݅ݏ ݁݊݋ ݃݊݋݈ܽ 

 
Once the appropriate length scales are determined through the ROC-LV graph, terrain variables 
are calculated at those scales using Landserf v2.3. The resulting layers are then exported to R and 
are subjected to the multivariate statistical analysis. Comparison between marine landscape maps 
created using single scale and multiple scale terrain indices is carried out to evaluate the 
significance of this step. A total of 18 abiotic terrain variables (Table 2.1) are used in the final 
multivariate statistical analysis. They include the multibeam bathymetry data and the TOBI 
sidescan sonar imagery, and their derivatives  
Table 2.1: List of abiotic variables included in the principal component analysis. Ticked boxes indicate 
the available scale for the variables. 

Abiotic Variable  Descriptions Length scale 
Fine    Broad 

Digital terrain model (DTM) 
of bathymetry  

Obtained from multibeam bathymetry survey. Represent 
depths of the ocean floor.   

Slope  First derivative of DTM. Represents the maximum rate 
of change in value from a cell to its neighbour  

Aspect 
Eastness= sin(aspect) 
Northness= cos(aspect) 

First derivatives of DTM. 
Describes the orientation of slope. Indices for eastness 
and northness provide continuous measure (-1 to +1) 

 
Bathymetric position index 
(BPI) 

Measures the elevation of each cell compared to the 
mean elevation of neighboring cells (Weiss 2001)  

Fractal dimension A derivative from DTM. Indicates the spatial variation 
in roughness  

Plan curvature A second derivative of DTM. Provides the rate of 
change of aspect 
 

 

Profile curvature A second derivative of DTM. Provides the rate of 
change of gradient   

Rugosity A measure of small scale variations of the surface area 
across the neighbourhood of the central pixel (Jenness 
2004) 

 

Sidescan sonar imagery 
backscatter intensity  

Obtained from TOBI. Sonar images are acquired by 
emitting continuous sonar pulses while moving, this 
returns with the image of the seafloor.  

 

Ratio of sidescan sonar to 
synthetic imagery  

Synthetic sidescan sonar imagery was produced by 
simulating the TOBI vehicle movement over the canyon 
bathymetry, and represents the sidescan backscatter 
components produced by the sloping terrain (Ismail 
2011). Ratio represents the lithological attribute of the 
imagery.    

 
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2.3.3.2 Principal component analysis 
One of the most difficult tasks when automating a seabed classification technique is to ensure 
objectivity when selecting the variables that will form its basis. A commonly used method to 
condense a highly collinear dataset prior to clustering is Principal Component Analysis (PCA) 
(Kabacoff, 2013). The abiotic variables in this study are highly collinear because they are derived 
from only two primary sources (i.e., multibeam bathymetry and sidescan sonar imagery). PCA is 
used to compute a set of new and linearly independent variables that are known as Principal 
Components (PC). Prior to PCA, all variables are standardised to have zero-mean and unit-
variance in order to give them an equal weight in the PCA. The first PCs account for most of the 
variance in the original data, and can be chosen to form a smaller set of variables. The remaining 
variance, represented by the last PCs, is the error portion of the dataset. 
A decision criterion based on the eigenvalues of the underlying correlation matrix is often used 
to determine how many PCs are to be retained in the analysis (Kabacoff, 2013). Following the 
Kaiser–Harris criterion, the analysis is limited to those PCs that have eigenvalues larger than 1, 
because they explain more variance than is contained in an original variable 
2.3.3.3 Clustering 
The PCs resulting from the PCA are then used as attributes for clustering. The K-means algorithm 
is often used for data partitioning, also in the marine environment (Legendre et al., 2002; 
Verfaillie et al., 2009; Amiri-Simkooei et al., 2011; Ahmed and Demsar, 2013). K-means is an 
iterative procedure that starts with a random allocation of class centres. All data points are given 
the class of the closest class centre, calculated using the Euclidian distance in the N-dimensional 
space of the retained PCs (Hartigan and Wong, 1979). Once the clusters are formed, the class 
centres are updated to the location of the average for each cluster. Re-allocation of the centres 
proceeds by iteration until a stable solution is reached where the location of the centres no longer 
moves.  
2.3.3.4 Cluster determination and confidence 
An important step in achieving objectivity in automated classification is to determine the optimal 
number of clusters. There are many criteria that have been used to decide on the correct number 
of clusters for K-means partitioning (Dunn, 1973; Caliński and Harabasz, 1974; Davies and 
Bouldin, 1979). However the large dataset of this study hinders the use of these statistical 
procedures in R due to the computational limit. Out of the many trialled, the method that is 
applicable for such huge data is using the within group sum of squares plot. The plot shows the 
within group sum of squares against number of clusters from the K-means clustering solution 
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(ranging from 2 to 15) and the change in gradient in the plot is used to determine the optimal 
number of clusters from the K-means solutions (Kabacoff, 2013).  
Once the final clustering through K-means solution is achieved, a separate map of cluster 
membership is produced to show cluster dominance at each location. The membership value can 
be expressed as follows 

௜௞ߤ = 1
(݀௜௞ଶ ) × 1

∑ 1
(݀௜௞ଶ )௡௞ୀଵ

 

where µik is the membership value of the ith data point to cluster k, dik is the distance between data 
point i and cluster center k in attribute space and n is number of clusters. The above expression is 
modified from an expression used for fuzzy k-means classification for soil survey data (Burrough 
et al., 1997). The original expression was also used and reviewed in a study by Lucieer and 
Lucieer (2009) for seafloor sediment classification. Membership values are assigned to each 
cluster so that all values for each pixel sum to 1. Using this characteristic, clustering uncertainty 
can be quantified using the confusion index, CI 

CI = ௠௔௫೔ߤ೔(௠௔௫ିଵ)ߤ
 

where μ௠௔௫೔ is the membership value of the cluster with maximum µik at location i and 
μ(௠௔௫ିଵ)೔  is the second largest membership value at the same i location. If the value of CI nears 
0, then only one cluster k dominates the location and it has a low confusion (high maximum 
membership value of cluster k), however if the value of CI is nearing 1 there is high confusion 
between two or more clusters at location i. 

2.3.4 Qualitative assessment 
Expert visual interpretation based on sidescan sonar imagery from previous work in 2005 was 
used to evaluate the performance of the automated technique. The interpretation is independent 
from any input from the automated marine landscape map. Visual comparison was made between 
expert interpretations for Setúbal Canyon and the automated marine landscape map produced by 
overlaying both in ArcMap 10.0. 
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2.4 Results 
2.4.1 Terrain analysis: ROC-LV graph 
The ESP yields the ROC-LV graph as shown in Figure 2.3. According to Dragut (2010), the ROC-
LV plot enhances the discrimination of the threshold at which the appropriate scale for real-world 
object representation is reached compared to an LV graph. The threshold is defined as the first 
break in the ROC-LV graph after the initial continuous and abrupt decay, and may appear as step 
or small peak. In this case, it appears as a step in the ROC-LV curve. The next level after 25 m 
(initial pixel) that is recognised as the appropriate scale that represents real-world objects is a SP 
of 225. Meaningful objects refer to real world objects such as gullies, the canyon thalweg and 
other geomorphological features that can be found in submarine canyons. The variation in slope 
and bathymetric position index using different length scales is shown in Figure 2.4. The local 
scale (25 m) picks out fine-scale variability in the canyon such as gullies or small branches, 
whereas the broader scale (SP = 225; features of 16.5m, i.e. requesting window sizes of 49 x 49 
pixels - see Appendix A) shows the overall pattern of the whole canyon system, highlighting 
major features and smoothing out details present in the local scale analysis.   
 

 
Figure 2.3: ROC-LV graph obtained using the ESP tool to determine the most appropriate analysis window 
size for multiple scale terrain analysis. Blue arrow indicates the threshold at which the analysis window 
size best represents real-world objects. Dragut et al. (2010) defined the threshold as the first break in ROC-
LV curve after continuous and abrupt decay. 
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Figure 2.4: 3D views of the Portuguese Canyons from south. The figure shows variations of bathymetric 
position index analysis (top) and slope analysis (bottom) resulting from using two different length scales. 
The local length scale and broad length scale. Note the different features delineated at the different analysis 
scales. Results from local length scale contained detail features but noisier whereas broader length scale 
shows the gross canyon morphology. 
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2.4.2 Multivariate statistical analysis 
2.4.2.1 PCA 
The principal component analysis is conducted using the 18 abiotic variables listed in Table 2.1.  
Retaining only those PCs with eigenvalues larger than one, the PCA results in seven PCs, 
explaining 78% of the total variance. The rotated component matrix (Table 2.2) shows the factor 
loads that explain the correlations between the rotated PCs and the original variables. The main 
variables that drive the PCA are bathymetric position index (BPI), slope and northness (Figure 
2.5).  
 

 
Figure 2.5: 3D representation of the first three principal components and coefficients of each variable. The 
plot illustrates which variables are driving the PCs. The longest arrow in the plot represents the most 
prominent abiotic variable in the principal components. The distances between arrows describe their 
correlation, the closer the arrows, the more correlated they are. 
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Table 2.2: Component matrix showing correlation between rotated PCs and the original variables. Highest 
factor loads in each PC are highlighted in bold. A 3D representation for the first three principal components 
is illustrated in Figure 2.5 with each variable plotted in abbreviation. 

Abiotic Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 
Bathymetry (B) 0.2576 -0.1159 0.3103 0.2140 -0.1298 0.2465 -0.0423 
Bathymetric position index broad (BPI) 0.4394 0.1544 0.0142 0.0268 -0.1071 0.2407 -0.2126 
Bathymetric position index fine (BPIf) 0.4036 0.1249 -0.1295 -0.0777 0.1791 -0.2815 0.2215 
Northness 225 (N) -0.0479 0.1407 -0.4570 0.2537 -0.4265 -0.0165 0.0851 
Northness (Ns) -0.0436 0.1015 -0.4402 0.2692 -0.4538 -0.0402 0.1055 
Fractal dimension 225 (Fd) 0.0802 -0.1813 0.2934 0.5053 -0.0154 -0.2200 0.0507 
Fractal dimension (Fdf) 0.1150 -0.0489 0.2515 0.4934 -0.0843 -0.2849 0.0112 
Plan curvature 225 (PL) -0.3397 -0.0353 0.1511 0.0739 -0.0011 -0.1184 -0.0033 
Plan curvature (PLf) -0.2532 -0.0476 0.1102 0.0534 -0.1564 0.3108 -0.3650 
Profile curvature 225 (PR) 0.4106 0.1735 0.0268 0.0118 -0.0645 0.1577 -0.2578 
Profile curvature (PRf) 0.3523 0.1213 -0.1047 -0.0651 0.1485 -0.2263 0.1186 
Ratio (R) -0.0908 0.0002 0.1187 -0.0431 0.0149 0.1965 0.7205 
Rugosity (RG) 0.0704 -0.4444 -0.1567 0.2245 0.1883 0.0108 0.0208 
Eastness 225 (E) 0.1273 -0.3059 0.1436 -0.3623 -0.4339 -0.1911 0.0023 
Eastness (Ef) 0.0926 -0.3014 0.1696 -0.3201 -0.4505 -0.2685 0.0296 
Slope 225 (S) 0.1191 -0.4309 -0.3260 -0.0703 0.0979 0.2034 -0.0631 
Slope (Ss) 0.0871 -0.5155 -0.2498 0.0845 0.1544 0.1058 0.0124 
TOBI backscatter intensity (T) -0.1474 0.0050 -0.1772 -0.0329 0.1826 -0.5329 -0.3803 
Eigenvalues 3.4889 2.6542 2.3138 1.8017 1.4611 1.2085 1.1530 
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2.4.2.2 Clustering 
A total of 2,316,746 pixels with seven PC variables were subjected to K-means clustering, in a 
cascade from two to fifteen clusters. The plot of within groups sum of squares against number of 
clusters is shown in Figure 2.6, and indicates a distinct increase at six clusters. This change in 
slope suggests that a six cluster solution may be a good fit for the data. Hence, final clustering is 
carried out using the K-means algorithm with six clusters. 

 
Figure 2.6: Plot of number of clusters against within sum of squares. The bend (change in slope) marked 
in red and projected towards the x-axis indicates the optimum number of cluster is 6. 
 
2.4.2.3 Membership value and confusion index 
The concept of membership values originates from the technique of fuzzy classification, where it 
is used to show continuous spatial variation by creating overlapping classes (Lucieer and Lucieer, 
2009). Through this, using the Euclidean distances of data points towards cluster centres from the 
K-means partitioning, the same calculations were used to show classification uncertainty (Figure 
2.7). High membership value means only one cluster is dominant for the data point; meaning at 
that location there is a high certainty of classification.  
Based on the membership value for each cluster, a confusion index is produced (Figure 2.7). The 
confusion index map has very narrow transition zones between clusters, with high confusion 
values only at the cluster boundaries. If spatial correlation in membership values was weak, broad 
zones of high confusion index values would be observed, but they are not seen in confusion index 
map. The density plot of confusion index values indicates a positively skewed distribution, with 
a high percentage of data points with confusion value approaching zero. A low value in confusion 
index (approaching zero) indicates a less conflicting classification.    
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Figure 2.7: Upper maps: membership value of K-means partitioning for each cluster ranging from 0.0–1.0, 
where 1.0 indicates the highest membership value. The bottom map is a confusion index map. It shows a 
quantification of clustering uncertainty ranging from 0.0 to 1.0, with 1.0 being the most uncertain. A 
zoomed area in red box shows the uncertain area as black and approaching white is much certain area. Inset 
plot is a density plot of confusion index value for the attributes. Narrow highly confused zones (black) in 
the confusion index map and a positive skewed density plot indicates a low conflicting clustering with good 
separation amongst the clusters. 
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2.4.3 Marine landscape map 
The result of the six cluster solution is presented in Figure 2.8 and Table 2.3. The six cluster 
solution represents the final marine landscape map produced for this area. The interpretation of 
each cluster is based on the boxplots of the original abiotic variables against the clusters (Figure 
2.9a & 2.9b). Through these boxplots, characteristics of each cluster can be obtained based on the 
correlation with the original variables. Seventeen out of 18 abiotic variables show an obvious 
contribution to the classification.  
For instance, rugosity, which represents the ruggedness of the terrain, shows a clear difference 
between the clusters. Cluster 2, interpreted as canyon wall, has the highest slope value and a wide 
range of distribution of rugosity. As canyon walls often consist of outcropping bedrock with the 
tendency to be covered by biological communities, such high value of rugosity is expected. Its 
wide range of distribution is also explainable, because canyon walls have the most varied surface 
ruggedness. They can consist of just bare rocks, or be covered with sediments or fauna. Similarly, 
based on the boxplot (Figure 2.9a), the BPI for Cluster 2 has the biggest range although the mean 
value is zero. Such a characteristic is observed because the Cluster 2 morphology is narrow and 
steep; therefore the value can change significantly from one neighbouring cell to another.  
The rest of the clusters are also interpreted based on criteria seen in the boxplots and the final 
interpretation is shown in Table 2.3. Each cluster has its own prominent variable that best shows 
its characteristics. Cluster 1 is mainly driven by the bathymetry and fractal dimensional variable, 
Cluster 2 is influenced by rugosity and slope, Cluster 4 has the lowest BPI, whilst Clusters 3, 5 
and 6 are dominated by the aspect variables.  
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Figure 2.8: Interpretation map 
showing Portuguese Canyon 
with 6 clusters solution using 
the fully automated technique 
summarised in Figure 2.2. 
Characteristics and 
interpretation for each cluster 
are described in Table 2.3. 
Important geomorphological 
features of the canyon are 
clearly visible from the 
classification; Cluster 1 being 
the shallowest and flat is the 
continental shelf, Cluster 2 as 
wall or cliff with highest 
ruggedness, Cluster 3, 5 and 6 
are the flanks with different 
orientation and Cluster 4 with 
depression features is the 
channel floor.  
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Figure 2.9a & b: Boxplot of clusters against original abiotic variables. Description of each abiotic variable 
is given in Table 2.1. In the boxplot, the middle line is the mean, the lower and the upper box boundaries 
are the first and third quartiles. The whiskers are the maximum and minimum observed values that are not 
statistical outliers. 
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Table 2.3: The characteristic of the 6 clusters and their interpretation based on the boxplot in Figure 2.9. 
Clusters Characteristics Interpretation 

1 Shallowest, most homogeneous, flat, planar and 
linear surface 

Continental shelf/slope 

2 Most rugged and heterogeneous surface with steepest 
slope  

Canyon wall or cliff (including cliff 
edge) 

3 Mid depth SSW oriented canyon slope with linear 
surface  

Canyon slope/rise (facing SSW) 

4 Planar to depression, slight sidewardly and upwardly 
concave and diverge surface, valleys, channel-like 
features 

Canyon floor 

5 SSE oriented canyon slope Canyon slope/rise (facing SSE) 
6 NNW oriented canyon slope Canyon slope/rise (facing NNW) 

 

2.4.4 Single scale vs. multiple scale terrain analysis 
An alternative marine landscape map was produced using only local scale terrain indices to 
evaluate the effect of using multiple scale analysis on the classification result (Figure 2.10). The 
map produced was classified into 12 clusters. The main difference observed is that the clusters 
are more patchy and incoherent in the marine landscape map produced using single scale analysis. 
The map corresponds less well to features that can be seen in sidescan sonar imagery. Zoomed 
figures were made at three locations (Area A, B, C) to highlight the differences between using 
single scale and multiple scales into the multivariate statistical analysis (Figure 2.10). For example 
in Area A, the thalweg that appears in the sidescan sonar imagery was not delineated in the single 
scale marine landscape map. However, in the marine landscape map produced using multiple 
scale analysis, thalweg is classified as a separate cluster (Cluster 4), distinguishing it from a 
canyon slope (Cluster 3). In Area B, the clusters from the single scale map can be seen as patchy 
and incoherent as mentioned above. Of the 10 clusters, one cluster (Cluster 3) is identified as a 
product of over-classification from Cluster 11 because they consistently appear next to each other 
and Cluster 3 almost forms an outline to Cluster 11. Meanwhile, Cluster 1 is identified as noise 
that has been picked out from TOBI sidescan sonar imagery. Area C shows an example of clusters 
that result from over-classification and noise.  
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Figure 2.10: Marine landscape map produced using automated marine landscape classification with single 
scale in contrast to map in Figure 2.8. The three selected areas A, B and C are compared to sidescan sonar 
imagery and marine landscape maps produced using multiple scale terrain analysis. The close-ups are 
shown in the nine smaller maps. First row: marine landscape map using multiple scale, second row: sidescan 
sonar imagery and third row: marine landscape map using single scale. The marine landscape map produced 
using single scale exhibit patchy and incoherent classes. There are products of over-classification since 
having fine details introduces noise and causes over-analysis. 
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2.4.5 Qualitative assessment 
A visual interpretation (Figure 2.11) was carried out for Setúbal Canyon based on the sidescan 
sonar imagery collected in 2005 (hence only covering Setúbal Canyon). General comparison of 
the marine landscape map produced by the automated technique and the manual delineations 
shows that most clusters from the automated technique coincide with the features delineated 
manually by the expert.  Misclassifications of features occur occasionally and mostly are within 
the navigational error. The navigational adjustment may have contributed towards a number of 
misclassifications between the two maps. The sidescan sonar map used for this study was 
navigationally corrected by correlation with the bathymetry (Ismail, 2011), which was not the 
case for the data used for expert interpretation. There are many features that can be identified 
visually by the human eye. These features can be very small and overwhelm the algorithm in the 
automated technique. However, often the algorithm will naturally group these features together 
into the same cluster. The automated approach is observed to be more consistent in picking out 
features and identifying homogeneity within features. The most obvious features that can be seen 
to coincide successfully between the two maps are the thalweg and canyon wall. However in 
manual delineation the thalweg seems narrower than in the automated marine landscape map. 
This is because the expert tends to follow the axis of the thalweg closely and has difficulty 
deciding class boundaries. In particular, the area of transition between two features/clusters is 
often left unidentified in manual delineation, whereas the map from the automated technique gives 
an complete coverage. 
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Figure 2.11: An expert visual interpretation of Setúbal Canyon from sidescan sonar imagery collected in 
2005 used for visual comparison with automated marine landscape map. A, B, C, and D are zoomed figures 
of the visual interpretation map from sidescan sonar imagery (left) in the selected area (outline in black) 
compared to automated marine landscape map (right). Refer to Figure 2.8 for symbol legends in the 
automated marine landscape map. The expert interpretation in this area lacked contiguity and coverage, 
although manual delineation allows individual features to be picked out there is always a possibility of it 
being missed due to human error. In comparison, the automated technique produced a more consistent map 
but often too generalized (i.e.: small features are often grouped together). 
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2.5 Discussion 
2.5.1 Multiple scale terrain analysis 
The ESP tool technique was adopted from segmentation in object based image analysis (Dragut 
et al., 2010). It was used for fast estimation of the optimum length scales in an automated way. 
This tool gives an advantage over manual estimation, as it reduces the time spent on trial and error 
selection of the appropriate scale that best represents real-world objects in multibeam bathymetry 
data. It also provides an objective answer to the scale question. The ROC-LV graph indicates that 
at SP = 225 it recognises patterns that are suitable to represent a real-world object.  
The incorporation of terrain indices produced from local and broad scales allows an appropriate 
discrimination between features of different ecological relevance. For instance, in a single scale 
approach using only the local length scale, terrain indices may have similar slope values on the 
side of small geomorphic features such as gullies compared to slopes on the main canyon wall. 
However, if broad scale terrain indices were to be used on their own, slopes over small features 
will effectively disappear since the analysis scale will be too large to capture the finer features 
available from the multibeam bathymetry data. Therefore, by including local and broad length 
scale terrain indices together, both fine scale and broad scale features are retained and stand out 
as distinct properties of the seabed which contribute as indicators of potential benthic habitats.  
Additional to this, with the incorporation of broad length scale terrain indices, it is observed that 
the noise, compared to the local, single scale map was reduced, subsequently increasing the 
feature to noise ratio. Through this step, the automated technique is performed on meaningful 
objects that represent both fine and broad scale features that can be found in real-world canyons.  
Apart from this, using multiple scale terrain analysis appears to reduce excessive clustering that 
result in meaningless clusters being delineated in the map. Since multivariate statistical analysis 
is affected by pixel size, having only single local scale terrain indices causes over-analysis, which 
contributes to clustering of artefacts into the classification. It became oversensitive towards slight 
changes in characteristics between pixels causing similar features to be clustered into separate 
clusters. However, by using multiple scale terrain indices, the multivariate statistical analysis 
operates on meaningful objects related to real features rather than just the pixel representation of 
the acoustic data. 
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2.5.2 Abiotic variables 
One of the difficulties in maintaining objectivity in automated mapping is to justify the abiotic 
variables that are incorporated into the analysis without compromising the objectivity of the whole 
method. It is important to ensure that the method is as objective as possible with minimum input 
from the user. Every abiotic variable included will affect the automated classification, therefore 
all abiotic variables should contain relevant information about the canyon. Parameters yielded by 
the GIS software must be considered with care, and not simply included by default. For example, 
hillshade is an available variable that can be generated easily through GIS software. It can be a 
good abiotic variable if the purpose is, for example, to evaluate correlation between the seabed 
and a (residual, unidirectional) current. However, if there is no evidence of such an interaction 
taking place, it would give a false result because the azimuth used for hillshading would be 
arbitrary, rather than representing an actual characteristic of the terrain. Therefore, in this case, 
hillshade is not included as an abiotic variable. Instead, directionality of the terrain and any 
potential interaction with oceanographic effects is simulated by the inclusion of aspect properties 
that are divided into northness and eastness to provide continuous variables (Hirzel et al., 2002; 
Wilson et al., 2007). Hence each abiotic variable included is relevant and has a useful input 
regarding the canyon and will contribute to the automated classification. In addition, by using 
PCA, there is no problem if more than one abiotic variable gives a similar input or representation 
of the canyon (i.e., if there is collinearity). The more abiotic variables with useful information are 
incorporated as input, the more potential habitats can be classified (Verfaillie et al., 2009). Once 
all the abiotic variables have been gathered, there are no subjective selections to be made. Instead 
they are subjected to PCA, which overcomes the problem that most conventional classification 
methods encounter, the selecting of abiotic variables (Al-Hamdani and Reker, 2007). Also the 
selection of the relevant PCs (with eigenvalue >1) and the optimal number of clusters (based on 
the within group sum of squares) is fully objective. 

