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This paper employs the theoretical framework developed by Luhar et al. (J. Fluid Mech.,
768, 415-441) to consider the design of compliant walls for turbulent skin friction reduction.
Specifically, the effects of simple spring-damper walls are contrasted with the effects of more
complex walls incorporating tension, stiffness and anisotropy. In addition, varying mass ratios
are tested to provide insight into differences between aerodynamic and hydrodynamic appli-
cations. Despite the differing physical responses, all the walls tested exhibit some important
common features. First, the effect of the walls (positive or negative) is greatest at condi-
tions close to resonance, with sharp transitions in performance across the resonant frequency
or phase speed. Second, compliant walls are predicted to have a more pronounced effect on
slower-moving structures because such structures generally have larger wall-pressure signa-
tures. Third, two-dimensional (spanwise constant) structures are particularly susceptible to
further amplification. These features are consistent with many previous experiments and sim-
ulations, suggesting that mitigating the rise of such two-dimensional structures is essential to
designing performance-improving walls. For instance, it is shown that further amplification of
such large-scale two-dimensional structures explains why the optimal anisotropic walls iden-
tified by Fukagata et al. via DNS (J. Turb., 9, 1-17) only led to drag reduction in very small
domains. The above observations are used to develop design and methodology guidelines for
future research on compliant walls.
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1. Introduction

The design of compliant surfaces for turbulent skin friction reduction has attracted
significant attention since the early experiments of Kramer [1]. However, despite
many experimental [e.g. 2–6] and numerical [e.g. 7–10] efforts, there are few defini-
tive results. Broadly, the direct numerical simulations (DNS) and experiments both
show that softer surfaces often give rise to energetic two-dimensional (i.e. spanwise
constant) wave-like motions, which can cause a substantial increase in skin friction.
Harder surfaces appear to have little impact on the flow, although some qualita-
tive flow visualization experiments hint at an intermittent relaminarization-like
phenomenon [4].

One of the major challenges associated with developing performance-enhancing
surfaces is the extent of the parameter space to be explored. Even the simplest
spring-damper walls considered in DNS depend on three independent parameters:
a mass ratio, a spring constant and a scholasdamping coefficient. The viscoelastic
layers tested frequently in experiments [3, 4] depend on at least five different pa-
rameters: two elastic constants which determine the shear- and longitudinal wave
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speeds, the mass density, a viscous relaxation time, and the layer thickness. In-
dependent evaluation and optimization of these parameters in experiments would
be very time-consuming and expensive, while current computational capabilities
limit DNS-based compliant wall design to low Reynolds numbers or small domain
sizes. The limitations of DNS-based design of compliant walls are well illustrated
by the evolutionary optimization of anisotropic compliant walls pursued by Fuka-
gata et al. [9]. Specifically, these simulations showed that the best walls obtained in
channel flow DNS over a small domain of length 3h (h is the channel half-height),
led to a near-200% increase in drag when the domain length was doubled to 6h.
Further, these DNS were limited to low Reynolds numbers. The bulk Reynolds
number was ReB = 2UBh/ν = 3300, where UB is the bulk-averaged flow speed
and ν is kinematic viscosity.

The impracticality of experimental or numerical approaches in designing
performance-enhancing walls indicates the need for a computationally inexpen-
sive theoretical framework to study turbulence-compliant wall interactions. In an
effort to address this need, Luhar et al. [11] recently extended the resolvent for-
mulation proposed by McKeon and Sharma [12]. Under this formulation, the tur-
bulent flow field is expressed as a superposition of propagating velocity response
modes, identified via a gain-based decomposition of the Navier-Stokes equations
(NSE). Compliant surfaces are introduced via changes in the kinematic and dy-
namic boundary conditions. In particular, a complex wall admittance is used to
define the relationship between the pressure and wall-normal velocity at the wall.
This change in the boundary conditions leads to a change in the gain and structure
of the modes, whereby a reduction in gain is interpreted as mode suppression.

Luhar et al. [11] show that this approach predicts the amplification of the quasi
two-dimensional structures observed recently in DNS [10] with minimal computa-
tion. Further, the formulation also enables an optimization of surface properties
(i.e. wall admittance) to suppress flow structures known to be energetic in wall tur-
bulence. This material-blind optimization suggests that walls with negative damp-
ing are required to suppress the near-wall (NW) cycle, identified by various re-
searchers as essential to controlling wall turbulence [e.g. 2]. However, walls with
positive damping could be effective against the so-called superstructures or very-
large-scale motions (VLSMs) that appear at high Reynolds number. Unfortunately,
Luhar et al. [11] show that the optimal walls identified via this procedure also have
negative effects elsewhere in spectral space, with slow-moving spanwise-constant
structures particularly susceptible to further amplification.

The purpose of the present paper is to build on the above findings and evaluate
the effect of varying wall models in greater detail, looking closely at the sensi-
tivity to two-dimensional structures. While Luhar et al. [11] focused primarily on
a spring-damper wall, this paper introduces the effects of tension, stiffness and
anisotropy, and considers the effects of varying mass ratios to contrast aerody-
namic and hydrodynamic applications. In addition, Reynolds number effects are
explored briefly, and the framework is used to provide further insight into results
from the aforementioned DNS-based optimization of anisotropic compliant walls
pursued by Fukagata et al. [9], hereafter referred to as F2008.

One of the limitations of the resolvent formulation in its present form is the
requirement of a mean velocity profile in the construction of the resolvent operator.
As such, the smooth and compliant wall mean velocity profiles from F2008 are also
used to evaluate the sensitivity of the resolvent-based predictions to the specific
form of the mean profile.
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2. Theory

This section provides a brief review of the resolvent formulation proposed by McK-
eon and Sharma [12], the extension to account for the effects of compliant walls
developed by Luhar et al. [11], and the wall model employed in DNS by F2008 [9].

