MOD p DECOMPOSITIONS OF THE LOOP SPACES OF COMPACT
SYMMETRIC SPACES

SHIZUO KAJI, AKIHIRO OHSITA, AND STEPHEN THERIAULT

ABsTRACT. We give p-local homotopy decompositions of the loop spaces of compact, simply-
connected symmetric spaces for quasi-regular primes. The factors are spheres, sphere bundles
over spheres, and their loop spaces. As an application, upper bounds for the homotopy exponents
are determined.

1. INTRODUCTION

If X is a topological space and there is a homotopy equivalence X ~ A X B then there are
induced isomorphisms of homotopy groups x,,(X) = x,(A) & n,,(B) for every m > 1. So in
order to determine the homotopy groups of a space it is useful to first try to decompose it as
a product, up to homotopy equivalence. Ideally, the factors are simpler spaces which are easy
to recognize, so that one can deduce homotopy group information about the original space X
from known information about the factors. This approach has been very successful in obtaining
important information about the homotopy groups of Lie groups [15, 31], Moore spaces [9],
finite H-spaces [11], and certain manifolds [3, 2].

In practise, it helps if the initial space X is an H-space. Then the continuous multiplication
can be used to multiply together maps from potential factors. For this reason, it is often the
loop space of the original space that is decomposed up to homotopy, as looping introduces
a multiplication and it simply shifts the homotopy groups of X down one dimension. It also
helps to localize at a prime p, or rationally, in order to simplify the calculations while retaining
p-primary features of the homotopy groups.

From now on, let p be an odd prime and assume that all spaces and maps have been localized
at p. Harris [15] and Mimura, Nishida and Toda [31] gave p-local homotopy decompositions of
torsion free simply-connected, simple compact Lie groups into products of irreducible factors.
These were used, for example, in [31] to calculate the p-primary homotopy groups of the Lie
group through a range, in [4] to calculate the v,-periodic homotopy groups in certain cases, and
in [13] to determine bounds on the homotopy exponents in certain cases. Here, the p-primary
homotopy exponent of a space X is the least power of p that annihilates the p-torsion in m.(X).

It is natural to extend the decomposition approach to other spaces related to Lie groups. Some
work has been done to determine homotopy decompositions of the loops on certain homoge-
neous spaces [1, 14] and analyze the exponent implications. In this paper we consider the loops
on symmetric spaces with an eye towards deducing exponent information.

Compact, irreducible, simply-connected Riemannian symmetric spaces were classified by
Cartan [6, 7] and an explicit list as homogeneous spaces was given in [22]. In an ad-hoc manner,
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the homotopy groups of symmetric spaces have been studied in several papers, for example
[1,5, 16,17, 19, 29, 36, 37]. We give a more systematic approach.

A compact Lie group is quasi-p-regular if it is p-locally homotopy equivalent to a product of
spheres and sphere bundles over spheres. Let G/H be a compact, irreducible, simply-connected
Riemannian symmetric space where G is quasi-p-regular. Then for p > 5 we obtain p-local
homotopy decompositions for (G /H), which are stated explicitly in Theorems 5.4 and 5.8. It
is notable that in all the decompositions, the factors are spheres, sphere bundles over spheres,
and the loops on these spaces.

The key to our method is to replace the fibration

(1) QG/H)— H— G

with a homotopy equivalent one

@) [ Teibreqn — [ mean =25 | | mcan

using Cohen and Neisendorfer’s construction of finite H-spaces [11] (see Theorem 2.2). Here,
(2) is an H-fibration with a different H-structure from that in (1), but the maps M(g;) are simple
enough to allow us to identify their homotopy fibres.

The paper is organized as follows. In Sections 2 through 4 we obtain the homotopy fibra-
tion (2) from (1), and prove properties about it. In Section 5 we identify the maps ¢; in a
case-by-case analysis, and thereby obtain a homotopy decomposition for Q(G/H). In Section 6
we test the boundaries of our methods: examples are given to show that our methods can some-
times be extended to non-quasi-p-regular cases and sometimes not; we also give an example to
show that our loop space decompositions sometimes cannot be delooped. In Section 7 we use
the homotopy decompositions of (G/H) to deduce homotopy exponent bounds for G/H.

The authors would like to thank the referee for suggesting improvements and for pointing out
a mistake in an early version of the paper.

2. A DECOMPOSITION METHOD

Let G and H be Lie groups and let ¢: H — G be a group homomorphism. In this section
we describe a method for producing a homotopy decomposition of the homotopy fibre of ¢
when both G and H are quasi-p-regular. In the case when ¢ is a group inclusion, this gives a
homotopy decomposition of Q(G/H). To do so, we first need some preliminary information.

The following is a consequence of the James construction [24]. For a path-connected, pointed
space X, let E: X — QXX be the suspension map, which is adjoint to the identity map on XX.

Theorem 2.1. Let X be a path-connected space. Let Y be a homotopy associative H-space and
suppose that there is a map f: X — Y. Then there is an extension

f
X—Y

|7

QXX

where f is an H-map and it is the unique H-map (up to homotopy) with the property that

foE=~f. O
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Next, Cohen and Neisendorfer [11] gave a construction of finite p-local H-spaces satisfying

many useful properties. The ones we need are listed below. For a Z/pZ-vector space V, let
A(V) be the exterior algebra on V. Take homology with mod-p coefficients.

Theorem 2.2. Fix a prime p. Let C, be the collection of CW-complexes consisting of £ odd
dimensional cells, where £ < p — 1. If A € C, then there is a finite H-space M(A) with the
following properties:
(a) there is an isomorphism of Hopf algebras H.(M(A)) = A(ﬁ*(A));
(b) there are maps M(A) SLINYo) W RNy (A) such that p o s is homotopic to the identity
map on M(A);
(c) the composite A LN oza 2 M(A) induces the inclusion of the generating set in
homology.
Further, if A,A’,A” € C, then:
(d) amap f: A” — A induces a map M(f): M(A") — M(A);
(e) the maps p and s in part (b) are natural for maps f: A" — A;
(f) if there is a homotopy cofibration A” — A — A" then there is a homotopy fibration
M(A") — M(A) — M(A").
O

It will help to have some information about s.. Let a be the composite
a: A5 aza 2 M)
and let E be the composite
E: A-S MA) - QFA.

It may not be the case that E is homotopic to E. However, we will show that they induce
the same map in homology modulo commutators. Recall by the Bott Samelson Theorem that
H.(QXA) = T(Itl;(A)), where T'( ) is the free tensor algebra functor. It is well known that for
a Z/pZ-vector space V there is an algebra isomorphism 7'(V) = UL(V) where L(V) is the free
Lie algebra generated by V and U is the universal enveloping algebra functor. Thus there is an
algebra isomorphism H.(QXA) = UL(ﬁ*(X)).

Lemma 2.3. We have (E), = E, modulo commutators in U L(Ii(X)).

Proof. Since s is a right homotopy inverse of p, we have po E = po soa ~ a. By definition of a,
we also have po E = a. If £ < p—2 then by [38], p is an H-map, so po(E—E) ~poE—poE is
null homotopic. However, we would also like the statement of the lemma to hold for £ = p — 1
so we argue without knowing whether p o (E — E) is null homotopic.

Define the space F and the map f by the homotopy fibration

F-Lasa 25 M.

By [11], this fibration is modelled in homology by the short exact sequence of algebras

0— UlLL1 v ™ vr,, — 0

where L is the free Lie algebra generated by ﬁ*LA), L,y is the free abelian Lie algebra (that
is, the bracket is identically zero) generated by H,.(A), [L, L] is the Lie algebra kernel of the
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.b —_—
abelianization map L Al Ly, and g is the inclusion of [L,L] into L. So p. o E, = p, o E,
implies by exactness that E, — E, factors through f, = U(g). But as g is the map sending
commutators of L into L, we obtain E, — E, = 0 modulo commutators. m]

The following proposition is the key for decomposing (G /H).

Theorem 2.4. Let ¢: H — G be a homomorphism of Lie groups. Suppose that there is a
homotopy commutative diagram

V§:1 qi ¢

Vie Al Vic1 A
lj/ ij
H 4 G

where Al,A; € C, for 1 < i <1, there are Hopf algebra isomorphisms H,(H) = A(lﬁ'-lv*(\/ﬁzl A?))
and H,(G) = A(H.(\/!_, A)), and j', j induce the inclusions of the generating sets in homology.
Then there is a homotopy commutative diagram

1 M(qi)
L M(A) —— L M(A)
H ¢ G

where ¢’, e are homotopy equivalences.

Proof. First, since H and G are loop spaces, they are homotopy associative H-spaces, so Theo-

rem 2.1 implies that the maps j” and j extend to H-maps j: QX(\/_, A’) — H and Jr Qi A) —
G. Since ¢ is an H-map, the uniqueness statement in Theorem 2.1 implies that there is a homo-

topy commutative diagram

Qi g)
_—

QX(\Viz, A)) Q(Vi, A)
G) if’ lj_'
¢
H G.