2.5.3 Marine landscape map 
The resulting map for the Cascais and Setúbal-Lisbon Canyons has a total of 6 clusters that 
represent the marine landscapes of the area (Figure 2.8). Each of these clusters is interpreted based 
on the correlation of the clusters with the original abiotic variables. The marine landscape map is 
largely based on the geomorphological features present in the multibeam bathymetry data, and 
hence corresponds to the first levels of typical hierarchical habitat classification systems (Davies 
et al., 2004), that are based on broad-scale geomorphological divisions of the marine realm. TOBI 
sidescan sonar data that potentially represents sediment distribution did not yield much 
contribution into the classification. The rotated component matrix (Table 2.2) shows that TOBI 
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sidescan sonar imagery only starts playing a role in PC6. In addition, based on the boxplot 
distributions (Figure 2.9b), when correlated with TOBI data the 6 clusters are more or less 
congregated around similar values.  A derivative from TOBI sidescan sonar, the ratio of TOBI to 
synthetic TOBI imagery (Ismail, 2011), did not contribute to the automated classification either. 
It has the highest load in PC7, which only explains 0.06% of the total variance. However, when 
visually compared to the TOBI sidescan sonar, the marine landscapes classified here can easily 
be related to the TOBI sidescan sonar features. It is already known that sedimentological 
distributions in canyons are strongly controlled by the geomorphological properties of the terrain 
(Arzola et al., 2008). This explains the correlation between the marine landscape map and TOBI 
sidescan imagery when compared visually.  
Geomorphology is also recognised as a major control on biological communities and diversity in 
submarine canyons (Kenchington et al., 2013). Therefore, the marine landscape map can be useful 
to identify areas with ecological relevance. Although the ultimate goal of habitat mapping is to 
identify ecologically relevant habitats that support different biological communities, this is not 
the case for marine landscape. The purpose of a marine landscape map is to identify areas that 
can give an indication about the biological community, but not to predict the biology. Therefore, 
the map produced in this study only acts as a proxy to aid biological predictions and focus future 
surveys. This is especially beneficial as an alternative when biological data are limited since it 
uses only abiotic variables to produce the marine landscape map.  
Based on the marine landscape map produced from this study, three out of the six clusters are 
influenced by the aspect variable. Aspect is represented in continuous values by northness and 
eastness. Northness takes values close to 1 if the aspect is northward, -1 if southward and close 
to zero if aspect is either east or west. Eastness behaves similarly, except that values close to 1 
show east-facing slope and -1 west-facing slope. However, is aspect an important feature to define 
marine landscape in submarine canyons? Naturally, aspect is a valuable variable for shallow 
water, where it provides information regarding the exposure to dominant swell or where sunlight 
is able to reach the seabed (Lucieer et al., 2013). However this is not the case for the deep sea 
environment, where it is known that light only penetrates approximately to no more than 1000 m 
(with significant light only penetrating to about 200 m) (Schrope, 2007). Nevertheless, slope 
orientation in the deep sea may still be meaningful if interaction between the current regime and 
differently orientated slope surfaces creates variable habitats.   
Organisms inhabiting the deep sea environment are known to be subjected to the regulating 
disturbance related to upper water-column processes (Gage and Tyler, 1992), which makes it 
possible to predict faunal response in homogeneous deep sea habitats, and identify the controlling 
factors that affect the presence of organisms. However, in a more complex and complicated 
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environment this is not as straightforward. This is particularly true in submarine canyons, where 
the different regulating processes, heterogeneous environmental conditions and ecological 
functions are far from understood. Ongoing research in submarine canyons has shown that due to 
the terrain heterogeneity, the biological communities in submarine canyons vary compared to the 
adjacent continental slope (Soetaert et al., 1991; Grémare et al., 2002); even twin branches within 
the same canyon may exhibit a large difference in their community composition (Bianchelli et al., 
2008) and flanks of the same branch can exhibit different biological coverage due to differences 
in substrate cover as a result of the orientation of the canyon with regard to the overall 
oceanographic regime in the area (Van Rooij et al., 2010; De Mol et al., 2011). This shows that 
submarine canyons are dynamic and varied from one another, which leads to a conclusion that no 
variables should be overlooked or neglected without solid reason. Amongst the potential factors 
that can be related to aspect, the current regime is the most prominent. It will affect the sediment, 
organic matter and food source pathways into submarine canyons. Although the community 
structures are influenced by food supply and food availability, which are strongly related to upper 
water column processes, in canyon communities, variability caused by habitat heterogeneity and 
water depth differences can easily override the effect of upper water column processes (Ramalho 
et al., 2014). Unfortunately, the lack of detailed current information in most submarine canyons 
hinders the process of evaluating the influence of aspect towards the community structure. The 
marine landscape map produced here indicates the potential influence of the aspect variable. The 
next step now is to evaluate this against the community composition.  

2.5.4 Qualitative assessment 
A qualitative assessment was made based on visual comparison with sidescan sonar imagery 
expert interpretation. The comparison between the marine landscape map and visual interpretation 
of the sidescan sonar imagery supports that the automated method yields a useful and meaningful 
marine landscape map. Manual delineation in this study lacked in contiguity whereas the 
automated map provides a better coverage for a continuous classification. Other manual 
interpretations may have the same coverage as automated classification but they will be more 
time consuming to produce. The advantage of expert interpretation is the ability to pick out 
individual features in sidescan sonar that often overwhelm the automated method. Since the 
automated method is restricted to its pixel size for the ability to detect geomorphic features, it 
produces a more generalized map in comparison. On the other hand, with manual delineation 
there are still a percentage of features that are overlooked due to human error. Classification and 
boundaries between classes are more consistent throughout the whole automated process and this 
will be a useful contribution for further habitat quantification at later stages.  
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2.6 Conclusion 
This study offers another step forward towards a better marine landscape mapping technique that 
stands out for being a fully automated approach. The philosophy behind this study is to ensure 
the methodology is objective and suitable for broad and regional scale mapping based on seafloor 
geomorphic features that can be identified from different types of sonar data. Such information is 
often included as one of the attributes for actual habitat classification in one of the nested levels 
of hierarchal habitat mapping schemes. Additionally, the method utilizes bathymetric grid data 
that are the most common type of data obtained for most seafloor related studies.  Therefore many 
habitat mappers will find this method useful, time and labour efficient. This method could also be 
advantageous to monitor seafloor changes through time. Dynamics of the marine environment 
changes seafloor conditions, however, the objective approach allows monitoring an area over a 
period of time with more confidence without bias from expert interpretations. Mapping marine 
landscape provides a surrogacy for biodiversity and prospectively this method will contribute to 
design our marine environmental management measures.  
The following list summarises the conclusions from this study: 1) The ESP method that was 
designed to detect characteristic scales in geomorphometric analysis for OBIA is transferable, and 
can be used to detect potential patterns in bathymetric grids. The comparison between single scale 
and multiple scale maps convincingly revealed the delineation of seafloor features associated with 
patterns of real-world submarine canyons geomorphic features. 2) It is shown that using multiple 
scale terrain analysis, appropriate discrimination between features of different ecological 
relevance is achieved regardless of fine or broad scale features. Incorporation of both local and 
broad length scale terrain indices enables a production of marine landscape map that contains fine 
and detailed canyon features without compromising the prominent and large scale geomorphic 
features. 3) Potentially this methodology is thought to be a useful guideline for complex deep sea 
habitat mapping because it does not only delineates seafloor geomorphic features for potential 
habitat but also points to properties that might influence biodiversity in a complex terrain as 
pointed out in the discussion on the importance of aspect as a driving parameter in submarine 
canyon marine landscape delineation. 
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Chapter 3:  Quantifying Marine Landscape 
Heterogeneity in Submarine Canyons 

3.1 Abstract 
Spatial variability in environmental conditions has been attributed as the main driver behind 
marine biodiversity in structurally complex environments. Despite this, spatial heterogeneity, 
reflecting terrain organisation of environmental conditions, is seldom quantified in the marine 
environment especially at regional scale. In contrast, quantification of spatial patterns has been 
widely applied to characterise structural features of terrestrial landscapes and has demonstrated a 
great utility in landscape ecology and spatial planning. To address this problem we use landscape 
ecology indices and objective automated marine landscape mapping techniques to evaluate the 
typical landscape ecology approach by quantifying marine landscape heterogeneity as proxy for 
biodiversity in submarine canyons. Submarine canyons enhance marine landscape diversity at 
regional scales and provide unique habitat settings for diverse and abundant faunal assemblages. 
The deep and complex topography, strong currents and occurrence of high turbidity affect the 
habitat heterogeneity potentially making canyons a hotspot for biological activity, with high 
faunal diversity. 
Multibeam bathymetry and sidescan sonar imagery is used to generate a marine landscape map 
for Whittard Canyon using objective automated classification and object-based image analysis 
(OBIA). The resulting marine landscape map is characterised by seven clusters, of which five 
clusters were found to be ecologically relevant using species indicator analysis (INDVAL). The 
area was divided into three strata to quantify marine landscape heterogeneity using the entropy-
based contagion index. Differences in the contagion index were highly significant between 
branches and lower canyon. The two main canyon branches were not significantly different from 
each other. Differences in contagion across the three strata can help to determine areas suitable 
for Marine Protected Area establishment. 
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3.2 Introduction 
As a result of its inaccessibility, our knowledge of biodiversity in the deep sea is limited and its 
ecological processes are poorly understood. However, with an increasing number of human 
activities affecting this fragile ecosystem, the need to understand the deep-sea environment is 
crucial. There has been a major increase in the awareness for this issue. Conservation policies 
such as the OSPAR Convention or the EU Habitats and Marine Strategy Framework Directives 
have initiated serious effort to designate deep-water Special Areas of Conservation (SACs) and 
Marine Protected Areas (MPAs). Globally this issue has also been addressed, through a call for 
formal governance structures to create a network of deep-sea reserves that maintain and restore 
biodiversity (Barbier et al., 2014; Van Dover et al., 2014). A practical perspective is urgently 
needed to support the decision making by stakeholders while at the same time representing the 
functional diversity in marine ecosystems.  This can only be achieved through the creation of 
adequate maps, illustrating the spatial distribution of the marine landscapes and/or habitats in the 
area under consideration. In this context, it is important to create a tool that will assist the creation 
of such maps. We propose that the maps should encompass the following components: 1) 
information on terrain and substrate; 2) a representation of the environment; 3) a measure of the 
environment variability and 4) groundtruthing information to support the ecological 
interpretation. 
In this context, we focus on one of the most complex terrains that can be found in the deep sea, a 
submarine canyon system. Submarine canyons are naturally heterogeneous, composed of habitats 
that vary in size, shape and spatial arrangement across the marine landscape. This spatial 
variability of habitats within the marine landscape potentially exerts a strong influence on 
biodiversity. Submarine canyons are important geological features found along most continental 
margins with at least 9000 large canyons known worldwide (Harris et al., 2014). Generally, 
canyons consist of valleys with steep-sided walls, either V- or U-shaped in cross section, and 
many show tributary systems in plan view (Lastras et al., 2009). They play a major role as a 
conduit between shallow and deep depositional systems, transporting sediment (Hickey et al., 
1986; Monaco et al., 1999; Puig et al., 2014), organic matter (Martín et al., 2006; Garcia et al., 
2007; Waterson and Canuel, 2008) and pollutants (Buscail and Germain, 1997; Richter et al., 
2009). As a result of their complex topography, they also affect the hydrodynamic regime though 
intensified mixing and amplification of currents (Martín et al., 2007; Turchetto et al., 2007) which 
contributes to the support of diverse potential habitats (Mortensen and Buhl-Mortensen, 2005; 
Albaina and Irigoien, 2007; Morais et al., 2007; Schlacher et al., 2007; Tyler et al., 2009). This 
has recently generated a wide interest in submarine canyon studies (Yoklavich et al., 2000; 
Brodeur, 2001; Tyler et al., 2009; Currie and Sorokin, 2014; De Leo et al., 2014; Huvenne and 
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Davies, 2014).  However, the complexity of the terrain greatly complicates mapping of this marine 
habitat. 
For spatial management purposes, high quality full coverage maps of abiotic variables are 
invaluable in understanding and predicting marine habitats. In the deep sea, where biological data 
are often scarce, substrate and geomorphology are the best surrogate available to predict potential 
benthic communities (Schlacher et al., 2007; Schlacher et al., 2010). In submarine canyons, 
although seafloor geomorphic properties are among the main drivers controlling community 
structure (Ramalho et al., 2014), substrate also plays an important role affecting the distribution 
of biological communities (Van Rooij et al., 2010; De Mol et al., 2011; Morris et al., 2013; Robert 
et al., 2014b). However, most substrate information is interpolated from widely distributed 
sediment sampling points and video transect interpretation using inadequate interpolation 
techniques. As such, a robust technique is required to produce a full-coverage substrate map using 
commonly available acoustic data and limited point data substrate information.  
Environmental representation of the seabed has been used for some time in marine spatial 
planning in both shallow and deep-water areas. However, in comparison to deep-sea areas, marine 
spatial planning in shallow waters is more developed and extensive methods have been developed 
to improve the understanding of the spatial ecology of the seafloor (Brown et al., 2011).  Ferrier 
and Guisan (2006) identified three general spatial modelling strategies and Brown et al. (2011) 
categorised benthic habitat mapping studies based on these strategies. Among the three strategies, 
the one that adopts a delineation of natural environmental patterns using abiotic information 
remained the most popular approach. In the deep sea, this is also most favourable because of the 
common lack of biotic information for broad spatial mapping. On this basis, an automated 
objective marine landscape mapping methodology for submarine canyons was developed (Ismail 
et al., 2015). However the method was tested only on a single canyon mainly using bathymetric 
data and resulted in a marine landscape map strongly influenced by geomorphology. In this study, 
the robustness and transferability of the approach is tested by applying it to a different canyon 
system. In addition, the method is expanded through the incorporation of substrate information 
into the methodology. Finally, the result is used to quantify habitat heterogeneity as a surrogate 
for the submarine canyon's biodiversity. 
Biodiversity is a key element in understanding the marine ecosystem and has been considered as 
the main indicator of ecosystem status and function (Danovaro et al., 2008). However, assessing 
biodiversity in the deep sea is a well-known challenge for deep-sea ecologists (Brandt et al., 
2014). The effort to evaluate biodiversity is currently limited to extreme extrapolations of minimal 
data from traditional sampling schemes and video surveys. Those are often time consuming and 
expensive to obtain. Here, we propose a way to present a marine ecosystem at a broad scale for 
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marine spatial planning that uses spatial heterogeneity of the marine landscape as a proxy for 
biodiversity. Studies have shown that spatial variability in environmental conditions is the main 
driver of biodiversity, especially in structurally complex environments (Chase and Leibold, 2003; 
Harborne et al., 2006; Henry et al., 2010). This approach is well developed in the terrestrial 
environment (Dale and Fortin, 2014; Sauder and Rachlow, 2014) and most of the concepts and 
techniques are developed for the terrestrial environment. Over the past 30 years, these approaches 
were extended into the marine realm but were generally limited to coastal and shallow waters 
(Wedding et al., 2011) and are even more scarce in deep-sea environment (Robert et al., 2014a).  
The main aim of this study is to propose a procedure to delineate ecologically relevant marine 
landscapes in addition to a spatial heterogeneity measure that acts as an indicator of biodiversity 
in submarine canyons. The aim will be addressed through the following objectives: 
1. Propose a method to map substrate distribution in submarine canyons using object based image 
analysis (OBIA) on sidescan sonar imagery. 
2. Test the transferability and applicability of an objective automated marine landscape mapping 
technique previously developed in a suite of canyons offshore Portugal (Ismail et al., 2015). 
3. Propose a way to quantify the spatial heterogeneity of a marine landscape using landscape 
ecology indices.   
4. Groundtruth the ecological relevance of the mapped marine landscapes using video transects 
interpretation. 
 

3.3 Materials and methods 
3.3.1 Study area 
Whittard Canyon is a large dendritic submarine canyon located on the Celtic Margin, southwest 
of the UK and Ireland (Figure 3.1). The prominent Western and Eastern branches begin at 
approximately 200 m and meet at about 3600 m water depth, leading to the Whittard Channel 
which opens up onto Porcupine Abyssal Plain (Duineveld et al., 2001; Zaragosi et al., 2006; 
Hunter et al., 2013). It is reported that the present-day canyon activity for sediment transport is 
relatively low for a submarine canyon (Zaragosi et al., 2000; Toucanne et al., 2008).  Canyon 
processes are governed by small-scale slope failures, turbidity currents and internal waves and 
tides with current strengths that are sufficient to transport fine sediment (Reid and Hamilton, 
1990). In terms of biodiversity, submarine canyons have been proposed as a suitable habitat to 
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harbour cold-water corals and filter feeding animals owing to their heterogeneous seabed, canyon 
morphology and complex hydrographic patterns (Mortensen and Buhl-Mortensen, 2005; Orejas 
et al., 2009; Schlacher et al., 2010; Edinger et al., 2011; Gori et al., 2013). This is consistent with 
the observation from video footage that the vertical walls of the Whittard Canyon are rich in 
diversity with large colonies of cold-water corals and clams (Huvenne et al., 2011; Johnson et al., 
2013; Morris et al., 2013; Robert et al., 2014b). 

 Figure 3.1: Bathymetry map of Whittard Canyon on the left and TOBI sidescan sonar imagery coverage on 
the right. Contour interval is 1000 m. The inset map shows the location of the study area relative to the 
location of Celtic Sea. Red box indicates the pilot area for sensitivity test and yellow triangle are location 
of ROV transects.  

3.3.2 Data 
The acoustic data for the study area were acquired during the 2009 RRS James Cook cruise 035, 
using a shipboard EM120 multibeam system and the 30 kHz TOBI (Towed Ocean Bottom 
Instrument) sidescan sonar. The multibeam bathymetry data were processed using CARIS HIPS 
& SIPS software to 50 m pixel size. Terrain indices derived from the multibeam bathymetry data 
are slope, aspect (split into continuous measures of eastness and northness), curvatures (plan and 
profile), bathymetric position index and rugosity. We used the software packages ArcGIS 10.2 
and Landserf v2.3 for these calculations. The sidescan sonar imagery was pre-processed using the 
NOC in-house PRISM software v4.0 (Le Bas and Hühnerbach, 1998), Erdas Imagine 2014 and 
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ArcGIS 10.2 to produce imagery with improved geographical registration (Ismail, 2011). TOBI 
was towed at an altitude of approximately 400 m above the seafloor at about 2.5 knots. It produces 
images with ~6 km wide swath and horizontal resolution of 3 m. 
A total of 10 video transects were collected during 2009 RRS James Cook cruise 036, plus 3 
additional transects from 2007 RRS James Cook cruise 010, using the ISIS ROV (Remotely 
Operated Vehicle). The dives were carried out in the Eastern and Western branches of the canyon 
at depths varying from 600 to 4000 m. Based on video analysis by Robert et al. (2014 b), transects 
were analysed in 50 m sections for substratum type and divided into soft, hard and mixed 
sediments. In addition, identification of all epibenthic megafauna > 1cm into morphologically 
distinct taxa was also carried out during the video analysis. 