2.1. Resolvent Formulation

The resolvent formulation proposed by McKeon and Sharma [12] considers the
full turbulent velocity field, u, to be a superposition of highly amplified veloc-
ity structures, or modes, identified via a gain-based decomposition of the Fourier-
transformed Navier-Stokes equations (NSE). For each wavenumber-frequency com-
bination k = (κx, κz, c = ω/κx), where κx and κz are the streamwise and spanwise
wavenumbers, ω is the frequency and c is the phase speed, the NSE are interpreted
as a forcing-response system1:[

uk

pk

]
=

(
−iω

[
I

0

]
−
[
Lk −∇k

∇Tk 0

])−1 [
I
0

]
fk = Hkfk (1)

The nonlinear terms are interpreted as the forcing to the system, (u · ∇u)k =
fk(y) exp i(κxx+ κzz − ωt), and the resolvent operator, Hk, maps this forcing to
the velocity and pressure responses, e.g. ûk = uk(y) exp i(κxx+ κzz − ωt). Here,
x, y and z are the streamwise, wall-normal and spanwise coordinates, respectively,
and t is time. A subscript k denotes an individual Fourier component. In Eq. 1,
∇k and ∇Tk represent the Fourier-transformed gradient and divergence operators,
and Lk is the linearized Navier-Stokes operator:

Lk =

−iκxU + Re−1
τ ∇2

k −∂U/∂y 0
0 −iκxU + Re−1

τ ∇2
k 0

0 0 −iκxU + Re−1
τ ∇2

k

 , (2)

where U(y) is the mean velocity profile and Reτ = uτh/ν is the friction Reynolds
number. The variables uτ , h, and ν represent the friction velocity, channel half-
height, and kinematic viscosity, respectively. ∇2

k = [−κ2
x + ∂2/∂y2 − κ2

z] is the
Fourier-transformed Laplacian.

A singular value decomposition (SVD) of the discretized resolvent operatorHk =∑
m ψm(y)σmφ

∗
m(y) yields a set of orthonormal forcing (φm) and response (ψm)

modes, ordered based on the input-output gain (σ1 > σ2 > σm > ...). Forcing in
the direction of the mth forcing mode with unit amplitude results in a response
in the direction of the mth response mode amplified by factor σm. Thus, forcing
fk(y) = φ1(y) creates a response [uk(y), pk(y)]T = σ1ψ1(y). Note that the resolvent
operator is scaled prior to performing the SVD to enforce an L2 norm for the
velocity, uk, and forcing, fk [11].

In general, for k combinations energetic in natural turbulence, the resolvent op-
erator tends to be low rank [12, 13]. A limited number of input directions are highly
amplified, often with σ1 � σ2, and so the velocity and pressure fields can be rea-
sonably approximated by the first response mode [uk(y), pk(y)]T ∼ ψ1(y). Recent
studies show that this rank-1 approximation captures many of the key features of
wall-bounded turbulent flows, including the emergence of coherent structures and
their footprint in the wall pressure field [14, 15]. Further, the rank-1 modes also

1This paper focuses on turbulent channel flows but the approach can be generalized to pipe and boundary
layer flows as well.
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form useful building blocks for low-order models of flow control [16]. As a result,
the rest of this paper only considers the first singular values and modes, dropping
the subscript 1 for convenience. Extending the analysis to consider further singular
values and modes is straightforward.

As discussed below, the effect of the compliant wall is introduced in this frame-
work via the boundary conditions for the velocity and pressure fields. This change
in the boundary conditions modifies the mode structure and singular value relative
to the rigid wall case. A reduction in σ is interpreted as mode suppression, which is
deemed beneficial for control purposes. Keep in mind that this approach essentially
focuses on how the compliant wall modifies the linear amplification mechanisms
in the flow. The effect of the compliant walls on nonlinear interactions between
modes, and the forcing generated due to these nonlinear interactions, is neglected.

The discretized resolvent operator in Eq. 1 is constructed using a spectral colloca-
tion method on Chebyshev points. The differentiation matrices are computed using
the MATLAB differentiation matrix suite developed by Weideman and Reddy [17].
The SVD of the resolvent operator generally yields pairs of structurally similar re-
sponse modes with near-identical singular values but differing symmetry along the
channel centerline [13]. To avoid any confusion arising from this mode pairing and
to make the computation more efficient, the grid is restricted to N points in the
lower half-channel, with user-specified mode symmetry across the centerline, y = 1
(y is normalized by the channel half-height h). The specific grid resolution required
for convergence tends to be Reynolds number and wave speed dependent. For the
results presented in this paper, we employ N = 100 at Reτ = 2000 and N = 200
at Reτ = 2 × 104. In both cases, the singular values had converged to O(10−4).
For greater details on numerical implementation and convergence, the reader is
referred to [11]. As a rough estimate of computational expense, construction of the
resolvent operator and computing the SVD takes approximately 0.1s on a single
core of a laptop for each wavenumber frequency combination at N = 100 and 0.5s
at N = 200.

Note that construction of the linear operator Lk in Eq. 2, and hence Hk, requires
knowledge of the mean velocity profile U(y). The exact form of this mean profile
is important since high amplification in the resolvent framework results from two
mechanisms: (i) localization of the modes around the critical layer, yc, where the
mode speed matches the mean velocity U(yc) = c, and (ii) energy transfer from the
mean flow to the turbulence via the so-called lift-up mechanism, which depends
on the interaction between mean shear and wall-normal velocity, ∝ vk(∂U/∂y)
[12, 14, 18]. For the modeling and optimization efforts described in §2.2-2.3, the
mean velocity profile is generated using a well-known turbulent eddy viscosity
model for smooth-walled flows [19]. However, when comparing model predictions
with simulation results from F2008 in §2.4, the mean velocity profiles from DNS
are used. Use of the DNS mean profiles enables a posteriori analysis of model
sensitivity to the assumed U(y). In other words, we evaluate how the predicted
mode amplification changes when using the mean velocity profiles from compliant
wall DNS relative to the smooth wall DNS.