Second, the inclusion of a wedge summand A, — \/!_, A; induces a map QZA;, — QZ(\/!_, A)).
The loop multiplication on QX(\/}_, A;) lets us take the product of these maps for 1 < k < ¢
to obtain a map J: [[i; QZA;, — QX(\/_,A,). This construction is natural for a map

Vi ai ) . .
Vi A =5 Vi, A;, so we obtain a homotopy commutative diagram

i1 QXqi
H§=1 QEA; Hﬁ:l QXA;
) l l
Q=(Vi_, 4i)
QS A) — 0 O3 (VL A)).
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Third, since A!,A; € C,, by Theorem 2.2 (b) there are maps s;: M(A]) — QXA’ and
: M(A) — QZA which have left homotopy inverses. The naturahty property in Theo—
rem 2.2 (e) then implies that there is a homotopy commutative diagram

R R Z(CD)
[T M(A) ———— T[T, M(A)

o) J/ =1 5} J/ i1 8i

o)LL B TS W
i=1 i i=1

Let ¢’ and e be the composites

ﬂM(A) HQZA’—>QZ(\/A)—>H

i=1 i=1

]—[M(A) ]—[QZA —>QZ(\/A)—>G

i=1 i=1

Then juxtaposing (3), (4) and (5) we obtain a homotopy commutative diagram

izl M(qi)

izt M(A]) [Tizy M(A)
!
H G.

Finally, we show that ¢’ and e are homotopy equivalences. By Whitehead’s Theorem, it
suffices to show that ¢’ and e induce isomorphisms in homology or cohomology. Consider the
restriction of e to \/f: | A;, that is, consider the composite

t

\/ ’“l_[M(A) ”'HQEA —>QZ(\/A)—>G
i=1

=1

By the definition of a; and Theorem 2.2 (c), (a;). is the inclusion of the generating set into
H.(M(A)). So if we can show that (¢ o \/\_; @;). is the inclusion of the generating set into
H.(G), then e, induces an isomorphism on generating sets. As H.(M(A)) and H.(G) are primi-
tively generated, dualizing to cohomology implies that e* is an isomorphism on generating sets.
Therefore, as e* is an algebra map, it is an isomorphism in all degrees. The same argument
holds for ¢’.

It remains to show that (e o \/!_, a;). is the inclusion of the generating set into H,(G). By
definition of the map E, we have ([T, s;) o V.-, & = \V'_, E;. So by Lemma 2.3, modulo
commutators in H.([T;_; QXA;), this map induces the same map in homology as (\/!_, E))..
Observe that J is a product of H-maps and j is an H-map, so they induce algebra maps in
homology. Therefore, as H,(G) is a commutative algebra, (j o J), sends all commutators in
H.([T.; QSA) to zero in H.(G). Thus (o J o ([T, s) 0 /iy @) = (jo J o (Ve Ep).. The
left map in this equality is (e o \//_, @;).. For the right map, by the definitions of J and j, the
composite jo J o (\/!_; E;) = j. Thus (e o \/'_, a;). = j.. By hypothesis, j. is the inclusion of
the generating set into H.(G), and hence so is (e o \/!_; a;).. m|
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Let fib(M(g;)) be the homotopy fibre of the map M(A?) @ M(A;). The homotopy commu-

tative diagram in Theorem 2.4 implies that there is a homotopy fibration diagram

;_1 M(q;

[T, fib(M(g) LMy e vy

) PR
Q(G/H) H G

for some induced map € of fibres. Since ¢’, e are homotopy equivalences, the five-lemma implies
that € is as well. Thus we obtain the following.

Corollary 2.5. There is a homotopy equivalence

Q(G/H) =, | | fib(M(g).
i=1

3. THE QUASI-p-REGULAR CASE

In this section we aim towards Theorem 3.6, which shows that if H and G are both quasi-
p-regular and satisfy mild restrictions on the factors, then the hypotheses of Theorem 2.4 are
satisfied. To do this, we first need to study properties of the factors.

We begin by defining some spaces and maps following [31]. For n > 2, define the space
B(2n —1,2n + 2p — 3) by the homotopy pullback

§2n-1 —= B(2n—1,2n+ 2p — 3) —— §2n+2p-3

\L \L %oq(Zn)

§2-1 — > 0Q2n + 1)/02n - 1) s

Notice that H*(B(2n—1,2n+2p-3)) = A(X2,-1, X2n+2p-3) and Pl(xp_1) = Xop+2p-3. In particular,
B(2n—1,2n+2p-3) is a three-cell complex. Let A(2n—1, 2n+2p—3) be the (2n+2p—3)-skeleton
of BCn—1,2n+2p — 3) and let

i-1: ACn—-1,2n+2p—-3) — B2n—-1,2n+2p - 3)

be the skeletal inclusion. Then A(2n — 1,2n + 2p — 3) is a two-cell complex consisting of
the bottom two cells in B(2n — 1,2n + 2p — 3). Observe that H*(B(2n — 1,2n + 2p — 3)) =
AH*(AQ2n —1,2n+2p = 3)).

The space B(2n — 1,2n + 2p — 3) is analogous to M(A(2n — 1,2n + 2p — 3)). It is introduced
in addition to M(A(2n — 1,2n + 2p — 3)) because the standard homotopy decompositions of
Lie groups due to Mimura, Nishida and Toda [31] are given in terms of the B’s, and these will
be used subsequently as a starting point for producing alternative decomposition in terms of
M(A)’s via Theorem 2.4. For now, we note that the two are homotopy equivalent provided
p=5.(If p=3thenas A2n—1,2n + 2p — 3) has two cells, Theorem 2.2 does not apply - that
is, the space M(A(2n — 1,2n + 2p — 3)) does not exist.)

Lemma 3.1. Let p > 5. If n > 2 then there is a homotopy equivalence
MAQ2n-1,2n+2p-3)) ~, B2n—1,2n+2p - 3).
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Proof. For simplicity, letA = A2n—-1,2n+2p—-3),B=B2n-1,2n+2p-3)andi: A — B
be ip,-;. Since p > 5, by [28] the top cell splits off 2B, that is, Xi has a left homotopy inverse
t: B — ZA. Consider the diagram

ALt 05A

U

B> 0yB -2~ 05A —2= M(A)

where p is the map from Theorem 2.2. The left square homotopy commutes by the naturality of
the suspension map E and the triangle homotopy commutes since ¢ is a right homotopy inverse
of Xi. Let e = p o QXt o E be the composition along the bottom row. By Theorem 2.2 (c), po E
induces the inclusion of the generating set in homology, so the homotopy commutativity of the
preceding diagram implies that e o i does as well. But i is the inclusion of the (2n + 2p — 3)-
skeleton, so it induces the inclusion of the generating set in homology. Thus e, is a self-map of
A(X24-1, X20+1,-3) Which is an isomorphim on the generating set. As e is a map of spaces, e, is

a map of coalgebras, and any such map satisfies A o e, = (e, ® e,) o A, where A is the reduced
diagonal. Applying the reduced diagonal to the product class xy,-1 ® X2,42,-3 We immediately
see that e, is also an isomorphism in degree 4n + 2p — 4. Thus e, is an isomorphism in all
degrees and so e is a homotopy equivalence. O

In what follows we need information about the homotopy sets [A(2n — 1,2n +2p — 3,52"!]
and [A2n—-1,2n+2p—-3), BCm—1,2m+2p —3)] for various n and m. We do this now, starting
by listing some known homotopy group calculations.

Lemma 3.2 (Toda [39]).

Z/pZ t=2i(p-1)-1,1<i<p-1
Tom1(S™" ) =3Z/pZ t=2i(p-1)-2,m<i<p-1

0 otherwise for 1 <t <2p(p-1)-3
]
Lemma 3.3 (Mimura-Toda [32],Kishimoto [25]).
Z/p*Z t=2(p-1)-1,2<i<p-1
m3(B(3,2p + 1)) = 1 Z, t=2p-2
0 otherwise for 1 <t <2p(p-1)-3
Z/p*Z t=2i(p-1)-1,2<i<p-1
zZlpZz t=2ip-1)-2,m<i<p-1
Tam 1 (B@m —1,2m +2p~3) = {7 woDzmsisp
LZg)y — t1=2p=2
0 otherwise for 1 <t <2p(p—-1)-3
]

Remark 3.4. Notice that if 0 < ¢ < 4p — 6 and ¢ is even then m5,,_1.,(S*" 1) = 0, except in the
one case when m = 2 and 7r3+(4p_3)(S3) ~ Z/pZ. Also, if 0 <t < 4p — 6 and ¢ is even then
m34(B3,2p + 1)) 2 0 and 7y, 1,(B2m — 1,2m + 2p — 3)) = 0.
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Lemma 3.5. Let 2 < m,n < p. Select spaces A,, and B, as follows:
An € (5,87 ACm - 1,2m + 2p - 3)}

B, € {%, S §223 B2n—1,2n+2p —3),BQn+2p —3,2n+4p - 5)}.

Exclude the case when A,, = A2p — 1,4p —3) and B, = S3. If m # n then [A,,, B,] = 0.
Proof. If A,, = = then we are done. Otherwise, the possible dimensions for the nontrivial cells
of A,, are 2m — 1 and 2m + 2p — 3. Observe that 75, 1(B,,) = m2,_1+/(B,) for t = 2m — 2n, and
Toms2p-3(Bp) = Mop_14¢(B,) for ¢’ = 2m + 2p — 2n — 2. In particular, both ¢ and ¢’ are even. Also,
we may assume that ¢, > 0. Asm # n we obtain ¢ > 0, and as 2 < m,n < p, we also obtain
¢ > 0. Finally, since 2 < m,n < p we have 2m + 2p < 4p and 2n > 4. Thus t < 4p — 6 and
¢ <4p —6. So by Remark 3.4, m5,,-1(B,) = 0 and, as the excluded case in the hypotheses rules
out obtaining m4,3(S %), we also have Tome2p-3(B,) = 0.