3.3.3 Research strategy  
The proposed procedure to map deep-sea habitat for marine spatial planning purposes is divided 
into four components: 1) information on seafloor geomorphology and substrate 2) an objective 
method to produce a marine landscape map 3) a quantification technique to measure marine 
landscape heterogeneity and 4) biotic information as groundtruthing for ecologically-relevant 
marine landscapes.  
A technique to map marine landscapes in complex deep-sea environments has been proposed, but 
so far was only tested in one submarine canyon (Ismail et al., 2015). The study used multibeam 
bathymetry and derivatives as the abiotic variables to produce the marine landscape map, resulting 
in it being greatly influenced by geomorphology. To test the robustness of the technique, the same 
method is applied here with additional variables derived from sidescan sonar imagery. The 
derivation is a surrogate for substrate distribution in the submarine canyon. Derivatives from 
multibeam bathymetry, on the other hand, will provide the terrain information. The whole 
approach is illustrated in Figure 3.2. Procedure and software used for each component are outlined 
in the following sections. 
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Figure 3.2: A simplified flow chart of the mapping procedure for marine landscape mapping in submarine canyons. The flow chart is divided into three parts; i) object based 
image analysis to produce substrate map, ii) terrain analyses for multibeam bathymetry to produce terrain variables and iii) multivariate statistical analysis to produce the 
marine landscape map for Whittard Canyon. 
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3.3.3.1 Substrate distribution 
Substrate type and habitat heterogeneity are among the factors that influence the distribution, 
abundance and composition of benthic organism in submarine canyons (Cunha et al., 2011; 
Hunter et al., 2013; Morris et al., 2013; Kenchington et al., 2014; Ramalho et al., 2014). 
Geomorphic features, producing high terrain variability and forcing local current patterns, are 
among the key drivers that control the sediment distribution in submarine canyons. However, lack 
of sediment samples and limited video survey coverage usually hinders the production of high 
quality sedimentological maps in submarine canyons. Acoustic amplitude data such as sidescan 
sonar imagery and multibeam backscatter can, however, compensate for the lack of sample data, 
and can be a powerful tool in the production of full coverage substrate distribution maps. Experts 
use these data to assist in substrate interpretation, which is often done manually; this tends to limit 
the coverage and quantitative means of interpreted sediment distribution maps. However in recent 
years, several automated image analysis techniques and algorithms have become available to 
quantify acoustic textures and support seafloor classification (Huvenne et al., 2002; Lucieer and 
Lamarche, 2011; Brown et al., 2012; Lucieer et al., 2013). Here, a method is proposed using the 
acoustic responses in sidescan sonar imagery as a proxy for substrate distribution, combined with 
object based image analysis (OBIA) in eCognition Developer v8.9.    
OBIA (Blaschke, 2010) is a technique that recognises meaningful patterns in an image regardless 
of its pixel size. It involves two steps: segmentation and classification. Segmentation commonly 
refers to the process of subdividing entities into smaller partitions. However in eCognition, the 
operation is not limited to subdivision, but includes merging and reshaping objects to specific 
criteria. Various segmentation techniques are made available in eCognition and are divided into 
two basic principles: 1) cutting larger images into smaller objects known as top-down strategy 
and 2) merging smaller pieces to get something bigger, which is a bottom-up strategy. A 
segmentation technique that was demonstrated to be a reliable tool to analyse seafloor backscatter 
images in eCognition, and that therefore will be used in this study, is multiresolution 
segmentation, based on a region-growing principle (Lucieer, 2007, 2008; Lucieer and Lamarche, 
2011; Lucieer et al., 2013). The process merges the pixels in backscatter imagery into potentially 
a real-world features, and the segments are known as image objects. In detail, multiresolution 
segmentation is a bottom up region-merging technique starting with single-pixel objects, while 
subsequently smaller image objects are merged into larger ones. The algorithm minimises the 
average heterogeneity and maximizes the homogeneity of each image object. Region growing 
will stop once a segment reaches a considerable object size defined by a scale parameter. This 
scale parameter (SP) is a unitless term used in the software and it controls the maximum allowed 
size and heterogeneity in an image object. The size of the SP can be determined automatically 
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(and objectively) using the ESP (Estimation of Scale Parameter) tool developed by Dragut et al. 
(2010). However, the SP is governed by a shape and spectral criterion, which together define the 
homogeneity threshold of an image object. Both shape and spectral criteria are pre-defined by the 
user, based on a trial and error approach. The shape criterion is defined by a relative weighting 
between smoothness and compactness of an image object. It relates to the ratio of the perimeter 
length to the number of pixels forming the image object. The selection for shape criterion ranges 
from 0 to 0.9, with 0 allowing a more elongated and smoothed image object while 0.9 results in 
compact and spherical image objects. Meanwhile, the spectral criterion is based on the colour 
homogeneity within an image object. The value for the spectral criterion is defined between 0 and 
1, with 0 meaning the region merging is not influenced by the spectral variation of the imagery 
(Darwish et al., 2003). 
Image objects are then classified into substrate categories using supervised classification on a 
range of characteristics or features calculated for each object (e.g. area, perimeter, image texture 
etc.). For the classification, the eCognition Nearest Neighbour algorithm was trained using 
samples from the 50 m interpreted video transects, with 9 out of 13 transects used for training and 
4 held back for later cross validation. We used two types of training samples: substrate samples 
and artefact samples. The substrate samples are derived from ROV video interpretation and 
comprise ‘rock’, ‘sediments’, and ‘mixed substrates’. Meanwhile, the artefact samples are 
recognisable and unavoidable artefacts that typically appear in sidescan sonar imagery. These 
artefacts are caused by the limitations of the equipment operating in a complex terrain. They are 
grouped into ‘nadir’, ‘edge’ and “shadow’. Nadir zones are areas directly below the sidescan 
sonar, where the sound has a vertical angle of incidence. These areas are often of limited use due 
to the high level of noise in the backscatter signal and the geometry of the acoustic beam pattern. 
Due to the complex terrain and the fact that sidescan sonar was towed near to the bottom of the 
canyon, the steep flanks of the canyon caused the angle of incidence to be near perpendicular in 
some locations, which may cause exaggeration of features, giving rise to the 'edge' artefacts. 
Shadows are a common occurrence in sidescan sonar data due to the acoustic signal being blocked 
by acoustically opaque objects, which causes the area behind them to be less ensonified.  
Classifications were made based on acoustic characteristics of the sidescan sonar objects, using 
the nearest neighbour feature space optimisation function (Laliberte et al., 2012). The function 
finds the best combination of features that produces the largest average minimum distance 
(separation distance) between the samples of different classes. The acoustic features included into 
the algorithm are mean brightness, standard deviation, GLCM (Haralick grey level co-occurrence 
matrix) correlation, GLCM entropy, GLCM contrast, GLCM homogeneity and GLCM mean. 
Once classification is achieved, cross validation using inter-rater agreement was carried out 
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between the resulting substrate map and the remaining four video transects to evaluate the 
correlation.  
The substrate map produced is in categorical form and before subjecting it to any statistical 
analysis the map needs to be converted into a continuous variable.  Membership functions are 
used to convert distinct classes into membership degrees between 0 and 1, indicating the 
membership of each pixel to each substrate class. The underlying concept is based on fuzzy c-
means (FCM) algorithms (Bezdek, 1981). The membership value represents a degree of 
belonging of each segment to the class centroid. These values are the ones used as continuous 
variables for further marine landscape classification. 
 
3.3.3.2 Sensitivity Test 
The scale parameters for segmentation and length scale in the terrain analysis, calculated using 
the ESP tool, were subjected to a sensitivity test. The test compares the use of different length 
scales to generate the substrate distribution map and terrain analysis. It was carried out on a pilot 
area (Figure 3.1) and consisted of three steps: 1) production of a substrate distribution map at each 
scale parameter of 150, 250 and 370, using OBIA and supervised classification based on samples 
from two ROV video transects 2) accuracy assessment on these substrate distribution maps 
against the third video transect in the area 3) production of marine landscape maps using substrate 
distribution maps and terrain variables calculated at each scale parameter of 150, 250 and 370. 
The final substrate distribution map for the full dataset were also test for accuracy using Kappa 
coefficient measure and BER. The accuracy assessment includes:  
Kappa coefficient measure 
Cohen’s Kappa coefficient measure was first introduced by Cohen (1960), and the algorithm is 
now generally known as unweighted Kappa. It provides a numerical rating of the magnitude of 
agreement between two observers. The calculation is based on the difference between observed 
agreements compared to the expected agreement. Observed agreement is how much agreement is 
actually present between two observers and expected agreement is how much agreement would 
be expected to be present by chance alone. Data layout for Kappa coefficient agreement matrix is 
shown as follows: 

Results Observer 1 
Observer 2 Yes No Total 
Yes a b m1 No c d mo Total n1 no n 
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a and d represent the number of times two observers agree while b and c represent the number of 
times the two observers disagree. If b and c are zero, there are no disagreements, and observed 
agreement (݌௢) is 1 or 100%. While zero a and d indicates no agreements and the observed 
agreement (݌௢) would be 0. 
 The calculation of expected agreement (݌௘) and kappa coefficient, K measure is as follows: 

Expected agreement, ௘݌ = ൣ൫݊ଵ ݊ൗ ൯൫݉ଵ ݊ൗ ൯൧ + ൣ൫݊଴ ݊ൗ ൯൫݉௢ ݊ൗ ൯൧ 
 

Kappa coefficient, K = ௢݌) − (௘݌
(1 − (௘݌  

where ݌௢ is the observed agreement and ݌௘is the expected agreement. K measure of this difference 
is standardised to a scale of -1 to 1, where 1 is perfect agreement 0 is exactly what would be 
expected by chance and negative values indicate agreement less than chance.  
Here, the two observers are the substrate interpreted from video transects and the substrate 
information from the substrate map. Observed agreement simply reflects when the map agrees 
with the video interpretation on the same type of substrate at every 50 m section of video transect. 
For the substrate map, the highest average substrate present within the 50 m section is used as the 
substrate type at the intersection points with the video transect. 
Balanced error rate 
Additionally, due to unbalanced class frequencies in the training data (i.e. most observations are 
sediment), the performance for each substrate distribution map is evaluated via balanced error 
rate (BER). BER was first suggested by Luts et al. (2010) to effectively give rarer classes a higher 
weighting by incorporating class misclassifications into accuracy assessment. The method has 
also been applied successfully to evaluate predictive models in seabed mapping (Stephens and 
Diesing, 2014; Diesing and Stephens, 2015). The criterion calculates the misclassified classes 
based on the Kappa coefficient agreement matrix as follows: 

,݁ݐܽݎ ݎ݋ݎݎ݁ ݈݀݁ܿ݊ܽܽܤ ܴܧܤ =  
ܾ ݉ଵൗ + ܿ ݉଴ൗ

2  

where, b and c represent the number of times the two observers in disagreement and m1 and m0 
are the total element in a categories. Here, BER represents the average of the proportion of wrong 
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classifications in each class, the element refers to groundtruthed classified pixels and the 
categories are the substrate classes (i.e. sediments, rocks and mixed). 
Statistical significance measure 
Further examination to assess the classification accuracy is by evaluating the statistical 
significance of the differences in Kappa coefficient measure and balanced error rate among the 
three maps segmented at different SP. The evaluation was first proposed by McKenzie et al. 
(1996), to compare Kappa derived from related samples statistically using a resampling 
techniques. The method was then applied in remote sensing studies to support conventional 
accuracy assessment result (i.e. confusion matrix, Kappa coefficient measure) with a statistical 
confidence limit (Foody, 2004). Further implementation can be found on more recent studies and 
applied specifically for classification accuracy test in benthic substrate predictive models (Diesing 
et al., 2014; Stephens and Diesing, 2014; Diesing and Stephens, 2015).     
Here, the test is to determine if one level of agreement (for Kappa) or disagreement (for BER) is 
significantly different from another. The p-values of the significance test for both statistic is 
generated via Monte Carlo type resampling. The significance of the difference between statistics 
is calculated as follows: 1) Using 1000 permutations (n) of the groundtruth data, statistics (i.e. 
Kappa and BER) for each map were recalculated on each permutation, 2) if the difference of the 
statistics from the permuted data equalled or exceeded the original difference, it is then counted 
towards a value (c), 3) at the end of the permutation, p-values is yielded using the following 
equation: 

ݏ݁ܿ݊݁ݎ݂݂݁݅݀ ݂݋ ݊݋݅ݐ݌݋ݎ݌ =  ܿ + 1 ݊ + 1ൗ      

where the statistics difference is only significant if the returned value is less than 0.05. According 
to McKenzie et al. (1996) and Foody (2004), a thousand permutations are adequate for 
significance testing at 5 percent level of significance.  
3.3.3.3 Marine landscape map 
For the marine landscape mapping in Whittard Canyon, the technique used is an extension of the 
objective automated method that was developed in the Portuguese Canyons (Ismail et al., 2015). 
By applying this method here, its robustness for use in different submarine canyons is tested. The 
method is divided into two parts: the terrain analysis and the multivariate statistical analysis 
(Figure 3.2). It uses abiotic variables (Table 3.1) derived from acoustic data to delineate marine 
landscapes.  In the first part, multiple scale terrain analysis approaches (Dolan and Lucieer, 2014) 
were used to calculate slope and aspect using Landserf v2.3 at two length scales equivalent to 
scale parameter obtained from the ESP tool and verified through the sensitivity test. The approach 
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has been demonstrated to retain local and broad scale features from multibeam bathymetry (Ismail 
et al., 2015). However, curvatures were calculated only for the broad scale as fine scale analysis 
returned with pseudo surface variation as a result of the poorer bathymetry data quality compared 
to the data used in Ismail et al. (2015). Fine scale analysis with a 3 x 3 window picked out artefacts 
(noise) in the bathymetric data as features, which would have introduced false information into 
the multivariate statistical analysis. Bathymetric position index was derived using the Land Facet 
Corridor Designer extension for ArcGIS 10.2 (Jenness et al., 2011) at fine and broad scale, while 
rugosity was calculated at fine scale using DEM Surface Tool (Jenness, 2004) in ArcGIS 10.2. 
Apart from multibeam derivatives, the continuous substrate maps (from Section 3.3.3.1) were 
included and subjected to the multivariate statistical analysis to produce the overall marine 
landscape map for Whittard Canyon. Multivariate statistical analysis comprised of three analyses; 
1) principal component analysis (PCA) for data reduction by computing linearly independent 
variables known as principal components (PC) 2) K-means for clustering of PCs using the most 
minimal iteration and 3) optimal number of classes are determined using within sum of squares 
plot.   
Table 3.1: List of abiotic variables included in the principal component analysis. Ticked boxes indicate the 
available scale for the variables. 

Abiotic Variable  Descriptions Length scale Fine   Broad 
Digital terrain model (DTM) of 
bathymetry  

Obtained from multibeam bathymetry survey. Represent 
depths of the ocean floor.   

Slope  First derivatives of DTM. Represents the maximum rate of 
change in value from a cell to its neighbour  

Aspect 
Eastness= sin(aspect) 
Northness= cos(aspect) 

First derivatives of DTM. 
Describes the orientation of slope. Indices for eastness and 
northness provide continuous measure (-1 to +1) 

 
Bathymetric position index (BPI) Measures the elevation of each cells compares to the mean 

elevation of neighboring cells (Weiss 2001)  
Plan curvature A second derivative of DTM. Provide the rate of change of 

aspect  
Profile curvature A second derivative of DTM. Provide the rate of change of 

gradient   
Rugosity A measure of small scale variations of the surface area across 

the neighbourhood of the central pixel (Jenness 2004)  
Sidescan sonar imagery Obtained from Towed Ocean Bottom Instrument (TOBI). 

Sonar images are acquired by emitting continuous sonar pulses 
while moving, this return with the image of the seafloor.  

 

Substrate Membership  
(Rock, Sediment, Mixed, 
Artefact)  

Synthesised substrate map into quantitative layers by giving 
membership value in feature space to each pixels for each 
substrate class.  

 
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3.3.3.4 Marine landscape spatial heterogeneity quantification 
The spatial heterogeneity hypothesis is one of the basics in ecology (Simpson, 1949; MacArthur, 
1967). It assumes that structurally complex habitats may provide a wider range of niches and 
hence allow for diverse ways of exploiting environmental resources, thus increases species 
diversity. The response of organisms to heterogeneity in a landscape has been observed in 
terrestrial (Tews et al., 2004) and aquatic systems (Robert et al., 2014a; Parnell, 2015) including 
submarine canyons (Schlacher et al., 2010). Most terrestrial studies show positive relationships 
between heterogeneous landscape and biodiversity; however most studies are biased towards 
vertebrates and habitats under anthropogenic influence (Tews et al., 2004). 
According to a review by Wedding (2011), application of spatial pattern metrics in the marine 
science literature between 1980 and 2011 was limited to only 17 studies that quantified spatial 
patterns using 2-dimensional patch-mosaic models (i.e. benthic habitat maps). Most studies 
followed terrestrial-based studies or modified metrics from terrestrial studies, and only one truly 
unique metric was developed for a marine landscape ecology study in a Pacific atoll (Andréfouët 
et al., 2001; Andréfouët et al., 2003). In a more recent study by Robert et al. (2014a), such 
application was extended in deep-sea settings where landscape metrics were used to characterize 
the spatial pattern of substratum types. Li and Reynolds (1995) give a general guideline for the 
quantification of heterogeneity in terrestrial ecology and suggest that heterogeneity should be 
defined based on two components: the system property of interest and its complexity or 
variability. In this study, the system property refers to the occurrence of the marine landscapes; 
complexity refers to qualitative descriptors of this property. Here, the heterogeneity is defined as 
the spatial variability of marine landscapes measured without reference to any functional effect 
(adapted from Li and Reynolds (1995)).  
Heterogeneity in categorical maps can be defined as complexity in the number of patch types, 
proportion, patch shape and contrast between neighbouring patches. To address these aspects of 
heterogeneity, landscape ecologists have developed statistical tools to quantify spatial patterns in 
mapped surfaces. The contagion index is one such type of landscape index that is used to quantify 
heterogeneity in categorical maps (Li and Reynolds, 1993; Li and Reynolds, 1995). A robust 
landscape index to quantify heterogeneity should measure two components: composition and 
configuration (Li and Reynolds, 1993; Parresol and Edwards, 2014). Both components are 
adapted using definitions from landscape ecology to be used in this study. Composition refers to 
the total number of marine landscapes and their proportions in each area, whereas configuration 
refers to the spatial pattern of patches in the landscape. 
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Two scenarios were considered to quantify the spatial heterogeneity of the marine landscapes in 
the study area. The first is to divide the study area equally into a number of zones, each covering 
approximately 200 000 km2. This approach is taken to simulate examples for decision-making in 
conservation zones if given a specific area to decide upon. The second approach is by dividing 
the area based on the morphology of the canyon, the branches and its outflow channel. In this 
case three zones are recognised - the Western and Eastern branch and Whittard Channel. The cut-
off point between branches and the channel is based on the canyon cross-section profile where 
the valley shape changes from a V-shaped to a U-shaped profile.  
The entropy-based contagion index, extended from landscape ecology and used to quantify spatial 
heterogeneity of the zones in the Whittard Canyon is expressed as follows: 

Γ = ෍ ෍ ௜݌ ௜ܰ௝
∑ ௜ܰ௝௡௝ୀଵ

௡

௝ୀଵ

௡

௜ୀଵ
ln ቆ݌௜ ௜ܰ௝

∑ ௜ܰ௝௡௝ୀଵ
ቇ 

where pi is  proportion of marine landscape type i and n is the total number of marine landscape 
types in the area (each zone), Nij is the number of adjacencies between pixels of marine landscape 
i and j. Note that a higher contagion corresponds to a lower heterogeneity and vice versa. The 
proportion of each marine landscape type and the adjacency matrices for each zone were 
computed in FRAGSTATS based on a 50 m image resolution.  
Hypothesis testing using one way analysis of variance (ANOVA)  

Analysis of variance (ANOVA) was developed by Fisher (1925) and is widely used to determine 
whether there is a significant difference between the mean values of the different categories. In 
this case, to answer the question if the contagion means of the study zones are different, a simple 
one-way analysis of variance (ANOVA) was performed. ANOVA compares differences of means 
among groups by looking at variation in the data. Specifically it compares the amount of variation 
among groups with the amount of variation within groups. ANOVA is used to calculate a test 
statistic or the F-ratio with which the probability (the P-value) is obtained. The probability refers 
to the probability of obtaining the observed data assuming the null hypothesis. As null hypothesis 
we assume that the means of all groups are equal. A significant P-value, taken here as P 
statistically significant at 0.001 level (P<0.001), suggests that at least one zone mean is 
significantly different from the others. ANOVA calculates the variation in dataset into two parts 
as follows: 
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among group variance =   ∑ ݊௜(̅ݔ௜ − ଶ௞௜ୀଵ(ݔ̅
݇ − 1  ,    

measures the variation of the k group means about the overall mean, where (̅ݔ௜ −  ଶ is the square(ݔ̅
difference between each group mean to the overall group mean, k is the number of groups and k-
1 is the degrees of freedom  

within group variance = ∑ ∑ ൫ݔ௜௝ − ௜൯ଶ௡೔௝ୀଵ௞௜ୀଵݔ̅
∑ (݊௜ − ݇)௞௜ୀଵ

 

measures the variation of the n sample about k group means, where ൫ݔ௜௝ −  ௜൯ଶ is the sampleݔ̅
standard deviation from the ith group, ݊ ௜  is the sample size taken from group i and k is the number 
of groups with (݊௜ − ݇) is the degrees of freedom 

The F ratio is then calculated for the hypothesis testing by dividing among group variance by the 
within group variance. If the average difference among group is similar to that within groups, the 
F ratio will come to about 1. As the average difference among groups becomes greater than that 
within groups, the F ratio becomes larger than 1. The P-value is obtained by testing it against the 
F-distribution of a random variable with the degree of freedom associated with the among and 
within group variance. Larger F ratio will give smaller P-values which indicates greater difference 
of variance, and less chance that the null hypothesis is correct. 