2.2. Boundary Conditions

The effect of the compliant wall is introduced by changing the boundary conditions
on velocity and pressure within the resolvent (Eq. 1) before computing the SVD. For
wall displacement η(x, z, t) constrained to be in the wall-normal (ey) direction, the
kinematic boundary conditions at the wall, u(y = η) = (∂η/∂t)ey, can be expressed
as the following Fourier-transformed, linearized Taylor series expansions:
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uk(η) ≈ uk(0) + ηk
∂U

∂y

∣∣∣
0
+

∑
k=ka−kb

HHH
HHH

ηka
∂u∗kb
∂y

∣∣∣
0

+ ... = 0, (3)

vk(η) ≈ vk(0)+
∑

k=ka−kb

HHH
HH

ηka
∂v∗kb
∂y

∣∣∣
0

+ ... = −iωηk, (4)

wk(η) ≈ wk(0)+
∑

k=ka−kb

HH
HHHH

ηka
∂w∗kb
∂y

∣∣∣
0

+ ... = 0, (5)

where ηk represents the Fourier coefficient for the wall displacement at
wavenumber-frequency combination k = (κx, κx, ω). The neglected quadratic terms
are shown for reference.

The use of these linearized kinematic boundary conditions is one of the key lim-
itations of the present approach since the neglected higher-order terms in Eq. 3-
5 can become important for large wall deflection. However, retaining terms of
quadratic or higher order in the fluctuations would require a coupled nonlinear
model allowing for interactions between resolvent modes across all wavenumber-
frequency combinations that can interact and force the Fourier mode of interest
[11, 20], which is outside of the scope of the current effort. Similarly, note that the
nonlinear terms arising from the Fourier mode being considered would appear in
the boundary conditions for higher harmonics. For instance, the quadratic terms
(1/2)η2

k(∂2U/∂y2)y=0 + ηk(∂uk/∂y)y=0 would appear in the kinematic boundary
condition for the streamwise velocity of the mode with wavenumber-frequency com-
bination (2κx, 2κz, 2ω). It can be shown that the magnitude of the first term in
the above expression only becomes important relative to the retained linear term,
ηk(∂U/∂y)y=0, when the wall deformation is O(1). However, the magnitude of
the second term can be significant for energetic modes with near-wall gradients,
(∂uk/∂y)y=0, comparable to the mean velocity gradient, (∂U/∂y)y=0. Thus, while
these terms do not directly influence the Fourier mode being considered, they can
be important elsewhere in spectral space. Also keep in mind that the linearized
boundary conditions require an estimate of the mean shear at the wall (Eq. 3),
which is assumed to correspond to the prescribed, smooth wall mean velocity pro-
file. This assumption breaks down if the compliant wall significantly alters the
near-wall mean flow.

The dynamic boundary condition at the wall is expressed as a mechanical ad-
mittance, Y , linking wall-normal velocity and pressure:

vk(0) = Y pk(0). (6)

Y dictates the relative phase and amplitude of the wall-normal velocity and the
pressure at the wall. As such, it can be used to represent walls of known mate-
rial properties. For example, the most commonly used model for compliant walls
involves a tensioned plate supported on a bed of springs and dampers. For such
walls, the admittance can be expressed as [8]:

Y =
iω

−Cmω2 − iωCd + Cke
(7)

where Cm and Cd are the dimensionless mass ratio and damping coefficient, and

Cke = Ck + Ctk
2 + Csk

4 (8)
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Table 1. Different walls optimized to suppress resolvent modes resembling VLSMs at Reτ = 2000. The damping

coefficient is Cd = 0.4688 in all cases.

Case Cm Ck Cs Ct
base 2 510.4 0 0
low Cm 0.2 49.59 0 0
high Cm 20 5118 0 0
tension 2 0 0 5.053
stiffness 2 0 0.0500 0
anisotropy 2 0 0 Ctx = 288

Ctz = 2.224

is a wavenumber-dependent effective spring constant, with k2 = (κ2
x + κ2

z). The
parameters Ck, Ct and Cs represent the dimensionless spring constant, tension
and flexural rigidity. All of the above parameters are normalized based on the
channel half-height h, friction velocity uτ and fluid density ρ.

2.3. Optimal Walls

In addition to evaluating the effects of the wall parameters individually, the resol-
vent framework can also be used to solve the inverse problem: finding an optimal Y
that leads to the most favorable effect on the turbulent flow structures of interest.
Luhar et al. [11] pursued this optimization for modes resembling the NW-cycle and
VLSMs at friction Reynolds number Reτ = uτh/ν = 2000. The NW-cycle was rep-
resented by the wavenumber-frequency combination k = (κx, κz, c

+) = (12, 120, 10)
and the VLSMs were represented by k = (1, 10, 16). These wavenumbers trans-
late into structures of streamwise and spanwise wavelength (λ+

x , λ
+
z ) ≈ (1050, 105)

and (λ+
x , λ

+
z ) ≈ (12500, 1250), respectively. Optimality was defined in two differ-

ent ways: walls that lead to the greatest mode suppression (i.e. lowest σk) or the
largest reduction in the channel-integrated Reynolds stress contribution from the
mode [per 21]. Throughout this paper, a superscript + denotes normalization with
respect to uτ and ν.

For brevity, this paper focuses primarily on the optimal gain-reducing wall for
modes resembling the VLSMs at Reτ = 2000. A simple pattern search procedure
shows that a wall with admittance Y = −2.0385 − 0.4387i leads to the greatest
reduction in singular value for such modes, with the ratio of compliant to rigid-
wall (null-case) singular values being σkc/σk0 = 0.52. Note that this optimization
is blind to the physical properties of the compliant walls. Designing a wall with the
appropriate admittance would then become an engineering problem (or perhaps
one for material scientists). For walls characterized by Eq. 7-8, this optimal admit-
tance can be realized through any combination of springs, tension and stiffness.
To evaluate how these factors affect performance, particularly with respect to the
excitation of spanwise-constant modes, we test the different walls listed in Table 1,
each of which has admittance Y = −2.0385− 0.4387i for k = (1, 10, 16).