Therefore, if A,, = S?"~! then [A,,, B,] = 0. If A,, = A(2m—1, 2m+2p—3) then the homotopy
cofibration S~ — A,, — §2"*2=3 implies that there is an exact sequence

7T2m+2p—3(Bn) B [Am’ Bn] B 7T2m—l(Bn)'

As the homotopy groups on the left and right are zero we obtain [A,,, B,] = 0. O

Return to Lie groups. Let G be a simply-connected, simple compact Lie group which is
quasi-p-regular. Then by [31] there is a homotopy equivalence

m=2
where B, is one of the following:
By, € {x,S* 1 BQm — 1,2m + 2p — 3),82"™P=3 BQm +2p — 3,2m + 4p — 5)}.
Define A,, by the corresponding list:
Ay € (5,87 L AQm = 1,2m +2p = 3),S*73 AQm + 2p - 3,2m + 4p — 5)}.
Notice that in each case, H*(B,,) = A(ﬁ *(A,)). Let j be the composite

Jj: \p/Am — ﬁBm =G
m=2 m=2

where the left map is determined by the skeletal inclusion of A,, into B,. Then there is an
isomorphism H*(G) = AH *(\V? _, Ay)) for which j* is the projection onto the generating set.

Now suppose that H = H; X H, where H, and H, are simply-connected, simple compact Lie
groups which are quasi-p-regular. (In theory, this could be generalized to a product of finitely
many such Lie groups, but in practise two factors suffices. In fact, it will often be the case that
H, is trivial.) By [31] there are homotopy equivalences

P )4
Hl -p | | Bm,l H2 4 an,2'
m=2

m=2

This time we impose a more stringent condition than in the case of G. We demand that

(6) B, . B, € {x 5" ", B2m~-1,2m+2p - 3)}.

m,1°
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Let A’

m1> A, be the corresponding skeleta:

Al LA € (ST AQRm - 1,2m + 2p - 3)).

m,1°
LetB, =B, X B, jand A} =A] VA ,. Then thereis a homotopy equivalence

)4
H =, 1_[ B,
m=2
and a map

J': \p/A;n o ﬁB;n — H
m=2 m=2

which induces the inclusion of the generating set in homology.

Theorem 3.6. Let G be a simply-connected, simple compact Lie group, let H = H; X H, be a
product of two such Lie groups, and let ¢: H — G. be a homomorphism. Suppose that both G
and H are quasi-p-regular, that the factors of H satisfy (6), and thatif A}, has A2p — 1,4p - 3)
as a wedge summand then B, # S°. Then there is a homotopy commutative diagram

4
P A, \/,,1:2 qm P A
m=2*"m m=2*"m
J/j, lj
[
H G

where j” and j induce the inclusions of the generating sets in homology.

Proof. First, consider the composite

p ) p
Oc: A, VA,'”LHLG; an.
m=2 m=2

By Lemma 3.5, [A}, B,,] = 0 unless m = k. Therefore 6; factors as the composite
. P
A 2, g, 0] [18.—¢
m=2

where A, is the projection of 6, onto By.

Next, observe that if B, € {*, S?"~!, §2m+2p=3} then A; = By, so A, factors through the inclu-
sion Ay — By (which is the identity map). On the other hand, if By = B2m — 1,2m + 2p — 3)
or By = B2m + 2p — 3,2m + 4p — 5) then as the dimension of A is at most 2m + 2p — 3, we
have A; factoring through the skeletal inclusion Ay — By. Thus, in any case, A, factors as a
composite

AL A > By
for some map g.
Putting this together, for each 2 < k < p we obtain a homotopy commutative diagram

AL r A, incl B,
lincl l incl
p A/ J H 4 G = p B
m=2""m m=2 "~ m:
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Taking the wedge sum of these diagrams for 2 < k < p and composing with the inverse equiva-
lence [1”_, B,, — G gives the diagram in the statement of the theorem. O

Remark 3.7. We will apply Theorem 3.6 in the case when G/H is a symmetric space. This
requires that we also consider the possibility that H = S' x H,. Then A = S' v A}, and as G
is simply-connected, the restriction of the composite A — H 2, G to S!is null homotopic.

We are left with the composite A} — H N G, to which Theorem 3.6 applies. We obtain a
homotopy commutative diagram

) pinch , Vs @n
StV (VP LA ——= VAL =\

m=2 m=24tm

X ]

H G

A

4. IDENTIFYING THE MAP ¢,, AND THE HOMOTOPY FIBRE OF M(q,,)

The next step is to try to identify the maps g,, in Theorem 3.6 and the homotopy fibre of
M(q,,). Since j’,j induce the inclusion of the generating set in homology, they induce the
projection onto the generating set in cohomology. Thus (g,,)" is determined by the map of

indecomposable modules induced by H 5 G:
Q¢": OH'G — QH"(H).

Based on the calculations to come in the subsequent sections, we will consider several possibil-
ities for g,, with (g,,)* # 0. In Proposition 4.2 we will show that this cohomology information
is sufficient to determine the homotopy type of the fibre of M(g,,).

At this point it is appropriate to notice that if p = 3 then Theorem 2.2 does not apply to the
two cell complex A(2n — 1,2n + 2p — 3). That is, the space M(A(2n — 1,2n + 2p — 3)) does not
exist. To avoid this, from now on we will assume that all spaces and maps have been localized
at a prime p > 5.

We begin by listing eight types of maps:

Vl:Am_>Am

Vo §7ml — AQm - 1,2m +2p - 3)

v3: AQm—1,2m +2p — 3) — §2m+20=3

ve: ACm—1,2m+2p—-3) — ACm+2p—3,2m+4p -5)

Vs S2m—1 vV SQm—l - SZm—l

ve: Sy §2ml 5 AQm —1,2m + 2p - 3)

Vi STV AQm - 1,2m+2p —3) — AQm - 1,2m + 2p - 3)

vg: ACm—1,2m+2p-3)VACm - 1,2m+2p—-3) — ACm —1,2m + 2p - 3).

Here, v, is a homotopy equivalence, v, is the inclusion of the bottom cell, v;is the pinch map
to the top cell, v, is the composite of the pinch map to the top cell and the inclusion of the
bottom cell, vs is a homotopy equivalence when restricted to each wedge summand, v is the
inclusion of the bottom cell on each wedge summand, v; is the inclusion of the bottom cell when
restricted to S~ and is a homotopy equivalence when restricted to A,,, and vg is a homotopy
equivalence when restricted to each copy of A,,.
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Apply the functor M in Theorem 2.2 to the maps v; to vg. Using the facts that M(S**™') =,
S#land M(X V Y) ~, M(X) X M(Y), we obtain maps:

MO): M(A,) — M(A,)

M®vy): S — M(AQRm —1,2m + 2p — 3))

M(v3): M(ACm —1,2m + 2p — 3)) —> §2m+2p=3

My): M(ACm —1,2m +2p —3)) — M(AQm+2p —3,2m+4p —5))

M(V6)Z SZm—l X SZm—l N SZm—l

M(vg): S¥ 1 x §2m1 — M(AQ2m —1,2m + 2p — 3))

M®7): S x M(AQm — 1,2m +2p — 3)) — M(AQ2m —1,2m + 2p — 3))

M(vg): M(ACm —1,2m+2p —3)) X M(A2m - 1,2m + 2p — 3)) — M(AQCm — 1,2m + 2p — 3)).

Let fib(M(v;)) be the homotopy fibre of M(v;). In Lemma 4.2 we identify the homotopy type of
fib(M(v;) for 1 <i < 8. First we need a preliminary lemma, which holds integrally or p-locally.

Lemma 4.1. Suppose that there are maps X N Y - Z where Y and Z are H-spaces and g is
an H-map. Let h = g o f. If m is the multiplication on Z, we obtain a composite

hxg m
h-g:XXY—>ZXZ—Z

Let F be the homotopy fibre of g. Then the homotopy fibre of 4 - g is homotopy equivalent to
XXF.

Proof. There is a homotopy equivalence §: XxXY — X XY given by sending (x, y) to (x, u(x, y))
where u is the multiplication on Y. As g is an H-map, h - g is homotopic to the composite

Ui X XY Toxxy By S Z, where m, is the projection onto the second factor. The
homotopy fibre of i is clearly X X F, and so this is also the homotopy fibre of / - g. O

Lemma 4.2. Let p > 5. The following hold:
(1) fib(M(vy)) =), *
(2) fib(M(vy)) =, QS >"*+2773;
(3) fib(M(v3)) =, §>"~;
(4) fib(M(vy)) =, S x Q§2m+4r=3;
(5) fib(M(vs)) =, §>"~";
(6) fib(M(ve)) =, S¥"1 x QS #m+2r=3;
(7) fib(M(v7)) =, $>"~1;
(8) fib(M(vg)) =, M(A2m —1,2m +2p — 3)) =~ B2m — 1,2m + 2p - 3).