Based on the above equations, Parresol and Edwards (2014) constructed the simple one-way 
ANOVA for the entropy index using mean and variance for the statistical estimate Γ of the 
contagion of a landscape: 

among group variance = ∑ ൫Γ௜ − Γ෠൯௧௜ୀଵ
ݐ − 1    ,   Γ෠ = ∑ ௜ܶΓ௜௧௜ୀଵ∑ ௜ܶ௧௜ୀଵ

 

within group variance = ∑ ௜ܶݎܽݒ(Γ෠௜)௧௜ୀଵ∑ ௜ܶ௧௜ୀଵ
 

F = ݁ܿ݊ܽ݅ݎܽݒ ݌ݑ݋ݎ݃ ݃݊݋݉ܽ
݁ܿ݊ܽ݅ݎܽݒ ݌ݑ݋ݎ݃ ℎ݅݊ݐ݅ݓ  with ݐ − 1, Σ ௜ܶ −  degrees of freedom ݐ

where zones are equivalent to groups and patches to samples, Γi =contagion value of the ith zone, 
t=number of zone and Ti=number of patches for the ith zone. 
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Tukey’s test 
While ANOVA is used to test whether there is significant difference between groups in the data, 
it does not however tell which groups differ. In the event the ANOVA indicates that there is a 
significant difference among groups, Tukey’s test or post-hoc analysis (Tukey, 1949) can be used 
to find the means that are significantly different from each other. Tukey’s test compares all 
possible group means in pairs and is based on a studentised range distribution (q) to find groups 
that differ significantly. Here, the Tukey’s test value (q) between two zones (i and j) is calculated 
as follows (Parresol & Edwards, 2014): 

௜௝ݍ = Γ௜ − Γ௝
ඥmean squared error 

where Γi and Γi is contagion for ith zone and jth zone with i being the larger of the two contagions 
compared. The test value (qij) is then compared to a q value (qcritical) obtained from the studentised 
range distribution. If the qij value is larger than the qcritical , the two zones are significantly different.  
Biological characteristics 
Due to the limited number of biological samples, relationships with biological characteristics were 
only investigated for the second approach where the study area is divided into three zones based 
on canyon morphology. Biological characteristics based on epibenthic megafauna counts from 
the video transect interpretation were calculated for the Eastern and Western branch and Whittard 
Channel to evaluate the relevance of the contagion index as a biodiversity indicator. The 
biological characteristics are abundance, richness and Simpson’s reciprocal index (diversity 
index). Abundance and richness represent the number of individuals present and number of 
different kinds of organisms present in a sample, respectively. Simpson’s reciprocal index, from 
Simpson’s Index (Simpson, 1949), is a diversity measure that takes into account both richness 
and abundance, meaning that a community dominated by one or two species, is considered to be 
less diverse than one in which several different species have a similar abundance.  The biological 
characteristics were used instead of specific species assemblages to evaluate the ecological 
relevance due to high turnover in species assemblages in Whittard Canyon (Robert et al., 2014b).  
3.3.3.5 Ecologically relevant marine landscapes 
A species indicator analysis or INDVAL, as suggested by Dufrêsne and Legendre (1997), was 
performed to evaluate the ecological relevance of the marine landscape map obtained. This 
method identifies indicator species for each marine landscape (cluster). Potentially, should the 
marine landscape be ecologically relevant, indicator species will be identified, whereas if no 
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indicator species can be identified the cluster lacks ecological significance. The index is 
calculated in the R package labdsv and defined as follows:  

INDVAL௜௝ = ௜௝ܣ × ௜௝ܤ × 100 
௜௝ܣ = N݅݊݀݅ݏ݈ܽݑ݀݅ݒ௜௝/N݅݊݀݅ݏ݈ܽݑ݀݅ݒ௝ 

௜௝ܤ = Nݏ݁ݐ݅ݏ௜௝/Nݏ݁ݐ݅ݏ௝  

where INDVAL is the indicator value of species i in site cluster j, and site is the interpreted 50 m 
section of video transect. Aij is the mean abundance of species i in the sites of marine landscape 
j, compared to all groups in the study. Bij is the relative frequency of occurrence of species i in 
the sites of marine landscape j. Final multiplication by 100 produces percentages. In addition to 
the INDVAL statistical approach, species were grouped into their feeding type to evaluate the 
overall distribution of biota in relation to marine landscapes in the submarine canyon, based on 
the 50 m video transect sections. 

3.4 Results 
3.4.1 Substrate map 
Sensitivity Test for ESP Tool 
The ESP tool used to determine the appropriate scale parameter for segmentation in OBIA yielded 
the rate of change in local variance (ROC-LV) graph (Figure 3.3). The pattern observed in the 
graph reveals the transition from pixels to the smallest characteristic objects in the scene of 
interest. This transition is shown as a step or small peak in the ROC-LV plot. Based on Figure 
3.3, at scale parameter 150, 250 and 370 meaningful objects emerge. Segmentation was therefore 
carried out at 150, 250 and 370. Part of the segmented sidescan sonar image is shown in Figure 
3.3. 



  Marine landscape quantification 

 77   

 Figure 3.3: ROC-LV (Rate of change – local variance) graph obtained using the ESP Tool to determine the 
most appropriate segmentation size for object based image analysis. Peaks in ROC plot (blue) indicate the 
threshold at which the analysis window size best represents the real-world objects. Dragut et al. (2010) 
defined the threshold as the first break in ROC-LV curve after continuous and abrupt decay. Segmentation 
results for a part of TOBI sidescan sonar image are shown for scale parameter (SP) at levels 150, 250 and 
370. 
 
 
Once the pilot area was segmented using a SP of 150, 250 and 370, substrate distribution maps 
were produced based on the segmentation. Results for each segmentation and its substrate 
distribution are shown in Figure 3.4. Based on the Kappa statistic, the observed agreement is 
reasonable between the video transect and substrate distribution map for Sediment. Substrate class 
Rock is highest for misclassification except in map SP 370 and Mixed substrate was not classified 
correctly on any of the maps. The highest agreement was achieved in the image segmented with 
SP 250, followed by SP 150 and the lowest agreement, at 40.38%, belongs to the segmentation 
with SP 370. Lowest agreement in map SP 370 is a result of the over-estimation of the Rock class 
versus the Sediment class. However, the Kappa values are low for all three outcomes. Relatively 
among the three segmentations, SP 250 has the highest Kappa value although according to 
interpretation of Kappa statistics, a value between 0.01 – 0.20 is still considered to be a poor 
agreement (Viera, 2005). SP 370 with the lowest value is interpreted to have no chance of 
agreement. Balanced error rate is in agreement with the Kappa statistic result, with SP 250 map 
has the lowest misclassification and SP 370 map being the highest. However, due to rare class 
substrate Mixed that imbalanced the class frequencies in the training data, contributes to the small 
range of BER between the three maps. BER for map SP 150, SP 250 and SP 370 are 0.661, 0.630 
and 0.668, respectively. Although, absolute comparison between maps indicate small margin of 
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differences in Kappa and BER values, however at 5% level of significance, the differences are 
weak and insignificant from one another. Monte Carlo permutation (McKenzie et al., 1996; 
Foody, 2004) used to compare the statistical difference does not yield a supportive evidence 
towards the selection of scale parameter.        
Substrate distribution maps along with terrain analyses calculated at length scales equivalent to 
SP 150, 250 and 370 (refer appendix 1) were subjected to multivariate statistical analysis to create 
marine landscape maps for the pilot study area. Results for the marine landscapes, together with 
PCA results, plots of optimal number of clusters and boxplots of clusters against original abiotic 
variables for each segmentation at SP 150, 250 and 370 are laid out in Figure 3.5 – 3.7.  
Segmentation at SP level 150 resulted in 11 clusters, at SP of 250 returned 6 clusters and at level 
370 gave 5 clusters. PCA results for all marine landscapes came with broad-scale BPI as the main 
contributing abiotic variable, followed by Eastness for marine landscape of SP 250 and 370 but 
not for SP 150, while fine-scale BPI is the next in order. Based on the plot for the optimal number 
of clusters, the change in slope to determine the number is distinct in both marine landscapes for 
segmentation at SP level of 250 and 370, however for SP 150 the knick-point is less obvious.  
Based on visual assessment the outcome of the marine landscape map for SP 150 is patchy and 
noisier in comparison to SP 250 and SP 370. The cluster characteristics overlap with each other 
and have too many outliers based on the boxplots between clusters and the original abiotic 
variables. SP of 370 has fewer clusters and the clusters are simplified. The boxplots are aggregated 
around similar values for most clusters against the original abiotic variables. 
Based on the results of this sensitivity test, it was decided to carry out the full Whittard Canyon 
marine landscape classification using the broad scale equivalent to an SP of 250. The SP 150 
produced a result that was too noisy, while with SP 370 potentially information was lost, 
especially in terms of substrate mapping (as illustrated by the negative Kappa value).
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Figure 3.4: A) TOBI imagery of the pilot area for the sensitivity test, with three video transects: two were 
used for sample training to create the substrate distribution maps and one transect (in red box) is used for 
the Kappa statistic test. Row B – D: results for analysis on segmentation using SP B) 150, C) 250 and D) 
370. Column i) segmentation results on pilot area TOBI imagery, ii) substrate distribution map generated 
using OBIA and supervised classification iii) Kappa statistic test result between substrate distribution map 
and video transect. 
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Figure 3.5: A) Marine landscape map produced using substrate distribution map along with terrain 
analysis calculated at length scale equivalent to SP 150 B) Component matrix showing correlation 
between rotated principal components and the original variables (highest factor loads in each PC are 
highlighted in bold) C) Plot of number of clusters against within sum of squares, change of slope 
indicates the optimum number of clusters for the marine landscape map D) boxplots of clusters against 
the original abiotic variables 
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Figure 3.6: A) Marine landscape map produced using substrate distribution map along with terrain 
analysis calculated at length scale equivalent to SP 250 B) Component matrix showing correlation 
between rotated principal components and the original variables (highest factor loads in each PC are 
highlighted in bold) C) Plot of number of clusters against within sum of squares, change of slope 
indicates the optimum number of clusters for the marine landscape map D) boxplots of clusters against 
the original abiotic variables. 
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Figure 3.7A) Marine landscape map produced using substrate distribution map along with terrain analysis 
calculated at length scale equivalent to SP 370 B) Component matrix showing correlation between rotated 
principal components and the original variables (highest factor loads in each PC are highlighted in bold) 
C) Plot of number of clusters against within sum of squares, change of slope indicates the optimum 
number of clusters for the marine landscape map D) boxplots of clusters against the original abiotic 
variables. 
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Object Based Image Analysis 
Classification for the substrate map was carried out using the nearest neighbour algorithm in the 
feature space optimisation tool available in eCognition (Laliberte et al., 2012). The algorithm 
established the best combination of descriptors for the separation and classification of training 
classes. The four features that best separate the classes identified by the algorithm are the mean 
brightness, standard deviation, and the Haralick grey level co-occurrence matrix (GLCM) 
correlation and entropy. The brightness and standard deviation are measures of image intensity 
and textural properties, respectively, providing a proxy for seafloor hardness and softness (Le 
Gonidec et al., 2003; Lucieer et al., 2013). These are good parameters for separatation of sediment 
and rocky substrate. The Haralick GLCM (Haralick et al., 1973) is a method to quantify image 
texture (Hall-Beyer, 2007); here both GLCM correlation and entropy measure a different 
characteristic of the sidescan sonar image. GLCM correlation deals with the linear dependency 
of grey levels on the neighbouring pixel within an image object, whilst GLCM entropy is part of 
an orderliness measure, it calculates the “chaotic-ness” of image objects within the image.  
The classified objects for the substrate map are shown in relation to training objects in a 2D feature 
space plot (Figure 3.8). The class with the lowest variance (i.e. clustered most tightly) are shadows 
(artefact) from low grazing angles (yellow dots on Figure 3.8). The class has the most obvious 
separation from the rest of the classes in having the lowest backscatter value (brightness and 
standard deviation). While rock and sediments are fairly clearly separated from each other in the 
feature space, mixed substrate is more scattered. Based on TOBI backscatter intensity values 
alone (Figure 3.9), the mean brightness for rock, sediment and mixed substrates aggregated at 
about the same values. However, with incorporation of the other features from the OBIA analysis, 
the classes are well separated and give a fair agreement when correlated with video interpretation. 
The agreement percentage came to 52% using inter-rater agreement out of a total 195 points from 
four video transects. The classification represents the substrate composition of the study area. 
Apart from the classification of substrate, the procedure manages to separate noise at the sidescan 
sonar nadir and low grazing angles. Such types of noise are common for the kind of data (i.e. 
Sidescan sonar imagery, acoustic backscatter images) (Marsh and Brown, 2009) and often add 
complexity to automated interpretation of sidescan sonar imagery.   
 
 
 
 



Chapter 3 

 84 

Class memberships 
The substrate map produced from the OBIA technique is in categorical form, which is not suitable 
for further multivariate statistical analysis. Therefore, the substrate map is converted into four 
maps, one for each class, in which each pixel is given a relative value representing its membership 
within the class (Figure 3.9). Each image object has a membership value for each class ranging 
from 0 to 1. The values are relative measures of the distance in feature space between the object 
and the respective class centre. Zero indicates that the image object is furthest in feature space 
from the class centre in question, hence belonging to a different class altogether. The final 
substrate information included into the overall objective automated marine landscape mapping 
technique is based on the four membership maps representing the relative measure of class 
membership for rock, sediment, mixed substrate and TOBI artefacts. The membership distribution 
curves for rock, sediment and mixed substrate are skewed to the right, while in comparison the 
artefact class has a bimodal distribution. Positively-skewed distribution of sediment, mixed and 
rock membership clusters are caused by the high membership value for the second and third 
member. Thus the degree of belonging of an image object to a cluster is relatively high for all 
clusters and possibly may introduce confusion in multivariate statistical analysis (e.g assigning 
classes in k-means algorithm).  
 

 
Figure 3.8: Feature space diagram of object backscatter brightness vs backscatter standard deviation for 
the four substrate classes. This plot shows the standard deviation of the objects by the brightness intensity 
for the training samples of all the four classes. The coloured circles are training samples for: red = rock, 
green = sediments, purple = mixed, yellow = artefacts.
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Figure 3.9: Final classification map 
(left) produced using multi-level 
segmentation at scale parameter of 
250. The map produced here is 
referred to as substrate map, inset is 
the boxplot of the 4 classes against 
TOBI backscatter intensity values 
(note that the boxplot is based on 
individual pixel intensity values, and 
not on the mean brightness of 
segments from OBIA segmentation). 
Area in the box is a close up shown on 
the right for all classes in their 
continuous variable form. Inset in each 
close-up maps are the data distribution 
for each classes, which are skewed to 
the right except for class Artefact. 
Accompanying the figure is the 
contingency table with Kappa and 
BER value for the substrate map. 
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3.4.2 Marine landscape map 
The final outcome of the mapping procedure resulted in an optimum solution of seven clusters 
(Figure 3.11). Overall, the controlling factors that drive the PCA solutions are slope, membership 
value of mixed and rocky substrate, bathymetric position index and aspect (eastness), in order of 
their influence (Table 3.2). The marine landscape map of Whittard Canyon is presented in Figure 
3.11. These clusters are interpreted based on boxplots of the original abiotic variables against the 
marine landscapes (Figure 3.12 a&b). For instance, Cluster 1 is interpreted as vertical and steep-
sided canyon wall that has the steepest, most rugged terrain and has a high membership value of 
rock and the highest TOBI backscatter intensity. Cluster 2 is influenced by the slope orientation, 
has the highest mixed substrate and sediment membership, with steep slopes and positive bpi, and 
is interpreted as southwest facing terraces and ridges. Cluster 3, mostly in the deeper area and 
with a flat (slope) and smooth (rugosity) surface, represents the flat seabed in the Whittard 
Channel. Cluster 4 and Cluster 6 likewise are marine landscapes that are affected by aspect 
(eastness and northness) and similarly they are driven by bathymetry position index of which both 
are flanks in a different direction. Cluster 5 is mainly defined by bathymetric position index and 
profile curvature, and is interpreted as canyon floor. Cluster 7 contains TOBI artefacts.  
 

 
Figure 3.10: Plot of number of clusters against within sum of squares to determined the optimal number of 
clusters. The plot indicates a distinct increase at seven clusters solution (marked in red).  
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Table 3.2: Component matrix showing correlation between rotated PCs and the original variables. Highest 
factor loads in each PC are highlighted in bold. 

Abiotic Variables PC1 PC2 PC3 PC4 PC5 PC6 
Bathymetry  -0.26292 0.02454

7 
-0.25578 -0.09527 0.03413

2 
0.01956

2 
Bathymetric position index fine 0.25293

3 
0.28469

5 -0.3617 -0.06944 -0.28378 0.13634
1 

Bathymetric position index 
broad 

0.35217
1 

0.23395
8 

-0.21767 -0.0018 -0.22348 0.16367
2 

Eastness 0.04338
4 

0.03137
9 

-0.12494 0.52734 0.30833
8 

0.32482
2 

Eastness 250  0.03484
6 

0.04466
9 

-0.16724 0.55755 0.25919 0.27224
1 

Northness -0.03913 -0.00221 -0.14641 0.44330
6 

-0.14972 -0.4965 
Northness 250  -0.05632 -0.00153 -0.1422 0.30562

2 
-0.25537 -0.58167 

Membership values of artefact 0.10642
7 

0.18948
7 

-0.27885 -0.20124 0.50226 -0.26822 
Membership values of mixed 0.14668

8 
-0.5088 -0.28541 -0.06100 0.00746

8 
0.02117 

Membership values of rock 0.06260
6 -0.5259 -0.22499 -0.01954 -0.06134 0.07073

5 
Membership values of sediment 0.22753

6 
-0.45126 -0.23787 -0.06743 0.01078

1 
-0.01046 

Plan curvature  -0.05709 -0.13340 0.20438
5 

0.02173
5 

0.21840
4 

-0.05375 
Profile curvature  0.13488

2 
0.20007

8 
-0.29916 -0.05185 -0.2846 0.12051

2 
Rugosity -0.39211 0.01022 -0.1915 -0.04755 -0.02156 0.11714

2 
Slope -0.4715 0.02074

3 
-0.27024 -0.05624 -0.03994 0.09380

1 
Slope 250  -0.4754 0.01426

5 
-0.27828 -0.05887 -0.03006 0.06043

6 
TOBI -0.15184 -0.16461 0.29371

4 
0.21454

7 
-0.48024 0.26208 
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Figure 3.11a & b: a) Whittard Canyon with 7 marine landscapes identified using the objective automated 
classification technique. b) Close-up of the classification is shown for section A – I. The surveyed Whittard 
canyon area also is divided into 3 areas (outlined in black): western, eastern branches and Whittard Channel 
for marine landscape heterogeneity evaluation (second scenario). Each pie chart displays the proportion of 
marine landscape and the marine landscape measures resulted in three separate entropy-based contagion 
value (Γ) representing each area respectively. 
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b) Close-up of the marine landscape map is shown for section A – I. 
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Figure 3.12a & b: Boxplot of clusters against original abiotic variables. Description of each abiotic variable 
is given in Table 3.1. In the boxplot, the middle line is the mean, the lower and the upper box boundaries 
are the first and third quartile. The whiskers are the maximum and minimum observed values that are not 
statistical outliers.   
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3.4.3 Quantification of marine landscape heterogeneity 
The adjacency matrix is a tally of pixel adjacencies for each pairwise combination of marine 
landscapes computed using Fragstats. Exampled here is the adjacency matrix for Eastern branch 
(Table 3.3). The adjacency matrix, together with the proportion of each marine landscape, was 
used to calculate contagion values and their variance for each zone.  
Table 3.4 lists the contagion values, their variances, the number of patches, the result of the 
ANOVA and Tukey’s multiple comparison procedure for each zone for the first scenario. The 
contagion values range from -1.5 to -2.3, with the largest contagion value for the East 5 zone 
(Figure 3.13), and smaller contagion values for East 1 and West 4. Higher contagion values 
indicate less heterogeneous areas and vice versa. The ANOVA yielded significant variation 
among the zones with p <0.001. A post hoc Tukey test showed that the zones have five groups 
differing significantly at α=0.05. The first group consists of East 1, West 2, West 3 and West 4, 
and the second group is East 3 and West 1, whereas East 2, East 4 and East 5 are significantly 
different from all zones.  
Results for the second scenario where the study area is divided based on the canyon morphology 
are shown in Table 3.5. Whittard Channel has a significantly larger contagion than both branches, 
indicating a lower heterogeneity. The eastern and western branches were not significantly 
different from each other based on post hoc Tukey’s test at α=0.05.  
Biological characteristics calculated from video analysis of the 50 m transects showed positive 
relationships with the contagion index (Figure 3.14). Both branches are high in abundance and 
richness in comparison to the Whittard Channel, which corresponds to a low contagion index for 
both branches and a higher index for the Whittard Channel. Simpson’s reciprocal index however 
showed a slightly different relationship, with the western branch having a higher diversity while 
the eastern branch and Whittard Channel had similar values. Interestingly, contagion indices of 
zones in the Western branch (i.e.: West 1, 2 and 3) from the first approach give positive 
correspondence with the Simpson’s reciprocal index. On average, the three zones in Western 
branch have lower contagion values in compare to the zones in Eastern branch (i.e.: East 1, 2 and 
3).  
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Table 3.3: Adjacency matrix for eastern branch computed using FRAGSTAT ecological software. 
Marine Landscape 1 2 3 4 5 6 7 
1- Vertical Wall 16942 739 1680 303 346 89 725 
2- Terraces & Ridges 739 62682 1205 575 487 479 3364 
3- Flat Seabed 1680 1205 93746 2106 891 974 7117 
4- Interfluves 303 575 2106 39396 972 139 982 
5- Channel 346 487 891 972 78836 669 7061 
6- Hummocky Seabed 89 479 974 139 669 9766 2218 
7- TOBI Artefact 725 3364 7117 982 7061 2218 143334 

 
Table 3.4: Entropy-based contagion values (Γ), variances (var(Γ)), ANOVA F-test, and Tukey’s test on 

the zones of equal area corresponding to the Whittard Canyon marine landscape map 
Zones Γ (*) var(Γ) T ANOVA 
East 1 -2.30605(a) 0.001059 1487 F=225.14 
East 2 -1.98767(b) 0.001414 1429 P<0.001 
East 3 -2.16722(c) 0.000742 2564  
East 4 -1.97760(d) 0.000605 3230  
East 5 -1.58883(e) 0.000986 1609  
West 1 -2.16655(c) 0.001390 1235  
West 2 -2.21413(a) 0.001545 1078  
West 3 -2.21431(a) 0.000807 2218  
West 4 -2.31924(a) 0.000706 2554  

*Tukey’s test, values followed by the same letter  
are not significantly different using α=0.05  

Table 3.5: Entropy-based contagion values (Γ), variances (var(Γ)), ANOVA F-test, and Tukey’s test on 
the three areas corresponding to the Whittard Canyon marine landscape map. 