The base case is the wall evaluated by Luhar et al. [11], which represents a simple
spring-damper system such that Cke = Ck and Cm = 2. The high and low mass
ratio cases (Cm = 20 and Cm = 0.2, respectively) are similar but require different
spring constants to counteract the changes in Cm. The next two cases in Table 1
remove the spring support but introduce the effects of tension and stiffness, such
that Cke = Ct(κ

2
x + κ2

z) and Cke = Cs(κ
4
x + 2κ2

xκ
2
z + κ4

z), respectively. The last
case introduces the effects of anisotropy through differing streamwise and spanwise
tension, such that Cke = Ctxκ

2
x +Ctzκ

2
z. Despite the physical differences, all of the

walls are resonant just below the mode frequency ω = 16 for κx = 1 and κz = 10.
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Specifically, the resonant frequency is ωr = ωn
√

1− 2ζ2 = 15.97, where ωn =√
Cke/Cm is the undamped natural frequency of the wall and ζ = Cd/(2

√
CkeCm)

is the damping factor.
One of the key advantages of the resolvent formulation is that it can be extended

to higher Reynolds numbers with limited computational penalty. Therefore, to test
for Reynolds number effects, we also consider compliant walls optimized for VLSM-
type modes at Reτ = 2× 104, which we assume are characterized by wavenumber-
frequency combination k = (κx, κz, c

+) = (1, 10, 19) [22]. For these modes, the
pattern search algorithm suggests that walls with admittance Y = −0.418 + 0.099i
lead to the greatest reduction in singular value, with σkc/σk0 = 0.30. For a spring-
damper wall with mass ratio Cm = 2, this optimal admittance translates into stiff-
ness Ck(= Cke) = 732 and damping Cd = 2.26. The mean velocity profile for this
high Reynolds number case is again obtained using an eddy viscosity formulation
[19], while the grid resolution is increased to N = 200 points for convergence.

2.4. DNS-based Wall Optimization by Fukagata et al. 2008

The anisotropic wall model employed by F2008 was introduced by Carpenter and
Morris [23] to mimic earlier experiments performed by Grosskreutz [24]. As shown
in Fig. 1, this wall involves an elastic plate that rests on spring-supported links
that rotate about an equilibrium angle of θ ≤ π/2 relative to the horizontal plane.
Similar to Eq. 3-8, the boundary conditions for this wall can be expressed in terms
of a single displacement variable ηk, which is defined as the displacement of the tip
of the rigid link in this case. Specifically, the kinematic boundary conditions are:

uk(0) = −iωηk sin θ; vk(0) = −iωηk cos θ; wk(0) = 0, (9)

while the dynamic boundary condition can be expressed as:

[
−ρmbω2 − iωCd +

{
Eb3

12(1− ν2
p)
k4 cos2 θ + Ebk2 sin2 θ + Ck

}]
ηk = gk, (10)

where ρm, b, E, νp are the dimensionless plate density, thickness, elastic modulus,
and Poisson’s ratio, respectively. The forcing function on the right-hand side, gk,
is defined in Eq. 12 below. As before, k2 = (κ2

x+κ2
z), Cd is the damping coefficient,

and Ck is the spring stiffness. The quantity inside the curly brackets in Eq. 10 can
once again be considered a wavenumber-dependent effective stiffness:

Cke =
Eb3

12(1− ν2
p)
k4 cos2 θ + Ebk2 sin2 θ + Ck, (11)

leading to an undamped natural frequency of ωn =
√
Cke/(ρmb).

Note that, unlike the compliant wall model discussed in §2.2, here all variables
are normalized using twice the bulk-averaged velocity, 2UB. As a result, the bulk-
averaged Reynolds number ReB = 2UBh/ν = 3300, which was kept constant in the
DNS, replaces the friction Reynolds number in the linear operator (Eq. 2). This
bulk-averaged Reynolds number corresponds to Reτ ≈ 110 (UB ≈ 15uτ ) for the
smooth-wall case. The wall is forced by a combination of pressure and turbulent
stresses, such that the forcing function on the right-hand side of Eq. 10 is
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Figure 1. Anisotropic compliant wall model employed in F2008 (image reproduced from [9]).

Table 2. Properties of one optimal wall (case A1) identified in F2008 [9]. The wall thickness and Poisson’ ratio

were fixed at b = 0.01 and νp = 0.5, respectively. Values in the brackets below denote the initial ranges specified

for the optimization.

ρm E Ck Cd θ [deg.]
1.23 3.00× 10−3 4.25× 10−5 2.21× 10−5 62.7

[0.1, 10] 7.2× 10[−4,2] 1.1× 10[−5,−2] 1.0× 10[−4,−2] [30, 90]

gk =

[(
−pk +

2

ReB

∂vk
∂y

)
cos θ +

1

ReB

(
∂uk
∂y

+ iκxvk

)
sin θ

]
y=0

. (12)

Another important feature of this anisotropic wall model is the kinematic con-
straint imposed by the rotating link, which ensures that uk and vk are in phase at
the wall (see Fig. 1 and Eq. 9 above; [9]). As a result, the mean turbulent Reynolds
stress, −re(0.5u∗kvk), where re() denotes the real component and ()∗ denotes a com-
plex conjugate, is always negative at the wall. Per the Fukagata-Iwamoto-Kasagi
identity [21], this reduction in the Reynolds shear stress is expected to decrease
momentum transfer towards the wall, leading to a reduction in skin friction.

The DNS-based evolutionary optimization of wall parameters pursued by F2008
in a small domain of length and width 3h suggested that compliant walls with the
properties listed in Table 2 were optimal1, leading to a reduction in drag of 8.3%
(case A1 in F2008). However, the same wall led to a near 200% increase in drag in
a domain of length 6h. This increase in drag was accompanied by the emergence of
energetic two-dimensional wavelike structures at the wall that spanned the length
of the domain (i.e. modes with κz = 0 and κx = 2π/6), and substantial changes in
the mean velocity profile (see Fig. 6a). While domain-spanning wavelike motions
were also observed in the small domain simulations, there was a near 100% increase
in the root-mean-square (rms) wall displacement in the large domain DNS.

In §3.5 below, it is shown that the resolvent framework is able to anticipate
some of this deterioration in performance. Specifically, the framework predicts that
two-dimensional modes with wave numbers smaller than κx = 2π/3 (wavelengths
greater than 3h) are susceptible to significant further amplification over compliant
walls with the properties listed in Table 2.