Proof. Since v; is a homotopy equivalence, it induces an isomorphism in homology, which
implies by Theorem 2.2 (a) that M(v,) also induces an isomorphism in homology and so is a
homotopy equivalence. It follows that fib(M(v;)) =, , proving part (1).

By Theorem 2.2 (f), the homotopy cofibration S *"~! — AQ2m—1,2m+2p—3) — §2m+2r-3
induces a homotopy fibration $?"~! — M(AQ2m — 1,2m + 2g — 3)) — S?"*?’=3, We immedi-
ately obtain fib(M(v,)) =, QS?"*% =3 and fib(M(v3)) ~, S*"~', proving parts (2) and (3).

For part (4), since v, is the composite

AQm—1,2m+2p —3) =5 S2273 25 AQm+2p —3,2m+4p — 5)

the naturality property in Theorem 2.2 implies that M(v,4) is homotopic to the composite

M(A(v3) Szm+2p 3 M(VZ))

MQm-1,2m+2p-3) —> S M(AQm +2p - 3,2m + 4p — 5)).
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Further, by [38], the maps M(v,) and M(v;) are H-maps so we obtain a homotopy pullback of
H-spaces and H-maps

S 2m—1 X Qs 2m+4p-5
| !
(7) S —— MAQCm—1,2m+2p - 3)) M) g 2m+2p=3

iM(w&) lM(\G)
MAQCm+2p —-3,2m+4p —-5) —— MAQCm+2p—-3,2m+4p -15))

which defines the H-space X and the H-map 0. Note that X ~, fib(M(v4)). In general, the
attaching map for the (2n + 2p — 3)-cell in M(A(2n — 1,2n + 2p — 3)) is a4, so the fibration
connecting map 9: Q§2?P=3 — §21 qatisfies o E ~ a;. In our case, after looping (7),

we obtain a composite of connecting maps Q2§ 2"+4r=> 2, g3 L gaml where the
homotopy fibre of 8" is QM(v,). We have & o Q8 o E* ~ a, o a;, which is null homotopic
by [39]. Thus & o Q4 o E? lifts through QM(v,). Adjointing, this implies that d o E lifts through
M(v;) toamap A: S¥4=6 — M(AQ2m—1,2m+2p-3)). By [38], M(A(2m—1,2m+2p—3))
is homotopy associative, so by Theorem 2.1, A extends to an H-map

y: QS2mHAPTS  M(AQm - 1,2m + 2p - 3)),

and as M(v,) is an H-map, the uniqueness property of Theorem 2.1 implies that M(v;) oy =~ 0.
The pullback property of X therefore implies that y pulls back to a map QS *"+*"=5> — X which
is a right homotopy inverse for X — QS?"*4=5_ Since X is an H-space, this section implies
that there is a homotopy equivalence X =, $2"~! x Q§ 2"+,

Parts (5) through (8) are all special cases of Lemma 4.1. O

Next, we aim to show that if (g,,)* # 0 in cohomology then ¢,, can be described in terms of
the maps v, to vg.

Lemma 4.3. Letg,,: A, — A,, be a map as in Theorem 3.6 and suppose that, in cohomology,
(gm)" # 0. Write u for an arbitrary unit in Z,). Then the following hold:

(1) it A, = A, then g, is a homotopy equivalence;

(2) ifAl, =S* and A,, = A2m — 1,2m + 2p — 3) then q,, = u - vy;

(3) if A/, = AQ2m—1,2m+2p —3)and A,, = S*"**73 then q,, ~ u - vs;

m

@) if A, = AQ@m—1,2m+2p-3)and A,, = ACm+2p—3,2m+4p —5) then g,, = u - va.

m

Proof. For part (1), if A/ = A,, equals * or S>"! then the assertion is clear. If they both equal
A(Zm— 1, 2m+2p—3) then recall that H*(Am) = Z/pZ{sz_l . XQm_,.zp_g} and PI(XQm_l) = X2om+2p-3-
This Steenrod operation implies that if (g,,)* 1s nonzero on either generator then it is nonzero on
both. Consequently, (g,,)* is an isomorphism and so g, is a homotopy equivalence.

Part (2) is a consequence of the Hurewicz Theorem.

For parts (3) and (4), observe that there is a homotopy cofibration sequence

S21 Ly AQm = 1,2m + 2p — 3) —1s §2m2p=3 L2 Gom

where i is the inclusion of the bottom cell and ¢ is the pinch map onto the top cell. For any
space X, we obtain an induced exact sequence

Tam(X) — Tamszp-3(X) — [AQm — 1,2m + 2p — 3), X] — Tym_1(X).
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Taking X = §2"*2P=3 or X = A2m+2p—3,2m+4p—5), by connectivity 75,,(X) = m5,,_1(X) = 0,
so ¢ is an isomorphism. The Hurewicz Theorem implies in either case that my,.2,-3(X) 1s
isomorphic to H*(X). Therefore, in both cases, the homotopy class of ¢,, is determined by its
image in cohomology, and the assertions follow. O

Arguing as for Lemma 4.3 we also obtain the following.

Lemma 4.4. Let g,: A} | V A, , — A, be a map as in Theorem 3.6 and suppose that, in
cohomology, (g,,)* # 0 when projected to either H *(A”n’l) or H* (A},n,l)' Write u, u’ for arbitrary
units in Z,. Then the following hold:

(5) ifA;,, =A,=8""and A, = $* then g,, ~ u V u’ is a wedge sum of homotopy
equivalences;

(6) ifA;n’1 =A,,= §2m1and A,, = ACm —1,2m+2p —3) theng,, ~u-v, V u' - vy;

(7) if A}, =S* " A, =AQ2m—1,2mp+2p—-3)and A,, = A2m—1,2m + 2p — 3) then
qm ~u-v, Ve where e is a homotopy equivalence;

(8) if A= A;n,l = AC2m - 1,2mp +2p —3) and A,, = AQm — 1,2m + 2p — 3) then
qm =~ e V ¢ where e, ¢’ are homotopy equivalences.

O

Lemmas 4.3 and 4.4 identify g,, in terms of the maps v;, up to multiplication by units in Z,,
or homotopy equivalences. Thus M(g,,) can similarly be written in terms of the maps M(v;). As
multiplication by a unit in Z,, or composition with a homotopy equivalence does not affect the
homotopy type of the fibre, the homotopy fibre of M(g,,) has the same homotopy type as the
homotopy fibre of the corresponding M(v;)’s. So Lemma 4.2 implies the following.

Proposition 4.5. Let p > 5 and let ¢,,: A/, — A,, be a map as in Theorem 3.6. If (g,,)" # O,

then - listing cases as in Lemmas 4.3 and 4.4 - the homotopy fibre of M(g,,) is as follows:

(1) fib(M(gn)) =p *;

(2) fib(M(gn)) =, QS>3

(3) fib(M(gy)) =, 2"

(4) fib(M(gn)) =, S x Q242

(5) fib(M(gy)) =, S

(6) ﬁb(M(qm)) ~, S2m—1 % Q52m+2p—3;

(7) fib(M(gm)) =, S*"";

(8) fib(M(gn)) =, M(ACm —1,2m + 2p — 3)) =, B2m — 1,2m + 2p - 3).

5. CASE BY CASE ANALYSIS

In this section, we give homotopy decompositions of Q(G/H) when G is quasi-p-regular
using a case by case analysis. Note that when G is quasi-p-regular, H is automatically so by the
classification of the symmetric space. The classical cases are considered first, followed by the
exceptional cases.

5.1. Classical cases. The following homotopy decompositions for quasi-p-regular classical
Lie groups are due to Mimura and Toda [32].
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Theorem 5.1. For an odd prime p, there are homotopy equivalences:

G p (odd)
n—p+1 min(n,p) .
SU(m) | p>n/2 []B@i-12i42p-3x ] s¥!
i= Jj=max(2,n—p+2)

n—pT_l min(n,%)

SOQn+1)| p>n ]_[ B(4i—1,4i+2p-3) % ]—[ s

i=1 jen-t3

”—pT_] Inin(n,%)

Sp(n) p>n BUi-14i+2p-3)x || s¥

i=1 =
n—% min(n—l,%)
S0@2n) | p>n-1 H B(di—1,4i +2p - 3) x ]_[ Sl g2
i=1 j:n—%
]
We will also use the following homotopy decompositions, due to Harris [15].
Theorem 5.2 ([15]). For an odd prime p, there are homotopy equivalences:
SU(2n) =, Sp(n) x SU(2n)/Sp(n)
SUQ@2n + 1) =, Spin(2n + 1) Xx SU(2n + 1)/Spin(2n + 1)
SO2n +1) =, Spin(2n + 1) =, Sp(n)
SOQ2n) =, Spin(2n) =, Spin(2n — 1) x §*""!
]

For expositional purposes, the AIII case is examined first.

5.1.1. Type AIIl. Assume that 2m < n. Observe that SU(n)/SU(n — m) = Un)/U(n — m).

Since the upper-left inclusion and the lower-right inclusions for U(n) are conjugate and thus
homotopic, the inclusion U(m) X U(n — m) — U(n) is homotopic to

tnXlp—n

Um) x Un —m) "<5™" Un) x Un) & U®m),

where ¢, : U(m) — U(n) and ¢,,_,, : U(n—m) — U(n) are the upper-left inclusions. By Lemma
4.1, for m < n — m there is an integral homotopy equivalence

QUm)/Un —m)x U(m)) =~ U(m) x QSUn)/SU(n — m)).