Zones Γ(*) var(Γ) T ANOVA 
Western branch -2.30995a 0.000526 3076 F=73.33 
Eastern branch -2.27989a 0.000554 3130 P<0.001 
Whittard Channel -2.07824b 0.000177 11073  

*Tukey’s test, values followed by the same letter  
are not significantly different using α=0.05 
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Figure 3.13 : Whittard Canyon with 7 marine landscapes identified using the objective automated 
classification technique. The surveyed Whittard canyon area is divided into 9 equal zones, namely East 1, 
East 2, East3, East4, East 5, West 1, West 2, West3 and West 4. Each pie chart displays the proportion of 
marine landscape and the marine landscape measures resulted in three separate entropy-based contagion 
value (Γ) representing each area respectively. 
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Figure 3.14: Boxplot of abundance, richness and Simpson’s reciprocal index calculated from video analysis of 50 m transect against the three strata in Whittard Canyon - 
Eastern branch, Western branch and Whittard Channel. Tukey’s multiple comparison test are shown on the plot below each boxplot, blue indicates significant difference 
between a pair where the mean difference does not cross the zero value. 
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3.4.4 Ecologically relevant marine landscape 
Out of 183 species identified from 13 video transects divided in 50 m samples, the INDVAL 
procedure identified 25 species as having a significant indicator value at the 5% level of 
significance. The result showed that for each cluster, except for Cluster 5, significant indicator 
species could be found. Species with indicator values higher than 5 % (Table 3.6) are Acanella 
sp., Distichoptilum sp and Anthomastus sp2 for Cluster 1, Hyalonema apertum and 
Pentametrocrinus sp. for Cluster 2 and Benthothuria for Cluster 6. Cluster 3 and Cluster 4 do 
have indicator species, but with low values. Cluster 7 that is interpreted as TOBI artefacts has 
several indicator species, however it is not considered as a real type of marine landscape. 
Species grouped together based on their feeding type are plotted against each marine landscape 
(Figure 3.15). Steep wall (Cluster 1) has the highest species count with approximately 60% filter 
feeders followed by 25% of deposit feeders. In comparison, Cluster 3 and Cluster 6, a flat seabed 
and flank in the lower canyon, have lower species counts and are mostly dominated by deposits 
feeders. Fair species count is found on terraces, ridges and flanks with approximately a similar 
split between deposit and suspension filters. Areas interpreted as canyon floor on the other hand 
have a higher filter feeding species. All marine landscapes have a low amount of carnivorous 
feeding species.    
Table 3.6: Significant indicator species analysis for each marine landscape, which is represented here as 
clusters. Cluster 1 = vertical and steep wall, Cluster 2 = SW facing terrace and ridge, Cluster 3 = flat 
seabed in Whittard Channel, Cluster 4 = NE facing canyon flank, Cluster 5 = channel floor, Cluster 6 = 
SE facing canyon flank and Cluster 7 = TOBI artefact. INDVAL values > 10% are marked in bold. 

Species Feeding Type Cluster p* INDVAL 

Anthomastus sp2 Suspension/Filter 1 0.027 9.28% 
Benthothuria Deposit 6 0.022 12.45% 

Brisingida sp2 Suspension/Filter 7 0.001 27.78% 

Cerianthids Suspension/Filter 7 0.017 19.80% 

Pentametrocrinus Suspension/Filter 2 0.025 12.18% 

Hyalonema apertum Suspension/Filter 2 0.001 32.56% 

Acanella Suspension/Filter 1 0.03 16.82% 

Distichoptilum Suspension/Filter 1 0.025 12.90% 
 p*statistically significant at the 0.05 level 
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Figure 3.15: Barplot of species count against marine landscapes grouped based on feeding type. Data is 
from video transects analysed in 50 m sections. 
 

3.5 Discussion 
3.5.1 Sensitivity test 
The sensitivity test was carried out to demonstrate the implications of scale parameter selection 
on the production of marine landscape maps. A first level qualitative evaluation of the results 
showed the substrate distribution pattern corresponded to the image object sizes based on the 
segmentation. At SP 150 the image objects are smaller in comparison to the SP 250 and SP 370. 
Substrate maps are classified based on the image objects, therefore smaller image objects lead to 
the ability to sample detailed features as seen on the substrate distribution maps of SP 150 and 
250, while generalisation of seabed features occurs greatly at SP 370.  
Based on the quantitative results, the substrate distribution maps of SP 150 and 250 share similar 
Kappa values and small range of BER. Due to the limited number of video transects in the pilot 
area, the Mixed class does not appear often along the video transect. The supervised classification 
results miss this class completely along the track of the video transect. This limitation caused the 
Kappa value to be significantly low which indicates no to slight agreement. However very low 
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Kappa values may not necessarily reflect low rates of overall agreement. The observed agreement 
for both SP 150 and SP 250 are 72.22% and 74.07 % respectively. SP 370 has the lowest overall 
agreement and corresponds with a very low Kappa value interpreted as no chance of agreement. 
Marine landscapes produced for all the three scale parameters as observed in Figure 3.5, 3.6 and 
3.7, have broad-scale BPI as the main contributing abiotic variable. Number of clusters increases 
as the SP decreases. However at SP 150 the delineations does not represent unique characteristics 
for each cluster. Overlapping characteristics can be observed qualitatively on the marine 
landscape map and quantitatively in the boxplots of clusters against abiotic variables. For 
instance, cluster 1 and 8 appear adjacent throughout the marine landscape map and they have 
similar characteristics based on the boxplots. The within sum of square plot used to determine the 
optimal number of clusters is least stable for SP150 and required more iteration in compare to SP 
250 and SP 370. Based on these results and observations on the implications of scale parameter 
size towards the marine landscape mapping technique, the OBIA segmentation for the entire 
Whittard Canyon was applied at SP 250 and terrain analysis was carried out at a window size 
equivalent to SP 250.  

3.5.2 Performance of substrate variables 
The first level qualitative result of the substrate map gives a fair percentage of agreement with the 
substrate interpretation from video analysis. The method has the potential to produce a substrate 
map for deep-sea environments using limited data available from deep-sea surveys. However, 
once it is synthesised into four separate quantitative layers, the distribution curves for the classes 
are strongly skewed to the right. Such behaviour may contribute to highly confused pixels during 
multivariate statistical analysis. Nevertheless, the contribution for each substrate class towards 
the marine landscape map can be seen from Table 3.2 and Figure 3.12b. Their contribution is 
highest for mixed and rock observed in PC 2 and artefact in PC 5. Based on the marine landscape 
map, amongst all four substrate classes, the most distinctive delineation is the TOBI artefacts 
(shadows from low grazing angles). It has the lowest variance for training samples (Figure 3.5) 
and is best separated from all the other substrate classes. Worth noting that the second highest 
load in PC 5 is TOBI backscatter intensity; it corresponds well with the final marine landscape 
map, where the artefact membership shares the lowest TOBI backscatter intensity. In comparison 
to marine landscape mapping without the substrate variables (Ismail et al., 2015), TOBI 
backscatter intensity contributes less in delineating marine landscapes. Therefore, the substrate 
variables display significant advantage to extract meaningful information from TOBI imagery 
and potentially for its kind of data. The most widespread of all the substrate classes is sediment, 
but it does not have a significant contribution in marine landscape delineation.   
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3.5.3 Quantification of marine landscape heterogeneity  
According to Parresol and Edwards (2014), the contagion value is bounded by -2ln(n) to 0, where 
n is the number of type of patches, in this case the number of marine landscapes. All three strata 
of the submarine canyon have seven types of marine landscapes, meaning the minimum contagion 
is about -3.9. For both scenarios, zones with the highest contagion value, which indicates lowest 
heterogeneity, are Whittard Channel, East 4 and East 5. These zones occur in the same area that 
is the lower part of the canyon (canyon mouth). Contagion index is sensitive to both composition 
and configuration. Based on the behaviour of the contagion index, aggregated landscapes will 
have the highest values, followed by uniform landscapes and lowest contagion values will be 
found in randomly arranged landscapes. The reason behind this is that random landscapes have 
little spatial autocorrelation whereas uniform and aggregated landscapes have increasing spatial 
autocorrelation. The contagion index has the ability to distinguish between spatial configurations 
and it decreases with increases of patch categories. 
To understand the differences in contagion across the zones, we examined their marine landscape 
composition and configuration. The pie charts illustrating the proportion of each marine landscape 
in the zones (Figure 3.11 & 3.13) show that minor components are present in each zone.  
For the first scenario, all seven marine landscapes appear in each zone, the difference is the 
proportional make-up of their marine landscape. Zones with higher contagion index among the 
nine zones are East 2, East 4 and East 5, their values are all >-2.0. They have more minor 
components which result in increasing their contagion values. All three zones have four marine 
landscapes that cover less than 8%. For the second scenario, the western branch has 2.5% of TOBI 
Artefact, the eastern branch has 4.1% of southeast facing canyon flank and 2.8 % of the TOBI 
Artefact and the Whittard channel has three marine landscape that range from 1% to 3%. These 
minor components have the effect of lowering the contagion index. The existence of TOBI 
Artefact contributes towards the lowering of the contagion value, but since it exists at 
approximately the same value for all the three areas, the effect of TOBI Artefact does not create 
a bias to any of the areas. Compositionally, the western and eastern branch have a similar 
proportional make-up, but in different marine landscape. For example, 25% of the western branch 
consists of NE facing canyon flanks while 32% of the eastern branch is steep wall. However, in 
overall composition the western and eastern branches are more similar to each other than to the 
Whittard Channel. 
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3.5.3.1 Relationship between contagion index and biological characteristic 
Contagion is a type of landscape index that subsumes richness, evenness and spatial pattern, and 
therefore it is analogous to a diversity index (Parresol and Edwards, 2014). The entropy-based 
contagion index proposed by Parresol and Edwards (2014) exhibits the ability to quantify the 
spatial configuration and composition. Based on limited studies using landscape indices in 
shallow waters, composition and spatial arrangement of benthic structure explained a large and 
significant proportion of the variation in density and number of species in shallow waters (Pittman 
et al., 2004). Hence, spatial configuration seems a strong predictor for density and species 
richness. Such correlations were exhibited not only in various terrestrial environments such as 
forest bird species (Andren, 1994; McGarigal and McComb, 1995), some butterflies (Baz and 
Garcia-Boyero, 1995; Tscharntke and Kruess, 1999), mangrove (Pittman et al., 2004) but also in 
deep submarine canyons (McClain and Barry, 2010) where some species show a preference 
especially for patchy habitat structure. Low contagion index indicates high spatial configuration 
and composition, which is proposed to be able to indicate a high biodiversity.  
Based on the result of both scenarios investigated here, the areas in the branches mostly have 
lower contagion values, indicating more heterogeneous areas. Zone East 1 contains the location 
of the vertical wall colonised by Lopehelia pertusa observed during the JC 36 cruise. This is also 
the area predicted to hold potential for a high abundance, species richness and diversity (Robert 
et al, 2014b). However, West 4 is the zone with the highest heterogeneity based on its contagion 
value. Without any biological grountruthing data, little could be done to verify the relationship. 
Based on limited quantitative results from the available transects, Simpson’s reciprocal index 
corresponds with the zones in the western branch for having average contagion indices and higher 
Simpson’s reciprocal index. The observations proved that the entropy-based contagion index has 
potential to effectively provide information with regard to biodiversity by quantifying the 
composition and configuration between marine landscapes. Additionally, one contributing 
element that could be beneficial to be considered when developing an index to quantify marine 
landscape heterogeneity is to include intrinsic characteristic of the marine landscape as part of the 
measure. For instance, two areas that contain the same number of marine landscapes of different 
kinds could have the same entropy-based contagion index but one may have a higher biodiversity 
than the other based on its own characteristics.  
Looking at the relationship of the contagion value to the biological characteristics, both western 
and eastern branch share the same magnitude of contagion index and based on the Tukey test they 
are not significantly different in comparison to the Whittard Channel. This corresponds with the 
findings by Robert et al. (2014b), that the eastern and western branch harboured similar numbers 
of species although abundance is found to be slightly higher in the eastern branch. The difference 
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in abundance can in part be explained by a sampling transect across a vertical coral wall in eastern 
branch mapped by Huvenne et al. (2011) that contributed to a higher abundance.  
Although the relationship between biological characteristics and landscape indices seems 
positive, no final conclusion could be drawn here as a result of the limited biological data. 
Diversities found in the video transects are not necessarily a good estimate for each zone since 
video transects were not randomly placed. It also depends on the area of which substrate and 
habitat type can be found along transects. Additionally, a few considerations should be taken into 
account when implementing landscape indices as a measure. The metrics may vary significantly 
between marine landscapes maps, depending on map classification and mapping accuracy used. 
Furthermore, since the proportion of marine landscape effects the landscape indices, it is 
important that the partition of the area evaluated is justified and fit for purpose. In this case, the 
two scenarios put forward could be examples for future marine conservation efforts in submarine 
canyons or complex deep sea alike. 

3.5.4 Ecological relevance 
The concept of marine landscape mapping used in the methodology is a top-down approach, 
meaning that the classification is based on the natural variability present in abiotic datasets. 
Biological information is used at the end of the process to validate the marine landscape’s 
potential of being a habitat. Should a marine landscape be ecologically relevant it will potentially 
be populated by specific biota. As such, the marine landscapes delineated through the 
methodology are supposedly a good proxy for biological predictions. However, the purpose of a 
marine landscape map is not to predict biological assemblages, a more fitting approach for this 
purpose is predictive modelling.  
The ecological validation for this study was based on an indicator species analysis, finding 
significant indicator species for the delineated marine landscapes. Based on the results, six of the 
marine landscapes have indicator species while only channel floor (Cluster 5) has no significant 
biological association. Channel floor is the closest area to the axial point of a submarine canyon 
(thalweg) and has characteristics that are less suitable to harbour benthic species. It is often 
disturbed by frequent sediment flushing from the continental shelf, is high in suspended sediments 
and mobile substrates that hinder the benthos. Cluster 7, interpreted as sonar artefacts rather than 
a real marine landscape, also appears to have indicator species associated with it. Brisingida sp2, 
Umbellula sp2 and cerianthids, are suspension/filter feeders that are often associated with 
irregular and highly sloping terrains. Most of the preferred areas for these species often end up 
being in the shadow caused by the irregular terrain morphology and low grazing angles from 
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sonar surveys. Although Cluster 7 is not a real marine landscape, the associated biological 
assemblages are explicable even if they are caused by the limitation of the sonar survey system.         
As the final map is a broad-scale classification of a regional area, most of the structures and 
features that can be associated with biological assemblages are greatly generalised. In addition, 
the lack of biological data hinders the detailed characterisation of each marine landscape. A more 
comprehensive approach to finding the relationship between marine landscapes and their 
associated biological assemblages can be made by grouping together species based on their 
feeding type (Figure 3.9). For instance, the highest species count is for steep wall (Cluster 1), 
which are mostly dominated by suspension/filter feeders such as Brisingid sp., Crinoid sp. and 
Anthomastus sp2. In comparison, Cluster 3 and Cluster 6 occur mostly in the lower canyon, have 
lower species counts and are mostly dominated by deposits feeders. This corresponds well with 
the result from the indicator species analysis where Benthothuria sp. is found as the significant 
indicator species for Cluster 6, although no species are found to be significant for Cluster 3.  
As such, the marine landscape map is a good proxy for a broad-scale biological understanding of 
the submarine canyon. However, the marine landscape map is not a substitute for actual benthic 
observations, or for predictive habitat maps. The aim of the marine landscape map is to give an 
indication of the potential habitat characteristics derived solely from abiotic datasets, and is a 
valuable biological information alternative in areas where biological data are scarce or absent.  

3.6 Conclusion 
This paper used bathymetry and sidescan sonar data from a complex deep-sea environment 
(Whittard Canyon) to provide a statistically robust marine landscape map that formed the basis 
for the development of a new measure for marine landscape heterogeneity. The method creates 
interesting opportunities for large scale habitat mapping especially for use in marine spatial 
planning, environmental protection and management of marine areas. Quantification of marine 
landscape heterogeneity is of value for stakeholders and policy makers and can be used to 
determine critical areas for conservation in order to prioritise conservation efforts and selection 
of marine protected areas.  
The following conclusions are drawn: 1) object based image analysis of sidescan sonar imagery 
generates a four-class substrate map from the geomorphologically diverse Whittard Canyon. The 
methodology used to synthesise the imagery data is potentially a way forward to produce a 
substrate map from a complex deep-sea environment where sedimentological samples are scarce 
and limited. The substrate variables allow more meaningful information to be extracted from 
sidescan sonar imagery and other acoustic backscatter images.  2) The objective automated marine 
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landscape mapping technique developed for a different submarine canyon was successfully 
applied to the Whittard Canyon and delineates geomorphologically and ecologically relevant 
marine landscapes. Therefore, the methodology used is not limited for local usage but is robust 
for different canyon settings. 3) Landscape indices are appropriate to be used as heterogeneity 
measures, and our results advocate a wider use of such approach in marine studies. The attempt 
in this study to use the contagion index to comparatively evaluate the marine landscape 
heterogeneity between different areas in submarine canyons is a success.  4) The marine 
landscapes mapped out in Whittard Canyon are ecologically relevant based on the correlation 
between interpreted video transects and the marine landscape map produced using the objective 
automated technique. Marine landscapes show a great potential for biological prediction, but are 
not however a substitute for actual observations or for a predictive habitat map. The methodology 
is time and labour-saving, using full coverage acoustic data that can be synthesised into useful 
abiotic variables. 
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Chapter 4:  Application of Marine Landscape 
Mapping to High Resolution Data 

4.1 Abstract 
A thorough understanding of the structural variations across scale is much lacking in habitat 
mapping. Often broad scale maps used to represent terrain variation are criticised for their lack of 
detail. Taking advantage of the availability of three high-resolution datasets nested within a ship-
borne acoustic survey in Whittard Canyon, the relationship between habitat maps of different 
scales is investigated. To address this issue, high-resolution data were subjected to the marine 
landscape mapping technique that was developed for regional scale data. The information transfer 
of structural variation and its context across different data scales was investigated by comparing 
the resulting fine marine landscape map to i) the broad scale marine landscape map from the same 
area, ii) video interpreted substrate type from transects overlapping the area and iii) species 
assemblage community analysis along the video transects. Two set-ups were made to test the 
effect of aspect as environmental property at local scale marine landscape classification and 
quantification. The two set-ups of the high-resolution data were classified with and without aspect 
as abiotic variable. The entropy-based contagion index was used to quantify marine landscape 
heterogeneity for both set-ups as a proxy for local scale habitat heterogeneity and biodiversity.  
When classified separately, the fine-scale marine landscape maps for the three high-resolution 
datasets resulted in 6 clusters for each area. Across-scale comparison between fine and broad 
scale marine landscape maps shows that pertinent structural features were transferred 
successfully. The fine-scale marine landscape maps are ecologically relevant and provide more 
context for ecological analyses. When classified together in one segmentation exercise, the two 
set-ups (with and without aspect) both resulted in a 5 cluster solution. Quantification of marine 
landscape heterogeneity at local scale provides insights on the effects of classification, abiotic 
variables and the limitations of using the entropy-based contagion index as proxy for habitat 
heterogeneity.   
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4.2 Introduction 
Landscape mapping is a concept that is based on the identification of geophysical attributes of the 
terrain that could reflect biological communities. The concept relies largely on spatial analysis 
and is often implemented in terrestrial environments (Rosa-Freitas et al., 2007; Svoray et al., 
2007). With the advancement of underwater surveying tools, such analysis is now also applicable 
to the marine environment, making use of acoustic remotely sensed data. The concept has been 
adapted for the marine realm to map shallow water environments (Al-Hamdani et al., 2007; 
Connor et al., 2006; Verfaillie et al., 2009) and deep-sea environments (Ismail et al., 2015). Such 
broad-scale approach for mapping exhibits potential, especially in spatial management and 
conservation in deep-sea environment.  
In general, the aims of marine management, among others, are to maintain a healthy and 
productive marine ecosystem, which is a combination of abiotic and biotic factors. These 
management decisions are often built based on information from broad scale maps, in contrast to 
biological investigations that are generally carried out at a fine or local scale. In habitat mapping, 
it has been a long-standing problem to relate biological and spatial feature information acquired 
from these different scales of data (Gustafson, 1998). Not only in terms of relationship between 
ecology and spatial features, but also in general, there are few studies relating fine and broad scale 
spatial features. Acoustic surveys by themselves are also affected by scale and the trade-off 
between map resolution and extent depends on the distance of the surveying instrument from the 
seabed (Blondel, 2009). Opportunely, with increasing availability of well-positioned underwater 
survey vehicles such as Remotely Operated Vehicles (ROVs) and Autonomous Underwater 
Vehicles (AUVs), observations can be made to understand the translation of spatial information 
(i.e. terrain, substrate, slope angles etc.) through different survey scales. We intend to weigh the 
relevance of using broad scale maps to convey spatial arrangement at local scale surveys. Here, 
we attempt to demonstrate how the terrain features are related between sub-metre-scale seabed 
observations (video), over metre-scale high-resolution maps (ROV/AUV surveys) to 10s of metre 
resolution regional maps (ship-borne surveys). 
 