1Per F2008, the search algorithm had not converged but the available computational time had been
exhausted.
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(a) (b) (c)

Figure 2. Shaded contours showing the ratio of compliant wall to null-case singular values, σkc/σk0,
for the low Cm (a), base case (b), and high Cm (c) walls listed in Table 1. Blue regions denote mode
suppression while red regions indicate further amplification. The solid black lines indicate the resonant
frequency. The dashed lines represent isocontours of the magnitude of the admittance |Y | at level 0.01. All
results correspond to κz = 10.

3. Results

3.1. Effect of Mass Ratio

One of the key differences between aerodynamic and hydrodynamic flows over com-
pliant walls is the mass ratio, which is determined by the ratio of the solid density
to the fluid density. While Cm ∼ O(1) is appropriate for hydrodynamic applica-
tions, it is expected that Cm ∼ O(103) for aerodynamic applications. A high mass
ratio translates into a much smaller wall response to fluid pressure perturbations
away from resonance, which in turn means that the wall does not significantly in-
fluence the flow structures. This is illustrated by the low Cm, base case, and high
Cm results shown in Fig. 2. The spectral region over which the compliant wall has
a strong influence on the singular values (positive or negative) shrinks significantly
as the mass ratio is increased from Cm = 0.2 (Fig. 2a) to Cm = 20 (Fig. 2c). As an
example, for κx = 10 the Cm = 0.2 wall affects modes with speeds up to c+ ≈ 13,
while the Cm = 20 wall only affects modes with speeds up to c+ ≈ 3. Note that
the region of influence in all cases is centered approximately around the resonant
frequency (bold black line), where the magnitude of the admittance |Y | peaks.

In general, the compliant walls seem to have a positive influence (suppression)
on modes with frequencies higher than the resonant frequency (i.e. above the solid
black line) and a negative effect on modes with lower frequencies. Although, this
reverses for modes with κx < 1 and c+ > 15 for the low Cm wall (Fig. 2a).
These transitions in performance may be attributed to two factors: (i) changes in
the phase relationship between the pressure and velocity fields as the mode speed
increases (i.e. as the modes move further away from the wall), and (ii) the phase
shift in the wall response, ∠Y , across the resonant frequency.

Also shown in Fig. 2 are isocontours of the magnitude of the wall admittance
|Y | at level 0.01 (dashed lines). A comparison of Fig. 2a-c shows that the region
enclosed by these isocontours reduces rapidly with increasing mass ratio. More
quantitatively, the half-power bandwidth of a spring-damper system is expected
to scale as ζωn ∼ C−1

m for ζ � 1 [25]. So the ten-fold increase in the mass-ratio
translates into a roughly ten-fold decrease in the frequency bandwidth of the wall.
This bandwidth would decrease even further for Cm ∼ O(103), suggesting that
compliant walls are unlikely to be practical for aerodynamic applications requiring
broadband turbulence suppression without the development of novel lightweight
materials. On the other hand, the narrow bandwidth at high Cm could enable more
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(a) (b) (c)

(d) (e) (f)

Figure 3. Shaded contours showing the singular value ratio σkc/σk0 as a function of streamwise wavenum-
ber and mode speed. Blue regions denote mode suppression and red regions denote amplification. Plots
(a,d), (b,e) and (d,f) represent the base case, tensioned wall and stiff wall listed in Table 1, respectively.
The dashed contours indicate the magnitude of the singular values σkc over the compliant walls. The solid
lines show the resonant frequency.

effective targeting of specific wavenumber-frequency combinations (i.e. to suppress
or enhance individual velocity response modes).

Note that the decrease in the spectral influence of the compliant wall is roughly
consistent with the decrease in the wall bandwidth. However, there are regions
where the wall influences the flow despite low |Y | (e.g. for very slow modes with
c+ < 1) and where the wall does not have an appreciable effect even at resonance
(e.g. for faster modes with c+ > 18). This is because the influence of the wall is
determined both by the admittance as well as the magnitude of the wall-pressure
fluctuations. In general, the magnitude of the wall pressure fields associated with
the modes decreases with increasing mode speed c+ [i.e. as the modes move fur-
ther away from the wall, see 15], and so slower modes are likely to interact with
compliant walls to a larger extent.

Keep in mind that, even over compliant surfaces, there is unlikely to be significant
turbulent activity very close to the wall. As such, paying close attention to response
modes with c+ < 4 (i.e. corresponding to the viscous sublayer under Taylor’s hy-
pothesis) has limited utility except in cases with very high amplification resulting
from resonance. Other important exceptions to this rule are the slow moving two-
dimensional structures observed in previous experiments and DNS [3, 9, 10, 26],
which are discussed in greater detail below.



April 20, 2016 Journal of Turbulence 2016-Luhar-Compliant

Journal of Turbulence 11

3.2. Comparing Springs, Tension and Stiffness

Next we compare the effects of a compliant wall on a spring support with a ten-
sioned membrane and a stiff plate. For the simple spring-damper system, the fluid-
structure interactions are dependent solely on frequency. Moreover, the wall does
not communicate in the streamwise and spanwise directions, which means that
it cannot support wave propagation. In contrast, tensioned membranes and stiff
plates have a wavenumber-dependent effective spring constant (Eq. 8) and can
support wave propagation. This means that the three different walls have varying
effects across spectral space, despite being optimized to suppress the VLSM-type
modes.

The above effects are best understood in terms of the resonant frequency ωr. Like
the results shown in the previous section, for κz = 10, modes with frequencies below
the resonant frequency are further amplified by the compliant walls while modes
with higher frequencies are generally suppressed (Fig. 3a-c). However, the resonant
frequency (solid black lines) varies substantially across the three different cases. For
the basic spring-damper wall, the resonant frequency is constant, and so the effect
of the wall is centered around modes with c+κx = ωr, or c+ ∼ κ−1

x (Fig. 3a). For
the tensioned membrane and stiff plate, the response is centered around a similarly
decreasing function c+ = f(κx) for κx � κz(= 10) (Fig. 3b,c). This is because the
effective spring constant is dominated by the spanwise wavenumber dependence
for κx � κz, leading to essentially constant Cke ≈ Ctκ

2
z ≈ 505 and Cke ≈ Csκ

4
z ≈

500 for the results shown in Fig. 3b,c. However, as κx � κz, the effective spring
constant for the walls is dominated by the streamwise dependencies Cke ≈ Ctκ