By Theorem 5.1, there are homotopy equivalences

n—m—p+1 min(p,n—m)
SUm-my= || B@i-12i42p-3)x [] s¥!
i=2 Jj=n—m—p+2
n—p+1 min(p,n)

sum = | | Bei-1,2i+2p-3)x [ ] s¥.

i=2 Jj=n—p+2
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So if we define spaces A? and A; fori <2 < p by

n—m—p+1 min(p,n—n)

\I)/A;: \/ ARi-1,2i+2p-3) Vv \/ §2/-1
= = Jj=n—m—p+2
\P/ n—p+1 min(p,n)

A= \/ AQi-12i+2p-3)v \/ s¥!

i=2 =2 j:n—p+2

then by Theorem 3.6 there is a homotopy commutative diagram

P .
P oA Vi ai p
=244 i=2

i i

SU(n — m) —— SU(n).

A,

In each case, since ¢* is a projection, each (g;)* is an epimorphism. So by Proposition 4.5 and
Corollary 2.5 we have

P n
QSUM)/SU(m —m) =, | | fibM(g) =, [] Qs
i=2 Jj=n—-m+1

Thus, for p > n/2, we obtain

QUn)/U(m) x Un —m)) =, Um) X QSU(n)/SU(n — m))

~, ﬁSZHXﬁ Qs
j=1

Jj=n—-m+1

Remark 5.3. Using a different approach, a homotopy decomposition for Q(SU(n)/SU(n — m))
is obtained in [1, 14] which holds for n < (p—1)(p —2). This range includes the quasi-p-regular
cases and more. However, those methods do not extend to exceptional cases while ours do, so
the argument above was given in detail for the sake of illustrating our approach.

5.1.2. Type CII. Assume 2m < n. Similar to the type AllI case, for n < p we have
Q(Sp(n)/(Sp(m) x Sp(n —m))) =, Sp(m) x Q(Sp(n)/Sp(n — m))

S [Ts9 [ ] es
j=1

Jj=n—m+1

5.1.3. Type BDI. Similar to the type AIII case, we have
QSOn)/(SO(m) x SO(n — m))) =, SO(m) x Q(SO(n)/SO(n — m)),

where 2m < n. By Theorem 5.2, for p odd there are homotopy equivalences SO(2k+1) =, Sp(k)
and SO(2k + 2) =, Sp(k) x S **!. Therefore, we obtain homotopy equivalences:
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QSO2n +1)/SO2(n — m) + 1)) =, Q(Sp(n)/Sp(n — m))

QSOQ2n + 1)/SOQ2(n — m) +2)) =, S* "™ x Q(Sp(n)/Sp(n — m))

Q(SOQ2n +2)/SOQ2(n — m) + 1)) =, QS > x Q(Sp(n)/Sp(n — m))

Q(SOQ2n +2)/SOQ2(n — m) +2)) =, S "™ x QS ** x Q(Sp(n)/Sp(n — m)).

Complete decompositions are now obtained from the CII case.

5.1.4. Types Al, All. Homotopy decompositions of SU(2n)/Sp(n) and SU(2n + 1)/SO(2n + 1)
are given in [31, Thm 4.1] as sub-decompositions of SU (n).
n—pTH min(n—l,pT_l)
SU@n)/Spm) =, | |B@i+1,4i+2p-1)x [ $¥ (p>n
i=1 j=min(1,n—251)
”—pT_l min(n,pT_l)
SUQn+1)/S02n + 1) =, HB(4i +1,4i+2p - 1)x ]_[ S (p > n).
i=1 Jj=min(1,n-23%)
For SU(2n)/SO(2n), by [33, Theorem 6.7], Q¢*: QH'(SU(2m)) — QH'(SO(2m)) is nontriv-
ial forz € {3,7,...,4m — 5}. So arguing as in the A/II case, we obtain a homotopy equivalence

n+1 . -1
n—5- min(n—1,%-)

QSU(2n)/SO2n) =, QS x ]_[QB(4i +1,4i+2p—1)x ]—[ QS (p > n).

i=1 j=min(1,n—251)

5.1.5. Types CI,DIII. For the type CI case of Sp(n)/U(n), Sp(n) is quasi regular when p > n
and then U(n) =, []-,S*'. By [33, Theorem 5.8], Q¢*: QH'(Sp(n)) — QH'(U(n)) is
nontrivial for ¢t € {3,7,...,4[n/2]}. So arguing as in the AIIl case we obtain a homotopy
equivalence
[5] n
QSpm/Um) =, [ [ x [ Qs¥, @ >n.

N

For the type DIII case of SO(2n)/U(n), we can reduce it to a type CII case by
SO2n)/U(n) = SO2n—-1)/Un—-1) =, Sp(n—1)/U(n - 1).

Summarising the results for classical cases, we have the following.
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Theorem 5.4. For p > 5, there are homotopy equivalences:

Type G/H p>5 Homotopy type of Q(G/H)
n—u min(n,%)
Al SUQn + 1)/S02n + 1) p>n HQB(41‘+ L4i+2p-1)x ]_[ Q§4i*!
i=1 j=min(1,n-25%)
n—1
SU(4n +2)/S0(4n + 2) p=2n+1 ﬂ QB4i+ 1,4i +2p — 1) x Q81 x Q843
- -l min(n—1 E)
2 > 2
SU(2n)/SO(2n) p>2n | Q8™ x ]_[QB(4i +1,4i+2p - 1) x 1—[ Qs+t
=1 Jj=min(1,n~21)
n-2tL min(n—1,2 1)
All SU((2n)/Sp(n) p>n ]_[QB(4i +1,4i+2p-1)x ]_[ Qs 4t
i=1 Jj=max(1, n——
U(n) ¥ 2 2
AIIT S > n/2 §2 Qs
UGm) x U(n — m) p>n n . n]
S0Qn + 1) f TT et o com 4
BDI > S g1 % QS*~
SO2m) x SOQ(n —m) + 1) p=n L | . nan
bt m—1 n
SOR2n+ 1) p>n §4i=L 5 g2An-m+l 1_[ QS 41
SO2m — 1) x SO2(n — m) + 2) L e
SOQ2n +2) f SR iy T 4j-1
> SH T x QS x Qs
SO2m + )xS0Qn—-my+1) | P7" l;[ j_l_m[H
SOQ2n +2) ¢ T </t o camet o o2 - -
>n—1 S g2l §2n=mHl s g2+ ¢ Qs 4!
S02m) xS0n-m+2) | 77" lj_ll j:n_ﬂmﬂ
(%]
cI Sp(n)/U(n) p>n [ ] % ]_[ Qs4!
=0 =[7]
cil Sp(n) T p>n 1_[ g4 xl_[ Qs
Sp(m)xsp(n_m) Jj=n—m+1
= 2] n—1
DIII S02n)/Un) p>n—1 ]_[S“f“ x ]_] Q4!
I [n+l]

e for T, we assume 2m < n
e for i, weassume2m <n+ 1

O

Remark 5.5. Terzi¢’s computation of the rational homotopy groups of classical symmetric
spaces in [37] can be reproduced from the decompositions above. Our list corrects a typo in
her description of the rational homotopy type of SO(2n)/U(n). See also Remark 5.9 for the

exceptional cases.

Remark 5.6. Mimura [30] showed that the homotopy decompositions for types Al and All

deloop. He also showed that these cases hold for p =

strengthened to hold for p > n.

3 as well, and the Al case can be

5.2. Exceptional cases. The following homotopy decompositions for quasi-p-regular excep-
tional Lie groups are due to Mimura and Toda [32].
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Theorem 5.7. For an odd prime p, there are homotopy equivalences:

G| p

G,| 5 B(3,11)
> 7 S3x s

F,| 5 B(3,11) x B(15,23)

B(3,15) x B(11,23)

11 B(3,23) xS x §1
> 13 S3Ix S xS§BxS?

Es| 5 B(3,11) x B(9,17) x B(15,23)
7 B(3,15) x B(11,23) x S x SV
11 B(3,23) xS x S xS x SV
> 13 S3xSOx S xS xSTxS3

E; | 11 B(3,23) x B(15,35) x STTx § " x §7
13 B@3,27) x B(11,35) x S x §19 x §23

17 B(3,35) xS xSP xS x§B x85%
> 19 SIS xS xSPxSP xS x8§¥
Eg| 11 B(3,23) x B(15,35) x B(27,47) x B(39,59)
13 | B(3,27) x B(15,39) x B(23,47) x B(35,59)
17 | B(3,35) x B(15,47) x B(27,59) x § 3 x §%
19 | B(3,39) x B(23,59) x S x §¥ x §3 x §¥
23 | B(3,47) x B(15,59) x SB x S x §¥ x §¥
29 | B(3,59) X SP xSB xS x§3¥ x8§¥ xS
>31|S3xSPXIBXSTxSP xS xS x 8§

O

In analyzing the loop space of an exceptional symmetric space corresponding to a map
¢: H — G between quasi-p-regular Lie groups, we will use the following strategy.

