The University of Southampton
University of Southampton Institutional Repository

High power, diode pumped, single frequency lasers

High power, diode pumped, single frequency lasers
High power, diode pumped, single frequency lasers
This thesis presents experimental and theoretical work on the development of high power (i.e. multi-Watt) single frequency lasers, with the main emphasis on using intra-cavity second harmonic generation to produce high power visible output. With such a laser, pumped by a beam shaped 20W diode bar, we have obtained over 3W of TEM00 single frequency output at 532nm. Because of the strong non-linear effects introduced into the resonator cavity by the frequency doubler, the behaviour of the laser can be significantly altered. In particular, there is the previously unreported phenomenon of mode-hopping suppression, where the non lasing modes are suppressed by the nonlinear loss (due to sum-frequency generation with the lasing mode). This allows the lasing mode to be smoothly tuned over many mode spacings simply by scanning the cavity length. Tuning ranges of up to 80GHz have been measured, and are in good agreement with theoretical calculations. There are also some less desirable consequences of the high nonlinear loss, such as parasitic lasing, self misalignment, and bidirectional lasing, that have had to be overcome in order to achieve efficient operation.

Ring lasers can provide, arguably, the most robust and stable single frequency operation. However care must be taken in their design to minimise spatial hole burning. Even a small amount of residual spatial hole burning can cause multi-frequency operation in ring lasers. This thesis contains experimental measurements of spatial hole burning and compares these with a numerically calculated theory. Also, the technique of pump beam displacement to increase the single frequency performance of end-pumped ring lasers, suffering from residual spatial hole burning, is described.

Thermal effects, such as thermal lensing and thermally induced birefringence often prove to be a major limiting factor in efficient operation of high power lasers. However these effects are dependent on several factors, such as the resonator design, and the heat sinking of the laser rod. Described in this thesis are the steps we have taken to minimize these effects in the designs of the high power lasers we have constructed.
Martin, Kevin Ian
88dd8b13-d2d5-44ae-9d3b-a95750ba4112
Martin, Kevin Ian
88dd8b13-d2d5-44ae-9d3b-a95750ba4112
Hanna, David
3da5a5b4-71c2-4441-bb67-21f0d28a187d
Clarkson, William
3b060f63-a303-4fa5-ad50-95f166df1ba2

Martin, Kevin Ian (1996) High power, diode pumped, single frequency lasers. University of Southampton, Optoelectronics Research Centre, Doctoral Thesis, 137pp.

Record type: Thesis (Doctoral)

Abstract

This thesis presents experimental and theoretical work on the development of high power (i.e. multi-Watt) single frequency lasers, with the main emphasis on using intra-cavity second harmonic generation to produce high power visible output. With such a laser, pumped by a beam shaped 20W diode bar, we have obtained over 3W of TEM00 single frequency output at 532nm. Because of the strong non-linear effects introduced into the resonator cavity by the frequency doubler, the behaviour of the laser can be significantly altered. In particular, there is the previously unreported phenomenon of mode-hopping suppression, where the non lasing modes are suppressed by the nonlinear loss (due to sum-frequency generation with the lasing mode). This allows the lasing mode to be smoothly tuned over many mode spacings simply by scanning the cavity length. Tuning ranges of up to 80GHz have been measured, and are in good agreement with theoretical calculations. There are also some less desirable consequences of the high nonlinear loss, such as parasitic lasing, self misalignment, and bidirectional lasing, that have had to be overcome in order to achieve efficient operation.

Ring lasers can provide, arguably, the most robust and stable single frequency operation. However care must be taken in their design to minimise spatial hole burning. Even a small amount of residual spatial hole burning can cause multi-frequency operation in ring lasers. This thesis contains experimental measurements of spatial hole burning and compares these with a numerically calculated theory. Also, the technique of pump beam displacement to increase the single frequency performance of end-pumped ring lasers, suffering from residual spatial hole burning, is described.

Thermal effects, such as thermal lensing and thermally induced birefringence often prove to be a major limiting factor in efficient operation of high power lasers. However these effects are dependent on several factors, such as the resonator design, and the heat sinking of the laser rod. Described in this thesis are the steps we have taken to minimize these effects in the designs of the high power lasers we have constructed.

Text
Martin_1996_thesis_1100T.pdf - Other
Restricted to Repository staff only

More information

Published date: September 1996
Organisations: University of Southampton

Identifiers

Local EPrints ID: 396626
URI: http://eprints.soton.ac.uk/id/eprint/396626
PURE UUID: d5a265a5-2b1a-4653-a15f-a2febf8cd83e

Catalogue record

Date deposited: 28 Jun 2016 17:17
Last modified: 15 Mar 2024 00:56

Export record

Contributors

Author: Kevin Ian Martin
Thesis advisor: David Hanna
Thesis advisor: William Clarkson

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×