2
x

and Cke ≈ Csκ
4
x, which translates into resonant frequencies ωr ≈ κx

√
Ct/Cm and

ωr ≈ κ2
x

√
Cs/Cm. This means that the maximum admittance is found at near-

constant c+ ≈
√
Ct/Cm = 1.59 for the tensioned membrane (Fig. 3b) and is an

increasing function c+ = f(κx) for the stiff plate (Fig. 3c).
Figures 3d-f show that all three walls also lead to significant amplification of

certain classes of two-dimensional (κz = 0) structures, which is consistent with
previous experiments and DNS. Interestingly, all three cases exhibit a repeating
amplification-suppression pattern across spectral space. As an example, for fixed
phase speed c+ ≈ 10, long structures with streamwise wavelength κx < 1 are
further amplified, while shorter modes with κx > 2 are suppressed over the compli-
ant walls. The wavenumber at which this amplification-suppression transition oc-
curs generally decreases with increasing c+ and there is an additional suppression-
amplification transition at higher speeds (see e.g. c+ ≈ 16 in Fig. 3d-f), although
wall resonance also plays an important role (Fig. 3d-f, solid black lines). In general,
there appear to be two classes of mode that are further amplified over compliant
walls. Long, slow-moving modes with κx < 5 and c+ < 7 are amplified regardless of
the wall properties, at least for the walls tested. The second class of modes that is
further amplified is linked to wall resonance and is generally of smaller wavelength
(see e.g.κx > 10 in Fig. 3e,f).

Note once again that the resonant frequency, and hence wave speed, varies signif-
icantly across the three different cases. The wave speed corresponding to resonance
is a decreasing function of κx for the spring-damper wall (Fig. 3d), constant for the
tensioned membrane (Fig. 3e, c+ ≈

√
Ct/Cm, i.e. the free-wave speed of the wall),

and an increasing function of κx for the stiff plate (Fig. 3f).
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(a) (b)

(c)

(d)

Figure 4. Shaded contours showing the singular value ratio σkc/σk0 for κz = 0 (a) and κz = 10 (b)
over the anisotropic wall listed in Table 1. Blue regions denote mode suppression and red regions denote
amplification. Plots (c) and (d) show the structure of the highly amplified two-dimensional modes marked
in (a), representing wave number frequency combinations k = (κx, κz , c+) = (1, 0, 1) and k = (3.8, 0, 11),
respectively. The shading on the compliant wall indicates the normalized pressure field. The vectors show
the streamwise and wall-normal velocity fields. Wall deflection not to scale.

3.3. Anisotropy and Wall-based Instability

In this section, we introduce the effects of anisotropy by testing the effects of a
wall with different streamwise and spanwise tension coefficients Ctx = 288 and
Ctz = 2.224, so that Cke = Ctxκ

2
x + Ctzκ

2
z (Eq. 8). This anisotropy changes the

resonant frequency of the wall (Fig. 4a,b) and the free wave speed is now c+ ≈√
Ctx/Cm = 12. However, the trends observed in the previous section remain. In

particular, there is a sharp transition in performance across the resonant frequency
for the κz = 10 modes, and spanwise-constant (κz = 0) modes are susceptible to
significant further amplification. There are two classes of highly-amplified spanwise-
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(a) (b)

Figure 5. Shaded contours showing the ratio of compliant wall to null-case singular values, σkc/σk0, at
friction Reynolds number Reτ = 2× 103 (a) and Reτ = 2× 104 (b) for spring-damper walls optimized to
suppress VLSM-type structures. Blue regions denote mode suppression while red regions indicate further
amplification. The solid black lines indicate the resonant frequency. All results correspond to κz = 10.

constant modes: long, slow-moving structures (e.g.κx = 1, c+ = 1, marked c in
Fig. 4a) and shorter, faster structures moving at close to the free wave speed
(e.g.κx ≈ 4, c+ = 11, marked d in Fig. 4a).

The above predictions are broadly consistent with the observations of Gad-el-
Hak et al., [3, 26], who showed that elastic and viscoelastic layers under turbulent
boundary layers gave rise to two distinct classes of surfaces waves: the first, termed
static divergence, were very long, slow-moving (nearly static) structures, while
the second class of surface waves had shorter wavelengths and faster phase speeds,
comparable to the free shear wave speed of the layer. The experiments suggest that
the static-divergence waves appear preferentially for viscoelastic coatings while the
faster waves appear preferentially for elastic layers. This effect of the viscosity
(i.e. the damping in our model) remains to be explored.

Figures 4c,d show the structure associated with the two highly-amplified modes
identified in Fig. 4a. Although the resolvent modes have vastly different wavelengths
and speeds, the overall structure is similar. Specifically, the streamwise velocities
associated with the modes are confined to a very small layer close to the wall, above
which the velocities are primarily in the up-down wall-normal direction. Further,
the magnitude of the wall-pressure field is largest over surface troughs and smallest
over surface peaks, i.e. high pressures coincide with downward deflections and vice
versa, as expected physically.

3.4. Reynolds Number Effects

In this section, we consider Reynolds number effects. Specifically, we contrast the
effect of walls optimized to suppress VLSM-type modes at Reτ = 2000 and Reτ =
2 × 104, characterized by wavenumber-frequency combinations k = (κx, κz, c

+) =
(1, 10, 16) and k = (1, 10, 19), respectively. The assumed increase in mode speed
with Reynolds number is consistent with the y+ ∼

√
Reτ scaling for such large-scale

modes proposed previously [22].
Similar to the low mass ratio case (Fig. 2a), Fig. 5b shows that the compliant

wall optimized for Reτ = 2× 104 has a larger region of influence in spectral space.
Physically, this is because, at higher Reτ , the optimization targets a faster moving
mode with c+ = 19 that is centered further away from the wall. Since slower-
moving modes with similar wavenumbers (i.e. similar length scales) are likely to be
centered closer to the wall and therefore have higher wall pressure signatures, the
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compliant wall also interacts strongly with them.
Note that the amplification-suppression patterns observed previously (Fig. 2-

Fig. 3) also persist at higher Reτ . For example, at c+ = 12, longer modes with κx <
2 are further amplified over the compliant wall while shorter modes with κx > 3 are
suppressed. For higher mode speeds c+ > 18, this pattern reverses whereby longer
modes with κx < 1 are suppressed and shorter modes are amplified. A comparison
of Fig. 5a and 5b indicates that the general patterns of mode suppression and
amplification remain broadly similar, with Reynolds number and wall resonance
serving to shift the transition points. Importantly, this observation suggests that
it may be possible to generate scaling laws for compliant wall performance that
are useful for all Reynolds numbers. Previous work shows that the structure and
amplification of smooth-wall resolvent modes exhibit distinct Reynolds-number
scaling regimes depending on whether the modes are centered in the near-wall,
logarithmic, or outer region of the flow [13]. As such, it is perhaps not surprising
that the effects of passive or active control also appear to scale predictably with
Reynolds number.