Strategy:

[T, M(gm)
(1) Use Theorem 2.4 to replace H Ny by [12_, M(A},) e [1°_, M(A,).

(2) Determine those ¢g,, which are nontrivial in cohomology via the induced map of inde-
composable modules, Q¢*: QH*(G) — QH*(H).
(3) Observe that the remaining maps g,,: A, — A,, are trivial because either A/, or A,, is

trivial.

(4) Deduce the homotopy fibre of M(qg,,) from Proposition 4.5 or from the fact that M(q,,)
is trivial.

(5) Use Corollary 2.5 to obtain Q(G/H) = []" _, fib(M(g)).

5.2.1. Type G. Recall that SO(4) =, S* x §3 for p > 5. For p = 5, by Theorem 3.6 there is a
homotopy commutative diagram

§3vs§:—=AG, 1)

L,

S04) —2 = G,.
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Since
¢" 1 QH* (G2 Fy) —> QH(SO(4);Fy) = QH*(S* x S*1F,)
is non-trivial, Proposition 4.5 implies that there is a homotopy equivalence
Q(G,/S0(4)) =, S* x QS (p =5).
For p > 5, the space A(3, 11) is replaced by S* v S !! and arguing as in the p = 5 case we obtain
Q(G,/S04)) =, S* x QS (p > 5).

5.2.2. Type FI. By Theorem 5.1 there are homotopy equivalences

3 7 _
SUQ)-$p3) =, {i enstasn oo
It is shown in [22] that
H*(FL;F,) = Fplfa, fs1/(r16,724), (p=95)
for some relations ry, o4 in degrees 16 and 24 respectively. Thus
Q¢" : QH"(F4;F,) — QH"(SU(2) - Sp(3); Fp)

is non-trivial for m € {3,11} and p > 5. When p = 5, by Theorem 3.6 there is a homotopy
commutative diagram

S3VAQB,11)v ST —=A(3,11) v A(15,23)

| |

SU2) - Sp(3) ¢ F.

Proposition 4.5 therefore implies that there is a homotopy equivalence
QFI =5 §° x §7 x QB(15,23).
For p > 5, arguing similarly we obtain
QFI~,S*x 8" xQS"” xQS*.
5.2.3. Type FII. By Theorem 5.1 there are homotopy equivalences
B@3,11)x B(7,15) (p=5)
Spin(9) =, 1 B3,15)x S7 xS (p=17)
S3xSTxSxsSB (p>17.
Since
H'(FIL;Z) = Z[x5)/(x3),
we have
Q" : QH"(BF4;F,) —» QH"(BSpin(9); F,)

non-trivial for m € {3,11,15} and p > 5. Therefore, arguing as in the FI case, we obtain
homotopy equivalences

Q(F4/Spin(9)) =, " x QS*  (p > 5).



20 SHIZUO KAJI, AKIHIRO OHSITA, AND STEPHEN THERIAULT

5.2.4. Type EIV. It will be convenient to describe the EIV case before that of EI. We con-
tribute nothing new to this case. By [16], for odd primes p there is a homotopy equivalence

Eq =) E¢/Fy X Fy.
So from the decompositions of Eg and F, in Theorem 5.7 one obtains homotopy equivalences
BO,17) (p=3)

Eo/Fa = {59 xS (p=T7).

5.2.5. Type EI. By [20], for odd primes p there is an isomorphism
H'(EL;F,) = F,les)/(e3) ® E(eo, e17).

Notice that the right side is abstractly isomorphic to H*(F4/Spin(9);F,) ® H*(Es/F4;F4). Ob-
serve that at odd primes, PSp(4) =, Spin(9) so EI = E¢/PSp(4) =, Es/Spin(9). Let

¢: Es/Fs — Es
be the inclusion from the homotopy equivalence E¢ ~, F4 X E¢/F4 and let
Wi Fu/Spin(9) — Eg/Spin(9)
be the map of quotient spaces induced from the factorization of the group homomorphism

Spin(9) — E¢ through F4. From the homotopy fibration sequence Ej 2, Eq¢/Spin(9) —
BSpin(9) — BEj there is a homotopy action

0: E¢ X E¢/Spin(9) — E¢/Spin(9)
which extends 0 V id. The composition
Oo (¢ Xy): Eg/Fa X Fa/Spin(9) — E¢/Spin(9),

therefore induces an isomorphism in mod-p cohomology and so is a homotopy equivalence.
Combined with the identification of EIV and FII cases, we obtain homotopy equivalences

QB9,17) x S7 x QS (p=95)

QFE,/PSp(4) ~
o/ PSp(®) {QS9><QS”><S7><QS23 »>7.

5.2.6. Type EIl. By Theorem 5.1 there are homotopy equivalences

3 5 7 9 _
SU2) - SU(6) =, {; z§§3><1;5):57 ::9 :5“ Ei ; Z;
By [21],forp > 5
H*(E¢/SUQ2) - SU(6);F)) = F,lx4, X6, x31/(F16, 18, 724)
for some relations ryg, 113, 124 in degrees 15, 18, 24 respectively. Thus for p > 5
Q¢" : QH"(E6;F,) — QH"(SU(2) - SU(6); F),

is non-trivial for m € {3,9,11}. For p = 5, by Theorem 3.6 there is a homotopy commutative
diagram
S3VAB, 1) VS vSTvS?—=A@B,11) Vv A9, 17) v A(15,23)

| |

SUQ2) - SU(6) Es.
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Proposition 4.5 therefore implies that there is a homotopy equivalence
Q(Es/SU(2) - SU(6)) ~5 S° x S° x §7 x QS "7 x QB(15,23).
For p > 5, arguing similarly we obtain

Q(Es/SU2) - SU6)) =, S* x S*x ST x QS x QS x QS*  (p > 7).

5.2.7. Type EI111. By Theorem 5.1 there are homotopy equivalences

S9%x B(3,11)x B(7,15) (p=5)
S9%x B3,15)x ST xS (p=7).

Spin(10) =, Spin(9) x §° = {
It is shown in [23, 40] that for p > 5
H*(Ee/T" - Spin(10); F,) = F,[xz, Xs1/(r13, 724)
for some relations ryg, rp4 in degrees 18, 24. Thus

Q¢* : QH"(Ee; F,) — QH"(T" - Spin(10); F,)

is non-trivial for m € {3,9, 11, 15} for p > 5. Therefore, arguing as in the E/I case (but modify-
ing slightly to account for the S! term by using Remark 3.7) we obtain homotopy equivalences

Q(Eq/T" - Spin(10)) =, S' x QS x §"x QS* (p >5).

5.2.8. Type EV. By Theorem 5.1, for p > 11 there are homotopy equivalences
SU®)/{=I} =, SU®) =, S xS x8§"x 87 xS x s x8§P.

By the Appendix,
Q¢" : QH"(E7;F,) — QH"(SU®)/{+I}; F)y)

is non-trivial for m € {3, 11,15} when p > 11. For p = 11, by Theorem 3.6 there is a homotopy
commutative diagram

S3vSSvSTvSov Sty sy sls —=A3,23) VA(I5,35) vSitvs v sy

| |

SU8)/{1} E;.

Proposition 4.5 therefore implies that there is a homotopy equivalence
QE7/(SU®)/{£I}) =5 > x 87 x §7 xSV x QS x QS x QS*7 x Q.
For p > 11, arguing similarly we obtain

QE;/(SU®)/{=I}) =, S*x S"x 8§ xS x QS x QS x QS* x QS* (p > 11).
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5.2.9. Type EVI. By Theorem 5.1, there are homotopy equivalences

Spin(12) =, S* xS x S xS x P xS (p>11).
By [35],forp > 5
H*(E7/T" - Spin(12); F,) = F,[x2, Xs, X121/ (124, F28, T36)

for some relations r,4, 123, 36 1In degrees 24, 28, 36 respectively. From the fibre sequence

S% < E;/T" - Spin(12) — E;/SU(2) - Spin(12)
we therefore obtain

H'(E7/SU(2) - Spin(12); F,,) = Fp[ x4, x5, x121/1
for some ideal I consisting of elements of degrees > 24. Hence

Q¢" : QH"(E7;Fy) —» QH"(SU(2) - Spin(12); F))

is non-trivial for m € {3,11,15,19} when p > 11. Therefore, arguing as in the EV case we
obtain homotopy equivalences

QE;/SU(2) - Spin(12) =, S* x S x S x QS¥ x QS x QS (p > 11).
5.2.10. Type EVII. By Theorem 5.7 there are homotopy equivalences
Eoa B(3,23) xS xS xSB xS (p=11)
CTPISIXSIX ST xS x ST XSS (p>11).
By [8, 41], for p > 11
H*(E7/T' - E6;F,) = F,[xa, X10, X181/ (F20, P28, 36)
for some relations ry, 13, 36 in degrees 20, 28, 36 respectively. Thus
Qy" : QH"(E7;F,) —» QH"(T' - EF)
is non-trivial for m € {3, 11, 15,23} when p > 11. Therefore, arguing as in the EV case (modify-
ing slightly to account for the S! term by using Remark 3.7) we obtain homotopy equivalences
QE;/T' - Eg =, S' xS xS"x QS x QS xQS*  (p > 11).
5.2.11. Type EVIII. Using Theorem 5.1, there are homotopy equivalences
B(3,23) x B(7,2T) x S x S x SBxSY  (p=11)
Ss(16) =, S x Sp(7) =, ¢ B(3,27) x ST x S x §P xS x §1¥x 3 (p=13)
S3xSTx SN xSPxSBxSYx8§2 xS (p>17).
By [18] and [26],
Q¢" : QH (Es;F)) — QH'(Ss(16);F))
is non-trivial for m € {3,15,23,27} when p > 5. For p = 11, by Theorem 3.6 there is a

homotopy commutative diagram

AB,23) VA(T,2T) v St v S v s v Y — A(3,23) v A(15,35) v A(27,47) v A(39, 59)

| |

Ss(16) Es.
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Proposition 4.5 therefore implies that there is a homotopy equivalence
QEg/Ss(16) ~1; §7 xS x §P x §1 x QS x QS* x QB(39, 59).
For p > 11, arguing similarly we obtain
STx S xSB x5 x Q853 x Q54 x QB(35,59) (p =13)

QE3/S55(16) =, {57 X ST §15 % §19 % OS3 x QSP x QST x QP (p = 17).