Spatial variability in species distribution is ruled by spatial variation in environmental conditions, 
as explained by the Niche Theory (Chase and Leibold, 2003). A spatial variation indicator is 
defined by aggregating a landscape structural attribute over a spatial extent. Some examples of 
structural attributes are the number of different land cover types, the proportion of each cover 
type, the shape of patches, and the spatial arrangement and connectivity of patches (Li and 
Reynolds, 1995). The entropy-based contagion index, a landscape metric, was proposed to 
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quantify marine landscape heterogeneity based on broad scale marine landscape maps in 
submarine canyons (Chapter 3). The index is defined based on the marine landscape composition 
and configuration. Most studies in landscape ecology show that the results of spatial analysis 
depend highly on the mapping classification and pixel size (Uuemaa et al., 2013). We will 
demonstrate the effect of mapping classification towards the index by altering the environmental 
attributes incorporated in the marine landscape mapping.   
Based on the above issues, the aim of the study is to assess the spatial scale relationships of marine 
landscape mapping performed on maps with different pixel resolution and extent. The aim is 
addressed following these objectives: 
1. To test the transferability and applicability of objective seafloor classification methods 
developed for broad scale marine landscape mapping, onto high-resolution fine scale data 
2. To compare the classification and interpretation of data from different spatial scales, going 
from video interpreted data, over high resolution bathymetry, to broad scale maps 
3. To evaluate the performance of a landscape index (entropy-based contagion index) to quantify 
marine landscape heterogeneity for fine scale marine landscape maps 
4. To demonstrate the effect on the landscape index when using different mapping classifications  

4.3 Materials and methods 
4.3.1 Study area and data 
During the 2009 James Cook cruises 35 and 36 to Whittard Canyon (Bay of Biscay, NE Atlantic), 
fine resolution (1 m) bathymetry data were collected using a Simrad SM2000 multibeam 
echosounder mounted on the ROV Isis. The fine resolution data were acquired in three different 
areas at different depths; two areas in the western branch and one on the eastern branch of the 
canyon (Figure 4.1). The three dives are referred to here as Dive 108 and 109 in the western 
branch at 600 - 1000 m and 1000 – 1800 m, respectively, and Dive 120 in the eastern branch at 
1600 – 2400 m depth. Along with the fine resolution bathymetry, a lower resolution bathymetry 
for wider canyon coverage was acquired at 50 m resolution using the RRS JC EM120 shipboard 
multibeam system. Both bathymetry datasets were processed (using the Caraibes and Caris 
software packages, respectively) and projected to WGS 1984 UTM Zone 29 N. Fine resolution 
bathymetry was resampled to 3 m resolution in ArcGIS 10.2 using bilinear algorithm prior to 
analysis to average out the three sets of bathymetry data that were processed at different pixel 
sizes and match them with TOBI sidescan sonar imagery resolution. 
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An objective and automated method for marine landscape mapping was developed for regional 
mapping in a set of Portuguese canyons (Ismail et al., 2015) and tested further in Whittard Canyon 
(Chapter 3). In both areas, the technique successfully delineates geomorphologically and 
ecologically relevant marine landscapes. In this study, the objective automated technique will be 
tested at a finer resolution, with a slight modification due to limited data. The limitation is 
explained further in the discussion. The technique will be applied on the multibeam bathymetry 
acquired from the three ROV dives. 

 
Figure 4.1: a) Bathymetric map of Whittard Canyon (50 m pixel resolution) acquired using the RRS James 
Cook EM120 multibeam system. Location of the three ROV surveys (Dive 108, 108 and 120) is indicated. 
Inset shows the location of Whittard Canyon. b-d) High resolution bathymetry data collected using the 
Simrad SM2000 multibeam echosounder mounted on ROV Isis. Dotted lines overlaid on the high-
resolution bathymetry are the video transects with the colour representing the substrate type interpreted via 
video analysis. 
 
The data were analysed for slope, aspect (divided into eastness and northness), bathymetric 
position index (BPI), rugosity, plan and profile curvature (Wilson et al., 2007). Slope, aspect and 
curvatures were calculated using Landserf v2.3 (Wood, 2005) at two scale lengths representing 
fine and broad scale terrain features. The length scales were not determined using ESP method as 
used in Chapter 3 for broad scale mapping. The reason being, that there was no exclusive sidescan 
image acquired with the same extent of the ROV multibeam bathymetry surveys. This limits the 
use of the ESP tool to delineate features in multibeam bathymetry. The broad scale analysis 
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window size was then determined by measuring the average width of medium sized features (i.e.: 
gullies). The calculated average came to approximately 250 m. For the terrain analysis to identify 
broader features the window size has to be smaller than 250 m, thus by using 45 m (9 x 9 pixel), 
such features could be identify in approximately four analysis windows. BPI was computed using 
Land Facet Corridor Designer (Jenness et al., 2010) and rugosity using DEM surface tools 
(Jenness, 2004), both in ArcGIS 10.2. Broad scale bathymetry however was not analysed in this 
study, only the final regional marine landscape map produced in Chapter 3 was used for 
comparison purposes.  
30 kHz TOBI (Towed Ocean Bottom Instrument) (Le Bas et al., 1995) sidescan sonar imagery 
was acquired during the same cruise for the whole canyon. The data were processed with the NOC 
in-house software PRISM (Le Bas and Hühnerbach, 1998) to maps with 3 m pixel resolution. 
Where the data overlaps with the high-resolution bathymetry, TOBI information is included into 
the analysis as it can be used as a proxy for sediment hardness (Iacono et al., 2008; Micallef et 
al., 2012). Additionally, substrate information derived from TOBI sidescan sonar imagery (as 
described in Chapter 3, Figure 3.5) is included into the mapping technique. The information is 
divided into four layers referred to in this study as Rock, Sediment, Mixed Substrate and Artefact.  
Three ROV video transects crossing the survey areas of Dive 108, 109 and 120 were collected 
using colour camera on the ROV Isis. The video transects were analysed in 20 m sections to match 
up higher resolution bathymetric data. They were analysed for substratum type (divided into soft, 
hard, mixed and coral covered), slope angle (annotated as vertical, complex, sloping or flat) and 
all megabenthic invertebrates larger than 1 cm were identified to morphospecies. The video 
analysis interpretations for substrate, slope angle and megabenthic identification were made based 
on the paper by Robert et al. (2014b). The video transects were georeferenced using the ROV’s 
ultra-short baseline navigation system. All video ROV analysis and interpretation was part of the 
Robert (2014c) PhD work.     
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4.3.2 Research strategy 
4.3.2.1 Marine landscape mapping 
The objective automated marine landscape technique is divided into two components: the 
production of variables and the multivariate statistical analysis. The first component consists of 
the production of substrate variables from sidescan sonar imagery using object based image 
analysis and production of terrain variables derived from multibeam bathymetry data using 
multiple scale terrain analysis. The substrate variables derived from the TOBI sidescan sonar 
imagery are explained in Chapter 3 (section 3.3.3.1), and the multiple terrain analysis is discussed 
in Chapter 2. Both substrate and terrain variables are then compiled and subjected to multivariate 
statistical analysis comprised of three steps: the variables are subjected to principal component 
analysis (PCA) for data reduction, the resulting principal components are then clustered using K-
means with the optimal number of classes determined using a within sum of squares plot. A 
comprehensive explanation of the multivariate statistical analysis, together with flowcharts 
illustrating the process can be found in Chapters 2 and 3. The adaptation of the method for the 
high-resolution ROV data is illustrated in Figure 4.2. 

 
Figure 4.2: A simplified flow chart of the mapping procedure for marine landscape mapping, modified from 
canyon-wide classification as discussed in Chapter 3. 
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4.3.2.2 Information through different scales 
Visual comparison will be made between broad and fine scale marine landscape maps to observe 
the spatial patterns. Additionally, to observe the spatial information conveyed through different 
scales, the fine scale marine landscape is tabulated as follows:  
Fine vs. broad scale marine landscape map 
The fine scale maps produced in this study will be compared to the broad scale marine landscape 
map produced for Whittard Canyon in Chapter 3. The assessment is limited to Dive 109 and 120 
because the broad marine landscape map is not available for the area of Dive 108. Visual 
comparison is made and cross-tabulation of areas between fine and broad marine landscape maps 
were carried out using the Tabulate Area tool in ArcGIS 10.2.  
Fine scale marine landscape map vs. substrate type video interpretation 
Substrate type interpretation from video along the 20 m subsections of the ROV transects is 
compared to the fine scale marine landscape maps. At each point on the transects, a 10 m buffer 
was constructed and the highest percentage marine landscape cover within this buffer will 
represent the local classification.  
Fine scale marine landscape map vs. species assemblages community analysis 
A brief community analysis was carried out to describe the species assemblages observed and 
how they varied along the ROV transects (Robert, 2014c). A Bray-Curtis dissimilarity matrix 
based on the log+1 transformed abundance matrix was created, based on the species counts in the 
20 m subsections.  Group-average hierarchical clustering was carried out and a SIMPER analysis 
was conducted on groups showing 40% similarity or more to determine which species tended to 
occur within the same areas.  The statistical software PRIMER was used for community analyses 
(Clarke and Gorley, 2006). 
4.3.2.3 Marine landscape heterogeneity quantification 
Landscape heterogeneity is often quantified based on the spatial composition and configuration 
of the landscape types, using the entropy contagion index (Parresol and Edwards, 2014). This 
approach was successfully applied to the regional marine landscape map of Whittard Canyon, as 
demonstrated in Chapter 3. However, in this set-up the index is not applicable to compare the 
three areas because they are isolated surveys and were classified separately. Extensive literature 
in the terrestrial environment has demonstrated that the entropy contagion index can only be used 
in comparative studies when the areas to be compared are classified with the same classification 
system. Therefore, and also to demonstrate how abiotic variables influence the marine landscape 
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heterogeneity and its metrics, two further set-ups were made to compare the marine landscape 
heterogeneity quantification. First, the three dives were subjected to the marine landscape 
classification technique as a single system, with all abiotic variables included, while a second 
classification was made without aspect (eastness and northness) properties included. For both 
marine landscape maps, entropy-based contagion indices were calculated as proposed for the 
canyon-wide classification (Chapter 3).   
Aspect was excluded for the second set-up because it has been a debatable variable for deep-sea 
classification (Ismail et al., 2015). Aspect has always been useful in the ecological study of 
terrestrial vegetation especially when associated with sun exposure (Bonham, 2013). In shallow 
marine environments, aspect has been demonstrated to be beneficial to provide information 
regarding the exposure to dominant swell or similarly to sun exposure (Lucieer et al., 2013). 
However, in the deep sea the contribution is still unknown, although potentially it could provide 
information on potential interaction with current properties or sediment dynamics. 
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4.4 Results 
4.4.1 Marine landscape interpretation 
The marine landscape maps constructed for each area resulted in 6 clusters representing the 
marine landscapes. Rotated component matrix showing the factor loads explaining the 
correlations between rotated PCs and the original variables for each dives is shown in Table 4.1, 
4.2 and 4.3. Optimal number of cluster determined using within sum of squares plot for each dives 
is shown in Figure 4.3, 4.5 and 4.7. Along with each marine landscape map, boxplots for each 
original abiotic variable against the marine landscapes are shown in Figure 4.4 for Dive 108, 
Figure 4.6 for Dive 109 and Figure 4.8 for Dive 120. The boxplots determine the characteristics 
of the clusters and lead to the interpretation of the marine landscapes as follows: 
 
Dive 108 
Based on the PCA result, the driving variables defining the classification are BPI, slope and 
northness. Cluster 1 is interpreted as gully floor having the lowest BPI for both length scales. 
Cluster 2 and 3 are both flat seabed but are further divided based on the aspect variable. Cluster 
4 is gully ridge with highest BPI and high rugosity. Cluster 5 and 6 are geomorphologically similar 
and are both interpreted as a slightly sloping seabed, however they are separated by different 
aspect (eastness). 
 
Table 4.1: Component matrix showing correlation between 
rotated PCs and the original variables for Dive 108. Highest 
factor loads in each PC are highlighted in bold. 

 

   

 
Figure 4.3: Plot of number of clusters against 
within sum of squares. The bend (change in 
slope) marked in red and projected towards 
the x-axis indicates the optimum number of 
cluster is 6. 
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Figure 4.4: Fine scale marine landscape map for Dive 108 with boxplots of clusters against the original 
abiotic variables used for interpretation.  
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Dive 109 
The variables controlling the PCs are northness (aspect), sediment (substrate), artefact (substrate) 
and BPI at fine scale. Although northness is the most influential variable, it does not contribute 
much in characterising the clusters. Cluster 1 is defined by having the lowest BPI and highest 
curvature. It is interpreted as cliff base with moderate sloping angles. Cluster 2 is small cliffs 
having the highest rugosity and slope. Cluster 3 and 5 are the canyon flanks and they differ in 
terms of the sedimentary cover. Cluster 4 is flat seabed in the deepest part of the dive. The 
characteristic that stands out for Cluster 6 is eastness and it is interpreted as eastward sloping 
seabed.  
 
 
Table 4.2: Component matrix showing correlation between 
rotated PCs and the original variables for Dive 109. Highest 
factor loads in each PC are highlighted in bold. 

 
 
 
 
 
 

 
 

 
Figure 4.5: Plot of number of clusters against 
within sum of squares. The bend (change in 
slope) marked in red and projected towards 
the x-axis indicates the optimum number of 
cluster is 6. 
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Figure 4.6: Fine and broad scale marine landscape map for Dive 109 with boxplots of clusters against the 
original abiotic variables used for fine scale marine landscape interpretation. 
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Dive 120 
Based on the PCA result for Dive 120, the PCs are driven by slope, BPI and eastness (aspect). 
Cluster 1 is interpreted as southward gully wall, defined based on high rugosity, slope and low 
northness. Cluster 2 is platform having a moderate rugosity and slope. Cluster 3 and 5 both are 
flat seabed but they differ in direction of south and east, respectively. Cluster 4 is north facing 
ridge, it has high BPI and moderate slope. Cluster 6 is the northward facing flank with the lowest 
BPI and profile curvature. 
 
 
Table 4.3: Component matrix showing correlation between 
rotated PCs and the original variables for Dive 120. Highest 
factor loads in each PC are highlighted in bold. 

 
 
 
 
 
 

 
 

 
Figure 4.7: Plot of number of clusters against 
within sum of squares. The bend (change in 
slope) marked in red and projected towards 
the x-axis indicates the optimum number of 
cluster is 6. 
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Figure 4.8: Fine and broad scale marine landscape map for Dive 120 with boxplots of clusters against the 
original abiotic variables used for fine scale marine landscape interpretation. 
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4.4.2 Spatial information across scale 
To understand the information gain and loss across scales, comparisons were made between the 
fine scale marine landscape maps and (1) the broad scale marine landscape map, (2) video 
interpreted substrate types and (3) community analysis for species assemblages. Comparisons are 
limited to Dive 109 and 120, due to data limitations in the Dive 108 area.  
Fine vs. broad scale marine landscape map 
Visual comparisons between the two maps are shown in Figure 4.6 for Dive 109 and Figure 4.8 
for Dive 120, while a cross-tabulation of pixel classifications is shown in Table 4.4. The results 
for both dives show that the boundary between the flat seabed of the channel floor and the canyon 
slopes can be picked up in the two maps. The boundary is prominent enough to be delineated in 
the broad marine landscape map and is retained in fine scale marine landscape map. High 
percentages of flank and gully walls coincide with vertical and steep walls in the broad scale 
marine landscape map. Flat seabed in both dives occurs mostly in the channel floor of the broad 
scale classification. For Dive 120, broad scale channel floor coincides with fine scale flat seabed 
and occurs less than 1% elsewhere. A small percentage (<5%) of fine scale flat seabed occurs in 
vertical & steep wall landscape of the broad scale maps.   
 
Table 4.4: Cross-tabulation of pixel classifications for the fine and broad scale marine landscape 
interpretation for a) Dive 109 and b) Dive 120, value in parentheses are in percentages and crosshatched 
cells indicate no intersection. Coloured rows are based on representation colours in broad scale marine 
landscape map (Figure 4.4 and 4.5).   
a) Marine landscape   
     Dive 109  
    (broad/fine) 

Cliff 
base Cliff Flank Flat 

seabed 
Sediment 
covered 
flank 

Eastward 
sloping 
seabed 

Vertical & steep wall 6062 
(6.7) 

3858 
(4.3) 

19288 
(21.3)  12124 

(13.4) 
6613 
(7.3) 

Terrace & ridge   551 
(0.6)  2204 

(2.4) 
551 
(0.6) 

Flat seabed   1653 
(1.8)    

Channel floor 6062 
(6.7) 

1102 
(1.2) 

1653 
(1.8) 

9919 
(11.0) 

8817 
(9.8) 

9919 
(11.0) 
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b) Marine landscape   
     Dive 120  
    (broad/fine) 

South-
ward 
gully 
walls  

Platform 
North-
ward 
flat 
seabed 

North-
ward 
ridge 

Eastwar
d flat 
seabed 

North-
ward 
flank 

Vertical & steep wall 37118 
(18.2) 

16538 
(8.1) 

2940 
(1.4) 

44468 
(21.8) 

6983 
(3.4) 

40058 
(19.6) 

Terrace & ridge 1103 
(0.5)   1838 

(0.9)  735 
(0.4) 

Canyon flank 735 
(0.4)     368 

(0.2) 
Channel floor 368 

(0.2) 
368 
(0.2) 

13598 
(6.7) 

368 
(0.2) 

33076 
(16.2) 

1838 
(0.9) 

TOBI Artefact 368 
(0.2) 

1470 
(0.7)     

 
Fine scale marine landscape map vs. substrate type video interpretation 
Substrate types from video interpretation are categorised in four general groups: hard, soft and 
mixed substrate and coral covered seabed. The four groups are further divided by sloping angle - 
vertical, sloping, complex and flat. Table 4.5 shows the results for the cross-tabulated intersection 
between the fine scale marine landscapes and video interpreted substrate types.   
For Dive 108 (Table 4.5a), from the six marine landscapes, gully flank and gully floor would 
naturally be expected to intersect with hard substrate as identified through video interpretation. 
Based on the cross-table, 19 out of 31 transect points ended up in the gully flank landscape, which 
is approximately 58%. Out of the 19, four points coincide with hard substrate and the remaining 
15 are soft substrates.  Marine landscapes that are interpreted as flat seabed and gully floor are 
mostly covered with sediments, which coincide with the substrate interpretation of soft substrate.  
Dive 109 (Table 4.5b) contained 45 transects points in total, which were interpreted into three 
types of substrate. Both cliff and cliff base mainly contain hard substrate areas in the video 
interpretations. Sediment covered platform also had the same substrate type video interpretation 
in about 18% of the cases while the remaining 82 % intersects with soft substrates and flat areas. 
Flat seabed represented two types of substrate interpretation - coral rubble and soft sediments 
both with a flat sloping angle. 
Dive 120 (Table 4.5c) with 92 points has the longest video transect. There is more variation in 
the video interpreted substrate type. The gully walls coincide with hard, coral covered and soft 
substrate in the video interpretation. Northward flank has three points that are interpreted as hard 
substrate and one point that coincides with soft substrate. Platform has only one point coinciding 
with the soft substrate video interpretation. Almost 40% of the video transect coincides with the 



  Spatial features across scales 

 121   

the area interpreted as gully flank in the fine marine landscape map. The intersection spreads 

between soft, hard and coral-covered substrates at different sloping angles. Northward ridge 

coincides with soft substrate with slopes at approximately 60% of the total intersecting points in 

its class. Northward and eastward flat seabed has ten points coinciding with hard substrate, two 

with mixed substrates and ten with soft substrates.   

Table 4.5: Summary table for video interpreted substrate type against fine scale marine landscape map for 
a) Dive 108, b) Dive 109 and c) Dive 120. Coloured rows are in accordance to substrate type: red for hard 
substrate, purple for mixed substrate, yellow for coral covered and green for soft substrate.   

a) Substrate  
    interpretation  
    for D108 

Gully 
floor 

South-
ward 
flat 
seabed 

East-
ward 
flat 
seabed 

Gully 
ridge 

West- 
ward 
sloping 
seabed 

East-
ward 
sloping 
seabed 

Hard vertical 1   1   
Hard complex    3   
Soft vertical    4   
Soft slope 4   3  1 

Soft flat  5     
Soft complex 1   8   
 

b) Substrate  
     interpretation  
     for D109 

Cliff 
base Cliff Flank Flat 

seabed 

Sediment 
covered 
platform 

Eastward 
sloping 
seabed 

Hard vertical 2 2   3  
Coral rubble flat    2   
Soft flat  1 20 1 13  
 

c) Substrate  
    interpretation 
    for D120 

South-
ward 
gully 
walls 

Platform 

North-
ward 
flat 
seabed 

North- 
ward 
ridge 

East-
ward 
flat 
seabed 

North-
ward 
flank 

Hard vertical 4  2 4 5 1 
Hard complex 1   7 2 1 
Hard flat     1 1 
Hard slope    1   
Mixed flat   2    
Live coral flat 2   1   
Live coral complex    1   
Soft slope 11 1 1 12 4  
Soft flat 2  1 4 5 1 
Soft complex 5   5   
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in the video interpretation. Northward flank has three points that are interpreted as hard substrate 

and one point that coincides with soft substrate. Platform has only one point with the area 

interpreted as gully flank in the fine marine landscape map. The intersection spreads between soft, 

hard and coral-covered substrates at different sloping angles. Northward ridge coincides with soft 

substrate with slopes at approximately 60% of the total intersecting points in its class. Northward 

and eastward flat seabed has ten points coinciding with hard substrate, two with mixed substrates 

and ten with soft substrates.   