3.5. Optimal Wall from Fukagata et al. 2008

Finally, we present resolvent-based predictions for the optimal anisotropic compli-
ant wall from F2008, focusing primarily on the emergence of the two-dimensional
(κz = 0) wavelike motions observed in the simulations. The wall properties listed
in Table 2 lead to an effective spring constant of:

Cke = Ck + Ebk2 sin2 θ +
Eb3

12(1− ν2
p)
k4 cos2 θ

= 4.25× 10−5 + 2.39× 10−5k2 + 7.08× 10−11k4. (13)

Since b = 0.01, the third term ∝ Eb3 is much smaller than the second term ∝ Eb
for wavenumbers k ≤ O(100). Further, the first term is smaller than the second
term for k ≥ O(1). Thus, for 1 � k � 100, the effective spring constant can be
approximated as Cke ≈ 2.39 × 10−5k2, leading to ωn =

√
Cke/(ρmb) ≈ 0.044k.

As illustrated by the solid black lines in Fig. 6, this effective wall stiffness results
in a near-constant resonant wave speed of c/2UB = ωn/κx ≈ 0.044 (c+ ≈ 1.3)
for modes with κz = 0 and κx ≈ 3 to κx = 64. Further, the soft nature (i.e. low
resonant wave speed) of the wall means that it has a marked influence on singular
values across most of the spectral space shown in Fig. 6b-d.

Note that panels b-d in Fig. 6 show resolvent-based predictions for mode am-
plification over the compliant wall made using the three different mean velocity
profiles in Fig. 6a. In other words, the compliant wall properties are identical for
all three panels, but the mean profile used in the resolvent operator varies. Visually,
the mean velocity profile over the smooth wall (dashed line) is not substantially
different from the mean profile observed in the small domain compliant wall DNS
(fine gray line) that led to an 8.3% reduction in drag. In contrast, the mean velocity
profile in the large domain compliant wall DNS (bold gray line), which led to a
substantial increase in drag, is more rounded and exhibits a much sharper gradi-
ent close to the wall. Consistent with these observations, the predicted changes in
singular values over the compliant wall are not significantly different when either
the smooth wall (Fig. 6b) or small domain U(y) (Fig. 6c) is used in the Eq. 2.
This lack of sensitivity to the details of the mean profile suggests that the resol-
vent framework may be used to generate useful predictions regarding the effects
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. (a) The mean velocity profiles obtained in F2008 [9] over a smooth wall, and compliant walls
in small and large domains. The inset shows the mean profiles plotted in wall units, with the smooth
wall friction velocity uτ0 used for normalization. (b-d) Shaded contours showing the predicted singular
value ratio σkc/σk0 for spanwise constants modes (κz = 0) over the optimal (A1) compliant wall, but
with varying mean velocity profiles used in the resolvent operator. Blue regions denote mode suppression
and red regions denote amplification. The dashed black lines indicate the actual singular values σkc, the
solid black line shows the natural frequency of the wall, and the vertical gray lines in (c-d) reflect the
minimum cell size and maximum domain length. Plots (e-g) show the structure of the highly amplified
two-dimensional modes marked in (c) and (d). The shading on the walls shows the normalized fluctuating
Reynolds stress field. The vectors show the streamwise and wall-normal velocity fields. Wall deflection not
to scale.
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of compliant walls1 assuming smooth wall mean velocity profiles. Of course, such
predictions should be treated very much as first approximations that provide qual-
itative insight into the effects of a given compliant wall. As illustrated by Fig. 6d,
the changes in predicted mode amplification are more substantial when the large
domain compliant wall U(y) is used instead of the smooth wall or small domain
mean profiles.

In many ways, the wall characteristics discussed above (e.g. constant, low reso-
nant wave speed) are similar to the more traditional tension-only wall considered in
Fig. 3b. However, there are some important differences in how the two walls affect
spanwise constant modes. Relative to the tension-only wall considered in §3.2, the
regions of mode amplification and mode suppression appear to be more distributed
in spectral space over the anisotropic compliant wall considered in F2008. For ex-
ample, there are no sharp transitions in performance across the resonant frequency.
In addition, while the tension-only wall led to substantial further amplification of
large-scale slow-moving modes, such modes are suppressed over the F2008 wall (see
κx < 6 and c/2UB < 0.3 in Fig. 6b,c). We suggest that this mode suppression may
be due to the negative Reynolds stress constraint imposed by the kinematic bound-
ary conditions, though a detailed description of the exact mechanism is outside of
the scope of the present effort.

Importantly, Fig. 6c shows why the F2008 compliant wall only led to drag re-
duction in the small domain of length 3h. Specifically, the resolvent framework
predicts that modes with streamwise wavenumbers smaller than κx ≈ 2π/3 (verti-
cal gray line) and c/2UB > 0.3 are further amplified over the compliant wall. This
wavenumber cutoff represents structures with streamwise wavelength greater than
3h, which can only appear in the larger domain of length 6h. Of course, there are
some regions of increased amplification for κx ≥ 2π/3 as well. For instance, ampli-
fication increases nearly 20-fold for modes with κx = 10 and c/2UB ≈ 0.22 (point e
in Fig. 6c) and by a more limited 25% for modes with κx = 2π/3 and c/2UB ≈ 0.35
(point g in Fig. 6c). However, as shown in Fig. 6e, the highly-amplified shorter mode
is characterized by strong negative (beneficial) Reynolds stress at the wall and only
a limited region of positive (detrimental) Reynolds stress for y < 0.1. In any case,
any detrimental effects associated with these modes that are further amplified is
likely offset by the beneficial impact associated with mode suppression across the
rest of spectral space.