5.2.12. Type EIX. Recall the four cases for the homotopy decomposition of E; in Theorem 5.7
when p > 11. By [34],

H*(Eg/T' - E7;F,) = F,[x2, X12, X201/ (740, 48, T60)
for some relations r4, 743, 'eo in degrees 40, 48, 60 respectively. From the fibre sequence
S% e Eg/T' - E; — Eg/SUQ) - E;

we obtain

H(Eg/SUQ) - E7;Fp) = Fplx4, x12, x201/1
where [ is some ideal consising of elements in degrees > 40. Thus

Q¢" : QH"(Eg;F,) — QH™(SU(2) - E7;F))
is non-trivial for m € {3,15,23,27,35} when p > 11. Arguing similarly to the EVIII case we
obtain homotopy equivalences
S3x S xS x QS x QB(39,59) (p=11)

QEg/SUQ2) - E7 =, {53 XS xS xQSP x QS xQS?  (p > 13).

Summarising the results for the exceptional cases, we have the following (together with ex-
ponent information which will be proved later in Section 7).

Theorem 5.8. For p an odd prime, there are homotopy equivalences:

[ Type | G/H I Homotopy type of Q(G/H) | Exponent
G G,/S0(4) S3xQS™T p>5 =p
S3xSTxQB(15,23) p=5 <512
FI F4/SU(2)SP(3) SBXS7XQSISXQS23 [727 =pll
FII F4/Spin(9) S7TxQS? p>5 =p'
STxQB(9,17) x QS > p=5 =5
EI Es/PSp(4) STxQSIX QST X QSB p>7 = plt
S3x S x8STx QST xQB(15,23) p=5 <52
EIl | E¢/SU(2)-SU(6) S3xSSxSTx QS X QST xQSB  p>7 = pi!
EIII | E¢/T" - Spin(10) STxSTxQSTTxQs>® p>5 =pl
QBO,17) p=5 <5
EIV E6/F4 QS9XQSI7 p27 :p8
EV E;/(SU®)/{£I}) S3xSTx8S7xSBXxQSPXxQSP x QST xQS» p>11 =pV
EVI | E;/SUQR)-Spin(12) || S3xSTxSTxQSPxQS7 xQS¥ p>11 =pV
EVII | E;/T'-E STxSox ST xQSPxQS7xQS» p>11 =pV
STxSTxSB xS x QS xQB3B9,59) x QAs*  p=11 <11%
EVIII | Eg/Ss(16) STx 8" xS xS xQBB5,59)x Q¥ x Q54 p=13 < 13%
STx SN xS xS xQASHP xQS¥ x QS x QS p>17 | =p*
S3x ST xS xQBB9,59)xQSY  p=11 <11%0
EIX | Eg/SU(2)- Eq SIS xS x Q5P x QST x Q5P p> 13 = p®
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Remark 5.9. Two of the decompositions in the previous table deloop. Harris [16] showed
that E¢/Fs ~s B(9,17) and E¢/F4 =, S° x S for p > 7, and in this paper we show that
E6/PSP(4) =p E¢/F4 X F4/Spll’l(9) fOI'p > 3.

Remark 5.10. Terzic’s computation of the rational homotopy groups ([37]) can be easily repro-
duced from these decompositions. We found minor mistakes in her calculations for G,/SO(4)
and E¢/SU(2) - SU(6). See also Remark 5.10 for classical cases.

6. LIMITATIONS AND EXTENSIONS OF THE METHODS

In this section we examine the boundaries of our methods and results. It is natural to ask
whether the loop space decompositions of symmetric spaces deloop, and whether the methods
can be extended to apply in cases that are not quasi-p-regular.

6.1. Impossibility of delooping. We gave decompositions for the loop spaces of symmetric
spaces. It is reasonable to ask whether they actually come from decompositions of symmet-
ric spaces themselves. Kumpel [27] and Mimura [30] showed that if the homotopy fibra-
tion H — G — G/H is totally non-cohomologous to zero then the symmetric space will
decompose, delooping our results. This holds for SU2n + 1)/SO(2n + 1), SU(2n)/Sp(n),
Spin(2n)/Spin(2n — 1) and E¢/F,. However, in general a delooping does not exist, as we now
see with the particular example of FI = F,/SU(2) - Sp(3).
We have shown that

QFI ~5 §3x S x QB(15,23).

However, this decomposition does not deloop, as we now show. The following calculation will
be needed.

Theorem 6.1 ([22]).

F,[ /4, f3]
H'(FI;F,)) = P .
(FEE) (ff = 12fafs + 8fi2, fafia = 313 fy — [
m]
In particular,
H*(FI, FS) — FS[ﬂa fé’ le]

(ff = 2fafs = 2f10 fafia = 313 S5 = fB)

We will show that this ring cannot be a non-trivial tensor product of two rings. From the
relations we obtain

3(f; = 2fafs — 2f12) = firo = 3f7 — fufs
fifio =3 = =2 k= f
£ = f
If a splitting exists, there should be a substitution
fir fufo afi +bfl, acF%beFs

such that the relation f; — 2f7fs — f7 lies in Fs[fs] U Fs[f;]. However, this is impossible.
Therefore there is no non-trivial product decomposition for FI localised at p = 5.
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6.2. Non-quasi-p-regular cases. We study examples of Lie group homomorphisms H N
G when H and/or G are not quasi-p-regular. In the first three examples, the methods from
Sections 2 to 4 hold and a homotopy decomposition of €2(G/H) is obtained, while in the final
two examples potential obstructions appear.

All the examples occur at the prime p = 7, and relate to the homotopy equivalences

E; ~; B(3,15,27) x B(11,23,35) x § ¥
Eg ~; B(3,15,27,39) x B(23,35,47,59)
established in [31].
1. EV = E;/(SU(8)/{+I}). Here, SU(8)/{+I} ~; SU(8) ~; B(3,15) x S>x §7 xS x S x §13.
We hope to apply Theorem 2.4. Consider the composite
¢: A3, 15 VS vSTVSIvSIIvSE — SU®) -5 E; — B(3,15,27)x B(11,23,35)x 5 °.

By [31], the homotopy groups of B(3,15,27) x B(11,23,35) x S are zero in dimensions
{5,7,9, 13}, so ¢ factors through a map ¢": A(3,15)v S — B(3,15,27)x B(11,23,35)x S .
As well, by [31] m,(B(11,23,35)) = 0 for ¢ € {3,15}, m;;(B(3,15,27)) = 0 and 7,(S'°) = 0
for t € {3,11,15}, so the map ¢’ is determined by the maps ¢}: A(3,15) — B(3,15,27)
and ¢} : S —s B(11,23,35). The 15-skeleton of B(3,15,27) is A(3,15) so ¢) factors as a
composite A(3, 15) AN A(3,15,27) — B(3,15,27) for some map g;. Similarly, ¢/ factors as a

composite S!'! 2, A(11,23,35) — B(11,23, 35) for some map g,. Hence there is a homotopy
commutative diagram

AG15) VS5V STV SOV Sy s 2o a3,15) v s £ 4(3,15,27) v A(11,23,35) v S 19

| |

SU(8) ? E;

where Q is the pinch map. Therefore, noting that M(S?'*!) ~ §2**! by Theorem 2.4 and
Corollary 2.5, the homotopy fibre of the map SU(8) 4N E; is homotopy equivalent to the
homotopy fibre of the composite

MAB,15) xS xS" xS x " xS® —— M(AB3,15)) x S

M(g1)xM(g2)
—_—

M(A(3,15,27)) x M(A(11,23,35)) x § ¥
where 7 is the projection.
In the Appendix it is shown that
Q¢": QH"(E7) — QH"(SU(8)/{xI})

is nontrivial for m € {3,11, 15}. Thus g} and g; are onto in mod-7 cohomology, implying that
M(g,)* and M(g,)* are onto in mod-7 cohomology. Therefore, arguing as in Proposition 4.5,
there is a homotopy equivalence

Q(E;/(SU®)/{£I}) =7 S°x ST xS xS x QS x QB(23,35) x QS .