Table 4.5: Summary table for video interpreted substrate type against fine scale marine landscape map for a) 
Dive 108, b) Dive 109 and c) Dive 120. Coloured rows are in accordance to substrate type: red for hard 
substrate, purple for mixed substrate, yellow for coral covered and green for soft substrate.   

a) Substrate  
    interpretation  
    for D108 

Gully 
floor 

South-
ward 
flat 
seabed 

East-
ward 
flat 
seabed 

Gully 
ridge 

West- 
ward 
sloping 
seabed 

East-
ward 
sloping 
seabed 

Hard vertical 1   1   
Hard complex    3   
Soft vertical    4   
Soft slope 4   3  1 
Soft flat  5     
Soft complex 1   8   
 

b) Substrate  
     interpretation  
     for D109 

Cliff 
base Cliff Flank Flat 

seabed 

Sediment 
covered 
platform 

Eastward 
sloping 
seabed 

Hard vertical 2 2   3  
Coral rubble flat    2   
Soft flat  1 20 1 13  
 

c) Substrate  
    interpretation 
    for D120 

South-
ward 
gully 
walls 

Platform 

North-
ward 
flat 
seabed 

North- 
ward 
ridge 

East-
ward 
flat 
seabed 

North-
ward 
flank 

Hard vertical 4  2 4 5 1 
Hard complex 1   7 2 1 
Hard flat     1 1 
Hard slope    1   
Mixed flat   2    
Live coral flat 2   1   
Live coral complex    1   
Soft slope 11 1 1 12 4  
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a) Community Analysis 
    for Dive 108 

Gully 
floor 

South-
ward 
flat 
seabed 

East-
ward 
flat 
seabed 

Gully 
ridge 

West-
ward 
sloping 
seabed  

East-
ward 
sloping 
seabed  

Echinoidea sp2, Asteroidae sp12, 
Anthoptilum  1  4   

Cerianthids, Paguridae spp 9 1  11   
Anthozoa sp1, Benthogone rosea  5    1 

 
 

b) Community Analysis for Dive 109 Cliff 
base Cliff Flank Flat 

seabed 
Sediment 
covered 
flank 

East-
ward 
sloping 
seabed 

Solenosmilia variabilis, Anthomastus sp2, 
 Freyella elegans, Anthomastus sp1,  
Anachalypsicrinus 

1    1  
Lophelia pertusa,  Solenosmilia variabilis, 

Freyella elegans, Primnoa 2 2     
Pentametrocrinus, Echinoidea sp2, 

Echinus, cerianthids,  Actinoscyphia,  
Asteroidae sp9,  Freyastera, 
Anthomastus sp2 

  12  11  

Echinoidea sp2,  Asteroidae sp12,   
Anthoptilum   2    

Cerianthids, Paguridae spp 5 3 11 9 10  
 
 

c) Community Analysis for Dive 120 
South
-ward 
gully 
walls  

Plat-
form 

North-
ward 
flat 
seabed 

North-
ward 
ridge 

East-
ward 
flat 
seabed 

North-
ward 
flank 

Solenosmilia variabilis, Anthomastus sp2, 
Freyella elegans, Anthomastus sp1,  
Anachalypsicrinus 8  3 8 4 5 

Anachalypsicrinus ,  Cnidaria sp10     1  
Pentametrocrinus, Echinoidea sp2, 

Echinus, Cerianthids,  Actinoscyphia,  
Asteroidae sp9,  Freyastera, 
Anthomastus sp2 

3   13  1 
Acanella, Cerianthids, 

 Anthomastus sp1, Pentametrocrinus 3 1 1 14   
Distichoptilum, Cerianthids 8  1 5 6  
Cerianthids, Paguridae spp 8 1 14 6 13 3 
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4.4.3 Marine landscape heterogeneity quantification 
Figure 4.9 shows the result when all abiotic variables are treated as one system and subjected to 
the marine landscape classification, rather than analysing every dive area separately. Figure 4.10 
shows the fine scale marine landscape map without incorporating aspect (eastness and northness) 
at both length scale. Both marine landscapes are classified into 5 clusters. The PCA for 
classification with aspect is driven by mixed (substrate), BPI and aspect (eastness and northness). 
Classification without aspect is driven by mixed (substrates), BPI of both scales and rugosity.  
Table 4.7 shows the contagion values, their variances and ANOVA for the marine landscape maps 
produced for the two sets of classification with and without aspect variables. The entropy-based 
contagion index (Parresol and Edwards, 2014) is used as a metric to quantify marine landscape 
heterogeneity (Chapter 3). Lower contagion values indicate a more heterogeneous area with 
patchy structures that have the potential to harbour more diverse biological communities. 
However, in this case the contagion values of the three dives cannot be compared to the absolute 
values of biodiversity for the three areas, because they are located at very different depths, which 
are deemed to be a stronger influence on biodiversity than habitat heterogeneity. 
Contagion is bound by -2ln(n) and 0 where n is the number of marine landscapes, meaning that 
the minimum contagion is -3.21, being the most heterogeneous terrain.  Results show that without 
aspect variable, the contagion values have a slightly bigger range from -0.8 to -2.1, while with the 
aspect variable included, the contagion values range from -1.0 to -2.2. But overall, both marine 
landscape maps give relatively similar results. Both classifications return a highly significant 
ANOVA with P<0.001 and the three dives are significantly different based on Tukey’s test. In 
both results, Dive 120 is the most heterogeneous while Dive 108 is the least. However the 
difference between Dive 108 and Dive 109 is more obvious in the classification without aspect, 
where the contagion values differ by 0.4. 
Table 4.7: Entropy-based contagion values, variances, ANOVA F-test and Tukey’s test for the three dives. 
The table is divided into two; the left represents the classification with aspect variable included and the 
right represents the classification without the aspect (eastness and northness) variable. 

Classification with aspect variable Dive Classification without aspect variable 
Γ(*) var(Γ) T ANOVA Γ(*) var(Γ) T ANOVA 

-1.0464a 0.003011 668 F=956.82 Dive 108 -0.8055a 0.002996 714 F=945.60 
-1.2005b 0.004288 477 P<0.001 Dive 109 -1.4845b 0.002110 858 P<0.001 
-2.2837c 0.000208 4296  Dive 120 -2.1839c 0.000263 4821  

*Tukey’s test, values followed by different letter are significantly different using α=0.05 
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 Figure 4.9: (a-c) Fine scale marine landscape maps for Dive 108, 109 and 120 when classified as a single system. (d) Component matrix showing correlation between rotated 
PCs and the original variables. (e) Plot of number of clusters against sum of squares to determine optimal number of clusters. (f) Boxplots of clusters against original abiotic 
variables were used to characterise the marine landscapes. 
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 Figure 4.10: (a-c) Fine scale marine landscape maps for Dive 108, 109 and 120 when classified as a single system without aspect variables (eastness and northness). (d) 
Component matrix showing correlation between rotated PCs and the original variables. (e) Plot of number of clusters against sum of squares to determine optimal number of 
clusters. (f) Boxplots of clusters against original abiotic variables were used to characterise the marine landscapes. 
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4.5 Discussion 
This study provides a means to compare the evolution of spatial characteristics through different 
data scales by incorporating different data types at various resolutions. The types of data used in 
the study are the ones most commonly acquired in deep-sea surveys. Based on the successful 
marine landscape maps produced for the three dives, it can be concluded that the objective 
automated seabed classification method designed for regional scale data is also applicable to fine 
scale data. It is easily transferable and requires a short time to apply.  The delineated marine 
landscapes are interpretable and represent the geomorphology and substrate variation across the 
ROV surveyed areas. However due to data limitation, some modifications were made for the lack 
of seabed sonar images in the fine scale marine landscape mapping. The method used to detect 
potential patterns in bathymetric grids is not applicable here. The two length scales for the 
multiple scale terrain analysis are based on the finest scale it could run on (9 m) and on an 
approximation of broad features that can be observed from the bathymetry grids (45 m).    
Fine to broad scale comparison 
Across-scale comparison shows that the most pertinent terrain characteristics are mapped out at 
both scales. High-resolution data provide a way to further map detailed geomorphological features 
and terrain variation. Information at fine scale shows that the most influential abiotic variables 
delineating the marine landscapes are BPI, slope and aspect. Most of the clusters are characterised 
by these properties. However this is not always the case. For instance in broad scale classification 
the driving factor for PCA is BPI, profile curvature and slope for the Portuguese Canyons (Ismail 
et al., 2015) and for Whittard Canyon it is slope, substrate properties (mixed and rock) and BPI 
(Chapter 3). Although the features delineated in the high-resolution maps are much more detailed, 
large features can be related to the broad scale (regional) marine landscape map. In terms of 
conservation and spatial marine management for a large heterogeneous area such as a submarine 
canyon, the broad scale map is suitable and sufficient to show the first level of structural variation 
in which is parallel to how the existing hierarchical classification systems work. 
Ecologically relevant marine landscape 
The fine marine landscape map is more advantageous to identify geomorphological features that 
are often not comprehensible from video analysis. Video interpretations used in most ecological 
studies are often limited to substrate type and local slope angle to describe terrain properties. From 
our finding, fine scale marine landscape maps could provide more context to the ecological 
observations than what can be obtained from the narrow video transect. As observed in Table 4.6, 
although no communities are exclusively associated to one type of marine landscape, they show 



Chapter 4 

 128 

higher occurrence in some of the marine landscapes. For instance, cerianthids, Paguridae spp that 
occur in the three dives occurred mostly on seabed covered with soft sediment and relatively flat 
areas such as gully floor (Dive 108), flank (Dive 109) and flat seabed (of different direction) (Dive 
120) . Species that are associated with small vertical walls, Solenosmilia variabilis and Lophelia 
pertusa, can be found to coincide more commonly with marine landscapes such as cliff and cliff 
base (Table 4.6b) and gully walls (Table 4.6c). As recommended in the new proposed 
classification for deep-sea habitats for Britain and Ireland (Parry et al., 2015), at one of the 
hierarchal levels (level 4) a broad community is thought to occupy a certain niche and fulfil a 
certain functional role. This niche could span over several depth zones and substratum types. 
Instead of using substratum type as the only environmental description, marine landscapes can 
provide a better environmental representation for ecological means. Furthermore, it is a way 
forward to study the relationship between geomorphology and biology and to overcome the issue 
of false homogeneity (failing to differentiate similar features that support different biological 
distribution) (Williams et al., 2009) 
Fine scale geomorphological information is crucial to better understand structures, dynamics and 
changes that will affect ecological composition, usually observed at a finer scale. However, for a 
vast heterogeneous area like a submarine canyon, meaningful ecological changes can only be 
observed if there are sufficient changes in spatial features. Hence it is crucial to carry out the fine 
scale seafloor mapping at the right grain and extent for the system under study. Based on the 
community analysis, at too fine a scale there are too many sections of the video transects without 
any organisms, while at large scale (>50m section length) rare assemblages start to disappear 
causing difficulties to separate species assemblages (Robert, 2014c). Therefore to have spatial 
environmental information surveyed at 1 m resolution is probably more detail than needed to 
evaluate the effect of spatial variation on ecological composition, but using only ship-based 
bathymetry will not be sufficient to pick up necessary details. The ideal approach to gain 
optimally from high-resolution data may be to have bigger survey coverage than what was tested 
here, with slightly coarser pixel size, rather than going for the finest pixel with smaller extent (i.e. 
to operate the acoustic system further from the seabed).  
Additionally, ecological variations are greatly affected by depth. Geomorphology may be less 
influenced by depth, but biological communities are greatly affected by this, among others. 
Therefore to really study the relationship between ecology and spatial variations at different 
scales, replicate surveys should be carried out at a constant depth. Due to the limitation in extent 
of ROV coverage vs. depth variation, no further analysis could be carried out to evaluate the 
ecological relevance of the calculated contagion index as proxy for biodiversity. Due to the depth 
differences in the three ROV surveys, it would be invalid to draw conclusions from these three 
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dives in terms of ecological properties (abundances, diversity etc.) compared to the contagion 
index.  
However, this study offers a way forward to aid in designing nested acoustic surveys (Lark, 2011). 
Such surveys will provide a link to relate information from metre-scale seabed observations 
(video) to kilometre-scale regional maps (ship-borne surveys), and at the same time are beneficial 
for ecological studies. Preferably, to obtain optimal information from a high quality survey, ROV 
surveys should aim for sufficient coverage and replicate surveys at constant depth if data are to 
be use for ecological evaluation. Too fine a resolution without enough coverage will limit the 
usage of such powerful tool. However, more detailed geomorphological information may be 
necessary for sediment dynamics studies in submarine canyons. Therefore it is important to design 
a survey based on the information needed. Although geomorphological and sedimentological 
features can be delineated through this practice, the dive extent limits the insight in the 
relationship between ecology (communities, biodiversity) and spatial variations. Potentially, a 
fine scale marine landscape mapping could be trialled at a pixel scale of 5-10 m with more 
coverage (extent).     
The aspect variable 
The aspect properties were suggested to be potentially beneficial if associated with hydrographic 
regime (Ismail et al., 2015). In another environment, cold-water coral reefs, it was found that 
hydrographic gradients are more important in broad scale assembly (Henry et al., 2013). In 
contrast, for local scale food supply and fauna interaction are more influential. 
Geomorphologically, aspect properties defined the marine landscape more prominently when the 
three dives were classified individually. The situation is different for the classification as one 
system, based on the boxplots in Figure 4.9: only cluster 5 is explained by aspect. The two set-
ups show that it is important to carefully consider the input variables, since selection of abiotic 
variables will alter the quantification of marine landscape heterogeneity. However, the overall 
pattern (highest heterogeneity for Dive120, lowest for Dive108) stayed the same, with or without 
the aspect variable. Hence advice to support conservation decisions would probably be the same 
in both cases. 
The fact that the surveys were carried out at different depths impeded the ability to validate the 
use of the contagion index to quantify marine landscape heterogeneity as a biodiversity indicator. 
Nevertheless, entropy contagion indices were calculated by treating the dives as one system. It 
provides an important information especially if such measure is to be used for repeat surveys. For 
instance if a repeat survey were made, to apply the landscape metrics, the same cluster centres 
from previous classification should be used to ensure the same classification were carried out for 
both data. 
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4.6 Conclusion 
This study provides the opportunity to understand the information transfers across different type 
of data, extent and resolution.  It also draws additional attention to the need for optimal survey 
design to study ecological and spatial relationships in the deep sea. The study demonstrates the 
following: 1) objective automated marine landscape mapping developed for kilometre-scale 
regional maps is applicable and transferable to high-resolution data. The marine landscapes 
delineated from the high-resolution data are interpretable and relevant to display terrain and 
substrate variation across the surveyed areas. 2) Fine scale marine landscape maps provide more 
context for ecological studies in comparison to terrain information from video interpretation 3) In 
order to study the effect of geomorphological and sedimentological variation on ecology, high 
resolution surveys using ROV/AUV should aim for the optimal balance between extent and detail. 
The outcome is in agreement with the finding by Robert (2014c) that states a resolution of 20-50 
m is adequate to capture trends in biological distribution and changes in ecological community 
are observed to be irrelevant at scales less than 5 m in Whittard Canyon. Therefore, structural 
variations at 5 m pixel could potentially be more practical to study relationship between ecology 
and marine landscape for fine marine landscape map. However this is only true for ecological 
studies and not necessarily for other purposes such as sediment dynamics that can be heavily 
influenced by fine geomorphological features. Such study is still limited in submarine canyons. 
4) Aspect is a potential environmental variable acting as proxy for current regime interaction with 
different slope orientations, and may also provide an insight on possible sediment depositional 
areas. Until first-hand information can be obtained on hydrography and sediment transport 
properties at local scale, aspect is still relevant to be included in habitat mapping and providing 
such information. 5) Each abiotic variable included affects the classification, as demonstrated by 
altering the aspect properties. Therefore it is important to ensure objectivity throughout the 
procedure. Accordingly, quantification of marine landscape heterogeneity as a biodiversity 
indicator is not validated in this study due to the lack of fine-scale surveys at a constant depth. 
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Chapter 5:  Synthesis 
The main aim of this study was to develop an objective automated technique to map marine 
landscapes in complex deep-sea environments with a focus on submarine canyons. The aim is 
formulated to facilitate the implementation of ecosystem-based management by providing a 
scientific context of spatial pattern information through marine landscape maps. The study 
examined the potential analyses and approaches to optimise the usage of commonly available data 
in deep-sea seafloor surveys and the ability of a marine landscape approach to support marine 
habitat mapping in highly heterogeneous areas.  

5.1 Scientific contributions 
This thesis provides three novel contributions in habitat mapping especially for deep-sea 
environments: 1) it developed an objective automated marine landscape mapping technique to 
underpin marine habitat mapping, 2) quantified spatial structure of marine landscape as a proxy 
of habitat heterogeneity measure and 3) it demonstrated the potential of marine landscape as a 
mapping unit for habitat mapping 
1) Development of an objective, automated and statistically robust marine landscape 
mapping technique for broad scale mapping in submarine canyons 
The exact mapping procedure and its continued development is illustrated in each chapter. 
Research contributions towards the technique development are outlined in Figure 5.1. Each 
chapter in the thesis provides improvement to the developments of the technique following the 
findings:  
Evaluation of the potential of multiple scale terrain analysis as a way to the incorporate broad 
and fine scale features in broad scale mapping 
The approach was first demonstrated on the continental slope, where a habitat suitability model 
performs better in cross validation for ecological relevance when multiple scales are included in 
comparison to single scale (Wilson et al, 2007). This result became the motivation to incorporate 
multiple scale terrain analysis as part of the marine landscape mapping technique. Since 
submarine canyons contain high terrain variability and the geomorphic features vary in size, 
multiple scale terrain analysis would allow the variability in the environmental features to be 
captured. Broad scale mapping often smoothed out fine features and on the other hand fine single 
scale analysis caused artefact patchiness and incoherent classifications that introduced noise 
especially for regional mapping. The study carried out here supported that multiple scale terrain 
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analysis is beneficial to delineate ecologically relevant marine landscapes in highly heterogeneous 
areas. The approach managed to retain the fine and broad characteristics of the terrain and capture 
the variability in terrain features. 
Transferability of the Estimation of Scale Parameter (ESP) tool of Object Based Image Analysis 
of sidescan sonar images to detect potential features in bathymetric grids  
While multibeam echosounders are designed to measure seafloor depth, sidescan sonar produces 
acoustic images of the seabed. Sidescan sonar imagery is a powerful tool for seafloor mapping 
with its ability to provide near-photographic high-resolution images. Based on the merit and the 
availability of sidescan sonar images overlapping the multibeam bathymetry, Estimation of Scale 
Parameter (ESP) is adapted into the mapping procedure to segment the potential real-world 
submarine canyon geomorphic features and give an estimate of the mean length size of the 
features. This is used as a way to estimate the broader length scales to be used in multiple scale 
terrain analysis for bathymetric grid data. The approach is an automated way to estimate feature 
sizes present and allows objectivity throughout the mapping techniques. 
Extracting substrate information from sidescan sonar and video interpretation using Object 
Based Image Analysis  
Developments in acoustic survey techniques have revolutionised the way to image and map the 
seabed environment. This includes the availability of acoustic amplitude data such as sidescan 
sonar imagery and multibeam backscatter data. Traditional methods of interpretation for such data 
rely on experienced interpretation of grey scale images by eye. Semi-automated methods have 
been proposed in the literature to overcome the subjectivity of the manual interpretation. Here, a 
method that is widely used to classify satellite images, especially in the terrestrial environment, 
has demonstrated its potential to map substrate distribution in submarine canyons. Object Based 
Image Analysis (OBIA) recognises meaningful patterns in an image regardless of pixel size and 
involves two steps: segmentation and classification. Segmentation subdivides the image into 
potential real-world features or objects. Classification then assigns to these objects an 
interpretation using a supervised classification algorithm, based on substrate information from 
point data of video transects. The substrate distribution map was also included as part of the 
abiotic variables and was subjected to the marine landscape mapping procedure. It is potentially 
a way forward to extract substrate information from acoustic amplitude data in a complex deep-
sea environment where sedimentological samples are often scarce and limited. The approach is 
more automated and allows increased meaningful information to be extracted from acoustic 
amplitude data. 
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Applicability of method to a different canyon system, different survey scale 
The final marine landscape procedure that was developed for the Portuguese Canyons was 
subsequently trialled in a different system, the Whittard Canyon. The method performed 
successfully on both canyons and delineated marine landscapes that are ecologically and 
geomorphologically relevant. Not only was it trialled on ship-borne multibeam bathymetry of 
different pixel size (25 m for the Portuguese Canyons and 50 m for Whittard Canyon), 
transferability was also achieved for high-resolution data (ROV surveyed multibeam bathymetry) 
of 3 m pixel resolution. 
  

 
Figure 5.1: Research contribution towards the development of the marine landscape mapping technique. 
Bold numbers are chapters corresponding to the findings. Arrows on the left show the objectivity measures 
of the analysis incorporated in the marine landscape techniques.  
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2) Promoting the use of marine landscape as a mapping unit 
The marine landscapes delineated are based on the natural variability present in environmental 
parameters. In this thesis, the only abiotic information available are the geomorphology and 
substrate type, and therefore the natural zones delineated are heavily based on the geomorphology. 
However the technique is not limited to these data types, other data types can also be incorporated 
(e.g. oceanographic parameters, outputs from current modelling etc.). The application of the 
marine landscape technique on the abiotic variables throughout the study shows that the marine 
landscape has a potential correlation with biological distributions and is ecologically meaningful. 
This is demonstrated in Whittard Canyon for both broad and fine scale marine landscape maps. 
Additionally, the canyon-wide broad scale marine landscape classification has demonstrated its 
ability to represent prominent local scale terrain variability. It shows the first level structural 
variation, which is parallel to most existing hierarchal classification systems for deep-sea habitat 
mapping. Potentially, it may be a way forward to provide scientific input for ecosystem-based 
management in submarine canyons. This also suggests that broad scale marine landscape maps 
are beneficial to represent environmental conditions in highly heterogeneous areas for ecological 
observation. Apart from that, also fine-scale marine landscape maps have demonstrated their 
capacity to provide more context than direct video interpretations of the terrain variation. They 
also show a potential link with species communities, which is in sync with the newly proposed 
approach to classify deep-sea marine habitat in Britain and Ireland for management purposes 
(Parry et al., 2015).   
3) Quantification of marine landscape structure as a proxy for habitat heterogeneity and 
potentially biodiversity 
Taking advantage of the link between high terrain variability and increased biodiversity as 
supported by Niche Theory, to quantify terrain variation is potentially the best proxy to select and 
locate high biodiversity areas. Continuing the use of the marine landscape as a mapping unit, 
quantification of its spatial structure is proposed here as a habitat heterogeneity measure. The 
landscape metric chosen (entropy-based contagion) was extended from a landscape metric widely 
used in the terrestrial environment to quantify spatial patterns by measuring composition and 
configuration of patches. The patches in this study are the marine landscapes. The quantification 
of marine landscape structure shows a great potential as a measure for habitat heterogeneity. It 
was carried out in Whittard Canyon, for both the broad and fine marine landscape maps. The 
quantification was examined for its relationship with biological observations and analysis from 
video transects. From the limited survey video transects, the marine landscape quantification 
using the entropy-based contagion index shows positive results between the measure and the 
biological characteristics. It is of value for scientists to present to stakeholders and policy makers 
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prioritisation of areas when determining critical zones for conservation. Such approach could 
possibly be a way to improve the efficacy of selecting and allocating target areas for conservation.   