Figure 6d indicates that structures with κx < 2π/3 are amplified even more
when the large domain mean velocity profile is used in the resolvent operator. For
instance, the domain-spanning large scale mode with κx = 2π/6 and c/2UB = 0.42
(point h in Fig. 6d) experiences a near 300% increase in amplification over the
compliant wall. Further, unlike the other highly amplified modes shown in Fig. 6e-
g, which contribute substantial negative Reynolds stresses at the wall, Fig. 6h shows
that this domain-spanning mode primarily contributes positive Reynolds stress in
the region 0 < y < 0.3. The blue shading at the wall, which denotes negative
Reynold stresses, is much less pronounced and there are substantial regions of
positive Reynolds stress (red shading) in the fluid domain.

Thus, the larger domain may create a feedback loop whereby two-dimensional
wavelike structures with length scales greater than 3h arise and generate significant
additional detrimental Reynolds stress. In addition to transferring energy from the
mean flow to the turbulence, this Reynolds stress also modifies the mean velocity
profile such that the wavelike modes are amplified even further. This reinforcement
could explain the substantial increase in drag observed in the large domain DNS.

1Or more broadly, all types of flow control that can be represented via linear boundary conditions, [16]
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However, bear in mind that additional effects such as separation and secondary cir-
culation over the large-amplitude wavelike motion of the compliant wall may also
play a role in enhancing drag. Unfortunately, such effects cannot be captured in
the resolvent framework without explicit treatment of nonlinear effects in the forc-
ing fk (Eq. 1) or boundary conditions. Specifically, a priori prediction of changes
to the mean profile and prediction of secondary circulations requires an explicit
treatment of the nonlinear forcing terms, while accounting for the effects of large
wall deflection and separation requires nonlinear boundary conditions.

Despite these limitations, the results presented in this section indicate that, at the
very least, the resolvent formulation may be used as a first-order test of material
properties prior to testing in more computationally intensive simulations. While
increasing the domain size in DNS carries a heavy computational penalty, extending
the resolvent analysis to lower wavenumbers is inexpensive, especially when coupled
with additional physical insight (e.g. focus on 2D modes) to limit the region of
spectral space to be explored. As an example, all the results shown in Fig. 6 were
computed in less than one hour on a single core of a laptop, without any attempt
at making the computation efficient. Further, parameter sweep calculations similar
to those shown in Fig. 6 are easy to parallelize since each wavenumber-frequency
combination is independent.

4. Conclusion

The results presented in this paper provide some important design and methodol-
ogy guidelines for future research on the development of compliant surfaces. The
transitions in performance across the resonant frequency of traditional compli-
ant walls (involving springs, tension, or stiffness) suggest that such walls must
be slightly detuned and resonant at frequencies away from the spectral region of
interest. Note that this transition in performance is linked to the phase shift in
the relationship between the pressure and wall deflection across the resonant fre-
quency, i.e. as ∠Y changes sign, though the phase relationship between the velocity
and pressure fields close to the wall also appears to play a role. Importantly, the
amplification-suppression transitions persist at higher Reτ as well, suggesting that
it may be possible to generate useful scaling guidelines for compliant walls across
all Reynolds numbers.

Although the present study and previous research by Luhar et al. [11] employ sin-
gle wavenumber-frequency combinations as models for VLSMs and the NW-cycle,
in reality these structures occupy a region in spectral space. As such, designing
a compliant wall with a sharp transition in performance within this region is un-
likely to be effective. Therefore, instead of optimizing wall performance for a single
wavenumber-frequency combination, the optimization must be performed for a
range of relevant wavenumbers and frequencies. In other words, there must be a
net decrease in amplification across the entire spectral region of interest. This will,
of course, increase the computational expense associated with the optimization
procedure. However, since the effect of the compliant walls on individual modes
(or wavenumber-frequency combinations) can be computed independently, there is
significant scope for parallelization. Keep in mind that the framework in its current
form does neglect nonlinear interactions across modes, which serve to generate the
forcing terms fk = (u · ∇u)k. While we cannot provide any definitive insight into
the nature of these interactions at this point, this is an area of active research for
the authors.

The results presented in §3.2 show that, in general, compliant walls must min-
imize the susceptibility to spanwise-constant structures to be effective. This is
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likely to be difficult given that most natural materials tend to act as low-pass
filters. That is, the effective spring constant generally decreases with decreasing
κz. One potential solution is to employ walls that are in spanwise compression,
Ctz < 0, which would lead to a larger effective spring constant for κz = 0. Other
possibilities include periodic spanwise breaks in the compliant material to disperse
the spanwise-constant structures, or the use of mechanical metamaterials which
ensure that the curvatures in the streamwise and spanwise directions are coupled,
i.e. such that surface waves with κz = 0 and κx 6= 0 cannot be generated.

The results presented in §3.5 suggest that clever anisotropic compliant walls,
similar to those proposed by Fukagata et al. [9], may be used to suppress substantial
regions of spectral space. However, the two-dimensional structures discussed above
still play a vital role in dictating overall performance, with larger-scale structures
being particularly susceptible to further amplification. Thus, any simulation-based
design of compliant walls requires the use of large computational domains, which
is likely to impose severe restrictions on the Reynolds number or the extent of the
parameter space that can be explored.

Resolvent analysis provides a computationally-inexpensive alternative that can
be used to test and optimize wall properties prior to more detailed evaluation in
DNS. One of the key limitations of the resolvent formulation in its present form is
the requirement of a mean velocity profile U(y), which is unknown a priori over
compliant walls. However, the results presented in this paper indicate that small
changes in the mean profile (e.g. associated with a < 10% change in drag) do not
substantially alter predictions. As a result, smooth-wall mean profiles may still be
used to generate useful initial predictions.
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