2. EVI = E;/SU(2) - $in(12). Here, SU(2) - Spin(12) ~; SU(2) x Spin(12) ~; S* x B(3,15) x
B(7,19) x S x §'!. Arguing as in the previous case, we obtain maps g;: S* Vv A(3,15) —
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AB3,15,27), g,: S v S — A(11,23,35) and g3: A(7,19) — S '° and a homotopy commu-
tative diagram

81Vg2Ves

(S3VAQGB,15) v (ST vSsihvAT,19) A(3,15,27) v A(11,23,35) v S

| |

S3 x Spin(12) E;

As in Section 5.2.8, Q" is nonzero in degrees {3, 11, 15, 19}, so arguing as in the previous case
we obtain a homotopy equivalence

Q(E;/SU2) - Spin(12)) =7 S x Q¥ x S x QB(23,35) x §".

3. EVII=E;/T'-Eq. Here, T' - Es ~; T' Xx Eg ~; S! x B(3,15) x B(11,23) x §° x §"7.
Arguing as in the first case, we obtain maps g;: A3, 15) — A(3,15,27) and g,: A(11,23) —
A(11,23,35), and a homotopy commutative diagram

STV AB.15)VA(11.23) v SO v ST —2= A3,15) v A(11,23) 2752 A(3.15.27) v A(11,23.35) v S 19

| |

SIXE6 ? E7

where Q is the pinch map. As in Section 5.2.9, Q¢* is nonzero in degrees {3, 11, 15,23}, so
arguing as in the first case we obtain a homotopy equivalence

Q(E;/T' - Eg) 27 S'x QS x QS P x 57 xSV x Qs .

4. EVIII = Eg/S$(16). Here, Ss(16) ~;= Spin(16) ~; B(3,15,27) x B(7,19) x B(11,23) x S 1.
We hope to apply Theorem 2.4. Consider the composite

¢: A(3,15,27) vV A(7,19) v A(11,23) v §'° — Spin(16)

2 Ey —> B(3,15,27,39) x B(23,35,47,59).

By [31], the homotopy groups of B(3,15,27,39) x B(23,35,47,59) are zero in dimensions
{7,19} so ¢ factors through a map ¢': A(3,15,27) v A(11,23) v §°) — B(3,15,27,39) x
B(23,35,47,59). By [31], n(B(23,35,47,59) = 0 for t € {3, 15,27} and m,(B(3, 15,27,35) =0
for ¢t € {11,23}, so the map ¢’ is determined by maps ¢/ : A(3,15,27)v S — B(3,15,27,39)
and ¢,: A(11,23) — B(23,35,47,59). Notice that the 27-skeleton of B(3,15,27,39) is
A(3,15,27) U €', and 727(S'®) = Z/7Z. Thus there is a potential obstruction to lifting ¢/
toamap A(3,15,27) v S 5 5 A(3,15,27,39). It is unclear whether the obstruction vanishes.
If not, then Theorem 2.4 cannot be applied and the homotopy type of Q(Eg/Ss(16)) at p = 7
would remain undetermined.

5. EVIX =Eg/SU(2) - E;. As in the previous example, we obtain an obstruction to lifting
¢ S3V A®3,15,27) — B(3,15,27,39) to A(3, 15,27,39), which leaves unresolved the ho-
motopy type of Q(Es/SU2)- E;)atp =17.
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Remark 6.2. An important difference between the three E; examples that worked and the
two Eg examples that did not is that the domain in the three E; examples were all quasi-p-
regular while this was not the case in the Eg examples.

7. EXPONENTS

Recall that, for a prime p, the p-primary homotopy exponent of a space X is the least power
of p that annihilates the p-torsion in 7.(X). If the p-primary exponent is p”, write exp,(X) = p".
The homotopy decompositions of Q(G/H) allow us to find precise exponents or upper and lower
bounds on the exponent of G/H.

Observe that in every homotopy decomposition of (G/H) in Theorems 5.4 and 5.8, the
factors are either spheres, sphere bundles over spheres, or the loops on either of these two.
Exponent information about these spaces is known. A precise exponent for spheres was de-
termined in [10], and exponent bounds for spaces of the form B(2m — 1,2m + 2p — 3) was
determined in [13].

Theorem 7.1 ([10]). Let p > 5. Then exp,(S*"*") = p". O

Theorem 7.2 ([13]). Let p > 5. Then exp,(B(3,2p + 1)) = pP*!and for m > 2,

P <exp,(BQ2m — 1,2m +2p — 3)) < p™P7.

Suppose that X is a product of spheres and spaces B(2i—1, 2i+2p—3) for various i. Rationally,
X is homotopy equivalent to a product of odd dimensional spheres, say X ~g 15, 82"+, The
type of X is the list {m,...,m,} where - relabelling if necessary - we may assume that m; <
-+ < my. Theorems 7.1 and 7.2 immediately imply that the exponent of X depends only on the
exponent of the factors of X containing a generator in cohomology of degree 2m, + 1. Explicitly,
exp,(X) = p™ if each factor of X containing a generator in cohomology of degree 2m, + 1 is
a sphere, and p™ < exp,(X) < p"etlif at least one factor of X containing a generator in
cohomology of degree 2m,+1 is B(2m,—2p+3,2m,+1). In our case, observe that the homotopy
decompostions for Q(G/H) in the classical cases listed in Theorem 5.4 imply that the factor
containing a generator in cohomology of maximal degree is of the form B(2i — 1,2i + 2p — 3)
only for SU2n + 1)/SO2n + 1), SU(2n)/SO(2n) and SU(2n)/Sp(n) when n = p — 1. Thus we
have the following.
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Theorem 7.3. For p > 5, there are exponent bounds:

Type G/H p=5 Exponent
<p4n+2 ifp—l—l/l
Al SUR2n+1)/SO2n + 1) p>n P i p— 1>
<p"mifp-1=n
SUQ2n)/SO(2n) p>n _ p4”‘1 ifp—1>n
p"ifp—1=n
All SU(2n)/Sp(n) p>n { P i p—1>n
U(n) f _
Alll 2 = p¥-!
U > Ul —m) p>nl P
BDI SOQ2n+1) p>n _ pin!
SO2m) x SOR(n—m) + 1)
SO0Q2n + 1) ¢ a1
p>n =D
SO2m - 1)x SO2(n —m) + 2)
SOQ2n +2) e
p>n =P
SO2m+ 1) x SO2(n — m) + 1)
SO(2n +2) An—1
p>n—1 =p™
SOQ2m) X SORn —m) +2)
CI Sp(n)/U(n) p>n =p™!
Sp(n) ' et
ClI _ n
Sp(m) X Sp(n —m) p-r P
DIII SOR2n)/U(n) p>n—1 = p¥=3

e for T, we assume 2m < n
e for i, weassume2m <n + 1

Theorems 7.1 and 7.2 also imply the exponent bounds listed in Theorem 5.8.

APPENDIX

For p > 5, we show that
Qi : QH"(E;F,) — QH™(SU(8)/C:F,)
is non-trivial for m € {3, 11, 15}, where C = {+I}. To see this we show that
Qi" : QH"(BE;F,) » QH"(B(SU(8)/C;F)))

is non-trivial for m € {4, 12, 16} via the Weyl group invariant subrings.
The extended Dynkin-Coxeter diagram for E7 is as follows:

- Qi as ay A (073 az

O O

@
We adopt a basis #;’s satisfying
(h+--+1)—(s+---+13)

=t —bh, ¥ =hB—bh, @y = 7 , @ =l —;(3<i<T).




MOD p DECOMPOSITIONS OF THE LOOP SPACES OF COMPACT SYMMETRIC SPACES 29

The Weyl group W(A,) for SU(8)/C is generated by the reflection corresponding to a; (i # 2)
and @, and
H*(B(SU(8)/C);F,) = H*(BT;F,)"“ =F,[cs,..., e,
where c; is the i-th elementary symmetric polynomial in ¢;’s. Let p be the reflection corre-
sponding to a,. We check that algebra generators in degrees 4, 12, and 16 contain c¢,, c¢ and cg,
respectively, in
H*(BE;;F,) = H'(BT;F,)"*” = F ¢, ..., 5]’

Let a; and b, be the i-th elementary symmetric polynomials in t,,...,#; and ts, . . . , g, respec-
tively. Notice that @, = IS8 = g and ¢; = 3, j44e; by

Denote % by 7, for short. Since p(t;) = t;, — 7t fori < 4 and p(t;) = t; + T for i > 4, we can
compute p(a;) and p(b;) easily, and this yields the following:

p(c2) = c2,
p(c3) = c3 + 2(ax — by)r,
p(cs) = ¢4 + 3(az — b3)T — 3(ar + by)r* mod (9),
p(cs) = s + 4(as — by)T — 2(az + b3)T> mod (1),
p(ce) = c6 + (azby — ab3)T — 2a,b,7* — 2(asz — b3)T3 mod (T4),
p(cg) = cg+(ashbs—azby)t+(asbr+arbs—azb3)t>—(azb,—a,b3)™ mod (7).
We then conclude a generator x; in degree i satisfies the following by computing modulo (72):
X4 = C2,

— 1 1.2
X12 = €6 — ¢C2C4 + 303 mod (Cll),

_ 1 1 1.2
X16 = g — 7€2C6 — gC3C5 + 15¢4, mod (ay).
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