5.2 Future directions 
Translating the marine landscape maps for inclusion in deep-sea habitat classification system 
There is an urgent need for effective management and conservation for deep-sea environments 
especially in areas with potentially high ecological value. Although there is a rising awareness 
towards implementing an effective deep-sea management such as ecosystem-based management, 
the lack of scientific context and understanding in the approach could hamper the effort. It is 
important to find the most fitting environmental representation to devise a successful deep-sea 
spatial management. As such a way forward is to incorporate the use of marine landscapes in an 
existing hierarchal deep-sea classification. Added studies of the relationship between marine 
landscape and biological distribution will also improve the understanding of environmental 
parameters on biota.  
Development of an exclusive marine landscape metric for complex deep-sea environments that 
incorporates its unique characteristics  
Although the quantification of marine landscape structure has shown great potential as a proxy 
for habitat heterogeneity using the contagion-index, there are many other landscape indices that 
are available in landscape ecology that could benefit spatial pattern quantification in deep-sea 
environment. However, ideally a new exclusive metric for complex deep-sea environments 
should be developed to include its typical characteristics into the measure. The metric used in this 
study only measures the spatial pattern composition and configuration among marine landscape 
regardless the characteristics within, which is crucially an important factor affecting the spatial 
distribution of organisms in the marine realm. Additionally, the marine landscape metric for 
complex deep-sea environments should incorporate its 3-dimensional terrain characteristics as 
part of the components in the measure.  
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5.3 Conclusion 
The study proposed an objective and automated marine landscape mapping technique for 
submarine canyons by incorporating acoustic data that is usually available from initial deep-sea 
seabed surveys. The method is simple, straightforward, statistically robust and repeatable. The 
resulting marine landscape maps represent the spatial variation of the terrain in submarine 
canyons and show a strong potential as a bridge to communicate across the extended community 
of scientists, policy makers and stakeholders to support ecosystem-based management in 
submarine canyons. Not only does it represent the structural properties of the environment, it also 
demonstrates a convincing relationship with biological distributions in submarine canyons. 
However, there are various other processes affecting the complex environment-species 
relationships, and this study does not intend to limit but rather to contribute as a way to further 
understand this relationship. Looking at spatial variation as a marine landscape rather than an 
entity of a single abiotic factor (i.e. substratum type or depth), could potentially be a way forward 
to understand the complex interaction between abiotic and biotic variables that make up a habitat.  
Highly heterogeneous areas such as submarine canyons provide a means to understand the 
relationship between terrain variations and biodiversity. Quantification using spatial pattern 
metrics as practiced in terrestrial and shallow water environments offers a great potential for 
ecological research and environmental management. With ongoing developments of equipment 
and technologies available to study the complex deep-sea environment, it is about time to find a 
way to quantify these structural properties as a way to evaluate the conservation values to support 
deep-sea spatial management. In this study we manage to provide the insight on spatial pattern 
information across scale using marine landscape as representation and quantify them as habitat 
heterogeneity and demonstrate its relationship with biological distribution in an ecological 
context. In order to work towards a successful implementation of ecosystem-based management 
in submarine canyons, it is the task of scientists to ensure that crucial scientific information is 
translated correctly to stakeholders and policy makers who will be responsible for making 
decisions about our deep-sea environment that are currently threatened with anthropogenic 
activities. 
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Appendices 
Appendix A  

Using Estimation of Scale Parameter (ESP) Tool on sidescan sonar imagery to 
detect feature size in bathymetric grid 
 

1. ESP tool plots values of local variance and rate of change against scale level. A sudden decrease in 
ROC indicates meaningful scale parameters. SP has no unit. 
 

2. SP value is used to segment the 
sidescan sonar in eCognition 
developer (v8.9). The segments are 
exported to ArcGIS as polygons 
(feature class) 
 

3. In ArcGIS (v10.2), Calculate Areas 
(Spatial statistic tools / Utilities) toolbox is used to determine the mean area of polygons.    
 

4. To obtain window size (for broad scale features) for multiple scale terrain analysis in Landserf 
(v2.3), the following calculation was used: 
 

 ݎ݋݂ ݁ݖ݅ݏ ݓ݋݀݊݅ݓ
 ݈݁ܽܿݏ ݈݁݌݅ݐ݈ݑ݉

ݏ݅ݏݕ݈ܽ݊ܽ ݊݅ܽݎݎ݁ݐ
(݈݁ݔ݅݌)

= ඥ݉݁ܽ݊ ܽݏݐ݊݁݉݃݁ݏ ݂݋ ܽ݁ݎ
ݕݎݐ݁݉ݕℎݐܾܽ ܾ݉ܽ݁݅ݐ݈ݑ݉

݁ݖ݅ݏ ݈݁ݔ݅݌
 ܺ 

 ݏ݅ݏݕ݈ܽ݊ܽ ݎ݋݂ ݁ݖ݅ݏ  ݓ݋݀݊݅ݓ ݉ݑ݉݅݊݅݉
݁݀݅ݏ ݁݊݋ ݃݊݋݈ܽ   

 
For example, 
The mean area for Portuguese Canyons 
sidescan image segments of 225 SP is 171555 
m2, minimum window size for analysis is 3 
(along one side), and multibeam bathymetry 
pixel size is 25, therefore; 

√171555
25 ܺ3 = ݈݁ݔ݅݌ 49





  References 

 139   

List of References 
 
Ahmed, K.I., Demsar, U., 2013. Improving seabed classification from Multi-Beam Echo Sounder 
(MBES) backscatter data with visual data mining. Journal of Coastal Conservation 17, 559-577. 
Albaina, A., Irigoien, X., 2007. Zooplankton communities and oceanographic structures in a high-
resolution grid in the south-eastern corner of the Bay of Biscay. Estuarine, Coastal and Shelf 
Science 75, 433-446. 
Al-Hamdani, Z.K., Reker, J., Leth, J.O., Reijonen, A., Kotilainen, A.T., Dinesen, G.E., 2007. 
Development of marine landscape maps for the Baltic Sea and the Kattegat using geophysical and 
hydrographical parameters. Geological Survey of Denmark and Greenland Bulletin, 61-64. 
Allee, R.J., Dethier, M., Brown, D., Deegan, L., Ford, R.G., Hourigan, T.F., Maragos, J., Schoch, 
C., Sealey, K., Twilley, R., 2000. Marine and estuarine ecosystem and habitat classification. 
NOAA-Fisheries, Office of Habitat Conservation. 
Amaro, T., Bianchelli, S., Billett, D., Cunha, M., Pusceddu, A., Danovaro, R., 2010. The trophic 
biology of the holothurian Molpadia musculus: implications for organic matter cycling and 
ecosystem functioning in a deep submarine canyon. Biogeosciences 7, 2419-2432. 
Amiri-Simkooei, A.R., Snellen, M., Simons, D.G., 2011. Principal Component Analysis of 
Single-Beam Echo-Sounder Signal Features for Seafloor Classification. Ieee Journal of Oceanic 
Engineering 36, 259-272. 
AML Oceanographic, 2015. Multibeam system – sound velocity instrument. [Figure] Retrieved 
from http://www.amloceanographic.com/CTD-Sound-Velocity-Environmental-Instrumentation-
Home/Multibeam-Overvew 
Andréfouët, S., Claereboudt, M., Matsakis, P., Pages, J., Dufour, P., 2001. Typology of atoll rims 
in Tuamotu Archipelago (French Polynesia) at landscape scale using SPOT HRV images. 
International Journal of Remote Sensing 22, 987-1004. 
Andréfouët, S., Robinson, J.A., Hu, C., Feldman, G.C., Salvat, B., Payri, C., Muller-Karger, F.E., 
2003. Influence of the spatial resolution of SeaWiFS, Landsat-7, SPOT, and International Space 
Station data on estimates of landscape parameters of Pacific Ocean atolls. Canadian Journal of 
Remote Sensing 29, 210-218. 
Andren, H., 1994. Effects of habitat fragmentation on birds and mammals in landscapes with 
different proportions of suitable habitat: a review. Oikos, 355-366. 
Arzola, R.G., Wynn, R.B., Lastras, G., Masson, D.G., Weaver, P.P.E., 2008. Sedimentary features 
and processes in the Nazare and Setubal submarine canyons, west Iberian margin. Marine 
Geology 250, 64-88. 
Bale, C., Charley, J., 1994. The impact of aspect on forest floor characteristics in some eastern 
Australian sites. Forest Ecology and Management 67, 305-317. 



References 

 140 

Bale, C., Williams, J., Charley, J., 1998. The impact of aspect on forest structure and floristics in 
some Eastern Australian sites. Forest Ecology and Management 110, 363-377. 
Barbier, E.B., Moreno-Mateos, D., Rogers, A.D., Aronson, J., Pendleton, L., Danovaro, R., 
Henry, L.-A., Morato, T., Ardron, J., Van Dover, C.L., 2014. Protect the deep sea. Nature 505, 
475-477. 
Basillais, É., 1997. Coral surfaces and fractal dimensions: a new method. Comptes Rendus de 
l'Académie des Sciences-Series III-Sciences de la Vie 320, 653-657. 
Baz, A., Garcia-Boyero, A., 1995. The effects of forest fragmentation on butterfly communities 
in central Spain. Journal of biogeography, 129-140. 
Bezdek, J.C., 1981. Pattern recognition with fuzzy objective function algorithms. Kluwer 
Academic Publishers. 
Bianchelli, S., Gambi, C., Pusceddu, A., Danovaro, R., 2008. Trophic conditions and meiofaunal 
assemblages in the Bari Canyon and the adjacent open slope (Adriatic Sea). Chemistry and 
Ecology 24, 101-109. 
Blaschke, T., Burnett, C., Pekkarinen, A., 2004. Image segmentation methods for object-based 
analysis and classification, Remote sensing image analysis: Including the spatial domain. 
Springer, pp. 211-236. 
Blaschke, T., 2010. Object based image analysis for remote sensing. Isprs Journal of 
Photogrammetry and Remote Sensing 65, 2-16. 
Blondel, P., 2009. The handbook of sidescan sonar. Praxis Publishing Ltd, Chichester, UK. 
Bonham, C.D., 2013. Measurements for terrestrial vegetation. John Wiley & Sons. 
Brandt, A., Griffiths, H., Gutt, J., Linse, K., Schiaparelli, S., Ballerini, T., Danis, B., Pfannkuche, 
O., 2014. Challenges of deep-sea biodiversity assessments in the Southern Ocean. Advances in 
Polar Science 25, 204-212. 
Brodeur, R.D., 2001. Habitat-specific distribution of Pacific ocean perch (Sebastes alutus) in 
Pribilof Canyon, Bering Sea. Continental Shelf Research 21, 207-224. 
Brown, C.J., Blondel, P., 2009. Developments in the application of multibeam sonar backscatter 
for seafloor habitat mapping. Applied Acoustics 70, 1242-1247. 
Brown, C.J., Smith, S.J., Lawton, P., Anderson, J.T., 2011. Benthic habitat mapping: A review of 
progress towards improved understanding of the spatial ecology of the seafloor using acoustic 
techniques. Estuarine, Coastal and Shelf Science 92, 502-520. 
Brown, C.J., Sameoto, J.A., Smith, S.J., 2012. Multiple methods, maps, and management 
applications: Purpose made seafloor maps in support of ocean management. Journal of Sea 
Research 72, 1-13. 



  References 

 141   

Butler, A., Harris, P.T., Lyne, V., Heap, A., Passlow, V., Porter-Smith, R., 2001. An interim 
bioregionalisation for the continental slope and deeper waters of the South-East Marine Region 
of Australia. 
Burrough, P., Van Gaans, P., Hootsmans, R., 1997. Continuous classification in soil survey: 
spatial correlation, confusion and boundaries. Geoderma 77, 115-135. 
Buscail, R., Germain, C., 1997. Present-day organic matter sedimentation on the NW 
Mediterranean margin: Importance of off-shelf export. Limnology and Oceanography 42, 217-
229. 
Caliński, T., Harabasz, J., 1974. A dendrite method for cluster analysis. Communications in 
Statistics-theory and Methods 3, 1-27. 
Chase, J.M., Leibold, M.A., 2003. Ecological niches: linking classical and contemporary 
approaches. University of Chicago Press. 
Chen, Z.-S., Hsieh, C.-F., Jiang, F.-Y., Hsieh, T.-H., Sun, I.-F., 1997. Relations of soil properties 
to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecology 132, 
229-241. 
Clarke, K., Gorley, R., 2006. PRIMER version 6: user manual/tutorial. PRIMER-E, Plymouth, 
UK 192. 
Cogan, C.B., Todd, B.J., Lawton, P., Noji, T.T., 2009. The role of marine habitat mapping in 
ecosystem-based management. ICES Journal of Marine Science: Journal du Conseil 66, 2033-
2042. 
Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and psychological 
measurement 20, 37-46. 
Collier, J., Brown, C., 2005. Correlation of sidescan backscatter with grain size distribution of 
surficial seabed sediments. Marine Geology 214, 431-449. 
Commito, J.A., Rusignuolo, B.R., 2000. Structural complexity in mussel beds: the fractal 
geometry of surface topography. Journal of Experimental Marine Biology and Ecology 255, 133-
152. 
Connor, D.W., Gilliland, P.M., Golding, N., 2006. UKSeaMap: the Mapping of Seabed and Water 
Column Features of UK Seas,  p. 120.  
Costa, B., Battista, T., Pittman, S., 2009. Comparative evaluation of airborne LiDAR and ship-
based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote 
Sensing of Environment 113, 1082-1100. 
Cunha, M.R., Paterson, G.L.J., Amaro, T., Blackbird, S., de Stigter, H.C., Ferreira, C., Glover, 
A., Hilário, A., Kiriakoulakis, K., Neal, L., Ravara, A., Rodrigues, C.F., Tiago, Á., Billett, 
D.S.M., 2011. Biodiversity of macrofaunal assemblages from three Portuguese submarine 



References 

 142 

canyons (NE Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography 58, 2433-
2447. 
Currie, D.R., Sorokin, S.J., 2014. Megabenthic biodiversity in two contrasting submarine canyons 
on Australia's southern continental margin. Marine Biology Research 10, 97-110. 
Dale, M.R., Fortin, M.-J., 2014. Spatial analysis: a guide for ecologists. Cambridge University 
Press. 
Danovaro, R., Gambi, C., Dell'Anno, A., Corinaldesi, C., Fraschetti, S., Vanreusel, A., Vincx, M., 
Gooday, A.J., 2008. Exponential decline of deep-sea ecosystem functioning linked to benthic 
biodiversity loss. Current Biology 18, 1-8. 
Danovaro, R., Snelgrove, P.V., Tyler, P., 2014. Challenging the paradigms of deep-sea ecology. 
Trends in ecology & evolution 29, 465-475. 
Darwish, A., Leukert, K., Reinhardt, W., 2003. Image segmentation for the purpose of object-
based classification, International Geoscience and Remote Sensing Symposium, pp. III: 2039-
2041. 
Davies, C.E., Moss, D., Hill, M.O., 2004. EUNIS habitat classification revised 2004. 
Davies, D.L., Bouldin, D.W., 1979. A Cluster Separation Measure. Ieee Transactions on Pattern 
Analysis and Machine Intelligence 1, 224-227. 
de Grosbois, A.M., Murphy, E.C., LaMoreaux, P.E., Matschullat, J., Yahya, A., 2008. Marine 
landscape maps of Baltic sea completed. Environmental Geology 54, 431-432. 
De Leo, F.C., Smith, C.R., Rowden, A.A., Bowden, D.A., Clark, M.R., 2010. Submarine canyons: 
hotspots of benthic biomass and productivity in the deep sea. Proceedings of the Royal Society 
B: Biological Sciences 277, 2783-2792. 
De Leo, F.C., Vetter, E.W., Smith, C.R., Rowden, A.A., McGranaghan, M., 2014. Spatial scale-
dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and 
diversity off the Main and Northwest Hawaiian Islands. Deep Sea Research Part II: Topical 
Studies in Oceanography 104, 267-290. 
De Mol, L., Van Rooij, D., Pirlet, H., Greinert, J., Frank, N., Quemmerais, F., Henriet, J.P., 2011. 
Cold-water coral habitats in the Penmarc'h and Guilvinec Canyons (Bay of Biscay): deep-water 
versus shallow-water settings. Marine Geology 282, 40-52. 
De Young, C., Charles, A., Hjort, A., 2008. Human dimensions of the ecosystem approach to 
fisheries: an overview of context, concepts, tools and methods. Food and Agriculture 
Organization of the United Nations. 
Diesing, M., Green, S.L., Stephens, D., Lark, R.M., Stewart, H.A., Dove, D., 2014. Mapping 
seabed sediments: Comparison of manual, geostatistical, object-based image analysis and 
machine learning approaches. Continental Shelf Research 84, 107-119. 



  References 

 143   

Diesing, M., Stephens, D., 2015. A multi-model ensemble approach to seabed mapping. Journal 
of Sea Research 100, 62-69. 
Dolan, M.F., Lucieer, V.L., 2014. Variation and Uncertainty in Bathymetric Slope Calculations 
Using Geographic Information Systems. Marine Geodesy 37, 187-219. 
Dragut, L., Tiede, D., Levick, S.R., 2010. ESP: a tool to estimate scale parameter for 
multiresolution image segmentation of remotely sensed data. International Journal of 
Geographical Information Science 24, 859-871. 
Dufrêne, M., Legendre, P., 1997. Species assemblages and indicator species: the need for a 
flexible asymmetrical approach. Ecological monographs 67, 345-366. 
Duineveld, G., Lavaleye, M.S.S., Berghuis, E.M., de Wilde, P., 2001. Activity and composition 
of the benthic fauna in the Whittard Canyon and the adjacent continental slope (NE Atlantic). 
Oceanologia Acta. 
Dunn, J.C., 1973. A fuzzy relative of the ISODATA process and its use in detecting compact 
well-separated clusters. Journal of Cybernetics 3, 32-57. 
Dunn, M., Hickey, R., 1998. The effect of slope algorithms on slope estimates within a GIS. 
Cartography 27, 9-15. 
Edinger, E.N., Sherwood, O.A., Piper, D.J.W., Wareham, V.E., Baker, K.D., Gilkinson, K.D., 
Scott, D.B., 2011. Geological features supporting deep-sea coral habitat in Atlantic Canada. 
Continental Shelf Research 31, S69-S84. 
Ellis, J., Schneider, D., 2008. Spatial and temporal scaling in benthic ecology. Journal of 
Experimental Marine Biology and Ecology 366, 92-98. 
Elton, C., 1927. Animal ecology. The Macmillan Company, New York. 
Evans, I., Young, M., Gill, J., 1979. An integrated system of terrain analysis and slope mapping, 
final report. Univ. of Durham, Durham, NC. 
Federal Geographic Data Committee [FGDC]. 2012. FGDC STD-018-2012. Coastal and marine 
ecological classification standard. Reston (VA): Federal Geographic Data Committee 
Ferrier, S., Guisan, A., 2006. Spatial modelling of biodiversity at the community level. Journal of 
Applied Ecology 43, 393-404. 
Fish, J.P., Carr, H.A., 1990. Sound underwater images: a guide to the generation and interpretation 
of side scan sonar data. Lower Cape Pub Co. 
Fisher, R.A., 1925. Statistical methods for research workers. Genesis Publishing Pvt Ltd. 
Foody, G.M., 2004. Thematic map comparison. Photogrammetric Engineering & Remote Sensing 
70, 627-633. 



References 

 144 

Gage, J.D., Tyler, P.A., 1992. Deep-Sea Biology: A Natural History of Organisms at the Deep-
Sea Floor. Cambridge University Press. 

Gage, J.D., Lamont, P.A., Tyler, P.A., 1995. Deep‐sea macrobenthic communities at contrasting 
sites off Portugal, preliminary results: I introduction and diversity comparisons. Internationale 
Revue der gesamten Hydrobiologie und Hydrographie 80, 235-250. 
Ganuza, A., Almendros, G., 2003. Organic carbon storage in soils of the Basque Country (Spain): 
the effect of climate, vegetation type and edaphic variables. Biology and Fertility of Soils 37, 154-
162. 
Gao, J., Burt, J.E., Zhu, A.-X., 2012. Neighborhood size and spatial scale in raster-based slope 
calculations. International Journal of Geographical Information Science 26, 1959-1978. 
Garcia, R., Koho, K.A., De Stigter, H.C., Epping, E., Koning, E., Thomsen, L., 2007. Distribution 
of meiobenthos in the Nazaré canyon and adjacent slope (western Iberian Margin) in relation to 
sedimentary composition. Marine Ecology Progress Series 340, 207-220. 
Gardner, J.V., Dartnell, P., Mayer, L.A., Clarke, J.E.H., 2003. Geomorphology, acoustic 
backscatter, and processes in Santa Monica Bay from multibeam mapping. Marine Environmental 
Research 56, 15-46. 
Gori, A., Orejas, C., Madurell, T., Bramanti, L., Martins, M., Quintanilla, E., Marti-Puig, P., 
Iacono, C.L., Puig, P., Requena, S., 2013. Bathymetrical distribution and size structure of cold-
water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern 
Mediterranean). Biogeosciences 10, 2049-2060. 
Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, D.E., 
McRea, J.E., Cailliet, G.M., 1999. A classification scheme for deep seafloor habitats. 
Oceanologica Acta 22, 663-678. 
Grémare, A., Medernach, L., DeBovee, F., Amouroux, J., Vétion, G., Albert, P., 2002. 
Relationships between sedimentary organics and benthic meiofauna on the continental shelf and 
the upper slope of the Gulf of Lions (NW Mediterranean). Marine ecology. Progress series 234, 
85-94. 
Grinnell, J., 1917. The niche-relationships of the California Thrasher. The Auk, 427-433. 
Gustafson, E.J., 1998. Quantifying Landscape Spatial Pattern: What Is the State of the Art? 
Ecosystems 1, 143-156. 
Hall-Beyer, M., 2007. The GLCM tutorial home page. Current Version 2. 
Hansen, R.E., Callow, H.J., Sabo, T.O., Synnes, S.A.V., 2011. Challenges in seafloor imaging 
and mapping with synthetic aperture sonar. Geoscience and Remote Sensing, IEEE Transactions 
on 49, 3677-3687. 
Haralick, R.M., Shanmugam, K., Dinstein, I.H., 1973. Textural features for image classification. 
Systems, Man and Cybernetics, IEEE Transactions on, 610-621. 



  References 

 145   
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